
• CALCULATION OF NEUTRON LINE-BEAM
RESPONSE FUNCTIONS WITH TWODANT.

by

Thomas A. Gianakon

B.S., Kansas State University, 1987

A MASTER'S THESIS

Submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering
Kansas State University

Manhattan,Kansas

1989

Approved by:

^lajor



tic TABLE OF CONTENTS

Hfllfll'll

Page

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION.

2. FIRST AND SECOND COLLISION SOURCES
2.1 Characterization of the Line-Beam Source

Orders-of-Scattering/Discrete Ordinates Technique
Uncollided Angular Flux Density
First Collision Source

,

Moments of the First Collision Source .

Evaluation of the First Collision Source for TWODANT
Once Scattered Angular Flux Density.
Second Collision Source
Moments of the Second Collision Source .

2.10 Evaluation of the Second Collision Source for TWODANT

2.2

2.3
2.4

2.5
2.6
2.7
2.8
2.9

5
10

11

13

14
14

18
21

22

24

25

NEGATIVE SOURCE FIXUP TECHNIQUES 28
3.1 An Exact Cross Section Technique ..... 30

Technique of Setting Negative Scalar Sources to Zero 35
Technique of Peak-Renormalization of Scalar Sources. 38
A Modified Cross Section Expansion Technique . . 42
Comparison of Scalar Sources for Negative Fixup Method 48

3.2
3.3
3.4
3.5

5.

RESULTS
53

4.1 Isotropic Scattering Results ...... 53
4.1.1 Highly Absorbing Medium (c=0.1) . ... 55
4.1.2 Intermediate Scattering Medium (c=0.5) . . 55
4.1.3 Highly Scattering Medium (c=0. 9). ... 66
4.1.4 General Trends for Isotropic Scattering Media 73

4.2 Anisotropic Scattering Results 77
4.3 Air Source-Group Results

! 84

CONCLUSIONS
101



Page

6. REFERENCES 105

APPENDIX A. The computer program SRCLIN2D 106

APPENDIX B. The computer program SRC2D 114

APPENDIX C. The computer program SRC2DPT .131

APPENDIX D. Sample input for TWODANT 144

APPENDIX E. Details related to the operation of TWODANT . . 147



Table

LIST OF TABLES

Page

4.1 A comparison of the number of iterations,
the location of the maximum error, and the
particle balance when TWODANT achieves convergence
of the flux density for various isotropically
scattering media 56

E.l A comparsion of memory requirements for several
TWODANT problems 151



LIST OF FIGURES

Figure Page

2.1 Formulation of the three-dimensional ground
interface line-beam response function problem. . . 6

2.2 Formulation of the two-dimensional line-beam
response function problem 7

3.1 Scattering transfer cross sections used to
investigate negative flux fixup techniques. ... 8

3.2 Second collision scalar source distribution
generated with the exact scattering transfer
cross section for a c value of 0.5 32

3.3 Angular source distributions at (r = 1.667 mfp,
z = 1.667 mfp} for the second collision source
generated witn the exact scattering transfer
cross section for a a c value of 0.5 33

3.4 Angular source distributions at (r = 1.667 mfp,
z = 3.333 mfp) for the second collision source
generated using the exact scattering transfer
cross section for a c value of 0.5 34

3.5 Second collision scalar source distribution
generated with the Legendre expansion of
the scattering transfer cross section
for a c value of 0.5 36

3.6 Second collision scalar source distribution
generated with the Legendre expansion of the
scattering cross section for a c value of 0.5,
but with all negative sources set to zero. ... 37

3.7 Angular source distribution at (r = 1.667 mfp,
z = 1.667 mfpl for the second collision source
generated with the Legendre expansion of the
scattering cross section for a c value of 0.5. . . 39

3.8 Angular source distribution at (r = 1.667 mfp,
z = 4.333 mfp) for the second collision source
generated with the Legendre expansion of the
scattering cross section for a c value of 0.5. . . 40



Figure

3.9 Second collision scalar source distribution
generated with the Legendre expansion of the
scattering cross section for a c value of 0.5,
but with all sources not under the primary
peak set to zero.

Page

43

3.10 Scattering transfer cross section used to
investigate negative source fixup techniques. . . 44

3.11 Second collision scalar source distribution
generated with the modified Legendre expansion
of the scattering cross section for a c value of 0.5. 45

3.12 Angular source distribution at (r = 1.667 mfp,
z = 1.667 mfp} for the second collision source
generated with the modified Legendre expansion
of the scattering cross section for a c value of 0.5. 46

3.13 Angular source distribution at (r = 1.667 mfp,
z = 4.333 nip) for the second collision source
generated with the modified Legendre expansion
of the scattering cross section for a c value of 0.5. 47

3.14 Second collision scalar source distribution as a
function of z for the radial mesh r = 0.125 mfp. . . 49

3.15 Second collision scalar source distribution as a
function of z for the radial mesh r = 1.675 mfp. . . 50

3.16 Second collision scalar source distribution as a
function of z for the radial mesh r = 4.375 mfp. . . 51

3.17 Second collision scalar source distribution as a
function of z for the radial mesh r = 4.875 mfp. . . 52

4.1 Scalar flux density from a first collision
source with an S n level of 6 for an isotropic
scattering medium with a c value of 0.1 57

4.2 Scalar flux density from a first collision
source with an S„ level of 8 for an isotropic
scattering medium with a c value of 0.1. . . . 58

4.3 Scalar flux density from a first collision
source with an S n level of 12 for an isotropic
scattering medium with a c value of 0.1. . . 59



Figure Pa^

4.4 Scalar flux density from a second collision
source with an S n level of 6 for an isotropic
scattering medium with a c value of 0.1 60

4.5 Scalar flux density from a second collision
source with an S n level of 8 for an isotropic
scattering medium with a c value of 0.1 61

4.6 Scalar flux density from a second collision
source with an S n level of 12 for an isotropic
scattering medium with a c value of 0.1 62

4.7 Scalar flux density from a first collision
source with an S n level of 6 for an isotropic
scattering medium with a c value of 0.5 63

4.8 Scalar flux density from a first collision
source with an S„ level of 8 for an isotropic
scattering medium with a c value of 0.5 64

4.9 Scalar flux density from a first collision
source with an S n level of 12 for an isotropic
scattering medium with a c value of 0.5 65

4.10 Scalar flux density from a second collision
source with an S„ level of 6 for an isotropic
scattering medium with a c value of 0.5 67

4.11 Scalar flux density from a second collision
source with an S n level of 8 for an isotropic
scattering medium with a c value of 0.5 68

4.12 Scalar flux density from a second collision
source with an S„ level of 12 for an isotropic
scattering medium with a c value of 0.5 69

4.13 Scalar flux density from a first collision
source with an S„ level of 6 for an isotropic
scattering medium with a c value of 0.9 70

4.14 Scalar flux density from a first collision
source with an S n level of 8 for an isotropic
scattering medium with a c value of 0.9 71

4.15 Scalar flux density from a first collision
source with an S„ level of 12 for an isotropic
scattering medium with a c value of 0.9 72



Figure
Page

4.16 Scalar flux density from a second collision
source with an S n level of 6 for an isotropic
scattering medium with a c value of 0.9 74

4.17 Scalar flux density from a second collision
source with an S n level of 8 for an isotropic
scattering medium with a c value of 0.9 75

4.18 Scalar flux density from a second collision
source with an S n level of 12 for an isotropic
scattering medium with a c value of 0.9 76

4.19 Scalar flux density from a first collision
generated with a forward scattering transfer
cross section for a c value of 0.5 and
an S„ level of 12

4.20 Scalar flux density from a second collision
source generated with an exact forward scattering
transfer cross section for a c value of 0.5 and
an S n level of 12. . . . .

4.21 Scalar flux density from a second collision
source generated with a Legendre expansion of
the scattering transfer cross section but
with all negative scalar sources and associated
moments set to zero. .

4.22 Scalar flux density from a second collision
source generated with a Legendre expansion of the
scattering transfer cross section but with all
scalar sources and associated moments not under
the primary peak set to zero

79

81

XL'

83

4.23 Scalar flux density from a second collision
source generated with a modified Legendre
expansion of the scattering cross section. ... 84

4.24 Second collision scalar source distribution
generated with a Legendre expansion of the
scattering cross section for a 14 MeV energy
group in air, but with all sources not under
the primary peak set to zero 87

4.25 Angular distribution at (r = 75 m, z = 225 m)
for the second collision source distribution
generated with a Legendre expansion of the
scattering cross section for a 14 MeV
energy group in air oS



Figure Page

4.26 Angular distribution at (r = 75 m, z = 435 m)
for the second collision source distribution
generated with a Legendre expansion of the
scattering cross section for a 14 MeV
energy group in air. 89

4.27 Second collision scalar source distribution
generated with a modified Legendre expansion
of the scattering cross section for a 14 MeV
energy group in air, but with all sources not
under the primary peak set to zero 90

4.28 Angular distribution at (r = 75 m, z = 225 m)
for the second collision source distribution
generated with a modified Legendre expansion
for the scattering cross section for a 14 MeV
energy group in air gi

4.29 Angular distribution at (r = 75 m, z = 435 m)
for the second collision source distribution
generated with a modified Legendre expansion
for the scattering cross section for a 14 MeV
energy group in air 92

4.30 The macroscopic scattering cross section
for a 14 MeV energy group in air 93

4.31 Scalar flux density from a second collision
source generated with a modified Legendre
expansion of the scattering transfer cross
section for a 14 MeV energy group in air,
but with only the zero-th moment of the source
used in the transport calculation 94

4.32 The macroscopic scattering transfer cross
section for a 14 MeV energy group in air
based on a straight line approximation 96

4.33 Second collision scalar source distribution
generated with a modified Legendre expansion
of the scattering cross section for a straight
line approximation to a 14 MeV energy group in air. . 97

4.34 Angular distribution at (r = 75 m, z = 225 m)
for the second collision source distribution
generated with a modified Legendre expansion
of the scattering cross section for a straight
line approximation to a 14 MeV energy group in air. . 98



Figure Pa^

4.35 Angular distribution at (r = 75 m, z = 435 m)
for the second collision source distribution
generated with a modified Legendre expansion
of the scattering cross section for a straight
line approximation to a 14 MeV energy group in air. . 99

4.36 Scalar flux density from the second collision
source distribution generated with a modified
Legendre expansion of the scattering cross
section for a straight line approximation to
a 14 MeV energy group in air 100



1. INTRODUCTION
In the design of radiation facilities (e.g., spent-fuel storage buildings), an

important consideration is the dose rate at distances far from the radiation source.

The fax-field dose rate from these facilities can become significant if a sizable

portion of the source radiation escapes through the roof, scatters in the air, and

then returns to the earth. This phenomenon, commonly referred to as skyshine, is

important for both gamma and neutron radiations.

The dose rate for a skyshine problem can be computed by first performing a

rigorous transport calculation for the energy-dependent scalar flux density at the

point of interest. The dose rate at that point is then obtained by weighting the

energy-dependent scalar flux density with an appropriate response function and

integrating over all energies. However, for design purposes the feasibility of

repeatedly solving the transport equation is limited because the transport-based

methods are calculationally expensive. Consequently, there has been considerable

interest in simplified, albeit approximate, methods for the skyshine problem.

One very successful approximate method for gamma skyshine calculations is

based on line-beam response functions. These response functions give the dose rate

at any given source-to-detector distance for a point source emitting monoenergetic

photons at a single fixed angle relative to the source-to-detector axis. Such

line-beam beam response functions are used in the SKYSHINE and the

MicroSkyshine codes and were obtained by fitting a simple 3-parameter formula to

calculated dose rates caused by a point source emitting particles of a specified

energy in one direction. [Pr76, Gr87] An entire set of line-beam response functions

can be obtained by considering particles with different energies and source

directions. These line-beam response functions can then be used to compute the



skyshine dose rate at a particular location from a radiation source emitting

particles with an arbitrary energy and angular dependence by integrating the

line-beam response functions over all source particle energies and emission

directions.

Because of the success of the SKYSHINE and MicroSkyshine codes in

calculating accurate dose rates for gamma photons in air, the line-beam response

function technique has been extended to neutrons. [La79] The neutron skyshine

problem (and consequently, the calculation of the associated line-beam response

functions) differs significantly from the gamma skyshine problem. First, because of

varying levels of humidity, significant changes in the neutron scattering properties

of air occur, which, in turn, affect the skyshine dose rates. Second, the scattering

and absorption properties of the ground can no longer be ignored (as is typically

done in gamma skyshine calculations), because the energy-dependent scalar flux

densities and the related dose rates are usually depressed near the air-ground

interface. Finally, the energy-dependent cross sections for neutron transport

calculations are not generally tabulated as continuous functions of energy (gamma

photons commonly use the continuous Klein-Nishina formalism), but rather, are

given in a discrete multigroup format based on low-order Legendre expansions.

Even with these important caveats, a set of line-beam response functions is in use

for calculating skyshine dose rates for neutrons in an infinite dry air medium.

[La79] These line-beam response functions, which are based on very old

cross-section data, are limited because they give the dose rates in terms of an air

dose rather than dose equivalent. Thus, there is the need both to verify and to

revise, if required, these old line-beam response functions.



The methods, which have been developed in the past to evaluate the skyshine

line-beam response functions, have included Monte Carlo codes for both gamma

photons and neutrons, and also, the orders-of-scattering technique combined with

buildup factors for gamma photons. [Pr76, Sh87] The Monte Carlo method

computes the dose rate by tracking particles as they leave the source, randomly

scatter through the medium and are finally absorbed. While being easily

implemented, the method has the disadvantage that a large number of particle

histories are required to produce statistically significant results at distances far

from the source. The orders-of-scattering and buildup factor method avoids the

statistical problems of the Monte Carlo method by separating the flux density of

particles into an uncollided and a scattered component. The uncoilided component

is then treated analytically and is used to generate a source of particles which lie

along a line corresponding to the beam direction. The dose rate at a particular

location is computed by integrating a set of buildup factors over the length of the

uncollided line source (i.e., the buildup factor computes the dose from the scattered

component of the flux density). This technique has proven to be an excellent

approximation for gamma photons, but cannot be used for neutrons because

neutron buildup factors for the skyshine geometry are not available. [Sh87]

In this study, the use of standard discrete ordinates S„ codes to evaluate

neutron line-beam response functions is investigated. Standard S„ methods,

however, are not well suited for treating highly singular sources such as the

monodirectional point sources of the line-beam problems. In particular, the S n

method suffers nonphysical oscillations in the spatial distribution of the solution

(i.e., ray effects). Recent work by R.E. Alcouffe at Los Alamos National

Laboratory has investigated the use of the widely used S„ code TWODANT for



calculating the flux density from an isotropic point source in an infinite air

medium. [A189] Alcouffe found that ray-effects could be significantly reduced by

utilizing the orders-of-scattering technique to compute a first collision source (i.e.,

treating the uncollided neutron flux density analytically and then calculating the

scattered flux density numerically with TWODANT). This technique provided the

motivation for the present study which investigates the ability of the

orders-of-scattering technique, combined with standard S n codes, to obtain

neutron line-beam response functions for use in skyshine calculations.

This report assesses, the effectiveness of the popular production code

TWODANT to generate the needed line-beam response functions for the neutron

skyshine problem. [Lo84] One important characteristic of TWODANT is that

source moments are required rather than angular source distributions along

discrete directions. Thus, in Chapter 2 where the line-beam response function

problem is formulated, techniques are also developed for describing the source

moments from the orders-of-scattering technique as applied to the monoenergetic,

monodirectional point source. In Chapter 3, several techniques are considered for

removing negative scalar sources generated from using the Legendre expansion of

scattering cross sections in the orders-of-scattering prescription. In Chapter 4, a

comparison of the flux densities computed with TWODANT using the techniques

of Chapters 1 and 2 is presented for several isotropically and anisotropically

scattering media. Finally, in Chapter 5 the limitations of the S n method for the

calculation of skyshine line-beam response functions are discussed.



2. FIRST AND SECOND COLLISION SOURCES
The general line-beam response function for skyshine calculations is

formulated by placing a monoenergetic, monodirectional point source at some

distance above an air-ground interface (see Fig. 2.1) A three-dimensional

transport calculation is then required to compute the detector response or dose at

each location of interest. Under certain simplifying assumptions, a

two-dimensional transport formulation can be used to solve this problem rather

than the three-dimensional formalism. This reduction in dimensionality can

significantly decrease computational effort and can allow improved accuracy. The

problem can rigorously be reduced to two spatial dimensions by assuming that the

air and the ground have the same scattering properties (i.e., the cross sections and

atom densities are the same for both media, so that particle transport is in an

infinite isotropic medium). The problem then assumes cylindrical symmetry about

the source emission direction i.e., the point source is taken as the origin and the

direction of particle emission as the z-axis (see Fig. 2.2). Any of the numerous

solution methods for the transport equation can now be used to solve this problem.

However, only a technique which combines the orders-of-scattering and the

discrete ordinates methods is considered in this study.

The conventional discrete ordinates approach to this problem would be to

approximate the monoenergetic, monodirectional point source as a single

volumetric source in one cell of the spatial mesh used by a multigroup transport

code. However when this type of source is used in TWODANT, it produces not

only physically unrealistic negative flux densities, but it also fails to produce

converged results for the iterated flux densities. Such problems can be attributed

to the difficulty in approximating doubly singular sources with finite numbers of



DETECTOR

AIR-GROUND
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Fig. 2.1. Formulation of the three-dimensional ground-interface line-beam
response function problem. The point source is located a distance hs above the air
ground interface and emits particles in direction fis . A detector is located at
position rd.
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meshes and directions. The problem is further compounded because most of the

standard discrete ordinates transport codes use spherical harmonic expansions to

input the initial angular source distribution. Such expansions, particularly for

angular sources which are singular, tend to generate negative angular source

distributions which cause both convergence problems and negative flux densities.

These problems make such a discrete ordinates approach useless for calculating

line-beam response functions.

An alternate technique is to separate the total flux density into components

which have scattered only a prescribed number of times, i.e., uncollided, once

scattered, twice scattered, etc. The flux density for each component can then be

computed separately by numerical integration over the problem geometry and all

directions of particle travel. The total flux density at each point of interest is then

found by adding the individual components together. Each flux density component

is linked by a source based on the neutrons which have scattered from the

preceding flux density component. Thus each component for the monoenergetic,

monodirectional point source will be spread farther over the problem geometry

then its predecessor. One consequence of this spreading is that only the uncollided

flux density, which is based on the monoenergetic, monodirectional point source,

and the once scattered flux density, which is based on a line source, can be

computed with a minimum of computational effort. The higher order components,

which are based on sources which are distributed over the entire problem

geometry, require numerical evaluation of triple integrals over the problem

geometry and double integrals over all directions of particle travel. Consequently,

the orders-of-scattering method has only limited application to the calculation of

line beam response functions.



The two techniques which are developed in this report attempt to combine

both the orders-of-scattering method, which can spread the doubly singular source

out over the problem geometry, with the discrete ordinates method, which works

best with distributed sources. The two techniques are based on the uncollided flux

density and the once scattered flux density. Both these techniques have the

drawback that a preprocessor code must first be run to generate the input data for

the discrete ordinates code and then a postprocessor code must be run to compute

the total flux density by combining the flux density from the discrete ordinates

technique with the flux densities from the orders-of-scattering technique.

The first method developed, which is based on the uncollided flux density, is

referred to as the first collision source and is computed by first calculating the

uncollided angular flux density from the monoenergetic, monodirectional point

source. The uncollided angular flux density is then used to compute the first

collision source (i.e., those particles which are in the process of making their first

scatter since leaving the source). The angular moments of this first collision source

are then used by the discrete ordinates code TWODANT to compute the flux

density of particles which have scattered at least once. The total flux density is

then found by adding the flux density of particles which have scattered at least

once to the uncollided flux density.

The second method is an extension of this technique, which is based on the

once scattered flux density. As before, the initial source distribution is used to

compute the uncollided flux density, which is then used to compute the first

collision source distribution. The first collision source distribution is then used to

compute the once scattered flux density (i.e., those particles which have scattered

only once since leaving the source). This once scattered flux density is then used



to compute a second collision source distribution. The angular moments of the

second collision source are then used by TWODANT to calculate the flux density

of particles which have scattered at least twice. Finally, the total flux density is

computed by adding the flux density of particles which have scattered at least

twice, with the once scattered and the uncollided flux density.

Both the first collision source and the second collision source techniques are

developed in this chapter. The techniques are then implemented in the codes

SRCLIN2D.FOR of Appendix A and SRC2D.FOR of Appendix B. Both codes

output the source moments required by TWODANT. Also, the code SRC2D.FOR

outputs the once scattered flux density. Neither code outputs the uncollided flux

density since the direct component is not generally included in line-beam response

functions.

2.1 Characterization of the Line-Beam Source

Once the multigroup approximation to the transport equation has been

made, the normalized source term for the line-beam response functions used in

skyshine calculations is given by

Q0(r,n) =
4(0-0.) -^|ig-

; if g=g
(1)

; otherwise .

where r is a location vector in spherical coordinates (i.e., r, u>„ and fT) , ft is a

direction vector (i.e., u and f), fis is the direction source particles are being

emitted, and g is the source energy group. For simplicity in this study, ils is

taken as the z-axis z so that it- fis = cos $ = u.

10



The 62 function used in Eq. (1) is related to the more conventional S function

by

and has the following integral property

(Tdn 1

f(n*,n) &(n'.ng) = f(ns,n)

(2)

(3)

4x

where f(fi',n) is an arbitrary function. [Du79]

2.2 Orders-of-Scattering/Discrete Ordinates Technique

The general multigroup transport equation which must be solved for the line

beam response function problem is given by

fi-V
g
(r,n) + ^(r.fl) = Q0(r,fi) + £ I

J dnV
g

,

g
(n.fl')*

g
,(r,ff)

,

§' =1
4*

(-1)

where
g
(r,I2) is the angular neutron flux density for energy group g at location r

and direction fi, <r is the total cross section for group g, a
,
(n-fi') is the

scattering transfer cross section from group g
1

to group g for scattering from

direction SV to direction ft, and Q°(r,ft) is the initial source distribution as defined

by Eq. (1).

11



In the combined orders-of-scattering and discrete ordinates technique the

total angular flux density is defined as

i-1

*
g
(r.«) = <P^) + £ ^g(r>

n
) . (5)

j=0

where ^(r,n) is the angular flux density of neutrons which have had at least

i-scatters (i.e., the discrete ordinates result) and &(r,0) is the angular flux

density of neutrons which have had exactly Scatters (i.e., the orders-of-scattering

results). With this definition, the transport equation can be written in the form

G ..

"•V *J(r,n) + ,
tg

^(r,ft) = Qj(r,n) + £ JJ
dnVglg(fl.n')*gl (r,n') , (6)

S' =1 4k

where

Qg(r,n) = V
JJ

dn< <rglg(n-n-) ^\t,q') . (7)

4t

L2



To compute ^(r,fl) for use in Eq. (7), the orders-of-scattering technique is

applied. The angular flux density for neutrons which have undergone exactly

j-scatters is given by [Du79]

&M) -
\\\

d3f0 (T dn 4(n»-n) ft(n(r,r )-n)
e °"*gl r - ^ol

QJ
(ro>no) _

JJJ JJ
I

r - r
1

8
(8)

all A*space *T

where
[

r — r
j
represents the magnitude of the difference between the two vectors r

and r
,

<rtg is the total macroscopic cross section for group g, and

n(r,r„) = r - ro

Ir-rJ
(9)

2.3 Uncollided Angular Flux Density

The uncollided angular flux density #>(r,n) from the source distribution of

Eq. (1) can now be computed with Eq. (8). The two S functions in the source

facilitates the analytical evaluation of both the angular and the spatial integrals.

The result is

*„(*,«) =
& fis

-<rtgr

fe(ns -n) ;
if g = go

; otherwise.

(10)

13



2.4 First Collision Source

The first collision source can now be computed by substituting Eq. (10) into

Eq. (7) and performing the integration over il' analytically. The first collision

source is

f r
) „

-
<7t r

Q„M) = a Ja-tk) &—

n

s
-S

, (11)S gog
[| r | j r2

where <rt0 is the total macroscopic cross-section for group g and a (fl-fis ) is the
gog

scattering cross-section from the source group g to the group g from direction fis

to direction fi.

2.5 Moments of the First Collision Source

The TWODANT code package (and most other standard production discrete

ordinates codes) require that the source distribution be specified by its spherical

harmonics expansion (as opposed to the source along each discrete direction). To

facilitate this expansion, the spherical harmonic expansion of an arbitrary function

Q(fl) (where Q(fl) = Q(u,f) ) is considered. First, the function can be expressed

as a sum of Legendre polynomials and associated Legendre functions, namely

,1
'=0 /=0 a=l

0(11) = £(2/+l) P/„) Q;+ £ £(2/+l) P
to(w) cos(m^)B Qc

/m
+

I I(2/+1
)
?lm^^m^ Rffif Qk > (12)

1=0 n=l

M



where Q f
Q<jm ,

and Qs

lm
are expansion coefficients. These coefficients can be

expressed in terms of Q(fi) with the use of the orthogonality property of the

Legendre functions. The expansion coefficients are thus given by

Q/= TrjJdfiP/^Qffi), (13)

4t

Q/m = ~W J/
dn

j

2Kl '

plm^ «*>(»»*) 0(0).

4t

(14)

and by

Q /m - TF //
dn

J2p$~
p

/mH sil« Q( fi )- (15)

4x

Rather than attempting to find the above source moments by performing the

appropriate integration of Eqs. (13)-(15), the moments can be obtained by

expanding the scattering cross-section a JQ-Og) into its moments and by then

comparing the result with Eq. (12). The Legendre expansion of the scattering

cross-section is

*
gog

(n.n8 ) = X^^P/n-fis), (is)

where <r

gog
is the /-th Legendre moment of the scattering cross section for group g
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to group g, and PfQ-fk) is the /-th Legendre polynomial. The Legendre

polynomial is now expanded with the addition rule for Legendre polynomials to

give [Ab72]

gog
v s;

Lt 4tt "gog
/=o

P/u) P/Ofc) +

ILi 2
(7+^)t

P
/m

(w
)
P
ta

(ws) [cos(m^)cos(m^) + sin(m^)sin(m^s ;
(17)

Substitution of Eq. (17) into Eq. (11) with i = 1 yields

OjWi) = £(2/+i) p /<")W +

00 /

\\
£(2/+l)P

/m
Mcos(r#)

/=0ot=1
W QgW" +

XX (2/+1)P/mM smW)| 2lJ=5 Q|Wr) , (18)

/=0w=l
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where the moments of the source are given by

Qi/r) = -**-h
g<

Air

r— n,

Irl

-<^tor

P/«*). (19)

%lJ*) =
1 .

°„ „ I r
-&*-

«, — fl.

4* Irl

o-<n r

2Hl P/m(^s) cos(mVs), (20)

and by

° 4?r

r

Q,

Irl

-<7tor
T=mj\

2St P/m^) sin
(m^) • (

21
)

By comparison of Eq. (18) to Eq. (12), it is seen that Eqs. (19)-(21) are just

the moments required by TWODANT. Actually only the moments of Eq. (19) and

Eq. (20) are required since TWODANT assumes that 6 = for cylindrically

symmetric geometries so that Q s
\ = 0. Additional simplification in the above

moments results, for the line-beam geometry, since us
= 1 (i.e., the particles are

emitted only upward). With this value for u% and since Pfl) = 1 and P, (1) =

for m > 0, the above moments reduce to

g '

4tt Irl r2
(22)

and

Qg/m« = QgW') = 0. (23)
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2.6 Evaluation of the First Collision Source for TWODANT

Equation (22) describes a line source along the z-axis. However, the

TWODANT code package does not explicitly treat line sources, and thus it is

necessary to approximate the line source as a volumetric source about the positive

z-axis (i.e., in the first set of r spatial meshes). To facilitate this approximation,

Eq. (22) is first transformed to cylindrical coordinates. To perform this

transformation, the unit vector r/|r| is specified by the two spherical variables wr

and 1>, (see Fig. 2.2). Thus the dot product in the &i function of Eq. (22) becomes

— -fis = ur <4; +
J
1-w? Jl-ai cos(^r-^s ) . (24)

Since a% = 1, the dot product reduces to

r—-As = wr . (25)

and Eq. (22) becomes

Qi/r) = -^6(<*)-§-!f_.
(26 )s<

4;r r 2

IS



To complete the transformation of Eq. (26) to cylindrical coordinates, the

following substitutions are made (see Fig. 2.2)

ui, =

and

r
2 = tl + z

2
,

(27)

(28)

where the c subscript refers to cylindrical coordinates. Additionally, since a 8

function is being transformed to a new coordinate system, Eq. (26) must also be

divided by the appropriate Jacobian. The Jacobian is

Ul =

8t 8ijJr

*rc 8t c

8t 8ur

8z dz

= rc

r2 (29)

Thus the first collision source of Eq. (26) transforms in cylindrical geometry to

%(r) = -J^-*(l-u,
r )

6 4x

e
-*to(Tl + Z

2)°-5

2x r c
(30)

where the values of rc and z are determined from Eq. (27) when wr
= 1 . Clearly

from Eqs. (27) and (28), when wr = 1, rc must be zero and z can be any positive

value. Thus the delta function in the above expression can be replaced by <5(rc)

plus the condition z > 0.
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The first collision source is then

Q'/r) =
-ftL«[r«)-S 5^ ;if z>02Fr (

(31)

; otherwise

Eq. (31) can now be used to compute the volumetric source along a small cylinder

about the z-axis that approximates the line source. Each cylinder cell has a radius

of n corresponding to the first radial mesh thickness specified by TWODANT.

The top of the small cylinder is at z
i+I

and the bottom at z
i
such that the values

correspond to the cell boundaries used in TWODANT. The volumetric average

value is thus

QUi) = -
g
8o8 1 e-^ifl - e-^'Vi ~ z

i))V ' 4tt at0 Wt\ (z,M -Zi) <
32

)

Eq. (32) is used to compute the first collision source moments in those cells

directly above the initial monoenergetic, monodirectional point source. All other

cells are given a source value of zero. This first collision source is implemented in

the code SRCLIN2D.FOR of Appendix A. The code computes a set of spherical

harmonic expansion coefficients for the first collision source, which after minor

modification is suitable for use by TWODANT. (The modification entails deleting

all exponential letters i.e., changing 1.2345E-08 to either the form 1.2345-08 or the

form 12345-12).
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2.7 Once Scattered Angular Flux Density

To compute the once scattered angular flux density, the first collision source

of Eq. (11) is substituted into Eq. (8) for Q^(r ,n ). The result, after integration

over all directions il and with the spatial integral expressed in spherical

coordinates, is

oo -2jt 1

fc(r,0) = f dr r? fd<ft f du ^W^o)-H)
(n-flg) ft

J J J I r - r 1

2 8o§

0-1

-<7tg|r-r
|

_e,-fftoTo

(33)

where fi(r,r
) is defined by Eq. (9) and in Cartesian coordinates (but using

spherical variables) the vectors r and r are

and

= rjl-w? cos(^r)x + rll-w? sin(^r) y + vur i
,

= r Jl-cii cos(^ )x + r Jl—0)g sin(0o) y + r w :

(34)

(35)

The result of integration of Eq. (33) over the variables u and ip with fis
= z is

w-l0»(r,ft)= dr ft(n(r,ro)-n)
e
-fftoro-<^tg (

r

2 +r§ - 2ru;rr )

' 5

r
2 + r§ -2rw rr

^-(0-n,),(36)
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where

fi(r,r ) = r ~ rP«
, (37)

r - r zl

and r is specified by Eq. (34).

The once scattered scalar flux density at any point can now be computed by

integrating Eq. (36) over SI. The result is

«(r) = dr <7 n(r,r -n, -S §_^ (38)6 ^ gog
r
2 + r

2 - 2raJ.r„
V

'

where B(r,r ) is defined by Eq. (37).

2.8 Second Collision Source

The once scattered angular flux density is now used to compute the second

collision source. First, the once scattered angular flux density of Eq. (36) is

substituted into Eq. (7) and then the integration over il' is completed analytically.

The result is

G

X
g'=0

QjM) = £ Jdro<T
g

,

g
(n(r,r ).n)a

gogl
(n(r,r )-f2s) *

-<Ttor -<Ttg(r
2 + r§ - 2rwrr

)°' 5

r
2 + r

2
,
- 2rwrr

(39)

where n(r,r ) is defined in Eq. (37).
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Since the initial source is directed along the z-axis (i.e., ils = z), Eq. (39)

can be simplified to

G ?

I
S'=0 „

Q|(r,H) = J Jdr <T

g
,

g
(n(r,r ).fi)a

gog
,(a;„)

2 4- r? - 9r,.«--l0-51
e
-<^toro-ff t g(r

2 + r - 2rwr

r + r§ - 2rwrr

(40)

where w is defined as

Wo = n(r,r )-z =
rwr - r

(r
2 + r - 2rwrr )°

(41)

and fi(r,r )-fiis

fj(r,r )-n = Wow+jl-wo Jl-w
2

cos(^)
, (42)

because the direction SI in Cartesian coordinates and spherical variables is given by

n = Jl-w
2 cos(^r +^)x + Jl-w

2 sin(^r + 0)y + «i (43)
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2.9 Moments of the Second Collision Source

To compute the moments of the second collision source, a technique similar

to the first collision source is used (i.e., Eqs. (12)-(18)). First, the cross section is

expanded into its Legendre moments and then the addition rule for Legendre

polynomials is applied to this expansion. As before, the moments are deduced by

comparing the result with Eq. (12). The moments so obtained are

G ;

S'=° n

(<4>) *

-<7tor -<rtg'(r
2 + r

2
,
- 2rwrr

)°- 5
'

r
2 + To - 2rwrr

(44)

G /

g'=o

J*dr ;

;

:

'
PlmWVgWx

-<7tor -CTtg'(r
2 + ro - 2rwrr

)°' 5
'

r
2 + r

2
,
- 2njrr

(45)

and, again because of the azimuthal symmetry of the once scattered angular flux

density,

%.(') = °. (46)

The cosine w is defined by Eq. (41).
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2.10 Evaluation of the Second Collision Source for TWODANT

The numerical integration of Eq. (44) and Eq. (45) is difficult to perform

accurately, since the integration ranges from zero to infinity (or from the location

of the initial point source to the top of the problem geometry used in the transport

calculation). To reduce calculational difficulties the integration is transformed

with a change of variable. First, Eqs. (44) and (45) are expressed in cylindrical

coordinates by making the following substitutions

and

(ri + z
2
)

' 5

r
2 = r? + z

2

(47)

(48)

Thus, the non-zero source moments become

G /

Wo)

and

e
-Ttoro-<Ttg ' [r

2 + (r„ - z)
2

]

' 5

re + (r„ - z)
2

G
si,.

%.« " I ^JW/ dr° P/>o)*
gof
>o)«

g'=0

(49)

-<Tt r -(7tg ' [ri + (r - z)
2

r?+(r -z) 2
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Additionally, u becomes

z - r

w = . (51)
[r? + (r - z)T 5

If the following substitution is now made

_ r - z
taa(v») = -i2jp-

, (52)

then the source moments can be expressed in terms of integrals with a finite

integration range, namely

g'=o

<pi

jdp Pfa) <T

gog
,( Wo)

.-wNtK'welrf
, (53)

and

G 1

g'=0

e

Pi

Jd ¥J P
;m( Wo)agogl (w )e-<T^tail^)-<Ttg

l

rcSec(v3
)

_ (54)

where

u> = -sin(p). (55)
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The limits on the integration are

tp = tan-i(-^-)
, (56)

and

IA = tan-«(-a^_)
, (57)

where the distance z is the distance from the source to the top of the problem

geometry as defined by the transport code.

Gaussian quadrature can now be applied to evaluate accurately the above

integrals. When evaluating the moments for TWODANT, the values of the

moments at the center of each cell are treated as the average for that cell.

Alternatively, the average could have been computed by a numerical integration of

the source moments over the cell and subsequent division by the cell area. This

alternate technique was not used because of the far greater computational effort

required to compute such source moments for each cell. Moreover, for a

sufficiently fine spatial grid, the source moments vary negligibly over an individual

cell.

The second collision source technique has been implemented in the computer

code SRC2D.FOR of Appendix B. This code generates source moments which are

suitable with only minor modification for use by TWODANT. An additional

computer code, SRC2DPT.FOR of Appendix C, has been developed to study the

effect spherical harmonic expansions have on the angular source distribution for

the second collision source technique. SRC2DPT.FOR will compute at a single

location the angular source distribution with either a spherical harmonic expansion

or by computing the source along actual directions using Eq. (40).
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3. NEGATIVE SOURCE FIXUP TECHNIQUES
When calculating the second collision source, the possibility exists that in

some spatial cells of the problem the scalar source (i.e., the zero-th moment of the

source as defined by Eq. (53)) will be negative. Such negative values are

physically impossible and arise as a direct result of the Legendre expansion of the

scattering cross section (see Fig. 3.1). In addition to being physically unrealistic,

severe numerical stability problems may develop when using TWODANT if a large

number of cells contain negative sources. Several techniques have been developed

to eliminate these negative scalar sources without the need to resort to higher

order Legendre expansions which mitigate, but never eliminate negative cross

section values. While these negative fixup techniques guarantee that the scalar

sources are never negative, the possibility remains that in certain discrete

directions the angular source may be negative. Numerical problems can again

develop, if sources along many discrete directions are negative.

The first collision source does not exhibit these negative scalar sources which

are characteristic of the second collision source. Thus no negative fixup techniques

are required. However, the first collision source does suffer from negative angular

sources which can lead to the same numerical problems found in the second

collision source.

In this chapter several methods are discussed for eliminating some or all of

the negative valued sources. These methods include (1) the use of an exact

scattering cross section (thereby avoiding the spurious Legendre oscillations), (2)

retention of the Legendre expanded cross section but all negative scalar sources and

associated moments are set to zero, (3) use of the Legendre cross section expansion

2S



Q-fi'

Fig. 3.1. Scattering transfer cross sections used to investigate negative flux fixup
techniques. The scattering cross sections include the exact cross section and the
Legendre expansion.
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but all scalar sources and associated moments not under the "primary peak" are

set to zero, and (4) use of a modified Legendre cross section expansion which yields

non-negative cross sections.

To explore these techniques, the one-group scattering cross section of Fig 3.1

has been used to compute both scalar source distributions and angular source

distributions for each of these four methods. This example scattering cross section

is typical of scattering in air for source groups in the range of 2 to 3 MeV for a 47

group cross section set with a range of neutron energies from 10"6 eV to 17 MeV.

Furthermore, this scattering cross section, which is peaked in the forward

direction, in conjunction with the line-beam geometry, also parallels the worst case

for transport calculations. In addition to the presentation of the scalar source

distributions produced from these techniques, the resulting angular source

distributions are derived to study the effect each method has on the angular source

distribution under the "primary peak".

3.1 Exact Cross Section Technique

A procedure has been developed which utilizes an exact cross section for

a
gog^

n 'n^ t0 comPute DOtn tne once scattered flux density and also the second

collision source. The procedure utilizes both the exact scattering cross section to

compute the once scattered angular flux density and also the Legendre moments of

the exact scattering cross section to compute the coefficients of the spherical

harmonic expansion of the second collision source.

These exact scattering cross sections are based upon kinematic relationships

for energy and momentum conservation and upon minimum and maximum

scattering angles permitted by the energy group structure. [Od76]
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The exact cross sections generated using these techniques are generally fit to either

a triangular or a trapezoidal shape based upon both the zero-th moment of the

Legendre expansion and also the intercepts for minimum and maximum scattering

angles for transfer between two energy groups. [Mi 76] The scattering cross section

generated with this method will always be non-negative for all scattering angles.

Since the scattering cross section is non-negative, the scalar source terms will also

necessarily be non-negative. However, since the moments of the exact scattering

cross-section are still used to compute the coefficients of the spherical harmonic

expansion of the second collision source, the possibility remains that the angular

source distribution may contain some negative values.

One disadvantage of using these exact transfer cross sections is that they are

difficult to use for mixtures and for nuclides which contain inelastic scattering

components-both are important for high energy neutron transport in air. Also,

this technique introduces a significant increase in calculational effort, because both

the exact and the Legendre expansion for the scattering cross section are required

to compute the second collision source.

The exact cross-section of Fig. 3.1 has been utilized to compute the exact

scalar sources of Fig. 3.2 for a monoenergetic, monodirectional point source located

at the center of a cylinder 10 mfp (mean free path) in height and with a radius of 5

mfp. One result is that the scalar source is positive in only a small region of the

problem. In Fig 3.3 the associated angular distribution has been plotted for the

point (r = 1.6667 mfp, z = 1.6667 mfp) using both the spherical harmonics

expansion and also by actually computing the source along discrete directions using

the exact scattering cross section. Likewise, the angular source distribution at

(r = 1.6667 mfp, z = 3.3333 mfp) has also been plotted in Fig 3.4.
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Fig. 3.2. Second collision scalar source distribution generated with the exact
scattering transfer cross section for a c value of 0.5.
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These figures demonstrate that the source intensity in some directions may be

spuriously negative because of a spherical harmonic expansion of the second

collision source.

3.2 Technique of Setting Negative Scalar Sources to Zero

A second technique for alleviating negative source problems in TWODANT

involves using the Legendre expansion for the cross section a (fis -Ii) and then
Sog

generating the appropriate second collision source. In this method, all negative

scalar sources and their associated higher moments are then set to zero. The result

is a new source distribution which has a larger number of particles being generated

in the cell volume then does the original distribution. To regain particle balance,

the original scalar source and the new scalar source distributions are integrated

over all cells. The ratio of these two integrations is then used to multiply each

moment of the second collision source to regain particle conservation. The result is

a new source distribution which has the same number of particles being emitted as

the uncorrected second collision source, but has no negative scalar sources.

Figure 3.5 illustrates the scalar-source spatial distribution obtained by using the

Legendre expansion of the cross section and no fixup corrections. Figure 3.6

illustrates the distribution with the negative portion eliminated (i.e., similar to

Fig. 3.5a). The disadvantage of this technique is that it produces positive spurious

sources at locations where no actual source should exist. However, the method is

still better than using an uncorrected Legendre expansion, because when the

uncorrected second collision source is used by TWODANT it rapidly diverges to

produce essentially infinite flux densities in all cells. When the second collision
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Fig. 3.5. Second collision scalar source distribution generated with the Legendre
expansion of the scattering transfer cross section for a c-value of 0.5. (a) The
positive valued portion of the scalar source, (b) The negative valued portion of
the scalar source.
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source with the negatives set to zero is used by TWODANT, the scalar flux

distribution is reasonably shaped (i.e., peaked in the forward direction) even

though the flux density never fully converges.

The angular distributions of the source at the locations (r = 1.6667 mfp,

z = 1.6667 mfp) and (r = 1.6667 mfp, z = 3.3333 mfp) have been plotted in Figs.

3.7 and 3.8. Again the spherical harmonic expansion of the source still produces

negative sources in certain directions. The angular source distributions are not

significantly different for the second collision source using the fixup technique of

setting the negative scalar sources to zero to the fixup technique which uses the

exact cross section.

3.3 Technique of Peak Renormalization of the Scalar Sources

The next fixup technique follows the same procedure as the previous method,

but also eliminates all scalar sources and associated moments not under the

"primary peak". The primary peak is easily detected because it contains the

maximum scalar source and is bounded by either the problem boundary or negative

scalar sources. Presently, this fixup technique, as implemented in the computer

code SRC2D.FOR, is valid only for a scattering cross section peaked in the forward

direction (i.e., the region along the positive z-axis is assumed to be under the

"primary peak"). The procedure for finding the primary peak for the forward

scattering problem involves first scanning along the top set of spatial meshes while

searching for the first negative valued scalar source. Once the first negative is

found, all source moments to the right (and including the negative) are set to zero.

Next, a search is conducted from the top to the bottom along an r-spatial grid line

(i.e., over a set of z spatial nodes). When the first negative or zero scalar source
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Fig. 3.8. Angular source distribution at (r = 1.667 mfp, z = 3.333 mfp) for the

second collision source generated with the Legendre expansion of the scattering

cross section for a c value of 0.5.
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has been found, then all source moments below and including the negative source

are set to zero. The procedure is then repeated for all r-spatial grid lines. As

before, the new source is renormalized to regain particle balance.

In multigroup problems which use this fixup technique, only scattering which

involves neutrons moving from the source group to the source group follow the

above methodology. Neutrons scattering into other groups are corrected with the

technique of setting negative scalar sources to zero. For instance, for a two-group

problem with the monodirectional source in group one, peak renormalization would

be used twice when calculating the second collision sources. First, the second

collision source in group one is corrected with the technique of peak

renormalization for the neutron which leaves the monodirectional point source,

scatters the first time staying in group one, and then scatters a second time

without leaving group one. The peak renormalization technique is used a second

time to fix the component of the second collision source in group two for the

neutron which leaves the monodirectional point source, scatters the first time

staying in group one, and then scatters a second time and transfers to group two.

The other component of the second collision source in group two for the neutron

which leaves the monodirectional point source, scatters the first time and transfers

into group two, and then scatters a second time and remains in group two is

corrected with the technique of setting the negative scalar sources to zero.

The result of this procedure is a new scalar source distribution which closely

resembles the scalar source distribution from the exact cross section technique.
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Figure 3.9 illustrates the source distribution obtained with this technique for the

cross section of Fig 3.1. The angular distributions will be the same as Figs. 3.7 -

3.8 except for multiplication by a renormalization factor.

3.4 A Modified Cross Section Expansion Technique

The final fixup technique explored utilizes a method which alters the

moments of the Legendre cross section expansion to force the reconstituted cross

section to be always non-negative. The technique is valid only if the original exact

cross section data used to generate the cross section expansion was positive over

the range (-1,1). If Eq. (16) represents the original (uncorrected) Legendre

expansion for the scattering cross section, then the modified cross-section

expansion which produces non negative values is [Sz39]

•max

Sog^
s; L (/n, a x+2)(4,ax+l) L 4*r

J '"gog
F

/(
SM2s) (53)

The scalar source distribution for the second collision source produced with the

modified cross section of Fig 3.10 is shown in Fig. 3.11. An apparent disadvantage

of this technique is that it produces positive valued sources in locations where

sources should not physically exist. These sources are a consequence of the

broadening of the cross section peak by the Legendre coefficients. As before, the

angular distributions at (r = 1.6667 mfp, z = 1.6667 mfp) and (r = 1.6667 mfp,

z = 3.333 mfp) are plotted (see Figs 3.12 - 3.13). These plots demonstrate that

the modified cross section technique also guarantees that the angular source along

all discrete directions is positive, which is at the expense of a broader angular peak.
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Fig. 3.10. Scattering transfer cross sections used to investigate negative source

fixup techniques. The scattering cross sections include the exact and the modified

Legendre expansion.
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Fig. 3.11. Second collision scalar source distribution generated with the modified

Legendre expansion of the scattering cross section for a c value of 0.5.
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Fig. 3.12. Angular source distribution at (r = 1.667 mfp, z = 1.667 mfp) for the
second collision source generated with the modified Legendre expansion of the
scattering cross section for a c value of 0.5.
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Fig. 3.13. Angular source distribution at (r = 1.667 mfp, z = 3.333 mfp) for the
second collision source generated with the modified Legendre expansion of the
scattering cross section for a c value of 0.5.
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3.5 Comparison of Scalar Sources for Negative Fixup Methods

When comparing the scalar source distributions produced by the various

second collision fixup methods, it becomes difficult to actually see all the

differences between the four techniques using the three-dimensional plots. To
facilitate a comparison of each of the four fixup methods and also the standard
Legendre expansion, four "slices" holding r constant at 0.125, 1.625, 3.375, and
4.875 mfp have been plotted in Figs 3.14, 3.15, 3.16, and 3.17, respectively. All the
methods except for the modified cross section expansion technique produce sources
which are quite close to each other under the primary peak. The source
distribution under the peak for the modified cross section technique starts out
smaller than all the other methods at radial distances near the source, but as the
radial distance increase the source becomes much larger than the other methods
Some of this effect can be neglected by noting that the magnitude of the source has
also significantly decreased relative to the source at smaller radial distances The
negative portion of the scalar source distribution for the uncorrected Legendre
expansion follows the same trend as the peak region for each of the methods All'
four methods do a comparable job of calculating angular source distributions under
the primary peak.
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4. RESULTS
Three studies have been conducted to investigate characteristics of

TWODANT for performing calculations of skyshine line-beam response functions.

In the first study, the flux density in a one group isotropically scattering medium

is considered for three S„ quadrature levels, for three scattering-to-total cross

section ratios and for both a first and a second collision source. The study was

conducted to investigate the severity of ray-effects for a highly anisotropic source

(in space and direction) without the added complexities of anisotropic scattering.

In the second study, the flux density in a one-group anisotropically forward

scattering medium is considered using both a first and a second collision source. In

this second study, the effectiveness of each of the negative source fixup techniques

discussed in Chapter 3 is assessed to determine the relative merits of each for the

calculation of flux densities. The study was also conducted to investigate the

additional ray-effects caused by anisotropic scattering. Finally in the last study,

the flux density in dry air for an energy group containing a 14 MeV

monodirectional neutron source is considered. This final study is important

because the problems encountered in this one group are comparable to the

problems which would develop in the calculation of the flux densities for an actual

line-beam response function.

4.1 Isotropic Scattering Results

An infinite, homogeneous, isotropically scattering medium was studied to

investigate the severity of ray-effects for a highly anisotropic source (in space and

direction) i.e., a monodirectional point source, and to see how the first and second

collision sources mitigated the ray-effects. These first and second collision sources
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are important because a monodirectional point source (i.e., a zero-th collision

source) cannot be properly described by using a set of spherical harmonic

expansion coefficients, which are the required input for TWODANT.

Furthermore, if such an expansion were used by TWODANT, the reconstituted

angular source distribution would contain numerous negative sources and these

negative sources would produce completely erroneous results.

This phase of the report also considers the effect of S„ quadrature order and c

value on ray-effects. The three S„ quadrature levels considered were 6, 8, 12, which

correspond to 12, 20, and 42 directions per octant. The three different c values

(i.e., the ratio of the total scattering cross section to the total cross section) used

were 0.1, 0.5, and 0.9. While most skyshine calculations are considered to be the

result of scattering which should correspond to large c values, the multigroup

approximation tends to correspond to problems with small c values. The small c

values arise because most of the neutron interactions in a group result in the

scatter of the neutron into a lower energy group which then acts as an absorption

for the original group. Thus, the results for the small c values are of more

importance in line-beam response function calculations than are the results for the

large c values. The criterion used for comparison of the various flux densities

computed is the apparent reduction in ray-effects brought about by changes in the

Sn quadrature level, the c value, and the use of a first or a second collision source.

The problem considered in this section of the report is based on a

monoenergetic, monodirectional point source located at the center of a cylinder

with a radius of 5 mfp and a height of 10 mfp. Such a size was deemed as a good

approximation to an infinite medium, because few neutrons can escape from the

problem boundaries (the non-leakage probability is P„i s 0.98).
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The spatial meshing used in TWODANT was 20 grid lines in the radial direction

and 40 grid lines in the z direction. This choice was based on the need to maintain

a mesh which could be solved with the limited computer resources available, while

retaining a fair degree of accuracy in the calculated flux densities.

4.1.1 Strongly Absorbing Medium (c = 0.1)

The first isotropically scattering medium considered was characterized by a

10% scattering probability per interaction. Figures 4.1 - 4.3 show the spatial -

distribution of the scalar flux density obtained with the first collision source for

three different S„ quadrature orders. Ray effects are very evident, and, in fact,

they are so extreme that convergence of the problem cannot be achieved (see Tab.

4.1 for the TWODANT convergence trends). These convergence problems are

probably caused by ray-effects which interfere with the finite differencing scheme

by producing oscillations in the angular flux density between iterations. Figures

4.4 - 4.6 illustrate the spatial distribution of the scalar flux density obtained with

the second collision source for the three S n quadrature orders used. Almost all of

the ray-«ffects have been eliminated by use of the second collision source and the

problem no longer suffers from the convergence problems of the first collision

source.

4.1.2 Intermediate Scattering Medium (c= 0.5)

The next medium considered was characterized by a 50% scattering

probability per interaction. Figures 4.7 - 4.9 show the spatial distribution of the

scalar flux density obtained with the first collision source for three different S„

quadrature orders. This set of figures demonstrates the ability of higher S n
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Tab. 4.1. A comparison of the number of iterations, the location of the maximum
error, and the particle balance when TWODANT achieves convergence of the flux
density for various isotropically scattering media. The problem geometry is a
cylinder with a radius of 5 mfp and a height of 10 mfp with a monodirectional
point source at the cylinder center. The source type refers to either a first collision
source or a second collision source from a point source emitting particles directly
upward. The spatial meshing is 20 cells in the radial direction and 40 cells in the z
direction. Cells are numbered outward from the center and upward from the
bottom.

s„ c SOURCE I of LOCATION PARTICLE
ORDER VALUE TYPE ITERATIONS OF ERROR BALANCE

6 0.1 FIRST 9 19,11 5.76E-05
8 0.1 FIRST UNCONVERGED 4,36 2.91E-04

12 0.1 FIRST UNCONVERGED 13,31 -1.54E-03
6 0.1 SECOND 4 18,13 4.57E-09
8 0.1 SECOND 4 1,2 2.41E-10
12 0.1 SECOND 4 1,1 -2.62E-10

6 0.5 FIRST 6 1,3 -2.62E-08
8 0.5 FIRST 6 19,34 2.97E-06
12 0.5 FIRST 6 17,1 5.98E-04
6 0.5 SECOND 6 19,12 -6.28E-09
8 0.5 SECOND 5 1.1 ^.84E-08

12 0.5 SECOND 6 1,9 ^t.27E-08

6 0.9 FIRST 7 19,9 -4.64E-08
8 0.9 FIRST 7 16,1 -3.98E-08

12 0.9 FIRST 7 6,23 -3.43E-08
6 0.9 SECOND 6 2,22 -1.04E-07
8 0.9 SECOND 6 2,22 -8.55E-08

12 0.9 SECOND 6 2,22 -7.38E-08
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Fig. 4.1. Scalar flux density from a first collision source with an S„ level of 6 foran isotropically scattering medium with a c value of 0.1.
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Fig. 4.2. Scalar flux density from a first collision source with an S„ level of 8 for
an isotropically scattering medium with a c value of 0.1.
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Fig. 4.3. Scalar flux density from a first collision source with an S„ level of 12 for

an isotropically scattering medium with a c value of 0.1.
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Fig. 4.4. Scalar flux density from a second collision source with an S n level of 6 for

an isotropically scattering medium with a c value of 0.1.
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Fig. 4.6. Scalar flux density from a second collision source with an S n level of 12

for an isotropically scattering medium with a c value of 0.1.
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Fig. 4.7. Scalar flux density from a first collision source with an S„ level of 6 for

an isotropically scattering medium with a c value of 0.5.
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Fig. 4.8. Scalar flux density from a first collision source with an S n level of 8 foran isotropically scattering medium with a c value of 0.5.
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Fig. 4.9. Scalar flux density from a first collision source with an S„ level of 12 for

an isotropically. scattering medium with a c value of 0.5.
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quadrature orders to reduce ray-effects. Figures 4.10 - 4.12 illustrate the spatial

distribution of the scalar flux density obtained with the second collision source as a

function of the S n quadrature order. As before, the ray-effects have been reduced

by using both the second collision source and the higher S n quadrature orders.

Now with the increased scattering (i.e., the larger c value), the ray effects

have decreased for the first collision source and increased for the second collision

source. This trend in ray-effects can be attributed directly to the contributions to

the total flux density from the transport result, which suffers from the ray-effects,

and the orders-of-scattering results, which does not suffer from ray-effects. For

the c = 0.1 medium and the second collision source technique almost the entire

total flux density (exactly 99% for an infinite medium, since 0.99 = 1 - 0.1«0.1) is

accounted for in the first two interactions which are computed with the

orders-of-scattering technique. Alternatively, for the c = 0.5 medium and the

second collision source, the orders-of-scattering component computes a smaller

portion of the total flux density (exactly 75% for an infinite medium, since 0.75 =

1 - 0.5*0.5) and will subsequently suffer more ray-effects. The first collision

source technique shows the opposite trend, because the orders-of-scattering

technique is used to compute a much smaller portion of the total flux density (i.e.,

90% for the c = 0.1 infinite medium and 50% for the c = 0.5 infinite medium).

4.1.3 Highly Scattering Medium (c= 0.9)

The final medium considered is highly scattering (i.e., few interactions

involve an absorption). Figures 4.13 - 4.15 illustrate the effect S„ quadrature

order has on the calculated scalar flux density obtained with the first collision

source technique. With the higher S„ orders, the flux density becomes smoother
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Fig. 4.10. Scalar flux density from a second collision source with an S„ level of 6
tor an isotropically scattering medium with a c value of 0.5.
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Fig. 4.11. Scalar flux density from a second collision source with an S„ level of S
tor an isotropically scattering medium with a c value of 0.5.
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Fig. 4.12. Scalar flux density from a second collision source with an Sn level of 12

for an isotropically scattering medium with a c value of 0.5.

(39



r 10'

•©.

4.875

-4.875 -2.925 -0.975 0.975 2.925 4.875

Z (mfp)

Fig. 4.13. Scalar flux density from a first collision source with an S„ level of 6 for
an isotropically scattering medium with a c value of 0.9.
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Fig. 4.14. Scalar flux density from a first collision source with an S n level of 8 for
an isotropically scattering medium with a c value of 0.9.
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Fig. 4.15. Scalar flux density from a first collision source with an S„ level of 12 for
an isotropically scattering medium with a c value of 0.9.
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the effect of S n and the ray effects are almost completely alleviated. Figures 4.16 -

4.18 illustrate quadrature order on the scalar flux density when the second collision

source is used. Any ray effects which appeared when using the first collision source

have been eliminated by using the second collision source. Moreover, the need for

a large number of discrete directions to mitigate ray-effects is no longer necessary

(as was necessary with the first collision source).

In comparison to the other two mediums, the observed ray-effects are much

smaller for the spatial distributions of the scalar flux density obtained with both

the first collision source and also with the second collision source. This reduction

in the severity of ray-effects is expected for large c values, because the higher level

of scattering insures more neutrons are redistributed (rather than absorbed) in

both space and direction, thereby smoothing out the neutron distribution and

reducing ray effects.

4.1.4 General Trends lor Isotropic Scattering Media

The first general trend observed in the flux densities for the various

isotropically scattering media considered indicates that ray effects are reduced for

for both a first collision source and also a second collision source by increasing the

S„ quadrature order. Such a trend is expected for any discrete ordinates transport

code such as TWODANT. This reduction in ray effects is a consequence of the

improved representation of the angular flux density in each cell, which can insure

the transport of particles into a higher number of neighboring cells.

The second trend observed was the second collision source always produced a

much smoother total flux density (i.e., fewer ray-effects) than did the

corresponding first collision source. This is a direct result of the spreading of the
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Fig. 4.16. Scalar flux density from a second collision source with an S„ level of 6for an isotropically scattering medium with a c value of 0.9.
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Fig. 4.17. Scalar flux density from a second collision source with an S„ level of 8
tor an isotropically scattering medium with a c value of 0.9.
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Fig. 4.18. Scalar flux density from a second collision source with an S„ level of 12for an isotropically scattering medium with a c value of 0.9.
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source over the entire medium by the orders-of-scattering technique. The first

collision source is located only in cells directly above the monodirectional point

source, while the second collision source is distributed into all cells of the problem.

The final trend corresponds to the ray-effects observed as the level of

scattering varies. Ray-effects become worse as the amount of scattering decreases

(i.e., for small values of c), when the first collision source is used in TWODANT.

However, the second collision source exhibits fewer ray-effects for both large and

small values of c. This reduction in ray effects for the small values of c is because

the total flux density is essentially comprised of the ray-free uncollided and once

scattered flux densities. With intermediate values of c, TWODANT is required to

calculate a larger percentage of the total flux density and the ray-effects begin to

increase. This trend eventually reverses as the the c value becomes sufficiently

large enough to insure significant redistribution of neutrons throughout the

medium.

4.2 Anisotropic Scattering Results

A study of a one-group anisotropically scattering medium was conducted to

investigate the ability of various source techniques to generate scalar flux densities

from a monodirectional point source. These techniques include (1) the first

collision source, (2) the second collision source based on the exact cross section

technique, (3) the second collision source using the Legendre cross section

expansion, (4) the second collision source based on the Legendre cross section

expansion but setting all negative scalar sources and associated moments to zero,

(5) the second collision source based on the Legendre cross section expansion but
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setting all scalar sources and associated moments not under the primary peak to

zero, and (6) the second collision source based on the modified Legendre cross

section expansion.

The problem geometry is the previously described cylinder problem with a

radius of 5 mfp, a height of 10 mfp, and the monodirectional point source located

at the cylinder center. The spatial mesh used by TWODANT is again 20 grid lines

in the radial direction and 40 grid lines in the z direction. An S„ quadrature order

of 12 is used throughout this investigation. The test scattering cross section (i.e..

Fig. 3.1) used in this phase of the study is characterized by a peak in the forward

direction. Other cross sections were not considered because forward scattering

represents the worst case for ray effects and also because this cross section is

typical of those encountered for the source group in multigroup line-beam response

function problems.

Figure 4.19 illustrates the scalar flux density obtained with the first collision

source technique. The flux density using this method suffers severe ray effects

both in the forward direction (i.e., z>0) and also in the backward direction (i.e..

z<0). The only region which does not exhibit ray effects is an area encompassing

everything towards the z-axis from a line joining the origin to the top right hand

corner of the problem (i.e., r = 4.875 mfp and z = 4.875 mfp). This region also

corresponds to the support for the primary peak under the angular distribution of

the first collision source. One difficulty encountered while using the first collision

source for this problem was that convergence of the iterated TWODANT flux

density was never achieved, even though the scalar flux density was not

significantly changing between iterations.
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Fig. 4.19. Scalar flux density from a first collision source generated with a forward

scattering transfer cross section for a c value of 0.5 and an S„ level of 12. The
forward scattering cross section is zero for all cosines of the scattering angle of less

than 0.5 and then is a straight ramp to 1.0. The transport calculation is

unconverged, but the scalar flux density is not significantly changing between

iterations.
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Figure 4.20 illustrates the scalar flux density for the same problem, but

instead using the second collision source based on the exact scattering cross section

technique. Ray effects are now significant only in the backward direction and

appear to be prominent only in a region from the z-axis out to the line joining the

origin to the lower left hand corner of the problem (i.e., r = 4.875 mfp and

z = -4-875 mfp). This region corresponds roughly to the maximum direction

particles could be traveling after a second scatter (i.e., 120° from the initial

direction.of emission from the point source). Again, with this technique

TWODANT did not converge even though the scalar flux density eventually did

not change significantly between iterations.

The second collision source based on a normal Legendre expansion was also

used in the transport calculation, but because of the large number of cells with

negative scalar sources, the iterations of the computed flux densities diverged.

Figure 4.21 illustrates the flux density obtained with the second collision source

based on the Legendre expansion of the cross section but with the negative scalar

sources and associated moments set to zero. Figure 4.22 illustrates the flux density

obtained with the^ second collision source based on the Legendre expansion of the

cross section but with the scalar sources and associated moments not under the

primary peak set to zero. Both sources, which are closely related to the second

collision source based on normal Legendre expansion, produce scalar flux densities

which are comparable in both magnitude and shape to the scalar flux densities

obtained with the exact scattering cross section technique. These two techniques

also suffered from the same convergence problems as the exact cross section

technique.
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Fig. 4.21. Scalar flux density from a second collision source generated with a
Legendre expansion of the scattering transfer cross section but with all negative
scalar sources and associated moments set to zero. A c value of 0.5 and an S„ level

of 12 are used. The transport calculation is unconverged, but the scalar flux
density is not significantly changing between iterations.
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Fig. 4.22. Scalar flux density from a second collision source generated with a
Legendre expansion of the scattering cross section but with all scalar sources and
associated moments not under the primary peak set to zero. A c value of 0.5 and
an S„ level of 12 are used. The transport calculation is unconverged, but the scalar
flux density is not significantly changing between iterations.
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Figure 4.23 illustrates the scalar flux density obtained with the second

collision source based on the modified cross section technique. The scalar flux

densities in comparison to the exact technique are slightly smaller in the forward

directions and slightly larger in the backward directions. The technique still

exhibits ray effects, but no longer suffers from the convergence problems of the

other source techniques. This may indicate that the convergence problems of the

other techniques are a direct result of the many negative angular sources generated

by TWODANT from the spherical harmonic reconstitution of the source.

4.3 Air Source-Group Results

The final study considered the flux density in air computed using the second

collision source for source neutrons in a 14 MeV energy group. The problem is

based on a cylinder with a radius of 600 m, a height of 1200 m, and a

monodirectional point source located at the center. This roughly corresponds to

the previous problems which were based on a radius of 5 mfp, because the mfp

length of a' 14 MeV neutron is approximately 124 m. This problem size, while

sufficient for describing the flux densities of this group, would not be large enough

for an actual line-beam response function problem because significant neutrons are

reaching the outer edges of the problem, but they would appear in lower energy

groups. The cross sections for this group were extracted from energy group 4 of

the J52Cf weighted cross sections for "N and «0 in the DABL69 RSIC DATA
LIBRARY COLLECTION. [In88] The group has an energy range of 14.191 MeV
to 14.840 MeV. Air was treated as being composed of 4.02E-05 atoms cm-'b"1

of

««N and 1.07E-05 atoms cm-'b"' of i«0. Only the source group was considered

since it serves as the primary source of neutrons for all other groups.
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Fig. 4.23. Scalar flux density from a second collision source generated with a
modified Legendre expansion of the scattering cross section. A c value of 0.5 and
an S„ level of 12 are used. The transport calculation is unconverged, but the scalar

flux density is not significantly changing between iterations.
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Since the technique of peak renormalization of the second collision source

provides the best approximation to the actual source distribution, this technique

was considered first. The scalar source distribution is presented in Fig. 4.24 and

the angular distributions at locations (r = 75 m, z = 225 m) and (r = 75 m,

z = 435 m) are presented in Figs. 4.25 and 4.26. The large number of angular

directions which contained negative sources caused the iterated flux densities of

TWODANT to diverge. Subsequently, this technique failed to produce results.

In the hope of eliminating the negative sources, the second collision source

based on the modified Legendre scattering cross section technique was used next.

Surprisingly, this technique also generated negative scalar sources. The spatial

distribution of the scalar source after setting all the scalar sources not under the

primary peak to zero is presented in Fig. 4.27. Additionally, the angular

distributions at locations (r = 75 m, z = 225 m) and (r = 75 m, z = 435 m) are

presented in Figs. 4.28 and 4.29. As before, the iterated flux density appeared to

be diverging (i.e., poor particle balances) when the code stopped at the maximum

number of iterations. Also, a significant portion of the scalar flux density was

negative at termination. Thus, the second collision source based on the modified

Legendre scattering cross section also failed to produce results.

To determine if the cause of these failures was the spherical harmonic

expansion of the source and not related to the extreme forward scattering of the

cross section (see Fig. 4.30 for the macroscopic scattering cross section), all but the

zero-th moment of the second collision source for the modified cross section

technique were set to zero. The resulting flux density is presented in Fig. 4.31.

This appears to indicate that the divergence of the other methods was directly

related to negative sources in discrete directions.
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Fig. 4.25. Angular distribution at (r = 75 ra, z = 225 m) for the second collision
source distribution generated with a Legendre expansion of the scattering cross
section for a 14 MeV energy group in air. The air cross sections are based on
energy group 4 of the DLC-130/DABL69 Data Package and are composed of
4.02E-05 atoms cm"' b' 1 of «N and 1.07E-05 atoms cm"' b" 1 of «0
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Fig. 4.26. Angular distribution at (r = 75 m, z = 435 m) for the second collision
source distribution generated with a Legendre expansion of the scattering cross
section for a 14 MeV energy group in air. The air cross sections are based on
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Fig. 4.27. Second collision scalar source distribution generated with a modified
Legendre expansion of the scattering cross section for a 14 MeV energy group in
air, but with all sources not under the primary peak set to zero. The resultant
source is renormalized based on the original second collision source. The air cross
sections are based on energy group 4 of the DLC-130/DABL69 Data Package and
are composed of 4.02E-05 atoms cnri b"> of 14N and 1.07E-05 atoms cm"' b" 1 of
i«0.
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31
' ScaJar flux density from a second collision source generated with a

modified Legendre expansion of the scattering transfer cross section for a 14 MeV
energy group in air, but with only the zero-th moment of the source used in the
transport calculation. The air cross sections are based on energy group 4 of the
DLC-130/DABL69 Data Package and are composed of 4.02E-05 atoms cm-' b" 1 of"N and 1.07E-05 atoms cm-i b"i of '60.
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In attempt to actually solve for the flux density for this source group

problem, the revised scattering cross section of Fig. 4.32 was generated by

assuming that the cross section of Fig. 4.30 was the fit to a straight line with a

break point at 0.8. The scattering cross section was then fit to a P 5 Legendre

polynomial and renormalized so that the zero-th moment of the actual scattering

cross section was equal to the zero-th moment of this revised scattering cross

section. The modified cross section technique was then used to generate the scalar

source distribution of Fig. 4.33 and the angular distributions of Figs. 4.34 and 4.35.

The flux density for this source distribution is presented in Fig. 4.36. Ray effects

remain significant in most of the backward directions, but are not apparent in the

forward direction. It is not possible to tell if the flux density in the forward

direction is correct in magnitude, but it is reasonable to assume it is low since the

anisotropic scattering results of Section 4.2 indicate the modified cross section

technique under-estimates in the forward direction and over-estimates in the

backward direction.
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Fig. 4.33. Second collision scalar source distribution generated with a modified
Legendre expansion of the scattering cross section for a straight line approximation
to a 14 MeV energy group in air. The air cross section is based on a O.S breakpoint
and the P coefficient of energy group 4 of the DLC-130/DABL69 Data Package,
where air is composed of 4.02E-05 atoms cm' 1 b _1 of 14N and 1.07E-05
atoms cm -1

b" 1 of 160.
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Fig. 4.34. Angular distribution at (r = 75 m, z = 225 m) for the second collision

source distribution generated with a modified Legendre expansion of the scattering
cross section for a straight line approximation to a 14 MeV energy group in air.

The air cross section is based on a 0.8 breakpoint and the Po coefficient of energy
group 4 of the DLC-130/DABL69 Data Package, where air is composed of
4.02E-05 atoms cm-' b"i of 14N and 1.07E-05 atoms cm"' b"' of "SO.
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Fig. 4.35. Angular distribution at (r = 75 m, z = 435 m) for the second collision
source distribution generated with a modified Legendre expansion of the scattering
cross section for a straight line approximation to a 14 MeV energy group in air.

The air cross section is based on a 0.8 breakpoint and the P coefficient of energy
group 4 of the DLC-130/DABL69 Data Package, where air is composed of
4.02E-05 atoms cm-1

b' 1 of 14N and 1.07E-05 atoms cm-1
b" 1 of ^0.
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Fig. 4.36. Scalar flux density from the second collision source distribution
generated with a modified Legendre expansion of the scattering cross section for a
straight line approximation to a 14 MeV energy group in air. The air cross section
is based on a O.S breakpoint and the P coefficient of energy group 4 of the

r . -J,
30/DABL69 Data Package, where air is composed of 4.02E-O5 atoms enr 1

b"> of !<n and 1.07E-05 atoms cur' b"' of l*0.
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5. CONCLUSIONS

The discrete-ordinates technique used to solve the transport equation (i.e.,

TWODANT) does not work well for calculating skyshine line-beam response

functions. In particular, the flux density for the energy group associated with the

monodirectional, monoenergetic point source suffers severely from ray effects, and,

consequently, the discrete-ordinates calculation suffers from convergence problems.

The ray effects are directly attributable to the lack of angular sources throughout

the entire problem geometry. This can be partially remedied by using either a first

or a second collision source as well as a by using a very large number of discrete

angular directions. However, these techniques tend to produce negative angular

sources, which, subsequently, lead to convergence problems in discrete-ordinates

transport codes.

The first technique considered to solve the monodirectional point source

problem was to utilize a first collision source based on the uncollided component of

the angular flux density. The technique was found to be totally ineffective in

reducing ray effects even for the simple isotropically scattering problems. Thus,

the technique was discarded and the second collision source was developed. This

technique produced relatively ray-free flux densities for all isotropic scattering

cases regardless of the ratio of the scattering cross section to the total cross section.

However, as the scattering became peaked in the forward direction (i.e., more

closely resembling a fine group cross section) the technique became less effective in

reducing ray effects.

The location of spatial mesh cells with significant ray effects appeared to be

intimately related to the "sharpness" of the differential scattering cross section.

For instance, for the exact scattering cross section used in Chapter 3, where the
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cross section was non-zero only for scattering angles between 0° and 60° {i.e.,

cosines of 0.5 to 1.0), the flux density obtained with the second collision source was

ray-free for roughly the region above a line joining the monodirectional point

source to a point located at (r = 5 mfp and z = -2.5 mfp). The angle this line

forms with the direction of the point source is 120° and is twice the range of the

non-zero region of the scattering cross section. The ray-free region for the first

collision source in a similar description forms an angle of 60° with the direction of

the point source. The ray-free region for any other forward scattering cross section

can then be determined in a like manner by considering where the scattering cross

section is peaked.

The slow convergence and even divergence of the iterated angular flux

densities of the source group occur because the source distribution is based on a

Legendre expansion of the differential scattering cross section rather than on the

exact scattering cross section. This problem occurs because the Legendre

expansion of the cross section produces negative values for many scattering

directions. The negative scattering cross sections can subsequently generate

negative angular collision sources, which, in turn, cause the observed convergence

problems. The problem is further compounded because most of the standard

production codes require the source to be specified as a truncated spherical

harmonic expansion. Thus, even if the exact cross section is known, its moments

are still required and can produce the negative angular sources.

The one remedy which does not require modification of the transport code to

eliminate these negative scalar sources is to modify the Legendre expansion

coefficients used in calculating the second collision source. This technique was

very effective in solving the convergence problems for any ideal differential
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scattering cross section with non-negative values. However, the technique was

found to be ineffective for tabulated scattering cross sections, because the original

Legendre fit appeared to be based on negative values. These negative values may

indicate problems exist in the techniques used to generate the Legendre expansions

from real cross section data.

Another possible remedy, which would require modification of the

TWODANT transport code, would be to input the actual angular source along

discrete directions rather than just the source moments. However, this technique

is not only computationally intensive, but also would require an exact scattering

cross section (without negative values). Another remedy would be to generate the

second collision source with the Legendre expansion of the scattering cross section,

zero the negative scalar sources and associated moments, renormalize the spatial

source distribution and then input the result into the transport code. Then when

the transport code computed angular sources along discrete directions for each cell,

have the transport code set any negative sources to zero and renormalize the source

for that cell.

While all these proposals eliminate the convergence problems in the source

group, they do not resolve the ray-effect problem. The ray-effect problem could

be eliminated by considering a very large number of discrete directions, but this

may result in a computationally impractical problem. An alternative is to use

some other numerical technique to solve for the angular flux density in the source

group and to then input this angular flux density into the discrete ordinates code.

The best approach may well be to use a Monte Carlo approach. The Monte Carlo

method has the advantage that it has been used in the past to solve line-beam

response function problems. Another possibility is to use an integral transport
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method. This represents an extension of the technique used to compute the

uncollided flux density, the first collision source, the once scattered flux density

and the second collision source, but would require numerical integration over the

entire problem geometry.

In conclusion, a two-dimensional discrete-ordinates technique (i.e.,

TWODANT) cannot be easily adapted to the calculation of line-beam response

functions for infinite air problems. The problems encountered also point to similar

problems which can be expected in a three-dimensional, ground-interface,

line-beam response function problem. Any future work in this area should

concentrate on the two-dimensional line-beam response function problem with

particular regard to eliminating the ray effects of the source group. Study should

also be given to extending the problem size, so that line-beam response functions

could be generated for distances much larger than considered in this report.
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APPENDIX A: The Computer Program SRCLIN2D
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CCCC PROGRAM READS IN CROSS SECTION DATA AND COMPUTES THE FIRST
CCCC COLLISION SOURCE MOMENTS FROM A POINT SOURCE EMITTING
CCCC NEUTRONS IN THE UPWARD DIRECTION. THE ORIGINAL POINT SOURCE HAS
CCCC A NORMALIZED STRENGTH OF 4 PI. THE 4 PI IS USED TO FACILITATE
CCCC A SOURCE NORMALIZATION OF ONE IN THE TWODANT CODE PACKAGE.
CCCC THE PROBLEM ASSUMES THE SOURCE IS LOCATED IN THE CENTER OF A
CCCC CYLINDER OF RADIUS RMAX AND HALF HEIGHT ZMAX

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 XSFILE,OTFILE,OTFX
COMMON/CNSTS/PI
COMMON/XSEC1/NGP,NORD,NISO,NDUM1,DEN(2),SIGMA(3,9,10)
COMMON/XSEC2/ORDER, NGROUP , SIGTAB (9 , 235)
C0MM0N/BLK2/W(32),X(32)
DIMENSION APOLY(0:21),SUM(13)
COMMON/SOURCE/q(2,21,20,40),FLUX(2,20,40)

CCCC GET DATA NECESSARY TO PERFORM PROGRAM RUN
CALL INPUT(RMAX , ZMAX , IMAX , JMAX , XSFILE , OTFILE , GO , MOMENT)
NGP=NGROUP+3

CCCC READ IN CROSS-SECTION DATA
CALL RDXSCT (XSFILE)

CCCC :

CCCC GENERATE MACROSCOPIC CROSS-SECTIONS
DO 120 I0RD=1,N0RD+1

DO 119 I=1,NGP*NGR0UP
SIGTAB(I0RD,I)=O.ODOO
DO 118 NNIS0=1,NIS0

118 SIGTAB(IORD,I)=DEN(NNISO)*SIGMA(NNISO,IORD,I)+SIGTAB(IORD,I)
119 CONTINUE

'

120 CONTINUE
CCCC

DELTAZ=2*ZMAX/JMAX
DELTAR=RMAX/IMAX

CCCC COMPUTE LOCATION OF TOTAL CROSS SECION FOR GROUP GO
NG0=(G0-l)*NGP+3

CCCC COMPUTE THE FIRST SCATTER SOURCE FOR GROUP G DO TO A SOURCE IN GO
DO 300 G=l, NGROUP

IF(G.LT.GO)THEN
CCCC NO UPSCATTER INTO HIGHER ENERGY GROUPS. ALL MOMENTS ARE ZERO

DO 9 J=1,JMAX
DO 8 1=1, IMAX

DO 7 M=l, MOMENT
7 Q(G,M,I,J)=O.DOO

FLUX(G,I,J)=O.DOO
8 CONTINUE
9 CONTINUE
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cccc

ELSE
DO 50 J=1,JMAX
WRITE(6,*)G,J
DO 40 1=1, MAX

DO 35 M=l,MOMENT
35 QiG,M,I,J)=O.DOO
40 CONTINUE

Z1=-ZMAX+DELTAZ*J
IF(Z1.GT.0)THEN
Z0=Z1-DELTAZ

CCCC CORRECT FOR A CELL WHICH ENCOMPASSES THE ORIGIN
IF(Z0.LT.0)Z0=0

nnrr
CALCULATE LOCATION IN CROSS SECTION TABLE OF THE

CCCC SCATTERING CROSS SECTION FOR GROUP GO TO GROUP G
NG=(G-l)*NGP+4+G-G0
DUMB=DEXP(-SIGTAB 1,NG0)*Z0)*(1-DEXP(-SIGTAB(1,NG0)*

DO 76 IL=1, ORDER
Q(G,NMq,l,J)=SIGTAB(IL+l,NG)*DUMB
NMQ=NMq+l

'

DO 75 IM=1,IL
75 NMQ=NMQ+1
76 CONTINUE

END IF
80 CONTINUE
50 CONTINUE
CCCC

END IF
300 CONTINUE
CCCC WRITE THE OUTPUT MOMENTS TO A FILE

SDTT^F^fflA
S'

ZMAX
'
IMAX

'
JMAX

' 0TFILE >GO,M0MENT)
WRITE(6,* 'END OF PROGRAM RUN'

;

STOP
END
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SUBROUTINE RDXSCT(XSFILE)
CCCC
CCCC ROUTINE READS IN CROSS-SECTION DATA FROM FILE XSFILE
CCCC DATA MUST BE IN FIXED FEILD FIDO FORMAT
CCCC DATA IS ASSUMED TO BE IN FORM ABSORBTION FOR G, NU*SIGMA-FISSION
CCCC FOR G, TOTAL FOR G, G TO G, G TO G-l, ETC, AND THEN REPEATE FOR
CCCC EACH ENERGY. ONCE ALL ENERGIES ARE COMPLETED END TABLE WITH T
CCCC AND THE NEXT MOMENT IS INPUT.
CCCC

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE, OTFILE
C0MM0N/XSECl/NGP,N0RD,NIS0,NDUMl,DEN(2),SIGMA(3,9,lO)
DIMENSION N(6),ND(6),I¥ER(6)
CHARACTER*8 R(6),SIGN(6)
OPEN (4 , FILE=XSFILE , STATUS= 'OLD 1

, ACCESS= ' SEQUENTIAL
'

)

DO 50 IS0=1,NIS0
I0RD=1

2 READ(4,*)NDUMB
K=l

CCCC READ IN THE DATA USING FIXED-FIELD FIDO
4 READ(4,999) (N(I) ,R(I) ,ND(I) ,SIGN(I) ,I¥ER(I) ,1=1,6)

DO 10 1=1,6
IFrR(I).Eq.'T')THEN

I0RD=I0RD+1
GOTO 20

ELSE IF(R(I).Eq.'R')THEN
DO 5 J=0,N(I)-1

IF(SIGN(I).Eq.'-')THEN
SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(-IWER(I)))

ELSE
SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(IVER(I)))

END IF
5 CONTINUE

K=K+N(I)
ELSE

IF(SIGN(I).Eq.'-')THEN
SIGMA ISO, IORD,K)=ND(I)*10.DOO**(-IWER(I))

ELSE
SIGMA(ISO,IORD,K)=ND(I)*10.DOO**(IVER(I))

END IF
K=K+1

END IF
10 CONTINUE

GOTO 4

20 IF(I0RD.GT.N0RD+1)G0T0 50
GOTO 2

50 CONTINUE
CL0SE(4)
RETURN

999 F0RMAT(6(I2,A1,I6,A1,I2))
END
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SUBROUTINE INPUT(RMX , ZMX , IMAX , JMAX , INFILE , OTFILE , GO , MOMENT)
cccc
CCCC ROUTINE PROMPTS USER FOR THE REQUIRED INPUT FOR THIS CODE
CCCC .

CCCC

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 INFILE, OTFILE, OTFLX
COMMON/CNSTS/PI
COMM0N/XSEC2/ORDER,NGROUP , SIGTAB (9 , 235)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2 ,SIGMA(3,9,10)
COMMON/BLK2/W(32),X(32)

V '

PI=DACOS(-1.DOO)
WRITE(6 ,*)' INPUT THE NUMBER OF MATERIALS'
READ(5, i )NIS0
WRITE (6,*) 'INPUT THE NUMBER OF ENERGY GROUPS'
READ(5,*)NGR0UP
WRITE(6,*) 'INPUT THE CROSS-SECTION LEGENGRE EXPANSION ORDER'
READ (5,*) ORDER
NORD=ORDER
MOMENT=(ORDER+l)*(ORDER+2)/2
WRITE(6,*)' INPUT THE DENSITY FOR EACH OF THE ISOTOPES'
DO 10 I=1,NIS0
WRITE(6,*) 'DENSITY OF MATERIAL',

I

10 READ(5,*)DEN(I)
WRITE(6,*) 'INPUT THE NAME OF THE CROSS SECTION FILE'
READ (5, 999) INFILE
WRITE (6,*) 'INPUT THE RADIAL THICKNESS'
READ(5,*)RMX
WRITE(6 *)' INPUT THE NUMBER OF RADIAL MESHES'
READ (5,*) IMAX
WRITE(6 *)' INPUT THE Z THICKNESS (SOURCE WILL BE AT MIDDLE)'
READ(5, )ZMX
ZMX=ZMX/2
WRITE(6 *)' INPUT THE NUMBER OF Z MESHES'
READrs.^JMAX
WRITE(6 ,*)' INPUT THE SOURCE GROUP'
READ(5,*)G0
WRITE(6,*)' INPUT THE NAME OF OUTPUT FILE'
READ(5,999)0TFILE
RETURN

999 FORMAT(A)
END
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cccc
SUBROUTINE OUTPUT (RMAX , ZHAX , IMAX , JMAX , OTFILE , GO , MOMENT)

CCCC ROUTINE OUTPUTS THE SOURCE MOMENTS WHICH ARE REQUIRED BY
CCCC TWODANT TO DESCRIBE THE FIRST COLLISION SOURCE
CCCC THE FIRST COLLISION SOURCE IS ASSUMED TO OCCUR ONLY IN
CCCC THOSE CELLS ALONG THE CENTERLINE
CCCC

CCCC

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER,G,GO,GP
CHARACTER*8 XSFILE , OTFILE , OTFX , DELIM
C0MM0N/XSEC2/0RDER, NGROUP , SIGTAB (9 , 235

)

COMMON/XSEC1/NGP , NORD , NISO , NDUM1 , DEN (2 , SIGMA (3 , 9 , 10)
C0,MM0N/S0URCE/Q(2,21,2O,4O),FLUX(2,2O,46)

'

COMMON/CNSTS/PI
;

DIMENSION QDM(6)

DELTAR=RMAX/IMAX
DELTAZ=2*ZMAX/JMAX
OPEN (3 , FILE=OTFILE , STATUS= ' NEW

'
, ACCESS= ' SEQUENTIAL

'

)

DO 40 NMQ=1,MOMENT
'

DO 30 NG=1,NGR0UP
WRITE(3,979)NMq,NG
FSUM=0

IF(Q(NG,NMQ,l,JMAX/2+l).NE.0.0D00)THEN

DO 20 JT=1,JMAX
IF(JQ.GT.3)THEN
WRITE(3,999)qDM(l) ,IMAX-1,QDM(2) ,IMAX-l,qDM(3) ,IMAX-1

END IF

FSUM=FSUM+Q (NG , NMQ , 1 , JT) *0 . 5*DELTAR
qDM(JQ)=q(NG,NMq,l,JT)
jq=jq+i

20 CONTINUE
DELIM=';'
IF((NMQ.EQ. MOMENT). AND. (NG.Eq.NGROUP))DELIM='T'
IF(Jq.Eq.l)THEN

"
WRITE (3, 993) DELIM

ELSEIF(jq.Eq.2)THEN
WRITE(3,994)qDM(l) .IMAX-1, DELIM

ELSE
3ITE(3

) 995)qDM(l),IMAX-l,qDM(2),IMAX-l, DELIM
END IF
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ELSE
jq=o
DO 120 JT=1,JMAX

jq=jq+i
IF(jq.GT.12)THEN

WRITE (3 , 992 ) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

,

1 IMAX, IMAX, IMAX, IMAX
jq=i

END IF
120 CONTINUE

DELIM=';'
IF((NMq.Eq. MOMENT). AND. (NG.Eq.NGROUP))DELIM='T'
IF(jq.E0.1)THEN
WRITE(3,991)IMAX,DELIM

ELSEIF(jq.Eq.2)THEN
WRITE(3 , 990) IMAX , IMAX , DELIM

ELSEIF(jq.Eq.3)THEN
WRITE (3 , 989) IMAX , IMAX , IMAX , DELIM

ELSEIF(jq.Eq.4)THEN
WRITE(3 , 988) IMAX , IMAX , IMAX , IMAX , DELIM

ELSEIF(jq.Eq.5)THEN
WRITE (3 , 987) IMAX , IMAX , IMAX , IMAX , IMAX , DELIM

ELSEIF(jq.Eq.6)THEN
WRITE(3 , 986) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , DELIM

ELSEIF(]q.Eq.7)THEN
WRITE (3 , 985) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , DELIM

ELSEIF(jq.Eq.8)THEN
WRITE(3 , 984) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

, DELIM
ELSEIF(jq.Eq.9)THEN
WRITE(3 , 983) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

,

IMAX, DELIM
ELSEIF(jq.Eq.lO)THEN

WRITE(3 , 982) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

,

IMAX, IMAX, DELIM
ELSEIF(jq.Eq.ll)THEN
WRITE(3 , 981 ) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

,

IMAX, IMAX, IMAX, DELIM
ELSE

WRITE(3 , 980) IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX , IMAX

,

IMAX, IMAX, IMAX, IMAX, DELIM
END IF

END IF

FSUM=FSUM*DELTAR*DELTAZ*2*PI
WRITE(3,*)'/ INTEGRATED SOURCE TERM = ' ,FSUM

30 CONTINUE
40 CONTINUE

CL0SE(3)
RETURN
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979

980

981
982

983
984
985
986
987
988

989
990
991

992
993
994
995
999

F0RMAT(9(I3,'Z
F0RMAT(8(I3,'Z
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (13

I3,'Z
I3,'Z
13, 'Z

I3,'Z
I3,'Z
I3,'Z
I3,'Z

Z

FORMAT ('/ SOURCE TERM FOR SPHERICAL HARMONIC
1 ' AND ENERGY GROUP ',12)
F0RMAT(11(I3,'Z; '),I3.

'"

FORMAT 10(13,' Z; ' },I3.
),I3,'Z
),I3,'Z
),I3,'Z
.,I3,'Z
),I3,'Z
),I3,'Z
),I3,'Z

.13, 'Z

),I3,'Z

,12,

',1)

',A

',A

',A

\A
',A

',A

*,A

',A)

'.A)

F0RMAT(l2(I3,'Z; '))

FORMAT ' ',A)

FORMAT E12. 5,13,' Z ' ,A)
FORMAT E12. 5, I3,'Z; ' ,£12.5,13, 'Z
FORMAT 3(E12. 5, I3,'Z; '))
END

"
'-A)
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APPENDIX B: The Computer Program SRC2D
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CCCC PROGRAM READS IN CROSS SECTION DATA AND COMPUTES THE
CCCC SPHERICAL HARMONICS OF THE SECOND COLLISION SOURCE FOR A POINT
CCCC SOURCE EMITTING NEUTRONS IN THE UPWARD DIRECTION. THE ORIGINAL
CCCC POINT SOURCE IS NORMALIZED TO 4 PI. THE 4 PI IS USED
CCCC TO FACILITATE A SOURCE NORMALIZATION OF ONE IN TWODANT
CCCC THE POINT SOURCE IS ASSUMED TO BE AT THE CENTER OF A CYLINDER
CCCC WITH A RADIUS OF RMAX AND A HALF-HEIGHT OF ZMAX
CCCC

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 XSFILE,OTSRC,OTFLX
COMMON/CNSTS/PI
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(3),SIGMA(3,6,18)
C0MM0N/XSEC2/ORDER , NGROUP , SIGTAB (9 , 18)
C0MM0N/BLK2/W(32),X(32)
DIMENSION APOLY(0:21),SUM(22)
DIMENSION ROUT(3)
C0MM0N/S0URCE/qT0T(3, 21,20,40), FHJX(20,40),QPART(21, 20, 40)
COMMON/FILES/OTSRC , OTFLX , XSFILE

CCCC GET INPUT DATA REQUIRED FOR PROGRAM RUN
1 CALL INPUT(RMAX, ZMAX, IMAX,JMAX,NqUAD, GO, MOMENT, IXSECT,IOPT)

IFLX0P=O
NGP=NGR0UP+3

CCCC READ IN CROSS-SECTION DATA
CALL RDXSCT (XSFILE)

CCCC
CCCC MIX CROSS-SECTIONS TO FORM MACROSCOPIC CROSS-SECTION

DO 210 I0RD=1,N0RD+1
DO 119 I=1,NGP*NGR0UP

SIGTAB(I0RD,I)=O.ODOO
DO 118 NNIS0=1,NIS0

118 SIGTAB(IORD,I)=DEN(NNISO)*SIGMA(NNISO,IORD,I)+SIGTAB(IORD,I)
119 CONTINUE
210 CONTINUE
QQQQ

IF(IXSECT.Eq.2)THEN
CCCC CHANGE CROSS-SECTION COEFFICIENTS TO REFLECT THE N'TH CESARO
CCCC MEAN OF ORDER 2. TECHNiqUE HELPS ALLEVIATE NEGATIVES IN
CCCC SCATTERING CROSS-SECTIONS

I0PT=2
DO 220 I0RD=2,N0RD+1
CNSTl=(N0RD+3-I0RD)*(N0RD+2-I0RD)
CNST2=(N0RD+2)*(N0RD+1)
CNST=CNST1/CNST2
DO 219 I=1,NGP*NGR0UP

DO 218 NNIS0=1,NIS0
218 SIGTAB(IORD,I)=SIGTAB(IORD,I)*CNST
219 CONTINUE
220 CONTINUE
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END IF
QQQQ
CCCC BEGIN CALCULATION OF SECOND COLLISION SOURCE MOMENTS AND
CCCC ONCE SCATTERED FLUX DENSITY
CCCC COMPUTE CELL SIZES

DELTAZ=2*ZMAX/JMAX
DELTAR=RMAX/IMAX

CCCC COMPUTE SOURCE MOMENTS FOR GROUP G
DO 300 G=1,NGR0UP

DO 9 J=1,JMAX
DO 8 I=1,IMAX

CCCC ZERO ALL SOURCE MOMENTS
DO 7 M=l,MOMENT

7 QT0T(G,M,I,J)=O.DOO
FLUX(I,J)=O.DOO

8 CONTINUE
9 CONTINUE
Q£Q£

IF(G.LT.GO)THEN
CCCC ALL SOURCE MOMENTS REMAIN AS ZERO AND THE FLUX FOR THIS
CCCC GROUP IS ZERO SINCE NEUTRONS DO NOT UPSCATTER BETWEEN GROUPS
CCCC DUMP THE SCALAR FLUX TO AN OUTPUT FILE

CALL OUTFLX (RMAX , ZMAX , IMAX , JMAX , IFLXOP , G , OTFLX)
ELSE

CCCC COMPUTE THE SOURCE CONTRIBUTION TO GROUP G FROM THE GROUP GP
CCCC I.E., THE PARTICLE BEGINS IN GROUP GO SCATTERS GP AND THEN
CCCC SCATTERS INTO GROUP G

DO 60 GP=GO,G
WRITE(6,*)GP,G
DO 50 J=1,JMAX

ZSPOT=-ZMAX+DELTAZ* (J-0 . 5)
DO 40 1=1, IMAX

RSP0T=(I-O.5)*DELTAR
CCCC COMPUTE THE SOURCE MOMENTS AT AN I, J CORRESPONDING TO
CCCC THE LOCATION RSPOT.ZSPOT

CALL PTSRC (RSPOT , ZSPOT , ZMAX , GO , GP , G , NqUAD , MOMENT , IXSECT
1 ,SUM,XSFILE)

CCCC ASSIGN THE COMPUTED MOMENTS TO THE APPROPRIATE PARTIAL
CCCC SOURCE CELL I,

J

DO 30 M=l, MOMENT
30 QPART(M,I,J)=SUM(M)
40 CONTINUE
50 CONTINUE
rrrr

IF(I0PT.NE.O)THEN
CCCC COMPLETE NEGATIVE SCALAR SOURCE FIXUP ON THE PARITIAL
CCCC SOURCE qPART(M,I,J)

I0PT1=1

IF((GP.Eq.GO).AND.(I0PT.Eq.2))I0PTl=2
CALL NEGFIX (IMAX , JMAX , RMAX , ZMAX , MOMENT , I0PT1

)

END IF

116



cccc
CCCC COMPOTE THE FIRST COLLIDED SCALAR FLUX DENSITY (1/4PI)

IF(GP.EQ.G)THEN
DO 56 J=1,JMAX

DO 55 I=1,IMAX
55 FLUX(I,J)=qPART(l,I,J)/SIGTAB(l,(G-l)*NGP+4)
56 CONTINUE
CCCC OUTPUT THE ONCE SCATTERED FLUX DENSITY

CALL OOTFLX (RMAX , ZMAX , IMAX , JMAX , IFLXOP , G , OTFLX)
END IF

CCCC
CCCC ADD THE PARTIAL SOURCES TO GROUP G FROM GROUP GP TO THE
CCCC TOTAL SOURCE FOR ALL CELLS AND MOMENTS

DO 59 M=l,MOMENT
DO 58 J=1,JMAX

DO 57 1=1, IMAX
57 qTOT(G,M,I,J)=QTOT(G,M,I,J)+QPART(M,I,J)
58 CONTINUE
59 CONTINUE
60 CONTINUE
CCCC _

END IF
CCCC REPEAT THE ABOVE PROCEDURE TO FIND CONTRIBUTION TO GROUP G

CCCC FROM GROUP GP+1
300 CONTINUE
CCCC CLOSE THE FLUX OUTPUT FILE AFTER ALL CALCULATIONS ARE COMPLETE

CL0SE(2)
CCCC WRITE SECOND COLLISION SOURCE OUPOT MOMENTS TO OUTPUT FILE

CALL OUTSRC (RMAX , ZMAX , IMAX , JMAX , NqUAD , GO , MOMENT , OTSRC)
WRITE (6,*)' END OF PROGRAM RUN'
WRITE(6,*
WRITE(6,*) 'PERFORM ANOTHER PROGRAM RUN (1=YES)

'

READ(5,*)IRUN
IF(IRUN.Eq.l)GOTO 1

END
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SUBROUTINE NEGFIX(IMAX,JMAX,RMAX,ZMAX, MOMENT, IOPT1)
QQQQ .

CCCC SUBROUTINE SETS TO ZERO ALL NEGATIVE SCALAR SOURCE TERMS AND
CCCC ASSOCIATED MOMETS FOUND IN qPART(M,I,J)

.

CCCC TWO TECHNiqUES USED: 1) ELIMINATE JUST THE NEGATIVES
CCCC 2 ELIMINATE NEGATIVES AND BACKPEAK
CCCC

IMPLICIT REAL*8(A-B,0-Z)
INTEGER G

COMMON/CNSTS/PI
COMMON/SOURCE/qTOT(3, 21, 20,40), FLUX(20,40),qPART(21, 20,40)

CCCC

CCCC

DELTAR=RMAX/IMAX
DELTAZ=2*ZMAX/JMAX
FSUMP=0
FSUMO=0

IF(IOPTl.Eq.l)THEN
CCCC ELIMINATE ONLY THE NEGATIVE SCALAR SOURCES AND ASSOCIATED MOMENTS

DO 40 I=1,IMAX
RSP0T=(I-O.5)*DELTAR
DO 30 J=1,JMAX

CCCC INTEGRATE THE POSITIVE PORTION OF SCALAR SOURCE
FSUMP=FSUMP+qPART ( 1 , I , J

) *RSPOT
IF(qPART(l,I,J].LT.O)THEN

CCCC INTEGRATE THE NEGATIVE PORTION OF SCALAR SOURCE
FSUMO=FSUMO+qPART ( 1 , I , J

) *RSPOT
CCCC SET THE NEGATIVE MOMENT AND HIGHER MOMENTS TO ZERO

DO 20 NMq=l,MOMENT
20 qPART(NMq,I,J)=O.ODO0

END IF
30 CONTINUE
40 CONTINUE

ELSE
CCCC
CCCC ELIMINATE THE NEGATIVE SCALAR SOURCES AND ANY BACK-PEAKS
CCCC CAUSED BY OSCILLATIONS IN SCATTERING CROSS-SECTIONS
CCCC THE TECHNiqUE IS USED ONLY FOR THE SECOND SCATTER
CCCC COMPONENT FROM THE SOURCE GROUP FOR EACH GROUP. GO TO GO TO G
QPQQ

CCCC FIND AND FIX THE PEAK REGION ALONG THE TOP EDGE OF PROBLEM
DO 115 I=1,IMAX

IF(qPART(l,I,JMAX).LT.O.ODOO)THEN
CCCC INTEGRATE NON-PEAK REGION ALONG TOP

DO 110 II=I,IMAX
110 FSUM0=FSUM0+qPART(l,I,JMAX)*(II-0.5)*DELTAR
CCCC SET TO ZERO NON-PEAK REGION

qPART(l,I,JMAX)=0.0D00
END IF

115 CONTINUE
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QPQQ
CCCC FIND AND FIX PEAK REGION IN REMAINDER OF PROBLEM

DO 250 I=1,IMAX
RSP0T=(I-O.5)*DELTAR
DO 220 J=JMAX,1,-1

CCCC INTEGRATE PEAK REGION
FSDHP=FSUMP+qPART ( 1 , I , J

) *RSPOT
IF(QPART(1,I,J).LE.0)THEN
DO 215 JJ=J,1,-1

CCCC INTEGRATE THE NON-PEAK REGION
FS110=FS110+Q.PART ( 1 , I , JJ) *RSPOT
DO 210 NMQ=1,MOMENT

210 QPART(NMQ,I,JJ)=O.ODOO
215 CONTINUE

GOTO 250
END IF

220 CONTINUE
250 CONTINUE

END IF

CCCC RENORMALIZE THE SOURCE TO REGAIN PARTICLE BALANCE
FSUMP=FSUMP*DELTAR*DELTAZ*2*PI
FSUM0=FSUM0*DELTAR*DELTAZ*2*PI
FSUMO=FSUMP-FSUMO
REN0RM=FSUMP/FSUMO
DO 380 I=1,IMAX

DO 370 J=1,JMAX
DO 360 NMq=l,MOMENT

360 qPARTrNMQ,I,J)=qPART(NMq,I,J)*RENORM
370 CONTINUE
380 CONTINUE

RETURN
END
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cccc
SUBROUTINE RDXSCT(XSFILE)

CCCC ROUTINE READS IN CROSS-SECTION DATA FROM FILE XSFILE
CCCC DATA MUST BE IN FIXED FEILD FIDO FORMAT
CCCC DATA IS ASSUMED TO BE IN FORM ABSORBTION FOR G, NU*SIGMA-FISSION
CCCC FOR G, TOTAL FOR G, G TO G, G TO 9-1, ETC, AND THEN REPEATE FOR
CCCC EACH ENERGY. ONCE ALL ENERGIES ARE COMPLETED TABLE END WITH T
CCCC AND THE NEXT MOMENT IS INPUT.

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILESMSECVNGP

'
N0RD

'
NIS0

'
NDUM1

' DEN (3),SIGMA(3,6,18)
DIMENSION N 6 ,ND(6),IWER(6)

V
> .

°J

CHARACTER*8 R(6),SIGN(6)
OPEN (4 , FILE=XSFlLE , STATUS= ' OLD

'
, ACCESS= ' SEqUENTIAL

'

)

DO 50 IS0=1,NIS0
;

I0RD=1
2 READ(4,*)NDUMB

K=l
4 READ(4 999) (N(I) ,R(I) ,ND(I) ,SIGN(I) ,IWER(I) ,I=1,6Y

DU 10 1=1,6
IF(R(I).Eq.'T')THEN

I0RD=I0RD+1
GOTO 20

ELSE IF(R(I).Eq.'R')THEN
DO 5 J=0,N(I)-1

IF(SIGN(I).Eq.'-')THEN
SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(-IWER(I)))

ELSE

SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(IWER(I)))

5 CONTINUE
K=K+N(I)

ELSE

IF(SIGN(I).Eq.'-')THEN
SIGMA(ISO,IORD,K)=ND(I)*10.DOO**(-IVER(I))

ELSE

SIGMA(ISO,IORD,K)=ND(I)*10.DOO**(IWER(I))
END IF

"
K=K+1

END IF
10 CONTINUE

GOTO 4

20 IF(I0RD.GT.N0RD+1)G0T0 50
GOTO 2

50 CONTINUE
CL0SE(4)
RETURN

999 F0RMAT(6(I2,A1,I6,A1,I2))
END

"
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SUBROUTINE LGDRE(ITYPE , OMEGAR, NDUMB , APOLY)

CCCC ROUTINE RETURNS EITHER THE VALUE OF THE LEGENDRE POLYNOMIALS AT
CCCC OMEGAR OR EVALUATES THE SPHERICAL HARMONICS AT OMEGAR

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION AP0LY(O:21)

QQ£Q __^_
IF(ITYPE.EQ.1)THEN

CCCC APOLY(I) IS THE EVALUATION OF THE I TH LEGENDRE POLYNOMIAL
APOLY(0)=1
APOLY(l]=OMEGAR
DO 10 IP=1,NDUMB-1

10 AP0LY(IP+1)=((2*IP+1)*0MEGAR*AP0LY(IP)-IP*AP0LY(IP-1))/(IP+1)
CCCC

ELSE
CCCC APOLY(I) IS THE EVALUATION OF THE APPROPRIATE
CCCC SPHERICAL HARMONIC OF THE SOURCE

APOLY(0)=1
1=1

DO 50 L=l, NDUMB
AP0LY(I)=PLGNDR(L,O,0MEGAR)
1=1+1

DO 40 M=1,L
APOLY(I)=PLGNDR(L,M,0MEGAR)*DSqRT(2*FACT(L-M)/FACT(L+M))

40 1=1+1
50 CONTINUE
CCCC

END IF
RETURN
END
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cccc
cccc
cccc
cccc

SUBROUTINE XSECT(VAL , OMEGAR , GO , GP , IXSECT, XSFILE)

CCCC RETURNS THE VALUE OF THE SCATTERING CROSS-SECTION IN VAL
CCCC FOR THE GROUP GO TO THE GROUP GP FOR THE COSINE OMEGAR

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE
INTEGER ORDER, G, GO, GP
COMMON/CNSTS/PI
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(3),SIGMA(3,6,18)
C0MM0N/XSEC2/0RDER,NGR0UP,SIGTAB(9,18)
DIMENSION AP0LY(O:21)

CCCC -
:

CCCC GET THE LEGENDRE MOMENTS EVALUTED AT OMEGAR
ITYPE=1
CALL LGDRE(ITYPE,OMEGAR,ORDER,APOLY)

CCCC DETERMINE LOCATION OF SCATTERING CROSS-SECTION
NLOCI= (GP-1 ) *NGP+4+GP-<30
VAL=0
IF (IXSECT. LT. 4) THEN

CCCC USE THE LEGENDRE EXPANSION
DO 9 IVAL=0,ORDER

9 VAL=VAL+AP0LY(IVAL)*SIGTAB(IVAL+1,NL0CI)*(2*IVAL+1)
VAL=VAL*0.5

ELSE
CCCC USE EXACT CROSS-SECTION TECHNiqUE (VALID ONLY FOR ONE GROUP)
CCCC REQUIRES MODIFICATION OF SOURCE ROUTINE TO DESCRIBE THE
CCCC SCATTERING MODEL

IF(XSFILE(5:5).Eq.'l')THEN
VAL=0.25

ELSEIF(XSFILE(5:5).Eq.'2')THEN
VAL=0
IFf OMEGAR. GT. 0) VAL=0 . 5*0MEGAR

ELSEIF(XSFILE(5:5).Eq.'3')THEN
VAL=0
IF (OMEGAR . GT . . 5) VAL=2*0MEGAR-1

ELSEIF(XSFILE(5:5).Eq. , 4')THEN
VAL=0
IF((OMEGAR.GT. -0.5). AND. (OMEGAR. LT.0.5))VAL=0.5-DABS(OMEGAR)

ELSEIF(XSFILE(5:5).Eq.'5')THEN
VAL=0

IF(OMEGAR.LT.-0.5)VAL=-2*OMEGAR-0.5
ELSE

WRITE(6,*)' REWRITE XSECT SUBROUTINE FOR ALTERNATE CASES'
STOP

END IF

VAL=VAL*DEN(1)
END IF
VAL=VAL/(2*PI)
RETURN
END
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SUBROUTINE PTSRC (RSPOT , ZSPOT , ZMAX , GO , GP , G , NqUAD , MOMENT , IXSECT

,

1 SUM, XSFILE)
QQ£Q '

CCCC ROUTINE COMPUTES THE MOMENTS OF THE SECOND COLLISION SOURCE FOR
CCCC GROUP G AT LOCATION RSPOT, ZSPOT DO TO A MONO-DIRECTIONAL POINT
CCCC SOURCE IN GROUP GO WHERE THE FIRST SCATTER PUTS THE PARTICLES
CCCC IN GROUP GP. THE FIRST SCATTER LIES ALONG A LINE OF LENGTH
CCCC ZMAX WHICH IS THEN INTEGRATED OVER WITH A GAUSSIAN QUADRATURE
CCCC OF ORDER NQUAD. THE MOMENTS ARE RETURNED IN THE ARRAY SUM() AND
CCCC THERE ARE "MOMENT" NUMBER OF THESE MOMENTS. THE CROSS-SECTION
CCCC MODEL IS BASED ON IXSECT AND XSFILE.
(jq(j(j

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE
INTEGER ORDER, G, GO, GP
COMMON/CNSTS/PI
C0MM0N/XSEC2/0RDER, NGROUP , SIGTAB (9 ,18)
COMMON/XSEC1/NGP,NORD,NISO,NDUM1,DEN(3),SIGMA(3,6,18)
DIMENSION APQLY(0:21),SUM(22)
C0MM0N/BLK2/W(32),X(32)

CCCC CALCULATE LOCATION IN CROSS-SECTION TABLE FOR SCATTERING GP TO G

NG=(G-l)*NGP+4+G-GP
DO 5 1=1, MOMENT

5 SUM(I)=0
CCCC
CCCC IF SCATTERING IS POSSIBLE THEN COMPUTE MOMENTS

IF(SIGTAB(l,NG).NE.O)THEN
CCCC CALCULATE RANGES OF INTEGRATION

XMAX=DATAN((ZMAX-ZSPOT) /RSPOT)
XMIN=DATAN (-ZSPOT/RSPOT)
D1=(XMAX-XMIN)*0.5
D2=(XMAX+XMIN)*0.5

CCCC COMPUTE LOCATIONS OF TOTAL CROSS-SECTION FOR GROUPS GO k GP
NU=(G0-l)*NGP+3
NL=(GP-l)*NGP+3

CCCC INTEGRATE THE FIRST SCATTER LINE SOURCE
DO 20 N=l,NqUAD
THETA=D1*X N)+D2
OMEGAR=-DSIN(THETA)
CALL XSECT (VAL , OMEGAR , GO , GP , IXSECT , XSFILE)
CALL LGDRE(2, OMEGAR, ORDER, APOLY)
DUMB=W ( N) *VAL*DEXP (-RSPOT*

1 (SIGTAB(1,NU)*DTAN(THETA)+SIGTAB(1,NL)/DC0S(THETA)))
DO 10 M=l, MOMENT

10 SUM(M)=SUM(M)+AP0LY(M-1)*DUMB
20 CONTINUE

DUMB=D1*DEXP (-SIGTAB ( 1 , NU) *ZSPOT) /RSPOT
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NMQ=1
DO 40 L=0, ORDER

DO 30 M=0,L
SUM(NMq)=SUM(NMq)*DUMB*SIGTAB(L+l,NG)

30 NMq=NMq+l
40 CONTINUE

END IF
RETURN
END

DOUBLE PRECISION FUNCTION FACT(NUM)
CCCC FUNCTION RETURNS FACTORIAL OF NUM

IMPLICIT REAL*8(A-H,0-Z)
DUMB=1
DO 10 1=1, NUM

10 DUMB=DUMBi I
FACT=DUMB
RETURN
END
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cccc

SUBROUTINE INPUT(RMX , ZMX , IMAX , JMAX , NQUAD , GO .MOMENT , IXSECT , IOPT)

CCCC ROUTINE PROMPTS USER FOR PROGRAM DATA

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 XSFILE,OTSRC,OTFLX
COMMON/CNSTS/PI
COMMON/XSEC2/ORDER , NGROUP , SIGTAB (9,18)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(3),SIGMA(3,6,18)
COMMON/BLK2/W(32),X(32)
COMMON/FILES/OTSRC , OTFLX , XSFILE

PI=DACOS(-1.DOO)
WRITE (6,*)' INPUT THE NUMBER OF MATERIALS'
REAi(5,*)NIS0
WRITE(6 ,*)' INPUT THE NUMBER OF ENERGY GROUPS'
READ (5,*) NGROUP
WRITE(6 ,*)' INPUT THE CROSS-SECTION LEGENGRE EXPANSION ORDER'
READ ( 5, *) ORDER
NORD=ORDER
MOMENT= ( ORDER+2 )

* ( ORDER+1
)
/2

WRITE(6,*)' INPUT THE DENSITY FOR EACH (ATOM/CM-BARN)'
DO 10 I=1,NIS0
WRITE(6 ,*)' DENSITY OF MATERIAL' ,1

10 READ(5, i )DEN(I)
WRITE(6,*)'INPUT THE NAME OF THE CROSS SECTION FILE'
READ (5, 999) XSFILE

11 WRITE(6,*) 'INPUT THE CROSS SECTION MODEL OR TECHNIQUE'
¥RITE(6,*)' (1) LEGENDRE EXPANSION '

WRITE(6,*)' (2) CESARO MEAN '

¥RITE(6,*)' (3) LEGENDRE EXPANSION BUT ZERO NEGATIVE SOURCES'
WRITE(6 ,*)' (4) EXACT '

READ^^IXSECT
I0PT=O
IF((IXSECT.Eq. 4). AND. (NGROUP. NE.1))THEN
WRITE(6,*VIMPR0PER CHOICE FOR CROSS-SECTION MODEL '

WRITE 6,*)'T00 MANY GROUPS FOR EXACT TECHINOUE '

GOTO 11

END IF
IF (IXSECT. Eq. 3)THEN
WRITE(6,*) 'INPUT THE ZEROING MODEL TO USE '

WRITE(6,*)' (1) ZERO NEGATIVE SOURCES IN ALL GROUPS '

WRITE(6,*)' (2) ZERO NEGATIVE SOURCES IN ALL GROUPS AND '

WRITE (6 ,*)' ELIMINATE BACK-PEAKS FROM SOURCE GROUP'
READ (5,*) IOPT

END IF
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WRITE (6,*) 'INPUT THE NAME OF SOURCE OUTPUT FILE'
READ(5,999)0TSRC
WRITE(6,*) 'INPUT THE NAME OF 1ST SCATTER FLUX FILE'
READ(5,999)OTFLX
IF(IXSECT.EQ.3)IXSECT=1
WRITE(6 ,*)' INPUT THE RADIAL THICKNESS (CM)'
READ(5,*)RMX
WRITE(6 ,*)' INPUT THE NUMBER OF RADIAL MESHES'
READ(5, i )IMAX
WRITE(6,*V INPUT THE Z THICKNESS (SOURCE WILL BE AT MIDDLE) (CM)

1

READ(5,*)ZMX
ZMX=ZMX/2
WRITE(6,*) 'INPUT THE NUMBER OF Z MESHES'
READ(5,*)JMAX
WRITE(6 ,*)' INPUT THE QUADRATURE INTEGRATION ORDER'
READ(5,*)NqUAD

CCCC READ IN THE qUADRATUE SET USED FOR INTEGRATION
CALL GETQAD(NqUAD)
WRITE(6 ,*)' INPUT THE SOURCE GROUP'
READ(5, ^GO-
RETURN

999 FORMAT(A)
END

SUBROUTINE GETqAD(NqUAD)

CCCC SUBROUTINE READS GAUSS qUADRATURE DATA FROM AN INPUT FILE
CCCC THE FIRST NUMBER IS THE ORDER OF GAUSSIAN qUADRATURE SET.
CCCC THE ABCISSAS AND WEIGHTS SHOULD BE ORDERED FROM NEGATIVE TO
CCCC POSITIVE VALUES.
CCCC

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8,0IN
COMMON/BLK2/W(32),X(32)

306 FORMAT(A)
WRITE(6,*) 'INPUT THE NAME OF THE qUADRATURE FILE'
READ(5,306)OIN
OPEN(9,FILE=OIN,STATUS='0LD',ACCESS='SEqUENTIAL')
DO 10 I=l,NqUAD

10 READ(9,*)X(I),W(I)
CL0SE(9)
RETURN
END
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cccc
SUBROUTINE OUTSRC (RMAX , ZMAX , IMAX , JMAX , NqUAD , GO , MOMENT , OTSRC)

CCCC SUBROUTINE OUTPUTS THE SECOND COLLISION SOURCE MOMENTS IN A
CCCC FORM USED BY TWODANT (EXCEPT ALL EXPONENTIAL LETTERS SHOULD
CCCC BE ELIMINATED IN THE GENERATED FILE FOR ACTUAL USE IN TWODANT)
vLCL

cccc

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 OTSRC, OFLX,DELIM
C0MM0N/XSEC2/0RDER , NGROUP , SIGTAB (9,18)
COMMON/XSECl/NGP,NORD,NISO,NDUMl DEN(3) ,SIGMA(3,6,18)

gBSS^^(8,ai,M,*),rfn("*4o),,p"*(il,*> '40)

DIMENSION QDM(6)
DIMENSION ROUT(3)

CCCC

WRITE(6, 975) OTSRC
DELTAR=RMAX/IMAX
DELTAZ=2*ZMAX/JMAX
OPEN (3 , FILE=OTSRC , STATUS= ' NEW

'
, ACCESS= ' SEQUENTIAL

'

'

DO 40 NMQ=1, MOMENT
'

DO 30 NG=1, NGROUP
WRITE(3,979)NMq,NG
FSUM=0

DO 20 JT=1,JMAX
iq=o
DO 10 IT=1,IMAX
RSP0T=(IT-O.5)*DELTAR
iq=iq+i
IF(iq.GT.6)THEN
WRITE(3,999)qDM(l) ,qDM(2) ,qDM(3) ,qDM(4) ,qDM(5) ,qDM(6)

END IF

FSUM=FSUM+qTOT (NG , NMq , IT , JT) *RSPOT
10 QDM(iq)=qTOT(NG,NMq,IT,JT)

DELIM=';'
;

IF(((JT.Eq. JMAX). AND. (NG.EQ. NGROUP). AND.
1 (NMq.Eq.MOMENT)))DELIM='T'
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20

CCCC

30
40

975
979

980

993
994
995
996
997
998
999

IF(IQ.EQ.1)THEN
WRITE(3,993)(QDM(iqM),IQM=l,iq),DELIM

ELSEIF(lq.Eq.2)THEN
WRITE(3,994)(qDM(iqM),iqM=l,iq),DELIH

ELSEIF(lq.Eq.3)THEN
WRITE(3,995) (QDM(IQM) , iqM=l , IQ) ,DELIM

ELSEIF(iq.Eq.4)THEN
WRITE(3,996)(qDM(iqM),iqM=l,iq),DELIM

ELSEIF(iq.EQ.5)THEN
WRITE(3,997)(qDM(iqM),iqM=l,iq),DELIM

ELSE
WRITE(3,998) (QDM(IQM) ,iqM=l ,iq) ,DELIM

END IF
CONTINUE

FSUM=FSUM*DELTAR*DELTAZ*2*PI
WRITE(3,980)FSUM

CONTINUE
CONTINUE
CL0SE(3)
RETURN
FORMAT ('WRITING SOURCE OUTPUT FILE ',A8)
FORMAT(7 SOURCE TERM FOR SPHERICAL HARMONIC ',12,

1 ' OF ENERGY GROUP r

,I2)
FORMATf'/ INTEGRAL SOURCE TERM = ')

FORMAT
FORMAT

(

FORMATf
FORMATf
FORMATf
FORMATf
FORMATf
END

MfE12.5,' M,A)
',2 E12.5,' ' ,A

',3(E12.5,' ! ,A
',' \4(E12.5,' '),A)
' ,5(E12.5,

'

'),A)
',6 E12.5,* ' ,A)

',6(E12.5,' '
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DOUBLE PRECISION FUNCTION PLGNDR(L,M,X)

CCCC ROUTINE COMPUTES THE ASSOCIATED LEGENDRE POLYNOMIALS AT X
CCCC

IMPLICIT REAL*8(A-H,0-Z)
IFfM.LT.O.OR.M.GT.L.OR.AI
PMM=1

.ABS(X).GT.l) PAUSE 'BAD ARGUMENTS'

IF(M.GT.O) THEN
SOMX2=DSQRT((l.-X)*(l.+X))
FACT=1
DO 11 1=1,

M

PMM=-PMM*FACT*S0MX2
FACT=FACT+2

11 CONTINUE
END IF
IF(L.Eq.M)THEN
PLGNDR=PMM

ELSE
PMMP1=X*(2*M+1)*PMM
IF(L.Eq.M+l)THEN
PLGNDR=PMMP1

ELSE
DO 12 LL=M+2,L
PLL=(X*(2*LL-1)*PMMP1-(LL+M-1)*PMM)/(LMU)
PMM=PMMP1
PMMP1=PLL

12 CONTINUE
PLGNDR=PLL

END IF
END IF

RETURN
END
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SUBROUTINE OUTFLX (RMAX , ZMAX , IMAX , JMAX , IFLXOP , G , OFLX)

CCCC SUBROUTINE OUTPUTS TBE FIRST COLLISION FLUX DENSITY
CCCC

CCCC

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER, G, GO, GP
CHARACTER*8 OSRC,OFLX,DELIM
C0MM0N/XSEC2/0RDER , NGROUP , SIGTAB (9,18)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(3),SIGMA(3,6,18)
COMMON/SOURCE/qTOT(3,21,20,40),FLUX(20,40),qpART(21,20,40)
COMMON/CNSTS/PI

V ;

DIMENSION QDM(6)
DIMENSION R0UT(3)

DELTAR=RMAX/IMAX
DELTAZ=2*ZMAX/JMAX

CCCC FIRST TIME THROUGH, OPEN THE FLUX OUPUT FILE
IF(IFLXOP.NE.l)THEN

OPEN (2 , FILE=OFLX , STATUS= ' NEW
'

, ACCESS= ' SEQUENTIAL

)

WRITE(2,*)'/ SCALAR FLUX DENSITIES NORMALIZED BY 4*PI
IFLXOP=l

END IF
WRITE(2,*)'/ SCALAR FLUX DENSITY FOR ENERGY GROUP',

G

FSUM=0
DO 60 JT=1,JMAX

DO 50 IT=1,IMAX
RSP0T=(IT-O.5)*DELTAR
FSUM=FSUM+FLUX (IT , JT) *RSPOT

50 WRITE (2,999) JT,IT,FLUX(IT,JT)
60 CONTINUE

FSUM=FSUM*DELTAR*DELTAZ*2*PI
WRITE(2,998)FSUM
RETURN

998 F0RMAT(7 INTEGRATED SCALAR FLUX DENSITY = ')

999 F0RMAT(I3,' ',13,' ',E12.5)
END
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APPENDIX C: The Computer Program SRC2DPT
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CCCC PROGRAM READS IN CROSS SECTION DATA AND COMPUTES
CCCC THE ANGULAR SOURCE DISTRIBUTION AT A POINT FOR THE SECOND
CCCC COLLISION SOURCE FOR A POINT SOURCE EMITTING
CCCC NEUTRONS IN THE UPWARD DIRECTION. THE ORIGINAL POINT SOURCE HAS
CCCC A NORMALIZED STRENGTH OF 4 PI. THE 4 PI IS USED TO FACILITATE
CCCC NORMALIZATION IN THE TWODANT CODE PACKAGE. THE ANGULAR
CCCC DISTRIBUTION CAN BE COMPUTED EITHER WITH A SPHERICAL HARMONIC
CCCC EXPANSION OR BY COMPUTING THE SOURCE ALONG ACTUAL DIRECTIONS.

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER
CHARACTER*8 XSFILE,OTFILE,OTFX
COMMON/CNSTS/PI

COMMON/XSEC1/NGP,NORD,NISO,NDUM1,DEN(2),SIGMA(3,17,4)
COMMON/XSEC2/ORDER,NGROUP,SIGTAB(17,4)
COMMON/BLK2/W(32),X(32)
DIMENSION APOLY(0:153),SUM(154)
COMMON/SOURCE/q(l53) ,FLUX

1 CALL INPUT(ZMX,RLOC,ZLOC,XSFILE,OTFILE, MOMENT, IXSECT,NQUAD
1 , ICALC , IMAX , JMAX , RENORM)
NGP=NGROUP+3
CALL RDXSCT(XSFILE)

CCCC
DO 120 I0RD=1,N0RD+1

DO 119 1=1,4
SIGTAB(I0RD,I)=O.ODOO
DO 118 NNIS0=1,NIS0

118 SIGTAB(IORD,I)=DEN(NNISO)*SIGMA(NNISO,IORD,I)+SIGTAB(IORD,I)
119 CONTINUE

v '

120 CONTINUE
CCCC

IF(IXSECT.EQ.2)THEN
CCCC CHANGE CROSS SECTION COEFFICIENTS TO REFLECT THE
CCCC N'TH CESARO MEAN OF ORDER 2

DO 130 I0RD=2,N0RD+1
CNSTl=(N0RD+3-I0RD)*(N0RD+2-I0RD)
CNST2=(N0RD+2)*(N0RD+1)
CNST=CNST1/CNST2
DO 129 1=1,4

129 SIGTAB(IORD,I)=SIGTAB(IORD,I)*CNST
130 CONTINUE

END IF
CCCC
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IF(ICALC.Eq.l)THEN
CCCC COMPUTE SOURCE MOMENTS

CALL PTSRC1 (RLOC , ZLOC , ZMX , NQUAD .MOMENT , SUM , IXSECT , XSFILE)
CCCC COMPUTE THE FIRST COLLIDED SCALAR FLUX DENSITY (1/4PI)

FLUX=SUM(1)/SIGTAB(1,4)
DO 36 M=l, MOMENT

36 q(M)=SUM(M)
CALL OUTPT1 (RLOC , ZLOC , OTFILE , MOMENT , IMAX , JMAX , RENORM)

ELSE
CCCC COMPUTE SOURCE ALONG ACTUAL DIRECTIONS

DEL1=2.D00/IMAX
DEL2=PI/JMAX
OPEN (3 , FILE=OTFILE , STATUS= ' NEW

'
, ACCESS= ' SEQUENTIAL

'

)

¥RITE(3,*)7RSPOT =',RLOC
WRITE(3,*)7ZSPOT =',ZLOC
DO 180 1=0, IMAX

CSANG1=-1+DEL1*I
DO 170 J=0,JMAX
ANG2=J*DEL2
CALL PTSRC2 (CSANG1 , ANG2 , RLOC , ZLOC , ZMX , RESULT , NQUAD

,

1 IXSECT, XSFILE)
CCCC 4 PI FROM NORMALIZED SOURCE STRENGTH OF 4 PI

WRITET3 , 999) CSANG1 , ANG2 , RESULT*4*PPREN0RM
170 CONTINUE
180 CONTINUE

CLOSE (3)
END IF

CCCC
WRITE(6,*)'END OF PROGRAM RUN'
WRITE (6,*) 'TYPE 1 TO CONTINUE'
READ(5,*)IC0NT
IF(IC0NT.Eq.l)GOT0 1

999 F0RMAT(F7.3,
'

,

'
,F7.3,

'

,

'
,E12.5)

END
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SUBROUTINE CALCRN(P0LY,ANG1,ANG2,N)

CCCC ROUTINE RETURNS THE POLYNOMIAL TERMS EVALUATED AT THE
CCCC APPROPRIATE ANGLES TO DETERMINE THE SOURCE TERM

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION POLY(153)
POLY(l)=PLGNDR 0,0,ANG1)
NMq=2
DO 20 L=1,N

P0LY(NMq)=PLGNDR(L,O,ANGl)

DO 10 M=1,L

P0LY(NMQ)=PLGNDR(L,M,ANGl)*DC0S(M*ANG2)*
1 DSqRT(2*FACT(L-M)/FACT(L+M))

10 NMq=NMq+l
20 CONTINUE

RETURN
END

DOUBLE PRECISION FUNCTION FACT(NUM)
CCCC FUNCTION RETURNS FACTORIAL OF Nil

IMPLICIT REAL*8(A-H,0-Z)
DUMB=1
DO 10 1=1, NUM

10 DUMB=DUMB*I
FACT=DUMB
RETURN
END
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DOUBLE PRECISION FUNCTION PLGNDR(L,M,X)
CfiQQ

CCCC COMPUTES THE ASSOCIATED LEGENDRE POLYNOMIAL
CCCC

IMPLICIT REAL*8(A-H,0-Z)
IF(M.LT.O.OR.M.GT.L.OR.ABS(X).GT.1)PAUSE 'BAD ARGUMENTS'

IF(M.GT.O) THEN
S0MX2=DSQRT((1.-X)*(1.+X))
FACT=1
DO 11 1=1,

M

PMM=-PMM*FACT*SOMX2
FACT=FACT+2

11 CONTINUE
END IF
IF(L.Eq.M)THEN
PLGNDR=PMM

ELSE
PMMP1=X*(2*M+1)*PMM
IF(L.Eq.M+l)THEN
PLGNDR=PMMP1

ELSE
DO 12 LL=M+2,L

PLL=(X*(2*LL-1)*PMMP1-(LL+M-1)*PMM)/(LL-M)
PMM=PMMP1
PMMP1=PLL

12 CONTINUE
PLGNDR=PLL

END IF
END IF
RETURN
END
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SUBROUTINE RDXSCT(XSFILE)
CCCC
CCCC ROUTINE READS IN CROSS-SECTION DATA FROM FILE XSFILE
CCCC DATA MUST BE IN FIXED FEILD FIDO FORMAT
CCCC DATA IS ASSUMED TO BE IN FORM ABSORBTION FOR G, NU*SIGMA-FISSION
CCCC FOR G, TOTAL FOR G, G TO G, G TO G-l, ETC, AND THEN REPEATE FOR
CCCC EACH ENERGY. ONCE ALL ENERGIES ARE COMPLETED TABLE END WITH T
CCCC AND THE NEXT MOMENT IS INPUT.
QQQQ .

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE, OTFILE
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2),SIGMA(3,17,4)
DIMENSION N(6),ND(6),IWER(6)
CHARACTER*8 R(6),SIGN(6)
OPEN (4 , FILE=XSFILE , STATUS= ' OLD

'
, ACCESS= ' SEQUENTIAL

'

)

DO 50 IS0=1,NIS0
I0RD=1

2 READ(4,*)NDUMB
K=l

4 READ(4,999) (N(I) ,R(I) ,ND(I) ,SIGN(I) ,IWER(I) ,1=1,6)
DO 10 1=1,6
IF(R(I).Eq.'T')THEN

I0RD=I0RD+1
GOTO 20

ELSE IF(R(I).Eq.'R')THEN
DO 5 J=0,N(I)-1

IF(SIGN(I).Eq.'-')THEN
SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(-IWER(I)))

ELSE

SIGMA(ISO,IORD,K+J)=ND(I)*(10.DOO**(IWER(I)))

5 CONTINUE
K=K+N(I)

ELSE
IFfSIGNm.EQ.'-MTHEN

SIGMA(ISO,IORD,K)=ND(I)*10.DOO**(-I¥ER(I))
ELSE

SIGMA(ISO,IORD,K)=ND(I)*10.DOO**(I¥ER(I))
END IF

^

K=K+1
END IF

10 CONTINUE
GOTO 4

20 IF(I0RD.GT.N0RD+1)G0T0 50
GOTO 2

50 CONTINUE
CL0SE(4)
RETURN

999 F0RMAT(6(I2,A1,I6,A1,I2))
END
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SUBROUTINE LGDRE(ITYPE,OMEGAR,NDUMB,APOLY)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION APOLY(0:153)

QQQQ .

IF(ITYPE.Eq.l)THEN
CCCC APOLY(I) IS THE EVALUATION OF THE I TH LEGENDRE POLYNOMIAL

APOLY(0)=1
APOLY(l]=OMEGAR
DO 10 IP=1,NDUMB-1

10 AP0LY(IP+l)=((2*IP+l)*0MEGAR*AP0LY(IP)-IP*AP0LY(IP-l))/(IP+l)
CCCC .

ELSE
CCCC APOLY(I) IS THE EVALUATION OF THE APPROPRIATE MOMENT OF THE
CCCC SOURCE

APOLY(0)=1
1=1

DO 50 L=1,NDUMB
APOLY(I)=PLGNDR(L,0,OMEGAR)
1=1+1

DO 40 M=1,L

AP0LY(I)=PLGNDR(L,M,0MEGAR)*DSQRT(2*FACT(L^H)/FACT(L+M))
40 1=1+1
50 CONTINUE
CCCC ^__

END IF
RETURN
END
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SUBROUTINE XSECT ( VAL , OMEGAR , IXSECT , XSFILE)

CCCC RETURNS THE VALUE OF THE SCATTERING CROSS SECTION IN VAL
CCCC FOR THE GROUP GO TO THE GROUP GP FOR THE COSINE OMEGAR
CCCC

CCCC

CCCC

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE
INTEGER ORDER, G, GO, GP
COMMON/CNSTS/PI
COHMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2),SIGMA(3,17,4)
C0MM0N/XSEC2/0RDER,NGR0UP,SIGTAB(17,4)
DIMENSION AP0LY(O:153)

ITYPE=1
CALL LGDRE ( ITYPE , OMEGAR , ORDER , APOLY)
VAL=0
IF (IXSECT. LT. 3) THEN

CCCC USE THE LEGENDRE OR CESARO MEAN EXPNASION
DO 9 IVAL=0,ORDER

9 VAL=VAL+APOLY(IVAL)*SIGTAB(IVAL+l ,4)*(2*IVAL+1)
VAL=VAL*0.5

ELSE
CCCC USE EXACT CROSS SECTION TECHNIQUE (VALID ONLY FOR ONE GROUP)
CCCC REqUIRES MODIFICATION OF SOURCE ROUTINE TO DESCRIBE THE
CCCC SCATTERING MODEL

IF(XSFILE(5:5).Eq.'l')THEN
VAL=0.25

ELSEIF(XSFILE(5:5).Eq.'2')THEN
VAL=0
IF(0MEGAR.GT.O)VAL=O.5*0MEGAR

ELSEIF(XSFILE(5:5).Eq.'3')THEN
VAL=0
IF (OMEGAR. GT . . 5) VAL=2*0MEGAR-1

ELSEIF(XSFILE(5:5).Eq.'4 l )THEN
VAL=0
IF

( (OMEGAR . GT . -0 . 5) . AND
.
(OMEGAR . LT . . 5 )

) VAL=0 . 5-DABS ( OMEGAR)
ELSEIF(XSFILE(5:5).Eq.'5')THEN

VAL=0
IF(OMEGAR.LT.-0.5)VAL=-2*OMEGAR-0.5

ELSE
¥RITE(6,*)' REWRITE XSECT SUBROUTINE FOR ALTERNATE CASES'
STOP

END IF
VAL=VAL*DEN(1)

END IF

VAL=VAL/(2*PI)
RETURN
END
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SUBROUTINE PTSRC1 (RSPOT , ZSPOT , ZMAX , NQUAD , MOMENT , SUM , IXSECT , XSFILE)

CCCC ROUTINE COMPUTES THE SPHERICAL HARMONIC COEFFICIENTS NECCESSARY
CCCC TO GENERATE THE ANGULAR DISTRIBUTION OF THE SECOND COLLISION
CCCC SOURCE AT A PARTICULAR LOCATION
CCCC —

CCCC

5

CCCC

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8 XSFILE
INTEGER ORDER, G, GO, GP
COMMON/CNSTS/PI
COMMON/XSEC2/ORDER , NGROUP , SIGTAB (17,4)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2),SIGMA(3,17,4)
DIMENSION APOLY(0: 153), SUM( 154)
C0MM0N/BLK2/W(32),X(32)

DO 5 1=1,MOMENT

5__ SUM(I)=0

XMAX=DATAN((ZMAX-ZSPOT) /RSPOT)
XMIN=DATAN (-ZSPOT/RSPOT)
D1=(XMAX-XMIN)*0.5
D2=(XMAX+XMIN)*0.5
DO 20 N=l, NQUAD
THETA=D1*X(N)+D2
OMEGAR=-DSIN(THETA)
CALL XSECT(VAL , OMEGAR , IXSECT , XSFILE)
CALL LGDRE (2, OMEGAR, ORDER, APOLY)
DUMB=W(N)*VAL*DEXP (-RSPOT*

1 SIGTAB(1,3)*(DTAN(THETA)+1.DOO/DCOS(THETA)))
DO 10 M=1,M0MENT

"
10 SUM(M)=SUM(M)+AP0LY(M-1)*DUMB
20 CONTINUE

DUMB=D1*DEXP(-SIGTAB(1,3)*ZSP0T) /RSPOT
NMQ=1
DO 40 L=0, ORDER

DO 30 M=0,L
SUM(NMq)=SUM(NMQ)*DUMB*SIGTAB(L+l,4)

30 NMq=NMQ+l
40 CONTINUE
CCCC

RETURN
END
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cccc
cccc

cccc

SUBROUTINE INPUT(ZMX , RLOC , ZLOC , INFILE , OTFILE , MOMENT , IXSECT

,

CCCC ROUTINE PROMPTS USER FOR DATA NEEDED IN PROGRAM RUN
INqUAD , ICALC , IMAX , JMAX , RENORM)

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER
CHARACTER*8 INFILE, OTFILE, OTFLX
COMMON/CNSTS/PI
COMMON/XSEC2/ORDER , NGROUP , SIGTAB (17,4)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2),SIGMA(3,17,4)
COMMON/BLK2/W(32),X(32)

CCCC

PI=DACOS(-l.DOO)
NISO=l
NGROUP=l
WRITE(6 ,*)' INPUT TBE CROSS SECTION LEGENGRE EXPANSION ORDER 1

READ (5/) ORDER
NORD=ORDER
MOMENT= (ORDER+1)* (ORDER+2) /2
VRITE(6,*)' INPUT THE DENSITY FOR EACH OF THE ISOTOPES'
DO 10 I=1,NIS0
WRITE(6,*) 'DENSITY OF MATERIAL',

I

10 READ (5,*) DEN (I)

WRITE (6,*) 'INPUT THE NAME OF THE CROSS SECTION FILE'
READ(5, 999) INFILE
WRITE(6,*) 'INPUT THE CROSS SECTION MODEL '

WRITE(6,*)' (1) LEGENDRE EXPANSION '

WRITE(6,*)' (2) CESARO MEAN '

WRITE(6,*)' [3 EXACT (MAY REQUIRE CODE MODIFICATION)'
READ (5,*) IXSECT
WRITE(6,*) 'INPUT THE CALCULATION TYPE'
WRITE(6,*)' (1) COMPUTE MOMENTS FIRST'
WRITE(6 *)' (2) COMPUTE SOURCE ALONG ACTUAL DIRECTIONS'
READ(5, 4

) ICALC
WRITE(6,*) 'INPUT THE RENORMALIZATION FACTOR'
READ(5,*)REN0RM
WRITE(6,*) 'INPUT THE Z LOCATION'
READ (5,*) ZLOC
WRITE(6,*) 'INPUT THE RADIAL LOCATION'
READ (5,*) RLOC
VRITE(6,*) 'INPUT THE Z INTEGRATION LENGTH'
READ(5,*)ZMX

MO



WRITE (6,*) 'INPUT THE QUADRATURE INTEGRATION ORDER'
READ(5,*)NQUAD
CALL GETQAD(NQUAD)
WRITE(6,*) 'INPUT THE NUMBER OF ANGULAR MESHES -1 TO 1'

READ(5,*)IMAX
WRITE(6 *)' INPUT THE NUMBER OF ANGULAR MESHES TO PI'
READ(5, i )JMAX
WRITE(6,*)' INPUT THE NAME OF OUTPUT FILE'
READ(5,999)OTFILE
RETURN

999 FORMAT(A)
END

SUBROUTINE GETqAD(NqUAD)
cccc *****************************************************************

CCCC SUBROUTINE READS GAUSS QUADRATURE DATA FROM AN INPUT FILE
CCCC THE FIRST NUMBER IS THE ORDER OF GAUSSIAN QUADRATURE SET.
CCCC THE ABCISSAS AND WEIGHTS SHOULD BE ORDERED FROM NEGATIVE TO
CCCC POSITIVE VALUES.
CCCC *****************************************************************

IMPLICIT REAL*8(A-H,0-Z)
CHARACTER*8,OIN
COMMON/BLK2/W(32),X(32)

306 FORMAT(A)
WRITE(6,*) 'INPUT THE NAME OF THE QUADRATURE FILE'
READ(5,306)OIN
OPEN (9 , FILE=OIN , STATUS= ' OLD

'
, ACCESS= ' SEQUENTIAL

'

)

DO 10 I=1,NQUAD
10 READ(9,*)X(I),W(I)

CLOSE (9)
RETURN
END
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SUBROUTINE OUTPT1 (RLOC , ZLOC , OTFILE .MOMENT , IMAX , JMAX , RENORM)

CCCC ROUTINE COMPUTES THE ANGULAR SOURCE ALONG A PARTICULAR DIRECTION
CCCC USING THE SPHERICAL HARMONIC EXPANSION AND THEN OUTPUTS THE
CCCC RESULT TO A FILE
CCCC —

IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER
CHARACTER*8 OTFILE,OTFX,DELIM
DIMENSION P0LY(153)

COMMON/XSEC2/ORDER,NGROUP,SIGTAB(17,4)
COMMON/XSECl/NGP,NORD,NISO,NDUMl,DEN(2),SIGMA(3,17,4)
C0MM0N/SOURCE/q(153),FLUX
COMMON/CNSTS/PI

CCqq ; i

OPEN (3 , FILE=OTFILE , STATUS= ' NEW
'

, ACCESS= ' SEQUENTIAL
'

)

WRITE(3,981)FLUX*RENORM
DO 30 N=l .MOMENT

30 WRITE(3,980)N,q(N)*RENORM
DEL1=2.D00/IMAX
DEL2=PI/JMAX
VRITE(3,*)'/RSP0T =',RLOC
VRrTE(3,*)'/ZSP0T =',ZLOC
WRITE(3,*) '/NUMBER OF MOMENTS' , MOMENT
DO 120 1=0, IMAX

CSANG1=-1+DEL1*I
DO 115 J=0,JMAX
ANG2=J*DEL2
CALL CALCRN (POLY , CSANG1 , ANG2 , ORDER)
SRC=0
NN=1

DO 114 NJ=1,0RDER+1
DO 113 NI=1,NJ

SRC=SRC+(2*NJ-l)*P0LY(NN)*q(NN)
113 NN=NN+ 1

114 CONTINUE
115 WRITET3 , 999) CSANGl , ANG2 , SRC*RENORM
120 CONTINUE

CLOSE (3)
980 F0RMAT(7',I2,' ',E12.5)
981 FORMATS'/ SCALAR FLUX = ',E12.5)
999 F0RMAT(F7.3,',',F-

'

END
,F7.3,',',E12.5)
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cccc
cccc
cccc
cccc

SUBROUTINE PTSRC2 (CSANG1 , ANG2 , RSPOT , ZSPOT , ZMAX , RESULT , NQUAD

,

CCCC ROUTINE COMPUTES THE SOURCE ALONG ACTUAL DIRECTIONS RATHER
CCCC THAN USING A SPHERICAL HARMONICS EXPANSION

1IXSECT,XSFILE)
CHARACTER*8 XSFILE
IMPLICIT REAL*8(A-H,0-Z)
INTEGER ORDER
COMMON/CNSTS/PI
C0MM0N/XSEC2/0RDER, NGROUP , SIGTAB (17,4)
COMMON/XSEC1/NGP,NORD,NISO,NDUM1,DEN(2),SIGMA(3,17,4)
DIMENSION APOLY(0: 153), SUM(154)
COMMON/BLK2/W(32),X(32)

CCCC
XMAX=DATAN

(
(ZMAX-ZSPOT) /RSPOT)

XMIN=DATAN(-ZSPOT/RSPOT)
D1=(XMAX-XMIN)*0.5
D2=(XMAX+XMIN)*0.5
RESULT=0
DO 20 N=l,NqUAD
THETA=D1*X(N)+D2
OMEGAR=-DSIN(THETA)
CALL XSECT(VAL,OMEGAR,IXSECT, XSFILE)
WDUMB=OMEGAR*CSANG 1+DSqRT

(
( 1-CSANG 1 *CSANG1 )

* ( 1-OMEGAR*OMEGAR) )

"

1 DC0S(ANG2)
CALL XSECT(VAL1,WDUMB,IXSECT, XSFILE)
RESULT=RESULT+W(N)*VAL*VAL1*DEXP (-RSPOT*

1 (SIGTAB(1,3)*DTAN(THETA)+SIGTAB(1,3)/DC0S(THETA)))
20 CONTINUE '

V '

RESULT=RESULT*D1*DEXP(-SIGTAB ( 1 , 3) *ZSPOT) /RSPOT
RETURN
END
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APPENDIX D: Sample input for TWODANT

3 1

1 GROUP AIR
DELTA FUNCTION INCIDENT SOURCE AT CENTER LEFT FOR R-Z GEOMETRY
SOURCE IS APPROXIMATED BY THE SECOND COLLISION SOURCE SOURCE.

BLOCK I

IDIMEN=2, IGE0M=7, NGR0UP=1, ISN=12 NIS0=2 MT=1 IT=20 IM=1
NZ0NE=1 JT=40 JM=1 T

/ BLOCK II (GEOMETRY)
XMESH=0, 60000 XINTS=20 YMESH=0, 120000 YINTS=40 Z0NES=1 T

/ BLOCK III (CROSS SECTIONS)
LIB=ODNINP
MAX0RD=5 IHM=4 IHT=3 IHS=4 IFID0=1 ITITL=1 SAVBXS=1
NAMES= "N-14","0-16" T
1 4 507 PO N-14 WEIGHTED WITH CF252 SPECTRUM AT 2000M

+24736- 5 0+ 0+00 +15772- 4 +35073- 5 T
1 4 508 PI N-14 WEIGHTED WITH

3R+ 0+0 +10066- 4 T
1 4 509 P2 N-14 WEIGHTED WITH

3R+ 0+0 +15338- 4 T
1 4 510 P3 N-14 WEIGHTED WITH

3R+ 0+0 +18720- 4 T
1 4 511 P4 N-14 WEIGHTED WITH

3R+ 0+0 +19937- 4 T
1 4 512 P5 N-14 WEIGHTED WITH

3R+ 0+0 +19067- 4 T
1 4 513 PO 0-16 WEIGHTED WITH

+18763- 5 0+ 0+00 +16247- 4 +41412- 5 T
1 4 514 PI 0-16 WEIGHTED WITH

3R+ 0+0 +11855- 4 T
1 4 515 P2 0-16 WEIGHTED WITH

3R+ 0+0 +17976- 4 T
1 4 516 P3 0-16 WEIGHTED WITH

3R+ 0+0 +21781- 4 T
1 4 517 P4 0-16 WEIGHTED WITH

3R+ 0+0 +22980- 4 T
1 4 518 P5 0-16 WEIGHTED WITH

3R+ 0+0 +21737- 4 T

/ BLOCK IV (MIXING)
MATLS=AIR, "N-14" 4.02-05, "0-16" 1.07-05
ASSIGN= MATLS T
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IEVT=0
IITL=100
SOURCF=

SOURCE TERM
O.OOOOO+OO
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00

ISCT=5 ITH=0
IITM=100 EPSI=0.001

BLOCK V

IBL=1
(SOLVER)
IBR=0 IBT=0 IBB=0

FOR SPHERICAL
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00
0.00000+00

HARMONIC 1 OF ENERGY GROUP 1

.00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00

00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00

00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00

0.13914-13
0.84428-16
0.00000+00
0.00000+00
0.11267-13
0.91957-16
0.87813-18
0.00000+00
0.82411-14
0.92725-16
0.22154-17
0.00000+00
0.65436-14
0.88810-16
0.31709-17
0.00000+00
0.51928-14
0.82010-16
0.38311-17
0.48232-19
0.41209-14
0.73720-16
0.42200-17
0.15063-18
0.32720-14
0.64936-16
0.43779-17
0.22517-18

0.33827-14
0.41454-16
0.00000+00
0.00000+00
0.27965-14
0.49067-16
0.49567-19
0.00000+00
0.22939-14
0.52405-16
0.93119-18
0.00000+00
0.18728-14
0.52436-16
0.17247-17
0.00000+00
0.15253-14
0.50152-16
0.22464-17
0.00000+00
0.12416-14
0.46417-16
0.25925-17
0.65009-19
0.92167-15
0.41913-16
0.27819-17
0.13011-18

0.15021-14
0.19769-16
0.00000+00

' 0.13008-14
0.25946-16
0.00000+00

'

0.1 1092-14
0.29560-16
0.31011-18

'

0.84682-1

5

0.31000-16
0.81721-18

0.69713-15
0.30767-16
0.13036-17

0.57008-15
0.29357-16
0.15878-17

0.46397-15
0.27204-16
0.17674-17

0.68362-15
0.80884-17
0.00000+00

0.61623-15
0.13556-16
0.00000+00

0.53939-15
0.16643-16
0.00000+00

0.46258-15
0.18363-16
0.36534-18

0.39095-15
0.18944-16
0.65916-18

0.32696-15
0.18656-16
0.88196-18

0.27141-15
0.17756-16
0.11258-17

0.34542-15
0.28739-17
0.00000+00

0.17807-15
0.38322-18
0.00000+00

0.32940-15 0.18050-15
0.60949-17 0.26854-17
0.00000+00 0.00000+00

0.30129-15 0.17313-15
0.84811-17 0.44366-17
0.00000+00 0.00000+00

0.26776-15 0.15991-15
1.00343-17 0.56909-17
0.12392-18 0.00000+00

0.23313-15 0.14381-15
0.11743-16 0.64718-17
0.33821-18 0.15658-18

0.20000-15 0.12688-15
0.11943-16 0.68410-17
0.50786-18 0.28329-18

0.16979-15 0.11043-15
0.11680-16 0.68780-17
0.63245-18 0.38077-18
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0.26008-14
0.56319-16
0.43523-17
0.28081-18
0.20710-14
0.48276-16
0.41907-17
0.31866-18
0.16538-14
0.41026-16
0.39361-17
0.34064-18
0.13280-14
0.34660-16
0.36244-17
0.34911-18
1.00173-15
0.29177-16
0.32844-17
0.34659-18

/ SOURCE TERM
0.00000+00
0.00000+00
0.00000+00
0.00000+00

0.73651-15
0.37141-16
0.28404-17
0.17368-18
0.58820-15
0.32443-16
0.27964-17
0.20513-18
0.47028-15
0.28034-16
0.26773-17
0.22547-18
0.37804-15
0.24035-16
0.25074-17
0.23608-18
0.30978-15
0.20493-16
0.23069-17
0.23854-18
FOR SPHERICAL
0.00000+00 0.

0.00000+00 0.

0.00000+00 0.

0.00000+00
;

37644-15 0.22416-15 0.14312-15 0.86206-16
24656-16 0.16472-16 0.11096-16 0.66659-17
18558-17 0.12171-17 0.71475-18 0.44988-18

30498-15 0.18464-15 0.12012-15 0.72599-16
21969-16 0.14983-16 0.94098-17 0.62817-17
18694-17 0.12551-17 0.75964-18 0.49308-18

24726-15 0.15204-15 0.91669-16 0.60749-16
19323-16 0.13426-16 0.85181-17 0.57907-17
18252-17 0.12501-17 0.77317-18 0.51383-18

20138-15 0.12558-15 0.75505-16 0.50640-16
16831-16 0.11894-16 0.75930-17 0.52451-17
17391-17 0.12121-17 0.76174-18 0.51605-18

16596-15 0.95490-16 0.62273-16 0.42154-16
14557-16 0.95477-17 0.66845-17 0.46836-17
16251-17 0.11507-17 0.73150-18 0.50372-18

HARMONIC 2 OF ENERGY GROUP 1

00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00
00000+00 0.00000+00 0.00000+00 0.00000+00

REMAINDER OF THE SOURCE MOMENTS

PTED=1 ZNED=0
RSFE=1 T

(BLOCK V EDITS)-

146



APPENDIX E. Details related to the use of TWODANT

The KSU version of the TWODANT code package is based on the 4-30-89

version of TWODANT, which was put together by Los Alamos National

Laboratories. Some modifications in the original code were required to make the

code operational on the KSU VM/370 mainframe. The present version operates in

the CMS environment and can be retrieved by linking the mini-disk 303 of the

userid NECODES to a personal userid. The commands are

CP LINK NECODES 303 303 RR PASSWORD
ACCESS 303 P

The TWODANT code package can now be run by attaching the appropriate

input and output files and executing the module. The commands are

SET LDRTBLS 20
FILEDEF 5 DISK INPUT FILE
FILEDEF 6 DISK OUTPUT LISTING
TWODANT MODULE P NOXUFLOW

E.l. Retrieving and modifying TWODANT for use at KSU

The Los Alamos version of TWODANT presently resides in three files on

tape. Two of the files are FORTRAN coding and the third is assembly coding.

The tape files are retrieved by using an OSREAD command. One of the

FORTRAN files is quite large (in excess of 90000 records) and should be broken

into four smaller files with the OSREAD command.
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The set of OSREAD commands to be used are

OSREAD TWOA FORTRAN (T6250 NLABEL START 1 FOR 25075
OSREAD TWOB FORTRAN (T6250 NLABEL START 25075 FOR 24925
OSREAD TWOC FORTRAN (T6250 NLABEL START 50000 FOR 20225
OSREAD TWOD FORTRAN (T6250 NLABEL START 70225
OSREAD CHAFORTI FORTRAN (T6250 NLABEL
OSREAD CHAHANDI ASSEMBLE (T6250 NLABEL

After each OSREAD command, the user will be prompted to input various

parameters related to the tape. These include the number of the file being

retrieved from the tape, the tape label (presently FBKS), the record format

(RECFM = FB), the logical record length (LRECL = 80), the block size

(BLKSIZE = 3120), and finally a option code (which can be left blank). Once the

files have been retrieved from tape they can be moved from the VIRTUAL

READER to a mini-disk file. The best procedure is probably to create a

temporary mini-disk for each file, so that sufficient memory is available for text

and listing files generated during compilation.

Before the FORTRAN coding can be compiled a few minor changes are

required. The first set of changes involves renaming variable names and

subroutine names in the FORTRAN coding which are longer than 6 character.

Most of these occur in the FORTRAN file previously defined as TWOD and are

subroutine names which end in HX. If the HX is retained in any new name, then

most of these subroutine names can be changed without repeating a previously

defined subroutine name. The second change involves eliminating the call

statement to the routine JOBID.
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The final change is to alter several records (23462 to 23463) of the subroutine

HEADIN in TWOA to stop the code from reading past record 80 of the input file.

The FORTRAN coding should be compiled with the FORTVS compiler using an

optimizer level of three.

As with the FORTRAN coding, the assembler coding must also be modified.

The modifications involve eliminating a set of MACROS which are already defined

in a system library. The simplest technique to find this set of MACROS is to

compile the assembly code using ASMG and the BATCH option. The important

MACROS occur in a set of fifteen at four locations and are each four lines long.

They should simply be deleted from the assembly code. The other two errors in

the assembly code can be ignored, because they do not affect the code operation.

Once the various FORTRAN codes and assembler codes have been compiled,

a module can be generated by loading each of the files beginning with TWOA into

memory and using the GENMOD command. Five cylinders of disk space should

be allocated for storage of the module and four mega-bytes of RAM for loading the

text files into system memory. The entire set of commands are

GLOBAL TXTLIB VFORTLIB VLNKMLIB
GLOBAL LOADLIB VFLODLIB VALTLIB
FORTVS TWOA (OPT(3)
FORTVS TWOB (OPT(3)
FORTVS TWOC (OPT 3

FORTVS TWOD (OPT(3)
FORTVS CHAFORTI (OPT(3)
GLOBAL MACLIB
ASMG CHAHANDI (BATCH
LOAD TWOA TWOB TWOC TWOD CHAFORTI CHAHANDI
GENMOD TWODANT
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Before eliminating the text files, all the sample files should be run to insure

proper operation of the code. Not all of the sample files will run, because the

TWODANT code under present use at KSU has one runtime error that has not

been resolved. The error centers around the inability of the system to use random

access files and can only be resolved by increasing the overall memory allocated to

a job and also the values of MAXLCM and MAXSCM in BLOCK I of the input

file.

E.2. Details related to the TWODANT input file

The problem to be solved by TWODANT is created in a file which is then

attached to UNIT 5 with a FILEDEF command. This input file is divided into

seven blocks which control various aspects of TWODANT. All input is based on

the use of keywords and FIDO formatted data in these blocks. The TWODANT
manual provides excellent explanation and examples of most of the options

available in each block. This section attempts to rectify a few of those areas which

are unexplained in any of the manuals.

In the first block of data, the general problem is defined along with controls

for the other blocks. In this block, of primary importance are the variables

MAXLCM and MAXSCM. A proper choice of these is required to insure

TWODANT does not attempt to use random access files and subsequently crash.

In close relationship to these two variables is the amount of system memory

available for a computer run. Table E.l details the memory allocations for several

problems, which have been run using TWODANT.
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Tab. E.l. A comparison of memory requirements for several TWODANT
problems. The spatial meshing indicates first the number of radial meshes
and then the number of z meshes for a cylindrical problem. The scattering
order refers to the expansion order of the scattering cross section. The SCM
and LCM were values that TWODANT output and indicate the minimum
amount of small core memory and large core memory required to store all
program variables in system memory. The system memory allocation is the
amount of memory allocated to run that particuliar problem in the CMS
environment of an IBM VM/370.

SPATIAL
MESHES

r,z

Sn
ORDER

SCATTERING
ORDER

NUMBER
OF ENERGY
GROUPS

SCM LCM SYSTEM
MEMORY
(Mbytes)

20,40
20,40
20,40

6

8
12

Po

Po

Po

1

1

1

11490
11568
11740

11234
11714
13034

6

6

6

20,40
20,40

12

8
Ps

p5

3

47
28509
18558

140707
676689

6
>8*

25,50 8 Ps 1 25104 46424 6

•The problem could not be run because more than 8 megabytes of system
memory were required.
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In the second block of the input file, the geometry of the problem is defined.

Of primary concern in this block are the units on the problem edges and the

locations of the cell centers. The units on the problem edges are related to the

macroscopic cross-sections which are created later. The units on the problem

edges are the same as one-over the units on the macroscopic cross-sections. The

cell centers are located such that the edges for those cells located on the problem

boundaries coincide with the boundary (i.e., the cell-centers begin half a mesh

from the problem boundary).

In the third block, the microscopic cross-sections are defined. The

cross-sections either appear directly after this block or can be stored in a separate

file attached to UNIT 4. Of importance in this block is that the appropriate

format be observed for all the cross section data. This is particularly important if

fixed-field FIDO is specified. Most data in the standard cross section libraries use

this format, where numbers are represented as 12345-04 (i.e., 1.2345).

In the fourth block, the cross-sections are mixed and assigned to regions in

the problem geometry. Since most of the standard cross-section libraries specify

cross-section units in terms of b atom"', any density specified for a cross-section

should be in similar units (i.e. atoms b"' cm-'). The macroscopic cross-sections

will then be in units of cnr* and the problem dimensions will be in units of cm.

In the fifth block, details related to the solver module are input. Of

particular importance in this section is the ordering of inhomogeneous sources.

The data should be ordered starting with the bottom center of the problem

geometry. The source term for the first spherical harmonic and for the first energy

group is input for this cell. This source is then followed by the source term for the
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first spherical harmonic and for the first energy group for the cell located in the

next radial mesh out from the first cell. The process is repeated until the source at

the cell on the outer radial edge of the problem is input. This cell is then followed

by a semicolon and the above process is repeated for the next cell up. Once all

source terms for the first spherical harmonic and for the first energy group are

input, the process is repeated for the all remaining energy groups. Once the source

coefficients for the first spherical harmonic and for all energy groups have been

input, the above process is repeated for the second spherical harmonic coefficients

and subsequently for all the remaining source moments. After all source moments

have been input, the set of data is terminated with a T (i.e., no semicolon on the

last set of data). All the sources moments should be in free-field format (i.e.,

5.2864E-05 becomes 5.2864-5 or 52864-9).

In the sixth and final block, options for outputting the flux densities are

input. Of importance in this section is the ability to output either the actual flux

densities for each group or some appropriate mix of them based on a response

function. Both results can be generated by using the RSFE option, and specifying

different response functions separated by semicolons. Between each set of

semi-colons the response functions are ordered from the first energy group to the

last. To output the flux density for a particular group, set the response in the

desired group to one and to zero in all others. The flux density and any other

response generated following this procedure is actually 1/4* times the actual

response.
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ABSTRACT

The purpose of this study was to investigate the ability of standard S n

transport codes to generate line-beam response functions for use in neutron

skyshine calculations. These response functions give the dose rate at at any given

source-to-detector distance for a point source emitting monoenergetic neutrons in

an air medium at a single fixed angle relative to the source-to-detector axis. Such

spatially and angularly singular sources are not easily incorporated into standard

S n codes, because these codes generally require spatially distributed sources which

are only weakly anisotropic (i.e., those that can be represented by a low-order

spherical harmonics expansion). If line-beam skyshine sources are used directly in

an Sn code, either the calculations diverge or numerous negative values for the

iterated flux density are obtained.

In this study, the first and the second collision sources are investigated to

determine if these sources, with their more uniform spatial distribution and less

anisotropic angular distribution, can successfully be used with the standard S n code

TWODANT to produce meaningful results for line-beam response functions. In

this approach, a preprocessor code is needed to generate the data necessary to

describe the spatial and angular components of the source. Also, a postprocessor

code is required to compute the total flux density by adding the components of the

flux density (which were used to generate the source for the S„ calculation) to the

iterated flux density (which was obtained from the S„ calculation).

This study used TWODANT with a spherical harmonics expansion of either

a first or a second collision source to compute the spatial distribution of the scalar

flux density for several one-group problems characterized by a monodirectional



point source emitting neutrons along the axis of a large cylindrical air medium.

The spherical harmonics expansion of these sources was found to generate some

negative angular sources, which eventually led to convergence problems for

TWODANT. Several techniques for alleviating these negative sources were

developed. While these techniques aided convergence, this study found that ray

effects, the bane of multidimensional S n calculations, were still prevalent in some

regions. Such ray effects limit the usefulness of TWODANT for calculating

line—beam response functions to those cases with a broad energy range for the

source group (i.e., a large angular support for scattering within the the source

group).


