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Abstract 

In this thesis, I proposed a new surface dryness index based on the slope of soil moisture 

isolines in the Land Surface Temperature/Normalized Difference Vegetation Index (LST/NDVI) 

feature space. This index, referred to here as Dryness Slope Index (DSI), overcomes the problem 

of Temperature Vegetation Dryness Index (TVDI) having different basis when calculating TVDI 

values across different images. This problem is rooted in the definition of TVDI whose calculation 

depends on the position of the “dry edge” and “wet edge” of pixels’ values in the LST/NDVI space 

of a specific image. The “wet edge” has a fairly stable physical meaning, which represents soil at 

field capacity or above, and it remains stable across a time series of images. However, the position 

of “dry edge” represents the driest condition in the image, which does not necessarily mean that 

the soil is completely dry. Therefore, the value of TVDI calculated from different images is not 

based on an invariant dry edge value as its baseline, and it is therefore likely to lead to incorrect 

conclusion if used without extra examination. This problem manifests itself when comparing 

TVDI values from different images with meteorological data. Results from similar analyses done 

with DSI showed more reasonable match with the validation data, indicating DSI is a more robust 

surface dryness index than TVDI.  

Having verified DSI can be effectively used in estimating soil moisture, I applied DSI on 

Landsat5 TM to study the relationship between soil moisture and land cover, slope, aspect, and 

relative elevation. Results showed that land cover accounts the most for variations of estimated 

soil moisture. I also applied DSI on a long time-series (2000 to 2014) of MODIS data trying to 

explore the temporal evolution of soil moisture in the entire Flint Hills ecoregion. Results showed 

little correlation between time and estimated soil moisture, indicating that no noticeable changes 

in soil moisture has been found through all these years. 
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Chapter 1 – Introduction 

Soil moisture is widely recognized as an important variable in environmental studies related to 

meteorology and agriculture (Ahmad & Bastiaanssen, 2003; Vischel et al., 2008; Mattia et al., 

2009; Kong et al., 2011). It is also a key hydrologic parameter linked to water availability, land 

surface evapotranspiration, runoff generation, groundwater recharge, and irrigation scheduling 

among other processes (Scott et al., 2003). For hydrologic and agricultural purposes, the estimation 

of soil moisture is crucial as it controls the quantity of water available for vegetation growth (Cook 

et al., 2006), deep aquifer recharge (Seneriviratne et al., 2006; Kjellström et al., 2007; Lam et al., 

2011); and soil saturation, which controls the partitioning of rainfall between runoff and infiltration, 

and sediment transport (Vivoni et al., 2007; Ávila et al., 2011). Knowledge of the spatial patterns 

of soil moisture is of immense importance to understand how much water is captured and in stored 

uplands, runoff available to downstream users, and recharge of groundwater. Flood prediction, 

including information on the spatial extent of inundation, discharge, and timing of the flood peak, 

and duration of recession, is critically dependent on soil moisture data. Similarly, changes in soil 

moisture at the land–atmosphere boundary are of critical importance to the parametrization of 

weather prediction and climate models (Scott et al., 2003; Oki et al. 1999; Walker and Houser 

2001). Although the need for retrieving soil water content information at different scales is widely 

recognized, the high spatial and temporal variability of soil moisture caused by the heterogeneity 

of soil texture, topography, vegetation, and climate in the natural environment makes soil moisture 

difficult to measure (Bezerra et al., 2012b; Kong et al., 2011). 

Generally speaking, soil water content can be obtained from three methods: (1) field 

measurements; (2) meteorological data; and (3) remote sensing. Field measurement provides the 

most accurate information on soil moisture condition. However, it is often done by installing 

permanent soil moisture probes into the soil at particular place, therefore it is costly and time-

consuming especially for remote areas or areas across different countries. Developing countries 

are also likely to lack the necessary facilities for long-term monitoring of soil moisture. What is 

more, the spatial distribution of soil moisture based on interpolation of point-based data has limited 

frequency and spatial coverage of field investigations. Point-based data are also often poorly 

distributed and are insufficient and are often not available for timely water stress detection.  
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Technological advances in satellite remote sensing have offered an alternative to studying soil 

moisture and enabled us to monitor it at higher temporal and spatial resolutions at lower cost and 

time. Remote sensing covers a wide range of the electromagnetic spectrum, including the 

microwave, optical, and thermal regions, which can be utilized to estimate soil moisture. The 

theoretical basis for microwave remote sensing of soil moisture is that soil’s dielectric properties 

heavily depends on its moisture condition. There is great distinction between wet soil and dry soil 

in terms of their dielectric constant, therefore soil moisture is manifested through the dielectric 

properties. Microwave techniques are capable of penetrating clouds, which makes it desirable at 

higher latitudes and in humid regions where cloud frequently covers the sky. Soil moisture can be 

estimated using airborne passive radiometers for soil depths between 0 and 10 centimeters 

(Schmugge 1999). However, one of the most noticeable limitations should be noted, which is that 

the spaceborne microwave remote sensing has a resolution varying between 50 to 150 kilometers 

(Scott et al., 2003). Even though airborne passive radiometers are able to provide soil water 

information at higher spatial resolution, frequent flights are infeasible and often unaffordable. 

There are several active microwave sensors in the form of radars aboard on the RadarSat, EnviSat, 

the European remote sensing (ERS) satellite, Japan Earth resources (JERS) satellite, which provide 

observations at 20 ~ 30 meter spatial resolution. The Soil Moisture Active Passive (SMAP) was 

launched 31 January 2015 by NASA. It can provide measurements of the land surface soil moisture 

and freeze-thaw state with near-global revisit coverage in 2 ~ 3 days. It carries a radiometer that 

records microwave emissions from the top 5 cm in the soil with a spatial resolution of about 40 

km, and radar will provide backscatter measurements at 1 km resolution. However, the ERS, JERS, 

and the radar of SMAP are no longer operational. What is more, active microwave sensors have 

limited ability to penetrate the vegetation layer and the backscatter coefficient is significantly 

affected by surface roughness (Ulaby and Elachi 1990; Verhoest et al. 1998; Hoeben and Troch 

2000).  

Optical/thermal remote sensing has attracted more attention and gained popularity in 

estimating soil moisture. In the visible and near-infrared wavelengths, the emission and reflection 

characteristics of a natural surface largely depend on the spectral response of vegetation and soil. 

The soil moisture status influences chlorophyll content in the leaves and in turn changes the 

spectral response of vegetation. Similarly, soil water content also affects the spectral response of 

soil as it is known that soil reflectance decreases with increasing soil water content. In middle 
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infrared region, soil with more water content shows lower reflectance. In the thermal infrared 

wavelengths, land objects vary in terms of temperature and emissivity which is largely controlled 

by their thermal inertia that represents the ability of a material to conduct and store heat. Soil 

moisture therefore can also influence the temperature of vegetation and surface soil. Water content 

changes in leaves because of the change of soil moisture can be detected in terms of variations of 

vegetation indices such as Normalized Difference Vegetation Index (NDVI). However, NDVI is 

a rather conservative indicator of water stress as vegetation remains green after initial water stress. 

However, LST can rise rapidly with water content decreasing. Therefore, land surface temperature 

and vegetation indices in combination can provide more comprehensive information on water 

content at the surface. 

In the 1990s, the triangle method, a new approach to mapping both land surface moisture and 

surface turbulent energy fluxes gained popularity (Price, 1990, Carlson et al., 1994). This method 

allows the pixel distribution from the image to fix the boundary conditions for the model, thereby 

largely bypassing the need for ancillary atmospheric and surface data. The triangle method is based 

on an interpretation of the pixel distribution in the LST/NDVI feature space. LST is affected by 

many factors such as surface thermal properties, net radiation, evapotranspiration, and vegetation 

coverage, hence there is no direct relationship between LST and soil water content. However, soil 

moisture is an important factor controlling vegetation canopy temperature and under certain 

vegetation coverages soil moisture can indirectly affect canopy temperature. The calculation of the 

Temperature Vegetation Dryness Index (TVDI) is the based on the upper and lower boundaries on 

the LST/NDVI feature space (See Figure 1.1). The upper boundary, which is called the “dry edge”, 

represents the driest condition in the frame and the lower boundary referred here as the “wet edge” 

which represents the soil is at field capacity or above. 
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Research Questions and Structure of the Thesis 

Even though the triangle method and TVDI have been widely used to estimate surface dryness 

condition, few studies have been carried out on the theoretical basis of the “triangle” method, and 

the use of TVDI without extra attention may lead to incorrect conclusions especially when 

comparing the dryness condition of several different dates by comparing their respective TVDI 

values. This is owing to by how TVDI is defined. TVDI is based on the position of the dry edge 

and that of the wet edge. The former, represents the driest condition in the frame, does not 

necessarily means that soil moisture is zero and is likely to vary for images from different days, 

whereas the latter has a fairly stable physical meaning, which is at field capacity or above. So, the 

calculation of TVDI for images from different days is not based on an invariant dry edge value as 

its baseline and it is not convincing to use their respective TVDI values to conclude that the surface 

from one image is drier than the other. So for this thesis, I mainly addressed three questions: 1) 

Proposing a more robust surface dryness index for estimating soil moisture; 2) Using this new 

index to estimate soil moisture to see if there is any trend for soil moisture for a long period of 

time; 3) Estimate soil moisture and exploring its relationships with land cover and topography. 

Therefore, in chapter 2, I addressed my first research question and proposed a more robust 

surface dryness index, which is based on TVDI, called the Dryness Slope Index (DSI). Then I 

conducted several experiments to compare the power of TVDI and DSI for estimating surface 

dryness condition, and proposed an empirical model for estimating soil moisture by using DSI. 
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Figure 1.1 LST/NDVI feature space. A scatterplot of remotely sensed surface temperature and a 

vegetation index often results in a triangular shape, or a trapezoid shape. Bare soil pixels tend to 

exist in the upper-left corner of the triangle; Full vegetation pixels appear in the bottom-right 

corner of the triangle; Mixed pixels appear in the center of the feature space. 
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Soil moisture serves as an essential index for drought prediction and has great implications for 

agricultural activities and management. Soil moisture dynamics are controlled by many processes 

including evapotranspiration, infiltration and root water uptake. Changes in land use/cover types 

are significant anthropogenic factors that influence the spatial distribution of soil moisture, 

understanding the spatial and temporal relationships between these changes and soil moisture will 

provide important data that is required to support the efficient use of the available soil moisture 

and sustainable use of land resource (Wang et al., 2010). Therefore, in chapter 3, I addressed my 

last two research questions. I analyzed the temporal trend of soil moisture from year 2000 to 2014, 

and then explored the relationship between soil moisture and several environmental factors, 

including land cover and topography. In chapter 4, I synthesized the overall findings of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

References 

Ahmad, M. & Bastiaanssen, W.G.M. 2003. Retrieving soil moisture storage in the unsaturated 

zone using satellite imagery and bi-annual phreatic surface fluctuations. Irrig. Drain. Syst., 

17:141-161.  

Ávila, L.F.; Mello, C.R.; Mello, J.M. & Silva, A.M. 2011. Padrão espaço-temporal da umidade 

volumétrica do solo em uma bacia hidrográfica com predominância de Latossolos. R. Bras. 

Ci. Solo, 35:1801-1810. 

Bezerra, M.V.C.; Silva, B.B.; Bezerra, B.G.; Borges, V.P. & Oliverira, A.S. 2012b. 

Evapotranspiração e coeficiente de cultura do algodoeiro irrigado a partir de imagens de 

sensores orbitais. R. Ci. Agron., 43:64-71. 

Carlson, Tobyn.; Gillies, Robertr.; Perry, Eileenm. 1994. A method to make use of thermal 

infrared temperature and NDVI measurements to infer surface soil water content and fractional 

vegetation cover. Remote Sensing Reviews 9(1): 161-173. 

Cook, B.I.; Bonan, G.B. & Levis, S. 2006. Soil moisture feedbacks to precipitation in Southern 

Africa. J. Climate, 19:4198-4206.  

Hoeben, R., and Troch, P. A. 2000. Assimilation of active microwave observation data for soil 

moisture profile estimation.  Water Resour. Res., 36~10, 2805–2819. 

Hong Wang, Xiaobing Li, Huiling Long, Xu Xu, Yun Bao. 2010. Monitoring the effects of land 

use and cover type changes on soil moisture using remote-sensing data: A case study in 

China's Yongding River basin. CATENA. 82(3):135-145. 

 

Kjellström, E.; Barring, L.; Jacob, D.; Jones, R.; Lenderink, G. & Schar, C. 2007. Modelling daily 

temperature extremes: recent climate and future changes over Europe. Climatic Change, 

81:249-265. 

Kong, X.; Dorling, S. & Smith, R. 2011. Soil moisture modeling and validation at an agricultural 

site in Norfolk using the Met Office surface exchang scheme (MOSES). Meteorol. Appl., 

18:18-27.  



8 

 

Lam, A.; Karrssenberg, D.; Hurt, B.J.J.M. & Bierkens, M.F.P. 2011. Spatial and temporal 

connections in groundwater contribuition to evaporation. Hydrol. Earth Syst. Sci., 15:2621-

2630.  

Mattia, F.; Satalino, G.; Pauwels, V.R.N. & Loew, A. 2009. Soil moisture retrieval through a 

merging of multitemporal L-band SAR data and hydrologic modelling. Hydrol. Earth Syst. 

Sci., 13:343-356. 

Oki, T., Nishimura, T., and Dirmeyer, P. 1999. ‘‘Assessment of land surface models by runoff in 

major river basins of the globe using Total Runoff Integrating Pathways (TRIP).’’ J. Meteorol. 

Soc. Jpn., 77, 235–255. 

Price, J. C. 1990. Using spatial context in satellite data to infer regional scale evapotranspiration. 

IEEE Transactions on Geoscience and Remote Sensing, 28, 940–948. 

Schmugge, T. J. 1999. Applications of passive microwave observations of surface soil moisture. 

J. Hydrol., 212–213, 188–197. 

Scott, Christopher A.; Bastiaanssen, Wim G. M.; Ahmad, Mobin-Ud-Din. 2003. Mapping Root 

Zone Soil Moisture Using Remotely Sensed Optical Imagery. Journal of Irrigation and 

Drainage Engineering 129(4): 326-335. 

Seneriviratne, S.I.; Luthi, D.; Litschi, M. & Schar, C. 2006. Land-atmosphere coupling and 

climate change in Europe. Nature, 443:205-209. 

Ulaby, F. T., and Elachi, C., eds. 1990. Radar polarimetry for geoscience applications, Artech 

House, London. 

Verhoest, N. E. C., Troch, P. A., Paniconi, C., and de Troch, F. P. 1998. Mapping basin scale 

variable source areas from multitemporal remotely sensed observations of soil moisture 

behavior. Water Resour. Res., 34~12, 3235–3244. 

Vischel, T.; Pegram, G.G.S.; Sincair, S.; Waner, W. & Bartsch, A. 2008. Comparison of soil 

moisture fields estimated by catchment modeling and remote sensing: A case study in South 

Africa. Hydrol. Earth Syst. Sci., 12:751-767. 



9 

 

Vivoni, E.R.; Entekhabi, D.; Bras, R.L. & Ivanov, V.Y. 2007. Controls on runoff genration and 

scale-dependence in a distributed hydrologic model. Hydrol. Earth Syst. Sci. 11:1683-1701. 

Walker, J. P., and Houser, P. 2001. A methodology for initializing soil moisture in a global 

climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res., 106, 

11761–11774. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Chapter 2 - The Dryness Slope Index (DSI) – A Modified Form of the Temperature 

Vegetation Dryness Index (TVDI) for Estimating Soil Moisture 

 

Abstract 

Soil moisture is an important biophysical property of soil, which controls energy exchange, 

evapotranspiration, vegetation coverage at the surface. Various methods have been proposed to 

estimate soil water content based on field investigations, active/passive microwave remote sensing 

and optical/thermal remote sensing among which the “triangle” method and the notion of TVDI 

have been frequently used to retrieve soil moisture. In this study the assumptions of the “triangle” 

method were examined by using the Surface Energy Balance System model (SEBS). A form of 

modified form of TVDI, the Dryness Slope Index (DSI), is proposed and evaluated. TVDI and 

DSI have been calculated for different images, and the spatial pattern and temporal evolution of 

TVDI and DSI has been explored and compared with the meteorological data. The results showed 

that TVDI and DSI do a good prediction in the spatial distribution of soil moisture, where vegetated 

areas showed more soil water content and less vegetated areas showed less soil moisture. However, 

TVDI presented a poor match with the meteorological data after rainy days, which showed higher 

TVDI values than drier days, on the other hand DSI showed more reasonable match with the 

meteorological data. The Willmott index of agreement was then used to verify if there was a 

uniform relationship between DSI and evaporative fraction (EF) on different images, and results 

showed that a statistically significantly uniform relationship was found between DSI and 

evaporative fraction among different images, meaning that DSI is less susceptible to sudden 

rainfall and is a more robust surface dryness index. In the end, an empirical model for estimating 

soil moisture was proposed by using DSI. 

 

Key words: the “triangle” method, TVDI, the dry edge and wet edge, slope of soil moisture 

isolines, the dryness slope index, evaporative fraction 
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Introduction 

Soil moisture is an important factor that controls energy exchange between the land and the 

atmosphere, and is also an important indicator for drought and agricultural management. The 

spatial and temporal distribution of soil moisture strongly influences the surface heat balance, 

evapotranspiration, and soil temperature. Acquisition of data on land surface energy exchanges is 

an important part of monitoring changes in regional resources and environments. Since soil 

moisture plays such a significant role in these exchanges, large-scale monitoring of soil water 

levels can play a vital role in agricultural research and environmental evaluations. Retrieval of soil 

moisture values at regional or global scales is therefore an important tool in studies of land surface 

processes (Moran et al., 1994). 

Water content in soil and vegetation can be estimated using three methods: (1) field 

measurements; (2) meteorological data; and (3) remote sensing. Although field measurements can 

provide the most accurate information on soil and vegetation water content, they are expensive 

and time consuming especially for mountainous or remote areas. What’s more, the spatial 

distribution of soil moisture based on interpolation of the point-based data has limited frequency 

and spatial coverage of field investigations. There are several climatic and hydrological drought 

indices (point-based) which are based on meteorological data. However, point-based data are often 

poorly distributed and are insufficient and not available for timely water stress/drought detection. 

Technological advances in satellite remote sensing offer an alternative to studying soil 

moisture and enabled us to monitor it at higher temporal and spatial resolutions at lower cost and 

time. Since the 1970s a number of remote sensing methods have been developed to investigate soil 

moisture by using different regions of electromagnetic spectrum including the microwave, thermal, 

and the optical (Carlson et al., 1995a; Gillies and Carlson, 1995b). Comprehensive reviews on the 

applications of remotely sensed methodologies for the estimation of surface water content 

including the principles, advantages and constraints can be found in the study of Verstraeten et al. 

(2008). 

The main disadvantage of current methods to estimate soil moisture from passive microwave 

techniques is its coarse spatial resolution (around 40 km) making it difficult to study finer scale 

variations in an appropriate manner (Merlin et al., 2010). Therefore, there are demands for the 

development of approaches to downscaling soil moisture data from low spatial resolution 
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microwave sensors. Optical/thermal remote sensing data provide finer spatial and temporal 

resolution information that can be used to improve passive microwave estimations on soil moisture. 

Efforts are being made to downscale passive microwave soil moisture estimations using 

optical/thermal infrared data (Chauhan et al., 2003) but downscaling methodologies still need to 

be improved. Even though airborne passive radiometers are able to provide soil water information 

at higher spatial resolution, frequent flights are infeasible and often unaffordable. There are several 

active microwave sensors in the form of radars aboard on the RadarSat, EnviSat, the European 

remote sensing (ERS) satellite, Japan Earth resources (JERS) satellite, which provide observations 

at 20 ~ 30 meter spatial resolution. The Soil Moisture Active Passive (SMAP) was launched 31 

January 2015 by NASA. It can provide measurements of the land surface soil moisture and freeze-

thaw state with near-global revisit coverage in 2 ~ 3 days. It carries a radiometer that records 

microwave emissions from the top 5 cm in the soil with a spatial resolution of about 40 km, and 

radar will provide backscatter measurements at 1 km resolution. However, the ERS, JERS, and the 

radar of SMAP are no longer operational. What is more, active microwave sensors have limited 

ability to penetrate the vegetation layer and the backscatter coefficient is significantly affected by 

surface roughness (Ulaby and Elachi 1990; Verhoest et al. 1998; Hoeben and Troch 2000).  

Optical/thermal remote sensing provides an alternative approach to remote sensing soil 

moisture, with the potential for relatively high spatial/temporal resolution and availability 

compared to microwave remote sensing data. In the visible and near-infrared wavelengths, the 

radiation and reflection characteristics of the surface largely depend on the spectral response of 

vegetation and soil for a natural surface. The soil moisture status influences chlorophyll content in 

the leaves and in turn changes the spectral response of vegetation. Similarly, soil water content 

also affects the spectral response of soil as it is known that soil reflectance decreases with 

increasing soil water content. In the thermal infrared wavelengths, land objects vary in terms of 

temperature and emissivity, which is largely controlled by their thermal inertia. Soil moisture can 

therefore influence the temperature of vegetation and surface soil. Water content changes in 

chlorophyll because of the change of soil moisture can be detected in terms of variations of 

vegetation indices such as NDVI. However, NDVI is a rather conservative indicator of water stress 

as vegetation remains green after initial water stress. However, the surface temperature can rise 

rapidly with water content decreasing. Therefore, land surface temperature and vegetation indices 

in combination can provide more comprehensive information on water content at the surface, and 
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number of surface dryness indices have been developed based on visible and thermal band of 

remotely sensed data. Zhan et al., (2007) proposed the model of soil moisture monitoring by 

remote sensing (SMMRS) based on the near-infrared versus red spectral reflectance feature space 

from which evaporative fraction is derived, and SMMRS is calculated by subtracting evaporative 

fraction from 1 which represents the soil moisture of completely wet soil. Wang et al., (2007) 

proposed the Normalized Multi-Band Drought Index (NMDI) by using the apparent reflectance 

observed from MODIS at 860 nm, 1640 nm and 2130 nm owing to the fact that channels centered 

at 1640 nm and 2130 nm can reflect strong differences between two water absorption bands in 

response to soil and leaf water content, giving this combination potential to estimate water content 

for both soil and vegetation. Wang et al., (2010) estimated soil moisture by utilizing the vegetation 

dryness index (TVDI) and an empirical linear model which describe the relationship between in 

situ soil moisture observations and TVDI values.  

In the 1990s, a new approach, for mapping both land surface moisture and surface turbulent 

energy fluxes gained popularity (Price, 1990, Carlson et al., 1994). This method, referred to here 

as the triangle method, allows the pixel distribution from the image to fix the boundary conditions 

for the model, thereby largely bypassing the need for ancillary atmospheric and surface data. There 

have been many proposed surface dryness indices based on the triangle method and TVDI. 

Rahimzadeh et al., (2011) modified TVDI by incorporating the Digital Elevation Model (DEM) 

and air temperature. Gao et al., (2010) explored the possibility of combination TVDI with various 

vegetation indices and evaluated their performance in estimating soil moisture. However, few 

studies have been done to examine the theoretical basis of the “triangle” method. Therefore, in this 

paper I aimed to test the assumptions of the “triangle” method using a Surface Energy Balance 

System model (SEBS, Su 2001), then proposed a modified form of TVDI, the Dryness Slope Index 

(DSI) based on the examination of its theoretical basis. 
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Background and Objectives 

The triangle method is based on an interpretation of the pixel distribution in the LST/NDVI 

feature space. LST is affected by many factors such as surface thermal properties, net radiation, 

evapotranspiration, and vegetation coverage, hence there is no direct relationship between LST 

and soil water content. However, soil moisture is an important factor controlling vegetation canopy 

temperature and under certain vegetation coverage soil moisture can indirectly affect canopy 

temperature. The LST/NDVI feature space (shown in Figure 2.1) is used to illustrate the 

relationship among LST, soil moisture and vegetation coverage. A scatterplot of remotely sensed 

surface temperature and a vegetation index often results in a triangular shape (Price, 1990; Carlson 

et al., 1994), or a trapezoid shape (Moran, Clarke, Inoue, et al., 1994) if a full range of fractional 

vegetation cover and soil moisture contents is present in the data. Previous studies (Prihodko and 

Goward 1997; Moran et al. 1994; Carlson et al. 1995; Gillies et al. 1997; Sandholt et al. 2002) 

have shown that the triangular feature space consists of a family of soil moisture isolines, which 

are also TVDI isolines, representing different degrees of aridity, and isolines closer to the upper 

boundary of the feature space represent pixels with low soil moisture. The horizontal line at the 

low limit in the LST/NDVI feature space is called the wet edge (unlimited water availability) while 

the sloping line is called the dry edge (maximum evapotranspiration and limited water access). 

There are three assumptions behind the triangle method and the use of TVDI, which are 1) The 

feature space of land surface temperature (LST) and NDVI results in a triangular shape given a 

large number of pixels reflecting a full range of soil surface wetness and vegetation coverage. The 

boundaries of the triangle reflect real physical limits: day bare soil, full vegetated surface, wet bare 

soil, and driest condition in the frame; 2) The LST/NDVI feature space consists of many soil 

moisture isolines which are also TVDI isolines; 3) The upper boundary of the triangle represents 

the driest condition in the frame, and the lower limit reflects soil with unlimited water availability 

(at field capacity or above). A dryness index is proposed from the LST/NDVI feature space to 

describe the relationship among the three and it is calculated as the ratio of A to B for point C in 

the feature space: 

 

 
𝑇𝑉𝐷𝐼 =

𝑇𝑐 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
=

𝐴

𝐵
 (1) 
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where 𝑇𝑐 represents the land surface temperature of a pixel; 𝑇𝑚𝑖𝑛 is the temperature at the wet edge; 

𝑇𝑚𝑎𝑥 represents the temperature at the dry edge under the same NDVI and is calculated as 𝑇𝑚𝑎𝑥 =

𝑎 + 𝑏 ∗ 𝑁𝐷𝑉𝐼, where 𝑎 and 𝑏 are the coefficients of the regression equation for the dry edge. 

According to the definition of TVDI, values at dry edge would be 1 and at the wet edge, 0. Larger 

TVDI values thus indicate drier soil. 

 

 

Figure 2.1 LST/NDVI feature space. Bare soil pixels tend to exist in the upper-left corner of the 

triangle; Full vegetation pixels appear in the bottom-right corner of the triangle; Mixed pixels 

appear in the center of the feature space. For pixel C, its TVDI value calculates as the ratio 

between A (the distance from its LST value to the wet edge) and B (the distance between the 

maximum LST under the same NDVI to the wet edge). The slanting lines within the LST/NDVI 

feature space are TVDI isolines. 
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Even though the triangle method and TVDI have been widely used to estimate surface dryness 

condition, few studies have been carried out to the theoretical basis of the triangle method, and the 

use of TVDI without extra attention may lead to incorrect conclusions especially when comparing 

the dryness condition of several different dates by comparing their perspective TVDI values. To 

illustrate, consider the following situation: (a) represents the LST/NDVI feature space of dry day 

and (b) imitates the feature space of a day after receiving rainfall (See Figure 2.2). Because of the 

rainfall the temperature difference between the maximum and minimum LST in (b) is likely to be 

smaller than that of the feature space in (a). Assuming the two dates are close so that there is little 

difference in terms of their NDVI range, then the size of feature space of (a) is bigger than that of 

(b). As a result, for pixels having similar NDVI values, it is likely that the ratio between bc and ac 

is larger than the ratio between BC and AC, indicting TVDI values for a wetter surface are larger 

than that of a drier surface. 

 

 

Figure 2.2 Example LST/NDVI feature space of a dry surface and a wet surface. (a) imitates the 

feature space of a dry day, where the LST/NDVI feature space is larger than the feature space of 

the day after receiving rainfall, such as (b).  For pixels that have similar NDVI values, it is likely 

that the ratio between bc and ac is larger than the ratio between BC and AC owing to the fact the 

feature space of (b) is smaller than that of (a), indicting TVDI values for a wetter day will be 

greater than that of a drier day. 
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This inconsistency is caused by how TVDI is defined. Recall that TVDI is based on the position 

of the dry edge and that of the wet edge. The former, represents the driest condition in the frame, 

does not necessarily means that soil moisture is zero and is likely to vary for images from different 

days, whereas the latter has a fairly stable physical meaning which is at field capacity or above. 

So, the calculation of TVDI for images from different days is not based on an invariant dry edge 

value as its baseline and it is not convincing to use their respective TVDI values to conclude that 

the surface from one image is drier than the other. 

From the above analysis, we can see that it is of significance to examine the theoretical basis 

of the triangle method on which TVDI is based before it can be applied. To achieve this goal, I 

first used the SEBS model to study the LST/NDVI feature space and their relationship. Then in 

order to avoid the problem of TVDI from different days having different basis, I proposed a 

modified surface dryness index, called the Dryness Slope Index (DSI), based on TVDI. In order 

to compare the power of TVDI and DSI for estimating surface dryness condition, I conducted 

several experiments at the Konza Prairie Bilogical Station (KPBS) using Landsat5 TM images and 

meteorological data from the KPBS. To be specific, I compared the spatial and temporal pattern 

of soil moisture using TVDI and DSI, and I then used Willmott’s d index of agreement (Willmott 

et al. 1980) to test if DSI can be applied to estimate soil moisture across different images. In the 

end, I formulated an empirical model for estimating soil moisture using DSI. 

 

 

 

 

 

 

 

 



18 

 

Study area and data 

The study area (See Figure 2.3) is mainly located at the Konza Prairie Biological Station 

(KPBS). KPBS is a 73 𝑘𝑚2study area is located in south of Manhattan, Kansas. It is a member of 

the National Science Foundation's Long Term Ecological Research (LTER) network, and thus 

maintains an extensive archive of ecological and climatological data supporting this research. The 

site includes both native prairie and some agricultural land.  The main land cover is grassland, 

forest, cultivated crops, barren land and open water. Except for agricultural lands whose land cover 

type varies throughout a year, other land cover types remain relatively stable. Around 76% of 

annual rainfall (835mm) occurs during the growing season, and it is highly variable from year to 

year. The main soil types in the study area are silt loam and silty clay loam.  

Landsat5 TM images are used for its relatively high spatial and temporal resolution. To be 

specific, fourteen Landsat5 TM images from May to the early October for 2007 and 2008 were 

selected for this analysis, using two criteria: 1) The vegetation has turned green from May and 

remained to be so till October; 2) they have the longest cloud-free images series. Images acquired 

are listed below (See Table 2.1). 

 

Table 2.1 Dates of Landsat5 TM images 

2007 2008 
May 18, 2007 LT50280332007138PAC01 May 4, 2008 LT50280332008125PAC01 

May 25, 2007 LT50280332007154PAC01 May 20, 2008 LT50280332008141PAC02 

July 21, 2007 LT50280332007202PAC01 June 21, 2008 LT50280332008173PAC01 

August 6, 2007 LT50280332007218PAC01 July 23, 2008 LT50280332008205PAC01 

August 22, 2007 LT50280332007234PAC01 August 8, 2008 LT50280332008221PAC01 

Sep 7, 2007 LT50280332007250PAC01 Sep 9, 2008 LT50280332008253PAC01 

Sep 23, 2007 LT50280332007266PAC02 Sep 25, 2008 LT50280332008269PAC01 
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The required input data for running the SEBS model come from two sources: Landsat5 images 

(to estimate LST, NDVI, emissivity, albedo) and meteorological data from KPBS (wind speed, air 

temperature and pressure, and relative humidity etc). Additional ancillary data for validation 

purposes includes precipitation data, daily evapotranspiration data and so on.  

 

 

Figure 2.3 Study area (marked by the red rectangle) 
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Methods 

Surface energy balance system model (SEBS) 

The SEBS model (Su 2001) is a physically based energy balance model which consists of three 

main parts: 1) methods for the determination of the physical and biological parameters of the 

surface, such as albedo, emissivity, temperature, and vegetation coverage, 2) a model for the 

determination of the roughness length for heat transfer, and 3) a formulation for the determination 

of the evaporative fraction on the basis of energy balance at limiting meteorological conditions. 

At dry limiting condition the latent heat becomes zero due to the limitation of soil moisture, while 

the sensible heat flux is at its maximum value. Estimation of evaporative fraction requires both dry 

and wet limiting conditions. Under the wet limiting condition, the evaporation takes place at its 

maximum rate. The model calculates instantaneous relative evaporation as: 

where 𝐻𝑤𝑒𝑡 is sensible heat flux (𝑊 𝑚2⁄ ) under the wet limiting condition where ET takes place 

at maximum rate. 𝐻𝑑𝑟𝑦 is the sensible heat flux at the dry limiting condition where ET is zero 

due to limited soil moisture. The evaporative fraction is calculated as: 

Where Λ is the evaporative fraction. The data needed for running SEBS model and their source is 

listed in below (See Table 2.2). 

 

 

 

 

 

 

 

 

 
Λ𝑟 =  1 −

𝐻 − 𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦 − 𝐻𝑤𝑒𝑡
 (2) 

 
Λ =  Λ𝑟 ∗ (1 −

𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦
) (3) 
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Table 2.2 Main variables for running the SEBS model 

Variable Name Data Source 

land surface temperature, land surface albedo, emissivity, NDVI estimate from Landsat TM 5 

vegetation fraction, leaf area index calculated in SEBS 

Digital Elevation Model (DEM) SRTM DEM data 

sun zenith angle, reference height KPBS 

wind speed, air temperature, mean daily air temperature,  KPBS 

pressure at reference height, pressure at surface map, sunshine 

hours 

KPBS 

horizontal visibility, planetary boundary layer height empirical data 

 

 

The Integrated Land and Water Information System (ILWIS, version 3.8, Allard et al, 1988) 

was used to run the SEBS model. According to Scott et al. (2003) who proposed a way to estimate 

soil moisture: 

where 𝜃𝑠𝑎𝑡 is the saturated soil moisture. According to equation 4 that, we can see that pixels with 

same evaporative fraction (EF) values, which can be calculated from SEBS model, with similar 

soil composition would have similar soil water content. Since NDVI and LST are two inputs of 

the SEBS model, we are then able to explore the relationship between the two under different 

evaporative faction values, which can be estimated from the SEBS model. 

 

 

 

 

 

 

 

 

 

 𝜃 = 𝜃𝑠𝑎𝑡 ∗ 𝑒(Λ−1)/0.42 (4) 
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TVDI for estimating surface dryness condition 

According to equation 1 that TVDI is defined as: 

where 𝑇𝑐 represents the land surface temperature of a pixel; 𝑇𝑚𝑖𝑛 is the temperature at the wet edge; 

𝑇𝑚𝑎𝑥 represents the temperature at the dry edge under the same NDVI and is calculated as 𝑇𝑚𝑎𝑥 =

𝑎 + 𝑏 ∗ 𝑁𝐷𝑉𝐼, where 𝑎 and 𝑏 are the coefficients of the regression equation for the dry edge. 

According to the definition of TVDI, the TVDI value at dry edge would be 1 and that at the wet 

edge is 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝑇𝑉𝐷𝐼 =  

𝑇𝑐 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
  (5) 
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A modified form of TVDI ---- the Dryness Slope Index (DSI) 

From the previous analysis, we can see that TVDI is based on the dry edge as well as the wet 

edge. The former, represents the driest condition in the frame, varies for different images, whereas 

the latter has a fairly stable physical meaning which is at field capacity or above. As we recall, the 

LST/NDVI feature space consists of a family of soil moisture isolines which are also TVDI isolines, 

and drier pixels correspond to steeper soil moisture isolines, whereas the wetter pixels have less 

steep isolines. Since the slope of the soil moisture isolines is confined in the specific feature space 

and its maximum value is not larger than the slope of the dry edge, we can then use the slope of 

soil moisture isolines as a measurement to show how far each soil moisture isoline is deviated 

from the wet edge, thus we have the same basis for measuring soil moisture when across different 

images. From the above analysis, DSI is defined as the absolute value of the slope of each soil 

moisture isoline, and the formulation of this index is calculated as: 

where a is the slope of the dry edge for a specific frame; TVDI is the TVDI value for each pixel 

within the same frame. Since the slope of the dry edge is negative, we take the absolute value to 

show how far a soil moisture isoline is deviated from the wet edge. As a result, drier pixels would 

be further from the wet edge and thus have larger DSI values. 

 

 

 

 

 

 

 

 

 

 𝐷𝑆𝐼 =  |𝑎 ∗ 𝑇𝑉𝐷𝐼| (6) 
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Results 

SEBS output and the relationship between NDVI and LST 

The SEBS model was used to calculate evaporative fraction for several images (taking image 

2008221 as an example), and the results are summarized as below (See Figure 2.4). We can see 

that points, which have similar evaporative fraction (EF) value, correspond to a family of NDVI 

and LST points that are highly correlated, which means that soil moisture isolines are linear in the 

LST/NDVI feature space. The results also show that the pixels corresponding to steeper isolines 

have less water content as they show low evaporative fraction values. The pixel set with EF value 

around 0.04 almost represents the driest condition in the frame, and it has the steepest slope. The 

soil becomes wetter as the EF increases and the slope of the isolines become less steep. Each point 

set covers a fairly large range of NDVI and LST, meaning different NDVI and LST combinations 

can represent soil with similar water content. The above results show that the assumptions of the 

triangle method are verified to be valid by exploring the relationship between LST and NDVI 

under different soil moisture conditions with the help of the SEBS model. 
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Figure 2.4 LST/NDVI feature space under different EF conditions 
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Plots of LST/NDVI feature spaces 

In order to determine the parameters for the dry edge, the maximum temperature observed for 

small intervals of NDVI is extracted in the feature space, and then least square regression is used 

to estimate the slope and intercept of the dry edge (Figure 2.5, also see Appendix1). The lowest 

temperature in the feature space was regarded as the wet edge. TVDI variables, including dry edge 

slope, intercept and wet edge, for the 14 images from 2007 and 2008 are shown below (Figure 2.6). 

By comparing with the precipitation data through May to October, we can see that the variables 

are closely associated with the amount of rainfall being received. Days after rainfall often coincide 

with lower wet edge position, and less steep dry edge. For example, the day 2007154 and 2008253 

have the least steep dry edge because rainfall happened shortly before these days. Steep dry edge 

slope and high wet edge position often correspond to dry days, such as the day 2007202 and the 

day 2008125, 2008141. Generally speaking, the relationship between the TVDI parameters and 

rainfall is that drier weather conditions often mean a steeper dry edge and higher wet edge position, 

and days after receiving rainfall show the opposite. Thus, it is reasonable to use the triangle 

parameters as an indicator of soil wetness condition. The LST/NDVI feature space is poorer-

defined during rainy days, such as the day 2008253 since the day before, which is 2008252, 

42.3mm rainfall was recorded. This is probably because there are few dry soil pixels in the frame 

because of the rainfall. 

 

 

                                                           
1 The Python codes for calculating TVDI and DSI is attached in Appendix 
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Figure 2.5 LST/NDVI feature space of selected images in 2008 
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Figure 2.6 Triangle variables temporal evolution in 2007 and 2008 
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Spatial distribution of TVDI and DSI 

From the theoretical discussion about the LST/NDVI feature space, it is apparent that 

vegetated areas tend to have lower TVDI and DSI values indicating high soil water content, 

while less vegetated areas are more likely to be drier and have higher TVDI and DSI values. 

Taking the image 2008221 as an example (See Figure 2.7), the drainage systems (illustrated 

as A) at Konza tend to have low TVDI and DSI value because it is densely covered by 

vegetation. Places around the drainage in Konza are covered by grass, and they have higher 

TVDI and DSI value. Agricultural lands (B) in the north of Konza have high TVDI and 

DSI values because it is bare soil and not covered by crops. The west of Konza (shown as 

C) has higher TVDI and DSI values than the east as it is less vegetated. 

 

 

Figure 2.7 Spatial distribution of TVDI of 2008221 (August 8, 2008). (a) is a true-color 

image from the study area; (b) and (c) are the TVDI image and DSI image, respectively, 

for the same area. 
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Temporal evolution of TVDI and DSI 

A comparison of TVDI and average precipitation at 9 sites at KPBS (see Figure 2.8), 

suggests that TVDI is, in general, sensitive to rainfall, and the index drops after rainfall. 

For example, in 2008 from the period of day 109 to 145, which received little rainfall, and 

as a result day 125 and day 141 show the high TVDI values. Day 173 has lower TVDI 

value than the previous two after receiving rainfall. However, there is one abnormality to 

be noted. The day 2007249 received 36.2 mm rainfall, and the soil would be wet and the 

day after that (2007250) should have lower TVDI values than day 2007218 which is in the 

middle of dry period. Similarly, the day 2008252 received 42.3 mm rainfall; however, the 

TVDI value of the day 2008253 is almost the highest for the year even compared to the 

driest period, which is from the day 2008109 to 2008145. However, the temporal evolution 

of DSI present a more reasonable match with the rainfall data. We can see that the day 

2007205 and the day 2008253, which received significant rainfall the day before and have 

shown high TVDI values, show lower DSI values, indicating that DSI has a better 

explanatory power in the temporal change of soil wetness condition. 

 

 

Figure 2.8 Location of comparison sites for precipitation and TVDI at KPBS.  The 

indicated sites are locations of rain gauges from the Konza USGS weather and stream 

gauging station. 
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Figure 2.9 Temporal evolution of DSI and TVDI
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Validation of DSI across dates 

Having concluded that DSI is less sensitive than sudden rainfall than TVDI, I am going 

to use DSI as an index of surface dryness index. In order to test if there is a uniform 

relationship between DSI and evaporative fraction, four different images were chosen to 

validate DSI, including two dates (2007250, 2008205) whose NDVI/LST feature space are 

well-defined and two other dates (2008221, 2008253) whose NDVI/LST feature space are 

more poorly defined. The LST/NDVI feature spaces of these four dates are shown below 

(See Figure 2.10). 

 

Figure 2.10 LST/NDVI feature space of the selected dates 
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The SEBS model is used to estimate evaporative fraction for these four dates and they 

are plotted against DSI and a line is fitted to each plot (shown in Figure 2.11, regression 

equation, R square and p value are also given). To assess the agreement among four 

regression lines the Willmott index of agreement is used. Willmott et al. (1980) developed 

the index of agreement (𝑑), which was used to validate the developed forecasting models. 

The index of agreement (𝑑) is expressed by the following equation: 

where 𝑃𝑖  is the prediction value, 𝑂𝑖  is the observed value and 𝑂 is the mean of the 

observed value. The optimum value of 𝑑 is 1 meaning that all the modeled values fit the 

observations.  

DSI values ranging from 0 to 20 with an interval of 0.1 (201 points for each set) are 

chosen to produce the corresponding EF values for each regression equation. Four sets of 

EF values are compared with one another using the Willmott index of agreement, and the 

results are shown below (See Table 2.3). 

 

Figure 2.11 EF/DSI plot for the selected dates 

 
𝑑 =  1 −

∑(𝑃𝑖 − 𝑂𝑖)
2

∑(|𝑃𝑖 − 𝑂| + |𝑂𝑖 − 𝑂|)2
 (7) 
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Table 2.3 Willmott index of agreement for each EF pair 

 2007250 2008205 2008221 2008253 

2007250 1 0.7592 0.9865 0.7628 

2008205  1 0.9357 0.6223 

2008221   1 0.7611 

2008253    1 

 

From the 𝑑  values above it is apparent that the regression equations from the day 

2007250 and 2008221 as well as 2008205 and 2008221 produce a good fit (with 𝑑 value 

greater than 0.9) between each other. Regression equations for the day 2007250 and 

2008205, 2007250 and 2008253, 2008221 and 2008253 produce a fairly good agreement 

(with 𝑑 value greater than 0.75) between each other. The worst agreement is seen between 

2008205 and 2008221 whose 𝑑 value is slightly larger than 0.60. The good agreement 

indicates that there is a uniform regression equation, which can be used to estimate 

evaporative fraction based on DSI values, and according to equation 4 that soil moisture 

can be expressed as (taking the regression equation from the day 2008221): 

where 𝜃𝑠𝑎𝑡 is the saturated soil moisture. 

 

 

 

 

 

 

 

 

 𝜃 = 𝜃𝑠𝑎𝑡 ∗ 𝑒(−0.442∗DSI+0.1179)/0.42 (8) 
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Discussion and Summary 

Soil moisture is an important index about energy exchange between the land and the 

atmosphere and it is related to evapotranspiration, vegetation, soil heat balance and so on. 

Great efforts have been made to estimate soil water content using various ways. Soil 

moisture probes can provide the most accurate information about soil water content but it 

is limited by high costs, labor and the inability of investigating large and remote areas. 

Passive microwave sensors can be used to estimate soil moisture but it is hindered by its 

low spatial resolution. Optical/thermal remote sensing data has become popular in 

retrieving soil moisture owing to their relatively high spatial, temporal resolution and 

multiple spectral channels. Since the past decade various methods and indices have been 

developed to estimate soil moisture. The triangle method and TVDI is one of the most 

commonly used methods to investigate surface wetness condition owing to the fact that it 

has a well-defined physical meaning and only requires NDVI and LST to perform the 

calculation. 

TVDI shows, in general, fairly good match in term of the spatial distribution of soil 

moisture where vegetated areas tend to show low TVDI values indicating high soil 

moisture, less vegetated and bare soil tend to show high TVDI values meaning low water 

content. Owing to the fact that the calculation of TVDI is based on the dry edge and the 

wet edge of a specific date and different date have different driest soil conditions, thus 

TVDI is not suitable for comparing soil moisture condition across different images. Since 

wet edges from different images have the same physical meaning (at field capacity or 

above), so it can be used to derive a more robust surface dryness index. The LST/NDVI 

feature space consists of a family of soil moisture isolines as well as TVDI isolines, and 

the slopes of the isolines represent different soil dryness condition, thus the slope of the 

isolines can be used as an indicator of the soil water content. The Dryness Slope Index 

(DSI) is proposed based on the wet edge and the slopes of different soil moisture isolines, 

and it shows a good match in terms of the spatial distribution of soil moisture and a good 

match for the temporal evolution between soil moisture and the meteorological data.  

Evaporative fraction values retrieved from the SEBS model were plotted against DSI, 

and the regression equations from different plots showed relatively good agreement among 

each other by using the Willmott index of agreement, which means that there is a uniform 
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regression function between DSI and evaporative fraction (which is directly related to soil 

moisture), and in turn it shows that DSI is a more robust surface dryness index than TVDI. 

Owing to the limitations of the thermal band from Landsat5 TM data, the LST values 

estimated are not so continuous that makes the correlation coefficient of EF/DSI plots less 

satisfying. Some preliminary results from MODIS LST and NDVI products showed higher 

correlation coefficient, which is assumed to be related to the fact the LST from MODIS 

data is 12-bit and is more continuous than that of Landsat5 TM data, which is 8-bit. Future 

studies should be done to see if EF/DSI plots from different dates have similar regression 

function when using remote sensing data from different sensors and from different study 

area. 
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Chapter 3 - The Effect of Land Cover and Topography on Simulated Soil Moisture: 

A Case Study of the Flint Hills Ecoregion and Konza Prairie 

 

Abstract 

In this paper, I examined the temporal trend of simulated soil moisture in the Flint Hills 

ecoregion and then studied the relationships among soil moisture and several 

environmental factors including land cover, slope, aspect and relative elevation. A series 

of 16-day MODIS Land Surface Temperature (LST) and Normalized Difference 

Vegetation Index (NDVI) products from 2000 to 2014 over the entire Flint Hills ecoregion 

were used to calculate their respective Dryness Slope Index (DSI, Luo et al, 2016) images, 

which were then used to estimate soil moisture in assist of the empirical model which 

describes the relationship between evaporative faction and soil moisture. I then used the 

nonparametric Mann-Kendall (MK) test on the simulated soil moisture to explore whether 

any trend is present throughout the years. Results showed that there is no statistically 

significant upward or downward trend found in the dataset. The Univariate Analysis of 

Variance (ANOVA) test was conducted to explore the effect of land cover and some 

topographic factors on simulated soil moisture, and results showed that land cover 

contributes the most to the variations of simulated soil moisture. 

 

Key words: TVDI, dryness slope index (DSI), soil moisture, temporal trend, relative 

importance. 
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Introduction 

Soil moisture is an important variable for hydrological processes, energy exchange and 

land-atmospheric interactions. It serves as an essential index for drought prediction and has 

great implications for agricultural activities and management. Soil moisture dynamics are 

controlled by many processes including evapotranspiration, infiltration and root water 

uptake. Soil moisture is also a vital factor which determines the spatial and temporal 

dynamics of terrestrial ecosystems and is therefore a key variable in ecological and 

hydrological models, and the retrieval of soil moisture at regional and global scale has 

become the focus of many studies of land surface processes (Moran et al., 1994). 

Field investigation is one the most commonly used methods for retrieving soil and 

vegetation water content. Even though it provides the most accurate information about soil 

moisture, this method is not suitable to be applied to remote and mountainous areas as it is 

costly and time-consuming which also limited its spatial coverage and investigation 

frequency. What is more, point-based data is often poorly-distributed and are not available 

in a timely manner. For this reason, the use of remote sensing to retrieve soil moisture has 

become the focus of many studies (Carlson et al., 1995a; Gillies and Carlson, 1995b; 

Verstraeten et al., 2008) despite the difficulty of obtaining reliable estimates. Since soil 

moisture has important implications in regional resources and environments, and land 

use/cover and other related environmental factors influence the spatial distribution and 

temporal evolution of soil moisture, understanding the spatial and temporal relationships 

between soil moisture and these factors is of great significance for more efficient and 

sustainable use of the available soil moisture and other resources. 

Optical and thermal radiation and reflection characteristics are largely controlled by the 

soil and vegetation. Vegetation has a unique spectral response, which has high reflectance 

at near-infrared wavelength and low reflectance at red wavelength (Figure 3.1). This is 

largely controlled by the chlorophyll content in the leaves, which in turn can be influenced 

by soil water content. Therefore, the soil water content can be indirectly reflected by the 

spectral response, and the Normalized Difference Vegetation Index (NDVI) is the most 

common used index to reveal vegetation health condition. Soil moisture also influences the 

reflectance of the soil because soil reflectance decreases with increasing soil water content. 

Soil moisture can also influence the temperature of the soil surface and the canopy. 
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Although, the spectral reflectance of the canopy does not change greatly after initial water 

stress, the temperature of the leaves can rise rapidly. The temperature of the soil is closely 

related to sensible heat and latent heat which is largely controlled by the soil water content. 

Therefore, a variety of methods which utilize remote sensing to estimate soil water content 

are based on Land Surface Temperature (LST), Normalized Difference Vegetation Index 

(NDVI), and other related indices. Wang et al., (2007) used three channels from MODIS 

data, centering at 860 nm, 1640 nm and 2130 nm, and proposed the Normalized Multi-

Band Drought Index (NMDI) to estimate soil moisture. Zhan et al., (2007) proposed the 

model of Soil Moisture Monitoring by Remote Sensing (SMMRS) based on the near-

infrared versus red spectral reflectance feature space from which evaporative fraction is 

derived, and SMMRS is calculated by subtracting evaporative fraction from 1 which 

represents the soil moisture of a completely wet soil. Among many different surface 

dryness indices, the triangle method and the notion of temperature vegetation dryness index 

have attracted the most attention (Price, 1990, Carlson et al., 1994). The “triangle” method 

utilizes the feature space of LST versus NDVI to represent physical boundaries of the 

surface, therefore bypasses the need for additional atmospheric data to estimate soil water 

content. Owing to the fact that the calculation of TVDI depends on the “wet edge” and the 

“dry edge” position whose physical meaning, the driest condition of the frame, varies 

among different images from different date. Whereas, the “wet edge” has a fairly stable 

physical meaning which is at field capacity or above. Therefore, in this study we adopted 

a modified form of TVDI, the Dryness Slope Index (DSI, Luo et al, 2016), to estimate soil 

water content. Then, we explored the temporal evolution of soil moisture in Flint Hills 

from 2000 to 2014 to verify whether there is an upward or downward trend throughout the 

years. In order to understand the relationships among soil moisture and several 

environmental variables, a one-way ANOVA was applied to see which environmental 

factor contribute the most the variations of soil moisture. 
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Figure 3.1 Green vegetation spectral curve. At the red wavelength it shows low 

reflectance, and at NIR it shows high reflectance. Modified from source:  Assessing the 

Extent and Severity of Erosion on the Upland Organic Soils of Scotland using Earth 

Observation: A GIFTSS Implementation Test: Final Report. October 2009. 
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Study area and dataset 

The study area includes the Flint Hills ecoregion, an area of 25,733𝑘𝑚2, is located in 

eastern Kansas and north-central Oklahoma (See Figure 3.1). The main land cover of the 

Flint Hills ecoregion includes dense grassland, shrub, open water, developed areas, and 

cropland along the river valleys and in areas with little relief. Average annual precipitation 

ranges from 711 mm to 889 mm. The main soil types include Kastanozems (Dark brown 

soils rich in organic matter) and Phaeozems (Dark soils rich in organic matter). The study 

area also includes the Konza Prairie Biological Station (KPBS). KPBS is a 73 𝑘𝑚2 study 

area is located south of Manhattan, Kansas. It is a member of the National Science 

Foundation's Long Term Ecological Research (LTER) network, and thus maintains an 

extensive archive of ecological and climatological data supporting this research. The site 

includes the entire Konza prairie and some agricultural land in the north of the Konza 

prairie.  The main land cover is grassland, woodland, cultivated crops, barren land and open 

water. Except for agricultural lands whose land cover type varies throughout a year, other 

land cover types remain relatively stable. Around 76% of annual rainfall (835 mm) occurs 

during the growing season, and it is highly variable from year to year. The main soil types 

in the study area are silt loam and silty clay loam. 

The dataset comes from several sources. The MODIS LST (MOD11A2) and NDVI 

(MOD13A2) products (NASA LP DAAC, 2000) from May to October from 2000 to 2014 

with an interval of 16 days are utilized to calculate soil moisture and to explore its temporal 

change for the Flint Hills ecoregion. Land cover map (obtained from classifying Landsat5 

TM images) and topography data (DEM) are used to explore their relative importance to 

the variations of estimated soil moisture.  
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Figure 3.2 Two study area (marked by red boundaries) 
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Method 

The “triangle” method and its modified form----the dryness slope index 

The “triangle” method is based on an interpretation of the pixel distribution in 

LST/NDVI feature space. LST is affected by several factors including surface thermal 

properties, evapotranspiration, and vegetation coverage, hence there is no direct 

relationship between LST and soil water content. However, soil moisture is an important 

factor controlling vegetation canopy temperature. Studies show that under certain 

vegetation coverage soil moisture can indirectly affect canopy temperature. Usually the 

LST/NDVI feature space (shown in Figure 3.3) is used to illustrate the relationship among 

LST, soil moisture and vegetation coverage. A scatterplot of remotely sensed surface 

temperature and a vegetation index often results in a triangular shape (Price, 1990; Carlson 

et al., 1994), or a trapezoid shape (Moran, Clarke, Inoue, et al., 1994) if a full range of 

fractional vegetation cover and soil moisture contents is represented in the data. Many 

studies (Prihodko and Goward 1997; Moran et al. 1994; Carlson et al. 1995; Gillies et al. 

1997; Sandholt et al. 2002) show that the “triangle” shape can be regarded as consisting of 

a family of soil moisture isolines representing different degrees of aridity. The horizontal 

line at low limit in the LST/NDVI feature space is called the wet edge (unlimited water 

availability) while the sloping line is called the dry edge (maximum evapotranspiration and 

limited water access). A dryness index is proposed from the LST/NDVI feature space to 

describe the relationship among the three and it is calculated as the ratio of A to B for point 

C in the feature space: 

 

where 𝑇𝑐  represents the LST of a pixel; 𝑇𝑚𝑖𝑛  is the temperature at the wet edge; 𝑇𝑚𝑎𝑥 

represents the temperature at the dry edge under the same NDVI and is calculated as 𝑇𝑚𝑎𝑥 

= a + b*NDVI, where a and b are the coefficients of the regression equation for the dry 

edge. As how the index is defined above, the TVDI value at dry edge would be 1 and that 

at the wet edge is 0. 

 

 

 
𝑇𝑉𝐷𝐼 =  

𝑇𝑐 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 =  

𝐴

𝐵
 (1) 
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Figure 3.3 LST/NDVI Feature Space. Bare soil pixels tend to exist in the upper-left 

corner of the triangle; Full vegetation pixels appear in the bottom-right corner of the 

triangle; Mixed pixels appear in the center of the feature space. For pixel C, its TVDI 

value calculates as the ratio between A (the distance from its LST value to the wet edge) 

and B (the distance between the maximum LST under the same NDVI to the wet edge). 

The slanting lines within the LST/NDVI feature space are TVDI isolines. 
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  From the above analysis, it is apparent that TVDI is based on the dry edge as well as 

the wet edge. The former varies for different dates and different feature spaces, whereas 

the latter has a fairly stable physical meaning behind it which is at field capacity or above. 

Recall that the LST/NDVI feature space consists of a family of soil moisture isolines which 

are also TVDI isolines, and drier soil has steeper isolines whereas wetter one has moderate 

isolines. The slope is confined in the specific feature space and its maximum value is no 

greater than the slope (its absolute value) of the dry edge of the same frame. We can then 

use the slope of soil moisture isolines as a measurement to show how far each soil moisture 

isoline is deviated from the wet edge, thus we have the same basis for different images. 

From the above analysis DSI is defined as the slope (its absolute value) of each soil 

moisture isoline, and the formulation of this index is calculated as (Luo et al. 2016):  

where a is the slope of the dry edge for a specific frame; TVDI is the TVDI value for each 

pixel within the frame. Since the slope of the dry edge is negative, the absolute value is 

used to show how far a soil moisture isoline is deviated from the wet edge. As a result, 

drier pixel would be further from the wet edge and thus has larger DSI values. 

 

An empirical model between DSI and evaporative fraction 

Luo et al. (2016) proposed an empirical linear model which describes the relationship 

between DSI and evaporative fraction (EF). It is calculated as: 

 

An empirical model between soil moisture and evaporative fraction 

Scott et al. (2003) proposed a way to estimate relative soil moisture based on 

evaporative fraction: 

 

where 𝜃𝑠𝑎𝑡 is the saturated soil moisture, Λ is the evaporative fraction. 

 𝐷𝑆𝐼 =  |𝑎 ∗ 𝑇𝑉𝐷𝐼| (2) 

 𝐸𝐹 =  −0.0422 ∗ 𝐷𝑆𝐼 + 1.1179 (3) 

 𝜃 = 𝜃𝑠𝑎𝑡 ∗ 𝑒(Λ−1)/0.42 (4) 
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According to equation 2,3,4, soil moisture can be expressed as: 

 

 

Temporal analysis of soil moisture 

Mann and others (e.g. Mann 1945; Kendall 1975; Gilbert 1987) proposed using the test 

for significance of Kendall’s tau (MK test) to statistically assess if there is a monotonic 

upward or downward trend of the variable of interest over time. The MK test is a 

nonparametric test which means it does not require the assumption of normality. The null 

hypothesis is that there is no trend and the alternative hypothesis is that there is a trend 

(upward or downward) in the dataset. The Kendall’s tau-b test is calculated as follows and 

statistic software SPSS is used to calculate the tau-b value: 

where: 

𝑛𝑐 is the number of concordant pairs; 

𝑛𝑑 is the number of concordant pairs; 

𝑛0 equals 𝑛(𝑛 − 1)/2; 

𝑛1 equals ∑ 𝑡𝑖(𝑡𝑖 − 1)/2𝑖 ; 

𝑛2 equals ∑ 𝑢𝑗(𝑢𝑗 − 1)/2𝑗 ; 

𝑡𝑖 is the number of tied values in the 𝑖𝑡ℎ group of ties for the first quantity; 

𝑢𝑗  is the number of tied values in the 𝑗𝑡ℎ group of ties for the second quantity; 

 

MODIS NDVI and LST products were processed to calculate soil moisture values by 

using equation 5. The nonparametric MK test was applied on the mean value of estimated 

soil moisture of the entire Flint Hills eco-region, and three land cover types, namely, forest, 

grassland, and cultivated crop land.  

 

 𝜃 = 𝜃𝑠𝑎𝑡 ∗ 𝑒(−0.0422∗|𝑎∗𝑇𝑉𝐷𝐼|+0.1179)/0.42 (5) 

 𝜏𝐵 =
𝑛𝑐 − 𝑛𝑑

√(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)
 (6) 
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Relationship among simulated soil moisture and land cover and topography 

In order to explore the relationship among simulated soil moisture and several 

environmental factors including land cover, slope, aspect and relative elevation, a one-way 

ANOVA test was used. Land cover maps were produced for day 2008205, 2008173, and 

2008221 by using Landsat5 TM images for these days. Topographic factors were extracted 

from 30-m spatial resolution DEM. Then, around 2,500 (5% of all pixels) pixels are 

randomly selected to perform ANOVA test to explore the relative importance of those 

environmental factors to soil moisture variations.  The null hypothesis of ANOVA test is 

that the mean of simulated soil moisture is the same for different groups within each 

environmental factor. The alternative hypothesis is that the means for each group are not 

equal. 

 

 

Results 

Temporal analysis 

Average soil moisture values for Flint Hills ecoregion from 134 different dates were 

calculated and then MK test was used to verify if there is a statistically significant upward 

or downward trend existing in the dataset. Plots of average soil moisture values for the 

entire Flint Hills ecoregion and its forest, grassland, and cultivated crop land of these 

different dates are shown below (See Figure 3.4, Figure 3.5, and Figure 3.6). The general 

trend of simulated soil moisture within a certain year is that it gradually goes down and 

reaches the lowest point around the middle of the year, and then it slowly rises. The result 

of MK test is shown in Table 3.1, and an example of estimated soil moisture for the entire 

Flint Hills Ecoregion is also shown (See Figure 3.7; using image from July 28th 2010). 
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Figure 3.4 Plots of mean soil moisture values for the entire Flint Hills Ecoregion throughout the years. The general trend of simulated 

soil moisture within a certain year is that it gradually goes down and reaches the lowest point around the middle of the year, and then 

it slowly rises. 
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Figure 3.5 Plots of mean soil moisture values for three different land cover types from 2000 to 2006 
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Figure 3.6 Plots of mean soil moisture values for three different land cover types from 2000 to 2014
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Figure 3.7 Simulated soil moisture for the Flint Hills Ecoregion from July 28th, 2010 
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Table 3.1 MK result for trend analysis 

 Tau P value Alpha 

Flint Hills ecoregion -0.038 0.519 0.05 

Forest 0.039 0.501 0.05 

Grassland 0.031 0.593 0.05 

Cultivated crop land 0.032 0.580 0.05 

 

The low tau value between time and estimated soil moisture suggests that there is little 

correlation between them. The p value is larger than the significance level alpha meaning 

that the null hypothesis is not rejected, so there is no significant trend in soil moisture 

values for the Flint Hills ecoregion and the three land cover types over the years. However, 

this conclusion comes from using MODIS product whose spatial resolution is 1 km and 

from looking at the entire Flint Hills ecoregion for a certain period of time. Therefore, an 

upward or downward may show up if using a finer spatial resolution data or a smaller study 

area at a different time. 

 

The relationships among soil moisture and land cover and topographic factors 

The result of ANOVA test is shown in the Table 3.2. As we can see that for 2008205 

and 2008221 land cover, aspect, and relative elevation have significant effects on the 

variability of soil moisture values to which, however, slope contributes little. Result from 

2008125 shows that only land cover is statistically significantly related to the soil moisture 

variations. Land cover has larger F value than other factors indicating a greater possibility 

that it accounts for most of variability in simulated soil moisture. Since the calculation of 

simulated soil moisture is based on DSI, which is related to NDVI and LST, so it is 

understandable that land cover shows direct and larger impact on soil moisture variations. 

However, soil moisture estimated by using a hydrology model, which considers elevation 

factors may show a different result where slope and other topographic factors have more 

influence than land cover on the variations of estimated soil moisture. 
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Table 3.2 ANOVA results 

 2008125 2008205 2008221 

Factors 
F 

Critical 

F value 
p  F 

Critical 

F value 
p  F 

Critical 

F value 
p  

Land cover 5.91 2.99 0.03 32.11 2.99 0.00 6.89 2.99 0.001 

Aspect 0.85 1.88 0.56 1.91 1.88 0.04 2.59 1.88 0.005 

Relative elevation 1.07 1.219 0.28 2.63 1.21 0.00 2.25 1.21 0.000 

Slope 0.97 1.12 0.62 0.83 1.12 0.98 1.05 1.09 0.110 
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Discussion and Conclusion 

Soil moisture is an important biophysical property of soil which controls 

evapotranspiration, energy exchange, and vegetation coverage on the surface. It is also an 

important factor for monitoring drought and has many implications for agricultural 

managements. Monitoring soil moisture at regional and continental scales over a long 

period can provide insights for environmental evaluation and protection, and it has been 

difficult to achieve via traditional methods, such as field investigation. Remote sensing has 

provided an alternative to observe the surface at a much larger scale and at a timely manner, 

which makes it more plausible to monitor soil moisture at a large scale. The means of 

remote sensing has become popular in spite of inaccuracy compared to field investigation.  

Since anthropogenic activities can change land use and cover which in turn changes the 

spatial and temporal distribution of soil moisture, understanding the relationships among 

soil moisture, land cover, and topography is beneficial to efficient use of the available soil 

moisture and other resources. 

In this study, I estimated soil moisture over the entire Flint Hills ecoregion from 2000 

to 2014 by using a form of modification of the temperature vegetation dryness index, called 

dryness slope index in assist of several empirical models which illustrate the relationship 

between soil moisture and evaporative fraction. I then applied the nonparametric Mann-

Kendall test to verify if any trend was present in soil moisture over the years, and the results 

showed that there is no statistically significant relationship between soil moisture and time 

and no upward or downward trend was found in the dataset. This indicates that soil water 

content has not seen major changes over the entire Flint Hills ecoregion from 2000 to 2014. 

However, this result could be different when using a different dataset or different study 

area. We then focused on a smaller study area (Konza Prairie and its nearby areas) to 

explore the relationship among simulated soil moisture, land cover, and topography. The 

univariate analysis of variance was conducted for about 2,500 randomly selected pixels, 

and the results showed that land cover has the biggest influence on soil moisture than slope, 

aspect, and relative elevation. This is likely owing to the fact that the dryness slope index 

is based on TVDI whose calculation depends on NDVI and land surface temperature; 

therefore it is reasonable and understandable that land cover contributes the most to the 

variations of estimated soil moisture. In this study, we did not attempt to compare soil 
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moisture from field investigation and its relationships to the environmental factors, so 

further studies should be carried out to see if soil moisture from field data could give similar 

results.  
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Chapter 4 – Conclusions 

Optical/thermal remote sensing is one of the most commonly used methods to retrieve 

soil water information, and there are many surface dryness indices being proposed for that 

purpose. Throughout the years, the triangle method and TVDI have been developed and 

adopted to estimate soil moisture from local to global scale. However, little attention has 

been paid to the theoretical basis of the triangle method. In this thesis, I examined the 

theoretical basis of the calculation of TVDI and proposed a more robust dryness index 

based on TVDI. The new surface dryness index was then applied to study the temporal 

trend of soil moisture over the entire Flint Hills ecoregion. I used a small study area, which 

is mainly located in the Konza prairie, to study the relationships among soil moisture and 

several environmental variables. 

Chapter 2, The Dryness Slope Index (DSI) – A Modified Form of the Temperature 

Vegetation Dryness Index (TVDI) for Estimating Soil Moisture, carefully examined the 

theoretical basis of the triangle method by using the surface energy balance system model 

(SEBS). Several assumptions about the triangle method were verified, including (1) the 

LST/NDVI feature space would result in a triangular shape given enough pixels reflecting 

a full range of soil surface wetness and vegetation coverage; (2) The LST/NDVI feature 

space consists of a family of soil moisture isolines which are also TVDI isolines, and more 

slanting isolines correspond to drier soil pixels, and vice versa ; (3) The upper boundary of 

the LST/NDVI feature space represents the driest condition in the specific frame and the 

lower boundary represents soil with unlimited water availability. The calculation of TVDI 

is based on the position of the dry edge and the wet edge, and the former of which 

represents the driest condition of the frame and the later stands for soil pixel at field 

capacity or above. The driest condition does not necessarily mean zero soil moisture, and 

driest condition from different frames may vary. Therefore, TVDI value calculated from 

different image cannot be used as an indicator as to say one pixel from one image is drier 

than the pixel from another image. On the other hand, the wet edge has a stable physical 

meaning even among different images, and it can be utilized to develop a more robust 

dryness index whose value can be compared among different images. With the help soil 

moisture isolines, a new dryness index, the Surface Dryness Index (DSI), which reflects 

how far each soil moisture isoline is deviated from the wet edge, was proposed. In order to 
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show the performance of TVDI and DSI in estimating soil moisture, spatial distribution 

and temporal evolution of soil moisture estimated from TVDI and DSI were compared, 

and results showed that the spatial pattern of soil moisture from these two indices are 

similar. However, temporal evolution of soil moisture calculated from TVDI showed some 

abnormality with the precipitation data. Dates which received significant rainfall showed 

higher TVDI values than those received little rainfall. However, the temporal change of 

soil moisture from DSI showed a more reasonable match with the rainfall record. In order 

to show that there is a uniform relationship between DSI and evaporative fraction, four 

different images were chosen to perform the Willmott index of agreement test. Results 

showed that an uniform relationship was found between DSI and evaporative fraction 

among different images. To take it further, an empirical model about DSI and soil moisture 

was developed in the end. 

Chapter 3, The Effect of Land Cover and Topography on Simulated Soil Moisture: A 

Case Study of the Flint Hills Ecoregion and Konza Prairie, applied the new index ---- DSI 

developed in chapter 2 to study temporal trend of soil moisture and its relationships with 

several environmental variables. A series of 16-day MODIS Land Surface Temperature 

(LST) and Normalized Difference Vegetation Index (NDVI) products from 2000 to 2014 

over the entire Flint Hills ecoregion were used to calculate their respective temperature 

DSI images which were then utilized to estimate soil moisture in assist of the empirical 

model which describes the relationship between evaporative faction and soil moisture. The 

nonparametric Mann-Kendall (MK) test was then used on the simulated soil moisture to 

explore whether any trend is present throughout the years. Results showed that little 

correlation was found in soil moisture over time and there was no upward or downward 

trend throughout the years. In order to address how anthropogenic activities, such as land 

use/cover change, affect spatial distribution of soil moisture, another study was carried out 

in a smaller study area mainly located at the Konza Prairie. Four environmental variables, 

including land cover, slope, aspect, and relative elevation, from three different dates were 

extracted along with their corresponding soil moisture images. A one-way ANOVA test 

was then used on soil moisture and the environmental variables. Results showed that land 

cover has larger F value than other factors indicating a greater possibility that land cover 

accounts for most of variability in simulated soil moisture. This is likely owing to the fact 
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that DSI is based on TVDI whose calculation depends on NDVI and LST; therefore, it is 

reasonable and understandable that land cover contributes the most to the variations of 

estimated soil moisture. 
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Appendix 

Triangle_main.py 

import os 

from triangle import Indices 

import auxil.auxil as auxil 

import gc 

def main(): 

#   input directory     

    in_path = auxil.select_directory(title="Choosing the input file directory") 

#   imagery dataset 

    lista = os.listdir(in_path) 

    print in_path 

    GQ = [] 

    data_list=[] 

    i = 0 

    for k in range(len(lista)): 

        GQ.append(str(lista[k])) 

    for k in GQ: 

        try: 

            if float(k[16:23]) > 0 : 

                data_list.append(k[16:23]) 

        except StandardError, e: 

            print "Error!" 
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    print data_list[0:len(data_list)/2] 

#   Output txt 

    Count = len(data_list)/2 

    for m in data_list[0:len(data_list)/2]: 

        print m 

        print type(m) 

        Indices(in_path, m, Count) 

print m 

 

 

Triangle.py 

import auxil.auxil as auxil 

import numpy as np  

from osgeo import gdal    

from osgeo.gdalconst import GA_ReadOnly,GDT_Float32 

import matplotlib.pyplot as plt 

from pylab import * 

import gc 

 

def Indices(in_path,M, Count):   

#   Input NDVI file 

    print "***************" 

    print str(M) 
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    gdal.AllRegister() 

    band_NDVI = 

gdal.Open(in_path+"/MOD13A2.MRTWEB.A"+M+".005.1_km_16_days_NDVI.tif",G

A_ReadOnly) 

    try: 

        cols1 = band_NDVI.RasterXSize 

        rows1 = band_NDVI.RasterYSize 

        bands1 = band_NDVI.RasterCount 

    except StandardError, e: 

        print "Error: "+str(M)+"_NDVI is missing" 

        exit(1) 

#   Input LST file 

    if(1): 

        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".005.LST_Day_1km.tif",GA_Read

Only) 

    if(band_LST is None):  

        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".041.LST_Day_1km.tif",GA_Read

Only) 

    if(band_LST is None): 

        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".004.LST_Day_1km.tif",GA_Read

Only) 

    if(band_LST is None): 
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        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".005.LST_Day_1km.tiff",GA_Rea

dOnly) 

    if(band_LST is None): 

        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".041.LST_Day_1km.tiff",GA_Rea

dOnly) 

    if(band_LST is None): 

        band_LST = 

gdal.Open(in_path+"/MOD11A2.MRTWEB.A"+M+".004.LST_Day_1km.tiff",GA_Rea

dOnly) 

    try: 

        cols2 = band_LST.RasterXSize 

        rows2 = band_LST.RasterYSize 

        bands2 = band_LST.RasterCount 

    except StandardError, e: 

        print "Error: "+str(M)+"_LST is missing" 

        exit(1) 

 

 

#   Check if LST and NDVI have the same size 

    if (cols1 != cols2) or (rows1 != rows2) or (bands1 != bands2): 

        print "Error: "+M+"_NDVI and "+M+"_LST have different size. Please correct 

the error, delete all the output files and run the program again!" 

        exit(1) 
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#   Check if LST and NDVI have spatial reference        

    projInfo1 = band_NDVI.GetProjection() 

    transInfo1 = band_NDVI.GetGeoTransform() 

    projInfo2 = band_LST.GetProjection() 

    transInfo2 = band_LST.GetGeoTransform() 

    if((str(projInfo1)=="") or (str(projInfo2)=="") or (str(transInfo1)=="") or 

(str(transInfo2)=="")): 

        print "Error: "+str(M)+" images do not spatial reference." 

        exit(1) 

    if((projInfo1 !=projInfo2)): 

        print "Error: "+str(M)+" images have different pro spatial reference." 

        exit(1) 

#   Make Matrix 

    NDVI=(band_NDVI.ReadAsArray().astype(float)) 

    NDVI[NDVI==np.amin(NDVI)] = np.nan 

    LST=(band_LST.ReadAsArray().astype(float)) 

    LST[LST==np.amin(LST)] = np.nan 

    temp = LST 

    temp = np.array(temp) 

    temp.shape=(1,rows1*cols1) 

    temp2 = [] 

    for i in temp[0]: 
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        if(not(np.isnan(i))): 

            temp2.append(i) 

    print np.amin(temp2) 

    LST[LST==np.amin(temp2)] = np.nan  

 

# Getting rid of the Nan     

    i = 0 

    j = 0 

    v = np.ones((rows1,cols1),dtype=list) 

    while i < rows1: 

        while j < cols1: 

            v[i,j] = (NDVI[i,j],LST[i,j]) 

            j = j + 1 

        i = i + 1 

        j = 0 

    v.shape=(1, rows1*cols1) 

    v=list(v)       

    print type(v) 

       w=[] 

    i=0 

    while i < rows1*cols1: 

        w.append(v[0][i]) 

        i=i+1 
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    #print w[0][1] 

    good = [] 

    for i in w: 

        if ((not(np.isnan(i[0]))) and (not(np.isnan(i[1])))): 

            good.append(i) 

    for i in good: 

        if (np.isnan(i[0]) or np.isnan(i[1])): 

            print "Error!" 

#   Sort the matrix using LST and NDVI value 

    sort_lst = sorted(good, key=lambda v_tuple:v_tuple[1]) 

    sort_ndvi = sorted(good, key=lambda v_tuple:v_tuple[0]) 

    print sort_lst[0] 

    print len(sort_lst) 

    print np.amax(sort_lst) 

     

    NDVI_MAX_WETEDGE = sort_ndvi[-1][0] 

 

 

#   Find the NDVI value which has the highest LST 

#   In every 0.01 NDVI interval, choose 10 highest LST points and calculate the mean 

value 

#   Compare each highest LST and find the biggest value and its corresponding NDVI 

value 



71 

 

    T_temp = [] 

    T_start = [] 

    i = 0 

    j = 0 

    temp1 = 0 

    temp2 = 0 

    k = 0 

    m = 0 

    ndvi_start = 0 

    print sort_ndvi[-1][0] 

    while i<sort_ndvi[-1][0]:    

        while j < len(sort_ndvi): 

            if i<sort_ndvi[j][0]<i+0.05: 

                T_start.append(sort_ndvi[j]) 

            j = j + 1 

        T_start = sorted(T_start, key=lambda v_tuple:v_tuple[1]) 

        if (len(T_start))>3: 

            T_start = T_start[-3:] 

        else: 

            T_start = T_start[:] 

        if (len(T_start)!=0): 

            for p in T_start: 

                T_temp.append(p) 
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            for o in T_temp: 

                k = k + o[1] 

                m = m + o[0] 

            k = k / len(T_temp) 

            m = m / len(T_temp) 

            if temp1 >= k: 

                temp1 = temp1 

                temp2 = temp2 

            else: 

                temp1 = k 

                temp2 = m 

        print temp1, temp2 , len(T_temp) 

        j = 0 

        T_start = [] 

        T_temp = [] 

        i = i + 0.05 

        k = 0 

        m = 0 

    ndvi_start = temp2 

    print temp1 

    print temp2 

 

#   Calculate the Dry Edge 
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#   In every 0.01 NDVI interval, find the highest 5 LST points. Recode them and their 

corresponding NDVI value 

    i = ndvi_start 

    j = 0 

    c=[] 

    z_max=[] 

    z_max_temp =[] 

    if (i >= sort_ndvi[-1][0]): 

        return "Please check the data, something might be wrong." 

    if (i<sort_ndvi[-1][0]): 

        while i<sort_ndvi[-1][0]:  

            while j < len(sort_lst): 

                if i<sort_ndvi[j][0]<i+0.05: 

                    c.append(sort_ndvi[j]) 

                j=j+1 

 

            if len(c)==0: 

                print "c = 0"      

            c=sorted(c, key=lambda v_tuple:v_tuple[1])         

            print len(c) 

            if len(c)>10: 

                z_max_temp = c[-10:] 

            if len(c)<=10: 
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                z_max_temp = c[:] 

                 

            print len(z_max_temp) 

            print "############################" 

 

            for j in z_max_temp: 

                z_max.append(j) 

             

            j=0 

            c=[] 

            z_max_temp =[] 

            i=i+0.05 

            print i 

        z_max=sorted(z_max, key=lambda v_tuple:v_tuple[0]) 

        print len(z_max) 

         

#   Calculate Wet Edge     

    LST_min = sort_lst[0][1] 

    print "*************" 

    print "LST_min",LST_min 

 

#   Ready to draw the dry edge and wet edge 

    m=[] 
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    n=[] 

    for s in z_max: 

        m.append(s[0]) 

        n.append(s[1]) 

 

#   regression 

    p = np.polyfit(m,n,1) 

    print p 

    p=list(p) 

    print p[0],p[1] 

    slope=p[0] 

    #slope = -18.508 

    intercp=p[1] 

    #intercp = 48.537 

    y=[] 

    x1=range(0,200) 

    x=[] 

    y2=[] 

    for i in x1: 

        y1=float(i)*slope/100+intercp 

        y.append(y1) 

        x.append(float(i)/100) 

        y2.append(LST_min) 
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    plt.plot(x,y,"r-",NDVI,LST,"r*",m,n,"b*",x,y2,"r-") 

    plt.axis([0,0.9,20,55]) 

    plt.xlabel("NDVI") 

    plt.ylabel("Temperature/c") 

    plt.text(0.3,50,'LST ='+str(slope)+'*NDVI'+'+'+str(intercp)) 

    plt.text(0.3,52,"Date: "+M) 

    plt.text(0.3,48,"Wet Edgy = "+ str(LST_min)) 

    savefig(str(M)+'.png') 

    plt.close() 

    print slope,intercp 

 

#   write regression equation to txt 

    M = str(M) 

    f = open("output.txt","a") 

    print >>f , "\n"+"Dry Edge Equation" 

    if Count > 0: 

        f.write(M+": LST="+ str(slope) + "*NDVI+" + str(intercp)+"\n") 

        Count = Count - 1 

    if Count == 0: 

        f.close() 

         

#   calculate TVDI 

    TVDI=(LST-LST_min)/(intercp+slope*NDVI-LST_min) 
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    TVDI[TVDI<0]=0 

    TVDI[TVDI>1]=1 

 

#   write TVDI to disk 

    M = str(M) 

    driver = gdal.GetDriverByName("GTiff") 

    outDataset = driver.Create(M[2:]+"_TVDI.tif", 

                        cols1,rows1,bands1,GDT_Float32) 

    projInfo = band_NDVI.GetProjection() 

    transInfo = band_NDVI.GetGeoTransform() 

    outDataset.SetProjection(projInfo) 

    outDataset.SetGeoTransform(transInfo) 

    TVDI_band = outDataset.GetRasterBand(1) 

    TVDI_band.WriteArray(TVDI[:,:]) 

    TVDI_band.FlushCache() 

    TVDI_band = None 

    outDataset = None 

 

#   calculate DSI 

    DSI = TVDI*slope*(-1) 

#   write DSI to disk 

    driver = gdal.GetDriverByName("GTiff") 

    outDataset = driver.Create(M[2:]+"_DSI.tif", 
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                        cols1,rows1,bands1,GDT_Float32) 

    projInfo = band_NDVI.GetProjection() 

    transInfo = band_NDVI.GetGeoTransform() 

    outDataset.SetProjection(projInfo) 

    outDataset.SetGeoTransform(transInfo) 

    DSI_band = outDataset.GetRasterBand(1) 

    DSI_band.WriteArray(DSI[:,:]) 

    DSI_band.FlushCache() 

    DSI_band = None 

    outDataset = None 

#   delete variables and release memory 

    del band_NDVI, cols1,rows1,bands1, band_LST, cols2, rows2,bands2 

    del projInfo1,transInfo1,projInfo2,transInfo2 

    del good,NDVI,LST 

    del v,w,f,Count 

    del sort_lst,sort_ndvi 

    del T_temp,T_start 

    del c,z_max,z_max_temp 

    del m,n 

    del p,y,x1,x,y2,slope,intercp 

    del TVDI,driver,outDataset,projInfo,transInfo,TVDI_band,RSM,RSM_band 

    gc.collect() 

 


