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Abstract

Outliers in the data impair traditional estimators of location, variance, and regression
parameters so researchers tend to look for robust estimators, i.e., estimators that aren’t sensitive
to outliers. These robust estimators can tolerate a certain proportion of outliers. Besides
robustness, efficiency is another desirable property. Researchers try to find estimators that are
efficient under standard conditions and use them when outliers exist in the data. In this study the
robustness and efficiency of a class of estimators that we call ,Cy estimators are investigated.
Special cases of this method exist in the literature including U and generalized L-statistics. This
estimation technique is based on taking all subsamples of size k from a sample of size n, finding
the estimator of interest for each subsample, and specifying one of them, typically the median, or
a linear combination of them as the estimator of the parameter of interest.

A simulation study is conducted to evaluate these estimators under different distributions
with small sample sizes. Estimators of location, scale, linear regression and multiple regression
parameters are studied and compared to other estimators existing in the literature. The concept of
data depth is used to propose a new type of estimator for the regression parameters in multiple

regression.
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CHAPTER 1 - ,Cy ESTIMATORS

1.1 U-statistics

Estimators that aren’t sensitive to outliers are called robust. The sample median is a
robust estimator. The sample mean and variance are examples of nonrobust estimators. Robust
estimators aren’t sensitive to outliers if the proportion of outliers in the data is below some
specified value. This value is called the breakdown value or the breakdown point of the
estimator. High-breakdown value estimators are usually sought because they resist outliers.

Hoeftding (1948) proposed a general method of estimation by deriving a general class of

estimators called U-statistics. The idea is to define a kernel, h, which is a symmetric real-valued
function from R* to R such that E(h(x,,...,x,)) =6 where 6 is a parameter of interest. It could

be a parameter describing the location or scale of the model, or it could be a regression parameter

in the linear model. After collecting the data, X, .X,,..., X, , we take all possible samples of size

k from the data, find the value of h for each subsample and construct the statistic

D (X, X,)
U :(il aaaaa i)

which is an unbiased estimator for 4.



1.2 Generalized L-statistics

Serfling (1984) derived a class of statistics related to the U-statistics called generalized L-

statistics or GL-statistics. After taking all subsamples of size k from the original sample,

X,,X,,...,X, and finding the value of h for each subsample, we sort the N = [Ej values of 7,

call those sorted values W, W, ..., W, ,take a linear combination of those ordered values using

=

certain weights, ¢, ,c,,.....cy, , and form the statistic 7, = ZC’”VV;:” . This class of estimators is
i=1

called generalized L-statistic. This statistic estimates the quantile, G;'(p), of the random variable
h(X,,...,X,) where 0 < p <1 and G, is the distribution function of this random variable. If
h(x)=x, T, is called an L-statistic which is a linear combination of the order statistics of the
sample. Under the following regularity conditions 7, has an asymptotic normal distribution:

1. The density of A(X,,X,,..X, ), g, exists and is positive at £, i.e. g,(C,)>0

2. 0<(,=Vary (P{h(X,, X,,.. X, )<, | X, }) <00

30 [[Ge()(1-G ()] dy < oo
The first two conditions are necessary so that the asymptotic variance of the estimator is defined.
The next Theorem from Choudhury and Serfling (1988) states the asymptotic distribution of 7.

Theorem 1.2.1 (Choudhury and Serfling 1988) Under the regularity conditions mentioned

k¢,
g’€,)

above T, has an asymptotic normal distribution: Jn (T,-¢,) 45 N(0,



where &', =Vary (P{h( X, X,,..X,)<&,1X,}) and g(C,) is the pdfof A(X ... X, )
evaluated at the population quantile, ¢, = G,'(p). The parameter ¢ , 1s what is estimated by 7,
and ¢, is the variance of the conditional probability which is the probability that the function

h(X,,.,X,) isless than £, given X, .

YHX) XX,

Example 1.2.1 If k =1and A(x) = x, then U, == = = X . This is a simple case

S

of a U-statistic. U, estimates the population mean.

i Xi] Xiz

Example 1.2.2 Ifk=2 and A(x, ,x, )=x,x, ,then U, = ) In this case, U, estimates
1 2 1 2 n

EU,)=EX, X, )=EWX )EX,)=uu= 1* which is the second moment of the distribution.

Example 1.2.3 Bickel and Lehmann (1979) introduced as estimator of med (| X, — X, |) which

is a GL-statistics that estimates a measure of spread of the distribution. The estimator comes has

the kernel A(x, ,x, ) =| x, —x, | and estimates ¢&,; = G;'(0.5) , the median of the distribution of

the random variable, | X, - X, |.

Example 1.2.4 In the simple linear regression model, Y, = g, + f,x, +¢,, i =1,...,n, where ¢,'s

are i.1.d. with distribution F and the predictor, X , is random variable, we may estimate the



Y -7
slope by med (X"—“J , 1, <i,. We take all subsamples of size 2 from the paired observations,

find the slope for each subsample, and take the median of those slopes. This is the well-known

Thiel estimator of the slope (Thiel 1950).

1.3 ,Cy Estimators

Let X,,X,,..., X, be arandom sample from a univariate or multivariate distribution

f(X;0) where 0 is a constant or vector. The idea of forming an  C, estimator is similar to

constructing a U or a GL-statistics. We take all subsamples of size k from the original random

sample, find an estimate of @ for each subsample, order the N = (Zj estimates of @ (obtained

from the N = ( ] subsamples) according to magnitude in the univariate case or some technique

for ordering vectors in the multivariate case, take a linear combination of those ordered values

N
using certain weights, ¢,,,,¢,,,...,cy., and form the statistic 7, = ZC,”.WM .If @ is a vector, we
i=1

n

propose using data depth to do the ordering as discussed later.

Example 1.3.1 The slope estimator, med [#] , 1, <i,, 1s an ,Cy estimator whether or not

Ui

the X;’s are random whereas the GL-statistic assumes random X;’s. .



In Chapter 2 a small-sample simulation study is conducted to study the efficiency of the
Generalized Hodges-Lehmann estimator under different distributions. Results are compared to
results existing in the literature. Asymptotic and finite breakdown values of the estimator are
given.

In Chapters 3 and 4, a robust , C, estimator of the variance is introduced. In Chapter 3,

we study this estimator under normal distribution. We adjust the estimator for bias, give its
asymptotic distribution, asymptotic and finite breakdown values, and look at its simulated
efficiency with respect to the sample variance. In Chapter 4 we study this variance estimator
under exponential and double exponential distributions. We adjust the estimator for bias and give
its efficiency with respect to the sample variance.

In the simple linear regression model, Y, = g, + f,x, +¢,, i =1,...,n, where ¢,'s are
identically independently distributed with a continuous distribution ¥ with median 0, interest

lies in estimating the parameters f, and f,, predicting the dependent variable Y ,and making
confidence intervals on the mean of Y given X =x;. In Chapter 5, an ,C, robust estimator of the

regression parameters in simple linear regression are introduced and compared to other existing
estimators in the literature by simulation. When we take all subsamples of size k from the data in
the simple linear regression model, we may estimate the intercept either at the end after
estimating the slope or we may estimate them simultaneously using data depth to order the
vector of coefficients that we get when taking all subsamples of size k.

In Chapter 6, robust, C, estimators of the regression parameters are introduced and

compared to other existing estimators in the literature by simulation. Data depth is used to

choose the estimate of the regression parameters.



CHAPTER 2 - ESTIMATING THE MEDIAN OF ASYMMETRIC

DISTRIBUTION

2.1 Location Model

Let X,,X,,..., X, be identically independently distributed continuous random variables

with symmetric probability density function f(x) and median €. Estimators of & with high
breakdown values are always sought because they resist outliers in the data. In this chapter, I will

consider a class of robust ,Cy estimators for &.

2.2 Generalized Hodges-Lehmann Estimator

Example 2.2.1 (Hodges and Lehmann 1963) The Hodges-Lehmann estimator of & is

1

X, +X,
med (]lej , 1, =i, . This is the median of the pair-wise averages and the individual

observations. We will define the median of all subsamples of size 2 from the original sample
only for i, <i, (sampling without replacement), find the average for each sample, and take the

median of those averages. This is asymptotically equivalent to the HL estimator proposed by

Hodges and Lehmann 1963.



Example 2.2.2 The Generalized Hodges-Lehmann (GHL) estimator is obtained by taking all
subsamples of size k without replacement, finding the mean for each subsample, and taking the

X, +X, +..+X,
k

median of those averages. The estimator is ék = med( ), k=3,...n—-1,

Serfling (1984). In general, we take all subsamples of size k from the data, find

X, X, +..+x
h(x, ,..,x, )=— . ~ for each subsample, let W, W, ...,W,.  be the ordered
k; i k Iin 2:n N:n

n N
N = (kj values of h(x, ,...,x, ), and find the linear combination 7 , = ZCW‘VK% where

i=1

C;sCoeesCy., are chosen weights. In the case of the median the weights are

1 for i—N+1
c. =4 D if N is odd

0, otherwise

0.5, for i=ﬁ,ﬁ+l
2 2

and c . = if N is even.

ni

0, otherwise

Serfling stated in Saleh (1992) that “the use of the median operation, after smoothing the data by
taking a function of several observations at a time, over all subsets of the data, leads to a statistic
which has a favorable combination of efficiency and robustness, i.e., smoothing followed by

taking the median yields both efficiency and robustness”.



2.3 Asymptotic Properties

This class of robust estimators is a special case of the general case introduced in Section

' ) o X, +x, +..tx .
1.2. It is a generalized L-statistic with kernel h(x, ,...,x, ) =——— £ . Under certain

X, + X, +..+X,
k

regularity conditions the random variable Jn (ék —6), where ék = med(

5

has an asymptotic normal distribution with mean zero and variance —- where the constant ¢ is

c
called the efficacy of the estimator and has the form

g(9)/k
X, +X,+X;+..+X
k

\/Varx, (P( £<0]X,))

X, +X,+ X, +..+X,
k

evaluated at 8. This follows from Theorem

where g is the density of

1.2.1 (Choudhury and Serfling 1988). For the GHL estimator sampling is done without
replacement, but asymptotically sampling with and without replacement are equivalent. The

following is a table of the estimators and their corresponding efficacy for different values of k.

For k=2 the efficacy simplifies to V12 I f*(x)dx (Hettmansperger and Mckean 1998).



Table 2-1 Efficacy of GHL estimator

Estimator Efficacy
X 1
o
med (X)) 21(0)
632 \/Ej.fz(x)dx
ék h(0)/k
\/VarXI(P(X’ + X, +2(3 +..+ X, <0(X,))

Choudhury and Serfling (1988) conducted a comparative study in which they showed that
taking the median after averaging is highly efficient for k=2, 3, 4, 5 especially for heavy-tail
distributions. Table 2-2 contains the asymptotic efficiencies of the GHL estimator with respect to
the sample mean under different distributions (Choudhury and Serfling 1988). For the uniform

and logistic distributions there is a nonmonotonic pattern in the efficiency as k increases.



Table 2-2 Asymptotic efficiencies of GHL estimator with respect to the sample mean

(Choudhury and Serfling 1988)

Distribution k=1 k=2 k=3 k=4 k=5

Normal 0.637 0.955 0.981 0.989 0.993
Uniform 0.333 1.000 0.849 0.906 0.919
Logistic 0.822 1.097 1.103 1.083 1.077
D. Exp 2.000 1.500 1.321 1.238 1.190

2.4 Breakdown Point

Definition 2.4.1 (Hettmansperger & Mckean 1998) Estimation Breakdown. Let x =

. . £ £ k3
(X,,X,,..., X, ) Tepresent a realization of a sample and let x" = (x/,x,,..x, ,x x,) represent

il oeees

the corruption of any m of the n observations. We define the bias of an estimator 6 to be
bias(m; 6,x ) = sup | 0(x™ )—0(x)|,

where the supremum is taken over all possible corrupted samples x”. Note that we corrupt the

first m observations only and keep the others fixed. If the bias is infinite, we say the estimate has

broken down and the finite-sample breakdown is given by

£ = min{E - bias(m;0,x) = oo}.
n

10




The asymptotic breakdown value of 0 is the limit of &, as n goes to infinity and it denoted by

*

g .

The asymptotic breakdown value €, of é’k is the proportion of arbitrarily large

observations (corrupted or outlying) that the estimator can handle before giving an infinite bias

(breaking down) when n is large. For example, one observation guarantees the breakdown of the

. . - 1
sample mean. Thus the asymptotic breakdown value of the mean is the limit of — as n goes to
n

infinity which is zero. This is why we say the mean has zero asymptotic breakdown value.

Another example is the median where half of the observations need to be corrupted to break

) . . . n/?2
down the estimator. Thus the breakdown value of the median is the limit of the ratio e as n
n

goes to infinity. This limit is 0.5 which is the asymptotic breakdown value of the median.

. n
The estimator 6, is a median of N = (k] averages. If the proportion of outliers in the

data is € then the proportion of clean observations is 1 —¢. The ith average based on the ith
subsample is called nonconatminated if it doesn’t contain any outliers. The probability that the

ith average is noncontaminated is the probability that all observations in the ith subsample are
not contaminated. For large samples this is approximately (1—¢)* since for large n and k <<n,
the subsamples behave essentially as if they were independent observations. The probability
(1—€)* can be considered as the proportion of noncontaminated averages among the N
averages. The estimator will breakdown if the proportion of noncontaminated averages among

the N averages satisfies (1—¢)* <0.5. Let ¢, be the smallest & such that (1—¢)* <0.5. This

11



1
smallest proportion of the data will break down the estimator. Thus &, =1—(0.5)%. This

probability argument is based on large sample (Rousseeuw and Leroy 1987). Thus | is the

asymptotic breakdown value of ék . Values of ¢, for k=2, 3, 4 are in Table 2-3. The asymptotic

breakdown value of ék decreases substantially as k increases.
Sometimes researchers like to use the estimator for small samples, and they need to know

the number of corrupted observations that breaks down the estimator. Let m~ be of the number

of corrupted observations that the estimator can handle before giving an infinite bias. For small

*

.om . : : . Ao
sample the ratio — is the finite sample breakdown value of the estimator. The estimator 6, is a
n

median of N = [ZJ averages and will break down if half or more of those averages are

contaminated. Given n, interest lies in finding m’ , the number of outliers that will make half of

those averages really large.

To find the finite breakdown value of ék for any k, one has to find the minimum number

of observations needed to be corrupted so that the bias goes to oo . Because the estimator ék isa
: n .
median of N = ( ] averages, to break down 6, , at least half of those averages must be

corrupted. For any k, when m observations are corrupted, the number of averages not containing

those corrupted m observations is ( J . The total number of contaminated averages is

n n—m .
(k] —[ i j . The estimator &, breaks down if the total number of contaminated averages is at

12



least equal to half of the total averages, i.e., (Z} - (nk— mJ > (Z] /2. This is equivalent to

(Z] /2- (n ; m] > (). For a given k and n, finding the finite breakdown value of ék is equivalent

to finding the smallest m such that (ZJ /2 - [n ; m} >().Let m" be the number of observations

*

. ..m . . A .
that breaks down the estimator. The ratio — is the finite breakdown value of 6, . There is no
n

closed form for m” but it can be found if n and k are given. Given n and k, we find the function

n n—m
(kj /2 —( ; ] form=1, 2, 3,...., n-2, and observe when it changes its sign from negative to

positive or find the smallest m such that (Z]Q - (n ;m] > 0. This value of m will break down

*

the estimator. This was done for several sample sizes. The values of n, m , and — are given in
n

Table 2-4 for k=2, 3, 4.

If we take large n and find ¢ , results should be consistent with the asymptotic

*

breakdown derivation. For n=2000 and k=2, m~ =586 and thus ¢ = L % =0.293 . For
n
n=2000 and k=3, &" = = 413 _ 4 206. Forn=2000 and k=4, &* = ™= 318 _ 1509,
n 2000 n 2000

This matches the result of the previous derivation of the asymptotic breakdown value.
Finite sample breakdown values of ék , denoted by ¢ , are given in Table 2-4 for

different values of n and k. When the sample size is small and outliers exist in the data

researchers can use Table 2-4 to decide which value of k would give a more robust estimator. For

13



example if n=25 and there are 4 outliers in the data, one would avoid using é4 and could use 632

or é3 because 4 outliers guarantee to break down é4 whereas 632 or é3 breaks down if there are

at least 8 or 5 outliers in the data respectively.

Table 2-3 Asymptotic breakdown of GHL estimator
k &,

0.50
0.29
0.21

1

2

3

4 0.16
5 0.13
6

7

k

0.11
0.09
>0.5n | 0.00

Table 2-4 Finite breakdown of GHL estimator

k=2 k=3 k=4
n m’ e m | e m | e
7 2 0.29 2 0.29 |1 0.14
8 3 0.38 2 0.25 |1 0.12
10 3 0.30 2 0.20 |2 0.20
15 5 0.33 3 0.20 |3 0.20
25 8 0.32 5 0.20 |4 0.16
30 9 0.30 6 0.20 |5 0.17
35 11 0.31 7 0.20 | 6 0.17
40 12 0.30 8 0.20 |7 0.18
50 15 0.30 10 0.20 | 8 0.16
60 18 0.30 12 0.20 | 10 0.17
70 21 0.30 14 0.20 | 11 0.16
80 24 0.30 16 0.20 | 13 0.16
85 25 0.29 18 0.21 | 14 0.16
90 27 0.30 19 0.21 |15 0.17
95 28 0.29 19 0.20 | 15 0.16
100 | 30 0.30 21 0.21 |16 0.16
200 | 59 0.30 42 0.21 |32 0.16
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2.5 Simulation Study

A small sample simulation study was conducted to evaluate the Generalized Hodges-

Lehmann estimators under standard normal, uniform on [0,1] and double exponential distribution
with mean zero and variance 2, for k=1, 2, 3, 4, 5. Two sample sizes, 15, and 25 with outliers in
the data were considered. The number of outliers, k,, considered is 1, 2, or 3. For the normal

distribution, outliers were randomly selected from normal with mean=6 and variance=1. For the

uniform distribution, outliers were selected from uniform[5,6], and for double exponential

outliers were selected from shifted double exponential with mean 6. Efficiencies are ratios of
empirical mean square error of the GHL estimator to the mean square error of sample mean.
Results are reported in Tables 2-5 to 2-8. Table 2-9 contains efficiencies for the sample sizes 25,
and 100 when there the percentage of outliers is 20%. The first five columns in each table are for
n=15 and the second five columns are for n=25.

First consider Table 2-5 when there are no outliers in the data. Efficiency increases as k
increases for normal and uniform distribution. For the normal distribution when there are no
outliers the increase in efficiency isn’t substantial as k goes from 3 to 5 compared to k=2. For the
uniform distribution, the increase in efficiency is very little as k goes from 4 to 5. Therefore for
the uniform distribution k=4 is the best choice. The GHL estimator is less efficient for the
uniform distribution. For the double exponential distribution taking a larger k will decrease the
efficiency and k=1, the median, is the most efficient.

Next consider Table 2-6 through 2-9 in which outliers are present. Generally when

outliers exist in the data the GHL is more efficient. This is clear by comparing Table 2-5 to other
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Tables (Table 2-6 to Table 2-9). However, the efficiency is smaller if the proportion of outliers is
larger than the finite breakdown value of the estimator, and in this case it is not recommended.

Comparing k, =1 to k=2, there is an increase in the efficiency but it depends on the
distribution. The improvement in the efficiency is larger for the uniform distribution than the
normal especially for k=1, 2, 3. For the double exponential distribution the improvement isn’t
very large especially as k increases and attains its maximum at k=1. Generally the estimator is
better when there are two outliers than when there is one outlier in the data.

When k=3, n=15 and k is larger than 2, the estimator loses its efficiency because the
proportion of outliers exceeds the finite breakdown value of the estimator. On the other hand

when £, =3, n=25 and k is larger than 2, the estimator has efficiency bigger than 1 because the
finite breakdown value isn’t reached. Comparing k,=2 to k,=3 when n=15, improvement in
efficiency occurs only at k=1. Comparing k, =2 to k,=3 when n=25, improvement in efficiency
occurs only at k=1, 2, 3. When k,=3, n=25, k=2 is very efficient for heavy-tail distributions, and

for double exponential k=1 is the most efficient.

Generally for the normal distribution k=2 is the best choice unless the number of outliers
is large and in this case we might want use the median. For the uniform distribution k=1 or k=2
are the best choices, and we decide based on the number of outliers and the sample size. For
double exponential distribution, we recommend k=1 as it shows the highest efficiency whether

outliers exist in the data or not.
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Table 2-5 Simulation results for n=15, 25. No outliers are in the data. Efficiencies of the

GHL estimator with respect to the sample mean

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5

N(0,1) | 0.68 0.99 1.00 1.00 1.01 0.60 0.99 1.00 1.00 0.99

U(0,1) | 0.36 0.86 0.90 0.95 0.97 0.36 0.87 0.88 0.93 0.95

D.exp | 1.56 1.30 1.19 1.11 1.07 1.48 1.31 1.21 1.15 1.10

Table 2-6 Simulation results for n=15, 25 with k1=1. Efficiencies of the GHL estimator

with respect to the sample mean

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5

N(0,1) | 0.97 2.56 2.27 1.99 1.73 1.37 2.04 1.95 1.86 1.74

u(0,1) [ 6.90 14.06 | 13.46 | 1233 | 10.76 |4.54 9.81 9.52 9.46 9.00

D.exp |2.43 1.99 1.66 1.42 1.27 2.38 2.01 1.70 1.53 1.40

Table 2-7 Simulation results for n=15, 25 with k1=2. Efficiencies of the GHL estimator

with respect to the sample mean

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5

N(0,1) | 4.79 4.10 2.66 1.54 0.90 3.30 3.78 3.07 2.52 2.11

U(0,1) {2096 |29.81 |20.83 |9.68 0.56 14.45 | 25.62 |21.34 |17.86 | 14.57

D.exp |4.75 2.77 1.73 1.28 1.01 4.69 3.04 2.18 1.74 1.51
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Table 2-8 Simulation results for n=15, 25 with k1=3.

with respect to the sample mean

Efficiencies of the GHL estimator

k, =3 n=15 n=25

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5
N(0,1) | 6.60 3.70 0.99 0.92 1.03 5.35 4.62 3.10 2.10 1.60
U(0,1) | 35.88 |29.71 |0.50 0.72 1.01 2595 3377 |23.74 | 1531 |8.15
D.exp | 6.54 2.29 1.09 1.01 1.05 7.08 3.52 2.14 1.54 1.39

Table 2-9 Simulation results for n=25, 100 with 20% proportion of outliers. Efficiency of
the GHL estimator with respect to the sample mean

n=25 (k,=5)

n=100(k, =20)

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5
N(0,1) | 8.07 4.07 1.27 1.00 1.11 12.29 | 5.05 1.58 1.10 1.15
u(0,1) [ 41.66 |30.92 | 0.57 0.74 1.04 5432 13594 |9.23 0.77 1.05
D.exp | 8.97 2.66 1.22 1.08 1.13 14.11 |3.44 1.39 1.17 1.17
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CHAPTER 3 - VARIANCE ESTIMATION UNDER NORMAL
DISTRIBUTION

3.1 Introduction and Model

When outliers exist in the data, they have serious effects on the sample variance. To solve
this problem there are two traditional solutions. The first one is to remove the outliers and use the
usual estimators, and the second one is to look for robust estimators. Using robust estimators is
potentially a better solution since outliers don’t have to be identified. In this study a robust
estimate of the variance will be considered and compared to some robust estimators existing in
the literature. The number of outliers need not be specified for our proposed ,Ci estimators.
However we should make sure that they are below the breakdown value.

There are a number of situations in which variance might be important. A chemist might
be interested in estimating the variance of the copper concentration in plants. Calcium
concentration variability in mammalian blood needs to be below certain level to avoid severe
disturbances in blood coagulation (Milton 1999).. In quality control, producers are usually
concerned about controlling the variability of the production process, and thus estimating the
variance is a vital problem. A researcher might be interested in estimating the mean or the
variance in weight of ringed seal in different study zones (Lohr 1999). When conducting tests
about location parameters, sometimes we have to find a good estimate of the variance to be able
to conduct the test. These are some examples on the importance of the variance estimation

problem.
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Assume we have a random sample, X,, X,,..., X, , from a population with variance o’.

Interest lies in estimating the population variance, o~ . In this and the following chapter, we will
consider a robust estimator of the variance based on the generalized L-statistic. In this chapter we

restrict attention to the normal distribution.
3.2 Robust Estimator of Variance

Let 6; = med(S ;,,S3,,....S ) Where we take all subsamples of size k from the

random sample X, X,,..., X, , find the variance for each subsample S , and take the median of

. e e k-1
those variances. If the data comes from normal distribution, it is known that ——S¢ ~ ¢,
c

2

© 1med()(f(_l). Therefore,

This implies that for large n relative to k, 6| is estimating

k-1)6; . , . : :
# is a consistent and approximately unbiased estimator of o> when the data have
med(X(k—l))
normal distribution and n is large.

For general samples sizes, we need to adjust &, to get an unbiased estimate of the
variance. Let d,, be the factor such that E(d, ;)= o’ . For large n and k small, the proposed

k-1

adjustment factor is approximately the asymptotic value d_ , = >
med(X(k—l))

. To determine d, ,

in general, we simulated the value of E(S;) by taking 500 random samples of size n from

standard normal distribution, finding 6 for each sample, taking the mean of the 6 's, and

2

: o D . .
computing d_, as 267 This adjustment factor is the same regardless of the population
Oy
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variance. For the standard normal distribution simulated values of d, , for n=15, 25, 75, 100, and
125 are presented in Table 3-1 along with d_,, in the last column. Table 3.1 indicates that as
n—oo,d, —d,,.Inthis chapter we will give the asymptotic distribution of this estimator

d, .6; and study it under standard normal distribution.

Table 3-1 Simulated values of d,, and values of d_ , (in the right column)for normal

distributions. Number of simulations=500. n=15, 25, 75, 100, 125

k n=1 n=2 n=7 n=10 n=12 n=

2 1.99 2.09 2.16 2.18 2.18 2.20
3 1.32 1.38 1.42 1.43 1.43 1.44
4 1.17 1.22 1.25 1.26 1.26 1.27
5 1.10 1.15 1.17 1.18 1.18 1.19
6 1.06 1.11 1.13 1.14 1.14 1.15

3.3 Asymptotic Approximation

The estimator & | is a generalized L-statistic based on A(x,,...,x, )= s; , and under

certain regularity conditions it has an asymptotic normal distribution. The asymptotic variance of

Cos

& is k7 —
ngr(Sys)

where &, ; =Vary { P(S * <& | X,)}, S? is the sample variance based on k

observations, &, is the median of the distribution of S; , and g, is the density of S; which is

assumed to be positive at &, ;. Thus, Jn d,,6;—d, ;) hasan asymptotic normal

2 2
distribution with mean 0 and variance °°2k—605 Note that d, &5 = o’

8r(Sys)
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3.4 Asymptotic and Finite Breakdown Points

Both the sample mean and variance have a breakdown value of zero because one outlier

in the data can take the bias to infinity. The GHL estimator is a median of N averages and the
estimator 6. is a median of N variances. Therefore, the finite and asymptotic breakdown value
of the GHL estimator is as the same as those of & ; . From Table 2-3 we can see that the

asymptotic breakdown value decreases substantially as k increases.

3.5 Efficiencies

In this section we simulated the efficiency of the proposed variance estimator with
respect to the sample variance under normal distribution with and without outliers. Efficiency

was determined as the ratio MSE of the sample variance divided by the MSE of the
estimator, d, 6.

From the standard normal distribution 500 random samples of size 15, 25, and 100 were
generated to evaluate the estimator dn’kéi and the efficiency of the estimator was recorded
for k=2, 3,4, 5, 6 and k,=0, 2, 4 where £, is the number of outliers in the data. The outliers
were chosen from a normal distribution with mean z,=3 or x,=6 and variance 1. The

efficiencies are presented in Table 3-2. The first two columns of Table 3-2 are the bias

adjustment factors, d, , and d, . We simulated efficiencies of the estimators with both

adjustment factors when there are no outliers in the data to see which gives higher efficiency.
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Columns 3 and 4 of Table 3-2 shows that the estimator, dn’kcﬂsi , outperforms the estimator
dwjkfsi especially for small samples, and as k increases the efficiency of dn’kfsi with respect

to the sample variance gets closer to 1 faster than that of doo’kéi. Therefore we used dn,kéi n
all other simulations.

Table 3-2 shows that if there are outliers in the data, the estimator dn,zc}; has the highest
efficiency, and as k increases, the efficiency of the estimator, dn’kéﬁ , goes down because

taking a larger subsample means outliers are more likely to appear in the subsamples and ruin

the estimator. Generally when £, increases, the change in the efficiency depends on n and k.
The smaller the value of k relative to n, the better the estimator, dn’kéi . The estimator dnbzég

is the most efficient besides the fact it has the highest breakdown value.

Table 3-3 contains the efficiencies of the estimator dn,kéi with respect to the sample

variance when the proportion of outliers is 0.20 using the sample sizes, n=25, 100. The
efficiency of the estimator appears to depend on the proportion of outliers not on the number

of outliers in the sample.
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Table 3-2 Columns 2 and 3 are the values of d, , and the simulated values of 4, .

Other columns contain the efficiency of the estimator, dn’kéi and for k,=0, doo,ko”',f

relative to the sample variance. Data is generated from standard normal distribution.

The outliers, k,=0, 2, 4, are taken from normal distribution with mean, x,=3 or u,=6

and variance 1. Number of simulations=500. k =2, 3, 4, 5, 6. n=15, 25,100

Bias adjustment Efficiencies
factors
Ao d,; k, =0 k=2 | k=4 |k=2 |k =4
do i d, My =3 Ly=3 M, =6 U, =6
n=15

2.20 1.99 0.51 0.78 1.77 1.14 12.70 5.51

1.44 1.32 0.53 0.83 1.70 0.75 9.91 0.60

1.27 1.17 0.58 0.89 1.42 0.76 5.76 0.79

1.19 1.10 0.61 0.95 0.85 0.81 0.55 0.97

SN | K| W

1.15 1.06 0.64 0.95 0.88 0.88 0.68 1.08

n=25

2.20 2.09 0.64 0.84 1.99 1.69 17.30 11.88

1.44 1.38 0.64 0.84 1.99 1.47 17.30 7.01

1.27 1.22 0.64 0.84 1.83 1.10 14.78 0.68

1.19 1.15 0.70 0.93 1.61 0.93 10.84 0.61

AN | B WD

1.15 1.11 0.70 0.93 1.38 0.86 7.46 0.67

n=100

2.20 2.18 0.70 0.70 1.55 2.27 14.12 25.49

1.44 1.43 0.70 0.70 1.55 2.65 14.12 25.49

1.27 1.26 0.70 0.70 1.55 2.27 14.12 25.49

1.19 1.18 0.70 1.06 1.55 2.27 14.12 22.66

AN | B W DN

1.15 1.14 1.06 1.06 1.55 1.99 14.12 18.54
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Table 3-3 Entries are the efficiencies of the estimator dn’kﬁ'f( relative to the sample
variance. Data is generated from standard normal distribution. The outliers, k&, =5 when
n=25 and k,=20 when n=100, are taken from normal distribution with mean, ux,=3 or

H,=6 and variance 1. Number of simulations=500. k£ =2, 3, 4, 5, 6. n=25, 100

k k, =5 k, =5 k,=20 k, =20
Ho=3 1y =0 1y =3 1y =0
n=25 n=100
2 1.46 8.55 1.57 4.30
3 1.13 1.53 1.20 0.29
4 0.91 0.53 0.98 0.32
5 0.84 0.61 0.90 0.32
6 0.82 0.70 0.88 0.31

3.6 Discussion and Comparison with Other Estimators

The estimator dn,zéi is the best in small samples if data are normally distributed and

there are some outliers. One has to make sure that the proportion of outliers is less than the
breakdown point of this estimator 0.29. From Table 3-4 we saw that the values of k=5, 6 give
higher efficiency under normal distribution and no outliers; however, when outliers were

introduced in the data as in Table 3-5, larger value of k means faster breakdown for the estimator

and since the estimator dn,zéﬁ has the highest breakdown, it outperforms other estimator.

Johnson, Mcguire, and Milliken (1978) introduced several estimators of variance in

presence of outliers including V,: which proved to be the best one in that paper. They assumed
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k, of the observations come from normal distribution with mean, s, and variance, ¢, and £,

of the observations, the number of outliers, come from normal with mean, x#+ 4, and variance,

anZn: (x; = x].)z

i=l j=1

2n(n—1)

o . * . o . .
o’ . Deriving V, 1s based on writing the sample variance as , defining

u; = x;—x; |, for i< j=2,3,...,n, and sorting the u;'s as Uy 2u ;.2 u(N),where

N = [Z} = nn=1) . If there 1s one outlier in the data, we expect the n-1 differences between the

outlier and the remaining observations to be larger than other differences. Thus they removed
those differences from the sum of squares and based the estimator on the differences not
including the outlier. When there are &, outliers in the data, the estimator

Kk,

Z”j _Z”(Zv

i<j i=1

P et Dt ko, 1)

and scaleitby v, =E, (V, /o’ ) to get the unbiased estimator Ve =V, /v, . Note that this

estimator is based on specifying the number of outliers, £, .

Lax (1985) presented several robust scale estimates for long-tailed symmetric
distributions. These estimates included trimmed standard deviation, the median absolute
deviation, M-estimates of scale, and A-estimates of scale. He compared 17 of those estimators
under normal, long-tail Cauchy, and contaminated normal distributions. According to his

simulation study, the following estimate of scale was selected

Z sin” (u,)
_ ncMAD t = luj<m

S = | TS costa)

[u<m
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(X, ~ M)

where MAD is the median absolute deviation, u, =
cMAD

, M is the sample median and c is a

specified positive constant. Lax used c=2.1 which was specified by Gross (1976). Mehrotra

(1995) recommended using c=2.6 and adjusted the above robust estimate of scale to get the

robust estimate of variance, V, =k, (S,), where

- 0.973+3.353(10°)n** =3.686(10")n* +3.091n>*> n <100
" 10973 n>100

The large choice of ¢ increases the efficiency of the scale estimate and the shrinkage factor, £,
reduces bias for the variance estimate (Mehrotra 1995).

The estimator dn,kéi was compared to V,: ,V..,and S* fork=2, 3,4, 5 and

ms >

n=15,25,100 using different number of outliers k, and different values of i ,0,15,3,6. 0
o

Monte Carlo simulations with 500 repetitions for each sample size were used. Data were
simulated from normal distribution. There were n—k; simulated observations from standard
normal distribution and k, simulated observations, the number of outliers, from normal with

mean A and variance 1. Efficiencies of the estimators with respect to the sample variance are
presented in are presented in Tables 3-4 and 3-5.
After examining Table 3-4 and 3-5, it is no surprise that the sample variance is the

best estimator when there are no outliers in the data. The estimatorV,  isn’t very efficient if
outliers exist in the data and competition exists between dn’kéﬁ and V,: . When n is small

(n=15, 25) if we correctly specify the number of outliers and they are one to two standard

deviation from the mean of the data, using V,: is a good choice. When n is small and the

outliers are more than three standard deviations from the mean of the data using d,,6; is a
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good choice. If n is large (n=100) and we know the number of outlier in addition to the fact

that they are less than three standard deviations from the mean of the data, then V,: is as good
as dn’kfsi , k=3, 4, 5. If we don’t know the number of outliers and n is large, then using
dn,kéi ,k=3,4,5, is really efficient. The advantage of using dn,kéi , k=3, 4,5, is that we are

allowing outliers to remain in the data without affecting the estimator, and we don’t have to
specify their number. For n=100, k=2 gives an efficiency a little lower than the efficiency
when k=3, 4, 5. Considering the computation cost for k=3, 4, 5, we would recommend using

k=2.
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Table 3-4 Entries are efficiencies of the estimator with respect to the sample variance.

n=15, 25

ke AV | dy6s | d,,67 | d,.6y | d,6s | Vi
o
n=15
0 0 093 |0.87 0.81 0.76 0.81 0.87 0.93 0.81
1 1.5 1.00 | 0.95 0.90 0.86 0.95 1.00 0.82 0.86
1 3 1.69 | 1.79 1.79 1.74 1.91 1.79 1.30 1.24
1 6.0 8.11 12.09 | 13.35 | 12.82 15.26 13.64 | 8.55 543
2 1.5 1.00 | 1.00 0.97 0.88 0.97 0.93 0.88 0.82
2 3 1.34 | 1.69 1.82 1.77 1.69 1.42 0.85 1.14
2 6.0 .71 | 7.77 11.72 | 12.70 | 9.91 5.76 0.55 3.53
3 1.5 1.00 | 1.00 0.97 0.90 0.93 0.90 0.90 0.83
3 3 1.07 | 1.30 1.49 1.52 1.04 0.84 0.81 0.97
3 6.0 1.02 | 1.88 6.16 7.99 0.60 0.55 0.65 1.89
n=25

0 0 0.89 |1.00 0.89 0.80 0.80 0.80 0.89 0.89
1 1.5 1.00 |1.00 1.00 0.85 0.92 0.92 0.92 1.00
1 3 144 |0.94 1.63 1.44 1.53 1.53 1.44 1.30
1 6.0 7.12 | 0.87 11.75 |11.19 12.37 12.37 10.68 |6.53
2 1.5 1.07 | 1.07 1.00 0.88 0.88 0.94 0.94 0.94
2 3 1.48 ]0.92 2.00 2.00 2.00 1.79 1.55 1.42
2 6.0 226 |0.66 13.33 | 17.30 17.30 14.52 10.04 |6.45
3 1.5 1.06 |1.06 1.00 0.90 0.90 0.90 0.86 0.95
3 3 1.27 0.87 1.82 1.87 1.79 1.48 1.13 1.30
3 6.0 1.39 ]0.35 8.42 15.25 13.14 | 7.31 1.05 4.48
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Table 3-5 Entries are efficiencies of the estimator with respect to the sample variance.

n=100

k| A7
o

%

V2

‘V3*

A2 ) ~2 ~2
d, o, |d,o; | d,,G; | d,0; Vs

0 |1.00 |1.00 |1.00 |0.50 0.67 0.67 1.00 0.13
1.5/1.00 |{1.00 | 1.00 |0.50 0.67 0.67 0.67 0.13
3 | 133 | 133 | 133 |1.00 1.33 1.33 1.33 0.31
6.0 425 |567 |567 |4.25 5.67 5.67 5.67 1.31
1.5/150 | 1.50 | 1.50 |0.75 1.00 1.00 1.00 0.21
3 | 120 | 150 |1.50 |1.20 1.50 1.50 1.50 0.55
6.0|2.80 |7.00 {933 |11.20 |14.00 | 14.00 | 14.00 5.60
1.5/1.00 |1.00 |1.00 |O0.75 0.75 1.00 1.00 0.23
3 | 125 | 167 |1.67 | 143 2.00 2.00 2.00 1.25
60198 |[425 |850 |17.00 |19.83 |19.83 |19.83 14.88

W W W | R = =] = o
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CHAPTER 4 - VARIANCE ESTIMATION UNDER

EXPONENTIAL AND DOUBLE EXPONENTIAL

4.1 Introduction

In this chapter we will study the estimator d 6} under exponential and double

exponential distributions. The exponential distribution represents a skewed distribution and the

double exponential represents a heavy-tail distribution.

4.2 Bias Adjustment for Exponential and Double Exponential

4.2.1 Exponential k=2

The adjustment factor d_, depends on the median of the distribution of S: . First

consider the case of exponential distribution when k=2. Note that S; = 0.5(X, — X, )’ . Now if the
data comes from exponential distribution, X, — X, has double exponential distribution, and since
the absolute value of double exponential random variable is exponential random variable,

| X, — X, | has exponential distribution. We can write the term (X, — X,)’ in the variance as

(| X, - X, D"" which has a Weibull distribution with » =0.5 and £ =1. The median of
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Weibull distribution with ¥ = 0.5 and B =1 is (In(2))*. Therefore
d,,=1/ med(S;) =1/med(0.5(X, - X,)*) = 2(In(2)) > = 4.16 . When data are from double

exponential we couldn’t derive the distribution of the sample variance thus we left the last cell in

Table 4-1 blank.

4.2.2 Other Cases

For other cases, we used simulation to approximate the adjustment factor as described in
Section 3.1 of Chapter 3 except that data were simulated from exponential and double

exponential instead of normal. The sample sizes used to simulate those values of d, , are 15, 25,
75,100, and 125. For n=100 and 125, 5000 subsamples were used to approximate d, , for all

values of k. Table 4-1 has simulated values.
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Table 4-1 Simulated values of d , for exponential and double exponential distributions.

Number of simulations=500. n=15, 25, 75, 100, 125

k Exp. D. exp.
n=15
2 3.31 2.52
3 1.91 1.6
4 1.62 1.34
5 1.22 1.2
6 1.23 1.14
n=25
2 3.64 2.74
3 2.05 1.72
4 1.63 1.44
5 1.44 1.3
6 1.33 1.22
n=75
2 3.99 2.9
3 2.25 1.84
4 1.79 1.56
5 1.6 1.42
6 1.48 1.32
n=100
2 4.02 2.92
3 2.26 1.86
4 1.83 1.56
5 1.63 1.42
6 1.5 1.32
n=125
2 4.05 2.96
3 2.29 1.88
4 1.85 1.58
5 1.65 1.42
6 1.52 1.34
n =00
2| 4.16 |

33



4.3 Efficiencies

To investigate the efficiency of the variance estimate, dn,kéi , 500 random samples of

size 15,25,100 were generated from the exponential and double exponential distributions.

Estimators were computed for k=2, 3, 4, 5, 6. The number of outliers were k,=0, 2, 4 which

were chosen from the original distribution with shift g, .

Efficiencies of the estimator dn’kéﬁ relative to the sample variance are presented in
Table 4-2. Efficiency is the ratio of the MSE of S’ divided by the MSE of d, G} . The
estimator d, ,6; does a better job when data comes from exponential than when the data

comes from double exponential. The estimator, d, ,5;, does better than others. We just have

to make sure that the proportion of outliers is smaller than the breakdown value of 0.29.
Table 4-5 suggests that the efficiency of the estimator depends on the proportion of outliers

not on the number of outliers for large samples.
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Table 4-2 Entries are the efficiencies of dn’k&i with respect to the sample variance. n=15,

25,100
k k=0 k=2, u,=6 k=4, pu,=6
Exp. D. Exp. | Exp. D. Exp. | Exp. D. Exp.

n=15
2 | 1.04 0.97 17.44 1.61 3.92 0.77
3 10.95 1.03 3.13 0.96 0.40 0.32
4 10.95 1.08 2.89 0.81 0.63 0.43
5 10.75 1.05 0.54 0.47 0.77 0.53
6 10.83 1.05 0.73 0.53 0.81 0.59

n=25
2 11.02 1.07 33.41 1.49 20.83 1.48
3 1098 1.07 16.71 1.25 3.81 0.75
4 10.95 1.06 6.63 0.95 0.56 0.44
5 1093 1.07 2.88 0.70 0.60 0.43
6 10.89 1.04 231 0.64 0.76 0.48

n=100
2 | 143 1.06 3.56 0.48 15.02 0.99
3 1 1.27 1.06 5.34 0.46 23.37 0.91
4 11.26 1.05 6.41 0.45 26.29 0.82
5 11.20 1.03 8.01 0.43 21.03 0.74
6 |1.20 1.06 8.01 0.43 16.18 0.70

Table 4-3 Entries are the efficiencies of dn,k&i with respect to the sample variance.

Proportion of outliers=0.20. n= 25,100

k k, =5 k, =20

1, =6 H,=6

n=25 n=100

Exp D. Exp. | Exp D. Exp.
2 12.62 | 1.66 25.51 1.94
3 1.13 0.53 1.13 0.56
4 0.50 0.43 0.47 0.40
5 0.68 0.52 0.64 0.45
6 0.80 0.62 0.76 0.54
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CHAPTER 5 - SIMPLE LINEAR REGRESSION

5.1 Introduction

In the simple linear regression model Y, = B, + B,x, +¢,, i =1,...,n, where €,'s are
identically and independently distributed with distribution F with median 0, interest lies in

estimating the parameters f, and f,, predicting the dependent variable Y , and making

confidence interval on the mean of Y using the predictor X . The dependent variable might be
the attention span of a child in minutes and the predictor the child’s IQ score. In a study of the
body’s ability to absorb iron and lead, data might be collected on percentage lead absorbed (V)
and percentage iron absorbed ( X ), and we might want to predict the percentage lead absorbed
using the percentage iron absorbed ( Milton 1999). ¥ might be the annual mean temperature and
X the elevation or location expressed by latitude and longitude.

We are concerned with estimating the parameters of the model in this chapter and will

compare the proposed method to some methods existing in the literature.

5.2 Existing Methods

Least square estimation, which is based on minimizing the residual sum of squares

& = Z( Y,— B, B,x,)*, is one of the common ways to estimate the parameters of the model.
i=1 i=1

The least square estimates aren’t robust when outliers exist in the data. Least square estimation is

the most efficient when data comes from normal distribution, but the method may do poorly
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when outliers are present or when the error distribution is heavy-tailed. A lot of methods exist in
the literature to estimate the parameters of the linear model. Since we are studying robust
estimators in this study, we chose some of the most efficient and robust methods existing in the

literature to compare to our method.

n
Consider minimizing the convex function Zbij |e; —¢, | where b, is a weight function

i<j
and ¢, is the ith residual (Naranjo and Hettmansperger 1994). If b, =1 the estimate that

minimizes the convex function is called Wilcoxon rank-based estimate (Jaeckel 1972). The
asymptotic relative efficiency of Wilcoxon rank-based estimates is 0.955 relative to least square
estimates under normal distribution. For heavy-tail distributions the asymptotic efficiency is
much higher (Hettmansperger and McKean 1998). Wilcoxon rank-based estimates have bounded
influence function in the y-space and not in the x-space.

Naranjo and Hettmansperger (1994) considered generalized rank-based estimates (GR)
by using weights that depend on the x values. These GR estimates desirable robustness
properties as discussed in (Naranjo and Hettmansperger 1994). Chang et el (1999) chose
weights that depend on the residuals and the x-values and showed that the estimates based on
these weights have a breakdown values as high as 50% and called them high-breakdown rank

estimates (HBR). Before talking about | C, estimation in regression, we need to introduce

concepts in data depth.
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5.3 Data Depth

Data depth is a statistical analysis technique that assigns a numerical value to every point
in a data set based on the centrality of this point relative to the data set (Hugg et al 2005). This
idea gives a center-outward ordering or ranking of data points for multivariate data. Points that
are close to the center receive a higher depth than points that are on the boundary. The center of
the data set is defined by certain depth function. Examples of depth functions are halfspace depth
(Tukey 1975), simplicial depth (Liu 1990), and simplicial volume depth and projection depth
(Zuo and Serfling 2000a). This enables us to choose location and scale estimators based on
different depth functions (Zou, Cui, and He 2004). Data depth is a nonparametric technique that
doesn’t need any distributional assumptions about the data. In this study we will only be

concerned with location estimators derived from data depth.
The halfspace depth (HD) of a point x in R‘ with respect to probability measure P on

R‘ is defined as the minimum probability mass carried by any closed halfspace containing

X (Zuo and Sefling 2000), that is,
HD(x,P)=inf{P(H):H closed halfspace, xeH}, xeR‘.
Let’s look at the univariate case d =1 to understand the idea of halfspace depth. Given a

random sample X, X,,..., X, with a distribution function, £, all values below X, form an open
halfspace, and all values less than or equal X, form a closed halfspace. Similarly all values
greater than X, form an open halfspace and all values greater than or equal X, form a closed

halfspace. For any point, there are two associated closed halfspaces. Tukey’s halfspace depth of

x, 1s defined as the minimum of F(x;) and 1-F(x, ), i.e., the smallest probability associated

with the two closed halfspaces formed by x;, (Wilcox 2005). Given a data set, x,, x,,..., X, , We
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find the proportion of points less than or equal to x; and the proportion of points greater than or

equal to x,. The sample Tukey halfspace depth of x,, H (x,) 1is the smaller of those two values.

Example 5.3.1 Consider the data set, 1, 3, 5, 2, 11, 13, 20, 27, and 23. The proportion of points
less than or equal to 3 is 0.33 and the proportion of points greater than or equal to 3 is 0.78. The
halfspace depth of the point 3 is the minimum of 0.33 and 0.78, which is 0.33. Table 5.1 below
shows the halfspace depth of each point in this data set. We can see that 11 has the maximum
halfspace depth in this example. If we sort the data as in the third row of Table 5-1 and look at
the depth of each point we can see as points get closer to the center their depth increases and as

they get farther away from the center (on the boundary) their depth decreases.

Table 5-1 Halfspace Depth Example

X, 1 3 5 2 11 13 120 |27 |23
Ifl(xi) 0.11103310.44|0.220.56|0.44|0.33|0.11 | 0.22
X 1 2 3 5 11 13 120 |23 |27
I:I(x(,,)) 0.11]10.2210.33|0.44 1 0.56 | 0.44 | 033 |0.22 | 0.11

Tukey median is defined as the point with maximum halfspace depth. In the previous
example, the point 11 is the Tukey median. It turns out that Tukey median is the sample median
in the univariate case (Wilcox 2005). If more than one point has the maximum depth then the
average of those points is the Tukey median. In bivariate or multidimensional case, the average
is the center of gravity of those points with the maximum depth (Rousseeuw and Ruts 1998), i.e.,
the x-coordinate of the Tukey median is the average of the x-coordinates of the points with the
highest Tukey depth, the y-coordinate of the Tukey median is the average of the y-coordinates of

the points with the highest Tukey depth.
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For the bivariate case, for any line, the points on or above the line form a closed

halfspace, as do the points on or below the line. Given a data set (x,,y,),(x,,,),....(x,,»,), we

find the depth of each point by
1. Looking at every line passes through that point.
2. Counting the proportion of points on or above the line and the proportion of points on or
below that line and recording the minimum of those two proportions.
3. Recording the minimum over all lines. This minimum is the Tukey halfspace depth of
that point.
In bivariate case the data is a scatter of points in the xy-plane. Points on the boundary will

have small depth and those close to the center of the scatter plot will have higher depth.

Example 5.3.2 Consider the data set (1, 3), (1, 5), (2, 1), (2, 4), (2, 6), (2.5, 4.5), (3, 2), (4, 5).

Figure 5-1 is a scatter plot of the data. It is clear from the scatter plot that the point (2, 4) is the
center of the data. The Tukey halfspace depth of these points is 0.125, 0.125, 0.125, 0.5, 0.125,
0.25, 0.125, and 0.125 respectively. The point (2, 4), Tukey median of the data, has the largest

depth.

Example 5.3.3 Consider the data set (1, 2), (1, 5), (2, 1), (2, 3), (2, 4), (2, 6), (3, 2), (3, 5).
Figure 5-2 is a scatter plot of the data. The halfspace depth of these points is 0.125, 0.125, 0.125
0.5, 0.5, 0.125, 0.125, and 0.125 respectively. It is clear from the scatter plot that the two points
(2, 3) and (2,4) represent the center of the scatter plot. Those two points have the highest Tukey
depth. Therefore the Tukey median of this data set is the average of those two points, 0.5(2, 3)

+0.5(2, 4), which is (2, 3.5).
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Data depth simply assigns high depth values for points closer to the center and low depth
values for points on the boundary. Figure 5-3 gives a picture of deep points which are closer to
the center and low depth points which are on the boundary in a scatter plot (Hug et el 2006).
Depth contours, nested contours that enclose regions of increasing depth, provide a tool to
visualize data sets (Figure 5-4). The contour of the sample ath central region is defined as the
convex hull containing the most central fraction of a sample points (Hugg et el 2006).

In the three dimension case, for any plane, the points on or above that plane form a
closed halfspace, as do the points on or below the plane (Wilcox 2005). Tukey median in the
multidimension case is the average of all points having the maximum depth. The data can be
pictured as a cloud of points and the points on the boundary have lower depth than points closer

to the center of the cloud of the data. The Tukey median in multidimension has a breakdown

point that can’t exceed ﬁ ( Donoho and Gasko 1992). We used Tukey median to choose the
+

,C, estimator in linear regression.

41



Figure 5-1 Example on Halfspace Depth. Unique Tukey Median
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Figure 5-2 Example on Halfspace Depth. Averaging the two points with highest depth to

get Tukey Median
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Figure 5-3 An Illustration of Data Depth (Hug et el 2006).
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Figure 5-4 Depth Contours. The region Enclosed by the Contour of Depth o is the Set of
Points such that D(x) > o ( Hugg et el 2006).

(I 0o
LI I . 't ' '
i ' .l Il 'i .h .I' '
Jo "l' i :‘ |' ‘l'i !
S
‘ I*'l i|: '1::"'?' u“:l Q*tii"“ "a
L *'L L 1“":'| *|ﬂi"‘\""'u ' \
W g g e
I ! *’F:Hll'll'."" “'i::'.l 'l' .i *
] s ! *I i b ' '.‘. I‘ '
- ,.I:i T .'l":, . J )
1 '”ii'"'il"il '
: v, i Yoty
i
1 i o

45



5.4 ,Ci Estimation in Simple Linear Regression

Given a paired data, (x,,Y, ),...(x,,Y, ), we want to generalize the ,C, estimation idea

introduced in previous Chapters to simple linear regression. Experimental units or pairs are

sampled. The following are the steps to find the ,C, estimators of £, and £, :

1. Take all possible samples of size k, k=2,3.4,...,n, without replacement from the n

pairs. There are N = [Zj subsamples.

2. Find the least square estimators for each subsample. Call these estimators

(501’311)""(80N’81N) :

3. We considered two ways to choose the estimator from step 2:

a. Estimate the slope S, by the median of ﬁ | 1/;’ ;v and call this estimator ,éGT where
GT stands for generalized Thiel; estimate S, by ,é(, where ,é(, =med(Y, - ,éGTxl.) ,
i =1,...,N . Thus we have the estimator |§ L= (,éo, BGT ) for the intercept and the slope.
For k=2, the estimator ,bA’GT is Theil estimator of the slope. For k=3, 4, 5,...,n-1, we
call the estimator BGT the generalized Thiel (GT) estimator.

b. Estimate (§,, 5, ) by the Tukey median of (ﬁo,,ﬁl,),...(ﬁON,,bA’,N) . Thus we have the

estimator ﬁz = (ﬁ(,TM , B s ) - We will refer to this estimator as Tukey median (TM).
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Note that for the first method when k=2 the slope estimator is the median of

Z (Xij - Xi )(Yij - ?1)

where i =1,..., N and X; is the jth observation from the ith subsample.
(X, —X,)’

ij i

M-

<.
T

jzl(Xij _Xi)(Yij _Yi) _ (Yil _Yiz)

5 . Thus when k=2, the estimator
Z(X” _XA)Z (X = X3)

ij i
j=1

Simple algebra shows that

(Yil B Yiz)

il M2

is the median of . This is the Thiel estimator of slope if the predictor is random

(Thiel 1950). Other values of k, 3, 4, 5,..., n-1 are generalization of the Thiel estimator. This

n
estimator is a median of [kj terms where each term has zero breakdown value. Thus its

asymptotic breakdown value is 0.29, 0.21, 0.16, 0.13 and 0.11 for k=2, 3, 4, 5 respectively. The
breakdown value of TM is also expected to decrease as k increases. Thus we study the estimators
for small values of k.

Oja and Niinimmaa (1984) generalized the Thiel estimator to multiple linear regression.
When there are p independent variables, they took all subsets of size p+1, found the least square
estimator for each subset, and took the median of the N estimates for each parameter.

It is desired for regression estimators to be affine equivariant, i.e.,

T(Ax, +b,...,Ax, +b)=AT(Xx,,...,X,) +b where T is the estimator, A is a nonsingular matrix,
bis any vector and (X,,...,X,,) is the data. This property is desired because reparametrization of

the space of the x; should not change the estimate (Wilcox 2005). Thus it might not be
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appropriate to use the marginal median to estimate each parameter separately since this estimator
isn’t affine equivariant.

In multiple linear regression for k=p+1, p+2,...., n-1, we propose using the Tukey median
to choose the estimator because it is a multivariate analong of the usual median. For simple
linear regression the range of k is 2, 3, 4...., n. Small values of k are considered here because as
k increases the breakdown point of the estimator decreases substantially. Note that each

estimator based on a subsample of size k is an unbiased estimator of the true parameters, and
when we take the Tukey median of (301, /Af I’ ),...(,Z);ON, /§]N ), we are trying to find the closest one to

the true parameter or the deepest point in the scatter plot.

5.5 Simulation Study under Different Distributions

Chang et el (1999) conducted a simulation study in the simple linear regression model to
compare Wilcoxon rank-based, GR, and HBR under different distributions for the predictor and
the response. The proposed , C, regression estimators are compared to those estimators under
the same model considered in Chang et el (1999). The model they used for simulation is
Y=p,+px +¢,i=1,..,30,where f,=p,=0. The sample size used in this section is 30 which
is different from the sample sizes in other parts of this study because this will give us the chance
to compare our results to theirs. We compared the , C, estimators to the most efficient estimators
in their study. Partial results of their simulation study are in Table 5-2. The distributions for the

X’s and Y’s in the regression model are of four types, Normal (N), Uniform (U), double

exponential (D. exp), and contaminated normal (CN). The contaminated normal distribution

CN(e,6° ) is defined as contaminated standard normal distribution with & the proportion of
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contamination and & the ratio of standard deviations between the contaminated and
noncontaminated parts.

The first combination (normal for the error and uniform for the predictor) represents a
standard situation when there are no outliers in the data. The second combination (normal for the
error and CN(0.25, 100) for the predictor) represents a contamination in the x-space. The last
two cases represent symmetric distribution with outliers for the error under uniform and
contaminated normal for the predictor. Double exponential distribution was considered because
it has a variety of application (Johnson et el 1994, p.201). Results based on 500 simulations are
summarized in Table 5-3. Entries are relative efficiency which is the ratio of the MSE of the
slope estimate relative to the MSE of the least square estimator based on 500 simulations.

Our efficiencies for the HBR estimates in Table 5-3 are a little different from the results
in Table 5-2 from Chang et el (1999) because the way the HBR estimates are calculated is based
on HBR weights which depend on initial location and scale estimates, tuning constants, and
residuals from initial estimate. These weights are calculated using Fortran routines that might be
different than some of the built-in R routines (Jeff Terpsta, 2007, personal communication).

The GT estimator with k=3 shows a higher efficiency than all other estimates when the
response is normal and the predictor is uniform. The Wilcoxon rank-based is the most efficient in
relation to the LSE whenever the x-values are contaminated. For the contaminated normal
distribution, CN(0.25, 100), GT with k=3 outperforms the HBR estimate. If the response has
double exponential distribution and the predictor is uniformly distributed, Theil estimator and
TM with k=3 have high efficiency but not better than the rank-based and HBR estimates. We can
also see that GT and TM do better when k=3 than k=2 except for when Y has double exponential

distribution and X has uniform distribution. Comparing the ,Cy estimators, GT with k=3 gives
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the highest efficiency with respect to the LSE except for when Y has double exponential

distribution and X has uniform distribution in which Thiel estimator has the highest efficiency.

The ,Cx estimation was also compared to Wilcoxon rank-based under the t-distribution

with 3 degrees of freedom. Table 5-4 contains the relative efficiency of the estimate relative to

the LSE for each method. It is clear that Wilcoxon rank-based is more efficient under heavy-tail

distributions. We also notice that the efficiency of both GT and TM goes up at k=3 and starts to

go down as k decreases.

The only case where we might recommend ,Cy is when the response has normal

distribution and the predictor has uniform distribution with few outliers. We recommend GT

estimator with k=3 since it has a breakdown value of 0.21 and we don’t have to remove the

outliers from the data. Generally ,C estimators are less efficient that the other estimators

Table 5-2 Efficiency of the Estimates Relative to the LSE (Chang et el 1999). n=30

Distribution of Y and X Type of estimator

Y X Rank HBR
N U 0.93 0.78
N CN(0.25,100) 0.93 0.22
D. exp U 1.34 1.42
D. exp CN(0.15,16) 1.14 0.87

Table 5-3 Efficiency of the Estimates Relative to LSE. Wilcoxon Rank-Based and HBR vs.

Others. n=30
Distribution of Y and X Rank-based type | .Ck Type of estimator
Y X Rank | HBR Thiel(k=2) | GT(k=3) | TM(k=2) | TM (k=3)
N U 0.95 0.94 0.92 0.97 0.67 0.91
N CN(0.25,100) | 0.98 0.57 0.50 0.58 0.24 0.40
D. exp U 1.39 1.40 1.36 1.32 1.15 1.35
D. exp CN(0.15,16) | 1.27 1.25 1.00 1.03 0.78 0.91
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Table 5-4 Efficiency to LSE under t-Distribution with df=3. n=15, 25

n=15
k=2 k=3 k=4 k=5 Rank
GT Int 1.44 1.52 1.47 1.40 1.55
Slope | 1.54 1.61 1.54 1.45 1.66
™ Int 1.27 1.59 1.54 1.46 1.55
Slope | 1.30 1.69 1.61 1.51 1.66
n=25
k=2 k=3 k=4 k=5 Rank
GT Int 1.78 1.80 1.75 1.68 1.82
Slope |1.85 1.85 1.71 1.71 1.85
™ Int 1.51 1.80 1.72 1.65 1.82
Slope |1.60 1.85 1.85 1.71 1.85

5.6 Simulation Study under Normal Distribution with Qutliers

In this simulation study we considered the normal distribution with outliers. The response
was simulated from the model Y, = §, + f,x, +¢,, i=1,...,n, where f,=2 and f,=1. We used

x =(1,...,n) i.e. fixed values from 1 to n. This model was used in simulation by Morton-Jones

and Henderson (2000).

For n=15 and n=25 after simulating data from the above model outliers were placed on
the xy-direction by replacing the x-values of k, pairs by the k, values from (30, 40, 45, 55, 65,
75) beginning with x=4. This will create outliers with high Cook’s distance. Cook’s distance
combines leverage and standardized residual into one overall measure of how unusual an

observation is.

For n=15 and n=25 after simulating data from the above model outliers were placed on

the y-direction by replacing the y-values of k, pairs by k, values from (30, 40, 45, 55, 65, 75)
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beginning with the pair with x=4. We only replace the y-values by these outlying points and keep
the x values unchanged. This will create outliers with high standardized residuals. Large
standardized residuals imply the observation has an unusual response value.

For n=15 and n=25 outliers were placed on the x-direction by replacing the x-values of
k, pairs by k, values from (30, 40, 45, 55, 65, 75) beginning with the pair with x=4 and
simulating y-values from the model using these x-values. This will create outliers with high
leverage values. The leverage value of an observation tells whether an observation has an

unusual predictor which will result in a large influence on the regression coefficient. If it is larger

2 .. ) . )
than = the observation is considered influential.
n

The following factors were changed: sample size n, subsample size &k, and number of
outliers &, as shown in Table 5-5. Outliers were placed once in the x-direction, the y-direction,

and xy-direction. We studied the estimators GT and TM from section 5-4 and compared them to
HBR and Wilcoxon rank-based estimates. As k increases, the outliers will appear more
frequently in the subsets we are taking and the estimator is expected to breakdown easily for
large values of k so we focused on small values of k. Entries are relative efficiencies which is the
ratio of the MSE of the LSE estimate (for intercept and slope) relative to the MSE of the
estimator. For the LS estimate column, entries are the MSE’s. Results based on 500 simulations
are in Tables 5-6 to 5-10.

When outliers are in the y-or xy-direction the efficiency of GT and TM is the highest
most of the time when k=2, 3, and as k increases the efficiency decreases substantially. Thus
attention should be paid to k=2, 3 when comparing GT and TM to other estimators.

When n=15 and there are two outliers in xy-direction, HBR estimator is the most efficient

in relation to the LSE. When there are 4 outliers in the xy-direction, TM with k=2 gives the
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highest efficiency, and when there are six outliers, GT with k=2 gives the highest efficiency. For
n=25 with two or four outliers in the xy-direction, HBR is the most efficient whearas when n=25
and there are six outliers, TM with k=2 is the most efficient.

When n=15, 25 with two outliers are in y-direction, rank-based estimator is the most
efficient and if there are four or six outliers, GT with k=2 is the most efficient. When outliers are
in the x-direction, the LSE is the best method because outliers give perfect fit to the line in this
case as seen in Table 5-10. The efficiency of the rank-based estimator is higher than that of GT,
TM, or HBR in this case. When there are 4 or 6 outliers GT or TM with k=3 are better than the
HBR.

Generally when outliers are in the xy-direction the HBR estimator is the most efficient,
and when outliers are in the y-direction, rank-based or GT with k=2 (Thiel estimator) estimators
are the main competitors. Generally GT and TM don’t show much improvement over other
existing methods but could be used in some special cases based on the number of outliers and the
sample size.

Table 5-11 contains the user computation time in hours for the MSE of the GT and TM

estimators for each k. The computation time increases substantially as k increases.

Example 5.6.1 A random sample of size 10 was generated from the model ¥, = 8, + f,x, +¢,,

i=1,.,n,where f,=0and S,=2 wherex =(1,...,10) . The x-values were changed for three pairs

to generate outliers in the xy-direction. The data set is (1, 1.5), (2, 4.0), (20, 7.0), (23, 8.2),
(27,9.8), (6, 13.4), (7, 13.5), (8, 14.5), (9, 18.7), (10, 20.6). Figure 5-5 shows a scatter plot of the
data. We want a procedure that fits most of the data without being affected too much by the

outlying observations (20, 7.0), (23, 8.2), (27, 9.8). For k=2 the GT estimate is (6.95, 0.40) and
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the TM is (6.5, 1.0). The TM estimates are much closer to the true parameters than the GT.
Figure 5-6 shows a bivariate plot of the slope and intercept estimates for k=2. In this situation
taking the Tukey median of both the intercept and slope is more appropriate than taking the
median of the slopes and then estimating the intercept at the end (GT). The intercept is a
nuisance parameter but the way it is estimated affect the efficiency of getting a good estimate of

the slope. This explains the improvement of TM over GT when outliers are in the xy-direction.

Figure 5-5 Example when outliers are in xy-direction

15
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Figure 5-6 Bivariate Plot of the Slope and Intercept Estimates for k=2, n=10
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Table 5-5 Factors Changed in Normal Simulation

Factor Levels
Sample size 15,25

k 2,3,4,5,8
# of outliers, k, | 0,2,4,6
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Table 5-6 Normal distribution. Efficiency Relative to LSE. Outliers are in xy-direction.

n=15
k=2 k=3 k=4 k=5 k=8 Rank | HBR | LSE*
Int 0.84 0.88 0.91 0.92 094 |0.87 0.86 0.29
k =0 GT | Slope 0.90 0.95 0.97 0.97 1.00 | 0.95 0.92 0.00
Int 0.68 0.88 0.94 0.97 099 |0.87 0.86 0.29
TM | Slope 0.69 0.88 0.92 0.97 1.00 | 0.95 0.92 0.00
k=2 Int 43.64 | 3563 | 13.25 |0.96 0.93 0.95 87.49 | 55.54
GT | Slope 4520 |36.79 | 1424 |1.03 0.99 1.02 100.96 | 0.91
Int 40.23 |37.00 | 2229 |13.28 |1.03 0.95 87.49 | 55.54
T™ | Slope 57.51 |45.66 |2531 |14.54 |1.02 1.02 100.96 | 0.91
k=4 Int 2.00 1.20 1.09 1.04 1.02 | 0.84 1.51 68.15
GT | Slope 1.82 1.12 1.05 1.02 1.02 | 0.96 1.43 1.03
Int 8.69 2.71 1.01 0.99 1.00 | 0.84 1.51 68.15
T™ | Slope 12.40 | 3.40 1.01 1.00 1.00 | 0.96 1.43 1.03
k =6 Int 7.10 1.49 1.14 1.06 1.05 | 091 1.11 63.26
GT | Slope 1.20 1.05 1.02 1.01 1.01 0.99 1.03 1.00
Int 0.65 0.96 0.98 0.99 1.01 0.91 1.11 63.26
TM | Slope 0.98 1.00 0.99 1.00 1.00 | 0.99 1.03 1.00

*Entries are mean square errors for the LSE.
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Table 5-7 Normal distribution. Efficiency Relative to LSE. Outliers are on xy-direction.

n=25
k=2 k=3 k=4 k=5 | k=8 Rank | HBR | LSE*
k,=0 Int 0.78 0.82 0.84 0.84 ]0.85 0.79 0.79 0.17
GT |Slope |0.88 0.88 1.00 1.00 | 1.00 0.88 0.88 0.00
Int 0.66 0.89 0.94 0.97 10.99 0.79 0.79 0.17
T | Slope | 0.70 0.88 1.00 1.00 | 1.00 0.88 0.88 0.00
k=2 Int 108.63 | 107.11 | 91.93 72.41 | 0.87 46.76 | 149.24 | 49.10
GT Slope | 149.48 | 143.73 | 120.55 |93.43 | 1.13 60.27 | 219.82 | 0.37
Int 97.53 |100.12 | 81.94 62.02 | 20.39 |46.76 | 149.24 | 49.10
TM | Slope | 169.86 | 149.48 | 109.91 | 77.85 |21.98 | 60.27 |219.82 | 0.37
k =4 Int 76.96 | 47.06 | 1.20 0.98 |0.94 1.00 194.04 | 142.48
GT Slope | 73.56 |46.60 | 1.27 1.03 |0.99 1.05 178.02 | 0.89
Int 9195 |57.65 |27.15 12.98 | 1.09 1.00 194.04 | 142.48
T | Slope | 127.16 | 70.09 | 30.28 14.13 | 1.08 1.05 178.02 | 0.89
k =6 Int 10.66 | 1.28 1.16 1.12 | 1.07 0.99 28.15 | 193.59
GT Slope | 9.96 1.20 1.09 1.05 | 1.01 0.96 2542 | 1.08
Int 33.75 |10.25 |0.93 0.96 |0.99 0.99 28.15 | 193.59
TM | Slope |43.38 |12.66 | 1.03 1.00 | 1.00 0.96 2542 | 1.08

*Entries are mean square errors for the LSE.
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Table 5-8 Normal distribution. Efficiency Relative to LSE. Outliers are on y-direction.
n=15

k=2 k=3 k=4 k=5 k=8 Rank | LSE*
k=2 Int 94.48 |54.80 |29.00 |3.81 1.90 9534 | 88
GT | Slope 63.19 |34.03 |16.61 |2.13 1.06 64.03 | 0.49
Int 57.68 |37.63 | 1598 |4.80 1.07 9534 | 88
T™™ | Slope 39.89 |30.99 | 14.53 |4.59 1.06 64.03 | 0.49
k =4 Int 164.73 | 16.61 | 3.43 2.35 241 141.86 | 336
GT | Slope 108.13 | 9.04 1.86 1.27 1.30 91.01 |1.27
Int 35.18 | 1.85 1.12 1.07 1.03 141.86 | 336
T™™ | Slope 23.56 | 1.38 0.97 0.98 1.01 91.01 |1.27
k, =6 Int 34291 | 11.47 |5.31 4.29 4.31 170.74 | 597
GT | Slope 154.65 | 3.14 1.42 1.14 1.15 68.74 | 0.8
Int 0.58 0.40 1.06 0.98 0.99 170.74 | 597
T™™ | Slope 0.18 0.13 0.92 0.90 0.98 68.74 | 0.8

Table 5-9 Normal distribution. Efficiency Relative to LSE. Outliers are on y-direction.
n=25

k=2 k=3 k=4 k=5 k=8 Rank | LSE*
k=2 Int 103.74 | 79.58 | 64.38 | 50.61 | 1.69 99.85 |50.40
GT | Slope 80.82 | 59.74 | 45.80 | 35.23 | 1.04 80.82 | 0.14
Int 91.75 | 77.16 | 54.01 | 34.53 | 3.32 99.85 |50.40
T™™ | Slope 65.43 | 59.74 | 4432 | 29.87 | 3.24 80.82 | 0.14
k=4 Int 170.34 | 66.41 | 4.58 1.71 1.44 144.56 | 248.34
GT | Slope 142.07 | 50.07 | 3.27 1.22 1.03 115.26 | 0.61
Int 138.15 | 56.84 | 18.40 | 2.54 1.22 144.56 | 248.34
T™™ | Slope 111.07 | 50.07 | 17.26 | 2.45 1.20 115.26 | 0.61
k, =6 Int 183.61 | 6.61 2.25 1.68 1.32 114.95 | 666.89
GT | Slope 160.88 | 5.07 1.73 1.29 1.02 9438 |1.42
Int 90.82 | 13.61 | 1.74 1.25 1.07 114.95 | 666.89
T™™ | Slope 75.30 | 12.06 | 1.60 1.17 1.04 9438 |1.42
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Table 5-10 Normal distribution. Efficiency Relative to LSE. Outliers are on x-direction.

n=15
k=2 k=3 Rank HBR | LSE*

k=2 Int 0.63 0.71 0.75 0.65 0.14
GT | Slope | 0.50 0.67 0.95 0.70 0.00

Int 0.55 0.81 0.75 0.65 0.14

T™ | Slope | 0.26 0.40 0.95 0.70 0.00

k =4 Int 0.70 0.78 0.76 0.66 0.12
GT | Slope | 0.67 0.67 0.89 0.62 0.00

Int 0.63 0.93 0.76 0.66 0.12

T™ | Slope | 0.40 0.67 0.89 0.62 0.00

k, =6 Int 0.69 0.79 0.78 0.70 0.13
GT | Slope | 0.42 0.86 0.92 0.71 0.00

Int 0.59 0.93 0.78 0.70 0.13

T™M | Slope | 0.24 0.76 0.92 0.71 0.00

*Entries are mean square errors for the LSE.

Table 5-11 Computation Time in Hours for MSE of GT and TM estimators. Number of

Simulations=500

k=2 k=3 k=4 k=5 k=8
n=15 0.45 1.98 6.26 15.48 28.97
n=25 1.32 11.41 29.28 31.30 78.02
n=30 1.91 22.19

* No runs were done for k=4, 5 when n=30.
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CHAPTER 6 - MULTIPLE LINEAR REGRESSION

6.1 Introduction

We will consider the multiple regression model Y, = 8, + B,x,, + B,x,, +...+ B,x,, +¢,

i=1,...,n,where g,'s are identically independently distributed with distribution function F . The
model can be written in the form, Y = Xp + & where Y is the vector of responses, X is an n by
p+1 matrix and B is a p+1 vector of parameters, and € is the vector of errors. Multiple linear
regression can be used to predict the boiling point of a hydrocarbon using the number of carbon
atoms of a hydrocarbon and the molecular weight of that hydrocarbon. It can also be used to
predict city’s future weekly fuel consumption using the average hourly temperature and the chill
index as independent variables. The chill index measures weather-related factors such as the
wind velocity and the cloud cover.

The following procedure defines an  C, estimator of p. The data can be written in a

matrix form

Y'] XII XZ] pl
)72 XIZ XZZ XpZ
Yn X]n XZn . Xpn

Each row of the above matrix corresponds to one experimental unit. We take all possible

experimental units of size k from the n experimental units, find the least square estimates using
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each subsample, and take the Tukey median of those estimates ﬁT of B,,B,,...8, - The intercept

is estimated by med(y, — x;fiT) where X; is the ith column of the design matrix. Note that to

estimate the p+1 parameters, k must be greater than or equal to p+1. The breakdown value of ﬁT

won’t exceed 1/(p+1), and as k increases the breakdown value will decrease since the outliers
are more likely to appear in the subsamples. Thus it is favorable to choose small values of k to

estimate f .

6.2 Designs and Simulation

We considered different designs from Hawkins and Olive (2003) to study the
performance of the proposed estimation procedures with the sample sizes n=15, 25. The vector
of parameters was set to 0 and errors are 1.1.d. normal.

The first design is the Sphere (S). In this design the columns of the design matrix

are randomly sampled from a N(0,1) distribution. The second design is Vslash (V). The
columns of the design matrix are randomly sampled from a N(0,I) distribution and each was

divided by a randomly selected uniform univariate. This design tends to produce a sprinkling of
isolated very remote vectors (Hawkins and Olive 2003). The third design is Disk and Axle (DA).

In this design each vector x of the design matrix is divided into two subvectors, x, ([0.8n] by 1)
and x, ([0.2n] by 1). The first component of x, is N(0,&’) and the rest are chosen from N(0,1).

The first component of the second subvector X, is a scaled chi-squared of p-1 degree of freedom
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and the rest of the subvector was chosen from N(0,&°1). This gives a 20% contamination in the

x-values. The value of epsilon used here is 4.

After constructing the design matrix as described above, we placed outliers on the
response vector randomly (R) or badly (B). For the randomly placed case, 0.2n outliers were
placed on a randomly selected observation in the response vector. For the badly-placed option,
outliers were placed corresponding to the x-outlying cases. The badly-placed option applies only
for the last design (DA) only because the first two designs have no x-outlying cases.

We also considered the outlier size. For the outlying cases, we added 6 to the y
value and called this plus (+) or we add +6 or -6 (the sign randomly determined) to the outlying

cases and called this plus/minus (+/-). Since the vector of parameters, [, is zero, the outlier

placement is applied directly to the y. We also considered DA without placing any outliers on the
response vector to see the performance of the estimators when outliers are only in the x direction.

We simulated data from the previous all combinations to get nine designs. Table 6-1
contains the efficiency of each of the three estimators Bo, ,é I’ ,é , with respect to the LSE. Table 6-

2 conatins results for n=25. Efficiency is the ratio of the MSE of the LSE relative to the MSE of

the estimator. The methods compared are , C, estimator, described in previous section, for k=3,
4, LSE, Wilcoxon rank-based, and HBR estimates. The third and fourth column represent | C,

for different values of k.
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Table 6-1 The efficiency of each of the estimators (Bo,ﬁl,ﬁz ) relative to LSE for k=3, 4.

Number of simulations=500. n=15, p=2

Design Est | k=3 |k=4 Rank | HBR | LSE*
+SR ﬁo 3.53 [3.41 |3.69 |3.70 | 1.65
B1 1.60 | 1.44 |1.72 |1.74 | 0.64
[32 1.63 | 146 |1.68 |1.81 |0.61
+ VR ﬁo 394 354 |391 |3.89 |1.54
Bl 148 | 137 |1.70 | 1.69 |0.63
ﬁz 144 (131 |1.71 1.72 | 0.58
+ DA R ﬁo 442 1405 |479 |5.68 |1.58
Bl 0.87 (092 |1.53 |1.18 |0.16
ﬁz 094 [1.00 |1.70 |1.15 |0.16
+DAB ﬁo 2,69 [275 |2.10 |2.38 |0.59
Bl 1.71 | 1.77 | 1.10 |1.08 | 0.36
f;z 2.18 1220 |1.06 |1.21 |0.35
+ SR BO 230 224 221 258 |0.60
f;l 205 | 1.77 | 1.85 |2.28 |0.76
f;z 1.94 | 1.63 |191 |238 |0.77
+- VR BO 231 |230 |242 |2.48 |0.65
f;l 1.87 | 1.61 183 |2.17 |.79
Bz 1.84 | 1.62 |1.64 |193 |.77
+- DA R [§0 218 |2.21 245 |2.62 |0.67
Bl 1.02 | 1.04 |155 |1.26 |0.21
Bz 1.02 | 1.05 |1.50 |1.46 |0.19
+- DA B [§ 1.86 | 1.90 |130 | 1.58 |0.37
B 2.08 |2.10 |1.13 |1.28 |0.44
220 [ 218 124 |132 |043
0.55 [0.65 |0.59 |0.57 |0.07
046 (059 |0.93 |0.61 |0.03
045 [0.60 |0.92 |0.63 |0.02

[SS]

DA

| T [T | ™
(=)

[SS]

* For the LSE MSE’s of ﬁo,ﬁl,ﬁz are in the last column.
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Table 6-2 The efficiency of each of the estimators (Bo,ﬁl,ﬁz ) relative to LSE for k=3, 4.

Number of simulations=500. n=25, p=2

Design Est | k=3 |k=4 Rank | HBR | LSE*
+SR [§0 6.33 |5.71 643 | 658 |1.52
B1 1.90 | 1.58 |2.15 | 211 |0.36
Bz 1.71 {149 |2.10 | 2.07 |0.33
+ VR [§0 6.78 | 628 | 691 | 6.84 |1.47
Bl 1.86 [ 1.63 | 212 |216 |0.32
ﬁz 1.71 [ 153 | 216 | 220 |0.33
+ DA R ﬁo 598 [5.70 | 7.08 | 7.65 |1.50
Bl 0.88 [0.84 | 1.80 | 1.35 |0.08
ﬁz 0.97 |0.91 1.70 | 1.47 | 0.08
+DAB ﬁo 439 447 |390 |4.19 |0.85
Bl 1.84 [ 1.75 091 | 083 |0.18
f;z 1.86 | 1.74 | 095 | 094 |0.20
+ SR BO 2.61 |256 |259 |2.69 |0.32
f;l 1.89 | 1.66 | 2.18 | 240 |0.42
f;z 1.94 | 1.73 | 257 |290 |0.36
+- VR BO 264 1264 |268 |279 |0.38
f;l 200 | 1.75 | 231 |260 |0.35
Bz 195 | 1.74 | 226 |245 |0.37
+- DA R [§0 297 |3.16 |3.05 |326 |0.36
f;l 1.07 | 1.05 1.77 | 1.79 | 0.08
Bz 099 (096 | 1.66 | 1.62 |0.07
+- DA B [§ 230 |2.27 | 1.79 | 2.09 |0.26
B 232|214 |1.02 |1.19 |0.25
2.11 | 1.98 1.00 | 1.07 |0.25
0.53 [ 057 | 0.56 | 0.50 |0.04
047 (053 | 098 | 0.59 |0.01
047 (054 | 095 |0.63 |0.01

[SS]

DA

| T [T | ™
(=)

[SS]

* For the LSE MSE’s of ﬁo,ﬁl,ﬁz are in the last column.
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A careful look at those designs showed that designs +SR,+VR, +-SR, and +-VR have
outlying observations in the y-space. Designs +DAR and +-DAR have some observations with
extreme response values and others with extreme predictor values. Designs +DA B and +-DA B
have large Cook’s distance. Design DA has outlying observations only in the x-space. For the
designs +DA B and +-DA B,  C, gives best results. The outliers in this design are badly placed,
i.e., outlying y values were placed on the experimental units with outlying x- values. This is
consistent with the results obtained from the simple linear regression when outliers are in the xy-
direction and the percentage of contamination is between 0.20 and 0.30 because ,C, method
(Tukey median, k=2) was more efficient than other methods. For design DA, the outliers are only
in the x-direction and this makes LSE give perfect fit.

For designs +SR,+VR, +-SR, and +-VR, HBR is the best method. In these designs,
outliers are in the y-direction In designs +DAR and +-DAR, the Wilcoxon rank-based is more
efficient than A C, and HBR because there are outliers in the x-values that have some
contamination. This is consistent with the results of Chang et el(1999).

The improvement in , C, is when data comes from the designs +DA B or +-DA B. For

both designs outliers are badly placed so one might look at different contamination percentage
for one of them. The design +DA B was studied under different the contamination percentage,
0.05, 0.10, 0.15 and 0.20 when the sample size n=25 and k=3. The efficiencies with respect to
the least square estimator are in Table 6-3. For 0.20 contamination the efficiencies are from

Table 6-2. Table 6-3 shows that , C, outperforms other methods for those four contamination
percentages. It is good to note that the efficiency of | C, is the highest for 0.10 contamination
and goes down as the percentage of contamination increases.
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Table 6-3 Efficiencies for the design + DA B with different contamination percentage. n=25

Design + DA B Est k=3 Rank HBR | LSE*
=005 ﬁo 1.43 1.17 1.27 0.12
f;l 2.76 1.49 1.80 0.19
f;z 3.09 1.54 1.95 0.21
e=010 ﬁo 2.51 2.03 2.17 0.25
B1 3.18 1.29 1.81 0.23
BZ 3.20 1.35 1.72 0.24
e=015 ﬁo 3.58 2.79 2.97 0.50
Bl 2.68 1.05 1.20 0.22
ﬁz 2.51 1.06 1.21 0.22
=020 BO 4.39 3.90 4.19 0.85
B1 1.84 0.91 0.83 0.18
32 1.86 0.95 0.94 0.20

* For the LSE MSE’s of Bo,ﬁl,f}z are in the last column.
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CHAPTER 7 - SUMMARY AND CONCLUSION

In Chapter 2 we considered estimators of the median of a symmetric distribution. We
conclude that the GHL estimator doesn’t show much improvement over the HL estimator. The
increase in the computation cost of the GHL estimator as k increases is another drawback. The
robust and efficient HL estimator can be used to estimate location parameter of the model except
for the double exponential distribution where the sample median should be used to estimate the
population median.

When deriving ,Cx estimate of the variance in Chapters 3 and 4 we had to obtain bias
adjustment factors that depend on n, k, and the underlying distribution. In Chapter 3 we

considered the normal distribution. We concluded that if the data are normally distributed and

there are some outliers in the data, we can use the estimator d, ,6; . Comparing this estimator to

other estimators in the literature showed an improvement in efficiency with respect to the sample

variance. For Chapter 4 when data comes form exponential or double exponential distribution the
estimator d, ,63 showed high efficiency with respect to the sample variance. The estimator
d, .6 is robust because it has high breakdown value of 0.29 and efficient as seen in the

simulation results of Chapter 3 and 4. This estimator is recommended when outliers exist in
normal data or data have exponential distribution or double exponential distribution.
In simple linear regression, the efficiency and robustness of the estimator depends on the

number of outliers and their direction in the data. Generally for small samples the ,C,

estimation didn’t show too much improvement over rank-based and HBR estimation in the
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simple linear regression model except in one special case i.e. when the sample size is 25 and
there are 6 outliers in the xy-direction. Here TM with k=2 outperforms other estimators.

In multiple linear regression we used the concept of data depth to order the possible ,Cy
estimators and took the Tukey median as the actual estimator. The problem with this approach is
the computation time and the complication of programming, but it appears to be efficient in one
case i.e. when there are observations with outliers in both x-values and y-values i.e. outliers with
high Cook’s distance.

The use of ,Cx estimators in conjunction with data depth is a new idea that may be useful
if computational issues can be dealt with. Generally this technique showed some improvement
over other methods especially for k=2. Larger values of k will give a higher chance for the
outliers to appear in the data, and thus the estimator would break down faster. Over the class of
problems considered here, the ,Cy estimators generally seem to do better for smaller k. In
particular k=2 often gave the best efficiency among the ,Cy estimators. This is fortunate because
k=2 is less computationally intensive than larger k. The ,Cy technique is quite general and may

be used both in univariate and multivariate cases.
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Appendix A - R-programs

R code needed for simulation results is in the attached zip file. There are several folders
named by the chapters and inside each folder, files are named either by the Table number, the job

it does or both. Here are also the code for Chapter 2 simulations and some of the main functions

n
used in the dissertation. Whenever N = (k] is larger than 5000, 5000 subsamples were taken

without replacement and this is as efficient as taking all subsamples of size k. All simulation
results can be reproduced using the seed 2010.
The following subset function takes the sample size, n, the subset size, k, and the vector

of observations, v as input. It calculates all subsets of size k given v. For n=15, it was used for

n
any k. For n=25, it was used only for k=2,3 only because for other values of k, N = (k] is huge

(12650 for k=4) so 5000 samples of size k without replacement were taken using the function

“sample(x, k ,replace=FALSE)“ to find the variance estimator.

subsets <- function(n, r, v = 1:n) # works in S or R
if(r <= 0) vector(mode(v), 0) else
if(r >=n) v[1:n] else {
rbind(cbind(v[1], Recall(n-1, r-1, v[-1])),
Recall(n-1, r, v[-1]))

GHn15=function(x,k){ # Generalized Hodges-Lehmann estimator
# for n=15.
A=round(subsets(length(x),k,x),4) # all subsets of
# size k are in

# rows of A.
means=apply(A,1l,mean) # mean function.

#Happlied to rows.
ans=median(means) # the median of
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ans

GHn25=function(x,k){

A=round(subsets(length(x),k,x),4)

means=apply(A,1l,mean)
ans=median(means)

ans

}

GHsam=function(x, k,S=5000) {

set.seed(2010)

# Generalized Hodges-Lehmann estimator
# for n=25. k=2,3.

# all subsets of

# size k are in

# rows of A.

# mean function.

#applied to rows.

# the median of

# can be used for any sample size.

# This is for n=25 k=4,5.

# only change k and S here

# we take random S

#samples without

# replacement

# each of size k from the

#original data. S here replaces (n choose k).

A=lapply(1:S, function(i) sample(x.k,replace=FALSE))

mymat <- do.call('rbind',A)

means=apply(mymat,1,mean)
ans—=median(round(means,4))
ans

}

# A contains several resamples.

# to convert a list to a matrix.
# resamples are in rows.

#iH#H#H#H##Comparing generalized Hodges-Lehmann estimator to sample mean

# under normal distribution ###.

# For other distributions, one has to change the pdf function.

# Sample size=15.
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set.seed(2010)

B=500 # Number of simulations.

k1=0

n=15

res=lapply(1:B, function(i) rnorm(n))
estmean=sapply(res,mean,simplify=T)# sample mean for each resample.

varm=var(estmean) # variance of the sample mean.

msem=(mean(estmean))”"2+var(estmean)
# MSE of the sample mean.

k=1
ests=sapply(res,median, simplify=T)

varl=var(ests)
msel=(mean(ests))"2+var(ests)
biasl=mean(ests)

efl=msem/msel

effl=varm/varl
####*****#######************

k=2
ests=sapply(res,function(x) GHn15(x,k), simplify=T)

var2=var(ests)
mse2=(mean(ests))"2+var(ests)
bias2=mean(ests)

ef2=msem/mse2
eff2=varm/var2

#*****#######************
k=3
ests=sapply(res,function(x) GHn15(x,k), simplify=T)

var3=var(ests)
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mse3=(mean(ests))"2+var(ests)
bias3=mean(ests)

ef3=msem/mse3
eff3=varm/var3

HHHHHEH P P R ook ook
k=4
ests=sapply(res,function(x) GHn15(x,k), simplify=T)

var4=var(ests)
mse4=(mean(ests))"2+var(ests)
bias4=mean(ests)

ef4=msem/mse4
eff4=varm/var4

K H 3 o ks o o ok o
k=5
ests=sapply(res,function(x) GHn15(x,k), simplify=T)

varS=var(ests)
mseS=(mean(ests))”"2+var(ests)
bias5=mean(ests)

ef5=msem/mse5

eff5=varm/var5

efl #eff based on MSE.

ef2

ef3

ef4

ef5

Hi##H#H#Comparing generalized Hodges-Lehmann estimator to sample mean
# under normal distribution ###.

# For other distributions, one has to change the pdf function.

# Sample size=25.

#For small k we use the function “GHn25” and for large k we use
# GHsam.

T R R

set.seed(2010)
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B=500
k1=0
n=25

res=lapply(1:B, function(i) round(rnorm(n),4))

estmean=sapply(res,mean,simplify=T) # sample mean for each resample.
varm=var(estmean) # variance of the sample mean.
msem=(mean(estmean))"2+var(estmean) # MSE of the sample mean.
TR R R

1efsi[;sapply(res,median, simplify=T)

varl=var(ests)

mse 1=(mean(ests))"2+var(ests)

bias1=mean(ests)

efl=msem/msel
effl=varm/varl

####*****#######************

k=2

ests=sapply(res,function(x) GHn25(x,k), simplify=T)
var2=var(ests)

mse2=(mean(ests))”"2+var(ests)

bias2=mean(ests)

ef2=msem/mse2
eff2=varm/var2

#####*****#######************
k=3
ests=sapply(res,function(x) GHn25(x,k), simplify=T)

var3=var(ests)
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mse3=(mean(ests))"2+var(ests)
bias3=mean(ests)

ef3=msem/mse3
eff3=varm/var3

TR powsorsions e
1e{::st:sapply(res,function(x) GHsam(x,k), simplify=T)
vard=var(ests)

mse4=(mean(ests))"2+var(ests)

bias4=mean(ests)

ef4=msem/mse4
eff4=varm/var4

HHEHHRHHIHE R R ososooR
1efs,:t;sapply(res,function(x) GHsam(x,k), simplify=T)
varS=var(ests)

mseS5=(mean(ests))"2+var(ests)

bias5=mean(ests)

ef5=msem/mse5

eff5=varm/var5

## The varnoc function finds the estimate of the variance without adjustment ##

varnoc=function(x,k) {

A=round(subsets(length(x),k,x),2) # all subsets of

# size k are in

# rows of A.
varian=apply(A,1,var) # variance function

#applied to rows.

ans=median(varian) # the median of
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#variances.

ans

# vard function to calculate the variance estimator from Johnson, Mcguire, and
Milliken(1978).
# This function calculates Vk*.
# Assuming there are k1 outliers in the data and.
vard=function(x,k1) {
# this function calculates Vk*.
# note that it is for n=15,25, 100
# Assuming there are k1 outliers in the data and
# it is not neccessary equal to the true # of outliers.
pairs=pairup(x)
n=length(x)
k2=n-k1
# vk=(n-k1-1)/(k1*(k1-1)+k2*(k2-1))
if (n==15)  vk=switch(k1,'1'=0.5913,2'=0.4071,'3'=0.2953)
if (n==25)  vk=switch(kl,'1'=0.6995,'2'=0.5418,'3'=0.4339)
if (n==100)  vk=switch(k1,'1'=0.8823,'2'=0.8045,'3'=0.7421)
diff=pairs[,1]-pairs[,2] # find all pairs Xi-Xj
u=rev(sort(abs(diff))) # find the Ujj
# sort from largest to smallest.
a=u’2
term1=sum(a)

term2=sum(a[1:(k1*k2)]) # the second expression in Vk.
ans=(term1-term2)/(k1*(k1-1)+k2*(k2-1))

ans=ans/vk # scaling as in the paper.

ans
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# pairup function finds all pairs from the given vector#

pairup=function(x,type="less") {

x=as.matrix(x)

n=dim(x)[1]

i=rep(1:n,rep(n,n))

j=rep(1l:n,n)
cl=apply(x,2,function(y){rep(y,rep(length(y),length(y)))})
c2=apply(x,2,function(y){rep(y,length(y))})
ans=cbind(c1,c2)

ans=switch(type, less=ans[(i<j), ], leq=ans[i<=j, ], neq=ans)
ans }

## Function to calculate M-estimate of the variance##.

Vms=function(x){

n=length(x)
k=0.973+3.353*(10"(-6))*(n"(1.5))-3.686*(10"(-7))*(n"3)+3.091*(n"(-1.5))
#if n>100 k=.973.

constl=n*2.6*mad(x)/sqrt(n-1)

u=(x-median(x))/(2.6*mad(x))

num=ifelse(abs(u)<=pi,(sin(u))"2,0) # finding ui's such that abs(ui)<=pi
# This for the expression in num.

num=sqrt(sum(num)) # the sum in the numerator .

den=ifelse(abs(u)<=pi,cos(u),0) # finding ui's such that (ui)<=pi

# this is for the expression in the den.
den=abs(sum(den)) # the sum in the denominator.
const2=atan(num/den)

sms=const1*const2
v=k*(sms)"2

A
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T T T R T R i s oo G Y
### The function “design “ generates data from the designs in Chapter 6.###
### One has to specify the design and choose the right character value for "method” and

out”. For example if we need data from design 3 with n=10 and two independent

variables, we call the function by design(10, 3, method="DA”, eps=4, out="PR”).

design=function(n, p, method, eps=4,out){

#out takes four character values:

# Design: +S R method="S" out="PR"

# Design: +V R method="V" out="PR"

# Design: + DA R method="DA" out="PR"

# Design: + DA B method="DA" out="PB"

# Design: +/- S R method="S" out="PMR"

# Design: +/- V R method="V" out="PMR"

# Design: +/- DA R method="DA" out="PMR"
# Design: +/- DA B method="DA" out="PMB"

method=as.character(method)
out=as.character(out)

mu=rep(0,p)

mu=as.vector(mu)

sigma=diag(p)

a=runif(p)

k1=0.8*n

k2=0.2*n

if(method=="S") X=mvrnorm(n,mu,sigma) else

if(method=="V") { X=mvrnorm(n,mu,sigma); apply(X,2,function(x){x/runif(1)}) } else
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if(method=="DA")
X=rbind(rnorm(p,0,eps”"2),mvrnorm(k1-1,mu,sigma),rchisq(p,p-

1)/sqrt(2*p),mvrnorm(k2-1,mu,eps”*2*sigma))

if(out=="PR"){ y=rnorm(n);
i=sample(seq(1:n),k2,replace=FALSE);
ylil=y[i]+6 §

if(out=="PB") {
y=rbind(as.matrix(rnorm(1)+6),
as.matrix(rnorm(k1-1)),
as.matrix(rnorm(1)),

as.matrix(rnorm(k2-1)+6)) }

if(out=="PMR") {

y=morm(n);

i=sample(seq(1:n),k2,replace=FALSE);

ran=sample(c(-1,1),k2,replace=TRUE);

ylilylil+ran*6

}

if(out=="PMB") {

y=rbind( as.matrix(rnorm(1)+sample(c(-1,1),1)*6),
as.matrix(rnorm(k1-1)),

as.matrix(rnorm(1)),
as.matrix(rnorm(k2-1)+sample(c(-1,1),k2-1,replace=TRUE)*6) )
h

Z=cbind(y,X)
Z
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R OO
# The function “design9” generate data for design “DA” the last design in Chapter 6.
design9=function(n,p,eps=4){
library(MASS)
mu=rep(0,p)
mu=as.vector(mu)
sigma=diag(p)
a=runif(p)
k1=0.8*n
k2=0.2*n
X=rbind(rnorm(p,0,eps”2),mvrnorm(k1-1,mu,sigma),rchisq(p,p-1)/sqrt(2*p)
;mvrnorm(k2-1,mu,eps"2*sigma))
Z=cbind(rnorm(n),X)
Z
}
### The function “betanck1” calculates the generalized form of Thiel estimator as
explained in Chapter 5. It takes a matrix with the first column as the response and the
second column as the predictor. ###
betanck1=function(X){ # Y is a vector of responses. is the first column of X.
# X1 is a vector of values for the predictor. It is the
second column of X.
n=length(X[,1])
N=choose(n,k)
a=seq(1l:n)
S=5000
numbers=subsets(n,k,a)
# to take all N rows of size k from
#the matrix, I do that for the indexes

# then apply it to the rows of A
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# to get all matrices of size k.
g=function(mat) { # X is a submatrix containing nck responses and
# nck values of the predictor.
ans=lm(mat[,1]~mat[,2])$coef
ans=ans|2]
ans }
if (N<=5000) res=lapply(1:N, function(i) X[numbers][i,],]) else
res=lapply(1:S, function(i) X[sample(n,k,replace=FALSE),]) # When N>5000.
betam=sapply(res,g, simplify=TRUE) # No problem at all.
est=median(betam,na.rm=T)
int=median(X[,1]-est*X[,2]) # intercept estimate.
ans=matrix(c(int,est))
ans
b
HHHHHHHH
###The function “betanck2” finds the regression estimates in the simple linear regression
using Tukey median approach #######
betanck?2
function(X){ # Y is a vector of responses which is the first column of X.
# X1 is a vector of values for the predictor which is the second column of X.
n=length(X[,1])
# Will give an nck estimate of beta based on halfspace depth.
# After centering Y and X fit regression line.
N=choose(n,k)
a=seq(1:n)
numbers=subsets(n,k,a)
# to take all N rows of size k from
#the matrix, I do that for the indexes
# then apply it to the rows of A
# to get all matrices of size k.

g=function(mat) { # X is a submatrix containing nck responses and
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# nck values of the predictor.
ans=Im(mat[,1]~mat[,2])$coef
ans }
S=5000
if(N<=5000) res=lapply(1:N, function(i) X[numbers[i,],]) else
res=lapply(1:S, function(i) X[sample(n,k,replace=FALSE),] )
betam=sapply(res,g, simplify=TRUE) # No problem at all.
betams=t(betam) # transpose because dmean receives a matrix
# of vectors each in a row.
# vectors must be in the rows of the matrix.
est=dmean.for(betams,tr=0.5)  # dmean(,0.5) will give the Tukey
est=matrix(est)

est }

HHHHHHHHHH OO R e
####The function “betanckm” calculates the regression estimates using Tukey median in

multiple linear regression ######

## Data Depth functions:

###The function dmean.for calculates Tukey median on unix machine.

## This function needs eight Fortran functions. They are “depth2.for”,
“depth3.for*,“fdepth.for,“fdepthv2.for*,“depth2.0,“depth3.0*, “fdepth.o*, and
“fdepthv2.0“. The functions ending with .o “ must to be stored in the directory where
R is being run. The functions ending with ““.for”” need to be sourced. These functions are
also saved in the Folder R functions under “data depth functions” and under unix files.
Note that for “dmean.for” to calculate Tukey median the trimming proportion should be

0.5, “tr=0.5”, and it takes a matrix with observations in rows ####

dmean.for

function(m,tr=.2,v2=T,center=NA){
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# Compute multivariate measure of location

# using Donoho-Gasko method.

# v2=T, use slower but more accurate approximation

# of halfspace depth.

# v2=F, use only projection based on lines through center
# and each of n points.

1f(is.list(m))m<-matl(m)

if(is.matrix(m))stop(""Data must be stored in a matrix or in list mode.")
if(ncol(m)==1){

if(tr==5)val<-median(m)

if(tr>.5)stop(" Amount of trimming must be at most .5")
if(tr<.5)val<-mean(m,tr)

}

if(ncol(m)>1){

m<-elimna(m)
if(ncol(m)==2)temp<-depth2.for(m,plotit=F)
if(ncol(m)==3)temp<-depth3.for(m)

if(!v2 && ncol(m)>3)temp<-fdepth.for(m,center=center)
if(v2 && ncol(m)>3)temp<-fdepthv2.for(m)
mdep<-max(temp)

flag<-(temp==mdep)

if(tr==235){

if(sum(flag)==1)val<-m[flag,]
if(sum(flag)>1)val<-apply(m[flag,],2,mean)

}

if(tr<.5){

flag2<-(temp>=.2)

if(sum(flag2)==0)flag2<-flag
if(sum(flag2)==1)val<-m[flag2,]
if(sum(flag2)>1)val<-apply(m[flag2,],2,mean)

+}val }
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Appendix B - Programs Checks

Small data sets were used to verify that the functions are right. I find the estimator by
hand and use the program to find it. For example if n=5 and we have the observation, 4, 7, 2,

and 8, then all subsample of size 3 are {4,7,2},{4,7,8},{4,2,8},{7,2,8} and the variances of each

subsample are 6.333, 4.333, 9.333, and 10.333 respectively. The median of the variances is
7.833. The program varnoc gives 7.833 for k=3.
For the efficiency calculation in section 5.5, the values of the efficiencies are consistent with the
efficiencies calculated in Chang et el (1999).

In the regression model, I also tried the programs for small data sets. The Tukey median
of the data set (1,1) ,(1,4),(4,1),(4,4), and (3,3) is (3,3). “dmean.for(x,0.5)=(3,3)”. The program

gives this value too.
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