FUNDAMENTAL SOLUTIONS TO SOME ELLIPTIC EQUATIONS WITH DISCONTINUOUS SENIOR COEFFICIENTS AND AN INEQUALITY FOR THESE SOLUTIONS

A. G. RAMM
(communicated by J. Pečarić)

Abstract. Let $L u:=\nabla \cdot(a(x) \nabla u)=-\delta(x-y)$ in $\mathbb{R}^{3}, 0<c_{1} \leqslant a(x) \leqslant c_{2}, a(x)$ is a piecewise-smooth function with the discontinuity surface S which is smooth. It is proved that in an neighborhood of S the behavior of the function u is given by the formula:

$$
u(x, y)= \begin{cases}\left(4 \pi a_{+}\right)^{-1}\left[r_{x y}^{-1}+b R^{-1}\right], & y_{3}>0 \tag{*}\\ \left(4 \pi a_{-}\right)^{-1}\left[r_{x y}^{-1}-b R^{-1}\right], & y_{3}<0\end{cases}
$$

Here the local coordinate system is chosen in which the origin lies on S, the plane $x_{3}=0$ is tangent to $S, a_{+}\left(a_{-}\right)$is the limiting value of $a(x)$ on S from the half-space $x_{3}>0$, $\left(x_{3}<0\right), r_{x y}:=|x-y|, R:=\sqrt{\rho^{2}+\left(\left|x_{3}\right|+\left|y_{3}\right|\right)^{2}}, \rho:=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$, $b:=\left(a_{+}-a_{-}\right) /\left(a_{+}+a_{-}\right)$. If S is the plane $x_{3}=0$ and $a(x)=a_{+}$in $x_{3}>0, a(x)=a_{-}$ in $x_{3}<0$, then $(*)$ is the global formula for u in \mathbb{R}^{3}. Inequality for the fundamental solution for small and large $|x-y|$ follows from formula $(*)$.

1. Introduction

There are many papers on the behavior, as $x \rightarrow y$, of the fundamental solutions to the elliptic equations of the form

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} \partial_{j}\left[a_{i j}(x) u_{j}(x, y)\right]=-\delta(x-y) \text { in } \mathbb{R}^{n}, u_{j}:=\frac{\partial u}{\partial x_{j}}=\partial_{j} u \tag{1.1}
\end{equation*}
$$

for smooth coefficients $a_{i j}$. Methods of pseudo-differential operators theory give expansion in smoothness of the solution to (1.1). In [LSW] existence of the unique solution to (1.1) with the properties

$$
\begin{equation*}
0<c_{1} r^{2-n} \leqslant u(x, y) \leqslant c_{2} r^{2-n}, u \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash y\right), r:=|x-y|, \tag{1.2}
\end{equation*}
$$

[^0]is obtained under the assumption that $a_{i j}$ are bounded real-valued measurable functions such that
\[

$$
\begin{equation*}
a_{1} \sum_{i=1}^{n} t_{i}^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}(x) t_{i} t_{j} \leqslant a_{2} \sum_{i=1}^{n} t_{i}^{2}, a_{1}, a_{2}=\text { const }>0 . \tag{1.3}
\end{equation*}
$$

\]

Our purpose is to give an analytical formula for the fundamental solution of the basic model operator (1.1), namely the operator with

$$
a_{i j}(x)=\delta_{i j} a(x), \quad a(x)= \begin{cases}a_{+}, & x_{3}>0, \tag{1.4}\\ a_{-}, & x_{3}<0 .\end{cases}
$$

Here a_{+}and a_{-}are positive constants,

$$
\delta_{i j}= \begin{cases}1, & i=j, \\ 0, & i \neq j\end{cases}
$$

and $u(x, y)$ is the unique solution of the problem:

$$
\begin{gather*}
L u:=\sum_{i=1}^{n} \partial_{i}\left(a(x) u_{i}\right)=-\delta(x-y) \text { in } \mathbb{R}^{n}, \tag{1.5}\\
{\left.[u]\right|_{S}=0,\left.\quad\left[a(x) u_{N}\right]\right|_{S}=0,} \tag{1.6}
\end{gather*}
$$

the symbol $[u]_{S}$ denotes the jump of u across S, that is,

$$
[u]=u_{+}-u_{-} \quad, u_{ \pm}:=\lim _{\varepsilon \rightarrow 0} u(s \pm \varepsilon N)
$$

s is a point on S, N is the unit normal to S directed along x_{3}, u_{N} is the normal derivative on S, S is the plane $x_{3}=0,\left[a u_{N}\right]:=a_{+} u_{N}^{+}-a_{-} u_{N}^{-}$.

Problem (1.5)-(1.6) is important in many applications and is called a transmission problem. The solution to (1.5)-(1.6) is sought in the class $H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} \backslash y\right) \cap W_{\mathrm{loc}}^{1,1}\left(R^{n}\right)$, where $H^{1}:=W^{2,1}$ and $W_{\text {loc }}^{\ell, p}$ is the Sobolev space of functions whose distributional derivatives up to the order ℓ belong to L_{loc}^{p}. If

$$
a_{i j}(x)= \begin{cases}a_{i j}^{+}, & x_{3}>0 \\ a_{i j}^{-}, & x_{3}<0\end{cases}
$$

and the constant matrices $a_{i j}^{ \pm}$are positive definite, then there exists an orthogonal coordinate transformation which reduces $a_{i j}^{+}$to $\delta_{i j}$ and $a_{i j}^{-}$to $\lambda_{j} \delta_{i j}, \lambda_{j}>0$. We do not give the formula for $u(x, y)$ in this more general case.

Finally note that for discontinuous coefficients equation (1.5) is understood in the weak sense, namely as the identity:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} a(x) u_{i}(x, y) \phi_{i}(x) d x=\phi(y), \tag{1.7}
\end{equation*}
$$

The identity (1.7) for $u \in H_{\text {loc }}^{1}\left(\mathbb{R}^{n} \backslash y\right) \cap W_{\text {loc }}^{1,1}\left(\mathbb{R}^{n}\right)$ implies conditions (1.6).
Let $n=3$. The formula for the solution to problem (1.4)-(1.6), or the equivalent problem (1.4), (1.7) is given in Theorem 1.1.

THEOREM 1.1. The unique solution to problem (1.4)-(1.5) is:

$$
\begin{gather*}
u(x, y)=\left\{\begin{array}{lll}
\frac{1}{4 \pi a_{+}}\left[\frac{1}{r}+\frac{b}{R}\right], & y_{3}>0, & b:=\frac{a_{+}-a_{-}}{a_{+}+a_{-}}, \\
\frac{1}{4 \pi a_{-}}\left[\frac{1}{r}-\frac{b}{R}\right], & y_{3}<0, & r:=|x-y|,
\end{array}\right. \tag{1.8}\\
\text { where } \quad R:=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(\left|x_{3}\right|+\left|y_{3}\right|\right)^{2}} .
\end{gather*}
$$

COROLLARY 1.1. The following inequality holds for $r \rightarrow 0$:

$$
\begin{equation*}
|u(x, y)|<c|x-y|^{-1} \tag{1.9}
\end{equation*}
$$

where the constant $c>0$ does not depend on x and y.
Thus, the fundamental solution of the equation (1.1) with discontinuous senior coefficients has a different representation than the fundamental equation for the similar operator with continuous coefficients, but satisfies similar inequality for small $|x-y|$.

A formula, similar to (1.8) can be derived by the same method for $n>3$ as well. Formula (1.8) allows one to get asymptotics of $u(x, y)$ and of $\nabla_{x} u(x, y)$ as $|x-y| \rightarrow 0$. Such asymptotics are useful in the study of inverse problems for discontinuous media [3].

In section 2 we prove Theorem 1.1. In section 3 various generalizations and applications are discussed.

2. Proof of Theorem 1

The proof is given for $n=3$, but it holds with obvious small changes for $n>3$.
The idea of the proof is to take the Fourier transform of equation (1.5) with respect to the variables $\hat{x}:=\left(x_{1}, x_{2}\right)$, to solve the resulting problem for an ordinary differential equation analytically, and then to Fourier-invert the solution of this problem.

Let us go through the steps.
Step 1. Let $y_{1}=y_{2}=0$ without loss of generality (since u is translation-invariant in the plane $\left(x_{1}, x_{2}\right)$. Denote

$$
\begin{gather*}
w\left(\xi, x_{3}, y_{3}\right):=\int_{\mathbb{R}^{2}} e^{i \xi \cdot \hat{x}} u\left(\hat{x}, x_{3} ; y\right) d \hat{x} ; u=\frac{1}{(2 \pi)^{2}} \int_{R^{2}} w e^{-i \xi \cdot x} d \xi . \tag{2.1}\\
\xi:=\left(\xi_{1}, \xi_{2}\right), \xi^{2}=|\xi|^{2}=\xi_{1}^{2}+\xi_{2}^{2} . \text { Denote } w^{\prime}:=\frac{\partial w}{\partial x_{3}} .
\end{gather*}
$$

Let us Fourier-transform equation (1.5), with $a(x)$ given in (1.4), and get

$$
\begin{gathered}
w^{\prime \prime}\left(\xi, x_{3}, y_{3}\right)-\xi^{2} w\left(\xi, x_{3}, y_{3}\right)= \begin{cases}-\frac{1}{a_{+}} \delta\left(x_{3}-y_{3}\right), & x_{3}>0, \\
-\frac{1}{a_{-}} \delta\left(x_{3}-y_{3}\right), & x_{3}<0,\end{cases} \\
w\left(\xi,+0, y_{3}\right)-w\left(\xi,-0, y_{3}\right)=0, \quad a_{+} w^{\prime}\left(\xi,+0, y_{3}\right)-a_{-} w^{\prime}\left(\xi,-0, y_{3}\right)=0 .
\end{gathered}
$$

In what follows we omit ξ in the variables of w, and write $w\left(x_{3}, y_{3}\right)$ for brevity. Thus, w solves problem (2.2)-(2.3) and satisfies the condition

$$
\begin{equation*}
w\left(\pm \infty, y_{3}\right)=0 \tag{2.4}
\end{equation*}
$$

Assume that $y_{3} \neq 0$. Then problem (2.2)-(2.4) has a solution and this solution is unique. A lengthy but straightforward calculation yields the formula for w :

$$
w=\left\{\begin{array}{cc}
\frac{\exp \left(-|\xi|\left|x_{3}-y_{3}\right|\right)}{2|\xi| a_{+}}+b \frac{\exp \left[-|\xi|\left(\left|x_{3}\right|+\left|y_{3}\right|\right)\right]}{2|\xi| a_{+}}, & y_{3}>0 \\
\frac{\exp \left(-|\xi|\left|x_{3}-y_{3}\right|\right)}{2|\xi| a_{-}}-b \frac{\exp \left[-|\xi|\left(\left|x_{3}\right|+\left|y_{3}\right|\right)\right]}{2|\xi| a_{-}}, & y_{3}<0 \tag{2.6}\\
\text { where } \quad b:=\frac{a_{+}-a_{-}}{a_{+}+a_{-}}, \quad a_{-}, a_{+}>0 .
\end{array}\right.
$$

Step 2. The function $u(x, y)$ is obtained from w by the second formula (2.1). Let us denote $|\xi|:=v, \rho:=|\hat{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}}$, and remember that $y_{1}=y_{2}=0$. Since w depends on $|\xi|$ and does not depend on the angular variable, $|\xi|:=v$, we have

$$
\begin{equation*}
u=\frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} d v v \int_{0}^{2 \pi} e^{-i v \rho \cos \varphi} w d \varphi=\frac{1}{2 \pi} \int_{0}^{\infty} d v \nu w J_{0}(v \rho) \tag{2.7}
\end{equation*}
$$

where $J_{0}(x)$ is the Bessel function and we have used the known formula:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i v \rho \cos \varphi} d \varphi=J_{0}(v \rho)
$$

We need another well-known formula:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-v t} J_{0}(v \rho) d v=\frac{1}{\sqrt{\rho^{2}+t^{2}}}, \quad t>0 \tag{2.8}
\end{equation*}
$$

From (2.5), (2.7) and (2.8) we get (1.8) with $y_{1}=y_{2}=0$. Therefore, recalling the translation invariance of u in the horizontal directions, we get (1.8).

Theorem 1.1 is proved.
REmARK 2.1. Note that the limits of $u(x, y)$ as $y_{3} \rightarrow \pm 0$ exist and are equal:

$$
\begin{equation*}
u(x, \hat{y},+0)=u(x, \hat{y},-0)=\frac{1}{2 \pi r\left(a_{+}+a_{-}\right)} \tag{2.9}
\end{equation*}
$$

A result similar to (2.9) is mentioned in $[K, p .318]$, however the argument $[K]$ is not clear: the differentiation is done in the classical sense but the functions involved have no classical derivatives: they have a jump.

3. Generalizations, applications

This section contains some remarks.
Remark 3.1. First, note that if $a(x)$ is a piecewise-smooth function with a smooth discontinuity surface $S, s \in S, a_{ \pm}=\lim _{\varepsilon \rightarrow 0} a(s \pm \varepsilon N)$, where N is the exterior normal to S at the point s, then the main term of the asymptotics of the fundamental solution $u(x, y)$ in a neighborhood U_{s} of the point $s \in S$ is given by formula (1.8) in which
$x, y \in U_{s}$. This follows from the fact that the main term in smoothness of the solution to an elliptic equation in U_{s} is the same as to the equation with constant coefficients which are limits of $a(x)$ as $x \rightarrow s$. In our case, this "frozen-coefficients" model problem is given by equations (1.4)-(1.6). This argument shows that the same conclusion holds if the coefficient $a(x)$ in \mathbb{R}_{+}^{3} and in \mathbb{R}_{-}^{3} is not smooth but just Lipschitz-continuous.

REmARK 3.2. In principle, our method for calculation of $u(x, y)$ for the model problem (1.4)-(1.6) is applicable for the model problem (1.4') with anisotropic matrix.

REMARK 3.3. We only mention that our result concerning asymptotics of $u(x, y)$ as $|x-y| \rightarrow 0$ for piecewise-smooth coefficients is applicable to inverse problems of geophysics and inverse scattering problems for acoustic and electromagnetic scattering by layered bodies.

For example, if the governing equation is $[R, p .14]$:

$$
\nabla \cdot[a(x) \nabla u]+k^{2} q(x) u=-\delta(x-y) \quad \text { in } \mathbb{R}^{3}
$$

$k=$ const >0, say $k=1, q(x)=1+p(x)$, where $p(x)$ is a compactly supported real-valued function, $p(x) \in L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right), \operatorname{supp}(p(x)) \subset \mathbb{R}_{-}^{3}:=\left\{x: x_{3}<0\right\}, a(x)=$ $1+A(x)$, where $A(x)$ is compactly supported piecewise-smooth function with finitely many closed compact smooth surfaces $S_{j} \subset \mathbb{R}_{-}^{3}$ of discontinuity. Across these surfaces the transmission conditions (1.6) hold, and at infinity u satisfies the radiation condition. Then $u(x, y)$ is uniquely determined.

An inverse problem is: given $g(x)$ and $u(x, y)$ for all $x, y \in S:=\left\{x: x_{3}=0\right\}$ and a fixed $k=1$, can one uniquely determine $a(x)$, in particular, the discontinuity surfaces S_{j} ?

To explain how Theorem 1.1 can be used in this inverse problem, note that if two systems of surfaces $S_{j}^{(1)}$ and $S_{j}^{(2)}$ and two functions a_{1} and a_{2} produce the same surface data on S for all $x, y \in S$, then an orthogonality relation [$\mathrm{R}, \mathrm{pp} .65,86$] holds:

$$
\begin{equation*}
\int v(x) \nabla u_{1}(x, y) \nabla u_{2}(x, z) d x=0, \quad \forall y, z \in D_{12}^{\prime} \tag{3.1}
\end{equation*}
$$

where $v(x)=a_{1}-a_{2}, u_{m}(x, y), m=1,2$, are the fundamental solutions corresponding to the obstacle D_{m} (i.e., to a_{m} and $S_{j}^{(m)}$), $D_{12}^{\prime}:=\mathbb{R}^{3} \backslash D_{12}, D_{12}:=D_{1} \cup D_{2}$.

Let us prove, e.g., that $\partial D_{1}=\partial D_{2}$, using (3.1). If there is a part of ∂D_{1} which lies outside D_{2}, and s is a point at this part, then, assuming (for simplicity only) that $v(x)$ is piecewise-constant and using for ∇u_{1} and ∇u_{2} formulas, which follow from (1.8) as $y=z \rightarrow s$, we conclude that the left-hand side of (3.1) is an integral which contains a part, unbounded as $y=z \rightarrow s \in \partial D_{1}: c \int|x-y|^{-4} d x, c=$ const $\neq 0$. This contradicts to (3.1). Therefore there is no part of ∂D_{1} which lies outside D_{2}. Likewise, there is not part of ∂D_{2} which lies outside ∂D_{1}. Thus, $\partial D_{1}=\partial D_{2}$. Similarly one proves that $S_{j}^{(1)}=S_{j}^{(2)}$ for all j, provided (3.1) holds.

A detailed presentation of such an argument is given in the paper by C. Athanasiadis, A. G. Ramm and I. Stratis, Inverse acoustic scattering by layered obstacle (in preparation).

REFERENCES

[K] Kozlov, S., Asymptotics of the fundamental solutions of differential equations of second order, Matem. Sbornik 113 no. N2 (1980), 302-323, (Russian).
[LSW] Littman, W., Stampalchia, G., Weinberger, H., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuda Norm. Super. Pisa 17 (1963), 43-77.
[R] Ramm, A. G., Multidimensional Inverse Scattering Problems, Longman/Wiley, New York, 1992, pp. 1-496, expanded Russian edition, MIR, Moscow, 1994, pp. 1-496.
(Received June 16, 1997)
Alexander G. Ramm
Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602, USA
email: ramm@math.ksu.edu

[^0]: Mathematics subject classification (1991): 35R30.
 Key words and phrases: Fundamental solutions, elliptic equations, discontinuous coefficients, inverse problems.

