/400L PATH PLOTTING USING PLOT19/

by

P. SARAVANA ERASAD

B.E. (Mechanical Engineering)

College of Engineering, Guindy
Madras, India, 1983
Advisor

Dr. MUTHURAJ VAITHIANATHAN

Assistant Professor

Kansas State University
Manhattan, Kansas

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas
1985

Approved by:

(Ll (oSt

Major Professor

LD .
3¢es TABLE OF CONTENTS
1985
P737 Page
Ce 4
ACKNOWLEDGEMENTS i
LIST OF TABLES ii
LIST OF FIGURES iii
I. INTRODUCTION
A. Preamble 1
B. Numerical Control Technology 2
C. History of Numerical Control Technology 4
D. Tool Path Plotting 5
E. Report Objectives 7
F. Project Benefits 10
G. Project Methodology 10
II. HARDWARE AND SOFTWARE ENVIRONMENT
A. The Machine Tool 1
B. The Hardware Resources 12
C. The Software Resources 12
II1. SYSTEM STRUCTURE
A. Overall Structure 14
B. Phase I 14
C. Phase II 27
IV. CONCLUSIONS AND RECOMMENDATIONS 35
V. REFERENCES 36

;ilEUE 9t54k09

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ILLEGIBLE

DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

VI. APPENDICES

HIG!""I:"!UGW)

-

VII. ABSTRACT

Pratt and Whitney Machine Codes
PLOT10 Routines Used

Hierarchy of Subroutines

Flow Charts

Program Listing for Phase I
Program Listing for Phase II
Sample Program

PRAWTOPPS User's Manual

Exec Programs

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and gratitude to
Dr. Muthuraj Vaithianathan for his valuable guidance and encouragement
throughout his study in this university.

The author is thankful to Professor Jacob J. Smaltz and Dr. Prakash
Krishnaswami for serving on the graduate committee.

The author takes this opportunity to thank his friends and the students
of the Industrial Engineering Department who helped in testing and developing
this project.

Last but not the least, the author is indebted to his parents, brothers
and sister without whose encouragement énd support this graduate program may

not have materialized. It is to them that this work is dedicated.

(i)

LIST OF TABLES

Page

1. Chronological development of Numerical 6
Control technology

(i1)

2.
3.
4.
5.

LIST OF

Present method of operation
Proposed method of operation
Overall structure of PRAWTOPPS
Overall structure of Phase I

Overall structure of Phase Il

(ii1)

FIGURES

Page

15
17
28

I. INTRODUCTION

A. Preamble

Due to the often high cost of resources (human, material and equipment)
in a manufacturing environment, one does not have the luxury of experimenting
with experimental decisions on the manufacturing floor to determine the
outcome of such decisions. As a result, to the extent that is possible, floor
related decisions are evaluated outside of the real manufacturing environment,
thereby minimizing the detrimental impact that such experimental decisions may
have on the floor. Examples of such decisions include the modification of
plant layout, introduction of automated material handling etc.

The need to evaluate a decision outside of the real environment is not
unique to the manufacturing environment. Such a need is felt in most real
world systems. This need is often met both, in manufacturing and non-
manufacturing environments, by simulating the decision in order to study the
impact on the system.

There are several ways in which this simulation is carried out. These
include physical simulation through use of mockups and scaled models,
mathematical modelling and analysis, computer modelling and analysis, graphic
simulation using computers etc.

In todays manufacturing environment, there is an increasing trend in the
use of computer based graphics for simulation and decision making. One of the
areas in manufacturing where computer graphics is increasingly used is in tool
path plotting for numerical control machine tools. The intent here is to
verify the accuracy and manufacturability of programmed instructions to the
machine tool. One way of verifying programmed instructions is to actually
input to the machine tool the instructions and manufacture the part. This

obviously is disruptive to normal operations on the floor, time consuming and

prohibitively expensive depending on the raw material cost. A better method is
to graphically simulate on a computer the cutting path the cutting tool would
have taken had the same instructions been input to the machine tool. Software
systems that permit such simulation are called tool path plotting systems.
This report details the structure and operation of a tool path plotting
system for the Pratt and Whitney 2 1/2 axis vertical milling machine. Hereon
in this report, this system will be referred to by the acronym PRAWTOPPS

(PRatt And Whitney TOol Path Plotting System).

B, Numerical Control Technology

A numerical control (NC) system is a system in which actions are
controlled by the numerical data input by the users. The system must
automatically interpret at least some portion of this data. NC technology can
be defined as an extremely versatile means of automatically operating machines
through the use of discrete numerical values introduced to the machine by some
form of stored input medium such as a punched tape or directly from a
computt-zr'..l

There are two types of numerical control systems, namely,

1) Point-to-Point or Positioning control systems

2) Continuous path or Contouring control systems

A point-to-point control system is a system in which the user has little
control in the path taken by the machine tool between the start and end
points. A contouring control system is a system which permits the user to be
able to direct the path taken by the machine tool between the start and end
points. Since contouring control systems can also perform point to point
operations, and the cost of contouring systems has been greatly reduced,

practically all systems now being offered are of the contouring type.

iThere are two ways of controlling the machine. The primary means of
contr;171ng is via a set of computer programmed instructions called machine
code program. A secondary means of controlling the machine tool is manual, via
the keys on the control panel. The latter method is generally used only in the
case of exigencies.

Of the two means, machine code programming is the only practical means of
instructing the numerical control machine tool. The operating system within
the microcomputer that controls the machine tool understands only machine code
programming. Compared to assembly level language it is more sophisticated and
user friendly, However, compared to languages like APT, ADAPT, AUTOSPOT that
permit part modelling, it is primitive and requires more detailed information
from the user,

Using machine code prbgramming the user can instruct to the machine tool
all the functions necessary to control the machine tool. The user can specify
the feed rate, automatic tool changing, spindle speed, start and stop of
motor, tool paths for positioning and cutting, and repeated execution of a set
of instructions.

As 1in any computer program, a machine code program to control a machine
tool consists of lines of programming statements. Each line of a machine code
program contains a set of individual instructions to the machine to do certain
functions.

The general structure of every machine code program instruction consists
of 2 fields. The first field specifies an alphabetic code and the second field
a numeric value that further qualifies the alphabetic code. There are

basically two types of codes. They are:

1) Movement or Position codes - These codes comprise linear and angular
3

motion commands for the machine.

2) Machine or Program control codes - These codes are preparatory
functions used to describe specific types of movement, miscellaneous
functions which control machine operation, sequence information,
feeds and speeds, and tooling specification.

The codes vary from machine to machine. In this report, the machine under
consideration is the Pratt and Whitney machine, which is currently used at

Kansas State University (KSU).

€. History of Numerical Control Technology

As with many inventions in machine tool technology, numerical control
came into being because there came a need for manufacturing a product by a far
simpler method than those that existed. The U.S. Air Force found itself in
this position shortly after World War II when it was faced with the problem of
time and difficulty in machining complex aircraft components and inspection
fixtures to close accuracies on a repeatable basis. A proposal to develop a
machine capable of manufacturing templates to inspect wing structures from
numerical 1input was presented to the Air Force by the Parsons Corporation of
Traverse City, Michigan. This resulted in a development contract in 1948. In
1949, Parsons was joined by MIT as a major subcontractor on the project. In
1951 MIT was awarded the prime contract and this resulted in the successful
demonstration of a three-axis milling machine in 1952. An organization
comprised of aerospace manufacturers, recommended to the Air Force that
forthcoming machines be equipped with numerical controls and in 1955 the Air
Force began awarding about 35 million dollars for the manufacture of
approximately 100 numerically controlled machines. To accommodate numerical
control equipment, some aircraft companies had to retrofit their machine
tools, because at that time retrofitting was the only practical method of

increasing the output of existing machines in the shortest period of time.

Later large numerical control machines began to be produced particularly for
aircraft applications. Credit is undoubtedly due to the Air Force planners for
their prophetic decision,

Point-to-point type machining soon followed the introduction of
continuous types. The capability of numerical control machine tools was
enhanced by the addition of automatic tool changers which was developed in the
middle of 1956,

It was not until around 1960 that numerical control machine tools came to
be accepted and therefore began to appear on a reasonably wide commercial
scale. The growth in the number of numerically controlled machines has been
accelrating rapidly ever since. It might also be added that the cost of
numerical control systems has decreased to almost one-third of what they were
a decade ago while the reliablity and capability of the systems have increased
multifold.

Table~1 shows the chronological development of numerical control

technology.

D. Tool Path Plotting

Under normal circumstances, the accuracy of the machine code program is
not known till the program is loaded on the machine for a test run. A lot of
time (man and machine hours) and money (scrap produced if program is
incorrect) is wasted in testing the accuracy of the program. One way to
overcome this problem is to plot the tool path that the program would produce.

A tool path plot is a plot of the movement of the tool on the part
surface depending on the machine code program. By following the path taken by
the tool, it can be verified with the desired path for accuracy. This method

of verification reduces long hours spent in front of the machine trying to

Table - }

Chronological development of Numerical Control technology

Timetoble for Development of the Art of Numerical Control

Time

Development

Particulars

Pioneering experimentation. Technicul munugement alerted.

1949 Eurly
to research
1952
1953 | Introductory | NCMT in use. Progress recorded in technical and trade journals. Pro-
to and grressive manugements investigating. NC systems developed. Orders placed.
1955 exploratory
1956 | Acceptance —| Deliveries more general. Technical reports -of machine performance
to First stage | reported and studied. Stundardized terminolog:v and compatibility studied.
1957
1958 | Acceptance — | introduction of the first “Production Center” machine. September 1960
to Mature stage | Machine Tool Show dominated by NCMT. Munugrement aware of develop-
1960 ment. First true multi-purpose NCMT. Most are MT with NC — retrofits.
325 MT builders — over 10+ show NCMT . Sales of stundard conventional
MT off. Some of the larger muchine tool compunies nlready have 40-50°-
of their total sales in NCMT.
1961 Demand — | Standard conventional MT recopnized us obsolete. Sules of standard tools
to First stage | dropping. Highly competitive period. Retrofitx diminish. new NCMT
1965 better. Acceptance of standard MT instruction terminology. Programming
with established subroutines widespread.
1966 Demand — | Management demands NCMT. Publicity and training show results. Biy
to | Priority stage| rales period: 40-50% NCMT, mostly true NCMT. Not more than 150
1970 with heavy | importunt MT builders in business by 1970. Machine Tool Show of 19635
backlogs displays over 100 NCMT.
1971 Necessity | Manufacturing techniques rapidly obsolete. Autofacturing concept
to accepted. Important MT builders less than 75 by 1975. Leaders of NCMT
1975 not more than handful; muny traditional lenders of 1960 out of business;

some new faces. NCMT orders backlogged. Cost of NCMT reduced because
they are made on NCMT via autlofacturing. Procrastinating user-

miunuagements reverely punished by alert competition.

debug the machjne code program. Thus both time and money can be saved.

There aré basically two approaches to obtaining the tool path plotting
programs. One approach is to buy a commercially available dedicated hardware
and software package to do the plot. This approach is very user-friendly but
expensive. The other approach is to write a program to do the plot using
existing graphic software package and hardware. This approach is cheaper and
may also utilize existing equipment.

There are many commercially available dedicated hardware and software
packages to do tool path plotting. A few of them include Geo-stac, NUMERIPACT,
NICAM, Compact I, Compact II and Toolplot. These software systems are menu-
driven and data is entered interactively. According to the information
provided by the user, the software system generétes the part diagram on the

plotter. !

E. Report Objectives

The main objective of this project is to develop a software system to
draw a tool path for any given machine code program for the Pratt and Whitney
machine. The system 1is to be capable of checking for any syntax or logical
errors in the machine code program. Given that the machine code program input
by the user is error free, the system is to be capable of generating a final
machine tool path that can be verified before the machine code program is
actually loaded into the numerical control machine.

The present and the proposed mode of operation are shown in Figure-1 and

Figure-2 respectively.

GTARD

WRITE MACHINE
CODE PROGRAM

l‘ -

KEY PUNCH
A TAPE

!

LOAD TAPE
INTO MACHINE

:

AUN PROGRAM

CORRECT |
PROGRAM

Figure - 1 Present method

(START)

WRITE MACHINE
CODE PROGRAM

f

LOAD INTO
COMPUTER

: -,
TOOL HATH PLOT

‘ YES
RAOR » CORRECT
PROGRAM
NO
KEY PUNCH
A TAPE

I

LOAD PROGRAM
INTO MACHINE

:

RUN PROGRAM

STOP

Figure - 2 Proposed method

9

F. Project Benefits

As stated before, the primary objective of the project is to develop a
software system that can plot a tool path given a machine code program written
for the part. With this system, one can verify the final machine tool path on
a graphics terminal before the part program is loaded in the numerical control
machine. By plotting the tool path before the actual machining, this program

1) reduces machine tool downtime,

2) improves the productivity of part programmers,

3) decreases tape proveout time,

4) reduces the risk of expensive machine tool crashes,

5) holds down the cost of part program verification,

6) and increases the overall productivity and profits.

G. Project Methodology

In order to develop this package, Plotl0 (an existing basic graphics
software package on the KSU mainframe) and a Selanar Hirez 100 (hardware that
exists within the Industrial Engineering Department) are used. The software
system developed consists of two segments or phases. The first segment reads
in the machine code program and checks it for errors. If there are errors in
the machine code program, appropriate error-messages are given. However if it
is error free, a file containing the coordinate locations of the tool at the
end of each machine code statement is outputted. The second segment takes
these coordinates and plots the tool path on a graphics terminal according to

the dimension of the tool.

10

I1. HARDWARE AND SOFTWARE ENVIRONMENT

A. The Machine Tool

The Pratt and Whitney is the numerical control machine which is currently
in use at Kansas State University. This is the machine used by the students at
the university for whose benefit this software system has been developed.

This machine can perform machining operations such as milling, drilling,
boring, and tapping economically and efficiently. The machine dimensions are
610 mm x 460 mm while the table dimensions are 500 mm x 380 mm. The
positioning accuracy of the machine is +/- 0.05 mm / 300 mm. It uses a Fanuc
DC servo motor {Model 0) to rotate the spindle and a Fanuc DC servo motor
(Model 5) to move the tabTes.

This numerical control machine can be controlled on the X, Y and Z-axis.
But it is a 2 1/2 axis machine meaning that simultaneous movement is possible
only in the X-Y and X-Z axis, but is not possible in the Y-Z axis. Both linear
and circular movements are possible. However circular interpolation is
possible only up to 90 degrees for an instruction. There are 7 positions in
the tool turret and so 7 tools can be held at any given time. The machine also
has the capability of storing up to 8 offset values in memory. These offsets
are used to accomodate the different sizes of the various tools loaded in the
turret.

Any numerical control machine has its own set of codes to distinguish the
different functions to be performed. The machine codes that are used in the
Pratt and Whitney are shown in Appendix A, along with a terse desciption of

the codes.

11

B, The Hardware Resources

The computer graphics terminal that is available to the users 1is the
Selanar Hirez 100, It 1is a combination alpha-numeric and high resolution
graphic terminal. For alpha-numeric mode, the Selanar emulates the DEC VT102
and for the graphics mode, it emulates the Tektronix 4014, In addition to
these two basic emulation modes, the device has native commands within the
4014 mode, Tlocal vector storage, local pan-zoom and a plotter/printer
interface. The resolution of the machine is 1024 x 7686.

Since this Selanar terminal is both an advanced alphanumeric as well as a
high resolution graphics terminal, 2 planes of display memory are used. The
first 1is used for ANSI and VT52 modes. It displays character data only, The
second is a dot addressable graphics memory. In this memory each dot can be
individually turned off and on under program control. The video from the 2
planes 1is OR'ed together to produce a composite a]pha/grgphic picture. Thus

ANSI or VT52 mode data can be overlaid over graphics data .

C. The Software Resources

There are two graphics software packages available at KSU to plot the
tool path. They are the Calcomp routines and the Plot10 Interactive Graphics
Library (IGL).

Calcomp plots can be produced by programs running under Conversational
Monitoring System (CMS) and using the Calcomp subroutines. The graphics
produced can be previewed on Tektronix or Tektronix look-alike graphics
terminals and a final copy produced on the Calcomp 1051 plotter which is also
available.

The Plot10 IGL is a large set of FORTRAN subroutines providing graphics

and text manipulation on Tektronix or Tektronix look-alike graphics devices.

12

IGL can be used from any language that can call FORTRAN routines such as
FORTRAN, PL/1 and Pascal. Since IGL provides capabilities not available
through the Calcomp routines, it was used to develop PRAWTOPPS. IGL provides
the following advantages :

1. Interactive capabilities - Programs can receive input from a user
indicating points on the screen with a mouse, joystick, graphics tablet
or arrow keys.

2. Emulation for non-existent terminal features - Programs can be written
for a top-of-the-line terminal with superior capabilities, such as color
and local segment support. When a terminal without these capabilities is
used, IGL will simulate the effect. For instance, on a monochrome
terminal, colors will appear as varied patterns of crosshatching.

3. Extensive{ text manipulation - In addition to providing 16 special
character fonts, text can be drawn in proportional mode, tilted, rotated,
centered and justified. In addition, script letters can be joined to form
a smooth line.

4. Three dimensional support - Pictures can be drawn in three dimensional
coordinates and then projected onto a two dimensional screen.

5. Graphics segment - A portion of a picture can be put into a segment and
thereafter be transformed, displayed, and manipulated individually.
Segments provide a "building block” capability to develop a Tlibrary of
common picture components,

6. Line smoothing - Lines can be automatically smoothed using a combination
quadratic and cubic spline technique.

7. The size of the picture can be varied by window/viewport transform.

The IGL has several FORTRAN subroutines, out of which a few were used in

this software system. These subroutines are described in Appendix B.

13

III. SYSTEM STRUCTURE

A, Overall Structure

PRAWTOPPS basically has two phases or segments. One phase of the software
reads the machine code program provided by the user as input, processes the
data and checks for logical or syntax errors and outputs the coordinates of
the tool center. The second phase of the software reads these coordinates from
the first phase as input and produces the plot on the terminal.

This division of software was done in order to save computer time and
money. The plotting procedure is both expensive and time consuming., Hence
producing a plot of an incorrect program is wasteful. Therefore, it is
suggested that phase I be run first and the machine code program checked for
errors. The output produced from phase I can be checked at random points with
the desired path for correctness., After completing phase I successfully, phase
II is undertaken and the resulting tool path obtained.

Phase I was written in Pascal in order to utilize the character
manipulation capabilities of the language. Furthermore, Pascal provides the
use of records, which help in providing more structured data sets.

Phase II was written in FORTRAN 77 since it is easier to invoke the IGL
routines from FORTRAN than from any other language.

Figure-3 shows the overall structure of PRAWTOPPS.

B. Phase !

The first phase of PRAWTOPPS reads the machine code program provided by
the user as input, processes the data and checks for logical and syntax errors
and outputs the coordinates of the tool center. This phase was written in
Pascal.

The input for this phase is the machine code program written by the user

14

mu
)

s

. L
_-_H_w AV_.D._
< NOW
|0
1AO RFm
Iao OOO
all @ =
0

VT

-

[TooL PkTH PLOT]

Figure - 3 Overall structure of PRAWTOPPS

15

and stored in a file called NC DATA. The output from this phase is the tocl
center coordinates and this is stored in a file called POSITION FILE.

The overall structure of Phase I is shown in Figure-4.

This phase of the software system consists of a main program and a number
of procedures to perform different functions. Each of these are discussed
below individually. The control hierarchy of procedures for this phase of
PRAWTOPPS, along with a terse description of the functions, 1is shown in
Appendix C. The flow charts for the main program and the procedures are shown
in Appendix D,

Main Program:

The main program consists of calls to three different procedures, namely
Read_data, Inititalize, and Process_data. Each of these procedures performs
the three basic functions of this phase - reading the data, initialize
variables used in the program, and process the input data and thus produce the
output.

Read data:

The Read_data procedure is invoked by the main program. It first opens
the input and output files for data manipulation. It then reads the machine
code program provided by the user. The machine code program should be under
the filename °NC' and filetype °DATA'. The first column of each of the data
lines should be a blank. Furthermore, a M02 code should be present at the end
of the machine code main program.

As the machine code program is read, an index file is created by invoking
the procedure Create_index. The statement number, the data line number, and
the number of sets of machine code instructions in that line are stored in the

index file,

16

START

READ DATA|

CREATE INDEX FILE

‘

INITIALIZE VARIABLES

ENTER TOOL OFFSETS AND

TOOL WIDTHS INTERACTIVELY

REREAD THE DATA J

NQO

Figure - 4

Overall structure of Phase I
17

Create_lndex:

Thé Create_index procedure is invoked by the procedure Read_data. As the
name indicates, this procedure creates an index file. Any index file consists
of two parts - the key part and the information part. The key part contains a
number on which the record is indexed and the information part has data
associated with the key. Each line of instruction in the machine code program
has a statement number. The index file is indexed on this statement number.
The data that is stored in the information part of the index file is the
position of the statement in the input data file and the number of sets of
machine code instructions in that data line. This information is stored in a
file called Index File. An example of the index file is shown in Appendix I.
Initialize:

The Initialize procedurb is invoked by the main program. This procedure
repositions the data pointer of the input file to the top. It also initializes
some of the variables to their default values. The user is also asked to input
the tool offsets and the toolwidths interactively when this procedure is
executed. These values input by the user are stored in a file called OFFTOOL
FILE. In order to prompt the user to enter the data, the following message is
typed on the screen "Type Y/N to enter intial toolwidths and tool offsets". If
the user 1is running the program for the first time or desires to change the
existing toolwidths and tool offset values, then a Y should be typed. This
allows the user to enter the initial toolwidth and tool offset wvalues.
However, if the user is rerunning the program and desires to retain the
existing toolwidths and tool offsets, then a N should be typed. This option is
provided .to avoid retyping the initial toolwidths and the tool offsets each
time the program is rerun.

This procedure also titles the final output obtained from this phase of

the program.

18

Process data:

The Process_data procedure is invoked by the main program to process the
machine code program. When the program reaches this stage, the input data is
free of syntax errors. This procedures checks for logical errors and produces
a tool center coordinate file.

The Process_data procedure invokes three other procedures (Reinitialize,
Reread_check and Deviate) to perform its functions., The input data (the
machine code program input by the user) is read once again from the beginning.
Before each line of instruction is read, several flags are set. Then the line
that was read is analyzed in order to interpret the instructions it contains.
If the instruction is a call to a subroutine, then control is transferred to
procedure Deviate., This procedure continually analyzes each data line till a
M02 code or a logical error in the machine code program is encountered.

Reinitialize:

The Reinitialize procedure 1is invoked by procedures Process_data and
Deviate. This procedure initializes variables that were not initialized by the
Initialize procedure. The variables initialized by this procedure have to be
reinitialized after analyzing each machine code statement,

Reread check:

The Reread_check procedure is invoked by procedures Process_data and
Deviate. It reads the machine codes and invokes the procedure Check_codes to
check the alphabetic part of the machine code. After checking the machine
code, Reread_check invokes different procedures according to the function that
machine code statement is intended to perform.

Deviate:

The Deviate procedure is invoked by Process_data to handle the

subroutines of the machine code program. With the help of the Scroll procedure

and the Index File, it locates the starting position of the subroutine and

19

processes it with the help of the Reinitialize and Reread_check procedures.
Scroll:

The Scroll procedure which is invoked by Deviate, merely skips through a
certain number of lines in the input data file before beginning to read from
the file.

Lexical read:

The Lexical_read procedure, which is invoked by Reread_check, reads
characters and converts them to integers if they are numeric characters. It
invokes the function Numeric to do the verification.

Numeric:

Numeric is a boolearn function invoked by Lexical_read. It returns a value

TRUE if its argument is a numeric character, else it returns a value FALSE.

Check codes:

Check_codes 1is a procedure invoked by Reread_check. It checks the
alphabetic part of the machine code and invokes different procedures depending
on that character. If the letter is not legal, an error message is given and
execution stops. The legal letters are F, G, Mi L, R, D, Hy X, Yy Z, I, J, and
K.

Checkf:

The Checkf procedure is invoked by Check_codes and it checks the numbers
associated with the F code. The numeric part of the F code is assigned as the
feed for the normal or the fixed cycle operation, depending on whether the

machine is in normal or fixed cycle mode.

Checkg:

The Checkg procedure is invoked by Check_codes and it checks the numbers
associated with the G code. The valid numbers associated with the G code are

00 to 03, 28, 45 to 48, and 80 to 92. Depending on the number, variables are

20

assigned corresgonding values. If any other number is associated with the G
code, an error me;sage is outputted and execution is terminated.
Checkm:

The Checkm procedure is invoked by Check_codes and it checks the numbers
associated with the M code. The valid numbers associated with the M code are
0, 2, 6, 30 to 33, 98, and 99. Depending on the number, variables are assigned
corresponding values. If any other number is associated with the M code, an
error message is outputted and execution is terminated.

Checkp:

The Checkp procedure is invoked by Check_codes and it checks the numbers
associated with the P code. If the machine is in fixed cycle mode then the
numeric part of the P code is assigned to be the dwell time. If the P code
succeeds a subroutine call, then the fumeric part is the starting statement
number for the subroutine. If both these conditions are not satisfied, an
error message is outputted and execution is terminated.

Checkl:

The Checkl procedure is invoked by Check_codes and it checks the number
associated with the L code. The numeric part of the L code gives the number of
times a particular machine code statement or a subroutine is to be repeated.
Thus depending on this number, a set of instructions is executed repeatedly.
The default value is 1.

Checkr:

The Checkr procedure is invoked by Check_codes and it checks the number
associated with the R code. If the machine is in fixed cycle mode, then the
numeric part of the R code gives the distance for rapid movement. However, if
the machine is 1in normal cycle mode an error message is outputted and

execution is terminated.

21

Checkd:
The Checkd procedure is invoked by Check_codes and it checks the number

associated with the D code. The numeric part of the D code gives the offset
code to be used for linear and circular offset movements on the X-Y plane.
Depending on the code, the offset value is set. This offset is valid for
movement in the X and Y directions, but not in the Z direction.
Checkh:

The Checkh procedure is invoked by Check_codes and it checks the number
associated with the H code. The numeric part of the H code gives the offset
code to be used for vertical offset movements. Depending on the code, tHe

offset value is set. This offset is valid for movement in the Z direction, but

not in the X and Y directions.
Cﬂeckxgz:

The Checkxyz procedure is invoked by Check_codes and it checks the number
associated with the X, Y, and Z codes. This procedure gives the position of
the tool center in the X, Y, and Z direction at the end of each machine code
statement. The numeric part of X, Y, and Z codes gives the shift in the X, Y
and Z directions respectively. If the machine is in reverse X or/and reverse Y
mode, then the direction of the shift is changed, that is, the shift is
multiplied by -1.

If the machine is in incremental mode, then the position of the tool
center at the end of the statement is the sum of the present coordinates and
the shift in the corresponding coordinate direction. However, if it 1is in
absolute mode, the position of the tool center at the end of the statement is
the sum of the shift in that coordinate and the shift in the position of the
origin, if any. Usually, the initial origin position is the left hand corner
of the workpiece on the X-Y plane and on the part surface on the Z plane.

During fixed cycle operations, at the end of the statement, there is no

22

change in the position of the tool center in the Z direction. Thus, during the
above condition, the position of the tool center in the Z direction remains
unchanged.
Checki jk:

The Checkijk procedure 1is invoked by Check_codes and it checks the
numbers associated with I, J, and K codes. These codes are used when the tool
is moving in a circular path. The numeric part of the I, J and K codes gives
the distance of the center of the circle from the current tool position
(before the tool moves in the circular path) in the X, Y, and I direction
respectively. When these codes are used without the tool moving in a circular
path, an error message is outputted and execution is terminated.

Change tool: a

i

The Change_tool procedure is invoked by Reread_check whenever a M06 code
is encountered. This procedure simulates the indexing of the turret. During
this operation, the spindle is stopped and the tool is changed by indexing
the turret once. The toolwidth is reset to the width of the current tool. The
coordinates of the tool center at the end of this statement are written to the
Position File by the Print procedure.

Change origin:

The Change_origin procedure is invoked by Reread_check whenever a G92
code 1is encountered. This procedure simulates the function of resetting the
origin 1in the coordinate(s) specified. The X, Y, or Z values that are
specified with the G92 code imply that the new origin is a certain distance
(shown by the X, Y, or Z values) from the current tool position.

It 1is assumed that when the first G92 is encountered the machine 1is in
the machine home position and the new origin is the left hand corner of the

job for the X and Y axis and the part surface for the Z axis. This assumption

23

was made to find the coordinates of the machine home position with respect to

the origin. Th; coordinates of the tool center at the end of this statement
are written to the Position File by the Print procedure.
Go_home:

The Go_home procedure is invoked by Reread_check whenever a G28 code is
encountered. This procedure simulates the function of moving the cutting tool
to the machine home position in the direction (X, Y or Z) specified. The
coordinates of the tool center at the end of this statement are written to the

Position File by the Print procedure.

Mid stop:

The Mid_stop procedure is invoked by Reread_check whenever a MO0 code is
encountered. This procedure simulates the function of temporarily stopping
further execution of the machine code program., This break 1is sometimes
necessary to change tools or offset values and to change interpretation of the
X and Y coordinates.

PRAWTOPPS requires the user to interactively input any changes that is
desired at the time the machine is stopped. The coordinates of the tool
center at the end of this statement are written to the Position File by the
Print procedure.

Fixed cycle:

The Fixed_cycle procedure is invoked by Reread_check whenever a fixed
cycle (G81 to G89) code is encountered. This procedure simulates the condition
when the machine is in fixed cycle mode. A subsequent call to G80, GO1 or GOO
will put the machine back into normal mode.

Operations like drilling, boring etc. are done in fixed cycle mode.
During these operations, the tool moves vertically. But the position of the
tool in the Z direction is unchanged at the end of the statement, since the

tool comes up to the original position after performing the cutting operation.

24

When a dwell 1s encountered, the software system gives a prompt and waits for
the user to respond. The coordinates of the tool center at the end of this
statement are written to the Position File by the Print procedure.

Circular motion:

The Circular_motion procedure is invoked by Reread_check whenever a G02
or a GO3 code is encountered. This procedure simulates the movement of the
tool in a circular path. Before proceeding to move the tool, this procedure
checks for the following error conditions:

1. A H offset code is used while moving in the X and/or Y direction,

2. A D offset code is used while moving in the Z direction.

3. The cutting tool is cutting the part without the feed rate and/or
spindle speed values.

4, I, J or K not specified with the G02 or GO3 code.

5. Circular movement of more than 90 degrees for an instruction.

Whenever an error is encountered, an error message is outputted and

execution is terminated.

If an offset 1is used, the coordinates of the tool center and the
coordinates of the circular path center are changed by the offset value. The
coordinates of the tool center at the end of this statement (X, Y, and Z)
along with the coordinates of the center of the circular path (I, J, and K)
from the starting point of the circular path are written to the Position File
by the Print procedure.

Go ahead:

The Go_ahead procedure is invoked by Reread_check whenever any of the the
above 6 procedures (Change_tool, Change_origin, Go_home, Mid_stop, Fixed_cycle
and Circular_motion) are not invoked. This procedure simulates the movement of

the tool in a linear path. Before proceeding to move the tool, this procedure

25

checks for the following error conditions:

1. A H offset code is used while moving in the X and/o} Y direction.

2. A D offset code is used while moving in the Z direction.

3. The cutting tool is cutting the part without the feed rate and/or

spindle speed values.

4, The tool 1is moving simultaneously in both the Y and Z

directions.

Whenever an error 1is encountered, an error message is outputted and
execution is terminated.

If an offset is used, the coordinates of the tool center are changed by
the offset value. The coordinates of the tool center at the end of this
statement are written to the Position File by the Print procedure.

The Print procedure is invoked by the procedures that write the position
of the tool center to the Position file. This procedure wr1tes.the statement
number of the machine code statement, width of the current cutting tool, the
movement type code or G code (0 for positioning move, 1 for linear machining
move, 2 for circular machining move in the clockwise direction, and 3 for
circular machining move 1in the anti-clockwise direction), X, Y, and 12
coordinates of the tool center at the end of the machine code statement and
the I, J, and K values. For any other type of movement other than circular,
the I, J, and K values are 0.

The instructions for using Phase 1 of PRAWTOPPS 1is detailed in
Appendix H. The actual listing of the Phase I program is shown in Appendix E.
Since this phase of the software system does not perform any graphic function,
the program can be run on any (graphic or non-graphic) terminal available at
KSU. Since the output of this phase (Position File) is used as the input of

Phase II, it is recommended that the users check the coordinates calculated

26

and written to the Position File with the desired coordinates before
proceeding further. Appendix I contains a sample program to machine the letter

"P". The input (machine code program) and the output (coordinate file) are

shown, along with the Index File.

C. Phase II

The second phase of PRAWTOPPS reads the coordinate file from Phase I,
processes the data and plots the path taken by the tool center on the
terminal. This phase is written in FORTRAN 77. The PLOT10 IGL subroutines
called from this phase of the software system draws the tool path plot, which
is the ultimate goal.

The input for this phase is in a file ca]le? Position File.

The overall structure of Phase Il is shown in Figure-5,

Phase II consists of a main program and a number of subroutines to do
different functions. Each of these are discussed below individually. The
control hierarchy of subroutines for this phase of PRAWTOPPS, along with a
terse description of its function, is shown in Appendix C. The flow charts for
the main program and the subroutines are shown in Appendix D.

Main Program:

The main program starts by prompting the user to enter the length and
width of the work piece. Then default values are assigned to the options
provided by the program. The IGL routines are initialized by calling the IGL
function GRSTRT. The arguments of this function specify the graphics terminal

that is being used.

Following the above IGL initialization, a call is made to subroutine
Clear to draw the work piece. Then a prompt is given for the user to enter

the command to perform any function. This software system can execute the

27

(START)

ENTER WORK SIZE

v

DRAW GRIDS AND
D0 LABELLING

READ DATA

CHECK MQVEMENT TYPE

FIND SLOPE FIND CENTER]|

[FIND éBUATION]

MOVE ALONG EQUATION
FROM CURRENT CURSOR -

POSITION TO DESTINATION
BY DRAWING CIRCLES

Figure - § Overall structure of Phase II
28

following commands:
CLEAR - Clears the screen and draws the workpiece.

Provides options for the user. The user can draw grids and
fixtures by giving this command. The user can specify the
data line at which the plotting should start and stop. The
user can also choose to clear the screen each time the
toolwidth changes.

OPTIONS

DRAW - Draws the tool path according to the options specified by
the user.
ZOOM - Enlarges a desired portion of the plot for better viewing.

QUIT Quits the software system and returns back to CMS.

Different subroutines are called according to the command specified by
the user. If a command other than the five specified above is given, an error
message is outputted.

Finally a call is made to subroutine Sbansi to return the graphics
terminal backlto ANSI mode and thus end the graphics session.

Clear:

The Clear subroutine is called by the main program and the other
subroutines to clear the screen and draw the work piece. It also writes the
title for the display of the toolwidth and the Z-coordinate. The CLEAR command
calls this subroutine to execute the command.

Sbansi:

The Sbansi subroutine 1is called by subroutine Option and the main
program. This subroutine returns the Selanar Hirez back to the ANSI mode from
the 4010 graphics mode.

The Grid subroutine is called by subroutines Option, Draw and Zoom. This
subroutine draws the grid and labels it. A grid line is drawn for every 2
Graphic Display Units (GDU)., Every fifth grid line is a solid line, while the

others are dotted lines. The Option subroutine calls Grid if the user desires

29

to draw the fixtures. The Draw and the Zoom subroutines call Grid if the user

desires the grid option.

Fixtur:

The Fixtur subroutine is called by the Draw subroutine if the user has
specified the fixture option. This subroutine draws the fixture using hatched
line at the locations already specified by the user in the Option command.
Sbdraw:

The Sbdraw subroutine is called by the main program whenever the user
gives the DRAW command. This subroutine draws the tool plot according to the
coordinates specified by Position File.

This subroutine starts by a call to subroutine Clear. This is followed by
calls to subroutines Fixtur and Grid if the user has specifed the fixture and
Grid options respectively.

The data file is reset to the top. The first two data lines are neglected
since they contain the titles for the data file. Then the rest of the data are
read and the values are converted to GDU in order to plot on the screen. A
plot is made for the complete data file. However, the user is provided with
the option of plotting only certain data lines by using the OPTIONS command.

Depending on whether the tool path is linear or circular, calls are made
to subroutines Stline and Curve respectively. The subroutine Txtwrt is called
to check for any changes in toolwidth or Z-coordinate values.,

Option:

The Option subroutine is called by the main program whenever the user
gives the OPTIONS command. First the terminal is brought back to ANSI mode in
order to ease interactive input and output. The options specified by the user
remain in effect till the current graphics session. The following options are

provided to the user:

30

1. Specify the data line (excluding the titles) from which the plotting
should commence. The default value is 1.

2. Specify the data line at which the plotting should stop. The default
is till the end of the data file (Position File).

3. Specify the option of clearing the screen during toolwidth change.
The default is to continue on the same screen.

4, Specify whether grids are required during the DRAW or ZOOM command.
The default is not to draw the grids.

5. Specify whether fixtures are required during the DRAW command. The
default 1is not to draw the fixtures. The user can draw upto 10
fixtures by moving the cross-hair cursor and specifying the four

coordinates for each fixture,
J

Zoom:

The Zoom subroutine is called by the main program whenever the user gives
the ZOOM command. The user marks one of the diagonal elements of the segment
which is to be enlarged. This segment is converted to a square area with the
length of the bigger side of the segment being the side of the square. This is
done to overcome the distortion due to possible unequal scaling in the X and Y
direction. The enlarged view is drawn on 80 x 80 GDU and does not depend on
the size of the workpiece. This is also done to overcome distortion. The
grids are drawn by a call to subroutine Grid, if the option is desired.

The data file is reset to the top. The first two data lines are neglected
since they contain the titles for the data file. Then the rest of the data are
read and the values are converted to GDU in order to plot on the screen. A
plot 1is made for the complete data file. However, the user is provided with
the option of plotting only certain data lines by using the OPTIONS command.
Even though all the lines are read, only the desired segment is enlarged and

displayed on the screen.

31

Depending on the whether the tool path is linear or circular, calls are
made to subroutines Stline and Curve respectively.
Txtwrt:

The Txtwrt subroutine is called by the main program and it displays the
toolwidth or the Z coordinate whenever a change in value in either one of them
is encountered. A comparison is made between the toolwidth or Z coordinate of
the current data line with that of the preceeding data line before the actual
display.

If the user desires to plot on a clean screen after every tool change, a
call to subroutine Clear is made. Then the grids and fixtures are redrawn if
specified by the user. Otherwise, the plot is continued on the same screen and
the new toolwidth is di;p]ayed below the previous value.

In the event of an; changes in the Z-coordinate values, the new value is
displayed below the previous value. Also the coordinate at which the change
occurs is marked by the number of times the Z-coordinate has changed.

However if the end of the screen is encountered, all the previous values
are removed the display again starts from the top of the screen.

Stline:

The Stline subroutine is called by subroutines Sbdraw and Zoom. It plots
the tool path for linear movement of the tool center. Using the preceeding and
the current X and Y coordinates, the equation for the 1linear path is
determined. The tool path is drawn from the current cursor position to the
final position by computing the coordinates based on the equation of the line.
Depending on whether the G code (movement type code)} value is 0 or 1, dotted
circles or solid circles are drawn along the path. When it is a positioning
move the G code value is 0 and when it is a linear machining move the G code

value is 1,

32

A call 1is made to subroutine Tool to draw the circles along the path

taken by the tool. This call is made till the tool reaches its destination.
Curve:

The Curve subroutine is called by subroutines Shdraw and Zoom whenever
the tool is moving in a circular path. From the coordinates of the center of
the circle and the X and Y coordinates, the equation of the circular path is
obtained. If the G code is 2, the tool moves in a clockwise direction and if
the G code is 3, the tool moves in an anti-clockwise direction., Circles are
drawn from the current cursor position to the final position along the
circular path with the help of the equation. The circles are drawn by
continuous calls to the subroutine Tool, until the tool reaches its
destination. Since both the types of moves are machining moves, solid circles
are drawn.

Tool:

The Tool subroutine merely draws a circle at the X and Y coordinates
specified by the arguments of the subroutine. It draws a circle according to
the width to the tool. Solid or dotted circles are drawn depending on the G
code. If the G code is O then dotted circles are drawn, otherwise solid
circles are drawn. Both the Stline and the Curve subroutines call this
subroutine to draw the tool path.

Appendix H details the instructions for the user on using Phase II of
PRAWTOPPS. The 1listing of the program used in this phase is shown 1in
Appendix F. Since this phase of the software system does graphics, the program
must be run on a graphics terminal. Since the plotting procedure involves a
lot of computer time and money, it is recommended that the users check the
coordinates calculated and recorded in the Position File with the desired
coordinates before doing the plot. However when the plot is obtained on the

screen, the user can verify it with the desired path and if it is correct, the

33

program can be entered into the numerical control machine.
The tool path obtained from the machine code program to machine the

letter "P" is shown in Appendix G.

34

IV. CONCLUSIONS AND RECOMMENDATIONS

PRANTOPPS 1is a software system which has been developed to draw the tool
path .for any machine code program for the Pratt and Whitney machine at KSU.
This plot can be viewed on a graphics terminal. The instructions for the user
on using the software system is given in Appendix H. In order to make the
PRAWTOPPS user-friendly, two exec programs were written — one each for Phase I
and Phase II. These exec programs are shown in Appendix I.

This software system reduces some of the disadvantages of Tloading the
machine code program directly onto the machine without verifying it on the
computer. The time for diagnosing the errors is considerably reduced and this
results in a saving of both man and machine hours. Further there is a
significant reduction in scrap.

The system is not without its 11m1£ations.

This system can be used only for machine code programs written for the
Pratt and Whitney machine at KSU. To use this system for codes written for
other machines, modifications have to be made in Phase I of the software
system.

Furthermore, 1in using the system the user is restricted to a single view
of the tool plot. Only the X-Y coordinates are plotted on the screen. The Z
coordinates are merely written on the side along with the toolwidth. This
system can be further developed if other views such as an X-Z view is desired.

Another major drawback is that a hardcopy of the plot cannot be obtained
on a plotter. To overcome this drawback, a study can be undertaken to
interface the HP 7475A Plotter (currently available with the Industrial

Engineering Department at KSU) and the Selanar Hirez 100 to obtain the plot.

35

V. REFERENCES

1) Principles of Numerical Control (Third Edition)
- James J. Childs

2) Introduction to Numerical Control in Manufacturing
- Raymond Howe

3) Numerical Control and Computer Aided Manufacturing
- Roger S. Pressman
-~ John J. Williams

4) Numerical Control (Laboratory Manual)
= Muthuraj Vaithianathan

5) Fanuc Tape Drill - Model C (Operator's Manual)
-~ Fujitsu Fanuc Ltd.

6) Hirez 100 Operator's Manual
— Selanar Corporation

7) PLOT10 Interactive Graphics Library (User's Manual)

- Tektronix
{

|
i

36

APPENDIX A

Pratt and Whitney Machine codes

Code Modal Function
G Codes

GO0 Yes Point to point, positioning

GO1 Yes Linear interpolation

G02 No Circular interpolation arc (CW)

G03 No Circular interpolation arc (CCW)

G28 No 7 Goes to the machine home position

G45 No Single positive offset

G46 No Single negative offset

G47 No Double positive offset

G48 No Double negative offset

G80 Yes Fixed cycle operation cancel

G81-GBS Yes Fixed cycle operation start

G90 Yes Movement in absolute mode

G91 Yes Movement in incremental mode

G692 No Redefines the origin
M Codes:

MO0 No Stop in the middle of the program

M02 No End of the program

MO6 No Change tool (indexing)

M30 Yes Stop the spindle

M31 Yes Rotate spindle at low speed

M32 Yes Rotate spindle at medium speed

M33 Yes Rotate spindle at high speed

Ma8 No Call to a subroutine

M99 No Return from a subroutine
F Codes:

Fxxxx Yes Feed code f?r gormal operation

or
Yes ' Feed code for fixed cycle operation

P Codes:

Pxxxx Yes Dwell time in seconds in fixed cycle

operations
(or)
No Statement where subroutine starts

L Codes:

Lxxxx No Number of repetitions of statement(s)

Code Modal Function
R Codes:
Rxxxx Yes Rapid movement in Z-axis in fixed
cycle operations
D Codes:
Dxxxx Yes Linear offset codes
H Codes:
Hxxxx Yes Height offset codes

X; Y and Z Codes:

Xxxxx No
Yxxxx No
Ixxxx No

1, J and K Codes::

Ixxxx No
Jxxkx No
Kxxxx No

Distance to be moved or co_ordinate to
be moved to in the X-direction
Distance to be moved or co_ordinate to
be moved to in the Y-direction
Distance to be moved or co_ordinate to
be moved to in the Z-direction

Distance of circle center from the
current position in X-direction
Distance of circle center from the
current position in Y-direction
Distance of circle center from the
current position in Z-direction

CMCLOS
Category
Purpose
Syntax
CMOPEN
Category
Purpose
Syntax
GRSTOP
Category
Purpose
Syntax
GRSTRT
Category
Purpose
Syntax

Paramters
Idevic

Topt

DASHPT
Category
Purpose
Syntax

Paramters
Ipat

APPENDIX B

7
PLOT10 Routines used

System Environmental Routines

Temporarily closes IGL communication with ;he terminal

CMCLOS

System Environmental Routines

Reestablishes IGL communication with the terminal

CMOPEN

System Environmental Routines
Terminates IGL.

GRSTOP

System Environmental Routines
Initializes IGL; directs output to a specified device.

GRSTRT(idevic, iopt)

Device on which output is to be displayed; usually the four-

digit Tektronix product number.
The device option code; further defines device by
its options.

indicating

Graphic Environmental Routines
Specifies pattern for dashed linesay of output.

DASHPT(ipat)

An integer indicating the desired dashed-1ine pattern,

FILPAN

Category : Graphic Environmental Routines
Purpose : Specifies way in which panels are filled.

Syntax : FILPAN(ipatno,qoutin)

Paramters :
Ipatno : Number of pattern used to fill panel (0-24).
Qoutln : Logical flag for outlining panel.
. TRUE. - Outlines the panel in current vector color
.FALSE.~ Does not outline panel
SCALE
Category : Graphic Environmental Routines
Purpose : Specifies a scale factor applied to the coordinate system,

Syntax : SCALE(pxsc, pysc)

Paramters :

Pxsc y Positive scale factor applied to X-axis.
Pysc : Positive scale factor applied to Y-axis. .
TRANSL
Category : Graphic Environmental Routines
Purpose : Applies specified translation (displacement) to coordinates.
Syntax : TRANSL(pxdisp, pydisp)
Paramters :
Pxdisp : Displacement along X-axis.
Pydisp : Displacement along Y-axis.
TRIDNT
Category : Graphic Environmental Routines
Purpose Resets the modeling transform, the window/viewport transform,

or both, to identity (intial values).
Syntax : TRIDNT(qfull)

Paramters :
Qfull .FALSE. - Resets modeling transform (SCALE, TRANSL, ROTATE,
MTRAN) to identity.
.TRUE, - Resets modeling transform and window/viewport
transform (WINDOW, VWPORT) to identity.

VWPORT
Category
Purpose
Syntax
Paramters
Xmin
Xmax
Ymin
Ymax
WINDOW
Category
Purpose
Syntax
Paramters
Xmin
Xmax
Ymin
Ymax
ARC
Category

Purpose

Syntax
Paramters
Prad
Pstara
Penda
DRAW
Category
Purpose

Syntax

Paramters
Px

Py

% &% Sa 4¢ wa

Graphic Environmental Routines

Defines location of output on the display surface.

VWPORT(xmin, xmax, ymin, ymax)

Minimum X coordinate of viewport.
Maximum X coordinate of viewport.
Minimum Y coordinate of viewport.
Maximum Y coordinate of viewport.

Graphic Environmental Routines

Specifies the portion of the coordinate system to be viewed.

WINDOW(xmin, xmax, ymin, ymax)

Minimum X coordinate of window.
Maximum X coordinate of window.
Minimum Y coordinate of window.
Maximum Y coordinate of window.

Graphic Action Routines

Draws an arc with a given radius from the starting angle to the
ending angle as indicated; the current cursor position is the
center point for the arc.

ARC(prad, psara, penda)

The radius for the arc.
Starting angle for the arc.
Ending angle for the arc.

Graphic Action Routines

Draws a vector from the current location to a specified point.

DRAW(px, py)

X coordinate of point to which vector is drawn.
Y coordinate of point to which vector is drawn.

B-3

HOME
Category

Purpose

Syntax
LOCATE
Category

Purpose

Syntax
Paramters
Imaxpt
Pxaray
Pyaray
;dat
fgot
MOVE
Category
Purpose

Syntax

Paramters
Px

Py
NEWPAG
Category
Purpose

Syntax

Graphic Action Routines

Moves the cursor to the "home" position (left hand side of the
viewport).

HOME

Graphic Action Routines

Puts the terminal into graphic input (GIN) mode and stores the
coordinates of points located by the graphic cursor.

LOCATE(imaxpt, pxaray, pyaray, idat, igot)

Maximum number of points to be located.

Array containing X coordinates of points located; must be
dimensioned to at least the value of Imaxpt.

Array containing Y coordinates of points Tlocated; must be

dimensioned to at least the value of Imaxpt.
An array containing device-dependent auxiliary Z-axis infor-

mation to accompany the point digitized.
Number of points located.

Graphic Action Routines

Moves cursor to a specified point without drawing a vector.

MOVE(px, py)

X coordinate of point to which cursor is moved.
Y coordinate of point to which cursor is moved.

Graphic Action Routines
Provides a clean surface for display of output.

NEWPAG

PANEL
Category
Purpose
Syntax
Paramters

Ient
Pxaray

Pyaray

POLY
Category
Purpose
Syntax
Paramters
Icnt
Xarray
Yarray
TXICUR
Category

Purpose

Syntax
Paramters
Ipos
INUMBR
Category
Purpose
Syntax
Paramters

Intval
Imxchr

L1

Graphic Action Routines

Displays a panel or an emulated panel on display screen.

PANEL(icnt, pxaray, pyaray)

Number of points defining the perimeter of panel.
An array containing X coordinates of points defining the
perimeter of the panel; must be dimensioned atleast to the

value of Icnt.
An array containing Y coordinates of points defining the
perimeter of the panel; must be dimensioned atleast to the

value of Icnt.

Graphic Action Routines
Draws a polygon.
POLY(icnt, xarray, yarray)
Size of Xarray and Yarray.

X coordinates of points to be drawn; specified in world space.
Y coordinates of points to be drawn; specified in world space.

Text Environmental Routines

Establishes the relationship of text output to the intial
cursor position,

TXICUR(ipos)

Set to an integer from 1-9 to specify the position of text in
relation to the intial cursor position.

Text Action Routines
Displays integer data as text.

INUMBR(intval, imxchr)

The integer to be displayed.
Maxinum number of character to display.

B-5

RNUMBR

Category : Text Action Routines

Purpose : Displays a real number as text.
Syntax : RNUMBR(pvalue, ipastd, imxchr)
Paramters :
Pvalue : The real number to be displayed.
Ipastd : Maximum number of digits to the right of the decimal point; set
to -1 to suppress the decimal point.
Imxchr : Maximum number of character to be displayed.
TEXT
Category : Text Action Routines
Purpose : Displays a string of alphanumeric text.
Syntax : TEXT(ilenst, ichray)
Paramters :
Ilenst : Number of characters in the string. ,
Ichray : Text to be output; string format only;

B-6

MAIN PROGRAM

READ_DATA

PROCESS_DATA

DEVIATE

APPENDIX C

Hierarchy of Subroutines

READ_DATA
#*

INITIALIZE

PROCESS_DATA

%*

CREATE_INDEX

#*
REINITIALIZE

REREAD_CHECK

DEVIATE

*
SCROLL

#*

REINTIALIZE

REREAD_CHECK

Read the machine code and create an

index file.

Initialize variables at the beginning.
Read tool offsets and toolwidths.

Process each machine code statement.

Create
statement with
statement number.

index for the position of the
respect to the

Initialize variables at end of
processing each machine code
statement.

Reads the machine code again to

process it.

Process subroutine calls of the

machine code program.

Skips certain number of lines before
reading.

Initialize variables at end of
processing each machine code
statement.

Reads the machine code again to

process it.

REREAD_CHECK

LEXICAL_READ

CHANGE_ORIGIN

CHANGE_TOOL

GO_HOME

CIRCULAR_MOTION

MID_STOP

FIXED_CYCLE

LEXICAL_READ

CHECK_CODES

CHANGE_ORIGIN

CHANGE_TOOL
GO_HOME

CIRCULAR_MOTION
MID_STOP

FIXED_CYCLE

GO_AHEAD

¥

NUMERIC

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

C-2

Reads numeric characters and converts
them to numbers.

Invokes procedures according to the
alphabetic part of the machine code.

Changes origin for future coordinate
calculations.

Indexes the tool holding device.

Takes the tool/machine to the machine
home position.
Moves tool for circular movement.

Finds reason for stopping program in
the middle and procedes accordingly.

Moves the tool during fixed cycle

operations.

Moves tool during linear movement.

Checks whether a character 1is an
integer or not.

Prints coordinates for plotting.

Prints coordinates for plotting.

Prints coordinates for plotting.

Prints coordinates for plotting.

Prints coordinates for plotting.

Prints coordinates for plotting.

GO_AHEAD

CHECK_CODES

PRINT

*
CHECKF

*
CHECKG
CHECKM*
CHECKP*
CHECKL*
CHECKR*

3*
CHECKD
CHECKH*
CHECKXYZ*

¥*

CHECKIJK

C-3

Prints coordinates for plotting.

Checks numbers
with F codes.

Checks numbers
with G codes.

Checks numbers
with M codes.

Checks

that

that

that

numbers

are associated

are associated

are associated

that are

associated with P codes.

Checks numbers
with L codes.

Checks numbers
with R codes.

Checks numbers
with D codes.

Checks numbers
with H codes.

Checks numbers
with X, Y and Z

Checks numbers

with I, J and K codes.

that

that

that

that

that

codes,

that

are associated
are associated
are | associated
are associated
are associated

are associated

Phase 11

MAIN PROGRAM

OPTION

SBDRAW

CLEAR

OPTION
SBDRAW
Z00M
SBANSI*

SBANST*
#*
CLEAR

GRID

CLEAR

*
FIXTUR
*
GRID

L3

TOOL
STLINE

CURVE
TXTWRT

c-4

Clears the screen, draws the workpiece
and titles toolwidth and Z coordinate
display.

Provides various options for the user.
Draws the tool path.
Enlarge a certain segment of the plot.

Sets terminal back to ANSI mode.

Sets terminal back to ANSI mode.

Clears the screen, draws the workpiece
and titles toolwidth and Z coordinate
display.

Draws and labels the grid.

Clears the screen, draws the workpiece
and titles toolwidth and Z coordinate
display.

Draws the fixtures.

Draws and labels the grid.

Draws circles according to the
toolwidth along the path of the tool
center,

Draws tool path for linear movement.

Draws tool path for circular movement.

Displays the new value during any tool
or height change.

Z00M

TXTWRT

;
STLINE

CURVE

GRID
TOOL

STLINE
CURVE

CLEAR
FIXTUR
*

GRID

TOOL*

TOOL

3*

Draws and labels the grid.

Draws circles according to the
toolwidth along the path of the tool
center.

Draws tool path for linear movement.

Draws tool path for circular movement.

Clears the screen, draws the workpiece
and titles toolwidth and Z coordinate
display.

Draws the fixtures.

Draws and labels the grid.

Draws circles according to the
toolwidth along the path of the tool
center,

Draws circles according to the
toolwidth along the path of the tool
center.

EHABE 1

Maip Program

APPENDIX D

Elew Charte

@

READ_DATA

liINITIALIZE]]

|| prROCESS DATA||

(sTOP)

Cstar1)

Index on stateaent
nusber and store
data line number

Index on stateaent
nuaber and store
nuabter of instructions
on that line

[Write to index file]

(sToP)

Bead_datay

START

| Reset files |

Initialize input data

1

ine count to 0

Yes

(stop)—

Increase data
line counter

Initialaze numsber of
instruction sets to |

set count for line
and read next code set

Increase instruction |

€0y

Yes

{[creaTE_INDEX]]

r

Read next

data line

D-3

Reinitislize:

(sTaRT)

Initialize the
required variables

(stop)

Initializes

(sTART)

y
Initialize the
required variables

toolwidth
and offset
values=

Read froa
data file

Yes

Interactively
enter the data

[Btore in a file

[Write titles for output]

GI)

D-5

Process_dats)

End of
machine code
prograa?

No

Increase data
line counter

|[REINTIALIZE]]

||[REREAD _CHECK !

Yes

code progras
subroutine?

Berwad_checky

{ Read input data]

-
[TCHECK_CODES]|

Is it
arigin
chang

Yes

r—1| CHANBE _ORIGIN

Yes Is it
CSﬂ———{IcunnaE_rooLl tool

hang

Yes s it
move to
sachine hose
position

[e0_oRe

No

Yes

CIRCULAR_NOTION |

No

Is it
stop in the
aiddle of
machine code

Yes

[M1D_STOP]

Yes

eb*-—{]slxsn_cVCLE[

[60_anean |

D-7

Deviatel

No

Is it
machine code

program sub-
routine
all?

Yes

|

1s it
machine code

Yes

programs sub-
routine
eturn?

No

[JREINITIALIZE(]

[REREAD_CHECK ||

D-8

Bcrolly

(éTART)

Reset

to top

of data file

Scrall down the data
it reaches
the required data line

file till

D-9

Lanical_reads

W

(START)

| Read character |

Convert character
to an integer

Nuperics

NUMERIC
= false

1s the
character

No

an integer?

Yes

NUMERIC
= true

Check _codess

[

) Yes
[leHEcKF Tl

Yes
|[CHECKE ||

Yes

Yes
[cHECke ||

Yes
(| cHECKL [jo—

Yes

Is the
letter
code

s the
letter
code G

1s the
letter
code

is the
letter
ode P

1s the
letter
code

Is the
letter
ode F

No

No

Nao

No

s the
letter

Yes

9 Yes

C [CHECKH]]

Yes

&P . ' f cﬂscxxvzlll

Yes
CHECKIJK

lErrnr Hessage |

heckts

Yes
fixed cycle
No
[Get feed for Set feed for
fixed cycle normal cycle

Ehackgs

Error Message|

Assign values to
variables according
to the nuasber code

Checkas

lError Hessage

START

Is it
a valid
nusber
code?

Yes

Assign values to
variables according
to the nusber code

Checkes

Bet dwelllg

Yes

time

Set statesent
nuaber for the
subroutine start

Is it

with a
subroutine
call?

Yes

[Error sessage]

8T0P

Set distance
for rapid
aovement

[Error message]

L

Ehegkly

Set variable for
repeated execution

Ehegkds

RS

((START)

|Reset offset value]

Set linear offset
as true

Set height offset
as false

D

20

Eheckhy

START

|Reset offset value]

Set linear offset
as false

Set height offset
as true

@

D

21

Checkxyzl

. Position =
Position
+ Origin

Yes
Change the
direction
of X or ¥

Yes

-

Position = Position
+ increase

D-22

[Error sessage

START

with call a
for circular
soveaent

Yes

Set center
coordinates

D-23

Chapge_topl:

Reset toolwidths
and tool position

[Stop spindle rotation]

PRINT

STOP

D-24

Change_origini

((START)

New origin coordinate =
Current tool position
+ Change in value

first call to
origin_chec

Yes

Assign machine home
position coordinates

D-25

Bo_homes

(_sTART)

Y

Set tool coordinates
ta machine home
position coordinates

[PRINT|]

Yes

ljf ror aessage]:

No Is the
offset

specified?

Yes

Change tool center and
path center coordinates
by the offset value

[PRINT]

0

27

Mid_stepl

D)

.
Proapt user about
the tesporary stop

everse X or
_ Y or both

No Is stop
for tool

change?

Yes

Enter position and
width for tool change

No Is stop
for offset

change?

Yes

Enter offset code
and offset asount

D-28

Eined cycle

No

[Error Ressage

Is feed
$or fixed

Prompt the
user

%

Change tool position
in 7 direction for
rapid and norsal
vertical sovement

[FRINT]

L |
Take back tool to
original I coordinate

PRINT]

§70P

Bo_ahead:

Yes

]Errnr -a;;:ygf‘—_

No

No

Yes

Change tool coordinate
by the offset value

-

D-30

Print the
statesent nuaber,
toolwidth,
Movement code (0,1,2,3),
X,Y,Z coordinates, and
1,J,K coordinates
to output file

b
(_ stoP)

e e -

((8TART)

[Enter job size]

4

Set defaults for optiuni]

CLEAR
[Dilplny_prnlp{]
Yes
CLEAR }.
!
Yes |
OPTION [te coamand
Yes
[SBDRAMW||
Yes
100M command
No

command
Quit?

Error |e—
Message

D-32

Clear:

(BTART)

[Initiallze variables|

{Clear screen]

[Draw work plece]

Write title for toolwidth
and 1 coordinate display

sTQP

D-33

- -

Use I8L to shift
to ANSI mode |

STOP

D-34

Grid:

DRAW GRID LINES
ALONG X

DRAW GRID LINES
ALONG Y

LABEL GRID

STOP

D-35

START

=

[Draw f#ixture]|

Yes

D-36

START

TCLEAR]]

Yes Is
"FIXTUR"; fixture
desired?
Yes
ERID
| Read initial data lines]
[Convert to BDU for plotting]
b
TOOL
|Read next data line]
[bonvert to BDU for plotting]
Yes Is Gcode
[ETLINE]*—

R

(ETARD)

[Wark diagonal elements of segment|

e, .
[Change to nearest square]

, 4
Change window and
viewport for enlarging

Yes

1 GRID ”-.

[Read initial data lines|

‘__Hm

[Convert to GDU fufnglgﬁﬁigil

| TOOL|

o

[Read next data line|

b
[Convert to GDU for plotting|

Is Gcode
{ or 2

D-38

(_START)

4
[Enter starting data line |

[Enter ending data line]

Is new
screen desired
during tool
change?

Yes

Change default
value

Change default
value

Is fixtures
gquired?

Yes

LEnter number of fiuturéiw'

ICLEARI

r

GRID

{ Mark 4 corners of fixture |

!

[Draw finture]

Yes

Txtwrt:

Yes

[FIXTiRffe—

Has Na

tool width

changed?

fixture

desired?

Yes

[TERID e

Write new tool
value on screen

Has No

I value
changed

Yes
Write new Z value
on screen
. S
STOP

D-40

START

Calculate slope
and intercept

;

Move a small distance
along path line

No Is 6
code 07
Yes
4 5
Set dotted Set solid
lines lines

No

D-41

No

START

Calculate path
center and radius

Is 6 Yes

Check the quadrangle
position of the tool

i

Hove small distance
in the clockwise
direction along the
circular path

[TOOL]}

W

Check the guadrangle
position of the tool

:

Hove small distance
in the anti-clockwise
direction alnnd the
circular path

D-42

Tools

!

Move to coordinate
specified

[Draw a circle|

(sToP)

D-43

APPENDIX E

Program listing for Phase I

(*$8+%)
PROGRAM PLOT10 (INPUT,OUTPUT, TERMIN/, TERMOUT,OFFTOOL);

CONST

MAX_IN LINE = 10; (* MAXIMUM SET OF CODES IN A LINE *)

MAX_LINES = 9999; (* MAXIMUM NUMBER OF STATEMENTS %)

MAX_OFFSET = 7; (* MAXIMUM NUMBER OF OFFSETS *)

MAX_TOOL = 7; : (* MAXIMUM NUMBER OF TOOL POSITIONS *)

TYPE

ALPHABETS = 'A',.'Z';

CODES = RECORD , (* RECORD TO READ IN EACH SET OF CODE ¥)
LETTER : CHAR; (* THE ALPHABET PORTION *)

ENgUHBER INTEGER (* THE NUMERICAL PORTION *)

COUNTER = RECORD _(* RECORD TO STORE THE INDEX *)

LINE COUNT : INTEGER; i* STORES THE COUNT OF SET OF CODES/LINE *)
ENSTMt:COUNT ¢ INTEGER * STORES THE STATEMENT POSITION *)
v

REC1_ARRAY = ARRAY (.1..MAX_IN LINE.) OF CODES;
RECZ2_ARRAY = ARRAY (.1..MAX_LINES.) OF COUNTER;
XYZ_ARRAY = ARRAY (.'X'..' '.; OF INTEGER;
IJK_ARRAY = ARRAY (.'I'..'K'.) OF INTEGER;
IZ_ARRAY = ARRAY (.'I'..'Z'.) OF BOOLEAN;
OFSET_ARRAY = ARRAY (.0..MAX_OFFSET.) OF INTEGER;
TOOL_ARRAY = ARRAY (.1..MAX_TOOL.) OF INTEGER;

VAR

CALLTO
CENTER
CODE
DWELL
ERROR
FEED
FIXED_FEED
GOCODE
G23CODE
G4CODE
GBCODE
G9CODE
HTOFFSET
HOMCOUNT
HOME
HOMEPOS
INDEX
LETCODE
LINE
LNROFFSET
M3CODE
NEG_ZERO
NUHCODE
OFFCODE
OFFSET
OFFTOOL
ORIGIN

#% 88 sw B8 ¥E 4% &8 o8 ae

48 8¢ 93 98 =4 ms S¢ A% ar su

ORIGIN_CHECK:

PAUSE
POSITION
RAPID
REVX

REVY
ROUTINE
SHIFT
STMT

STOP
TERMIN
TERMOUT
TIMES
TOOL
TOOL_INDEX
TOOLPOS
TOOLWIDTH

S8 &6 S8 64 wa a9 ae Sa

INTEGER;
IJK_ARRAY;
RECT_ARRAY;
INTEGER;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
XYZ_ARRAY;
XYZ_ARRAY;
BOOLEAN;
REC2_ARRAY;
CHAR;
INTEGER;
BOOLEAN;
INTEGER;
1Z_ARRAY;
INTEGER;
INTEGER;

OFSET_ARRAY;

TEXT;
XYZ_ARRAY;
BOOLEAN;
BOOLEAN;
XYZ_ARRAY;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN;
XYZ_ARRAY;
INTEGER;
BOOLEAN;
TEXT;
TEXT:
INTEGER;
TOOL_ARRAY;
BOOLEAN;
INTEGER;
INTEGER;

(*
(*

P VALUE DURING SUBROUTINE CALL *)

VALUE FOR I, J AND K CODES *)

TO READ IN EACH CODE SET *)

P VALUE DURING FIXED CYCLE OPERATION *)
ERROR CHECKING *)

THE FEED RATE DURING REGULAR OPERATION *)
THE FEED RATE DURING FIXED CYCLE OPERTN¥*)
SHOWS WHETHER GOO OR GO1 IS USED ¥*)
CIRCULAR MOVEMENT CODE - G0O2 OR GO3 *)
SHOW USE OF OFFSET - G45 TO G48 *)

FIXED CYCLE OPERATION CODE - G80 TO G89%)
SHOWS WHETHER G90 OR G91 IS USED *)
OFFSET IS FOR HEIGHT %)

NUMBER OF TIMES ORIGIN IS REDEFINED *)
MACHINE HOME POSITION W.R.T. ORIGIN %)
BOOLEAN SET ON FOR G28 CODE *)

INDEX CONTAINING STMT # AND # OF CODES*)
TEMP ASSIGN FOR EACH LETTER CODE READ *)
VALUE PART OF N *)

OFFSET IS FOR LINEAR INTERPOLATION *)
SPINDLE ROTATION - M30 TO M33 *)

BOOLEAN FOR NEGATIVE ZEROS *)

TEMP ASSIGN FOR EACH NUMBER CODE READ *)
STORE THE VALUE OF THE LAST OFFSET USED¥)
CONTAINS THE OFFSET VALUES ¥)

STORES TOOLWIDTH AND OFFSET VALUES *)
THE ORIGIN W.R.T. PART BOTTOM LHS *)
BOOLEAN SET ON FOR M92 CODE *)

BOOLEAN SET ON FOR MOO CODE (MID STOP) *)
POSITION OF TOOL IN X, Y AND Z AXIS *)

R VALUE DURING FIXED CYCLE OPERATION ¥)
TRUE WHEN REVERSE X IS TRUE *)

TRUE WHEN REVERSE Y IS TRUE *)

BOOLEAN SET ON FOR M98 AND OFF FOR M99 *)
THE X, Y AND Z VALUE FOR THAT LINE *)
KEEPS TRACK OF THE STATEMENT COUNT *)
BOOLEAN FOR MO2 CODE FOR END OF PROGRAM*)
INTERACTIVE INPUT FROM TERMINAL *)
QUTPUT TO TERMINAL *)

STORES THE L VALUE *)

CONTAINS THE TOOLWIDTH OF ALL TOOLS *)
BOOLEAR SET OW FOR [106 CODE *#)

CURRENT TOOLS POSITION IN MACHINE *)
TOOLWIDTH OF THE CURRENT TOOL *)

(; =
*

* PROCEDURE CREATE_INDEX
)
(* THIS PROCEDURE CREATES THE INDEX FOR THE POSITION OF THE STATEMENT
WITH RESPECT TO THE 'N' VALUE IN EACH LINE *)

PROCEDURE CREATE_INDEX (VAR ONE,STMT,LINE : INTEGER);

BEGIN

IF (NOT ERROR) THEN

BEGIN
INDEX(.ONE.).STMT_COUNT := STMT; (* UPDATE THE STATEMENT POSITION *;

EN%NDEX(.ONE.).LINE:COUNT := LINE; (* STORE NUMBER OF CODES IN LINE *

END;

E-3

(RN A S AR SRR R R L R R
» FUNCTION NUMERIC ™ ;
B g T L R e it st st e

(* THIS BOOLEAN FUNCTION CHECKS WHETHER A CHARACTER IS A NUMBER OR NOT *)

FUNCTION NUMERIC

(VAR
CH : CHAR) : BOOLEAN;

BEGIN
CASE CH OF
'0'..'9" : NUMERIC := TRUE;
ENgTHERNISE NUMERIC := FALSE:

END;

(A HHHHEHHHHHEHHHEHHHHHHHHHHHEHOHHHHOHHHHHE
" PROCEDURE LEXICAL READ ;
SHHHHEHEHHHHHHHEHEHHEOHHHHEHHREHHRERHOERTEHHAEHHHRHEOEHEHENE

PROCEDURE LEXICAL_READ
(* THIS PROCEDURE READS NUMERIC CHARACTERS AND CONVERTS THEM TO NUMBERS¥*)

(VAR
NXTLET : CHAR);

VAR
CH: CHAR;
NEGATIVE : BOOLEAN;

BEGIN

IF (NOT ERROR) THEN
BEGIN
NEGATIVE := FALSE:
READ (CH);
IF (CH = '-') THEN
BEGIN
NEGATIVE := TRUE;
READ (CH)
END; '
IF (NUMERIC (CH)) THEN
BEGIN
NUMCODE := 0;
REPEAT
NUMCODE := 10 * NUMCODE + ORD(CH) - ORD('0');
READ (CH);
UNTIL (NOT NUMERIC (CH)):
IF ((NUMCODE = 0) AND (NEGATIVE)) THEN
NEG_ZERO(.NXTLET.) := TRUE
ELSE TF (NEGATIVE) THEN
NUMCODE := -NUMCODE;
NXTLET := CH
END
ELSE
BEGIN
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER °
«CODE(.1.).NUMBER:4);
WRITELN (TERMOUT,' DIGIT EXPECTED BUT ',CH:1,' FOUND INSTEAD');
WRITELN (' ERROR % ENCOUNTERED IN STATEMENT NUMBER ',CODE(.1.).NUMBER:4);
WRITELN (' DIGIT EXPECTED BUT '.CH:1,' FOUND INSTEAD');
ERROR := TRUE
END
END

END;

* PROCEDURE READ DATA % ;
X R T R R R R R e TR B B e e O s s s DR TR
(* THIS PROCEDURE READS THE CODES, CHECKS FOR ERRORS AND MAKES AN INDEX*)
PROCEDURE READ_DATA;

VAR

BLANK : CHAR; (* READ INTIAL BLANK AND EOF MARKER *)
NUMBR : INTEGER;
NXTLET : CHAR;

BEGIN

REWRITE (TERMOUT);:

RESET (TERMIN);
STMT := 0; (* INITIALIZE THE STATEMENT COUNT *)

ERROR := FALSE; (* INITIALIZE THE DATA ERROR TO FALSE *)
ggé%ﬁ ((NOT EOF) AND (NOT ERROR)) DO (* MARKER FOR EOF *)

LINE :=1; (* INITIALIZE THE CODE COUNT FOR EACH LINE*)
STMT := STMT + 1; (* UPDATE STATEMENT COUNT ¥*)

READ (BLANK); (* READ THE FIRST BLANK IN EACH LINE *)

IF (BLANK <> ' ') THEN |
BEGIN .

WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT ',STMT:4);
WRITELN iTERMOUT,' FIRST COLUMN IS NOT BLANK');

WRITELN (' ERROR ** FIRST COLUMN IS NOT BLANK');
ENSRROR := TRUE

READ (CODE(.LINE.).LETTER); (* READ THE LETTER OF FIRST CODE*)
IF (CODE(.LINE.).LETTER <> 'N') THEN

BEGIN
WRITELN (TERMOUT,' ERROR ¥¥ ENCOUNTERED IN STATEMENT °,STMT:4);

WRITELN (TERMOUT,® SECOND COLUMN IS NOT A "N"');
WRITELN (' ERROR ** SECOND COLUMN IS NOT A “N"');

ERROR := TRUE

END
ELSE
BEGIN
WHILE ((CODE(.LINE.).LETTER <> ' ') AND (NOT ERROR)) DO
BEGIN (* EOLN MARKER *)

LEXICAL_READ (NXTLET);
(* READ THE NUMBER PART OF CODE AND THE NEXT LETTER *)

CODE (.LINE.).NUMBER := NUMCODE;

LINE := LINE + 1; (* UPDATE CODE COUNT FOR THAT LINE *)
CODE(.LINE.).LETTER := NXTLET

END;

LINE := LINE - 1; (* REDUCE CODE COUNT DUE TO OFF-BY-ONE ERROR¥)

CREATE_INDEX (CODE(.1.).NUMBER,STMT,LINE);
(* MAKE AN INDEX OF THE POSITION OF EACH STATEMENT NO,.*)

READLN; (* GO TO NEXT LINE *)
END

END
END;

(S AHHHEHEHHHHHHHHHHHHHHHAHEHHHHHEHHHHAHEHHHHEHHHHHEH
. PROCEDURE CHECKF ;
RS R B B R B B T T R 2

.(* THIS PROCEDURE ASSIGNS THE FEED FOR NORMAL AND FIXED CYCLES *)

PROCEDURE CHECKF;
BEGIN

IF (NOT ERROR) THEN
IF (GBCODE = 80) THEN
FEED := NUMCODE
ELSE
FIXED_FEED := NUMCODE

END;

(iiiiiii**q**i*iiuuiiiniiiii*i***ﬂui*g*ai*i*giiiiii*ii***i****i**ﬁ*ﬁnﬁiﬁi
* PROCEDURE CHECKG B ;
T A s s e L S e s

(* THIS PROCEDURE CHECKS THE NUMBERS ASSOCIATED WITH THE G CODES *)

PROCEDURE CHECKG;
BEGIN

IF (NOT ERROR) THEN
BEGIN
IF ((NUMCODE = 90) OR (NUMCODE = 91)) THEN
G9CODE := NUMCODE
EEEENIF ((NUMCODE = 0) OR (NUMCODE = 1)) THEN
GOCODE := NUMCODE;
IF (GBCODE <> 80) THEN

BEGIN
WRITELN (TERMOUT, ' WARNING ** GOO OR GO1 OVERCOMES FIXED OPERATION'):

WRITELN (' WARNING %* GOO OR GO1 OVERCOMES FIXED OPERATION');

GBCODE := 80;
FIXED_FEED := 0; |
RAPID := 03 !
DWELL := 0 ')
END
END
ELSE IF ((NUMCODE = 2) OR (NUMCODE = 3)) THEN
G23CODE ;= NUMCODE
ELSE IF ((NUMCODE >= 45) AND (NUMCODE <= 48)) THEN
G4CODE := NUMCODE
ELSE IF (NUMCODE = 92) THEN
ORIGIN CHECK := TRUE
ELSE IF T(NUMCODE > 80) AND (NUMCODE <= 89)) THEN
GSCODE := NUMCODE
ELSE IF (NUMCODE = 80) THEN
BEGIN
GBCODE := NUMCODE;
FIXED FEED := 0;
RAPID := 0;
DWELL := 0
END
ELSE IF (NUMCODE = 28) THEN
HOMEPOS := TRUE
ELSE
BEGIN
ERROR := TRUE;
STOP := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);
WRITELN (TERMOUT,' NUMBER *,NUMCODE:6,' NOT ASSOCIATED WITH G CODE');
WRITELN (' ERROR ** NUMBER ‘,NUMCODE:6,' NOT ASSOCIATED WITH G CODE ')

(lmnmﬁwmﬂmm
*

" PROCEDURE CHECKM)

*)

(* THIS PROCEDURE CHECKS THE CODES ASSOCIATED WITH THE M CODES

PROCEDURE CHECKM;

BEGIN
IF (NOT ERROR) THEN
BEGIN
IF (NUMCODE = 6) THEN
TOOL_INDEX := TRUE
ELSE IF ((NUMCODE >= 30) AND (NUMCODE <= 33)) THEN
M3CODE := NUMCODE
ELSE IF (NUMCODE = 98) THEN
ROUTINE := TRUE
ELSE IF (NUMCODE = 99) THEN
ROUTINE := FALSE
ELSE IF (NUMCODE = 0) THEN
PAUSE := TRUE
ELSE IF (NUMCODE = 2) THEN
STOP := TRUE
ELSE
_BEGIN

ERROR := TRUE;
WRITELN (TERMOUT, ' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4;

WRITELN (TERMOUT,' NUMBER ',NUMCODE:6,' NOT ASSOCIATED WITH M CODE'
WRITELN (' ERROR ** NUMBER ',NUMCODE:6,' NOT ASSOCIATED WITH M CODE

)

(:
*

* PROCEDURE CHECKP)
B s L T T e

(* THIS PROCEDURE CHECKS FOR DWELL AND STATEMENT # FOR SUBROUTINE CALL *)

PROCEDURE CHECKP;
BEGIN
IF (NOT ERROR) THEN
BEGIN
IF (GBCODE > 80) THEN
DWELL := NUMCODE
ELSE IF (ROUTINE) THEN
CALLTO := NUMCODE
ELSE
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR %% ENCOUNTERED IN STATEMENT NUMBER'.LINE:4}:

WRITELN §TERMOUT.' P CODE USED W/0 A SUBROUTINE OR FIXED CYCLE CALL');
WRITELN (' ERROR ** P CODE USED WITHOUT A SUBROUTINE OR FIXED CYCLE CALL')

END
END
END;

E-10

(R HHHEHEHEHHHHHEHHHHHHHHHEHHHHHHHHHHHHHHHEHHAHBHHHHHHHHHOH
* PROCEDURE CHECKL ;
B s L L e

(* THIS PROCEDURE FINDS THE NUMBER OF TIMES A STATEMENT IS REPEATED #)

PROCEDURE CHECKL;

BEGIN
IF (NOT ERROR) THEN
TIMES := NUMCODE

END;

E-11

(S HHHHHIHHHHHEAHHECHHHHEHHHHHHRHRHHHHHHEHEHHEHEHARHERRHH
* PROCEDURE CHECKR ;
B g L T e s m S s o

(* THIS PROCEDURE CHECKS THE RAPID MOVEMENT IN FIXED CYCLE OPERATIONS ¥*)

PROCEDURE CHECKR;

BEGIN
IF (NOT ERROR) THEN
BEGIN
IF (GBCODE > 80) THEN
RAPID := NUMCODE
ELSE
BEGIN
ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);
WRITELN (TERMOUT,' R CODE BEFORE FIXED CYCLE WAS STARTED');
WRITELN (' ERROR ** R CODE ENCOUNTERED BEFORE FIXED CYCLE WAS STARTED')

END
END
END;

n

E-12

(Wﬂm’m&“ﬁ%ﬂmﬁm

® PROCEDURE CHECKD

THIS PROCEDURE CHECKS FOR LINEAR OFFSETSVALUES *)

PROCEDURE CHECKD;

BEGIN
IF (NOT ERROR) THEN
BEGIN
OFFCODE := OFFSET(.NUMCODE.);
LNROFFSET := TRUE;
HTOFFSET := FALSE
END
END;

* PROCEDURE CHECKH a)r
G M BN L M B S MR B R R S B2
(* THIS PROCEDURE CHECKS FOR HEIGHT OFFSETSVALUES *)

PROCEDURE CHECKH;

BEGIN
IF (NOT ERROR) THEN

BEGIN
OFFCODE := OFFSET(.NUMCODE.);

HTOFFSET := TRUE;
LNROFFSET := FALSE
END
END;

E-14

(S HHEHHHHEHEHEHHEHHHHHEHHHHEHEHEHEHEHHEHHHHOHHHHH
- PROCEDURE CHECKXYZ ;
L L A s 2 s a e e e e R e

(* THIS PROCEDURE FINDS THE CHANGE IN THE X, Y OR Z COORDINATES *)

PROCEDURE CHECKXYZ;

BEGIN
IF (NOT ERROR) THEN
BEGIN
SHIFT(.LETCODE,) := NUMCODE:
IF (NOT ORIGIN_CHECK) THEN
BEGIN
IF ((LETCODE = 'X') AND (REVX)) THEN
SHIFT(.'X'.) = =SHIFT(.'X'.);
IF ((LETCODE = *Y') AND (REVY)) THEN
SHIFT(.'Y',) :m =SHIFT(.'Y'.);
IF (NEG zeao; *X'.) AND REVX) THEN
NEG_ZERO(. .) i= FALSE;
IF (NEG ZERO(. 'v .) AND REVY) THEN
NEG_ZERO(.'Y'.) := FALSE;
IF ((TETCODE = 'X') OR (LETCODE = 'Y') OR
sEGIN ((macoae = 80) AND (LETCODE = 'Z'))) THEN
IF (G9CODE = 90) THEN
POSITION(.LETCODE.) := SHIFT(.LETCODE.) + ORIGIN(.LETCODE.)
ELSE IF (GOCODE = 91) THEN
- POSITION(.LETCODE.) := POSITION(.LETCODE.) + SHIFT(.LETCODE.)
END
END
END;

E-15

(USRS HHHEN
*

N " PROCEDURE CHECKIJK ')
B B BB M D00 B B B R S R R R

(* THIS PROCEDURE FINDS THE DIST. OF CENTER OF CIRCLE FROM CURRENT POS.*)

PROCEDURE CHECKIJK;

BEGIN
IF (NOT ERROR) THEN
IF ((G23CODE = 2) OR (G23CODE = 3)) THEN
CENTER(.LETCODE,) := NUMCODE
ELSE
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,LETCODE,' ENCOUNTERED WITHOUT G0O2 OR GO3');
WRITELN (' ERROR ** ' LETCODE,' ENCOUNTERED WITHOUT GO2 OR GO3')

END
END;

E-16

(S HHEHHHEHHHEHHH
* PROCEDURE CHECK_CODES ;
T TRV AT AT R TR SRRV RIS I VR R S A s e
{* THIS PROCEDURE GOES TO DIFFERENT PROCEDURES DEPENDING ON LETTER CODE*)

PROCEDURE CHECK_CODES;

BEGIN
IF (NOT ERROR) THEN
BEGIN

IF (LETCODE = 'F') THEN
CHECKF

ELSE IF (LETCODE = '6') THEN
CHECKG

ELSE IF (LETCODE = 'M') THEN
CHECKM

ELSE IF (LETCODE = 'P') THEN
CHECKP

ELSE IF (LETCODE = *L') THEN
CHECKL

ELSE IF (LETCODE = 'R') THEN
CHECKR |

ELSE IF (LETCODE = D') THEN |
CHECKD |

ELSE IF (LETCODE = 'H') THEN
CHECKH

ELSE IF ((LETCODE = 'X') OR (LETCODE = 'Y') OR (LETCODE = 'Z')) THEN
CHECKXYZ

ELSE IF ((LETCODE = *I') OR (LETCODE = 'J') OR (LETCODE = 'K')) THEN
CHECKIJK

ELSE

BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,LETCODE, ' ENCOUNTERED; NOT PROPER CODE');
WRITELN (' ERROR ** ', LETCODE,' USED; NOT PROPER CODE')

END
END
END;

(gyiaﬁiuu**u*niﬁﬁiﬁiuiuiaiaaaaiu*a*iiiu**u*a**i**ii****a*i*aiii**********
i PROCEDURE PRINT ;
AT A A SR H R IR R S

(* THIS PROCEDURE PRINTS THE COORDINATES FOR PLOTTING AND FOR USER *)

PROCEDURE PRINT:

VAR
1 : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)

J ; ALPHABETS; (* LOCAL VARIABLE FOR LOOPING *)

BEGIN
IF (G23CODE <> 0) THEN
c gRITE (CODE(.1.).NUMBER: 4, TOOLWIDTH:6, G23CODE:2)
LSE
WRITE (CODE(.1.).NUMBER:4, TOOLWIDTH:6, GOCODE:2);
FOR J := 'X' TO 'Z' DO
WRITE (POSITION(.J.):7):
FOR J := *I' TO 'K' DO
IF (CENTER(.J.) = MAXINT) THEN
CENTER(.J.) := 03
ENgRITELN (CENTER(.'I'.)ﬁ?.CENTER(.'J‘.):?.CENTER(.'K'.):?)
)] l

E-18

(Wum%mm

" PROCEDURE CHANGE_TOOL ;
F A B R R A AR B B T A A B R BB A T B
(* THIS PROCEDURE INDEXES THE TOOL HOLDING DEVICE *)

PROCEDURE CHANGE_TOOL;

BEGIN
IF (NOT ERROR) THEN
BEGIN
TOOLPOS := TOOLPOS + 1:
M3CODE := 30;
IF (TOOLPOS > MAX_TOOL) THEN
TOOLPOS := 1;
TOOLWIDTH := TOOL(,TOOLPOS.);
PRINT
END
END;

E-19

(Wmmmmﬂwm
*

* PROCEDURE CHANGE ORIGIN :

(* THIS PROCEDURE CHANGES THE ORIGIN FOR FURTHER CALCULATION OF COORD, *)

PROCEDURE CHANGE_ORIGIN;
VAR

I : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)
BEGIN

IF ((NOT ERROR) AND (G9CODE = 90)) THEN

BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE 4;

WRITELN (TERMOUT.' ORIGIN CHANGE IS POSSIBLE ONLY IN ABSOLUTE MODE');:
WRITELN (' ERROR ** ORIGIN CHANGE IS POSSIBLE ONLY IN ABSOLUTE MODE')

END;
IF (NOT ERROR) THEN
BEGIN
FOR I := 1 TO INDEX(.LINE.).LINE_COUNT DO
BEGIN
CASE CODE(.I.).LETTER OF
'*X's BEGIN !
IF (HOMCOUNT(.'X'.) = 1) THEN
BEGIN
HOME(, 'X'.) := CODE(.I.).NUMBER;
'HOMCOUNT(, 'X".) ¢= HOMCOUNT(.'X'.) + 1
END;
ORIGIN(.'X'.) := POSITION(.'X'.) - SHIFT(.'X'.)
END;
'Y':s BEGIN
IF (HOMCOUNT(.'Y'.) = 1) THEN
BEGIN
HOME(.'Y'.) := CODE(.I.).NUMBER;
HOMCOUNT(.'Y'.) := HOMCOUNT(.'Y'.) + 1
END;
ORIGIN(.'Y'.) 2= POSITION(.'Y'.) - SHIFT(.'Y'.)
END;
'Z': BEGIN
IF (HOMCOUNT(.'Z'.) = 1) THEN
BEGIN
HOME(.'Z',) := CODE(.I.).NUMBER;
HOMCOUNT(. 'Z'.) := HOMCOUNT(.'Z'.) + 1

END;
ORIGIN(."'Z'.) := POSITION(.'Z'.) - SHIFT(.'Z"'.)
END;
OTHERWISE
END
END;
PRINT
END
END;

E-20

*

* ‘ PROCEDURE GO HOME)

(* THIS PROCEDURE TAKES THE TOOL/MACHINE TO THE MACHINE HOME POSITION *)

PROCEDURE GO_HOME;

VAR
I : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)

BEGIN
IF (NOT ERROR) THEN
BEGIN

FOR I := 1 TO INDEX(.LINE,).LINE_COUNT DO
CASE'CODE(.I.).LETTER OF

'X : POSITION(.'X'.) := HOME(.'X'.);
e ¢ POSITION(.'Y'.) := HOME(.'Y'.);
A : POSITION(.'Z'.) = HOME(.'Z'.):
OTHERWISE
END;
PRINT
END
END; j

E-21

(mmmmﬂmﬂﬂmm

* PROCEDURE CIRCULAR MOTION .
Wﬂmmﬂmﬂmm
(* THIS PROCEDURE MOVES THE TOOL FOR CIRCULAR MOVEMENT *)

PROCEDURE CIRCULAR_MOTION;
VAR

I : ALPHABETS; (* LOCAL VARIABLE FOR LOOPING *)
RADIUS : REAL;
CHORD : REAL;
ANGLE : REAL;
PI_DIV_2 : REAL; (* VALUE OF PI DIVIDED BY 2 *)
BEGIN
IF (NOT ERROR) THEN
BEGIN

IF (((SHIFT(.'X'.) <> MAXINT) OR (SHIFT(.'Y'.) <> MAXINT))
AND (HTOFFSET) AND (G4CODE <> 0)) THEN

BEGIN

ERROR := TRUE;
WRITELN (TERMOUT, ' ERROR ** ENCOUNTERED IN STATEMENT NUMBER ',LINE:4);

WRITELN (TERMOUT, * HEIGHT OFFSET USED WITH X AND Y');
WRITELN (' ERROR ** HEIGHT OFFSET USED WITH X AND Y')

END ‘
ELSE IF ((SHIFT(.'X'.) = MAXINT) AND (SHIFT(.'Y'.) = MAXINT) AND (LNROFFSET)

AND (SHIFT (.'Z'.) <> MAXINT) AND (G4CODE <> 0)) THEN

BEGIN

ERROR := TRUE;
WRITELN (TERMOUT, ' ERROR ** ENCOUNTERED IN STATEMENT NUMBER ‘,LINE:4);

WRITELN (TERMOUT, ' LINEAR OFFSET USED WITH 2');
" WRITELN (' ERROR ** LINEAR OFFSET USED WITH Z')
ND
ELSE IF ((FEED = 0) OR (M3CODE = 30)) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,*® ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT," SPINDLE NOT ROTATING OR FEED IS 0');
WRITELN (' ERROR ** SPINDLE NOT ROTATING OR FEED IS 0')

END
ELSE IF ((CENTER(.'I'.)=MAXINT) AND (CENTER(.'Jd'.)=MAXINT) AND

(CENTER(. 'K'.)=MAXINT)) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR *¥* ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,' CIRCLE WITHOUT A VALUE FOR I, J OR K');
WRITELN (' ERROR #* CIRCLE CALL WITHOUT A VALUE FOR I, J OR K')

END

E-22

ELSE (* CHECK WHETHER ARC IS > 90 DEGREES ¥*)
BEGIN
PI_DIV_2 := 2.0 * ARCTAN(1.0);
RADIUS := 0.0;
FORI := 'I' TO 'K' DO
IF (CENTER(.I.) <> MAXINT) THEN
RADIUS := RADIUS + SQR(CENTER(.I.)):
RADIUS := SQRT(RADIUS):
CHORD := 0.0;
FOR I := 'X' TO '2' DO
IF (SHIFT(.I.) <> MAXINT) THEN
CHORD := CHORD + SQR(SHIFT(.I.)):
CHORD := SQRT(CHORD);
IF ((2.0%RADIUS) = CHORD) THEN
ELggGLE s= 4,0*%ARCTAN(1.0)
ANGLE := 2,0 * ARCTAN(CHORD/SQRT(4.0%SQR(RADIUS) - SQR(CHORD))):
égegaums > PI_DIV_2) THEN

ERROR := TRUE;
WRITELN (TERMOUT,®' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,' CIRCULAR ARC GREATER THAN 90 DEGREES'?:

ENgRITELN (' ERROR ** CIRCULAR ARC GREATER THAN 90 DEGREES')
ND;

F (NOT ERROR) THEN

EGIN

FOR I := 'X' TO 'Z' DO

BEGIN .

IF (SHIFT(.I.) <> MAXINT) THEN
BEGIN

IF (((SHIFT(.I.) < 0) OR (NEG_ZERO(.I.))) AND (G4CODE <> 0)) THEN
OFFCODE := -QFFCODE;
CASE (G4CODE) OF

45 : POSITION(.I.) := POSITION(.I.) + OFFCODE;
46 : POSITION(.I.) 2= POSITION(.1.) - OFFCODE;
47 + POSITION(.I.) := POSITION(.I.) + (2*OFFCODE);
48 : POSITION(.I.) := POSITION(.I.) - (2¥OFFCODE);
OTHERWISE
END
END;
OFFCODE := ABS(OFFCODE)
END;

E-23

FOR I := 'I' TO *K' DO
BEGIN
éEG%ﬁENTER(.I.) <> MAXINT) THEN
IF (((CENTER(.I.)<0) OR (NEG_ZERO(.I.))) AND (G4CODE<>Q)) THEN
OFFCODE := -OFFCODE;
CASE (G4CQDE) OF

45 : CENTER(.I.) := CENTER(.I.) + OFFCODE;
46 : CENTER(.I.) := CENTER(.I.) - OFFCODE;
47 : CENTER(.I.) := CENTER(.I.) + (2*QOFFCODE);
48 s CENTER(.I.) := CENTER(.I.) - (2*0OFFCODE);
OTHERWISE
END
END;
OFFCODE := ABS(OFFCODE)
END;
PRINT
END
END
ENDs

E-24

S B BRSPS B BB S S B SRR RS

s PROCEDURE MID STOP ;

THIS PROCEDURE FINDS REASON FOR STOPPING IN THE MIDDLE OF PROGRAM *)

JCEDURE MID_STOP;

t

:NTER : CHAR;
{UM_OF_CHANGE : INTEGER;
0S : INTEGER;

ALUE : INTEGER;

: INTEGER;

iIN
F (NOT ERROR) THEN

EGIN

M3CODE := 30; , - .
WRITELN (TERMOUT, .! STOP ENCOUNTERED IN THE MIDDLE OF THE_PROGRAM');
WRITELN (TERMOUT, ' DO YOU WANT TO REVERSE X OR/AND Y? TYPE Y/N');
READLN (TERMIN):
READ (TERMIN, ENTER); q
IF (ENTER = 'Y') THEN !
BEGIN !
WRITELN (TERMOUT, ' TYPE X AND HIT ENTER FOR REVERSING X');
WRITELN (TERMOUT, * TYPE Y AND HIT ENTER FOR REVERSING Y');
WRITELN (TERMOUT, ' TYPE B AND HIT ENTER FOR REVERSING BOTH');
READLN (TERMIN);
READ (TERMIN, ENTER);
CASE (ENTER) OF

X' : REVX := NOT REVX:

'Y' : REVY := NOT REVY:
'B' : BEGIN
REVX := NOT REVX:
REVY := NOT REVY
END;
OTHERWISE
END

END;
WRITELN (TERMOUT, ' DO YOU WANT TO CHANGE TOOLS? TYPE Y/N');
READLN (TERMIN);
READ (TERMIN, ENTER);
IF (ENTER = 'Y') THEN
BEGIN
WRITELN (TERMOUT, ' ENTER THE NUMBER OF TOOL CHANGES'):
READLN (TERMIN);
READ (TERMIN, NUM_OF_CHANGE);

E-25

FOR I := 1 TO NUM_OF_CHANGE DO
BEGIN
WRITELN (TERMOUT, ' ENTER TOOL POSITION AHND WIDTH FOR CHANGE', 1:2);
READLN (TERMIN);
READ (TERMIN,POS, VALUE);
TOOL(.POS.) := VALUE
END;
TOOLWIDTH := TOOL(.TOOL_POS.)
END;
WRITELN (TERMOUT, ' DO YOU WAHT TO CHANGE OFFSETS? TYPE Y/N'):
READLN (TERMIN);
READ (TERIMIN, ENTER):
IF (ENTER = 'Y') THEN
BEGIN
WRITELN (TERMOUT, ' ENTER THE NUMBER OF QFFSET CHANGES');
READLN (TERMIH);
READ (TERMIN, NUM_OF_CHANGE);
FOR I := 1 TO HUM_OF_CHANGE DO
BEGIN
WRITELN (TERMOUT, ' ENTER OFFSET CODE AND VALUE FOR CHANGE', I:2);
READLN (TERMIN);
READ (TERMIN, POS, VALUE):
OFFSET(.P0S.) := VALUE
END
END;
PRINT
END
END;

E-26

(mmmuﬂﬂﬂm
¥*

* PROCEDURE FIXED _CYCLE)

(* THIS PROCEDURE MOVES THE TOOL DURING FIXED CYCLE OPERATIONS *)

PROCEDURE FIXED CYCLE;

VAR
ENTER : CHAR;

BEGIN
IF (NOT ERROR) THEN
BEGIN
IF (FIXED_FEED = Q) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,' FEED REQUIRED FOR FIXED CYCLE OPERATION'):
EN:RITELH (' ERROR ** FEED REQUIRED FOR FIXED CYCLE OPERATION')
ELSE IF (M3CODE = 0) THEN
BEGIN
ERROR {:= TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);
WRITELN (TERMOUT,' SPINDLE NOT ROTAING');
ENgRITELN (* ERROR ** SPINDLE NOT ROTATING')
ELSE IF (G9CODE = 90) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);

WRITELN (TERMOUT,' FOR FIXED CYCLE OPERATIONS USE INCREMENTAL MODE');
WRITELN (' ERROR ** FOR FIXED CYCLE OPERATIONS USE INCREMENTAL MODE');

END;
IF (NOT ERROR) THEN
BEGIN
IF (DWELL > 0) THEN
BEGIN
WRITELN (TERMOUT,' DWELL ENCOUNTERED. HIT ENTER TWICE TO CONTINUE');
READLN (TERMIN);
c gEAD (TERMIN, ENTER)
ND;
POSITION (.'Z'.) := POSITION(.'Z'.) + RAPID;
éEGgﬁHIFT(.'Z'.) <> MAXINT) THEN

POSITION(."'Z'.) 2= POSITION(.'Z'.) + SHIFT(.'Z'.):;

PRINT:

. POSITION(.'Z'.) := POSITION(.'Z'.) - SHIFT(.'Z'.)
ND;

POSITION (.'Z'.) := POSITION(.'Z'.) - RAPID;

PRINT

END
END
END;

E-27

» » PROCEDURE GO_AHEAD ;
L S S e
(* THIS PROCEDURE MOVES THE TOOL DURING ANY LINEAR MOVEMENT *)

PROCEDURE GO_AHEAD;

VAR
I : ALPHABET;

BEGIN
IF (NOT ERROR) THEN
BEGIN
IF ((SHIFT(.'Y'.) <> MAXINT) AND (SHIFT(.'Z'.) <> MAXINT)) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT, ' ERROR ** ENCOUNTERED IN STATEMENT NUMBER ',LINE:4);

WRITELN (TERMOUT, ' SIMULTANEQUS MOVEMENT IN Y AND Z DIRECTIONS');
WRITELN (' ERROR %* SIMULTANEOUS MOVEMENT IN Y AND Z DIRECTIONS'):
END
ELSE IF ((SHIFT(."Z'.) <> MAXINT) AND (GA4CODE <> 0) AND (LNROFFSET)
AND ((SHIFT(.'X'.) <> MAXINT) OR (SHIFT(.'Y'.) <> MAXINT))) THEN

BEGIN
ERROR := TRUE: l
WRITELN (TERMOUT, ' ERROR ** ENCOUNTERED IN STATEMENT NUMBER ',LINE:4);
WRITELN (TERMOUT, ' LINEAR OFFSET USED WITH Z');
WRITELN (' ERROR ** LINEAR OFFSET USED WITH Z')
END
ELSE IF ((SHIFT(.'Z'.) = MAXINT) AND (G4CODE <> Q) AND (HTOFFSET)
N AND ((SHIFT(.'X'.) <> MAXINT) OR (SHIFT(.'Y'.) <> MAXINT))) THEN
N ,
ERROR := TRUE:
WRITELN (TERMOUT, * ERROR ** ENCOUNTERED IN STATEMENT NUMBER ',LINE:4);
WRITELN (TERMOUT, * LINEAR OFFSET USED WITHOUT Z');
WRITELN (' ERROR ** LINEAR OFFSET USED WITHOUT Z')
END
ELS? IF ((FEED = 0) AND (M3CODE = 30) AND (GOCODE = 1)) THEN
BEGIN

ERROR := TRUE;
WRITELN (TERMOUT,' ERROR ** ENCOUNTERED IN STATEMENT NUMBER',LINE:4);:

WRITELN (TERMOUT, ' SPINDLE NOT ROTATING OR FEED IS 0');
WRITELN (' ERROR %* SPINDLE NOT ROTATING OR FEED IS 0')

END;

E-28

IF (NOT ERROR) THEN

BEGIN
FOR I :='X' TO 'Z' DO
BEGIN
IF (SHIFT(.I.) <> MAXINT) THEN
BEGIN

IF ((G4CODE <> 0) AND ((SHIFT(.I.) < 0) OR (NEG_ZERO(.I.)))) THEN
OFFCODE := ~OFFCODE;
CASE (G4CODE) OF

45 : POSITION(.I.) == POSITION(.I.) + OFFCODE;
46 : POSITION(.I.) := POSITION(.I.) - OFFCODE;
47 : POSITION(.I.) := POSITION(.I.) + (2*OFFCODE);
48 : POSITION(.I.) := POSITION(.I.) - (2*OFFCODE);
OTHERWISE
END
END;
OFFCODE := ABS(OFFCODE)
END:
PRINT
END
END
END;

E-29

. (Wmmm%ﬂmmmm
* X PROCEDURE SCROLL ;

(* THIS PROCEDURE SKIPS THROUGH LINES IN A FILE BEFORE READING *)

PROCEDURE SCROLL

(VAR
LINE_NUMBER: INTEGER); (* NUMBER OF LINES TO SKIP BEFORE READ *)

VAR
I : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)

BEGIN
RESET(INPUT);
FOR I := 1 TO LINE_NUMBER DO
READLN
END;

E-30

(P HHHHEHHHHHHHEHHHHHHHHHHHHEHHEHHHHHEHHHHBHOHEHHOHEHHHHHHHEH
o PROCEDURE INITIALIZE ; :
A H A TR B S B B A SIS S it

(* THIS PROCEDURE INITIALIZES VARIABLES AT THE BEGINNING OF THE RUN #)
PROCEDURE INITIALIZE;

VAR
I

J:
ENTER : CHAR;

BEGIN
IF (NOT ERROR) THEN
BEGIN
RESET(INPUT):
STMT := 03
STOP := FALSE;
FEED := O3
DWELL := O
RAPID := 0;
FIXED FEED := 0;
G9CODE := 0;
GOCODE := 0;
OFFCODE := 0;
G8CODE := 80;
CALLTO := 0;
M3CODE := 30;
ROUTINE:= FALSE;
REVX := FALSE;
REVY := FALSE;
HTOFFSET := FALSE;
LNROFFSET := FALSE;
FOR I := *X' TO 'Z' DO
BEGIN
HOMCOUNT(.I.) := 1;
END;
FOR I := 'X' TO 'Z' DO
BEGIN
POSITION(.I.) := O;
ORIGIN(,I.) := 0
END;
WRITELN (TERMOUT, ' TYPE Y/N TO ENTER INITIAL TOOLWIDTHS AND OFFSETS');
READLN (TERMIN);
READ (TERMIN, ENTER):
IF (ENTER = 'Y') THEN
BEGIN
REWRITE (OFFTOOL);:

ALPHABETS; (* LOCAL VARIABLE FOR LOOPING *)
INTEGER; §* LOCAL VARIABLE FOR LOOPING *)
* VARIABLE TO READ FROM TERMINAL *)

E-31

Eggla t= 0 TO MAX_OFFSET DO
N >
WRITELN (TERMOUT,' ENTER OFFSET FOR OFFSET CODE', J:2);
READLN (TERMIN);
READ (TERMIN,OFFSET(.J.));
ENgRITE (OFFTOOL, OFFSET(.d.):7)
WRITELN (OFFTOOL):
OFFCODE := 0;
FOR J := 1 TO MAX_TOOL DO
BEGIN
WRITELN(TERMOUT, ' ENTER TOOLWIDTH FOR POSITION',J:2);
READLN (TERMIN);
READ (TERMIN,TOOL(.J.)):
Engalrs (OFFTOOL, TOOL(.J.):7)
WRITELN (OFFTOOL);
END
ELSE
BEGIN
RESET (OFFTOOL);
FOR J := 0 TO MAX OFFSET DO
READ QOFFTOOL. OFFSET(.J.)):
READLN (OFFTOOL):
FOR J := 1 TO MAX TOOL DO I
c READ (OFFTOOL, TOOL(.J.)) '
ND;

TOOLWIDTH := TOOL(.1.);

TOOLPOS := 15

WRITE ('ST #','TL_WD': 6.'G' 2,'X_P0S':7,'Y_P0S':7,'Z_P0S':7);
WRITELN ('I': e7, %077, 'K' 1):

WRITELN

END

END;

£-32

(S HHEHHHHHHHEHHHHHHHHHRHEHHHHHEHEHHHEHHHHEHHHEHRHAHA
* ' PROCEDURE REINITIALIZE -§\
RSB A A M O

(* THIS PROCEDURE INITIALIZES VARIABLES AFTER EACH M/C CODE STATEMENT*)

PROCEDURE REINITIALIZE;

VAR
A : ALPHABETS; (* LOCAL VARIABLE FOR LOOPING *)

BEGIN
IF (NOT ERROR) THEN
BEGIN
PAUSE := FALSE;
TOOL INDEX := FALSE.
ORIGIN CHECK := FALSE;
HOMEPOQS := FALSE:
G23CODE := Qg
G4CODE := 0;
TIMES := 1;
FOR A := 'I' TO 'K' DO
BEGIN
CENTER(.A.) := MAXINT; {
NEG_ZERO(.A.) := FALSE :
END;
FOR A := 'X' TO 'Z' DO
NEG ZERO(A.) := FALSE;
FOR A := 'X' TO 'Z' DO
IF (((A = 'Z') AND (GBCODE = 80)) OR (A = 'X') OR (A = "Y')) THEN
SHIFT(.A,) : HAXINT
END
END;

E-33

(mmmmm*m&ﬂ%ﬂm

* ™ PROCEDURE REREAD CHECK ;
B g R L R S L LNy
(* THIS PROCEDURE READS THE CODES AGAIN FOR PROCESSING THEM *)
PROCEDURE REREAD_CHECK;
VAR

NUM : INTEGER; (* SUBSCRIPT VARIABLE FOR ARRAY *)

I : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)

J : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)

BLANK: CHAR; (* VARIABLE TO READ INITIAL BLANK IN INPUT %)

NEXT_LETTER : CHAR;
NUMBR : INTEGER;

BEGIN
IF (NOT ERROR) THEN
BEGIN
READ (BLANK,CODE(.1.).LETTER, CODE(.1.).NUMBER);
LINE := CODE(.1.).NUMBER;
READ (NEXT_LETTER);
EEEI:UM = 2 TO INDEX(.LINE.).LINE_COUNT DO
i
J, CODE(.NUM.) LETTER := NEXT LETTER;

LETCODE := CODE(. NUM.) LETTER;
IF ((NEXT_LETTER='X') OR (NEXT LETTER="Y') OR (NEXT_LETTER='Z') OR

(NEXT_LETTER="1') OR (NEXT_LETTER='J') OR (NEXT_LETTER='K')) THEN

EL%EXICAL READ (NEXT_LETTER)
~ READ (NUMCODE, NEXT_LETTER);
CODE(. NUM.). NUMBER := NUMCODE;
CHECK_CODES
END;
READLN;
FOR I := 1 TO TIMES DO
BEGIN
IF ((I > 1) AND (NOT ERROR)) THEN
ggglg :m 2 TO INDEX(.LINE.).LINE_COUNT DO
LETCODE := CODE(.J.). LETTER;
NUMCODE := CODE(.dJ.).NUMBER;
CHECK_CODES
END;

E-34

IF (ORIGIN_CHECK) THEN
CHANGE_ORIGIN

ELSE If TTOOL_INDEX) THEN
CHANGE TOOL

ELSE IF THOMEPOS) THEN
GO_HOME

ELSE IF ((G23CODE = 2) OR (G23CODE = 3)) THEN
CIRCULAR_MOTION

ELSE IF (PAUSE) THEN
MID STOP _

ELSE TF (GBCODE <> 80) THEN
FIXED_CYCLE

ELSE

E-35

(mmmwwmmﬂu

i PROCEDURE DEVIATE *
e L e

Al THIS PROCEDURE TAKES CARE OF SUBROUTINE CALLS *)
PROCEDURE DEVIATE

(VAR
STMT : INTEGER; (* STMT FROM WHICH ROUTINE CALL MADE *)
CALLTO : INTEGER); (* STMT # BEING CALLED *)
VAR
ROUT_TIMES : INTEGER; (* # OF TIMES THE ROUTINE IS REPEATED *)
1 ¢ INTEGER; (* LOCAL VARIABLE FOR LOOPING *)
NUM : INTEGER; (* LOCAL VARIABLE FOR LOOPING *)
LOCATE : INTEGER; (* POSITION PRECEDING THE STMT # CALLED *)
BEGIN
IF (NOT ERROR) THEN
BEGIN

LOCATE := INDEX(.CALLTO.).STMT_COUNT - 1;
ROUT_TIMES := TIMES;
FOR T := 1 TO ROUT_TIMES DO
BEGIN l
ROUTINE := TRUE;
SCROLL(LOCATE);

WHILE ((ROUTINE) AND (NOT ERROR)) DO
BEGIN

REINITIALIZE;
REREAD_CHECK;
END
END;
SCROLL{STMT)
END

END;

E-36

(mmmmmm“mﬂmm
2% *

* PROCEDURE PROCESS_DATA o

(* THIS PROCEDURE ANALYSIS THE DATA *)

PROCEDURE PROCESS_DATA;

BEGIN
IF (NOT ERROR) THEN
BEGIN
WHILE ((NOT STOP) AND (NOT ERROR)) DO
BEGIN
STMT := STMT + 1;
REINITIALIZE;
REREAD CHECK:
IF (ROUTINE) THEN
DEVIATE (STMT,CALLTO)
END
END
END;

E-37

AN DB BBt B D DSBS HRREHEHHHHHHORHEH
S .

w N MAIN PROGRAM :

)

(* THE MAIN PROGRAM READS, INITIALIZES AND PROCESSES THE M/C CODE *)

BEGIN
READ_DATA;
INITTALIZE;
PROCESS_DATA

END.

E-38

C$J0B

APPENDIX F

Program listing for Phase II

% ok ook ok ok ok o ok e ok ok ok dk ok ok ok ok sk ok ok ok ok ok ok ok %

This program is Phase II of the tool path plotting program. It
plots the tool path according to the coordinates specified by
POSITION FILE. This data file is generated in Phase I. This is an
interactive plotting program. It can perform different functions.
The main program calls different subroutines according to function
specified by the user,

The functions that can be performed are:

CLEAR

OPTIONS -

DRAW -

2004

uIT -

TOOL PATH PLOTTING PROGRAM
BY
P. SARAVANA PRASAD

SUBROUTINE CLEAR

This command clears the screen and draws the work
piece,

SUBROUTINE OPTION

This command provides other options for the user.
The user can specify the data line from which the
plotting should start (default = 1).

The user can specify the data line at which the
plotting should stop (default = End of data).

The user can clear the screen each time the tool is
changed (default = Screen not cleared).

The user can draw the grids during the DRAW or ZOOM
command (default = Grids not drawn).

The user can draw upto 10 fixtures at desired place ¥
by moving the cross—hair cursor and specifying the ¥
corners for each fixture (default=Fixture not drawn)*

SUBROUTINE SBODRAW *
This command draws the tool path according to the ¥
options specified by the user. *
SUBROUTINE ZOOM ®
This command enlarges the portion of the drawing *
desired by the user. The two coordinates of one of :

the diagonal elements of the area are specified by
the user by moving the cross—hair cursor. This area *
is converted to the nearest square area and enlarged®

3

MAIN PROGRAM

This command returns the user back to CiMS. *

3

H-M—N—K%H—H!-HH—H—‘ f RS B RS ,Hi-“-ﬁﬂﬂ,iﬁﬁﬁﬂuﬂﬂ*ﬂﬁ*ﬁﬁ*:ix""!”iE:”H””iii

e E a2 L s S i e L e s L e)

C *
C MAIN PROGRAM *
C #*
I e e s R ik)
C ¥*

REAL PREVX,PREVY,PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL, TLWD
REAL LENGTH, WIDTH, SCLFAC, PREVTL,XFIX(10,4),YFIX(10,4)

REAL XLIMIT,YLIMIT

INTEGER STMT, GCODE, NUMFIX, STRTLN, ENDLIN

CHARACTER*1 TLCHCE, GRCHCE, FXCHCE

CHARACTER*50 COMAND, BLANK

COMMON/CHOICE/TLCHCE, GRCHCE, FXCHCE
COMMON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL,
+TLWD, STMT, GCODE, PREVTL
COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

COMMON /MISL/NUMFIX, XFIX, YFIX, STRTLN, ENDLIN

DATA BLANK/' '/

Obtain the length and width of the workpiece and convert it to
to Graphic Display Units (GDU). Choose a scaling factor such that

the bigger of the two sides is 80 GDU.

N OoOOO0

0 CONTINUE

REWIND 9 ; !
WRITE (9,%) ' Enter the LENGTH and WIDTH of material in INCHES'

READ (9,%,END=50) LENGTH,WIDTH
LENGTH = LENGTH * 10.0

WIDTH = WIDTH * 10.0

SCLFAC = 80.0/MAX(LENGTH, WIDTH)
XLIMIT = LENGTH * SCLFAC

YLIMIT = WIDTH * SCLFAC

XLIMIT = MIN (XLIMIT,80.0) + 10.0
YLIMIT = MIN (YLIMIT,80.0) + 10.0

Set the default values for the options

OO0

1
0
lNl
lNl
INI

STRTLN
ENDLIN
TLCHCE
GRCHCE
FXCHCE

Initialize IGL and draw the workpiece. Prompt for user command.

OO0

CALL GRSTRT (4010,1)
CALL CLEAR

10 CONTINUE
CALL MOVE (5.0,3.0)
CALL TXICUR(4)
CALL TEXT (2, '=>")
CALL CHMCLOS

OO0

Read and process the user command.

READ (9,20,END=60) COMAND
CONTINUE
REWIND 9
CALL CMOPEN
IF (INDEX(COMAND, 'CLEAR').NE.Q) THEN
CALL CLEAR
ELSEIF (INDEX(COMAND, "OPTIONS').NE.O) THEN
CALL OPTION
ELSEIF (INDEX(COMAND, 'DRAW').NE.O) THEN
CALL SBDRAW
ELSEIF (INDEX(COMAND, 'ZOOM').NE.Q) THEN
CALL ZOOM
ELSEIF (INDEX(COMAND, 'QUIT').NE.O) THEN
GO TO 30
ELSEIF (COMAND.NE.' ') THEN
CALL TXICUR(4)
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)
CALL MOVE (5.0,3.0)
CALL TEXT (40, 'Unknown Command - Hit RETURN to continue')
CALL CMCLOS
READ (9,20, END=40) COMAND
CONTINUE
REWIND 9
CALL CMOPEN
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)
ENDIF
CALL MOVE (5.0,3.0)
CALL TXICUR(4)
CALL TEXT (50,BLANK)
COMAND = ' !
GO TO 10
CONTINUE
CALL NEWPAG
CALL SBANSI
CALL GRSTOP
STOP
FORMAT (A50)
END

C

C *
C SUBROUTINE CLEAR *
C *
C This subroutine draws the workpiece and labels the toolwidth and *
C I-coordinate positions. #*
C *
(R AR HHSHRRREORRRRCHSHERO00
C

SUBROUTINE CLEAR
REAL XPANEL(5),YPANEL(5),XLIMIT, YLIMIT,LENGTH,WIDTH, SCLFAC

COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

Assign values to variables according the size of the workpiece
and draw the workpiece

XPANEL(1) = 10.0
XPANEL(2) = 10.0
XPANEL(3) = XLIMIT
XPANEL(4) = XLIMIT
XPANEL(5) = 10.0
YPANEL(1) = 10.0
YPANEL(2) = YLIMIT
YPANEL(3) = YLIMIT
YPANEL(4) = 10.0
YPANEL(5) = 10.0

CALL NEWPAG

CALL DASHPT(0)

CALL MOVE (10.0,10.0)
CALL POLY (5,XPANEL, YPANEL)

OO0

Label for the text display on the side of the plot

OO0

CALL TXICUR (4)

CALL MOVE (95.0,90.0)

CALL TEXT (14, ' TOOL Z_CORD')
RETURN
END

SUBROUTINE SBANSI

This subroutine returns the terminal back to ANSI mode from the
graphics mode.

OOOOO0

% ok %k ok %k %k

SUBROUTINE SBANSI

INTEGER IASRAY(2), IAMRAY(1)

DATA IASRAY, IAMRAY/27, 50,0/
CALL KAS2AM (2, IASRAY, IAMRAY)
WRITE (9,10) IAMRAY

RETURN

10 FORMAT (' ',A4)
END

% %k %k ok k %k

SUBROUTINE GRID

This subroutine draws the grid and labels 1t. Every 10th line 1is
drawn by a different type of line.

*

SUBROUTINE GRID

INTEGER I,DIVCNT
REAL XPOS, YPOS,DSPLYX, DSPLYY, LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

C Draw the grid lines along X-axis, with every 5th line solid.

DIVCNT = 0
DO 10 I = 2,80,2
XPOS = I + 10,0
DIVCNT = DIVCNT + 1
IF (DIVCNT.EQ.5) THEN
DIVCNT = 0
CALL DASHPT(0)
ELSE |
CALL DASHPT(1)' f
ENDIF
CALL MOVE (XPOS,10.0)
CALL DRAW (XP0S,90.0)
0 CONTINUE

Draw the grid lines along Y-axis, with every 5th line solid.

YOI =~

DIVCNT = 0
DO 20 I = 2,80,2
YPOS = I + 10.0
DIVCNT = DIVCNT + 1
IF (DIVCNT.EQ.5) THEN
DIVCNT = 0
CALL DASHPT(0)
ELSE
CALL DASHPT(1)
ENDIF
CALL MOVE (10.0,YPOS)
CALL DRAW (90.0, YPOS)
20 CONTINUE

OO0

OO0 W

40

Label the grid every 5th 1ine along the X-axis

CALL TXICUR(8)
DSPLYX = 0.0
CALL MOVE (10.0,8.0)
CALL RNUMBR (DSPLYX,1,5)
DO 30 I - 10'801 10
XP0S = I + 10.0
CALL MOVE (XP0S,8.0)
DSPLYX = DSPLYX + MAX(LENGTH,WIDTH)/80.0
CALL RNUMBR (DSPLYX,1,5)
CONTINUE

Label the grid every 5th line along the Y-axis

CALL TXICUR(6)
DSPLYY = 0.0
CALL MOVE (8.0,10.0)
CALL RNUMBR (DSPLYY,1.5)
DO 40 I = 10,80,10
YPOS = I + 10,0
CALL MOVE (8.0,YPOS)
DSPLYY = DSPLYY + MAX(LENGTH,WIDTH)/80.0
CALL RNUMBR (DSPLYY,1,5)
CONTINUE
RETURN
END

SUBROUTINE SBDRAW

This subroutine draws a X-Y plot according to the coordinates
specified by POSITION FILE. Circles are drawn according to the
toolwidth, along the path taken by the tool. The toolwidth and
the Z-coordinate are written on the side of the screen. The grids
and fixtures are drawn if desired by the user.

OOOOOO0OOOO
% dk koo ok ok A o ok

I

SUBROUTINE SBDRAW

REAL PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, XFIX(10,4), YFIX(10,4)

REAL IVAL, JVAL, KVAL, TLWD, PREVTL, LENGTH, WIDTH, SCLFAC, ZCOORD

REAL XLIMIT,YLIMIT, TLCORD

INTEGER GCODE, CHECK, STMT, STRTLN, ENDLIN, ZCOUNT, NUMFIX

CHARACTER¥*1 TLCHCE, GRCHCE, FXCHCE, F IXMRK

CHARACTER¥*50 DUHMY , BLANK

COMMON/CHOICE /TLCHCE , GRCHCE,, F XCHCE

COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

COMMON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, VAL, JVAL, KVAL,
+TLHWD, STMT, GCODE, PREVTL

COMMON/MISL/NUMF IX, XFIX, YFIX, STRTLN, ENDLIN

DATA BLANK /' '/ ,

Clear the screen and draw the workpiece. Initialize variables for
writing changes in the Z-coordinates and toolwidth,

OO0O0

CALL CLEAR
ZCOUNT = 1
ZCOORD = 75,0
TLCORD = 75.0

Draw the fixture and the grid if desired

IF (FXCHCE.EQ.'Y') CALL FIXTUR

CALL WINDOW (0.0, XLIMIT,0.0, YLIMIT)
CALL VWPORT (0.0, XLIMIT,0.0,YLIMIT)
IF (GRCHCE.EQ.'Y') CALL GRID

CALL TRIDNT (.TRUE.)

Reset to top of data file and omit the first two data lines having
labels for the data file (POSITION FILE). Read the third line.

OO0

OO0

REWIND 1
READ (1,%*,END=30)
READ (1,*, END=30)
DO 10 I = 1,STRTLN
READ (1,20,END=30) STMT, TLKD,GCODE, PRESX, PRESY, PRESZ,
+ IVAL, JVAL, KVAL
10 CONTINUE

C Convert-to GDU and draw the starting positions and values

CALL TXICUR(4)

CALL MOVE (95.0,75.0)

CALL RNUMBR (TLWD,-1,5)

CALL MOVE (105.0,75.0)

CALL RNUMBR (PRESZ,-1,7)
TLWD = TLWD/2000.

PRESX = PRESX/1000.

PRESY = PRESY/1000.

IVAL = IVAL/1000.

JVAL = JVAL/1000.

KVAL = KVAL/1000.

CALL TRANSL (10.0,10.0)

CALL SCALE (SCLFAC,SCLFAC) -
CALL DASHPT(0)

IF (GCODE.EQ.0) CALL DASHPT(3)
CALL TOOL (TLWD,PRESX,PRESY)
"CALL TXICUR(S5)

CALL MOVE (PRESX,PRESY)

CALL INUMBR (ZCOUNT,2)

CHECK = STRTLN

¢
¢ Check to the number of data lides to be read
c .
40 CONTINUE
IF (CHECK.NE.ENDLIN) THEN
c
g Set the viewing transformations

CALL TRIDNT(.FALSE.)
CALL TRANSL (10.0,10.0)
CALL SCALE (SCLFAC,SCLFAC)

Store the previous cursor position

PREVX = PRESX
PREVY = PRESY
PREVZ = PRESZ
PREVTL = TLWD

OO0

Read the rest of the data and convert to GDU

READ (1,20,END=30) STMT, TLWD, GCODE, PRESX, PRESY, PRESZ,
+ IVAL, JVAL, KVAL

CHECK = CHECK + 1

TLWD = TLWD/2000.

PRESX = PRESX/1000.

PRESY = PRESY/1000,

IVAL = IVAL/1000.

JVAL = JVAL/1000.

KVAL = KVAL/1000.

OO0

OO0

WOOoO

60

20
50

Depending on the code, decide whether the movement is linear or

circular,

IF ((GCODE.EQ.1).0R. (GCODE.EQ.0)) THEN

CALL STLINE
ELSE

CALL CURVE
ENDIF

Check for any changes in the Z-coordinate or toolwidth

CALL TRIDNT (.FALSE.)

CALL TXTWRT (ZCOUNT,ZCOORD, TLCORD)

GO TO 40
ELSE
ENDIF

CONTINUE

CALL TRIDNT (.FALSE.)
CALL TXICUR(4)

CALL MOVE (5.0,3.0)
CALL TEXT (50, BLANK)
CALL MOVE (5.0,3.0)

CALL TEXT (38.'Plott1ng done - HIT RETURN TO CONTINUE)

CALL CMCLOS
READ (9, 50,END=60) DUMMY
CONTINUE
REWIND 9
CALL CMOPEN
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)
RETURN
FORMAT (14,F6.0,12,6F7.0)
EOSMAT (A50)
N

Complete the plotting procedure

F-10

OOOOOOOO0

SUBROUTINE OPTION

This subroutine provides the user with certain plotting options.
The data 1ine from which the plotting starts, the data line at
which the plotting stops, drawing the fixtures, drawing the grids
and clearing the screen when the tool changes are the options
provided.

* %k %k % %k k ok %k %k

‘

OO0

OO0

OO0

OO0

20

SUBROUTINE OPTION

REAL XFIX(10,4),YFIX(10,4), TMPXFX(4),TMPYFX(4)
REAL LENGTH,WIDTH, SCLFAC, XLIMIT, YLIMIT

INTEGER STRTLN, ENDLIN, NUMFIX,I,J,IDAT, IGOT
CHARACTER*1 TLCHCE, GRCHCE, FXCHCE, DUMMY
CHARACTER*50 BLANK
COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT
COMMON/CHOICE/TLCHCE, GRCHCE, FXCHCE
COMMON/MISL/NUMFIX, XFIX, YFIX, STRTLN, ENDLIN

DATA BLANK /' '/

Take cursor to the top of the screen and clear the screen. Then go
to ANSI mode to prompt for user options.

CALL HOME
CALL NEWPAG
CALL SBANSI

Specify different user options. Variables are set according to the
option desired by the user.

WRITE (9,%) 'Al1 the options remain ineffect until changed'
WRITE (9,%)
WRITE (9,%)

Enter the data line (excluding titles) from which the plotting
should commence.

WRITE (9,%) 'Enter STARTING DATA LINE for drawing'
WRITE (9,%) '(Hit RETURN for default value 1)'
READ (9,%*,END=10) STRTLN

CONTINUE

REWIND 9

Enter the data line at which plotting should stop

WRITE (9,%*) 'Enter ENDING DATA LINE for drawing'
WRITE (9,%*) '(Hit RETURN for all data lines)'
READ (9,%*,END=20) ENDLIN

CONTINUE

REWIND 9

F-11

OOO0OOM

w

0

OO0

s

0

OO0

80

70

Provide the option ‘for either clearing the screen whenever the
toolwidth changes or to continue on the same screen and write the

new value on the side of the X-Y plot.

WRITE {9,%) 'Type Y/N for clearing screen during TOOL CHANGE'
READ (9, 60,END=30) TLCHCE

CONTINUE

REWIND 9

Choose whether you need the grids to be drawn along with the plot

WRITE (9,*) 'Type Y/N for drawing the grid'
READ (9,60,END=40) GRCHCE

CONTINUE

REWIND 9

Choose whether you need to draw the fixtures along with the plot.

If yes, enter the number of fixtures (upto 10) and mark the four

corners for each fixture.

WRITE (9,%) 'Type Y/N for marking the fixtures'
READ (9,60, END=50) FXCHCE
CONTINUE ,
REWIND 9 ’ r
IF (FXCHCE.EQ.'Y') THEW
WRITE (9,%*) 'Enter the number of FIXTURES (upto 10)'
READ (9,%*,END=50) NUMFIX
CALL CLEAR
CALL WINDOW (0.0, XLIMIT,0.0, YLIMIT)
CALL VWPORT (0.0,XLIMIT,0.0,YLIMIT)
CALL GRID
CALL TRIDNT (.TRUE.)
DO 70 I = 1,NUMFIX
CALL TXICUR(4)
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)
CALL MOVE (5.0,3.0)
CALL TEXT (26, 'Mark location for Fixture ')
CALL MOVE (49.0,3.0)
CALL INUMBR (I,2)
DO 80 J = 1,4
CALL LOCATE (1,XFIX(I,J),YFIX(I,d),IDAT,IGOT)
CALL TXICUR (5)
CALL MOVE (XFIX(I,Jd).YFIX(I,d))
CALL TEXT (1,'x")
TMPXFX(J) = XFIXéI.J)
TMPYFX(J) = YFIX(I1,d)
CONTINUE
CALL FILPAN (6,.TRUE.)
CALL PANEL (4,TMPXFX,TMPYFX)
CALL FILPAN (7,.TRUE.)
CALL PANEL (4,THPXFX,TMPYFX)
CONTINUE

F-12

CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)
CALL MOVE (5.0,3.0)
CALL TXICUR(4)
CALL TEXT (41, 'Fixture(s) drawn - Hit RETURN to continue')
CALL CMCLOS
READ (9, 60, END=90) DUMMY
90 CONTINUE
REWIND 9
CALL CMOPEN
ELSE
ENDIF
CALL CLEAR
RETURN
60 FORMAT (A1)
END

F-13

c
C
C
C
c
C
C
C
C
C

OoOOoOOooO0

OO O0O

L xRk En i nd o aiainraar EiEooroninoriminimronaimiaanginriniaayoragiopon

*
*
*
*
*
#*
¥*

SUBROUTINE ZOOM

This subroutine provides the user with the option of focusing on
a certain portion of the plot. The area specified is converted to
the nearest square and this portion is enlarged for viewing.

SUBROUTINE ZOOM

REAL PREVX,PREVY,PREVZ, PRESX, PRESY, PRESZ, XFIX(10,4), YFIX(10,4)

REAL IVAL,JVAL,KVAL, TLWD, PREVTL,LENGTH, WIDTH, SCLFAC, YPANEL(5)

REAL XCOORD(2),YCOORD(2),MINMUM, MAXMUM, XLIMIT, YLIMIT, XPANEL(5)

INTEGER GCODE, CHECK, STMT, STRTLN, ENDLIN, ZCOUNT, NUMFIX

CHARACTER*1 TLCHCE, GRCHCE, FXCHCE, FIXMRK

CHARACTER*50 BLANK, DUMMY

COMMON/CHOICE/TLCHCE,, GRCHCE, FXCHCE

COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

COMMON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL,
+TLWD, STMT, GCODE, PREVTL

COMMON/MISL/NUMFIX, XFIX, YFIX, STRTLN, ENDLIN

DATA XPANEL /10.0,10.0,90.0,90.0,10.0/

DATA YPANEL /10.0,90.0,90.0,10.0,10.0/

DATA BLANK /' '/

Locate the diagonal elements of the desired area

CALL TXICUR (4)

CALL MOVE (5.0,3.0)

CALL TEXT (50,BLANK)

CALL MOVE (5.0,3.0)

CALL TEXT (42, 'Mark any diagonal coordinates of zoom area')
CALL LOCATE (2,XCOORD, YCOORD, IDAT, IGOT)

CALL MOVE (5.0,3.0)

CALL TEXT (50,BLANK)

Choose the smallest and largest coordinate value to make the
chosen area a square. This is done in order to remove any distor-

tion in the plot.

[MINHUM = MIN(XCOORD(1), XCOORD(2),YCOORD(1),YCOORD(2)) ~ 10.0
HAXMUM = MAX(XCOORD(1), XCOORD(2),YCOORD(1), YCOORD(2)) - 10.0

Change the window and viewport coordinates in order enlarge the
desired area. The plot is shown on a 80 x 80 GDU and does not

vary with the size of the workpiece

CALL NEWPAG

CALL DASHPT(0Q)

CALL MOVE (10.0,10.0)

CALL POLY (5, XPANEL, YPANEL)

CALL WINDOW (MINiUM, MAXIHUM, MINMU, MAXMUM)
CALL VWPORT (10.0,90.0,10.0,90.0)

Draw the grid within the area if specified

IF (GRCHCE.EQ.'Y") CALL GRID

Set scaling factor. Go to top of data file. Omit first two data
Tines and read the third one for initializing.

CALL SCALE (SCLFAC, SCLFAC)
REWIND 1
READ (1,%*, END=30)
READ (1,%, END=30)
DO 10 I = 1,STRTLN
READ (1,20,END=30) STMT, TLWD, GCODE, PRESX, PRESY, PRESZ,
+ IVAL, JVAL, KVAL
0 CONTINUE

Convert to GDU and draw the intial position and value

OO0 X w]

OO —

TLWD = TLKWD/2000.

PRESX = PRESX/1000.

PRESY = PRESY/1000.

IVAL = IVAL/1000.

JVAL = JVAL/1000.

KVAL = KVAL/1000.

CALL DASHPT(0)

IF (GCODE.EQ.0) CALL DASHPT(3)
CALL TOOL (TLWD,PRESX,PRESY)
CALL TXICUR(5)

CALL MOVE (PRESX,PRESY)

CALL INUMBR (ZCOUNT,2)

CHECK = STRTLN

Check to the number of data lines to be read

OO0

0 CONTINUE
IF (CHECK.NE.ENDLIN) THEN

Store previous cursor position

OO0 £

PREVX = PRESX
PREVY = PRESY
PREVZ = PRESZ
PREVTL = TLWD

Read the next data line and convert to GDU

READ (1,20, END=30) STMT, TLWD, GCODE, PRESX, PRESY, PRESZ,

+ IVAL, JVAL, KVAL
CHECK = CHECK + 1
TLWD = TLWD/2000.
PRESX = PRESX/1000.
PRESY = PRESY/1000.
IVAL = IVAL/1000.
JVAL = JVAL/1000.
KVAL = KVAL/1000.

OO0

F-15

OO0

OO0 Ww

60

Depending on the machining code, decide whether the movement is
linear or circular

F ((GCODE.EQ.1).0R. (GCODE.EQ.0)) THEN
CALL STLINE
ELSE
CALL CURVE
ENDIF
GO TO 40
ELSE
ENDIF
CONTINUE

End of the plotting

CALL TRIDNT (.FALSE.)
CALL TRIDNT (.TRUE.)
CALL TXICUR(4)
CALL MOVE (5.0,3.0) -
CALL TEXT (50,BLANK)
CALL MOVE (5.0,3.0)
CALL TEXT (38, 'Plotting done - HIT RETURN TO CONTINUE')
CALL CMCLOS
READ (9,50, END=60) DUMHMY |
CONTINUE |
REWIND 9 -
CALL CMOPEN
CALL MOVE (5.0,3.0)
CALL TEXT (50, BLANK)
RETURN

- FORMAT (14,F6.0,12,6F7.0)

FORMAT (A50)
END

F-16

SUBROUTINE FIXTUR

This subroutine draws the fixture, whose location has already
been specified in SUBROUTINE OPTION.

OO0
 EEEER.

1

SUBROUTINE FIXTUR

CHARACTER*1 TLCHCE, GRCHCE, FXCHCE

INTEGER NUMFIX,STRTLN, ENDLIN

REAL XFIX(10,4),YFIX(10,4), TMPXFX(4), TMPYFX(4)
COMMON/CHOICE/TLCHCE, GRCHCE, FXCHCE
COMMON/MISL/NUMFIX, XFIX, YFIX, STRTLN, ENDLIN

Draw the fixture by drawing hatched lines

DO 10 I = 1,NUMFIX
D0 20J = 1,4
TMPXFX(J) = XFIX(I,Jd)
TMPYFX(J) = YFIX(I,J)
20 CONTINUE
CALL FILPAN (6,.TRUE.)
CALL PANEL (4, TMPXFX, TMPYFX)
: CALL FILPAN (7,.TRUE,)
CALL PANEL (4,TMPXFX, TMPYFX)
10 CONTINUE
RETURN
END

OO0

* % %k % %k %k

SUBROUTINE TOOL

OO0

This subroutine draws a circle according to the toolwidth and at
coordinates specified by the arguments.

SUBROUTINE TOOL (TLWD,X,Y)
REAL TLWD,X,Y

CALL MOVE (X,Y)

CALL ARC (TLWD,0.0,360.0)
RETURN
END

F-18

* %k ok ok % %k %

SUBROUTINE TXTWRT

This subroutine writes the toolwidth and the Z-coordinate at the
side of the X-Y plot. These values are written whenever there is
a change in either of their values. The values are written one
below the other. When the end of the screen is reached, it starts
again from the top. Depending the number of times the Z-coordinate®

changes, a number is marked on the X-Y plot at the place where the:

value changes.
#*
R R R R e R E AT e IRV E R TR TR LRV R TR TR ST AT R R TR TRV LR R TRV RVRVRTSTES

SUBROUTINE TXTWRT (ZCOUNT,ZCOORD, TLCORD)
INTEGER WUMFIX,ZCOUNT, STRTLN, ENDLIN

REAL XLIMIT,YLIMIT, TLCORD
REAL XFIX(10,4),YFIX(10,4),PREVTL, TLWD, LENGTH, WIDTH, SCLFAC

REAL PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL, ZCOORD
CHARACTER*50 BLANK, DUMMY

CHARACTER*1 TLCHCE, GRCHCE, FXCHCE
COMMON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL,
+TLWD, STMT, GCODE, PREVTL

COI4ON/CHOICE/TLCHCE, GRCHCE, FXCHCE
COMMON/SCALES/LENGTH, WIDTH, SCLFAC, XLIMIT, YLIMIT

COMMON /MISL/NUMFIX, XFIX, YFIX, STRTLN, ENDLIN

DATA BLANK /' '/

CALL TXICUR(4)

OO0 O0O0OO0OO0O0

OO0

Check if the toolwidth has changed

OO0

IF (PREVTL.NE.TLWD) THEN
CALL MOVE (5.0,3.0)
CALL TEXT (36, 'Tool change — Hit RETURN to continue')
CALL CMCLOS
READ (9,10, END=20) DUMi1Y
20 CONTINUE
REWIND 9
CALL CMOPEN
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)

F-19

Check 1f the user has specified the option of clear1ng screen
during tool change.

IF (TLCHCE.EQ.'Y') THEN

Clear screen and redraw grid and fixture. Write last Z-value also

OO0 oMo

CALL CLEAR

CALL WINDOW (0.0, XLIMIT,0.0, YLIMIT)
CALL VWPORT (0.0,XLIMIT,0.0, YLIMIT)
IF (GRCHCE.EQ.'Y') CALL GRID

CALL TRIDNT (.TRUE.)

CALL TXICUR(4)

IF (FXCHCE.EQ.'Y') CALL FIXTUR
ZCOORD = 75.0

CALL MOVE (105.0,75.0)

CALL RNUMBR (PREVZ,-1,7)

ELSE

Continue on same screen. Check to see if bottom of screen has been
reached.

IF (TLCORD,LT.6.0) THEN

Erase the previous toolwidths and start from the top.

OO OO0 0

TLCORD = 75.0
D040 I =1,15
YPQS = 75,0 - (I-1) * 5.0
CALL MOVE (95.0,YPOS)
: CALL TEXT (5,BLANK)
40 CONTINUE
ELSE

Continue to write below the old value

TLCORD = TLCORD - 5.0
ENDIF
ENDIF

OoOOO

Write the new toolwidth

CALL MOVE (95.0,TLCORD)
TLWD = TLWD*2000,
CALL RNUMBR (TLWD,-1,5)
TLWD= TLWD/2000.

ELSE

ENDIF

OO0

F-20

C Check 1f the Z-value has changed

IF (PREVZ,.NE,PRESZ) THEN
ZCOUNT = ZCOUNT + 1
CALL MOVE (5.0,3.0)
CALL TEXT (44,'Z-coordinate change — Hit RETURN to continue')
CALL CMCLOS
READ (9,10, END=30) DUMMY
30 CONTINUE
REWIND 9
CALL CMOPEN
CALL MOVE (5.0,3.0)
CALL TEXT (50,BLANK)

Check to see 1f bottom of the screen has been reached

IF (ZCOORD.LT.6.0) THEN

Erase the previous Z-values and start from the top.

OO0 OO0

ZCOORD = 75,0
DO SO I =1,15
YPOS = 75,0 - (I-1) * 5.0
CALL MOVE (105.0, YPOS)
|CALL TEXT (7,BLANK)
50 CONTINUE
ELSE

Continue to write below the old value

OO0

ZCOORD = ZCOORD - 5.0
ENDIF

Write the new Z-coordinate value

CALL MOVE (105.0,ZCOORD)
CALL RNUMBR (PRESZ,-1,7)

Write the number of times the Z-value has changed at the position
where the Z-value changes

CALL TRANSL (10.0,10.0)
CALL SCALE (SCLFAC,SCLFAC)
CALL TXICUR(5)
CALL MOVE (PRESX,PRESY)
CALL INUMBR (ZCOUNT,2)
CALL TRIDNT(.FALSE.)
ELSE
ENDIF
RETURN
10 FORMAT (A50)
END

OO0

OO0

F-21

B % sk ok ok & ok % %

SUBROUTINE STLINE

This subroutine finds the slope and equation of the 1ine when the
tool moves in a linear path. Circles are drawn from the current
cursor position till the destination along the equation of the
line. If it is a machining move, solid circles are drawn. If it
is a positioning move, dotted circles are drawn.

OOO0O0OOO O

SUBROUTINE STLINE
COMMON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL,

+TLWD, STHT, GCODE, PREVTL
REAL DELTAX,DELTAY, SHIFTX, SHIFTY, FACTOR, TLWD, PRESX, PRESY, PRESZ

REAL PREVX, PREVY,PREVZ, SLOPE, INTCPT
INTEGER GCODE
LOGICAL QUIT

C .
c INITIALIZE VARIABLES
C
FACTOR = 1.75
QUIT = .FALSE.
SHIFTX = PREVX
SHIFTY = PREVY
10 CONTINUE
C
g Continue to move along the linear path till the destination
¢ IF (QUIT) GO TO 20
(If the present and the previous X-coordinate are not the same,
g then find the slope and intercept of the linear path
IF (PREVX.EQ.PRESX) GO TO 50
SLOPE = ((PREVY-PRESY)/{(PREVX-PRESX))
INTCPT = PREVY - (SLOPE * PREVX)
c IF (PRESX.LT.PREVX) GO TO 30
C Move in short increments along the equation, in the increasing
E X-direction.
DELTAX = SHIFTX + FACTOR * TLWD
DELTAY = SLOPE * DELTAX + INTCPT
IF (DELTAX.LT.PRESX) SHIFTX = DELTAX
IF (DELTAX.LT.PRESX) SHIFTY = DELTAY
IF (DELTAX.GE.PRESX) SHIFTX = PRESX
IF (DELTAX.GE.PRESX) SHIFTY = PRESY
GO TO 40
30 CONTINUE

F-22

nnnng OO0

OO0

20
70

Move in short increments along the equation, in the decreasing
X-direction,

DELTAX = SHIFTX - FACTOR * TLWD
DELTAY = SLOPE * DELTAX + INTCPT
IF (DELTAX.GT.PRESX) SHIFTX = DELTAX
IF (DELTAX.GT.PRESX) SHIFTY = DELTAY
IF (DELTAX.LE.PRESX) SHIFTX = PRESX
IF (DELTAX.LE.PRESX) SHIFTY = PRESY
GO TO 40

CONTINUE

Move in short increments along the equation, in the increasing
Y-direction.

IF (PRESY.LT.PREVY) GO TO 60
DELTAY = SHIFTY + FACTOR * TLWD
SHIFTX = PRESX
IF (DELTAY.LT,.PRESY) SHIFTY = DELTAY
IF (DELTAY.GE.PRESY) SHIFTY = PRESY
GO TO 40

CONTINUE

Move in short increments along the equation, in the decreasing
Y-diredtion.

DELTAY = SHIFTY - FACTOR * TLWD

SHIFTX = PRESX
IF (DELTAY.GT.PRESY) SHIFTY = DELTAY
IF (DELTAY.LE.PRESY) SHIFTY = PRESY

CONTINUE

Draw solid circles or dotted circlesaccording to the machining
code,

If (GCODE.EQ.1) CALL DASHPT(D)
IF (GCODE.EQ.O) CALL DASHPT(3)
CALL TOOL (TLWD, SHIFTX,SHIFTY)

Quit drawing when the final position has been reached

IF ((SHIFTX.EQ.PRESX).AND. (SHIFTY.EQ.PRESY)) QUIT = .TRUE.
GO TO 10
CONTINUE
FORMAT (3F9.3)
RETURN
END

F-23

{

SUBROUTINE CURVE

This subroutine finds the center and equation of the circle when
the tool moves in a circular path. Circles are drawn from the
current cursor position till the destination along the equation
of the circle. Depending on the machining code, the tool moves in
the clockwise or in the anti-clockwise direction. For both types

of moves, solid circles are drawn.

COOOO0OO0O
ko e ¢ &k ¥ ok ok sk ok %

{

SUBROUTIHE CURVE
COMIYON/VALUES/PREVX, PREVY, PREVZ, PRESX, PRESY, PRESZ, IVAL, JVAL, KVAL,

+TLWD, STMT, GCODE, PREVTL
REAL CENTRX,CERTRY,RADIUS, IVAL,JVAL, PREVX, PREVY, PRESX, PRESY
REAL TOP,BOTTOM, ONE, SHIFTX, SHIFTY, DELTAX, DELTAY, FACTOR
INTEGER GCODE
LOGICAL QUIT

Initialize variables

0.5
PREVX
PREVY

OO0

FACTOR
SHIFTX
SHIFTY
ONE = 1.

Find the center and radius of the circular path. Find the
coordinates of the top and the bottom most point of the circle.
This is required in order to find which quadrant the tool is
moving, which in turn decides whether the coordinates increase

or decrease,

COoOOOOO00

CENTRX = PREVX + IVAL

CENTRY = PREVY + JVAL

RADIUS = SQRT (IVAL¥¥*2 + JVAL**2)
BOTTOM = CENTRY - RADIUS

TOP = CENTRY + RADIUS

QUIT = ,FALSE.

Plot for movement in clockwise direction

IF (GCODE.EQ.3) GO TO 10

Find the quadrant in which tool is going to move

OO OO0

IF ((PREVY.EQ.BOTTOF).OR, (PREVX.LT,CENTRX)) ONE = -1.

F-24

OOOOON

40

70

60

oo wm

OO0

CONTINUE

Move in short increments along circular path till destination

IF (QUIT) GO TO 30
DELTAY = SHIFTY - FACTOR * TLWD * ONE
IF (RADIUS*¥*2,GT, (DELTAY-CENTRY)*¥#2) GO TO 40
DELTAX = CENTRX
DELTAY = CENTRY - RADIUS * ONE
SHIFTY = DELTAY
SHIFTX = DELTAX
ONE = ~ONE
GO TO 50

CONTINUE
DELTAX = CENTRX + ONE*SQRT(RADIUS*¥*2 - (DELTAY-CENTRY)*¥2)

IF (ONE.LT.0.) GO TO 60
IF (DELTAY.GT.PRESY) GO TO 70
SHIFTX = PRESX
SHIFTY = PRESY
GO TO 50
CONTINUE
SHIFTX = DELTAX
SHIFTY = DELTAY
GO TO 50
CONTI?UE
IF (DELTAY.LT.PRESY) GO TO 80
SHIFTX = PRESX '
SHIFTY = PRESY
GO TO 50
CONTINUE
SHIFTX = DELTAX
SHIFTY = DELTAY
CONTINUE

Draw solid circles along path

CALL TOOL (TLWD,SHIFTX,SHIFTY)
IF ((PRESX.EQ.SHIFTX),AND.(PRESY.EQ.SHIFTY)) QUIT = .TRUE.

GO TO 20

Plot for movement in anti-clockwise direction
CONTINUE

Find the quadrant in which tool is going to move

IF ((PREVY.EQ.TOP).OR. (PREVX.LT.CENTRX)) ONE = -1,

F-25

120

140

170

160

CONTINUE

Move in short increments along circular path till destination

IF (QUIT) GO TO 30
DELTAY = SHIFTY + FACTOR * TLWD * ONE
IF (RADIUS**2,GT.(DELTAY-CENTRY)**¥2) GO TO 140
DELTAX = CENTRX
DELTAY = CENTRY + RADIUS ¥ ONE
SHIFTY = DELTAY
SHIFTX = DELTAX
ONE = =ONE
GO TO 150
CONTINUE
DELTAX = CENTRX + ONE*SQRT(RADIUS*¥2 - (DELTAY-CENTRY)¥*¥2)
IF (ONE,LT.0.) GO TO 160
IF (DELTAY.LT.PRESY) GO TO 170
SHIFTX = PRESX
SHIFTY = PRESY
GO TO 150
CONTINUE
SHIFTX = DELTAX
SHIFTY = DELTAY
GO TO 150

CONTINUE .
IF (DELTAY.GT.PRESY) GO TO 180

SHIFTX = PRESX
SHIFTY = PRESY
GO TO 150
CONTINUE
SHIFTX = DELTAX
SHIFTY = DELTAY
CONTINUE

Draw solid circles along path

CALL TOOL (TLWD,SHIFTX,SHIFTY)
FORMAT (3F9.3)
IF ((PRESX.EQ.SHIFTX).AND. (PRESY.EQ.SHIFTY)) QUIT = ,TRUE.
GO TO 120
CONTINUE
RETURN
END

F-26

APPENDIX G

Sample Program

—

INPUT FOR PHASE I

NOO10GE941FB886M33
NO020G92X0Y0Z~10000
NQOO30B00G80X0YO
NOO40G841X47500Y415000
NOOGOMS8P4100L. 4
NOOG60B00GB80X0YO
NOQ70MO2
NO100G0O41G91Z—-1250
NO4110Y42500

NO420X42500
NO4130G02X6000Y—-8000J—-6000

NO140602X—6000Y—-60001—~6000
NO4506G041X—~12500 '
NO4160Z14250

NO4170M8S

G-1

INTERNAL FILE FOR PHASE I

STMT NUMBER POSITION NUMBER OF CODES

4
2
i
|
|
|
10 1 4
11
|
[]
3
20 2 5
24
[}
|
i
30 3 5
|
]
t
]
[]
&p
1
1'00 8 4
111
110 9 =
[}
170 15 2
:
1
}
gggg

COORDINATE AND TOOL FILE

STMT TLWD G X Y Z I J ‘
10 2800 O 0 0 10000 0 0
20 2800 O 0 0 10000 0 0
30 2500 0 0 0 10000 0 0
40 2800 0 47500 45000 40000 0 0
60 2500 0 47500 45000 40000 0 0
400 2500 4 47500 45000 -1250 0 0
110 2500 4 47500 67500 -41250 0 0
120 2500 4 30000 &7500 -1250 0 0
430 2500 @ 36000 64500 -1250 0 -6000
140 2500 2 30000 45500 -1250 -6000 10
160 2500 4 47500 45500 -41250 o 0
160 2500 4 47500 45500 410000 0 0
470 2500 1 47500 45500 40000 0 0
60 2500 4 0 0 10000 0 0
70 2500 4 0 0 10000 0 0

~

0O0C00000O0000O0O0OO0OO0O

G-4

APPENDIX H

PRAWTOPPS Users Manual

PASCAL PLOT410
RENAME NC LISTING Ai1 NC DATA A4

G0

TYPE Y/N TO ENTER TOOL WIDTH AND OFFSET
Y = If running program for first time

N = If rerunning program

X POSITION FILE

FORTVS IGL (NOMAP

PLOT

ENTER LENGTH AND WIDTH OF WORK PIECE IN INCHES
¢t.¢ . &

Machine Prompt to enter command
CLEAR . Clears.screen:.and draws uark piece

DRAW :. -~ ' Draw the tool :path :plot- X
OPTIONS - Provides options for the user
ZOOM - Enlarges certain segment of plot
QUIT = Returns the user back to CMS

NOTE => = MACHINE PROMPT % = USER INPUT

APPENDIX I

Exec Programs

Profile Exec

RESTOR 512K
CP TERM CHARDEL

CP TERM LINEND 2
GLOBAL TXTLIB IGLSTUBS IGL PASCAL PLILIB CMSLIB VFORTLIB

Go Exec

ERASE POSITION FILE
FILEDEF SYSIN DISK NC DATA

FILEDEF SYSPRINT DISK POSITION FILE
FILEDEF TERMIN TERMINAL

FILEDEF TERMOUT TERMINAL

FILEDEF OFFTOOL DISK OFFTOOL FILE
LOAD PLOT10 (START

Plot Exec

e

FILEDEF 1 DISK POSITION FILE (RECFM V
FILEDEF 9 TERMINAL (RECFM F
LOAD IGL (START

TOOL PAfH PLOTTING USING PLOT10

by
P. SARAVANA PRASAD
B.E. (Mechanical Engineering)

College of Engineering, Guindy
Madras, India, 1983

ABSTRACT
for a

MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

ABSTRACT

The project undertaken is to develop a software system to draw a tool
path for any given machine code program for the Pratt and Whitney machine at
Kansas State University.

At present, after a machine code program is written to machine a part on
the Pratt and Whitney, it is loaded onto the machine and run. This process
involves wastage of time and material resources if the program has errors. In
order to reduce the long hours spent at the machine, a software system which
plots the cutting path the cutting tool would have taken, had the same
instructions been input to.the machine tools, has been developed. Software
systems that permit such simulation are called tool path plotting systems.

There are two approaches to obtaining this tool path plot. One approach
is to buy commercially available dedicated software and hardware packages to
plot the path. The other approach is to develop a new software system which
utilizes the existing hardware and software packages. Since the latter
approach is cheaper, it was chosen for this project.

The software system developed checks the machine code program provided by
the wuser for syntax and logical errors. If there are any errors in the
program, the user is informed via a report. When it is free of errors, a two-
dimensional plot of the tool movement is obtained on a graphics terminal. This
plot can be compared with the desired path for validity before loading the
program in the numerical control machine.

This software system can be improved in future by providing more options
such as a three~dimensional viewing option. Also an interface can be designed
with the HP 7475A Plotter available in the Department of Industrial

Engineering to obtain a hard copy of the tool path plot.

