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INTRODUCTION

1, General

Self oscillating systems in which one of the oscillating parameters is

of secondary importance compared with damping are called relaxational. The

term "relaxational" was borrowed from mechanics. In mechanics "relaxation"

a gradual disappearence of elastic deformation in a medium possessing

friction, is analogous to the discharge of a capacitor through resistance.

Though in general the phenomenon of relaxation oscillations was known

to exist in few branches of science in the early 20th century, it is not

wrong to say that study of the phenomenon in particular was initiated by

van der Pol in 1922. Having discovered his famous differential equation

(d. e.) I
y" - e(l - y^) y* + y = oj , van der Pol indicated a process of

graphic integration of this equation, (phase plane representation) which

permited construction with enough surety. He observed that when e is very

small, the limit cycle is very close to a circle described by the representa-

tive point with a constant angular velocity: the radius of the circle is

^ 2, that cancels well on an average 1 - y"^. This limit cycle is deformed

in proportion that e increases, but it always defines the oscillations in a

very strict manner; for each value of e there is a determined period and

amplitude of oscillation.

Upon examining the aspect of integral curve y = f(x) when s exceeded

unity, van der Pol found that the system produced oscillatory forms that had

escaped analysis until then. He therefore further developed this equation

to the form y" + e^(y) y* + y = (where ^(O) = -1, and e is very large)

and named the resulting oscillations as relaxation oscillations. The



investigation of this and similar d. e, resulted in remarkable advances in

the theory of oscillations, and the doctrine given by him on the subject has

become classic; it was, for example, the object of an interesting account

by Le Corbel lier.*

It was, however, noticed later that all available analytical methods are

inadequate for a rigorous treatment of van der Pol's equation when e is very

large. It is of the order of 10^ in the case of the standard multivibrator

circuit. In fact in all the analytical methods, use is made of series

solutions arranged according to ascending powers of e, and it is obvious,

that if e is not small, the series ceases to converge. A simple calculation

in polar coordinates shows that at this value of e, the isocline procedure

becomes impossible, because even a very small rotation of radius vector in

the neighborhood of the x axis results in a change in the direction of

integral curve by nearly 90° and produces an incidental change in the velocity

of the representative point from a high value to almost zero. There are thus

two points of an extremely bad analyticity on the integral curve across which

the analytic continuation is virtually impossible. With the combination of

geometrical "gimmicks" and physical reasoning, it is possible to demonstrate

what has been just said.

If one considers the basic oscillator circuit given in Figure 1 and

assumes that the non-linear tube characteristic is symetrical abput the bias

point and cubic, the system could easily be described by van der Pol's

equation. ^<^

*^.

Ph. Le Corbiller, J. Inst. Elec. Eng., London (1936).

D. F, Lawden, Mathemetics of Engineering Systems.



Thus with a considerable amount of feedback it is possible to represent the

system by equation;

V - e(l - x2) i + X = 0, e = 100

Let X = i

i = Jxdt

Since x is certainly expected to be periodic with no d.c. components, this

is because of the nature of the original equation, one can ignore constants

of integration. The result is then

X - e(x - xV3) + z =

or X = e(x - X /3) -z

but as X = z

dt dz dt dz

or dx _ e(x - x'^/3) -z

dz X

The plot of the curve e(x - yr/3) - z = with e = 100 is given in Figure 2

dx
curve A. It is simply the tocus of points where

nfz
~ ^* ^^^ curve divides

the (x, z) plane into two regions. The area to the left of the curve is the

dx
region for which j^ i^ positive. The area to the right of the curve is the

dx , .

area for which ^j^ i^ negative. For any given point on the (x, z) plane, the

dx
absolute magnitude of dz is determined by the distance to that point from the

curve A. Since e is very large, it would be expected that the absolute

magnitude of tt would increase rapidly as the distance from the curve increases,

Now one should see how the behaviour of the system can be represented

on the (x, z) plane for any starting point on it, A typical starting point is

dx
shown as Pj^, Since ^ is large and negative, the solution curve will drop

very rapidly to curve A at P2 where '72 is essentially zero. At ^2 dz " "^j

dz
but because dt ^^ finite and negative, the solution curve will tend directly
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to the left at P2, and cross A in a direction parallel to z axis. It cannot

now leave the neighborhood of curve A, for it is in the zone of negative

gradient and any tendency for it to move away from A would be counteracted by

a rapid increase in the magnitude of this negative gradient, bringing it back

into the neighborhood of A again. Neither can it cross the curve A, for if

it were to approach the curve, the gradient would decrease towards zero, thus

carrying it away again. At P3 the integral curve has a large gradient and can

no longer follow A, since to do so would imply that z is increasing when x is

negative. The integral curve must accordingly proceed parallel to the x axis

until it reaches P4 at which it commences to follow A again to P^ for the

reasons just mentioned. At P5 it drops almost immediately to P5 and then

repeats the limit cycle path P3-P4-P5-P6-P3, indefinitely. A relaxation

oscillation is therefore established which consists of alternately fast and

slow variations of x.

One should note in the proceeding example that no analyticity exists

between P3-P4 and P5-P6* It is interesting to examine the wave form which

results from an oscillation, having the solution curve in Figure 2. Obviously

the variable x would vary almost instantaneously from Pc, to P5 and from P3

to P^. From a physical point of view this instantaneous variation is analogous

to the effect of a shock in machines where continuity is preserved but ana-

lyticity is lost.

Attempts have been made to extend analytic methods to oscillations when

e is large. Lienard* succeeded in obtaining certain conclusions regarding

qualitative aspects of phase trajectories when e was very large. N. Levinson

(1943) extended the proof of the existence of closed trajectories to cover

oscillations in which e is not small. In 1944 J. A. Shohat indicated a form

Lienard, A., Revue Gen^rale de l' Electricite'', Vol. 23, 1928.



of series expansion formerly satisfying the van der Pol equation when e is

large. These various attempts, however, did not result in any complete

analytical theory in connection with oscillations in v;hich e is large. More-

over, not all the relaxation problems, belong to the group of van der Pol

equation. More specifically it will be seen later that relaxation oscil-

lations are frequently observed in systems which are amenable to represen-

tation by differential equations of the first order. Obviously these

equations do not admit any analytic periodic solutions for the simple reason

that they do not possess singularities, without which no closed analytic

trajectories can exist. These difficulties led the school of physicists

under the leadership of L. Mandelstam, N. Papalexi and L. Lochakov to evolve

a theory (1935) called by its authors the discontinuous theory of relaxation

oscillations . Practically the same conclusions were reached independently

by T. Vogel in France (1951).

From the point of view of the discontinuous treatment, the van der Pol

equation (with large g) is not involved at all and, instead the d. e. is of

the form

dx = P(x. v ) . dy _ Q(x. v)

dt T(x, y) ' dt T(x, y) (l)

In this form P, Q, and T may be regarded as analytic functions of x

and y; the "relaxation range" begins at the points (x^, y^.) for which

T(x^., y^.) = 0. However in order to be able to reduce the d. e. to the form

(l), certain idealization of physical problems of this nature are necessary.

These idealizations resemble closely similar ones used in the classical theory

of mechanical shocks. Once this point is clear, the formation of such d. e.

does not present any difficulty. The regions of rapid transitions (similar

to P3-P4 and P5-P6) on the integral curve are idealized by discontinuities.



Likewise, the intentional ignoring of the d. e, during the discontinuities is

compensated for by additional information not contained directly in the d. e.

but which appears in the form of the so-called "condition of Mandelstam"

regarding the invariance of energy during a discontinuity.

The second method of approach arose from a series of important papers by

Cartwright and Littlewood and concerns the van der Pol equation for large

values of e. The approach had a somewhat limited objective, namely, to justify

analytically the graphical solution obtained by van der Pol by the isocline

method. Essentially it is as follows: The graphical curve representing the

solution is split into a number of characteristic stretches, each of which

has definite features; for example, on some of them V is negligible, on some

others x or x are negligible, etc. This permits using easily integrable or

"truncated" d. e. for each stretch, the difficulty being in the analysis of

the order of magnitude of different quantities and in the ultimate "joining"

of all these solutions of "truncated" equations. It should be noted that

the procedure hinges on the existence of a graphical or experimental curve,

and the analysis merely confirms it.

It has been shown recently by Dorodnitzin, Wason, Flanders and Stoker

(U.S.A.) and Haag (France) that these difficulties can be overcome to some

extent by the use of so called asymptotic expansions which by their nature

do not require analyticity. However the difficulty of ultimate "junction"

of these expansions still persists.

At present the whole situation seems to undergo a certain "parting of the

ways" between the enginsers and physicists on the one hand, and the mathema-

ticians on the other. The former, persuing the applied problems, seem to

lean more and more to purely discontinuous treatment of the relaxation
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oscillations, following the pattern of the theory of shocks in classical

mechanics, whereas the latter still persist in the search of an exact solution

of the van der Pol equation as evidenced by the work of Cartwright and

Littlewood and their school.

Following are the advantages and disadvantages in the use of discontinuous

and asymptotic theories.

Discontinuous theory

(1) The discontinuous theory is purely qualitative, and uses extensively

the phase plane representation, but this phase plane is different from the

classical phase plane and hence theory appears to contradict the analytical

theory.

(2) The application procedure is very simple and reduces generally to

simple topological constructions in the phase plane. The difficult part lies

in the justification of the theory.

(3) The discontinuous theory is based on certain idealizations: for

example one assumes that the term nV = in the equation iiV + f(x, p) x + x =

and deals with the degenerate d. e. of the first order. In such cases one

has to supplement intentional ignoring by certain addition information.

(4) The idealized (discontinuous) treatment of relaxation oscillators

is more convenient for qualitative appraisal of what may be expected in the

given problem. Moreover it permits reducing the investigation of a system

amenable to two d. e. of the first order to a phase plane representation.

In its final form the discontinuous theory has turned out to be eminently

successful as a practical tool of exploration of all known relaxation

phenomena, and in-spite of its certain contradictions with analytical theory,

it has acquired ever increasing importance due to the ease with which it

handles the relaxation problems of even complicated types. Very often nev;



phenomena have been predicted on this basis. The theory has been checked

experimently, which adds a strong point in its favor. Once the appropriate

variables are chosen, it becomes a simple matter to establish the connections

of a cathode ray oscilloscope so as to observe the corresponding phase plane

diagram directly on the screen of an oscilloscope. Once a theory reaches such

a state, it cannot be easily discarded only because one is more accustomed

to using analytical theories. In fact, the usual reproach, that this theory

"mixes up" so to speak the analytical approach with a physical postulate (the

condition of Mandelstam) is no more justified than it is in the classical

theory of shocks.

Asymptotic theory

The purpose of asymptotic theory, is to avoid the short cuts offered by

the discontinuous theory. It prefers to deal with the d. e. as it stands

in-spite of the complications at s.ome points of non analyticity.

(1) The theory is purely quantitative in nature, but it is impossible

to start without a preliminary knowledge of the integral curve (obtained

either graphically or experimentally). In fact, as was mentioned, it merely

explains the curves analytically,

(2) The idea itself is simple but the difficult part is in applying the

procedure.

(3) This method is often very lengthy and normally its representation on

the phase plane is impossible, for the reason that in this case the d. e.

representing the physical system does not undergo degeneration.

Because of its relative simplicity and effective establishment of

qualitative conclusions in all known cases of relaxation oscillations, the

exposition and application of the discontinuous theory of relaxation

oscillations (as given by Mandelstam and Paplexi) will form the principal topic
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of this report. The discontinuous theory of Vogel will not be discussed in

this paper, because the principal hereditary actions, on which this theory

is based, are practically absent in electronic circuits.
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BASIC DISCONTINUOUS THEORY AND ITS PHYSICAL INTERPRETATION

2. Simole R L C circuit

The system of Figure 3 can be presented by the d. e.

Lq* + Rq + q/c = (l

)

One can consider initial condition to be q = qo and q = qQ. If the

coefficient L is very small compared to R and l/c, Equation (l) can be

degenerated* to Equation (2) and the corresponding circuit is shown in

Figure 4.

Rq-+ l/c =0 (2),

the initial condition in this case being q = q© at t = 0.

If the roots of equation (LS^ + RS + l/c = O) are oC and
f>
where /3»"<

then the solution of Equation (l) can be written as

q(t) = qo[tP/fP - a)ie
" ^^-{a/i? - a)]e "

^^J
+ q,/(l3 - qfe

" ^^ - e -
^^J

(3)

where

a = R/2L -n/r2/4L^ - 1/Lc and ^ = R/2L ^-JR^/aL^ - l/Lc

using the development of the radical

Jr^/AL"^ - l/Lc = (R/2I^1 - 4L/R'^c = R/2L [l - 2L/r2c + ]:2;[r/2L - l/Rc]

Hence for small L,

a = l/Rc and p = R/L - l/Rc~ R/L

A d. e. is said to be degenerescent when coefficient of the highest order
derivative of d. e. is small in comparison with coefficient of other terms in

d. e. For example, equation aV + bx + kx = is degenerescent if 'a' is much
smaller than b and k., and the corresponding degenerate d. e. is bx + kx = 0.

In one or two particular cases general rule has been violated and d. e.

has been said degenerescent when the coefficient k is very much smaller than
a and b.
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or approximately Equation (3) can be written as

qi(t) = qo[e - l/R't-tL/cSaje " «A *] * q„ L/^e " l/«= *- e
" «/^ *] (.)

It is obvious that the approximate solution given in Equation (4) is

near true solution (Equation 3) in the sense that whatever ^>o, one can always

find L so small that

|qi(t) - q(t)|<£ ; jq^Ct) - q(t)J<e

for all positive t.

The solution of Equation (2) can be written as

q(t) = q^e " VRc (5a)

and

^(t) = -(l/Rc)qo e " ^/^^^ (5b)

Comparing Equations (4) and (5), and assuming that the initial values

of the cooridinates for (l) and (2) are the same, one has

9(t) = qi(t) - q(t) = -qo(L/R2c)e "^^^^V qjL/F^(e " ^^^- e "^^A^^)

As all the terms in the right hand side of the above equation contain L as

a multiplier, this difference
I 9(t)J can be made as small as one chooses

it to be, by taking L sufficiently small. On the other hand, the situation

is different for derivatives of the solutions.

9(t) = hiU) - q(t) =(qo/Rc)e " ^^^ t.(^^L/Rc)e " ^A^+
qo e

" ^^ ^ (6)

For small t, 9(t)=^ 4o "^ RC ^o* ^ value which does not decrease with L and

so cannot be made small by suitably choosing L. However, for sufficiently

large t, which is supposed to be fixed, one can always find a value of L

small enough so that the value of 9(t) is smaller than a given positive

number £

.

If 9(t) as well as L is sufficiently small, the difference between

currents of complete and degenerate equations will remain small for all values
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of t. If this difference is not small one gets the following picture: When

L is sufficiently small, the current q in the complete equation of the system

changes very rapidly, and after a small time say, t2j it almost coincides

with the current given by the solution of degenerate Equation (2). If this

passage is sufficiently rapid, its details are often without interest. One

may regard this rapid passage as an instantaneous jump and determine only the

final state into which the system jumps; afterwards the behaviour of the

system is determined by the equation of first order,
j

Equation (2)1. One can

therefore, consider the system, free of inductance, provided we introduce the

new assumption that there occurs a discontinuity. In this case it could be

formulated as follows: the current q changes abruptly while the coordinate

q (charge) remains constant.

If one, now, considers the case of R L degeneration, figure 5, in which

(7) is very small, he finds that the complete Equation (l) degenerates to

L*q + Rq = (7)

Integrating it, one obtains

Lq + Rq = M (8)

where M is the constant of integration. The value of M is deterjnined by

initial conditions, namely

Lqo + Rqo = M (9)

The solution of Equation (8) is then

q = M/R + Ae
"^^/^

(lO)

From (9) and (lO)

A = - Lqo/R

Hence, from (9) and (lO)

q(t) = qo + qo(L/RXl - e 'W^) (U)
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If, however, one proceeds vath solution of Equation (l) in the neighborhood

of its degeneration, where (7) is very small, the approximate solution of

Equation (l) is given by

qj(t) = q„ e - t/RC *(L/R)q„ (1 - e -'^^/^) (12)

Framing the functions in order to compare the solutions of Equation (l) and

Equation (8), we have

^(t) = |qi(t) - q(t)| , and i(t) = |qi(t) - 5(t)| (13)

It can be seen, by the argument similar to that given in connection with

R C degeneration for functions 9 (t) and 9(t), that for sufficiently small (-3)

the function ^{t) approaches zero when i->o, uniformly in the interval o<t<°o,

whereas oCt) approaches zero when-^>D for all values of t except when t-^00,

for which value 0{t) approaches the value q^.

3. Initial Conditions

Let us now return to the case of small L. In a physical system of the

second order there are two aribtrary constants v;hich appear as two initial

conditions. More specifically in the circuit of Figure 4 if we assume that

the charge in the capacitor is initally zero, then the initial conditions when

switch S is open can be written as qo = Qo ~ 0. If, however, on,e adopts the

degenerate d. e. for the description of the system, where there is only one

constant, there appears the following difficulty. The state, when switch S

is open, is specified by two aritrary constants and the degenerate d. e.

admits only one which raised the question: what happens to the second constant

when the switch is suddenly closed; i.e., an impulse is applied to the right

hand side of d. e. in Equation (l).

The answer to this is that the variable q whose convergence is not

uniform on the basis of theory of degeneration, will suddenly jump to its
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final value beginning with which the process is determined by one single

constant (d. e. of 1st order) as it should be. Thus "conflict between the

constants of integration", so to speak, has been removed, owing to the

discontinuity of the variable which can vary discontinuously on the basis of

degeneration theory. The following discussion illustrates what has just been

said.

The system of Figure 6 can be described as

iCq + RCq + q = EC ( 14

)

Immediately before the application of E, when the circuit was "dead", the

conditions were obviously Qo = Qo ~ 0.

We first consider the R C degeneration, that is when inductance L is so

small that we use the degenerate d. e. of the first order,

RCq + q = EC. (l5)

There is only one constant of integration here and it is determined by the

initial condition: for t = 0, A = - EC, where A is the constant of integration.

The solution is then q = EC(l - e ~ ^ ). Differentiating this expression,

we have q = E/R e ~ V"'-', and for t = this gives qQ= E/R, whereas immediately

before the application of E, the current was obviously zero (qQ = O). This

means that the variable q has to change discontinuously if the degenerate d. e.

is to be used to represent a phenomena whose initial state is specified by

two initial conditions. Another conclusion is noteworthy: one has seen that

in the case of a degenerate d. e. q = EC[l - e ' ^/^'^l and q =(E/R)e "" ^/^^.

The ratio q/q in this case is a definite function of t and is not arbitrary

as in the corresponding complete equation. In other words, instead of a two

dimensional representation, (the phase plane) in the later case, we now have

a line because there is only one arbitrary constant of integration instead of

two.
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The equation of R L degeneration in Figure 6 can be written as

L di/dt + Ri = E (16)

and under the same assumed initial conditions, the solution is

i = (E/R) (1 - e
-(R/I>t)

Differentiating this expression and setting t = 0, one finds

(di/dt )._(^ = - E/L. But at the instant immediately proceeding the application

of E one had (di/dt )._q = 0. It can therefore be concluded that the second

initial condition has to jump discontinuously if the physical existence of

two initial conditions just before the application of E is to be reconciled

with the existence of only one initial condition imposed by the degenerate

d. e. of the first order, which admits only one constant of integration.

Summing up, in both cases the situation remains the same, namely the

variables in d. e. I q the charge in case of R C degeneration and i, the current

in case of R L degeneration cannot vary discontinuously and are determined

directly by degenerate d. e. of first order. However, derivatives of these

variables dq/dt = i (current in capacitive dircuit) and di/dt or L di/dt,

the voltage across the inductance can and, in fact, must vary discontinuously,

in order to reconcile the physical existence of two initial conditions before

the application of E, with the requirement of one single constant of integra-

tion - if the d. e. has to be used in degenerated form to describe the phenomena

after application of E.

It is clear that what has been said about sudden application of the

external impulse E, holds equally well when E is suddenly removed or generally

changed. The essential point is that THE VARIABLES WHICH APPEAR IN DEGENERATE



18

D. E. VARY CONTINUOUSLY IN ACCORDANCE WITH THESE EQUATIONS, BUT THEIR DERIVATIVES

JUMP DISCONTINUOUSLY INTO THE VALUES WHICH THEY MUST HAVE THROUGHOUT THE

SUBSEQUENT PROCESS.

4. Graphical Representation of Discontinuity

Considering the case of R C degeneration in Section 2 and assuming the

following initial conditions

q = ^o» % = ° ^^ * =

one gets from Equation (3)

q(t) = q^P - a)[p e " ^^- ae " ^^] (l7)

and

q(t) =.qoaMP - ci)[e " ^^a e " ^^] (18)

From (18) the maximum value of current will occur at time t^ given by

t^ = l/i? - a) log (|3/a)- (l9)

If L is very small; i.e., system is highly damped t]^ will be very small and

the maximum value of q designated by q,, will be very slightly smaller than

- qo/Rc.

In the degenerate case from Equation (5) we have

q(t) = qo e - ^RC
(2o)

q(t) = - 1/RC q^ e - ^RC (21

)

It can be seen from Equation (21) that q (t) _ = " ^q/^^ ^^^ "°"^- ze^o as it

should be according to assumed conditions. The nature of the graph of Equation

(17) is given in blue ink in Figure 7a, while that of Equation (20) is given in

red ink in the same figure. The nature of the graph of Equation (18) and

Equation (21) appear in Figure 7b in blue and red ink, respectively.

One should notice that both charge and current of the degenerate circuit

corresponds to the originial circuit except for a brief interval o<t<t2 where
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current of the degenerate circuit does not correspond to that of the original

circuit. However, since inductance of the circuit is very small, the varia-

tion of current in the circuit for the brief duration t2 is very rapid and the

current will approach very rapidly to the value which will be given by the

equation of the first order. If one is not interested in the details of

variation of current for small t2» one may neglect inductance and instead of

studying initial stage of movement introduce the jump. As long as one considers

that the circuit possesses capacitance only and no inductance one may consider

that all the energy is stored in the capacitor and since the charge on the

plates of the capacitor does not have time to change during the brief period

t2, the condition of jump permits an abrupt variation of current with the

charge of the capacitor remaining constant.

This, however, merely confirms the result obtained in section 2 that

while using degenerate d. e. (R C degeneration) one must assume, independently

of the initial conditions, that the current jumps to the value defined by first

order equation while charge remains essentially constant. We then have for

i = q the same curve as of the first order equation. Of course a real circuit

will always have some inductance, thus ruling out abrupt jumps of the current.

If however, the inductance is small and the current changes rapidly, it may be

assumed for many applications that it undergoes an instantaneous jump,

5. Mathematical Justification of Degeneration

In proceeding sections the discontinuous theory has been outlined with

the help of a simple R L C circuit and the illustration is sufficient to give

an idea of the physical meaning of the theory. In this and the following

sections the theory will be generalized and some principles of its application

in relaxation oscillations will be given.
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Figure 7b
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^Degenerate Equation ; Some relaxation oscillator problems can be reduced

to van der Pol's equation of the form

V+ \f(x)x + g(x) = (22)

where X (according to one of the early publications of van der Pol and later

confirmed by Minorsky and by Flander and Stoker) is of the order of 10^. The

equation can then be written as

eV+ f(x)i -t- eg(x) = (23)

where e= l/\>oand is very small. For completeness a forcing term e(t) will

be included in the right side of d. e. and it will be assumed that f(x) can

change sign. Hence, Equation (23) becomes

ex* + f(x)x + eg(x) = e(t) (24)

The purpose of this discussion is to demonstrate how the information about

the solution of Equation (24) can be obtained from a study of the following

degenerate euqation.

f(y)y = e(t) (25)

If one considers that e, f and g are continuous; then under normal

circumstances for gny initial values Xq, Xq and t^^, Equation (24) has the

unique solution x(t) such that x(tQ) = Xq, x(to) = xq. Under this relatively'

mild initial assumption one can guarantee that no solution goes to infinity

in a finite time; hence, every solution is continuable for all t ^to. The

most important extra condition is that i f(u)du shall be unbounded above and
o

below as x varies from -«» to -k» , This condition in the normalized form

can be written as: Lim F(x) Sgnx = + «» where F(x)s5 f(u)du
1x1-^ 00 o

The following article on degenerate equation has been taken directly from
J. A. Wendel's paper in Bull. Amer. Math. Soc. vol. 54 (1948), p. 836. His
terminology and notations have been largely used with slight variation to suit
our requirements. Interested readers are referred to this paper in order to
knov; about degenerate solutions and many other important aspects of degenerate
equations which have not been included in this paper.
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On the other hand, if f(x) has zeroes then Equation (25) may possess no

solution for some initial values, and certain of its solutions may remain

bounded, yet continuable only for values of t in a restricted interval about

to. Nevertheless, Equation (25) in its integrated form

F(y) = F(xo) + E(t) - E(to) (26)

where E(t)— j" e(u)du has solution y = y(t) such that y (to) = X^ for all values

of Xq, to; these solutions are continuable (although perhaps not uniquely) for

all t > to because of the behaviour of F(x) at infinity.

In the simplest case, when f has isolated zeroes, one can select from

among the solutions of Equation (26) a special class of function y(t) which

approximates the solutions of Equation (22) for small positive e. In the

following paragraphs the heuristic consideration which motivates the definition

of the "degenerate solutions" has been outlined.

Equation (22) can be transformed into the following equivalent pair of

first order equations by the substitution W = Sx + F(x).

ex = W - F(x) (27a)

W = e(t) - eg(x) (27b)

The solution of Equation (l) may now be thought of as trajectories

I x(t), W(t) in the x, w plane. The curve P. [W = F(x)] plays an important

role in the study of the trajectories by Equation (27a )^ If x(t), W(t) lies

above P then x(t)>o, while if rx(t), W(t)] lies below P then x(t)<o. Indeed

for small e, if W(t) - F x(t)J is not "very" small then x(t) is large.

Equation (27b) shows that w is probably bounded as £-fO.

Since f(x) has isolated zeroes, F(x) is piecewise strictly monotone. Let

F+ denote the set of values of x at which F(x) is increasing, F^ the isolated

points at which F(x) has extreme, F_ the remaining points. In Figure 8,
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Xi, X2, and X3 are in Fq, the open interval (x^^, X2) is in F+; the open

interval (xj^, X2) belongs to F.. Horizontal inflectional tangents, such as

X4 are not excluded.

It seems plausible that the set of points (x, w) near to P with x

coordinates in F+ should be in a stable region for solutions of Equation (22).

Suppose that at a certain time a trajectory is at P Figure (8) , The, since

it lies above T, it has a large positive horizontal velocity, and hence tends

to move rapidly towards P; its velocity decreases as it approaches P.

Similarly a trajectory point at Q will have a large negative horizontal velocity

and therefore should move towards P, decreasing the magnitude of x. Of course,

either trajectory may cross P; but once near to it, it should be nearly

impossible for a trajectory point to leave the trajectory so long as x(t)

remains in F^.

By a similar argument it appears that the region near P with x in F_ will

be highly unstable. Any slight tendency to leave P is quickly reinforced;

trajectory points such as those at R and S are expected to "jump" horizontally

to the first accessible increasing branch of P.

Assuming that the term eg(x) may be neglected, and integrating Equation

(27b) one obtains

W - Wo = E(t) - E(to) (28)

Then if ex is small we combine Equation (27a) and Equation (28) to obtain the

equation.

F(x) = F(xo) + E(t) - E (to) = W (29)

It has also been assumed that ex^ is small.

The second equation of Equation (29) should be a good approximation to

the actual motion defined by Equation (27a, b), since only the term eg(x) has
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been neglected. The first equation of Equation (29) should be a good

approximation if ex is small, which, by the stability argument above, should

be the case as long as x(t) stays in F^. Thus, wherever Equation (29) is

applicable, the true solution x(t) should be near to an appropriate solution

of Equation (26).

Let us follow the approximate motion of a trajectory beginning at

Pqq(Xqq, Wq) in Figure 9. (No significance is attached to the fact that T has

been drawn for different F(x) in Figures 8 and 9, nor to the fact that all of

the action takes place in the first quadrant). Since Pqq is well above P, the

initial velocity is positive and large. Hence, there is an almost instantaneous

horizontal jump to Pqo* (xq* Wq), which we may think of as a preliminary

adjustment of initial conditions.

Let e(t) is such that the function W = F (xq) + E(t) - E(t ) varies between

the levels W^ and W]^. The solution trajectory moves along P between Pq, and

P]^; we expect that x(t) is closely approximated by the solution y(t) of the

equation F(y) = F(xq) + E(t) - E (to), which lies between X^ and X.

Instead, if one considers that W increases steadily from Wq to W^, then

until W is near to W2, x(t) is near to the solution Y(t) of F(y) = F(xq) +

E(t) - E(tQ) lying between X^ and X2. As W continues to rise, the trajectory

is carried to a level considerably above P and thus x(t) acquires a very large

positive velocity. The trajectory point then jumps to the next increasing

branch of P say to the vicinity of P2'*^; now as W rises to level W3, x(t) is

approximated by the solution y(t) of F(y) = F(xq) + E(t) - E(tQ) which moves

from X2* to X3.

At P3, W is still rising; there is another jump to the right to the

positive P3*. The rest of the motion is now smooth from X3* to X^. The



26

situation would not have been different if P had the form of the red ink

curve Pj^ , with a maximum point P3 at the same height as P3.

If now W falls from W4 to Wq then the trajectory moves smoothly from

P^ to P5 along P, jumps to P5* and returns smoothly to Pq. The corresponding

solution y(t) of Equation (26) moves from X4 to X5, jumps to X5* and then

moves to X^. Of course, if P is changed to P, , the number and location of the

jump in downward cycle is altered.

The foregoing discussion suggests that the true solutions X(t) of

Equation (2^) are approximated by "degenerate solutions" y(t) whose essential

features are:

1. Y(t) satisfies f(y) = F{xq) + E(t) - E(to)

2. Y(t) lies in F+

3. Y(t) remains continuous when Y(t) remains in F+, but jumps to the

right or left from Fq according as FJ y(t)j is a maximum or a minimum.

6. Critical Points

It has been shown in the last section that if one chooses to adopt

degenerate d. e. (instead of complete d. e. ) to represent a physical system,

then discontinuties may appear at isolated points, as P,-,, P^ and P^ , in

Figure 9. Nothing has been said so far about these isolated poirits except

that these are the points of extrema, separating earlier defined regions F+

and F. of the trajectory . Determination of these critical points (points

where discontinuous jump must take place) is the subject of this discussion.

In order to apply the discontinuous theory to the problems of discontinuous

stationary relaxation oscillations, it becomes necessary to define the term

"critical point" in a slightly different manner from that given in the previous

mathematical treatment and to introduce some kind of basic assumption, the
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value of which is justified by its agreement with the observed facts.

DEFINITION ; CRITICAL POIffTS ARE THE POINTS AT WHICH THE DIFFERENTIAL

EQUATION DESCRIBING A PHENOMENA IN A CERTAIN DOMAIN CEASES TO DESCRIBE IT.

BASIC ASSUMPTION ; WHENEVER THE REPRESENTATIVE POINT FOLLaJING A TRAJECTORY

OF THE DIFFERENTIAL EQUATION DESCRIBINB A PEHNOMENON REACHES A CRITICAL

POINT, A DISCONTINUITY OCCURS IN SOME VARIABLE OF THE SYSTEM.

In what follows we will encounter three principal criteria by which the

existence of critical points can be ascertained. Criteria I and II are

largely used in relaxation oscillations, while criterion III is of immense

mathematical importance and can be used in case of extremely complicated

problems.

(I) The idea of critical points can be best explained by a general d. e. of

the form

dx/dt = P(x,y)/T(x,y) ; dy/dt = Q(x,y)/T(x,y

)

(30)

It is interesting to note that most of the problems reduce to the form of

Equation (30). This d. e. has nothing to do with the van der Pol equation,

because the latter uses strictly analytic theory and the question of

degeneration does not arise. It can be seen that Equation (30) becomes

meaningless or in other words ceases to describe the system at the point

XcjVc (critical point) for which T(xc,yc) = 0. One should note that, as

far as the trajectory is concerned, the passage through a critical point does

not in any way affect its determinanteness since T cancels out in the

expression dy/dx = Q/P. It is impossible, however, to determine the motion

on the trajectory in the neighborhood of the critical point. In this respect

the local properties of a critical point are opposite to that of singular

points where the trajectory is indeterminate but the motion is determinate.
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In certain simple problems the reader may encounter a single point or a

number of critical points instead of a locus of critical points (critical

line). However, one should not be alarmed as the problem is to be handled

in exactly the same vjay,

(II) The existence of critical points or of a locus of such points can

sometimes be revealed from the study of trajectories in a certain domain of

phase plane. A typical example in which this can be done is shown in Figure

10. The trajectory can arrive at a depart from the certain threshold T from

both sides, as shown. IF NO SINGULAR POINTS, THAT IS POINTS OF THRESHOLD

EXIST IN THE NARROW DOMAIN SURROUNDING P, ONE CAN ASSERT THAT THE LINE P IS

A LOCUS OF CRITICAL POINTS.

It is apparent that the trajectories situated in the region M and N

belong to two different differential equations. Let us assume that the

phenomena is represented by motion of representative point P on a trajectory

W of the region N, Since the singular points are absent by an assumption, P

will reach point P on L in a finite time. Having reached this point, the

representative point finds itself in a kind of analytic impasse from which

there is no normal issue, that is, along the integral curves. In fact ?

cannot pass into the trajectory W passing through P nor can it turn back on

W since, in both cases, this v^ould be inconsistent with the differential

equations prescribing a definite direction on the trajectories of the two

regions M and N. Nor can the representative point remain at the point P v^hich

is not a position of equilibrium. The differential equation ceases to have

any meaning at point P and therefore ceases to represent a physical phenomenon.

Hence, the point P is a critical point, and the line P is a locus



29

. r

N

Figure 10

Figure 11



30

of such points. By our basic assumption, the discontinuities necessarily

occur once the representative point has reached some point on P.

Extensive use of both the assumptions mentioned earlier, will be made in

the investigation of relaxation oscillation in relatively complicated circuits

in which it is impossible to predict the nature of the phenomenon on the basis

of elementary intuitive reasoning. It will be seen in connection with the

relaxation oscillations proper that these assumptions are very handy and

useful tools in ascertaining the possibility of relaxation oscillations.

(Ill) The following discussion is presented here in order to demonstrate

the mathematical meaning of critical points. The presentation is the abstract

of Solomon Lefschetz's discussion on the subject in "Contribution to the

Theory of Nonlinear Oscillations, vol. IV."

The notations used are the following:

(1)
I

X L and
I

x>y p denote convergent power series in x or x and y

beginning in the terms of degree ^p.

(2) E(x) and E(x,y) are convergent power series such that

E(o) = E(o,o) = 1

(3) To-CURVE denotes a path leading to or away from the origin in a

definite direction.

(4) Order of To-Curve means order of y(x) on the curve.

NESTED OVALS: OVALS DESCRIBED BY REPRESENTATIVE POINT IN PHASE PLANE.

Theorem: A system with both characteristic roots zero but with first degree

terms not all zero, possesses at most a single sector of nested ovals ( S.N.O.)

This single sector if it exists must be crossed by the y axis.

The following equation describes all the physical systems with both

characteristic roots zero but with terms of the first degree term not all
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zero.

dy/dx =^[y2 - 2A(x)Y + B(x)]'E(x,yi/|- [y - c(x)]j (31)

A = [x]i ; B,c = [x]2

We will first discuss the possible existence of S.N.O. to the right of the

y axis. In the region there may exist branches issued from the origin where

dy/dt =0. If there are branches there will be two of them and will be

1 2
denoted by r„, ?„. In one region there exists always a branch P^ where

dx/dt = 0. The branches Fu are jointly given by

y2 - 2A(x)y + B(x) = ' (32)

If A= A*^ - B = [x] 2, then the two branches are given by

y = A(x) - Va (33)

Now upon drawing various sketches corresponding to the branches to the

right of y axis, one readily finds that the only disposition that might

arise to an S.N.O. to the right of oy is the one of Figure 11, the P branches

in the first quadrant and the Pj, above P^.

Figure 11 has been drawn under the following convention adopted by

Barocio*: the P^ branches are dotted lines and P is a continuous line.

Now Figure 11 is only compatible with A = 0c2x2 E(x), or else a x ^^E(x).

In order that the two branches be in the first quadrant we must have one of

the following two systems of representation for our branches :-

I P^ : y = axPE^(x)

P^ : y = bxqE2(x)

P^ : y = cx%(x)

p ^ q < r, a b>o, c^o

*
Barocio, Universidad Nactional de Mexico



32

Observe that C = means that ^^ is the x axis.

V . y = (x) - ax(q-'lV2E2(x2)

= axP + + Px^, a?b, a>o

V = y = cx2e3(x)

r>p or else V = p and c^a

The general method used in finding the critical point consists in first

finding possible orders of To-Curve by means of the Newton polygon. Then if

\i is such an order we apply the transformation y = x^y^. It will turn out

that n is always an integer. The transformation replaces the given equation

by a system

dyi/dx = A(x,y^)/X^B(x,y^) (34)

with X = as a solution. The images of To-Curves of the order \i. can only

be solutions tending to critical points P, Q , other than the origin

and y axis. These are given by equation

A(o,yi) =

and among them those corresponding to ends of an S.N.O. must be noted. The

strict saddle points are thus to be eliminated at the outset.

7. Direction of Discontinuous Jump

It has been ascertained in the previous study that if a physical system

is described by a degenerate d. e. and if there exists critical ooints in the

phase plane, the representative point (P) must jump from the critical point

to some other point where it encounters an analytic arc. To complete the

discontinuous theory of relaxation oscillations, two questions are yet to

be answered:

(l) What is the direction of discontinuous jump of P?
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(2) In order to have periodic phenomona, is it necessary to have a

closed integral curve with +1 as the algebraic sum of the indices of singular

points in its interior?

The first question was answered by Mandelstam and is commonly known as

"conditions of Mandelstam." On the basis of a few examples given earlier

and miny other examples, Mandelstam noticed that the variables which cannot

change discontinuously in response to discontinuous changes in the forcing

term are those which enter into the expression of stored energy. For example,

we have seen, in the case of R C degeneration that the charge q can not

change discontinuously, and at the same time we note that the stored energy

in this case is purely electrostatic E = 2-cv2 = ^-qv where q = cv. In case

of L R degeneration, the stored energy is E = -g-Li^ and, again it was found

that the variable i can not change discontinuously. On the other hand,

dv/dt can change discontinuously and, therefore, also 1(^ = dv/dt, where i

is the current flowing in the capacitor circuit. Likewise di/dt can change

discontinuously, which means" that the voltage Ldi/dt across the inductance

can change discontinuously.

The fact that the energy of the system cannot undergo a jurnp is a fairly

plausible conclusion, because in order to produce discontinuous changes in

energy, an infinite power is required, but this is ruled out on obvious

physical grounds.

Thus the argument of Mandelstam is based on the continuity of the

function i(t), the current through inductor L, and v(t), the voltage across

the capacitor. Since i(t) and v{t) are continuous, clearly the electromagnetic

energy Li2/2 stored in an inductance and the electrostatic energy stored in

the capacitor are also continuous functions of time. One obtains conditions
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of Mandelstam by writing

Ai h"-^ = Av
It.-o

^o^°=0 (35)

where (tQ-O), (tQ+O) is the infinitely small time interval during which the

discontinuity occurs. The important point to be noted in connection with

these conditions is that they are applicable to an infinitely small time

interval and to the circuits with finite dissipative parameters. It is

thus clear that, if one wishes to represent a piecewise analytic phenomenon

on the phase plane in the form of, say, two analytic arcs joined by discon-

tinuous stretches, the later must correspond to variables which can vary

discontinuously. Thus for instance, in case of R C degeneration, if one takes

the variables i^ = c dv/dt on the abscissa axis and V on the axis of ordinates,

the discontinuous stretches are possible along lines parallel to the abscissa

axis, in as much as in this direction discontinuities are possible because

the condition of Mandelstam regarding the stored energy is fulfilled. Similarly

in L R degenerates one can take on the abscissa axis the variable Vr = Ldi/dt

and on the axis of ordinate the current i through the inductance, and the

representation is the same as in the previous case.

The above discussion ascertains the direction of discontinuity in the

phase plane. Obviously it is this additional information (not contained in

d. e. itself) which permits connecting what exists before and after discon-

tinuity. In doing so we have intentionally ignored what happenetj in the rapid

transition period which has been idealized by the mathematical concept of

discontinuity.

The discussion nov.^ following is the answer to the second question.

If one represents the motion of a representive point of a physical

system described by a degenerate d. e. on the phase plane, one gets the

following picture.
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A certain arc is followed until it meets a critical line at some point.

At this point d. e. ceases to govern the phenomenon and a discontinuous

stretch begins, being determined by condition of Mandelstam. It ends at a

point where another analytic arc begins and d. e. again takes charge of the

phenomenon until another critical point is reached which results in another

discontinuity which brings P to the first arc, etc. If this point is that at

which the process started, the periodic process is established at once. One

has thus a piecewise analytic cycle which has no limit cycle feature. If,

however, the process approaches the ultimate piecewise analytic cycle only

after a series of rotations of radius vectors one has a kind of piecewise

analytic limit cycle.

On the basis of observed facts it has been found that in order to have

a periodic phenomenon it is not necessary to have the sum of indices of

singular points inside the piecewise limit cycle as +1. In fact one may not

have any singular point inside the piecewise bounded curve. An asymmetrical

multivibrator is an example of this.

8. Summary

In Equation (30) if T(x,y) / 0, the system described by it is a normal

one and classical theory is applicable. Thus, for instance, in Figure 12,

if a point A of a phse plane is given (which means certain initial conditions),

a trajectory, represented by an analytic arc A B will begin at this point

and will continue up to the point B of coordinates Xg,yg for which T = 0.

As B is a critical point, at this point the d. e. lose their meaning and

the analytic continuation of solution is impossible. If, however, one takes

into account the condition of Mandelstam, a physical continuation is still

possible. In fact, the point B in this theory is the "beginning" of the
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discontinuity B C traversed in no time, provided C is on another analytic

arc C D representing the solution of the d. e.

Assume that arc D C ends at the point D for which T = again. This

determines another discontinuity D E v;hich ends at point E which is on the

arc E B and so on. The cycle consists thus of two analytic arcs E B and C D

on which the motion of P occurs with finite velocity,- joined by discontinuous

stretches B C and D E traversed instantaniously.

It is useful to note the following points:

(1) The form of d. e., Equation (30), appears in practically all

relaxation problems and it is generally impossible to reduce it to van der Pol's

equation with a large parameter value. In fact, the parameter does not figure

at all in these equations and the "critical points" B and D appear when T

vanishes.

(2) The oscillatory phenomenon is governed by the d. e. as long as P

moves continuously on the analytic arc but, on arriving at the critical point,

the phenomenon ceases to be governed by d. e. during its rapid (instantaneous)

transition until another analytic arc is encountered on which the motion

takes place again in accordance with d. e. The instantaneous transition

occurs in accordance with the conditions of Mandelstam.

The discontinuous theory of relaxation oscillations is now more or less

completely established and in what follows we will encounter its application

in some typical examples.
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DEGENERATE SYSTEMS OF FIRST ORDER

9. Thvratron Relaxation Oscillator

An equation of the first order

X = f(x) (1)

obviously does not posses continuous analytic periodic solutions. Moreover

one can assert that if the function f(x) is single - valued, no continuous,

although not necessarily analytic, periodic solutions are possible. In fact,

in order that some periodicity may exist, it is necessary that the system

traverse the same line x = Xi, with two oppositely directed velocities; this

however, is impossible if f(x) is single valued.

As discussed earlier, the change from one branch of the function f(x)

to the other one generally occurs at critical points and is discontinuous.

Very frequently this is equivalent to saying, that the phenomenon is governed

by two distinct differential equations during its cycle. During one fraction

of the cycle the phenomenon is described by one d. e. and during the other

fraction by the other equation. The change from one d. e. to the other occurs

at the critical points.

Consider the degenerate equation of the form given in Equation (2)

f(y)y'+ y = (2)

On the basis of the above discussion, the following condition must be

satisfied for the existence of relaxation oscillations

(1) f(y) is a double valued function of y in some interval y]^<y<y2'

One of the branches of f(y) is prolonged to form the curve in the interval

y<Yly (Branch l) while the other branch forms the curve in the interval y>y2

(Branch 2)

(2) For the establishment of oscillatory regime it is essential that on
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branch 1, f(y) is negative, while on branch 2, f(y) is positive.

(3) The energy contained by the system in the initial state of the

second regime must be the same as that contained by the system in the final

state of the first regime.
.

As an example let us consider the circuit given in Figure 13. Following

notations have been used:

V]_ = Firing voltage

V2 = Extinction voltage

i = Current in the neon tube

i = <I>(v) is the neon tube characteristic

Applying Kirchhoff's laws

R(I + i) + V = E, cv = 1

Hence

r[cv + 4)(v)] + V = E

or

V = f(v) = l/Rc [e - V - R=l>(v)] (3)

This d. e. is valid only when the discharge exists. During extinction, from

the knowledge of neon tube performance, we know that i = '^(v) = and hence

from Equation (3)

V = 1/Rc U - v] (4)

The equilibrium will be given by f(v) = or E-v/R = •l>(v). To find

the roots of this equation v;e construct the graphs i = 4>(v) and Z =(E-vyR

and find their intersection. Figure (14) It is obvious that one can place

the equilibrium point in upper or lower portions of the characteristic

i = ^(v) by changing E or R. We will set such a value of R that the equilibrium

point ("0") lies on the lower portion of the characteristic.
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From Equation (3) f(v) = (l/Rc) E - v - Rc(v)

df(v)/dt = l/Rc [ - dv/dt - R<t'(v) dv/dt

where

C'(v) = d (v)/dv

or

df(v)/dt = -(l/c)dv/dt [ 1/R + e'(v)] (5)

Obviously for the upper portion of the curve, slope c(v) is positive and

since l/R is always positive, df(v)/dt is negative and the upper portion of

the curve is stable. Also if R is sufficiently large, for the lower portion

of the curve, <j,'(v) >l/R and slope is negative, hence the lower portion of

the curve is unstable. Thus in Figure 14 if the equilibrium point lies above

f^l on the curve i = <i(v) it is stable, and it is unstable otherwise. The

stability has been marked by arrowheads in Figure 14.

As this is the case of R C degeneration, current can change abruptly

and hence critical points can be found as follows:

i = c(v)

i = <i'(v) dv/dt = <t'{w) V

= C'(v) f(v) (6)

We know that critical points can occur only when i goes to infinity. As

f(v) remains finite, hence i can be infinity only when C'(v) becomes infinite.

This can happen only when either (v) does not exist or ceases to be continu-

ous; i. e., at the points M-^ and M2 of the characteristic. Hence Mi and M2 ^^®

the critical points.

Beginning at the origin if we start charging the capacitor the represen-

tative point (P) in the phase plane Figure (l5) will move from the origin to

D(iVl2). At D the tube will fire and P will jump discontinuously to A, according

to conditions of Mandelstam. Here d. e.. Equation (3), will take care of
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the phenomenon and P will move to B (B corresponds to critical point Mi).

Once P has reached B, it cannot move along the characteristic, since the

d. e, prescribes on it an opposite direction. At the same time B is not

the position of equilibrium and hence P has to jump discontinuously to C. At

C, P is again on the analytic curve i i = <^?{v) = Oj and d. e., Equation (4)

takes charge of the phenomenon. Thus the piecewise analytic cycle ABCDA

consists of two analytic branches on which either of the d. e. takes charge

r , ,

alternately, closed by two discontinuous stretches. IDA (firing) and BC

(extinction).

I

If it is possible to idealize the i = ^{v) curve as shown in Figure 16,

computation of wave form and frequency can be done as follows. The investi-

gation of the drooping portion of the characteristic can be omitted because

it does not come in the path of P. Two other branches of the characteristic

can be represented by

(1) i = -^{v) - when the tube is not conducting

and

(2) i = 0(v) =(V - Vq)/R when the tube is conducting. (7)

Considering that initially the tube is not conducting and v = V2, one has

from Equation (4)

Rev = E - V

or

V = A e " '^/^^ + E

As at t = 0, V = V2, hence

A = V2 - E

or

V = E - (E - V2) e - ^/^*^
(8)
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When the tube fires at D Figure (15) the initial condition becomes

V = Vj^ at t = and Equations (3) and (7-2) take charge of the phenomenon.

Hence, from the two equations

Rev = E - V - R(V - Vo)/Ri

or Rev +(R/Ri)(V - Vq) + V = E

Rearranging

cv + v/Ri + v/R = E/R + Vq/RI

or

cCr + vA = E/R + Vq/RI

v = A e " '^A^ + EX/R + Vo\/Ri

As at t = 0, v = v-|^

A = VI - EX/R - VoX/Ri

V = EX/R + VqX/RI + (v^ - EX/R - V^X/Ri) e ~ V^^^

or

v/X = E/R + V^/Ri + (v;^/X - E/R - V^Ri ) e " ^^'^^
(9)

The nature of various wave forms is shown in Figure 17.

Time Period

From Equation (8) the time taken by the capacitor to charge from v^ to v,

designated by T^^ can be represented as

(E - v,2) e
- VRc= (e . ^^)

or

Ti = l/Rc log [e - V2/E - vj (10)

Similarly from Equation (9) the time taken by the capacitor to discharge

from Vi to V2 designated by T2 can be represented as

V2/X = E/R + Vq/RI + (vi/X - E/R - V^Ri) e " ^2/^^
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Figure 17
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or

or

(V2A - E/R - V^Ri) e V^^ = v^/\ - E/R - V^/Ri

T2 = >^c {log (v^ - Vq) R - (E - vi) Ri}/|v2 - Vq) R - (E - V2) Ri](ll)

Thus the time period is

T = (Ti + T2) (12)

Once T has been determined, one may use Equation (8) from to Tj^, and

Equation (9) from Tj^ to T to expand v(t) in a Fourier series expansion and

get the structural composition of oscillations.

10. Neon Lamp Circuit Containing L and R

It can also be shown that if all three conditions given on pages Z^ ar^d

39 are not satisfied relaxation oscillations will not exist. As an example

let us consider the circuit in Figure 18. Applying the Kirchhoff's laws we

have

E = L d[i + V/R /dv • dv/dt + P(i + V/R) + v

or

L/R(l + R di/dv) dv/dt = E - v - f>(l + V/R) (l3)

From Equation (13) it is clear that f(v) is a double valued function and the

system may satisfy the condtion (2) also on page 38 provided

vi(l + P/R)< E <V2(1 + P/R) + Rio (1^)

where Iq is the value of current in the tube corresponding to extinction

voltage. One may therefore, conceive the presence of relaxation oscillation

in the circuit of Figure 18, that has however never been observed. The

reason being that all the energy in this case has been assumed to be stored

in inductance, and condition of Mandelstam implies that current should remain

constant during the jump. From Figure 18

I =: i + V/R



46

v;e know that current and voltage just before firing are v = v,, i = and

those just after jump are given by R i + v = vj^. Also just before extinction

the following relations must be satisfied Ri ''-v>RiQ+ V2. Combining

the two statements gives

Vi > R io + V2

or

1/R > io/vi - V2 (15)

Obviously this inequality cannot be satisfied if Equation {lA) is, because

this will mean

1/R + 1/P < i^/tv^ - V2) (16)

But if this is the case the equilibrium point will lie in the stable region

and oscillations are out of question. The result will remain the same if one

interchanges the position of circuit elements L and R. No doubt the relaxation

oscillation can be expected from the circuit if one has voltage as a double

valued function of current.

11. Dynatron Oscillator

The circuit of a Dynatron Oscillator is shown in Figure 19. In this case

it has been assumed that plate potential is lower than the grid potential

(300 - 400V). Obviously when plate potential V increases from zero the plate

current i will first increase; it diminishes then because of emission of

secondary electrons that are absorbed by the grid, but it begins to increase

again in proportion as the potential, V, of the plate continues to increase,

the plate re-absorbs itself more and more of the secondary electrons that it

had emitted. One will thus get the negative resistance characteristic shown

in Figure 20.

The plate voltage is related to the plate current by the relation

V = E - Ri - L di/dt (l-^)
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Figure 19

V
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Let us draw the line (D)| V = E - Ri on the graph of Figure 20; such that

the equilibrium point lies on the unstable negative resistence region.*

From Equaltion (l7)

L di/dv • dv/dt = E - V - Ri

or

dv/dt = £ - V - Ri/ di/dt (18)

From Equation (l8) it is clear that the critical points will occur where

di/dv = 0; i.e., points A and B on the characteristic. Thus the represen-

tative point (P) will move continuously from B' to A, at A it will jump to

A' in accordance with the condition of Mandelstam (current being the

invarient). The motion will be governed by d. e. and P will travel

continuously to B where another jump will take place, bringing P back to B'.

It establishes the piecewise limit cycle A A' B B' A.

12. Degenerate R C Multivibrator

The circuit of Degenerate R C iMultivibrator is given in Figure 21. The

fundamental assumption here is that the effect of small parastitic inductance

is negligible. This means that from the very beginning one places oneself

under the condition of R C Degeneration, in terms of discontinuous theory.

Other assumptions are:

(1) The tube V^, is a linear amplifier with amplification factor K,

amplifying voltage between B D and provides the necessary 180° phase reversal

so that tube V2 may work as an oscillator if the total loop gain is equal to

or more than unity. One has then

eg = Kri

(2) The grid current and reaction on the plate is neglected.

Stability can be ascertained by Liaponnoff's conditions. A. A. Andronow
and C. E. Chaikin. Theory of Oscillations (1949) pp - 147.
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Figure 21
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(3) Tube V2 is a non-linear conductor whose characteristic is given

by la = ^(eg)

Applying Kirchoff s law to the circuit we have

RI = ri + V

I = la - i

^a " "^(^9) according to assumption.

Combining first two equations

R[la - i]= ri + V

Rearranging and substituting la = '^(eg) gives

(R + r) i + V = Rig

= R^(eg)

or

(R + r) i + V = R<i>(Kri) (19)

Also

V = l/cjidt

i = c dv/dt

or

i = cv (20)

Differentiating Equation (19), gives

(R + r) i + V = RKr^'(Kri) i

Substituting i/c for v from Equation (20),

[RKr<I>'(Kri) - (R + r) i = i/c

or

where

di/dt = iy^ RKrs£>'(Kri) - (R + r)j

= i/cT(i)

T(i) =[RKr<I>'(Kri) - (R + r)]

(21)

(22)

(23)

(24)
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and

<D'(Kri) = dro(Kri)]/di (25)

The root i of the curve T(i) = will give the critical points. One can

proceed either analytically if polynominal approximation of $(Kri) is given,

or graphically.

We shall adopt the graphical procedure and assume the idealised nature

of characteristic i Ig = -^(eg) of tube V^. This characteristic has been

represented by C |_R<l>(Kri)J in Figure 22a. C, represents curve (R + r)i. The

difference of ordinates of C and C^ is curve V(i) and is represented by C^.

In Figure 22b, C3 represents slope of C. It is clear that if v/e subtract from

this slope curve (C3) the constant slope (R + r) of line (R + r)i, which

implies shifting axis M' N* to M N, we get the roots of equation T(i) = 0.

Hence, by difinition the points P and Q will be the critical points. It should

be noted that by virtue of Equation (l9), curve C3, when referred to M N axis

represents the slope of curve C2. Because the slope of curve C2 is positive

between points B and D and negative everywhere else, critical points P and Q,

when transferred to phase plane curve C2 (plot of differential equation of

first order in i and v or i ) must corresoond to points B and D.

We note that C3 when referred to M N (slooe of curve C2) is positive

inside the interval i3<i<i][, and negative outside; hence, according to

Liaponnoff's criteria,* the system is unstable in this interval and stable

outside. From Equation (l) the only equilibrium point on the curve C2 is

(v = 0, i = 0), the origin, and hence the origin is the point of equilibrium

and one can mark the stability as shown in the curve C2. It can be seen

that the representative point moves towards B and D from both sides, but

Andronow, A. A. and Chaikin, C. E., Theory of Oscillations (1949) pp - 147.
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Figure 22b



53

B and D are not the points of equilibrium because at these points T(i) =

and hence according to discontinuous theory a jump must take place.

If one considers that the representative point is in the interval

i3<i<i]^, and moving towards B (the interval being the region of instability),

at B the jump must take place in t'he direction shown (V being the invarient).

At C the representative point is again on C2 (the analytic arc) and the analytic

stretch C D is traversed with finite velocity. The discontinuous transition

again takes place between D A, followed by analytic stretch A B. A piecewise

analytic cycle A B C D A thus results.

The oscillations thus established have two continuous motions, from ^2

to i^ and from 14 to i]^. The form of oscillations or the form of function

i = o(t) is shown in Figure 23. It is a simple matter to determine the

amplitude of oscillations which is determined by 14 and i2 as is clear from

Figure 23.

The period of oscillation can be calculated in the following manner.

Vie will idealize the curve C in Figure 22a by curve I in Figure 2^ and assume

that it is symetrical; i.e., i]_ = 13 and 12 = 14.

From Equation (23)

dt = c[T(i)/ildi (26)

The time period of oscillation is the time required by the representative

point to describe the complete limit cycle and because, according to discon-

tinuous theory the jumps are instantaneous, we can integrate Equation (26)

between limits i2, 13 and i4, i]_toget the time period.

Hence

13 il
, ^

T = CiT(i)/i di+ciT(i)/i di (27)
i2 i4

Because T(i) is nothing but the slope of curve I minus the slope of curve II
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and since in the region of interest (i2<i<i3) and (i]^<i<i4) curve I is

constant. Hence

T(i) = -(R + r) (28)

It has been assumed that i^ = 12 and i^^ = 13 hence Equation (27) reduces to

il
T = 2c(R + r)5 di/i

= -2c(R + r) log i^/i^

= 2c(R + r) log i^/i^ (29)

If Vg is the saturation voltage and Ig the saturation current then obviously

i^ = i3 = y ^/2t (as given in Figure also). It is possible to see from the

geometry of the figure that

12 = i4 =[rIs/(R + r) - V3/2r]

Substituting these values of i, and i. in Equation (29), we have

T = 2c(R + r) log [2RrIsA5(R + r) - 1 (30)

13. System Described by Two Degenerate Equations of First Ord^r

We have seen that neglecting the oscillatory parameter that plays a

secondary role generally lowers the order of the oscillations. It may well

happen, however, that the disregarding of certain parameters may result in a

discontinuous solution but the order of the equation remains unchanged. This

can be demonstrated by the multivibrator of Figure 21, if R is replaced by L.

The resulting circuit is shown in Figure 25. Making the same assumptions

which we have made in case of R C multivibrator and applying Kirchhoff's laws

to the circuit of Figure 25, the following equations can be written:

I = ^(Kri) - i (31)

LI = ri + l/ci idt

where

la = i>(Kri)



55

>T

Figure 23



56

Figure 24

Calculations of 12 ai^d 14:

I is given by

V = R<i>(Kri), but ^(Kri) = Is/2 at L

Hence WL = RIs/2

WM = RIs/2 - Vs/2r (R + r)

-i2 = i4 = OR = OAI + WR

= y^/2T -^ SQ

= y^/2T + 2MW/(R + r)

= Vs/2r + 2[rI3/2 - M ^/2t (R + r)Jl/lR + r)

=[R/(R+r) I3 - Vs/2r]
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(32)

(33)

K = p.Z/(Z + Pp) (as assumed previously)

Z = Load impedence

Tp = Plate resistence of Tube v,

and 4> is the transfer characteristic of Tube V2.

Let us assume that

Kri = X, I = y

Then from Equation (31)

Ly = x/K - l/Krc 5 xdt =

0(x) - x/Kr - i ydt = C

Differentiating Equation (32) one has

X = y/[0'(x) - 1/Kr]

y = 2/KrLC + l/KL y/[^'(x) - l/Kr

The transfer characteristic ^(x) is a bounded monotonic odd function and

C>'(x) will then be an even function monotonic for x>o and decreases monotonic-

ally from the maximum to both sides of zero. Thus if :)'(o)>l/Kr, there vaU

be two values -X2^(x;i^>p) such that

O'(x^) = ^'(-x^) = 1/Kr

In both the Equations of (33) one has

T = .:>'(x) - l/Kr]

hence the root of T = 0; i.e., st>'(x) = l/Kr, will give critical lines. These

lines are x = xj^, as will be shown later.

Now if xi and y^ are the coordinates of the representative point before

jump and X2, y2 that after jump then applying condition of Mandelstam; i.e.,

= f^°
"

ydt = 0,
^to - '

(34)

'^°"°= l/Krc f^o"° xdt=0
to - -^ to - 0-

- i;: : °o

AV
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Figure 25

Figure 26
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one obtains

^(x;^) - xi/Kr = 4)(x2) - X2/Kr (35)

Lyi - xi/K = Ly2 - X2/K

Equation (35) is thus the condition of jump. If one assumes that the tube

characteristic is linear, 0'(x) can be approximated to g (standard g of the

tube). Equation (33) then becomes

X = y/(g - 1/Kr)
, y = x/KrLc +(l/KLJy/(g - l/Kr) (36)

Setting r/Krg - 1 = P the characteristic equation can be written as

\2 - p/L \ - P/rLC =0 (37)

The following results are thus obvious:

(1) P>o
or origin is saddle point

Krg>l

(2) Krg<l stable node or focus

(a) p2rc> -4PL stable node

(b) p2rc< -4PL stable focus

From (a) and (b) above it is clear that the origin is a stable node \';hen

L is small and a stable focus when L is large. 'We will, however, not entertain

the second case because, discontinuous jumps can occur only when the origin

is unstable. In all the follovdng discussions it will be assumed that the

origin is a saddle point (Krg>l).

Figure 26 shows the graphical construction of the tube characteristic,

the load line and the resulting curve, under the assumption that tube character-

istic is linear over almost the entire region from zero to maximum

[_*>' (x) = constant = g>l/KrJ and -^'(x) = outside the linear range. The

characteristic -will thus be curvilinear only over two small strips of width

^Xy containing x = x]^, and x =-Xj_. It is thus at x = -x-j^ that ^' {x) = l/Kr

or in other words x = —x, are critical lines.
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Region Betv.'een the Strips

The equation of the system is Equation (36) and the origin is a saddle

point; hence, paths in this region must be concentric hyperbolas with the

slope of the asymptote as

1/KrLC [rc/a ± /(rc/2)'-^ - LC(Krg - 1
)

J

The direction of paths can be determined with reference to the initial system,

Equation (36). The nature of the paths is shown in Figure 27.

Region Exterior to the Strips

The equation of the system is again Equation (36) but with <|>'(x) = g =

or

X = -Kry
, y = x/KrLC - (r/LJ y (38)

The characteristic equation is then

LCK^ - rcX -t- 1 =

and the roots are

\ =[-rc Ny(rc)'^ - 4LC3/2LC

It has been assumed here that t<2J L/c, i.e., the system represented by

Equation (38) is a focus. In Figure 28 the shaded region shows the portion

between the strips and only the unshaded portion is to be considered. The

direction of motion is again determined by the initial system, Equation (38).

It can be seen from the figure that whatever the initial position, the repre-

+
sentative point must sometime reach x = -x-. and hence jump must occur and

during the jump Equation (35) must be satisfied. The first equation of

Equation (35) asserts that Z(x) = 9(x) - (x/Kr) must not change. The graph

in Figure 29 shows that to x^ there corresponds a unique value -X2(x2>o) such

that Z(x]^) = Z(-X2). Since Z(-x) = -Z(x), similarly Z(-X]^) = Z(x2) so that

-x^ will correspond similarly to x^. As far as y is concerned the second
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jump condition, Equation (35), asserts that (x,, y^^) goes to a point on the

line of slope l/LK through (x^^, y^). This is to say that the segment from

new position to the old has the fixed slope 1/LK. Thus to find the new

position of jump one must merely draw a parallel to this direction, and if

the position before the jump is on x = -X]^ find its intersection with x = +X2

while if the position of P before the jump is on x = +x-^ find its inter-

section with X = -X2, and the position after the jump will be determined. If

we contract the small widths Ax at x = ix]^, to a point or, in other words,

consider that the tube characteristic is essentially rectilinear, we will

see the piecewise limit cycle as shown in Figure 30. If we assume that

r«27 L/c the slope l/KL will almost be horizontal. The discontinuity is

shown dotted. Considerations of continuity show that there must exist a pair

of portions of spirals whose extremities are closed by a jump, thus producing

a closed path (shown by heavy line) to which corresponds the periodic motion.

It can be seen that motion across this closed path is stable. In fact the

representative point moves along one of the inter-nal curls of the spiral,

it "jumps out" for outside and as a result oscillations grow and approach

the closed path while if it is inside the closed path it "jumps out" and

remains after the jump inside of the spiral, within v«/hich it was situated

before the jump, and as a result, oscillations dampen out. For some inter-

mediate position (closed path) there is a comp-ensation, and steady discontin-

uous oscillations are produced.

The experiment corroborates these conclusions. If the connections of a

cathode-ray oscilloscope are made to represent variables x and y, two arcs

of spirals with an empty space in between them will be observed as shown in

Figure 31. This indicates that in this inner interval the motion of the
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electron beam is so fast that the fluorescent material of the screen has no

time to respond to the passage of the beam. It is interesting to note that,

although the inner interval corresponds to the existence of saddle point in

the d. e., the hyperbolic trajectories of this point have nothing to do with

the actual motion of the representative point which is governed in the region

by condition of Mandelstam and not by the d. e.

A remark here will be suitable. This system has two degrees of freedom

and hence there are two degenerate equations. It is clear that without

degeneration procedure, the oscillatory system in this case would be amenable

to a differential system of fourth order and its representation on the phase

plane would be impossible.

If we assume that oscillations are not too heavily relaxational (near to

sinusoidal), period and amplitude can be easily computed. The tube character-

istics are chosen to be essentially rectilinear and are shown in Figure 32.

Obviously

x'/Kr = i' = Is/2

and

xi/Ki- = Vs/2Kr = i^

where Vg and Ig are the saturation voltage and current respecively of the

tube V2. Then

X2/i<r = i2 = ii + 2(i' - i^)

X2 = Vs/2 + 2Kr(ls/2 - Vs/2Kr)

consequently

xi = Vs/2 , X2 = Vs/2 - Vs + Krlg

= Vs [ktIsAs - 1/2]
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Defining

X = X]^ + X2 = Krlg

Amplitude

Let 6 be the logarithmic decrement of the linear oscillations, Ayi, the

loss in y through a half oscillation, Ay2 the variation in y through a jump.

In the periodic motion Ay-^ = Ay2

On the other hand

^Yl = Yod -e" ^/^), Ay2 = iAl(xi + X2)

= x/KL = rlg/L

Hence the steady state amplitude E of the voltage at the terminals of the

inductance

E = Ly^ = x/K(l - e " ^2) = ^i^/d . e
" ^/^)

when

Kr(ls/Vs)»l and 6«1

E^ 2rIs/6 =(2Ig/77yT7c) (39)

Period

Along the spirals the representative point would pass, without jumping,

from y. to yo' in time

where

2 _ l/Lc and h = r/2L

It takes, however, less time since the jump is "instantaneous." The time

saved may be calculated as follows. The region across which the system jumps,

would be crossed by a linear system with almost constant velocity. This

velocity can be found by Equation (38) as x = -Kryo. Consequently, the time

necessary is approximately the correction for the period:

T= 2x/Kryo =(2L/r)(l - e " ^2)
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Figure 31

o-X
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Figure 32
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When damping is rather small, (6«l)

One has

T =(2L/r) 6/2 =(L/r) rT^ai = lj2

Where Tq is the period of oscillations of a friction-less linear system.

When L is rather large; i.e., damping is small, T^ = T(T = duration of period

of damped oscillations) and hence the period of self oscillation is

approximately J\ - Tq/2.
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DOUBLY DEGENERATE SYSTEMS

A system of two differential equations of the second order can generally

be reduced to a system of four differential equations of the first order,

which means a system of the fourth order. If, however, each of the original

equations of the second order degenerates into one equation of the first order,

the system of the fourth order reduces to one equation of the second order,

and its solution can be represented by trajectories in the phase plane. This

resultant equation, however, represents the result of degeneration of the

system of the fourth order. We can express this by saying that we have a

doubly degenerate system. Since each of the two differential equations of

the first order admits discontinuous solutions, the doubly degenerate system

of the second order will also possess certain discontinuous stretches in

the phase plane so that its trajectories, in general, will be composed of

certain analytic arcs joined by these stretches. The free-running plate-

coupled multivibrator of Abraham and Bloch forms a good example of a doubly

degenerate system. Though Heegner's circuit (Figure 35) is also doubly

degenerate system, it would not be discussed under this section because

oscillations in this system are continuous. It would, however, serve as a

good example when one tries to establish connection between continuous and

discontinuous systems.

14. Free-Running Plate-Coupled Multivibrator

The circuit of a free-running plate-coupled multivibrator shown in

Figure 33. The following assumptions have been made

(1) Circuit in sym.metrical

(2) Effect of grid current and plate reaction is negligible.
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Applying Kirchhoff's laws

II = ^ol + il ; ^2 = Io2 + i2

RIj^ + l/c i i^dt + ri]_ = E ; Rig + l/c ^ igdt + rig = E

IqI = ^(egi^) = ^(rig) ;
I^g = -^(eg^) - ^^(rig) (l)

where Iq = i>(eg) is the non-linear characteristic of electron tubes V^^ and Vg.

From above equation

(R + T)ii + l/c j i^dt + R3>(ri2) = E

and

(R + r)i2 + l/c j igcit + R^(rij^) = E

Differentiating above equations we have

(R +r)di^/dt + l/c i^ + Rrs£>' (ri2)di2/dt =

Rrf''(ri^)di^/dt -t- (R + r)di2/dt + l/c i2= (2)

Solving the above equation for dii/dt and dig/dt one gets

di^/dt ={(R + r)ii/c - Rr^' (ri2)i2A)f^^r^i>' (ri2) - (R + rf
]

di2/dt =((R -^ r)i2/c - Rr^' (ri^ )ii/cj/(R2r2;:>' (ri^ ) - (R + r)'^} (3)

Equation (3) is of the form

di^/dt = P(ip i2)/T(ii, i2) ; di2/dt = Q(i^, i2)/T(ii, i2) (4)

The phase trajectories in the (ij^, i2) plane are given by

di2/dt = Q(ii, i2)/P(ii, 12) (5)

From .Equations (3) and (5) one can see that the only singular point is the

origin {i^ = i2 = O)

Applying Bendixson's negative criterion* to Equation (4) we see that

dP/aij^ + aQ/aij^ = 2(R + r)/c = constant (6)

If the equation of motion is represented by x = P(x,y)/T(x,y
)

,

y = Q(x,y)/T(x,y) , then no periodic solution can exist in domain D of

the phase plane if5P/3x + 8Q^y does not change sign in the domain.
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Figure 33

Figure 34
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and hence no closed analytic trajectories are possible. The nature of the

singular point can be determined as follows. If

(1) ^'(ri^)i^.-, — si)'(ri2)i2-o =S
and (2) M = cLR^r^S^ _ (r + r)2j>o

then Equation (3) can be written as

di;L/dt =[(R + r/MJi|^ -[RrS/MJi2 ; di2/dt = - (RrS/M)ii +[{R + r/MJ i2 (7)

The characteristic equation of the system from Equation (7) is

\2 - f2(R + r)/M]\ ^-j (R + r) + RrS [(R + r) - RrS Iml = (8)

We will assume that RrS>(R + r) and hence the characteristic roots will be

of opposite sign. Also since the roots of this equation are always real,

the origin is a saddle point. Since, initially, RrS>(R + r) and the origin

is unstable, the variables i-, and i2 begin to increase. On the other hand,

from the form of the characteristic Iq = -^(ri), we know, that U' (ri )l-'0

when i^°°. The function

T(ip i2) = c [R2r^'(ri^) ^'(112) - (R + r)^] (9)

which is initially positive, decreases monotonically when i, and i2 increases

and is negative when ix and 12 are very large and equal. Hence there are

certainly some values of i^ and 12 for which T = 0. This means that the

system has critical points and hence by virtue of the basic assumption

discontinuities must occur at these points. The locus of critical points

(i^', 12') will be given by

T(i^', i2' ) = c [R2r2^'(rix') ^'(ri2') - (R + r)^] = (lO)

In as much as ,:)'(o)rR = RrS (R + r) and ^'(ri) decreases monotonically

with i increasing, the curve F^^ described by Equation (lO) is a closed curved

symmetrical with respect to the origin. (Figure 34)
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The point (i]_", 12") into which the representative point P jumps, once

it has reached the critical point (ii', 12' )» ^^ determined by the condition

of Mandelstam. As the only form of stored energy here is electrostatic, the

voltage V across the capacitor remain invarient during the jump, which

results in the relations

v;^ = E - R^(ri2) - (R + r)!^

V2 = E - Ri>(ri^) - (R + r)i2

The conditions of invarience of v during discontinuity are thus

R4>(ri2') -t- (R + r)i^' = Rs:>(ri2") ^ (R+r)i^"

R^(ri ') + (R + r)i2' = R^(ri^") + (R + r)i2" (U)

There exists thus a one-to-one correspondence between (i^', io' ) before

the discontinuity and (i/', io") after it.

The piecewise analytic phenomenon thus takes place in the following

manner. From some point 'a' on Fi , the point P jumps into the corresponding

point A on F^* From this point there begins a continuous m.otion on the

stretch Ab. At b begins another jump which transfers P to the ooint B on F2,

from which begins continuous stretch Be, and so on.

On account of the symmetry the motion should be symmetrical and hence

after a series of jumps, the motion approaches the bisector line M N so that

ultimately the stationary state consists of a continuous motion Mn followed

by a jump nN followed again by a continuous motion Nm, etc. In the steady

state if ij^ = -i2 = i and J?'(ri]_) = - -i>'(ri2) = ^'(ri) we then have from

Equation (3)

rD2^2^,2^_. >^ _ f^ _^ ^^2di/dt ={(R + r) + rR^ ' (ri )}/[_R r^ ' (ri) - (R

= [l/[RrI>'(ri) - (R + r)]]{i/c} (12)
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Equation (12) is the same as Equation (22) on page 51 and hence the

nature of oscillations of the R C multivibrator are similar to those of

free running multivibrator in the steady state.

By virtue of Equation (l2) it can be said that a free running

multivibrator in the steady state is a triply degenerate system.



74

'CRITICAL POINTS AND DISCONTINUOUS SOLUTIONS

It has been shown earlier that the zeros of the function T result in

the appearance of critical points and later, in turn, appear as the

criterion for the existence of discontinuous solutions. Conversely it can

also be shown that if T(x,y) [Equation (30) on page 27j does not go through

zero, the piecewise analytic character of oscillations disappear. This was

first demonstrateJi experimentally with the help of Heegner's circuit.

15. Heegner's Circuit

Heegner's circuit, which is only a slight modification of the R C

multivibrator (Page 49), is shown in Figure 35. Modification consists in

shunting the resistence R by an additional capacitor C,. V«fe will now see,

how the addition of this capacitor radically modifies the behavior of the

circuit.

Applying Kirchhoff's laws to the circuit gives

la = I + Ii + i

i = c d/dt [rI - ri]

I^ = C;L cl(RI)/dt = c^R di/dt (l)

It will be again assumed that the transfer characteristic of tube V2

is given by Ig = ^{eg) = ^(Kri)

Hence

i = cR di/dt - cr di/dt

= c/c]^ Ij_ - cr di/dt because R di/dt = I^/c

or

or

dl/dt = Ii/cj^r - i/cr

1^ = ciR d/dtda - Ii - i)

= c^R[Kra>'(i<ri)di/dt - dl^/dt - di/dt

dl^/dt = [Kr4>'(Kri) - l] di/dt - Ii/c^R

(2)
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Hence from Equation (2)

dl^/dt = [_Kr-D'(Kri) - l] [Ii/cj^r - i/cr - I^/c^R

. = i[l - i<rsL>'(Kri)]/cr - I^/ciR - Ii/c^r + Krs£>' (Kri )I;l/^1^

or

dl^/dt = ![_! - Kr*'(Kri)]/cr - [(R + r) - RKr^' (Kri )]li/c^Rr (3)

From Equations (2) and (3) it is clear that the system has no critical

points, and hence no discontinuous solution is to be expected. The only

singular point is I]_ = i = 0. Note that -i>'(o) = S is a max" mum and the

functionl^' (Krii )l-^o when I-,-^°°. The characteristic equation of the

system is

\^ +l[ci/c +(R + r - KRrS)/R] l/rc^J \+ l/Rrcc^ = (4)

It should be noted that the singularity here is not a saddle point. Hence,

it is either a nodal point, if the roots \]_ and ^2 ^^^ real, or a focul

point, if they are conjugate complex. In both cases the singularity is

unstable if

(R + r - RrKS)/R ^c^/c (5)

It is well known that in Heegner's circuit if Equation (5) is satisfied,

self exitation from rest is possible and a stable limit cycle does exist,

implying the existence of continuous self-excited oscillations. This proves

r
that the converse of the previously established rule I if function T has zero's

(critical points) a discontinuous solution should existj is also true.

16. Relation Between Continuous and Discontinuous Solutions

In view of the fact that Heegner's circuit is a modification of the R C

multivibrator and Heegner's circuit has continuous solutions while the R C

m.ultivibrator has only discontinuous solutions, one might ask whether a gradual
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modification of an electric circuit, might cause a transition from continuous

performance to a discontinuous performance, or vice versa. The answer to

this question is yes. It will now be seen that such a transition does exist

and it depends directly on the appearance or disappearance, of critical

points as a result of variation of certain parameters in the differential

equations. One should now consider a slightly modified Heegner's circuit as

shown in Figure 36. As the rest of the circuit remains the same, we indicate

in this figure only the modified part of the circuit shown in Figure 35.

The capacitor C^^, instead of being connected directly to B is now connected

by an adjustable sliding contact to some point E along the resistance r.

Let Ti be the resistance between B and E and T2 be that between E and D,

where rj_ + r2 = r and r]^/r = p. Proceeding as before one gets the following

equations instead of Equations (2) and (3)

di/dt = Ii/(1 - p)rci - i/(l - i3)rc (4)

dlj_/dt [pr + R - rR-^'Kr(i - pl^) i/c -
[

r + R - rR^'Kr(i + pl^ Ix/c^

(1 - p) [_R + i3r - prRJ>'Kr(i + ?I^)] (5)

r -|

It is obvious that for ^ = 1,
j

rj_ = r the circuit reduces to the R C multivi-

brator where only a discontinuous performance occurs. For j3
= one has

Heegner's circuit which has only continuous oscillations. Tnis implies that

for some intermediate value of p, the co- factor of (l - p) in Equation (5) may

vanish, which means that continuous oscillations will undergo = discontinuous

jump parallel to the 1-^ axis as shown in Figure 37. This generally occurs

when the system I Equation (4) and (S) is characterised by a saddle point,

and the transition takes place where an unstable focul point degenerates into

a saddle point.

This has been demonstrated experimently by a cathode-ray oscilloscope

which shows that the continuous closed curve of Heegner's circuit begins to be
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interrupted by a small discontinuity v^hich gradually grows as ^ approaches

unity.
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CONCLUSION

It can be concluded that the present theory of relaxation oscillations

is less satisfactory than the theory of linear oscillations where all the

known phenomena are logically connected with analytic theory. The existence

of two different trends in these studies - the discontinuous and the analytic -

reflects the difficulty of this problem.

From the convenience point of view, it is evident that the discontinuous

theory is more convenient, in as much as it is nearer to the real quasidiscon-

tinuous character of the problem. In this connection it is interesting to

note the comments of Boussinesq. He said,

"Si La continuite' simplifie les choses quand ele en relie plusiewis qui

suivent la meme Loi , elle les complique, an contraire, le plus souvent,

Lorsequ'elle et blit la transition entre deux categories d'objects ou de faits

regis par deux lois simples dif fe'rentes; et c'est alors une discontinuite*

fictive, un passage brusque de la premiere cate'gorie a' la seconde, qui rend

les questions abordables" .*

It is to be admitted, however, that this method appears somewhat disappoint-

ing when compared with purely analytical methods used in the "nearly linear"

domain. It may be possible that in the future a purely analy-cic approach may

be extended also to the d. e. connected to the relaxation phenomenon,

[^Equation (30) on page 2'/] but no such attempt has been successful so far.

Even if one succeeds in doing so, one can alv^ays question whether an analytic

approach can be extended to an oscillatory phenomenon -which by its very nature

"If the continuity simplifies the matter when it connects several phenomena
following similar laws, it complicates, on contrary, the relations when it

is used for the purpose of connecting phenomena following different laws.

It is precisely here that there is an idealized discontinuous passage from

one law to the other which renders the study possibe".
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exhibits essentially non-analytic features, at least at some point of its

cycle.

It is recalled that at one time Hertz tried to explain the mechanism of

shocks on the basis of a continuous theory by considering two different d. e.

- one governing the motion before and after the separation of colliding bodies,

and the other during the (short) time when these bodies are in contact with

each other. It is sufficient to assume the continuity of solutions at the

cost of loss of analyticity at points where one d. e. replaces the other. In

spite of the possibility of accomplishing this result, this theory was

ultimately given up in favor of the present discontinuous idealization vjhich

is now classical in theoretical mechanics. It v;as thus 'convenience' in the

sense of Poincare', which gave the preference to the ultimate discontinuous

theory of shocks.

It is quite probable that similar considerations may eventually be a

deciding factor in formation of the ultimate theory of relaxation oscillations,

but one has to admit that the last word in this difficult field has not yet

been said.
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This report presents a logical development of the "Discontinuous

Theory of Relaxation Oscillations." Section 1 gives a brief historical

background of the subject of relaxation oscillations and indicates the

presence of two different theories to solve the relaxation oscillation

problems, which are fundamentally quasidiscontinuous in nature. The two

theories have been compared and it has been indicated that developments in

the asymptotic theory unfortunately have not yet reached the stage where

the theory can be easily applied to various practical problems.

Sections 2, 3 and 4 explain the physical meaning of discontinuous

theory with the help of a series R L C circuit. Both R C and R L degenera-

tions have been discussed and it has been shown graphically that while using

the degenerate d. e., one must assume, independently of the initial

conditions, that in case of R C degeneration, current jumps to the value

defined by d. e. of first order while charge remains essentially constant.

It has been explained that in R C as well as in R L degeneration, the

situation remains the same, namely, the variable in the d. e. cannot vary

discontinuously and are determined directly by the degenerate d. e. of

the first order while derivatives of these variables must vary discontinuously

in order to reconcile with the physical existence of two initial conditions

in the complete equation describing the system.

In the following five sections, the discontinuous theory has been

discussed elaborately and all the underlying principles of the theory have

been presented in detail. The theory deals with a broad class of d. e.

dx/dt = P(x,y)/T(x,y) , dy/dt = Q(x,y)/T(x,y)

in which the van der Pol's equation does not figure at all. As the theory

is based on the existence of critical points, enough space has been devoted

to discuss all the aspects of the topic. Another topic which really is the



backbone of the theory is the "Condition of Mandelstam" and this has been dealt

v;ith in considerable detail.

In order to provide a clear understanding of theory, approximately half

of the space has been devoted to the solution of various relaxation

oscillation problems. Effort has been made to deal with only basic types of

problems under the following broad classifications:

(1) Systems with one degree of freedom described by single degenerate

differential equations of the first order.

(2) Systems with one degree of freedom described by two degenerate

differential equations of the first order.

(3) Systems with two degrees of freedom described by two degenerate

equations of the first order.

Mention has also been made about triply and multiply degenerate systems.

A neon lamp, containing R L circuit has been used to explain that if the

"Condition of Mandelstam" is not satisfied the relaxation oscillations cannot

exist. The fact that appearance of the critical points is the necessary

criterion for the existence of discontinuous solutions has been explained

with the help of Heegner's circuit.

The report has been concluded with the mention of facts which may

appear as deciding factors in the formation of the ultimate theory of

relaxation oscillators. As the situation now exists, it is clear that the

discontinuous theory has a definite edge over the asymptotic theory.




