FUNDAMENTAL SOLUTIONS TO SOME ELLIPTIC EQUATIONS WITH DISCONTINUOUS SENIOR COEFFICIENTS AND AN INEQUALITY FOR THESE SOLUTIONS

A. G. RAMM

(communicated by J. Pečarić)

Abstract. Let $Lu := \nabla \cdot (a(x)\nabla u) = -\delta(x - y)$ in \mathbb{R}^3 , $0 < c_1 \leq a(x) \leq c_2$, a(x) is a piecewise-smooth function with the discontinuity surface *S* which is smooth. It is proved that in an neighborhood of *S* the behavior of the function *u* is given by the formula:

$$u(x,y) = \begin{cases} (4\pi a_{+})^{-1}[r_{xy}^{-1} + bR^{-1}], & y_{3} > 0, \\ (4\pi a_{-})^{-1}[r_{xy}^{-1} - bR^{-1}], & y_{3} < 0. \end{cases}$$
(*)

Here the local coordinate system is chosen in which the origin lies on *S*, the plane $x_3 = 0$ is tangent to *S*, $a_+(a_-)$ is the limiting value of a(x) on *S* from the half-space $x_3 > 0$, $(x_3 < 0)$, $r_{xy} := |x - y|$, $R := \sqrt{\rho^2 + (|x_3| + |y_3|)^2}$, $\rho := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$, $b := (a_+ - a_-)/(a_+ + a_-)$. If *S* is the plane $x_3 = 0$ and $a(x) = a_+$ in $x_3 > 0$, $a(x) = a_-$ in $x_3 < 0$, then (*) is the global formula for *u* in \mathbb{R}^3 . Inequality for the fundamental solution for small and large |x - y| follows from formula (*).

1. Introduction

There are many papers on the behavior, as $x \to y$, of the fundamental solutions to the elliptic equations of the form

$$Lu := \sum_{i,j=1}^{n} \partial_j \left[a_{ij}(x) u_j(x, y) \right] = -\delta(x - y) \text{ in } \mathbb{R}^n, \ u_j := \frac{\partial u}{\partial x_j} = \partial_j u \tag{1.1}$$

for smooth coefficients a_{ij} . Methods of pseudo-differential operators theory give expansion in smoothness of the solution to (1.1). In [LSW] existence of the unique solution to (1.1) with the properties

$$0 < c_1 r^{2-n} \le u(x, y) \le c_2 r^{2-n}, \ u \in H^1_{\text{loc}}(\mathbb{R}^n \setminus y), \ r := |x - y|,$$
(1.2)

Mathematics subject classification (1991): 35R30.

© CENN, Zagreb Paper MIA-01-07

Key words and phrases: Fundamental solutions, elliptic equations, discontinuous coefficients, inverse problems.

is obtained under the assumption that a_{ij} are bounded real-valued measurable functions such that

$$a_1 \sum_{i=1}^n t_i^2 \leqslant \sum_{i,j=1}^n a_{ij}(x) t_i t_j \leqslant a_2 \sum_{i=1}^n t_i^2, \ a_1, a_2 = \text{const} > 0.$$
(1.3)

Our purpose is to give an analytical formula for the fundamental solution of the basic model operator (1.1), namely the operator with

$$a_{ij}(x) = \delta_{ij}a(x), \qquad a(x) = \begin{cases} a_+, & x_3 > 0, \\ a_-, & x_3 < 0. \end{cases}$$
 (1.4)

Here a_+ and a_- are positive constants,

$$\delta_{ij} = \left\{ egin{array}{cc} 1, & i=j, \ 0, & i
eq j, \end{array}
ight.$$

and u(x, y) is the unique solution of the problem:

$$Lu := \sum_{i=1}^{n} \partial_i \left(a(x)u_i \right) = -\delta(x-y) \text{ in } \mathbb{R}^n , \qquad (1.5)$$

$$[u]|_{S} = 0, \quad [a(x)u_{N}]|_{S} = 0,$$
 (1.6)

the symbol $[u]|_S$ denotes the jump of u across S, that is,

$$[u] = u_{+} - u_{-} \quad , u_{\pm} := \lim_{\varepsilon \to 0} u(s \pm \varepsilon N)$$

s is a point on *S*, *N* is the unit normal to *S* directed along x_3 , u_N is the normal derivative on *S*, *S* is the plane $x_3 = 0$, $[au_N] := a_+u_N^+ - a_-u_N^-$.

Problem (1.5)–(1.6) is important in many applications and is called a transmission problem. The solution to (1.5)–(1.6) is sought in the class $H^1_{\text{loc}}(\mathbb{R}^n \setminus y) \cap W^{1,1}_{\text{loc}}(\mathbb{R}^n)$, where $H^1 := W^{2,1}$ and $W^{\ell,p}_{\text{loc}}$ is the Sobolev space of functions whose distributional derivatives up to the order ℓ belong to L^p_{loc} . If

$$a_{ij}(x) = \begin{cases} a_{ij}^+, & x_3 > 0, \\ a_{ij}^-, & x_3 < 0, \end{cases}$$
(1.4')

and the constant matrices a_{ij}^{\pm} are positive definite, then there exists an orthogonal coordinate transformation which reduces a_{ij}^+ to δ_{ij} and a_{ij}^- to $\lambda_j \delta_{ij}$, $\lambda_j > 0$. We do not give the formula for u(x, y) in this more general case.

Finally note that for discontinuous coefficients equation (1.5) is understood in the weak sense, namely as the identity:

$$\int_{\mathbb{R}^n} a(x)u_i(x,y)\phi_i(x)\,dx = \phi(y),\tag{1.7}$$

The identity (1.7) for $u \in H^1_{loc}(\mathbb{R}^n \setminus y) \cap W^{1,1}_{loc}(\mathbb{R}^n)$ implies conditions (1.6).

Let n = 3. The formula for the solution to problem (1.4)–(1.6), or the equivalent problem (1.4), (1.7) is given in Theorem 1.1.

100

THEOREM 1.1. The unique solution to problem (1.4)-(1.5) is:

$$u(x,y) = \begin{cases} \frac{1}{4\pi a_+} \left[\frac{1}{r} + \frac{b}{R} \right], & y_3 > 0, \quad b := \frac{a_+ - a_-}{a_+ + a_-}, \\ \frac{1}{4\pi a_-} \left[\frac{1}{r} - \frac{b}{R} \right], & y_3 < 0, \quad r := |x - y|, \end{cases}$$
(1.8)

where
$$R := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (|x_3| + |y_3|)^2}$$

COROLLARY 1.1. The following inequality holds for $r \to 0$:

$$|u(x,y)| < c|x-y|^{-1},$$
(1.9)

where the constant c > 0 does not depend on x and y.

Thus, the fundamental solution of the equation (1.1) with discontinuous senior coefficients has a different representation than the fundamental equation for the similar operator with continuous coefficients, but satisfies similar inequality for small |x - y|.

A formula, similar to (1.8) can be derived by the same method for n > 3 as well. Formula (1.8) allows one to get asymptotics of u(x, y) and of $\nabla_x u(x, y)$ as $|x-y| \to 0$. Such asymptotics are useful in the study of inverse problems for discontinuous media [3].

In section 2 we prove Theorem 1.1. In section 3 various generalizations and applications are discussed.

2. Proof of Theorem 1

The proof is given for n = 3, but it holds with obvious small changes for n > 3. The idea of the proof is to take the Fourier transform of equation (1.5) with respect to the variables $\hat{x} := (x_1, x_2)$, to solve the resulting problem for an ordinary differential equation analytically, and then to Fourier-invert the solution of this problem.

Let us go through the steps.

Step 1. Let $y_1 = y_2 = 0$ without loss of generality (since *u* is translation-invariant in the plane (x_1, x_2)). Denote

$$w(\xi, x_3, y_3) := \int_{\mathbb{R}^2} e^{i\xi \cdot \hat{x}} u(\hat{x}, x_3; y) \, d\hat{x}; \ u = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} w e^{-i\xi \cdot x} \, d\xi.$$
(2.1)

 $\xi := (\xi_1, \xi_2), \ \xi^2 = |\xi|^2 = \xi_1^2 + \xi_2^2.$ Denote $w' := \frac{\partial w}{\partial x_3}.$

Let us Fourier-transform equation (1.5), with a(x) given in (1.4), and get

$$w''(\xi, x_3, y_3) - \xi^2 w(\xi, x_3, y_3) = \begin{cases} -\frac{1}{a_+} \delta(x_3 - y_3), & x_3 > 0, \\ -\frac{1}{a_-} \delta(x_3 - y_3), & x_3 < 0, \end{cases}$$
(2.2)

$$w(\xi, +0, y_3) - w(\xi, -0, y_3) = 0, \quad a_+w'(\xi, +0, y_3) - a_-w'(\xi, -0, y_3) = 0.$$
(2.3)

In what follows we omit ξ in the variables of w, and write $w(x_3, y_3)$ for brevity. Thus, w solves problem (2.2)–(2.3) and satisfies the condition

$$w(\pm \infty, y_3) = 0$$
. (2.4)

101

A. G. RAMM

Assume that $y_3 \neq 0$. Then problem (2.2)–(2.4) has a solution and this solution is unique. A lengthy but straightforward calculation yields the formula for w:

$$w = \begin{cases} \frac{\exp\left(-|\xi||x_{3} - y_{3}|\right)}{2|\xi|a_{+}} + b\frac{\exp\left[-|\xi|\left(|x_{3}| + |y_{3}|\right)\right]}{2|\xi|a_{+}}, & y_{3} > 0\\ \frac{\exp\left(-|\xi||x_{3} - y_{3}|\right)}{2|\xi|a_{-}} - b\frac{\exp\left[-|\xi|\left(|x_{3}| + |y_{3}|\right)\right]}{2|\xi|a_{-}}, & y_{3} < 0 \end{cases}$$

$$where \quad b := \frac{a_{+} - a_{-}}{a_{+} + a_{-}}, \quad a_{-}, a_{+} > 0. \tag{2.6}$$

Step 2. The function u(x, y) is obtained from w by the second formula (2.1). Let us denote $|\xi| := v$, $\rho := |\hat{x}| = \sqrt{x_1^2 + x_2^2}$, and remember that $y_1 = y_2 = 0$. Since w depends on $|\xi|$ and does not depend on the angular variable, $|\xi| := v$, we have

$$u = \frac{1}{(2\pi)^2} \int_0^\infty dv \, v \int_0^{2\pi} e^{-iv\rho \cos\varphi} w \, d\varphi = \frac{1}{2\pi} \int_0^\infty dv \, v w J_0(v\rho)$$
(2.7)

where $J_0(x)$ is the Bessel function and we have used the known formula:

$$\frac{1}{2\pi}\int_0^{2\pi} e^{iv\rho\cos\varphi}d\varphi = J_0(v\rho).$$

We need another well-known formula:

$$\int_0^\infty e^{-\nu t} J_0(\nu \rho) d\nu = \frac{1}{\sqrt{\rho^2 + t^2}}, \qquad t > 0$$
(2.8)

From (2.5), (2.7) and (2.8) we get (1.8) with $y_1 = y_2 = 0$. Therefore, recalling the translation invariance of u in the horizontal directions, we get (1.8).

Theorem 1.1 is proved. \Box

REMARK 2.1. Note that the limits of u(x, y) as $y_3 \rightarrow \pm 0$ exist and are equal:

$$u(x, \hat{y}, +0) = u(x, \hat{y}, -0) = \frac{1}{2\pi r(a_+ + a_-)}.$$
(2.9)

A result similar to (2.9) is mentioned in [K, p.318], however the argument [K] is not clear: the differentiation is done in the classical sense but the functions involved have no classical derivatives: they have a jump.

3. Generalizations, applications

This section contains some remarks.

REMARK 3.1. First, note that if a(x) is a piecewise-smooth function with a smooth discontinuity surface S, $s \in S$, $a_{\pm} = \lim_{\varepsilon \to 0} a(s \pm \varepsilon N)$, where N is the exterior normal to S at the point s, then the main term of the asymptotics of the fundamental solution u(x, y) in a neighborhood U_s of the point $s \in S$ is given by formula (1.8) in which

 $x, y \in U_s$. This follows from the fact that the main term in smoothness of the solution to an elliptic equation in U_s is the same as to the equation with constant coefficients which are limits of a(x) as $x \to s$. In our case, this "frozen-coefficients" model problem is given by equations (1.4)–(1.6). This argument shows that the same conclusion holds if the coefficient a(x) in \mathbb{R}^3_+ and in \mathbb{R}^3_- is not smooth but just Lipschitz-continuous.

REMARK 3.2. In principle, our method for calculation of u(x, y) for the model problem (1.4)-(1.6) is applicable for the model problem (1.4') with anisotropic matrix.

REMARK 3.3. We only mention that our result concerning asymptotics of u(x, y) as $|x - y| \rightarrow 0$ for piecewise-smooth coefficients is applicable to inverse problems of geophysics and inverse scattering problems for acoustic and electromagnetic scattering by layered bodies.

For example, if the governing equation is [R, p.14]:

$$\nabla \cdot [a(x)\nabla u] + k^2 q(x)u = -\delta(x-y)$$
 in \mathbb{R}^3 ,

k = const > 0, say k = 1, q(x) = 1 + p(x), where p(x) is a compactly supported real-valued function, $p(x) \in L^2_{\text{loc}}(\mathbb{R}^3)$, $\supp(p(x)) \subset \mathbb{R}^3_- := \{x : x_3 < 0\}$, a(x) = 1 + A(x), where A(x) is compactly supported piecewise-smooth function with finitely many closed compact smooth surfaces $S_j \subset \mathbb{R}^3_-$ of discontinuity. Across these surfaces the transmission conditions (1.6) hold, and at infinity u satisfies the radiation condition. Then u(x, y) is uniquely determined.

An inverse problem is: given g(x) and u(x,y) for all $x, y \in S := \{x : x_3 = 0\}$ and a fixed k = 1, can one uniquely determine a(x), in particular, the discontinuity surfaces S_j ?

To explain how Theorem 1.1 can be used in this inverse problem, note that if two systems of surfaces $S_j^{(1)}$ and $S_j^{(2)}$ and two functions a_1 and a_2 produce the same surface data on S for all $x, y \in S$, then an orthogonality relation [R, pp. 65, 86] holds:

$$\int v(x)\nabla u_1(x,y)\nabla u_2(x,z)\,dx = 0, \qquad \forall y, z \in D'_{12},\tag{3.1}$$

where $v(x) = a_1 - a_2$, $u_m(x, y)$, m = 1, 2, are the fundamental solutions corresponding to the obstacle D_m (i.e., to a_m and $S_i^{(m)}$), $D'_{12} := \mathbb{R}^3 \setminus D_{12}$, $D_{12} := D_1 \cup D_2$.

Let us prove, e.g., that $\partial D_1 = \partial D_2$, using (3.1). If there is a part of ∂D_1 which lies outside D_2 , and s is a point at this part, then, assuming (for simplicity only) that v(x) is piecewise-constant and using for ∇u_1 and ∇u_2 formulas, which follow from (1.8) as $y = z \rightarrow s$, we conclude that the left-hand side of (3.1) is an integral which contains a part, unbounded as $y = z \rightarrow s \in \partial D_1$: $c \int |x-y|^{-4} dx, c = \text{const} \neq 0$. This contradicts to (3.1). Therefore there is no part of ∂D_1 which lies outside D_2 . Likewise, there is not part of ∂D_2 which lies outside ∂D_1 . Thus, $\partial D_1 = \partial D_2$. Similarly one proves that $S_i^{(1)} = S_i^{(2)}$ for all j, provided (3.1) holds.

A detailed presentation of such an argument is given in the paper by C. Athanasiadis, A. G. Ramm and I. Stratis, *Inverse acoustic scattering by layered obstacle* (in preparation).

A. G. RAMM

REFERENCES

- [K] KOZLOV, S., Asymptotics of the fundamental solutions of differential equations of second order, Matem. Sbornik 113 no. N2 (1980), 302–323, (Russian).
- [LSW] LITTMAN, W., STAMPALCHIA, G., WEINBERGER, H., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuda Norm. Super. Pisa 17 (1963), 43–77.
- [R] RAMM, A. G., Multidimensional Inverse Scattering Problems, Longman/Wiley, New York, 1992, pp. 1-496, expanded Russian edition, MIR, Moscow, 1994, pp. 1–496.

(Received June 16, 1997)

Alexander G. Ramm Department of Mathematics Kansas State University Manhattan, KS 66506-2602, USA email: ramm@math.ksu.edu

Mathematical Inequalities & Applications www.ele-math.com mia@ele-math.com