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Abstract 

This study reports the results of an analytical, experimental and a numerical study (proof 

of concept study) on a proposed method for extracting the pseudo-free-vibration response of a 

structure using ambient vibration, usually of a random nature, as a source of excitation to detect 

any change in the dynamic properties of a structure that may be caused by damage. The structural 

response contains not only a random component but also a component reflecting the dynamic 

properties of the structure, comparable to the free vibration for a given initial condition. Structural 

response to the arbitrary excitation is recorded by one or several accelerometers with a desired 

data-collection frequency and resolution. The free-vibration response of the structure is then 

extracted from this data by removing the random component of the response by the method 

proposed in this study.  The features of the free-vibration response of the structure extracted by a 

suitable method, namely Fast Fourier Transform (FFT) in this study, can be used for change 

detection. Possible change of the pattern of these features is dominantly linked to the change in 

dynamic properties of the system, caused by possible damage. 

To show the applicability of the concept, besides an analytical verification using 

Newmark’s linear acceleration method, two steel portal frames with different flexural stiffness 

were made in the steel workshop of the structural laboratory for an experimental study. These 

structures were also numerically modeled using a finite element software. A wireless 

accelerometer with a sampling frequency rate of 2046 Hz was affixed on the top of the physical 

structure, at the same location where the acceleration was recorded for the corresponding 

numerical model. The physical structure was excited manually by an arbitrary hit and the response 

of the structure to this excitation, in terms of the acceleration on the top of the structure, was 

recorded. The pseudo-free-vibration response was extracted and transferred into frequency domain 



  

using FFT. The frequency with the largest magnitude which is the fundamental frequency of the 

structure was traced. This was repeated for several independent excitations and the fundamental 

frequencies were observed to be the same, showing that the process can correctly identify the 

natural frequencies of the structure. Similarly, the numerical model was excited and for several 

base excitation cases, the fundamental frequencies were found to be the same. Considering the 

acceptable accuracy of the results from the two numerical models in simulating the response of 

their corresponding physical models, additional numerical models were analyzed to show the 

consistency and applicability of the proposed method for a range of flexural stiffness and damping 

ratio. The results confirm that the proposed method can precisely extract the pseudo-free-vibration 

response of the structures and detect the structural frequencies regardless of the excitation. The 

fundamental frequency is tied to the stiffness and a larger stiffness leads to a higher frequency, as 

expected, regardless of the simulated ambient excitation. 
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Chapter 1 - Introduction 

   1.1 Introduction 

Different structures like towers, bridges, retaining walls, wind turbines, and so forth are 

susceptible to damage from extreme loads such as earthquakes, wind, floods, fires, undermining 

from adjacent construction, landslides, and overloading with heavy contents. Moreover, these 

structures status can be changed by aging and environmental effects that significantly affect the 

performance of structures during their service life. Examples of such deterioration are corrosion, 

wood decay, concrete attack by adverse chemicals, fatigue, foundation settlement, slope creep, or 

vibrations from adjacent construction. 

The state of the structure must remain in the situation determined in design. Structural 

Health Monitoring (SHM) aim is diagnosing of the “state” of the constituent materials, different 

parts, and full assembly of these parts constituting the structure as a whole to monitor the 

performance of structure, detect and assess any damage at the earliest stage in order to reduce the 

life-cycle cost of structure and improve its reliability and safety.  

In structural health monitoring, both Destructive Damage Detection (DDD) and Non-

destructive Damage Detection (NDD) techniques are used to evaluate the structure to detect any 

possible damage available in the structure. However, NDD techniques are more convenient and 

less costly than DDD techniques due to recent advances in electronic technologies like sensors, 

computers, and so forth. Meanwhile, despite of DDD techniques that find any defect in the 

structure by testing samples removed from the structure, NDD techniques do not damage the 

structure. 

NDD techniques can be categorized into two clusters: local methods; and global methods. 

Some of highly effective methods are acoustic or ultrasonic methods, magnetic field methods, 
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radiograph, microwave/ground penetrating radar, fiber optics, eddy current methods and thermal 

field methods. These methods are visual or localized experimental methods that detect damage on 

or near the surface of the structure by measuring light, sound, electromagnetic field intensity, 

displacements, or temperature [1]. The following are some Non-destructive tests (NDTs) that are 

commonly used in structural engineering practice: Schmidt Hammer, also known as the rebound 

or impact hammer, to evaluate reinforced concrete strength [2]; Concrete ultrasonic tester to 

measure crack depth [3]; Ground penetrating radar for rebar detection [4]; Digital coating thickness 

gauge to measure painting thickness of steel members [5]; eddy current is very effective for crack 

detection at welded joint [6]. Figure 1.1 illustrates a general classification based on different 

damage detection categories, methods, and basic algorithms [7]. 
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Figure 1.1 Structural Health Monitoring and damage detection categories 
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  1.2 Objectives 

There are two different forms of vibration test on civil structures, forced vibration test 

(FVT) and ambient vibration test (AVT) [8], [9]. In the past, rotating eccentric mass (REM) 

shakers have been used for forced vibration testing for buildings [10]. In rare cases, shakers driven 

by hydraulic or electro-dynamic actuators have been used to excite a building with a broad band 

signal [8], [10]. Because of the fact that machinery associated with FVT are generally logistics and 

large, except of a few cases, AVT is preferable. In ambient vibration tests, a set of accelerometers 

are needed to be set on the structure to measure the response of structures subjected to the 

vibrations of the wind, traffic and so forth [11]. Additionally, measured signals are possibly 

contaminated by noise so that information from tiny damage in structures may be covered by the 

random vibration and noise, and the selection and construction of the feature index of structural 

damage are variable [1]. Thus, in this study, the author has adopted a novel random-vibration-

based approach using ambient vibration, as a source of excitation, to detect any change in the 

dynamic properties of a structure that may be caused by damage. Under any excitation, the 

response of a structure is composed of free and forced vibrations, as long as the structure remains 

in its linear and elastic range. So, the free vibration response of the structure can be extracted by 

eliminating the forced response. Filtering out the random component of the response, leads to the 

free vibration response of the structure. Averaging the response for each time step on a large 

number of data points is one of the methods to filter out the forced vibration of the response to a 

random excitation. In this study, the forced vibration is eliminated for a pre-determined initial 

acceleration, for which the free vibration is extracted. The free vibration response can then be used 

to detect change using various methods. Here, the free-vibration response called pseudo-free-

vibration response is transferred into frequency domain using Fast Fourier Transform (FFT) and 
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the changes in structural frequencies are used for detection of changes in the dynamic properties 

of the structure. The frequency with the maximum intensity in frequency domain which is the 

fundamental frequency of the structure is traced in this study to detect changes in the stiffness of 

the structure.  
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Chapter 2 - Literature Review 

 2.1 Direct Use of Modal Parameters 

 2.1.1 Change in the Natural Frequencies 

The change of natural frequencies is one of the common damage detection methods in 

structural health monitoring. When any damage occurs in a structure, the stiffness will decrease, 

and therefore natural frequencies of the system decreases as well. One of the greatest advantages 

of this method is that structural frequencies can be easily measured. Also, to determine the resonant 

frequencies, usually, classical vibrational measurement techniques can be used as experimental 

techniques that make the vibrational measurements with a great number of measurements to be 

cheaper compared to other methods. Another advantage is that having a great control of 

experimental conditions makes the frequency measurements to be with a relatively acceptable 

accuracy, and uncertainties in the measured frequencies will be determinable. Moreover, using 

analytical developments or finite element models makes obtaining the knowledge about 

undamaged systems very easy; thus, having the measurement points adequately chosen allows one 

to have a quick and efficient detection of the frequencies changes as well as the identification of 

the damage location. 

According to Doebling et al. [12], for the first time, in 1969, Lifshitz and Rotem [13] 

proposed a damage detection method by using vibration measurements. This technique is a damage 

detection method in elastomers based upon measuring of natural frequencies by changes in 

dynamic moduli and damping of tensile specimens. Hearn and Testa [14] proposed a formula that 

approximates the ith natural frequency. This formula, assuming that the damage does not change 

the mass matrix, provides a relationship between M (the mass matrix), Φi (the ith mode shape 

vector), and the element deformation vector that can be computed from the mode shapes. They 
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also concluded that the ratio of the variations of two natural frequencies of mode i and j is 

dependent to the damage location, however, it does not show the damage severity. Many other 

researchers have attempted to detect damage in structures by using changes in natural frequencies. 

Salawu proposed an intensive review in [6]. Some other researchers used natural frequencies 

changes for damage detection by comparing the natural frequencies of the undamaged and 

damaged structures [15]–[25]. In some of these studies, the ratio of the natural frequencies of 

damaged structure to the natural frequencies of the damaged structure will be used for damage 

detection [16]. The mentioned study [16] used the linear fracture mechanics theory to determine 

the crack location and depth of a cantilever beam. Also, to obtain the natural frequencies and mode 

shapes, the finite element model of the cracked beam was constructed. From the theoretical 

analysis and experimental measurements, it is found that the crack location and crack size 

noticeably affect the first and second natural frequencies of the cantilever beam. This study 

provides a useful tool for detection of medium size cracks in a beam that also has reliable and 

accurate results for crack depth, besides an acceptable error for the crack location. On the other 

hand, some other studies use the percentage change of the natural frequencies [26]–[29]. The 

percentage change of the natural frequencies can be very small (for instance 1% for small cracks 

or specific locations of the crack); so, the natural frequencies of the intact structure should be 

accurately measured in order to be able to determine if the obtained frequencies are smaller than 

expected. So, inaccurate measures of the natural frequencies may cause one to miss the small 

amount of damage that may be caused by small amount of frequency changes. Results show that 

a crack located near a node of the mode vibration has little effect on. For those places that are near 

the largest bending moment of ith mode, the crack will change the natural frequencies more 

noticeably.  
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An approach similar to the methods explained above estimates the crack gravity and 

location (by only obtaining the frequencies of the damaged structures) without any need to 

compare the frequencies of undamaged frequencies with damaged frequencies. In this case, the 

crack detection requires the knowledge of the material properties (Young's modulus E and the 

density for example), that are estimated by using the uncracked natural frequencies. Although this 

method may be introduced as a different method that does not require the natural frequencies of 

the undamaged structures, the undamaged frequencies are used, and the material properties are 

implicitly considered. So, this last approach can be equivalent to the procedures previously 

explained. Sinou proposed another indicator based on the changes of the frequencies [30] shown 

in Equation 2.1. This indicator shows the effect of the damage on two different modes (i and j); if 

the value of the indicator is larger than 0, it can be concluded that the mode of ith pulsation is more 

affected by the crack than another pulsation.  

 

indicator =  (
undamaged frequency of mode i

undamaged frequency of mode j)
−

damaged frequency of mode i

damaged frequency of mode j
)  (2.1) 

 

Messina et al. also defined an indicator for Damage Location Assurance Criterion (DLAC) 

based on the changes in natural frequencies [31]. The values of the Damage Location Assurance 

Criterion (DLAC) vary between zero and unity. Values of zero and unity indicate no correlation 

and exact match, respectively, and consequently when the indicator value for i is one, the location 

of the damages has been found.  Messina et al. extended the Damage Location Assurance Criterion 

(DLAC) for multiple damage cases as well [32]. The Multiple Damage Location Assurance 

Criterion (MDLAC) contains sensitivity matrix that contains the first order derivatives of n natural 

frequencies with respect to m damage variables x. The objective of MDLAC method is to find a 
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variable vector included in the formula of MDLAC that makes the MDLAC equal to one. MDLAC,  

was then extended for long-span civil engineering structures by Koh and Dyke [33]. 

 2.1.2 Identification Based on the Frequency Contours Methods 

The identification of the crack parameters can be done by using the different factors and 

the combined effects of the crack in changes of frequencies of the damage structure.  

Nikolakopoulos and Papadopoulos using eigenfrequency measurements, evaluated the 

crack depth and position identification in frame structures and the general idea is to present in 

contour graph from the dependency of the first two structural eigenfrequencies on crack depth and 

location [34]. For that, determining the intersecting point of the superposed contours that 

correspond to the measured eigenfrequency variations caused by the crack presence is needed. 

They verified the proposed methodology using a number of structure examples included in the 

paper. 

Using the frequency contours method and the intersection of contours from different modes 

Yang et al. [35] identified the cracks in a simply supported beam. They showed that the intersecting 

point of three contours corresponding to the measured frequency indicates a crack depth. They 

also showed that this method can determine the probable location of two cracks because of the 

structural symmetry in the simply supported beam. 

To avoid the non-uniqueness of the damage detection, Dong et al. provided an approach to 

use the evolution of mode shape [36]. Swamidas et al. claimed that adding an off-center mass to 

the original structure helps to remove symmetrical solutions [37]. Sinou showed that the preceding 

method is not a suitable method to eliminate symmetrical solution for all cases, and in some cases 

will be pretty hard to use [30]. In some experimental cases, because of uncertainties, three contour 

lines do not have only one intersection for each case, and the centroid of the three pairs of 
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intersections have been considered as the crack location and size [38], [39]. Therefore, Sinou 

extended the methodology of mass adding using two different methods [30]. The first method was 

adding a mass at one of the ends of the symmetrical structure, and the second was testing at the 

other end. However, the results of the tests on experimental cases show that the methodology 

works for general structures because of uncertainties. Another method was removing the non-

uniqueness of the damage location by the appropriate use of resonances and antiresonances [40], 

[41]. The advantage of this method is that, with a relevant accuracy, the crack location and size 

will be obtained without any need to additional tests. Sinou also proposed an extension of the 

frequencies contour line method by considering the orientation of the front crack besides the crack 

size and location. 

 2.1.3 Change in Damping 

It is reasonable to expect that a great indicator for damage detection can be damping 

changes because it is expected that the friction between crack surfaces can increase the damping 

ratio. Modena et al. [42] claimed that uncertainties or small changes of natural frequencies might 

make some cracks impossible to detect. However, cracks cause important changes in the damping 

factor that makes crack identification more probable. It is obvious that increasing the crack severity 

increases the damping factor. 

Bovsunovsky using experimental results with an edge fatigue crack of mode i at bending 

vibrations, showed that the energy dissipation in a non-propagating crack is not caused by the 

friction between crack surfaces [43]. However, he claimed that energy dissipation change can be 

used for damage detection based on change prediction of the damping factor.  

Kyriazoglou et al. proposed an indicator, specific damping capacity (SDC), for damage 

detection in composite laminates which is the ratio of the energy dissipated in one cycle to the total 
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energy stored in that cycle [44]. They illustrated that the changes of SDC strongly correspond to 

damping properties such that initial damage in composites will be determined before the 

occurrence of further damage. They also claimed and showed that the SDC is very sensitive to 

small changes in the crack depth. Interestingly, although large changes were observed in SDC for 

carbon fiber-reinforced laminates, no detectable changes in the resonant frequencies was found. 

Panteliou et al. showed that the larger the crack depth, the larger damping factor is [45]. 

They also mentioned that the crack identification using damping factor change is relatively 

insensitive to boundaries conditions compared to the change in natural frequencies.  

Leonard et al. illustrated that vibration amplitudes affects the modal damping value of a 

damaged structure [46]. For example, working on a cantilever beam, they showed that when the 

amplitudes are too small such that they are not able to generate an open crack, the modal damping 

decreases. When the opening and closing cracks provides contact effects, the modal damping will 

be really important. They also concluded that using modal damping to detect damage is difficult 

because of the evolution dependence of modal damping to the vibration amplitude. Also, 

uncertainties and modal damping shifts may be observed when the temperature increases. 

 2.1.4 Mode Shapes and Changes in Node Positions 

Mode shapes approach has also received considerable attention in conjunction with 

changes in natural frequencies due to the fact that a mode shape is a unique characteristic and 

spatial description of the amplitude of a mechanical structure for each resonant frequency [47]; 

Therefore, a local damage changes the mode shapes. and the evolution of the spatial description 

of the amplitude of each resonance can be a damage indicator [47]. Moreover, change of mode 

shapes depends on both the severity and the location of the damage and the spatial description of 



11 

 

magnitude change with respect to each mode may vary from one to another due to the crack 

location [47].  

Gladwell and Morassi [48] investigated the effect of damage on the nodes in an axially 

vibrating thin rod. It was illustrated that nodes of the mode shapes move toward the damage. If the 

node is located to the right of the damage, it moves to the left, and if the node is located to the left, 

it moves to the right. So, from the movement of the nodes, one can realize the location of the 

damage. 

Then, Dilena and Morassi [49] introduced the positive nodal displacement domain (PNDD) 

and negative nodal displacement domain (NNDD) that define the direction by which nodal points 

move. So, when there is any bending vibration, these domains allow to detect the damage. The 

advantage of using this method is that node positions are easier to measure than mode shapes 

because they only need the modal component signs not the amplitudes measurement. They also 

showed the capability of the method by conducting some experimental studies on cracked steel 

beams. 

Study of modal parameters for damage detection such as natural frequencies change and 

mode shapes change was conducted by Adams et al. [50], Cawley and Adams [51], and Yuen [52] 

for the vibration of bridges using only the few lower modes. 

Natke and Cempel [53] used eigenfrequencies change and mode shapes change for damage 

detection in a cable-stayed steel bridge. Kullaa [54] demonstrated that the method used by Natke 

and Campel is reliable for damage detection on the bridge Z24 in Switzerland [55]. 

Law and Zhu [56] used the mode shapes deflection as an indicator of damage in bridge 

structures. They showed that the deflection will increase once any damage occurs in the structure. 

However, they also noticed that the deflection of the damaged structure is sometimes larger than 
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the deflection measured for the weight of light vehicle. They explained that a moving load such as 

a vehicle affects the damage opening consequently inducing evolutions of the natural frequencies 

and mode shapes. So, the crack behavior of the structure subjected to a moving load and the 

associated non-linear analysis are pretty important to be taken into consideration. 

 2.1.5 MAC and Other Related Assurance Criteria 

Based on the study conducted by Doebling et al. [57], [58], West [59], without having a 

prior FE model, presented the first systematic use of mode shape information damage localization 

of the structures. The Modal Assurance Criterion (MAC) is used to determine the level of 

correlation between modes from the test of an undamaged Space Shuttle Orbiter body flap and the 

modes from the test of the flap after it has been exposed to acoustic loading.  

The MAC value will be always between 0 and 1. MAC uses of the orthogonality properties 

of the mode shapes to compare two modes. A value of one means that the mode shapes of the two 

sets of data are identical otherwise a value of zero is calculated. So, a low MAC value can be 

indicator for a damage. Srinivasan and Kot [60] showed that change in MAC values for damage 

detection of a cylindrical shell is a more sensitive indicator than changes in resonant frequencies. 

MAC criteria are a reliable indication of the disparity between two sets of data that can be used for 

detection of damage. However, it does not show explicitly where the source of the damage in the 

structure lies.  

Palacz and Krawczuk [61] showed that when more than two mode shapes are used, damage 

localization will be more accurate. On the other hand, a small number of measurements may cause 

worse damage detection by using the MAC criteria. Other related assurance criteria can be 

proposed: the frequency response assurance criterion (FRAC), coordinate orthogonality check 

(CORTHOG), frequency scaled modal assurance criterion (FMAC), partial modal assurance 
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criterion (PMAC), Modal assurance criterion square Root (MACSR), scaled modal assurance 

criterion (SMAC), and modal assurance criterion using reciprocal modal vectors (MACRV). A 

review of the significant of each criterion may be found in [62].  

One of the main disadvantage of using MAC criterion or the other assurance criteria as 

damage indicators is that measurements at a lot of points are required and the duration of 

measurements should be increased if the mode shapes change is used as an indicator.  

Parloo et al. [63] used the modes shapes and the modal assurance criterion (MAC) and co-

ordinate modal assurance criterion (COMAC) for damage detection on I-40 highway bridge in 

New Mexico. However, they showed that only the most severe damage of the bridge was 

identified, and that the environmental noise significantly affects the damage detection method such 

that when using this method some of the damages were missed. 

 2.1.6 Mode Shapes Curvature 

As an alternative to mode-shape, curvature is widely used for damage detection from mode 

shape changes to obtain information about vibration changes. For example, the absolute change in 

mode shape curvature is an efficient indicator of damage used by Pandey et al. [64]. In this method, 

as result of a local reduction in stiffness once damage occurs, a local increase happens in the 

curvature. 

Ho and Ewins [65] proposed other criteria based on the mode shapes curvatures as damage 

indicators including Mode Shape Amplitude Comparison (MSAC), Flexibility Index (FI), Mode 

Shape Slope (MSS), and Mode Shape Curvature Square (MSCS). Ho and Ewins also indicated 

that the previous indicators and absolute changes in mode shape curvature are relatively reliable 

for damage detection but uncertainties at the boundaries conditions and the measurement quality 

are two of disadvantages of this method.  
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Maeck and De Roeck [55] used the mode shape curvatures in a direct stiffness calculation 

technique for the prestressed concrete bridge Z24 in Switzerland, and tested the framework of the 

Brite Euram project SIMCES. Then, a damage detection indicator (CDF) was introduced using the 

changes of the dynamic stiffness given by changes in the modal bending moment over the modal 

curvature. Moreover, they showed that modal curvatures are very sensitive to damage in the bridge. 

AbdelWahab and De Roeck [66] proposed Curvature Damage Factor using the application 

of modal curvatures change for damage detection concrete bridge Z24. They showed that unlike 

the classical mode shape curvature that is pretty hard for detection of multi damages from the 

results of only one mode, Curvature Damage Factor will provide a reliable indentation for the 

damage location. They also mentioned that irregularities in the measured mode shapes or 

uncertainties need to be carefully examined in order to avoid worse diagnostic. 

The mode shape curvatures were applied by Parloo et al. [63] for different damages on I-

40 highway bridge in New Mexico. However, they concluded that the mode shape curvature is not 

a suitable method for actual structures in practical cases for the detection of small damages or in 

early state, and that this method can only be effective for the most severe damage. 

Dutta and Talukdar [67] used Curvature Damage Factor for damage detection of 

continuous bridges containing damaged parts at different locations. They evaluated changes in 

natural frequencies, modes shapes and curvature mode shapes. The results illustrated that 

considering curvature of the mode shapes will provide a stronger method for damage location 

compared to the mode shapes. They also showed that besides the choice of the modes as a very 

important fact, adequate numbers of modes are needed for multiple damage locations. 
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 2.1.7 Modal Strain Energy 

A damage detection technique based on modal strain energy between two structural 

degrees of freedom was proposed by Stubbs et al. [68], [69]. They also presented a formula based 

on fractional strain energies for the ith mode of the undamaged and damaged structures for a 

Bernoulli-Euler beam.  

Alvandi and Cremona [70] also used the strain energy method for damage detection on 

different civil engineering structures with experimental data. They showed that the strain energy 

method is more efficient than changes in flexibility, change in mode shape curvature, and change 

in flexibility curvature that will be discussed later. However, the modes strain energy was also 

performed by Parloo et al. [63] for the identification of various damages on the I-40 highway 

bridge in New Mexico, and the results showed that the method does not provide a robust detection 

of small damage due to noise in the environment. 

 2.1.8 Changes in Dynamic Flexibility 

The dynamic flexibility matrix can be used as a damage detection method in the static 

behavior of the structure [73]. The dynamic flexibility matrix G is defined as the inverse of the 

static stiffness matrix. By only keeping the first few modes of the structure, the expression of the 

flexibility matrix can be approximated by equation 2.2. 

G=∑
1

ω𝑖
2 𝜙𝑖𝜙𝑖

𝑇𝑛
𝑖=1  (2.2) 

where ωi is the ith resonant frequency of the structure, 𝜙 is the mode shape matrix, and  𝜙𝑖 defines 

the ith mode shape. Each column of the flexibility matrix represents the displacement pattern of the 

structure associated with a unit force applied at the associated degree of freedom. Any small 

changes in the lower order modes will cause a highly evolutions of the dynamic flexibility matrix 

due to the inverse relation to the square of the resonant frequencies ωi [71]. The variation matrix 
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is defined as changes in the flexibility matrices of undamaged and damaged structures (∆𝐺 =

𝐺𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝐺𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑) such that the maximum variation corresponds to the damage location 

[71]. 

Unity check method was proposed by Lin [72] for damage location in structures. This 

method was presented earlier by Lin [73] for location of modeling errors using modal test data. 

The error matrix can be defined as equation 2.3. 

E=G𝐾𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑-I (2.3) 

where G is the dynamic flexibility matrix of the damaged structure, Kundamaged is the structural 

stiffness matrix of the undamaged structure, and I is an identity matrix which is a square matrix in 

which all the elements of the principal diagonal are ones and all other elements are zeros. The error 

matrix is going to be zero when no damage occurred in the structure. The highest peak of the plots 

of the stiffness error matrix E shows the damage location. According to Gysin [74], the number of 

modes used to derive the stiffness error matrix will significantly affect the accuracy of the 

flexibility matrix method.  

Park et al. [75], extending the error stiffness matrix, developed a method using weighted 

error matrix that magnifies the value of the stiffness error at the location of the damage in the 

structure. They also showed that weighted error matrix will provide a more powerful method for 

damage location identification. 

Aktan et al. [76] concluded that dynamic flexibility change can be a suitable indicator for 

damage detection of bridges. Mayes [77] also used the dynamic flexibility for damage detection 

of I-40 bridge over Rio Grande. Park et al. [78] showed that damage can be correctly located and 

detected using the flexibility matrix in ten-story building, a bridge and an engine structure. Topole 

[81] evaluated sensitivity of dynamic flexibility matrix by performing various damage scenarios 
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such as multiple damages at joints. He showed that this technique works well for damage locating 

and of a simple damage but not for multiples damages.  

 2.1.9 Sensitivity-Based Approach 

The sensibility-based approach is a method for damage detection that involves the mode 

shapes of the damaged and undamaged structures as well as the natural frequencies of the 

undamaged modes. This technique determines the damage location using  mode shape sensitivities 

to changes in stiffness or/and changes in mass in structural degree of freedom and the equation is 

provided in reference [79].  

Considering a limited number of modes to compute the sensitivity factors will provide a 

good approximation compared to when all modes are taken into consideration. Also, because of 

noise measurement, using mass sensitivities will be more stable than calculating stiffness 

sensitivities. 

The mode shape sensitivities was compared with various damage indicators such as the 

modal flexibility change method, the mode shape curvature changes and the strain energy method 

by Parloo et al. [63]. The investigations were conducted using experimental data on a clamped 

board and the I-40 highway bridge in New Mexico. The results showed that the sensitivity-based 

approach is the most efficient damage assessment technique, and even when damage is very small, 

this technique detects the damage precisely, however, presence of noise in real situation will cause 

the method to be less efficient. 

 2.1.10 Changes in Antiresonances 

The resonance frequencies of the system at the excitation points in the excitation directions 

are called antiresonance frequencies [80]. Physical interpretation of the phenomenon of 

antiresonances can be performed for damage detection and localization in complex structures 



18 

 

because damage significantly affects this phenomenon. It should be noted that the resonances and 

antiresonances will repeatedly change the Frequency Response Function of the point where the 

response co-ordinate and the excitation co-ordinate are identical [71]. Meanwhile, according to 

Wahl et al. [81], when the distance between the excitation coordinate and the response coordinate 

increases, the number of antiresonance ranges decreases.  

Bamnios et al. [86] through analytically and experimentally studies, investigated the effect 

of damage on the mechanical impedance of different Plexiglas beams with different boundary 

conditions damaged in several locations and with different severity. They demonstrated that the 

driving-point impedance changes due to the damage in case of flexural vibrations. They also 

showed that the slope of the curve of the changes increases considerably in the first antiresonances 

near the damage. When damage severity increases, the jump will be increased as well which helps 

determine the damage location.  

Douka et al. [82] evaluated changes in antiresonances in double-cracked beams, and as 

expected based on previous studies discussed above, they indicated that depending upon the 

damage severity and location, a jump occurs in the antiresonances of the damaged structure. 

However, because there were two cracks, there were also two jumps in the slope of the curve of 

the changes in the first resonances. Also, each slope was computed near each damage. However, 

they indicated that small changes in the slope of the antiresonance curve is hard to be estimated 

that makes the proposed method based on changes in antiresonances inefficient for small damage. 

Conducting experiments on a free-free beam with open cracks, Dharmaraju and Sinha [83] 

confirmed the previous claims that the crack location identification using the change in 

antiresonance is not efficient.  
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 2.2. Changes in Frequency Response Function 

Another methodology for damage detection is using Frequency Response Function (FRF). 

The theoretical description of FRF can be explained as follows [71]: 

The equation of motion for any structure can be presented by equation 2.4: 

M𝑥̈+C𝑥̇+Kx=f(t) (2.4) 

where M, K and C are the mass, stiffness and damping matrices. f(t) is the vector applied to the 

structure, and dot is the derivative with respect to the time. x is the vector of nodal degrees of 

freedom of the structure. t defines the time instant. 

For harmonic excitation, the force vector can be defined as equation 2.5: 

F(t)= 𝐹𝑒𝑖ω𝑡 (2.5) 

where ω is the frequency of the force, and F defines the force amplitude vector. Therefore, the 

response vector can be written as equation 2.6: 

x(t)= 𝑋𝑒𝑖ω𝑡 (2.6) 

So, the equation of motion can be written as equation 2.7: 

(-ω2M+ iωC +K) X = F (2.7) 

Consequently, the relation between the response X(ω) and the excitation F(ω) at each 

frequency ω is given by equation 2.8: 

X(ω) = H(ω)F(ω) (2.8) 

where H(ω) defines the receptance matrix of the system or the Frequency Response Function 

matrix that is given by equation 2.9: 

(-ω2M+ iωC +K)-1 = H(ω) (2.9) 

The relation between the response at the ith co-ordinate with a single excitation applied at 

the jth coordinate defines the individual Frequency Response Function Hij (ω) that is 



20 

 

given by equation 2.10: 

Hij (ω) =Xi/Fj (2.10) 

with Fn = 0 for n = 1, . . ., m and n ≠ j (m is the total number of degree-of-freedom). It may be 

noted that Operational Deflection Shape (ODS) that describes the normalized structure shape at 

each frequency ω is given by the column vector of matrix Hj (ω). 

 2.2.1 Extension of the MAC Criteria for the Frequency Response Function 

When any damage occurs in the structure, the stiffness and the damping of the structure 

will change so, the receptance matrix of the damaged structure Hdamaged
ij (ω) that is function of 

stiffness and damping will also change. In the following, some of the studies that propose different 

indicators that are a function of the receptance matrix of the damaged and undamaged structures 

are provided.  As an extension of the MAC criteria in the frequency domain, Heylen and Lammens 

[84] proposed an indicator named Frequency Response Assurance Criterion (FRAC). According 

to this method, the values of FRAC varies between zero to unity. The FRAC value of unity means 

no damage is found. The more damage in the structure, the smaller value of FRAC.  

Zang et al. [85], [86] proposed the first Global Shape Correlation function (GSC) to detect 

damage in structure. The GCS (ω) gives a real value between zero to unity such that when the 

value GCS (ω) is not equal to one, damage is detected. Then Zang et al. [85], [86] proposed the 

second Global Amplitude Correlation function (GAC) based on response amplitudes. The GAC 

indicator is provided in these references [85], [86]. They also proposed the averaged integration of 

first Global Shape Correlation function (AIGSC) and the second Global Amplitude Correlation 

function (AIGAC). The AIGSC and AIGAC indicators are also real constants between zero to 

unity to determine if the structure is damaged or undamaged. The authors investigated these 

various indicators to a bookshelf structure with various case of damage, including location and 
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level for single or multiple presence of damage. They concluded that all the correlation criteria are 

able to detect the damaged structures [71].  

 2.3. Coupling Responses Measurements 

Knowing that damage decreases the stiffness of structure at the location of the damage, the 

equation of motion can be written as equation 2.11: 

M𝑥̈+C𝑥̇+𝐾̃x=f(t) (2.11) 

where 𝐾̃ is the global stiffness matrix of the structure containing the stiffness reduction of the crack 

at the location of the damage. So, for a harmonic force f(t), equation 2.7 can be written as equation 

2.12: 

(-ω2M+ iωC +𝐾̃) X = F (2.12) 

Knowing that the damage creates a stiffness matrix Kcrack at the damage location, the 

equation of motion can be defined as equation 2.13: 

(-ω2M+ iωC +K) [
𝑋𝑐

𝑋𝑢𝑐]=F-𝐹𝑐=[
𝐹𝑐

𝐹𝑢𝑐] − [
𝐹𝑐

𝑐

0
] 

(2.13) 

where K defines the stiffness matrix of the undamaged structure. The subscripts c and uc represent 

the cracked and uncracked elements, respectively. F contains the external force vector, and Fc 

represents the force vector only due to the contribution of the crack.  

This concept has been used by many researchers. 

 2.3.1 Applications for Damage Detection in Practical Cases 

Gounaris et al. [87] used coupled response measurements method for damage identification 

of structures. To identify the severity and the location of a transverse crack, one needs to 

dynamically excite the beam and to measure the response of the structure in two directions at a 

point on the beam. According to the authors of this paper [87], displacement measurement in one 
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direction while the beam is excited in another direction helps to detect the damage. The authors 

believe that the main advantage of this method is its efficiency even for small cracks.  

Liu et al. [88], through analytical and experimental studies, evaluated a hollow section 

structure in free-free boundary conditions using coupled response measurements (lateral and axial 

responses). In the uncracked beam, lateral or axial force only excite the corresponding bending or 

axial modes. However, in the damaged structure, there is an extra peak in the bending direction 

near the undamaged axial natural frequency. They finally concluded that this method is a very 

good indicator for damage detection.  

Chasalevris and Papadopoulos [89] used the coupled bending vibrations to identify two 

cracks of a stationary shaft. They considered the case of bending vibrations caused by a vertical 

excitation. They showed that the relative angular position of the cracks as well as their severity 

will affect this method’s efficiency. 

Lee et al. [90] used the coupling measurements in Frequency Response Function for 

damage detection. The structures used were a cantilever beam and a simply-supported beam. 

The previous criteria and methodologies that are based on linear measurements can be used 

for damage detection of rotary machinery. But, these methods should be used during static 

condition of rotor that makes the process time-consuming in practical engineering. However, the 

application of coupling measurements for identification of open cracks has been already extended 

by some researchers. As far as damage detection of rotating shafts is not what civil engineers are 

usually concern about, some limited examples are provided in the following. 

Papadopoulos and Dimaragonas [91] investigated the coupling of longitudinal and bending 

vibrations of a rotating shaft with a transverse crack. They also evaluated the effects of the bending 

vibration on the torsional vibration spectrum [92]. They finally concluded that coupling between 
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bending and torsion, bending and tension, and the general vibration coupling can be very efficient 

for rotor crack detection [93]. There are some other researches in this regard, and readers can find 

them in these references [94], [95]. 
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Chapter 3 - The Proposed Approach and Procedure 

In this chapter, the proposed novel random-vibration-based approach using ambient 

vibration for damage identification of the structures is explained in detail [96], [97]. This chapter 

is divided into two main sections: obtaining the free-vibration response called pseudo-free-

vibration that is explained in section 3.1, and the procedure for damage detection explained in 

section 3.2. According to this procedure, the pseudo-free-vibration response should be transferred 

into frequency domain using FFT and the changes in structural frequencies should be used for 

detection of changes in the dynamic properties of the structure. The frequency with the maximum 

intensity in frequency domain of the structure (fundamental frequency) should be followed to 

detect changes in the stiffness of the structure. 

 3.1 The Proposed Approach to Extract the Pseudo-Free-Vibration Response 

This section describes the proposed approach to extract the pseudo-free-vibration response 

of the structure implemented in a MATLAB software. Figure 3.1 depicts an example of the 

response of the structure physical model subjected to an ambient vibration as recorded during an 

experiment, with the very initial part of that signal amplified as shown in Figure 3.2.   

 

Figure 3.1 A sampled acceleration-time response 
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Figure 3.2 The extracted part shown in Figure 3.1 

 

According to the proposed approach, the following steps should be used to extract the pseudo-free-

vibration response: 

1. An initial value of the acceleration (u0) should be carefully chosen so that the horizontal 

line intersects as many points as possible on the signal curve.  The author recommends a 

value of 1/10 of the maximum acceleration in the acceleration-time response. 

2. When the horizontal line intersects the signal curve for the first time (point A in Figure 

3.2), the horizontal line should be extended as much as Δt1 to reach point B shown in the 

figure. Note that Δt1 should be carefully selected. The author recommends a small value 

for Δt1 (in this study, Δt1=0.5% of the total duration of the acceleration signal) because 

according to the following steps, such a time step provides enough points for obtaining the 

pseudo-free-vibration response of the structure. Typically, one would start with a small 

value and then increase it to larger values later. These values, especially the largest, and 

the rate of increase should be carefully selected, since they would affect the large and/or 

small periods extracted. 
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3. Then, wherever the length of Δt1 ends, a vertical line should be extended up or down till it 

intersects the curve at point C shown in Figure 3.2. The value of this point on the 

acceleration axis will be the second acceleration value (u1). 

4. In the next step, from point A, the horizontal line needs to be extended till intersects the 

curve (point D in Figure 3.2). If point A is on an ascending line, the extended line should 

intersect the curve in an ascending line otherwise it should intersect the curve in a 

descending line. 

5. Then, from point D, the horizontal line should be extended as much as Δt1 till it gets point 

E, and another acceleration value (u2) can be obtained using the procedure explained in 

Step 4. 

6. The procedure in Steps 4 and 5 should be repeated till the end of the curve such that the 

final acceleration value will be (un). 

7. Steps 2 to 6 should be repeated with different values of (Δt). These values will be denoted 

as Δt2, Δt3…, Δtm, where Δt2 = 2 × Δt1, Δt3 = 3 × Δt1…, Δtm = m × Δt1, with Δtm being the 

value of Δt in the last iteration. 

8. As the final step, required points for drawing the pseudo-free-vibration response diagram 

are created such that (Xm, Ym) = Δtm, Um=
𝑢1+𝑢2+𝑢3+⋯+𝑢𝑛

𝑛
) where n is the number of 

extracted acceleration values and m is the number of points in the resulting pseudo-free-

vibration response diagram. The MATLAB code used for extracting pseudo-free-vibration 

response is provided in Appendix C. 

 3.2 The Procedure for Damage Detection 

The approach described in the preceding section is used to generate the pseudo-free-vibration 

response of the system with time on the x-axis and acceleration on the y-axis. After extracting the 
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pseudo-free-vibration response (in the time domain) from the response of structure to random 

excitation for each system configuration, a Fast Fourier Transform (FFT) is applied to transform 

it to the frequency domain. The frequency with the largest intensity which is the fundamental 

frequency of the structure is traced to be used for damage detection. The following flowchart, 

Figure 3.3, shows all steps required to pass from extracting the acceleration versus time response 

to damage detection.  

 

Figure 3.3 All steps required to pass for damage detection 

  

Step 1
• Obtaining the response of the structure subjected to an ambient vibration 

Step 2

• Applying the approach proposed by averaging out the random component and 
obtaining the pseudo-free-vibration response of the structure 

Step 3
Transferring the free vibration response to frequency domain using FFT

Step 4
Tracing the dominant frequency
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Chapter 4 - Geometry, Material, and Modeling 

In this study, besides an analytical verification using Newmark’s linear acceleration 

method for the approach explained in chapter 3, two steel portal frames with different flexural 

stiffness were made in the steel workshop of the structural laboratory for an experimental study. 

These structures were also numerically modeled using ABAQUS. In this section, the geometry, 

material for all three studies including analytical, numerical, and experimental are explained in 

detail. 

 4.1 Analytical Model 

This study, using a simple analytical example, verifies the capability of the proposed novel 

approach for extracting of the pseudo-free-vibration response of the structures explained in chapter 

3. To prove that, a single degree of freedom system (m = 44.36 kg, c = 0, k = 1751.27 N/m), shown 

in Figure 4.1, was considered. Using Newmark’s linear acceleration method introduced as the most 

precise analytical method of linear response of single degree of freedom systems [98], the free-

vibration response of the system was obtained. To extract the free-vibration response using 

Newmark’s linear acceleration method, time steps, p(t), initial displacement and initial velocity 

are taken as 0.1 sec, 0, 0, and -0.0012 m/sec respectively. To generate ambient vibration, rand 

function is Excel is used that generates numbers between 0 and 1. The results of the analytical 

study are presented in chapter 5. 

 

Figure 4.1 The considered single degree of freedom system (m=44.36 kg, c=0, k=1751.27 

N/m) 
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 4.2 Numerical Models 

Two one-story steel portal frames were numerically simulated using ABAQUS software 

[99] to evaluate the capability of the approach proposed in chapter 3. In these structures, all beam-

to-column connections are assumed to be fixed using thick angles; thus, there are three degrees of 

freedom for each structure. Steel material (ST37) is assumed to be elastic-perfectly plastic with 

yield strength and ultimate strain of Fy=240 MPa and ɛu=0.35, respectively [100]. The modulus of 

elasticity and the Poisson’s ratio of steel used are E=200 GPa and υ=0.3, respectively. The 

geometrical characteristics of the structures are presented in Figure 4.2 and 4.3, and as it can be 

clearly observed, the only difference between these two structures is their column heights.  

 

        Figure 4.2 Geometrical characteristics of structure one 
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Figure 4.3 Geometrical characteristics of structure two 

 

It should be noted that each structure has been analyzed under three different dynamic loads 

(denoted dynamic load one, two, and three). These dynamic loads were applied to a random point 

on one of the columns, and the responses of the structures were extracted from a point at the top 

right of the structures. Meanwhile, the dynamic loads were generated using “rand” function in 

Excel software which can produce random numbers between zero and one, and the maximum 

magnitude of each dynamic load is set to be 0.1 Newton. Each of these dynamic loads has a one-

second time period with a time step equal to 0.001 second. 

 4.3 Experimental Models 

To verify the results extracted from the numerical study, physical models for structures one 

and two were constructed in the laboratory of civil engineering department at Kansas State 

University such that all geometrical characteristics were exactly the same as what had been 

considered for the numerical models shown in Figure 4.2 and 4.3. As seen in Figure 4.4, the beams 

were connected to the columns with thick angles, and all connections were bolted except the 

supports which were welded. Also, the structures were tightened to the ground using clamps, so 
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they could not move while they are under the load. Also, to ensure that the connections are fixed, 

two completely tightened bolts were used in each leg of the thick angles. 

The structures were analyzed under three three-second-long dynamic loads. To achieve the 

random vibrations, for each single dynamic load, different tools like a hammer, a piece of wood, 

and a metal object were used to hit, and the number of hits and the hits locations and the hits 

powers were not the same so that the dynamic loads may be considered causing random vibration. 

Furthermore, to obtain acceleration-time records corresponding to those from the numerical 

models in ABAQUS, the accelerometer was installed at the top right of the structures. The 

accelerometer used was a wire-less G-link that sends the signals to a base station as shown in 

Figure 4.4b which is then connected to a computer that records the response of the structure a with 

a sampling rate of 2048 times per second.

 

a) Experimental structures one and two 

 

 

b) The accelerometer       

used and base station 

Figure 4.4 The experimental structures one and two and the accelerometer
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 4.4 Modeling 

In order to realize structural damage detection using signal-based pattern recognition, it is 

necessary to obtain in advance the vibration response of structure with different damage scenarios.  

Because it is nearly impossible to let a practical structure experience all kinds of damage, using 

numerical simulation is always a strong tool to evaluate the structure in different conditions. In 

this study, ABAQUS was used to simulate the physical model with different boundary condition 

configurations to obtain the ambient vibration response for each case. There is no doubt that using 

other types of finite element software should give the same results. 

MATLAB software was also used to numerically implement the computational procedure 

presented in Chapter 3. Two computer codes were developed: The first is to extract the free 

vibration signal from the ambient vibration signal, and the second is to transform the signal from 

the time domain to the frequency domain. Both codes are combined and presented in Appendix C. 

 4.4.1 ABAQUS Software 

In this section, the authors are going to explain all the key steps of simulating the structures 

in ABAQUS software. The structure shown in Figure 4.2 and 4.3 consists of eleven parts including 

two columns, one beam, and eight angles, and they are created as a 3D, deformable, and solid 

instance as shown in Figure 4.5. 

As shown in Figures 4.6 and 4.7, the modulus of elasticity, the Poisson’s ratio of steel, and 

density used are E=200 GPa, υ=0.3, and 7850 kg/m3, respectively. Also, all the sections are defined 

as a solid, homogeneous sections shown in Figure 4.8. 
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Figure 4.5 The instances characteristics 

 

Figure 4.6 Defining of the modulus of elasticity and the Poisson’s ratio of steel 
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Figure 4.7 Defining of steel density 

 

Figure 4.8 Defining of the section characteristics 
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As shown in Figure 4.9, all instances are independent, which helps to mesh each instance 

separately with different mesh sizes. To obtain the ambient response of the structure subjected to 

an ambient vibration, linear perturbation, modal dynamics is used, shown in Figure 4.10.  

 

Figure 4.9 The independent instances  

 

Figure 4.10 Using linear perturbation, modal dynamics analysis to obtain the ambient 

response of the structure 
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As shown in Figure 4.11, the supports are fixed. As far as the load direction applied to the 

structure is not in U2 direction, the structure will not move in U2 direction as well; thus, the 

supports are just fixed in U1 and U3, and UR3 directions.  

 

Figure 4.11 The fixed supports of the structures 

 

According to Figure 4.12, the elements are 8-node linear brick, reduced integration, hour 

glass. The mesh sizes of the beams, columns, and angles of the numerical models are 1 cm, 1 cm, 

and 1 mm, respectively. The numerical model is presented in Figure 4.13 and 4.14.  

As noted earlier, each structure has been analyzed under three different dynamic loads 

(denoted dynamic load one, two, and three). These dynamic loads were applied to a random point 

on one of the columns, and the responses of the structures were extracted from a point at the top 

right of the structures. Figure 4.15 shows an example of the actual random excitations applied to 

the structure.  
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Figure 4.12 The elements properties 

 

Figure 4.13 Views of the numerical model of structure one (Side view) 
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Figure 4.14 Views of the numerical model of structure one (Isometric view) 

 

Figure 4.15 An example of the actual random excitations used 

 

After the analysis (as shown in Figure 4.16), the ambient response of the structure will be 

obtained. Then, the ambient acceleration-time response is used to apply the proposed approach 

explained in chapter 3 on it to extract the pseudo-free-vibration response of the structure. 
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Figure 4.16 Job analysis in ABAQUS 

 

 4.4.2 MATLAB Software 

Using the MATLAB code provided in Appendix C, the pseudo-free-vibration response of 

the ambient response obtained from the previous step will be extracted. Then, the pseudo-free-

vibration response will be transferred to frequency-domain using FFT. This part of the code is also 

provided in Appendix C combined with the code provided for obtaining the pseudo-free-vibration 

response. In order to obtain the pseudo-free-vibration response as well as the diagram in frequency 

domain, one can simply introduce the acceleration-time response of the structure as matrix D, used 

in the MATLAB code; then, MATLAB code will automatically extract the pseudo-free-vibration 

response and FFT diagram. Then, the frequency with the maximum intensity in frequency domain 

which is fundamental frequency of the structure needs to be traced to detect changes in the stiffness 

of the structure. 
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Chapter 5 - Results 

This chapter provides the results of the analytical (section 5.1), numerical (section 5.2), 

and experimental (section 5.5) studies to show the capability of the approach explained in chapter 

3. Furthermore, a procedure is proposed to select the accurate values of u0 and Δt1 (section 5.3). 

Also, the effect of different damping ratios is investigated in section 5.4. In the final step (section 

5.6), it is shown that the approach works for many different structures with different geometrical 

characteristics as well. 

 5.1 Analytical Study 

This section, using a simple analytical example introduced in chapter 4, verifies the 

capability of the proposed novel approach for extracting of the pseudo-free-vibration response of 

the structures explained in chapter 3 using Newmark’s linear acceleration method introduced as 

the most precise analytical method of linear response of single degree of freedom systems [98]; 

the free-vibration response of the system was obtained. To extract the free-vibration response using 

Newmark’s linear acceleration method, time steps, p(t), initial displacement and initial velocity 

are taken as 0.1 sec, 0, 0, and -0.0012 m/sec, respectively. Then, solving the differential equation 

of the motion (P(t)=0) for the same structure, the exact free-vibration response of the system was 

also obtained and compared to Newmark’s linear acceleration result. Time steps, p(t), initial 

displacement, and initial velocity are the same as in Newmark’s linear acceleration method. Figure 

5.1 shows how Newmark’s method result is matched with the exact free-vibration response. Thus, 

in the next step, Newmark’s linear acceleration method can be used to obtain the acceleration-time 

response of the system subjected to different ambient vibrations. 
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In the next step, using Newmark’s linear acceleration method, the acceleration-time 

response of the structure subjected to five different ambient vibrations were extracted. The ambient 

vibrations, P(t), were generated using “rand” function in Excel software which can produce 

random numbers between zero and one. After obtaining the time-acceleration responses of the 

structures, their pseudo-free-vibrations were extracted using the MATLAB [101] code specially 

written to execute the 8-step procedure outlined in chapter 3. 

 

Figure 5.1 Comparing the free-vibration responses of the single degree of freedom system 

using two different methods namely Newmark’s linear acceleration method and exact free-

vibration 

 

As Figure 5.2 shows, the pseudo-free-vibration responses are precisely matched with the 

exact solution shown in Figure 5.1. Meanwhile, Figure 5.2 shows that the proposed method for 

extracting the pseudo-free-vibration response of the structures works precisely. It should be noted 

that the magnitude of the pseudo-free-vibration responses depends on the magnitudes of the 

ambient vibrations applied on the structure such that the larger magnitude of the ambient 

vibrations, the larger magnitude of the pseudo-free-vibration responses. 
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Figure 5.2 Comparing the pseudo-free-vibration responses of the single degree of freedom 

system with the exact free-vibration response 

 

In the last step, the pseudo-free-vibration responses were transferred to the frequency 

domain using Fast Fourier Transform, and their fundamental frequencies were extracted. Figure 

5.3 shows that although the ambient vibrations applied on the structure have been changed, as 

expected, the fundamental frequencies remained constant. As a result, regardless of the ambient 

vibrations applied, using the proposed method for extracting the pseudo-free-vibration response, 

the fundamental frequency of the single-degree of freedom structure will not be changed because 

the pseudo-free-vibration responses are perfectly similar to the exact-free-vibration response so 

that the pseudo-free-vibration responses will keep the fundamental frequency of the structure 

without any change. 
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Figure 5.3 The natural frequency of the single degree of freedom system extracted using the 

8-step MATLAB code 

 

 5.2 Numerical Study 

Each structure, introduced in the previous chapter, has been analyzed under three different 

dynamic loads (denoted dynamic load one, two, and three). These dynamic loads were applied to 

the base of the structures as a ground acceleration, and the responses of the structures were 

extracted from a point at the top right of the structures. Meanwhile, the dynamic loads were 

generated using “rand” function in Excel software which can produce random numbers between 

zero and one, and the maximum magnitude of each dynamic load is set to be 0.1 Newton. Each of 

these dynamic loads has a one-second time period with a time step equal to 0.001 second.   

Therefore, based on the aforementioned characteristics of the dynamic loads, such 

excitation can be considered a random vibration. After obtaining the time-acceleration responses 

of the structures using ABAQUS software with a sampling rate of 2048 times per second, their 

pseudo-free-vibration responses were extracted using the MATLAB code. Then, the pseudo-free-
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vibration responses were transferred to the frequency domain using Fast Fourier Transform by 

averaging out the random component of the response and removing the particular solution. Both 

extracted pseudo-free-vibration response and frequency domain responses of structures one and 

two under dynamic load one are shown in Figures 5.4 through 5.7. As seen in Figures 5.5 and 5.7, 

the fundamental frequency in frequency domain using FFT for structures one and two are 24.2 and 

31.3 Hz, respectively. It then can be concluded that structure two, which is stiffer than structure 

one, has a higher fundamental frequency.  Consequently, if a structure has been damaged its 

stiffness will decrease and the fundamental frequency can be expected to decrease as well.  

Therefore, detecting a reduction of the fundamental frequency of a structure can be a sign of loss 

of stiffness possibly caused by damage. This procedure was repeated for structures one and two 

after dynamic loads two and three have been applied to them. The results shown in Figure 5.8 

reveal that although the dynamic loads have been changed, the fundamental frequencies of the 

structures one and two remained constant. Indeed, using the proposed random-vibration-based 

approach, the fundamental frequency in frequency domain obtained using Fast Fourier Transform 

will remain constant for each single structure with the same geometrical characteristics even if the 

applied dynamic loads are different. This shows that the procedure proposed for extracting pseudo-

free-vibration response works precisely. 
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Figure 5.4 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram) 

 

 

Figure 5.5 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram) 
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Figure 5.6 Signal processing results of structure two subjected to dynamic load one (pseudo-

free-vibration response diagram) 

 

 

Figure 5.7 Signal processing results of structure two subjected to dynamic load one (FFT 

diagram) 
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Figure 5.8 Comparison of the fundamental frequency of the numerical results of structures 

one and two subjected to dynamic loads one, two and three 

 

 5.3 A proposed procedure to determine the exact values of u0 and Δt1 

The values of u0 and Δt1 are of utmost importance in obtaining accurate results using the 

proposed approach explained in chapter 3 such that if large values of u0 and Δt1 are selected, one 

might obtain completely incorrect results. The general approach first used to select the suitable 

values of u0 and Δt1 required to find the accurate results is a trial and error approach. In this regard, 

for both u0 and Δt1, one should start with a random value, and then, this should be gradually 

decreased until the fundamental frequency converges to a certain value. This approach was 

followed, and the results are shown in the Figures 5.9 and 5.10. Then, based on the results 

explained in the following paragraphs, the authors determined specific values of u0 and Δt1 to be 

used in this study. 
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The value of Δt1 should be small because according to the proposed approach for extracting 

the pseudo-free-vibration response, such a small time-step would provide enough points for 

obtaining the pseudo-free-vibration response of the structure. Besides that, selecting a large value 

for Δt1 will cause the approach explained in chapter 3 to filter out some of vital points so that the 

extracted pseudo-free-vibration response will not be an acceptable representative for the exact free 

vibration response. As shown in Figure 5.9, the arbitrary value selected for the trial and error 

approach is 3.5% of the total time duration of acceleration-time response. Then, the fundamental 

frequency of structure one was obtained for different values of Δt1 varying from 3.5% to 0.1% of 

the total time duration of acceleration-time response. As it can be clearly observed, after decreasing 

the value of Δt1, the fundamental frequency gradually converged around a certain value (about 

24.4 Hz). It should be noted that in Figure 5.9, u0 is constant and equal to 10% of the maximum 

acceleration in the acceleration vs. time response. From that figure, a value Δt1 less or equal to 1% 

may be suitable as a result of this trial and error approach to obtain the value of fundamental 

frequency of this structure. In this study Δt1=0.5% of the total duration of the acceleration signal 

was used, shown in Figure 5.9 as a gray bar.   

 

Figure 5.9 Fundamental frequencies of structure one when Δt1 is varying while u0 is constant 

0

5

10

15

20

25

30

3.5 3.4 3.3 3.2 3.1 3 2.9 2.5 2.4 2.3 2.2 2 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

F
u

n
d

a
m

e
n

ta
l 

F
re

q
u

en
cy

 (
H

z)

The ratio of ΔT1 to the total time duration of acceleration-time response (%)



49 

 

An initial value for the acceleration (u0) should also be carefully chosen such that, 

preferably, the horizontal line from the initial acceleration (u0) intersects as many points as possible 

on the signal curve shown in Figure 3.2. As shown in Figure 5.10, the arbitrary value selected for 

the trial and error approach is 50% of the maximum acceleration in the acceleration-time response. 

Then, the fundamental frequency of structure one was obtained using different values of u0 varying 

from 50% to 0.00001% of the maximum acceleration magnitude in the acceleration-time response. 

As shown in Figure 5.10, while gradually decreasing the value of u0, the fundamental frequency 

remains around 24.22 Hz. It should be noticed that in Figure 5.10, Δt1 is constant and equal to 

0.5% of the total time duration of the acceleration signal. Meanwhile, the results illustrated in 

Figure 5.10 show that the value of u0 does not have a considerable effect on the fundamental 

frequency. Thus, in the current study, it was found that a value of u0 equal to 10% of the maximum 

acceleration magnitude in the acceleration vs. time response, shown in Figure 5.10 as a gray bar, 

is an acceptable value to obtain accurate results.  

 

Figure 5.10 Fundamental frequencies of structure one when u0 is varying while Δt1 is 

constant 
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 5.4 Evaluation of the effects of damping ratio on the results 

This section evaluates the effects of different damping ratios on the results of the approach 

discussed in the preceding sections. In this regard, using different values of damping ratio 

including 0%, 3%, 4%, 6%, and 7%, structure one shown in Figure 4.2 was analyzed in ABAQUS 

software, and the acceleration versus time responses were obtained. (It should be noted that Section 

5.2 provides the results shown in Figures 5.4 to 5.8 for structure one with damping ratio of 5%). 

Then, using the approach explained in chapter 3, the pseudo-free-vibration responses were 

obtained and transferred to frequency domain using FFT. The pseudo-free-vibration responses 

along with their corresponding FFT diagrams are provided in Figures 5.11 to 5.16 for damping 

ratios of 0%, 4%, and 7%. In the following, the authors explain how the approach discussed in 

chapter 3 can extract the pseudo-free-vibration response which can be a suitable representative of 

the exact free vibration response even when the structure is analyzed with different damping ratios. 

The results are consistent with simple concepts of structural dynamics. 

Figure 5.11 shows an undamped pseudo-free-vibration response obtained using the 

proposed approach delineated in chapter 3. Figure 5.12 shows the FFT diagram, and as shown, the 

undamped fundamental frequency and its intensity are 24.2 Hz and 0.93, respectively. Figures 5.13 

through 5.16 show the damped pseudo-free-vibration responses of structure one with damping 

ratios of 4% and 7% and that the larger the damping ratio, the less the acceleration magnitudes are. 

Figures 5.14 and 5.16 show that the fundamental frequencies of structure one for damping ratios 

of 4% and 7% are equal and also the same as for damping ratios of 0% and 5%. However, more 

damping produces less undamped fundamental frequencies magnitudes. The bar chart shown in 

Figure 5.17 compares the fundamental frequencies, and as it can be observed they are all equal, 

which shows that this approach for extracting pseudo-free-vibration response can extract the 
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undamped fundamental frequency (fn) not the damped fundamental frequency (fD) otherwise they 

would not be the same. 

 

Figure 5.11 Pseudo-free-vibration response diagram of structure one subjected to dynamic 

load one (damping ratio=0%) 

 

 

Figure 5.12 FFT diagram of structure one subjected to dynamic load one (damping 

ratio=0%) 
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Figure 5.13 Pseudo-free-vibration response diagram of structure one subjected to dynamic 

load one (damping ratio=4%) 

 

 

Figure 5.14 FFT diagram of structure one subjected to dynamic load one (damping 

ratio=4%) 
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Figure 5.15 Pseudo-free-vibration response diagram of structure one subjected to dynamic 

load one (damping ratio=7%) 

 

 

Figure 5.16 FFT diagram of structure one subjected to dynamic load one (damping 

ratio=7%) 
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Figure 5.17 The fundamental frequency of structure one subjected to dynamic load one for 

different damping ratios varying from 0 to 7 percent 
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numerical and experimental samples are very close so that the simulated numerical models would 

be reliably used for the remainder of this study. 

 

Figure 5.18 Signal processing results of experimental model one subjected to dynamic load 

one (pseudo-free-vibration response diagram) 

 

 

Figure 5.19 Signal processing results of experimental model one subjected to dynamic load 

one (FFT diagram) 
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Figure 5.20 Signal processing results of experimental model two subjected to dynamic load 

one (pseudo-free-vibration response diagram) 

 

 

Figure 5.21 Signal processing results of experimental model two subjected to dynamic load 

one (FFT diagram) 
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Figure 5.22 Comparing of the fundamental frequencies of the experimental and numerical 

results of structures one and two subjected to dynamic loads one, two and three (structure 

one) 

 

 

Figure 5.23 Comparing of the fundamental frequencies of the experimental and numerical 

results of structures one and two subjected to dynamic loads one, two and three (structure 

two) 
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 5.6 Thirty different numerical models 

Detecting a reduction of the fundamental frequency of a structure can be an indication of 

loss of stiffness possibly caused by damage.  This approach makes changes in the structure 

fundamental frequency easy to detect without the need to apply forced vibration nor the use of 

complex equipment and instrumentation.  

So far, it has been proved that the random-vibration-based approach works, and the results 

of the numerical models match those of the experimental models. In the following, it is shown that 

the approach works on a large number of different structures with different geometrical 

characteristics as well. Thus, 15 structures were selected to be analyzed under two different 

dynamic loads. In these structures, only the columns heights have been changed (For example, 

C250 refers to a structure for which all geometrical characteristics are the same as Figures 4.2 and 

4.3 except that the column height is 250 mm). It can be observed in Figure 5.24 that the larger  the 

stiffness is, the larger the fundamental frequency becomes such that the highest and lowest 

fundamental frequencies correspond to C250 and C690, respectively. Moreover, according to 

Figure 5.25, although the dynamic load applied on the structures has been changed, the 

fundamental frequencies are very close to those in Figure 5.24. Therefore, using 30 different 

analyses, the conclusions which had been drawn through the numerical and experimental models 

in sections 5.2 and 5.5 were confirmed.   

Meanwhile, another result based on this study is that detecting a reduction of the 

fundamental frequency of a structure can be an indication of loss of stiffness possibly caused by 

damage.  This approach makes changes in the structure fundamental frequency easy to detect 

without the need to apply forced vibration nor the use of complex equipment and instrumentation.  
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Figure 5.24 The fundamental frequency of the signal processing results of different models 

with different column heights under dynamic load one (For example, C250 refers to a 

structure for which all geometrical characteristics are the same as Figures 4.2 and 4.3 except 

that the column height is 250 mm) 

 

Figure 5.25 The fundamental frequency of the signal processing results of different models 

with different column heights under dynamic load two (For example, C250 refers to a 

structure for which all geometrical characteristics are the same as Figures 4.2 and 4.3 except 

that the column height is 250 mm  
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Chapter 6 - Conclusion and Future Study 

 6.1 Conclusions 

This study is a report on a novel ambient-vibration-based approach proposed for steel 

structures for extracting the pseudo-free-vibration response that can be used to detect any change 

in the dynamic properties of a structure which may be caused by damage. Based on the results 

from the analytical verification as well as the numerical and experimental models, the following 

conclusions are made. 

The response (acceleration-time) is the sum of the free vibration solution and the particular 

solution which depends on the load. The particular solution and the initial condition, are removed 

by taking the average of many sub-records of same length Δt and same u0. The result is a free 

vibration solution, which can then be used. The trigger value u0 and the length Δt must be carefully 

chosen. One through a trial and error procedure should start with an arbitrary value, and then it 

should be gradually decreased until the fundamental frequency converges to a certain value. In this 

study, Δt1 equal to 0.5% of the total duration of the acceleration signal and u0 equal to 10% of the 

maximum acceleration in the acceleration vs. time response were used. The approach is applicable 

when a structure is subject to an ambient vibration, and its frequencies can be uniquely detected 

regardless of the excitation. 

Validity of the method in extracting the pseudo-free-vibration response has been verified 

analytically. In this study, the pseudo-free-vibration response could be extracted for the physical 

and numerical models, and as expected, changing the stiffness of the structures will change the 

fundamental frequencies in the frequency domain using Fast Fourier Transform such that when a 

structure loses some of its stiffness, it will produce a lower fundamental frequency. 
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If different arbitrary vibrations are applied to a structure while its flexural stiffness has not 

changed, using this proposed method to extract the pseudo-free-vibration response and exploring 

its frequency content show that the fundamental frequencies in frequency-domain will remain the 

same. This validates the approach further. 

The results show that the procedure proposed for obtaining the pseudo-free-vibration 

response is insensitive to the damping ratio. 

Detecting a reduction of the fundamental frequency of a structure can be an indication of 

loss of stiffness possibly caused by damage. This approach makes changes in the structure 

fundamental frequency easy to detect without the need to apply forced vibration nor the use of 

complex equipment and instrumentation. 

 6.1 Future Study 

In the following, some of the areas are suggested as future research: 

• This project is a proof of concept study to show the capability of the approach for obtaining 

the pseudo-free-vibration as a tool used for damage identification. The physical model used 

in this research is simple because it provides the possibility of verification using simple 

concepts explained in the preceding chapters. As a future study, further research on more 

complex structures with a larger number of degrees of freedom and damage locations are 

needed. Meanwhile, for better correlation of the collected data of full-size structures, 

several sensors should be placed at different locations. The ideal accelerometer positions 

are another step for future study. 

• An actual damage scenario needs to be performed in the structure with different intensities 

to see how sensitive the approach is to different damage intensities and scenarios. For 

instance, the stiffness of the beam-to-column connections can be gradually decreased from 
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a full-fixed connection to a full-pinned connection. In each step, the procedure explained 

in chapter 3 would be repeated to see the sensitivity of the approach to small stiffness 

changes. 
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Appendix A - Pseudo-Free-Vibration and FFT Diagrams for 

Changing Δt1 while u0 is constant 

 

 

Figure  A.1 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram-Δt1= 3.5%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.2 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.5%, u0= 0.1Dmax) 
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Figure  A.3 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 3.4%, u0= 0.1Dmax) 

 

 

 

 

 

Figure  A.4 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.4%, u0= 0.1Dmax) 
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Figure  A.5 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 3.3%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.6 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.3%, u0= 0.1Dmax) 
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Figure  A.7 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 3.2%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.8 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.2%, u0= 0.1Dmax) 
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Figure  A.9 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 3.1%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.10 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.1%, u0= 0.1Dmax) 
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Figure  A.11 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 3.0%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.12 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 3.0%, u0= 0.1Dmax) 
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Figure  A.13 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.9%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.14 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.9%, u0= 0.1Dmax) 

 

 

 

 

 

 



79 

 

 

 

 

Figure  A.15 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.5%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.16 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.5%, u0= 0.1Dmax) 
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Figure  A.17 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.4%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.18 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.4%, u0= 0.1Dmax) 
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Figure  A.19 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.3%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.20 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.3%, u0= 0.1Dmax) 
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Figure  A.21 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.2%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.22 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.2%, u0= 0.1Dmax) 
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Figure  A.23 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 2.0%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.24 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 2.0%, u0= 0.1Dmax) 
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Figure  A.25 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 1.4%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.26 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 1.4%, u0= 0.1Dmax) 
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Figure  A.27 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 1.3%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.28 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 1.3%, u0= 0.1Dmax) 
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Figure  A.29 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 1.2%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.30 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 1.2%, u0= 0.1Dmax) 
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Figure  A.31 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 1.1%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.32 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 1.1%, u0= 0.1Dmax) 

 

 

 

 

 

 



88 

 

 

 

 

Figure  A.33 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 1.0%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.34 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 1.0%, u0= 0.1Dmax) 
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Figure  A.35 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.9%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.36 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.9%, u0= 0.1Dmax) 
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Figure  A.37 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.8%, u0= 0.1Dmax) 

 

 

 

 

 

 

 

Figure  A.38 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.8%, u0= 0.1Dmax) 
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Figure  A.39 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.7%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.40 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.7%, u0= 0.1Dmax) 
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Figure  A.41 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.6%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.42 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.6%, u0= 0.1Dmax) 
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Figure  A.43 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.44 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= 0.1Dmax) 
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Figure  A.45 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.4%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.46 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.4%, u0= 0.1Dmax) 
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Figure  A.47 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.3%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.48 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.3%, u0= 0.1Dmax) 
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Figure  A.49 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.2%, u0= 0.1Dmax) 

 

 

 

 

 

 

Figure  A.50 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.2%, u0= 0.1Dmax) 
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Figure  A.51 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.1%, u0= 0.1Dmax) 

 

 

 

 

 

 

 

Figure  A.52 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.1%, u0= 0.1Dmax) 
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Appendix B - Pseudo-free-vibration and FFT Diagrams for 

changing u0 while Δt1 is constant 

 

 

 

Figure  B.1 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 0.5%, u0= (1/2)*Dmax) 

 

 

 

 

Figure  B.2 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/2)*Dmax) 
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Figure  B.3 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 0.5%, u0= (1/3)*Dmax) 

 

 

 

 

 

 

Figure  B.4 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/3)*Dmax) 
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Figure  B.5 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 0.5%, u0= (1/4)*Dmax) 

 

 

 

 

 

 

Figure  B.6 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/4)*Dmax) 
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Figure  B.7 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 0.5%, u0= (1/5)*Dmax) 

 

 

 

 

 

 

Figure  B.8 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/5)*Dmax) 
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Figure  B.9 Signal processing results of structure one subjected to dynamic load one (pseudo-

free-vibration response diagram- Δt1= 0.5%, u0= (1/6)*Dmax) 

 

 

 

 

 

 

Figure  B.10 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/6)*Dmax) 
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Figure  B.11 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/7)*Dmax) 

 

 

 

 

 

 

Figure  B.12 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/7)*Dmax) 
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Figure  B.13 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/10)*Dmax) 

 

 

 

 

 

 

Figure  B.14 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/10)*Dmax) 
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Figure  B.15 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/11)*Dmax) 

 

 

 

 

 

 

Figure  B.16 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/11)*Dmax) 
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Figure  B.17 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/14)*Dmax) 

 

 

 

 

 

 

Figure  B.18 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/14)*Dmax) 
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Figure  B.19 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/16)*Dmax) 

 

 

 

 

 

 

Figure  B.20 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/16)*Dmax) 
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Figure  B.21 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/19)*Dmax) 

 

 

 

 

 

 

Figure  B.22 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/19)*Dmax) 
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Figure  B.23 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/20)*Dmax) 

 

 

 

 

 

 

Figure  B.24 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/20)*Dmax) 
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Figure  B.25 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/50)*Dmax) 

 

 

 

 

 

 

Figure  B.26 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/50)*Dmax) 
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Figure  B.27 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/100)*Dmax) 

 

 

 

 

 

 

Figure  B.28 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/100)*Dmax) 

 

 

 

 

 



112 

 

 

 

 

 

Figure  B.29 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/200)*Dmax) 

 

 

 

 

 

 

Figure  B.30 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/200)*Dmax) 
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Figure  B.31 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/1000)*Dmax) 

 

 

 

 

 

 

Figure  B.32 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram-ΔT1= 0.5%, u0= (1/1000)*Dmax) 
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Figure  B.33 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/10000)*Dmax) 

 

 

 

 

 

 

Figure  B.34 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/10000)*Dmax) 
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Figure  B.35 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/100000)*Dmax) 

 

 

 

 

 

 

Figure  B.36 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/100000)*Dmax) 
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Figure  B.37 Signal processing results of structure one subjected to dynamic load one 

(pseudo-free-vibration response diagram- Δt1= 0.5%, u0= (1/1000000)*Dmax) 

 

 

 

 

 

 

Figure  B.38 Signal processing results of structure one subjected to dynamic load one (FFT 

diagram- Δt1= 0.5%, u0= (1/1000000)*Dmax) 
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Appendix C - MATLAB Codes 

clc; 

clear; 

close all; 

%INITIAL DATA PROVIDED BY USER 

 

realTlimit=1000; %in sec., the maximum period of the expected free vibration frequency 

theTimeStep=5; %in sec.(in percent), real time step we choose to be added to previous time 

timeIncrement=1; %in sec., the time increment in the data file (time starts from 0 and increases 

by this increment to the end 

a=(1/10)*max(D(:,2));%the initial condition set as 1/10 of max 

 

%END OF INITIAL DATA 

 

mystep=theTimeStep/timeIncrement; %number of increments within the time step we chose 

Tlimit=realTlimit/timeIncrement;%number of increments within the time limit 

TM=mystep;%this is each step (in number of increments) 

 

myData(1:Tlimit/mystep,1)=0.0; 

 

while TM<=Tlimit 

%disp('first while') 

m=1;%this is number of row in the data, used to read the corresponding second column that is 

value 

n=0;%this is number of values found at the given TM for the given initial condition a 

data=0;%summation of values with TM and initial a 

Flag=false;%checking if we have already set the AD flag 

AD=false;%flag to know if ascending or descending at the inital point of  

while m+TM<length(D(:,1)) 

    if Flag==false 

        if D(m,2)==a 

            data=data+D(m+TM,2); 

            n=n+1; 

            if D(m+1,2)>D(m,2) 

                AD=true; 

            else 

                    AD=false; 

            end 

            Flag=true; 

        elseif D(m+1,2)==a 

            data=D(m+1+TM,2); 

            n=n+1; 

            if D(m+1,2)>D(m,2) 

                AD=true; 

            else 
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                    AD=false; 

            end 

                    Flag=true; 

         elseif D(m,2)<a && a<D(m+1,2) 

             ratio=(a-D(m,2))/(D(m+1,2)-D(m,2)); 

             data=data+D(m+TM,2)+ratio*(D(m+1+TM,2)-D(m+TM,2)); 

             n=n+1; 

             AD=true; 

             Flag=true; 

         elseif D(m,2)>a && a>D(m+1,2) 

             ratio=(a-D(m+1,2))/(D(m+1,2)-D(m,2)); 

             data=data+D(m+TM,2)+ratio*(D(m+1+TM,2)-D(m+TM,2)); 

             n=n+1; 

             AD=false; 

             Flag=true; 

        end 

    end 

    if Flag==true 

        if AD==true 

            if D(m+1)>D(m) 

                if D(m,2)==a 

                    data=data+D(m+TM,2); 

                    n=n+1; 

                    elseif D(m+1,2)==a 

                        data=data+D(m+1+TM,2); 

                        n=n+1; 

                    elseif (D(m,2)<a) && (a<D(m+1,2)) 

                        ratio=(a-D(m,2))/(D(m+1,2)-D(m,2)); 

                        data=data+D(m+TM,2)+ratio*(D(m+1+TM,2)-D(m+TM,2)); 

                        n=n+1; 

                end 

            end 

          elseif AD==false 

              if D(m+1)<D(m) 

                  if D(m,2)==a 

                      data=data+D(m+TM,2); 

                      n=n+1; 

                  elseif D(m+1,2)==a 

                      data=data+D(m+1+TM,2); 

                   n=n+1; 

                  elseif D(m+1,2)<a && a<D(m,2) 

                      ratio=(a-D(m,2))/(D(m+1,2)-D(m,2)); 

                      data=data+D(m+TM,2)+ratio*(D(m+1+TM,2)-D(m+TM,2)); 

                      n=n+1; 

                  end 

              end 



119 

 

        end 

    end 

    m=m+1; 

end 

datapoint=data/n; 

myData(TM/mystep,1)=TM*timeIncrement; 

myData(TM/mystep,2)=datapoint; 

TM=TM+mystep; 

end 

disp(myData(:,2)) 

% size(myData(:,2)) 

myData = myData; % The file name in Workspace 

t=myData(:,1); 

s=myData(:,2); 

disp(s) 

           Ts=mean(diff(t)); 

fs=1/Ts; 

L=length(s); 

disp(L) 

NFFT=2^nextpow2(L); % Next power of 2 from length of y 

M=L+1; 

y=fft(s,NFFT); 

mag=abs(y); 

f=fs/2*linspace(0,1,NFFT/2+1); 

r=real(y); 

F=f*1000 

a=r.^2; 

i=imag(y); 

b=i.^2; 

c=a+b; 

Energy=sum(c(:)) % Energy of signal 

figure; 

subplot(2,1,1); 

plot(myData(:,1),myData(:,2)); 

xlabel('Time(Equal Intervals)') 

ylabel('Acceleration (Averages)') 

grid 

F=f*1000 

subplot(2,1,2) 

plot(F(1:M/2),mag(1:M/2)); 

xlabel('Frequency (Hz)') 

ylabel('Magnitude') 

grid 

disp(mag(1:M/2)) 

disp(F(1:M/2))' 

 


