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Abstract. The human pathogens enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and 29 

EPEC), as well as the mouse pathogen Citrobacter rodentium encode type III secretion system (T3SS) 30 

effector proteins to promote their survival in the infected host. The mechanisms of action and the host 31 

targets of T3SS effectors are under active investigation because of their importance to bacterial virulence. 32 

The non-locus of enterocyte effacement (LEE)-encoded protein F, NleF, contributes to E. coli and C. 33 

rodentium colonization of piglets and mice, respectively. Here we sought to characterize the host binding 34 

partners of NleF. Using a yeast two-hybrid screen, we identified Tmp21, a type-I integral membrane 35 

protein and COPI-vesicle receptor involved in trans-Golgi network function, as an NleF-binding partner. 36 

We confirmed this interaction using immunoprecipitation and bimolecular fluorescence complementation 37 

(BiFC). We expressed a temperature-sensitive vesicular stomatitis virus glycoprotein (tsVSVG) to monitor 38 

protein trafficking and determined that NleF slows the intracellular trafficking of tsVSVG from the 39 

endoplasmic reticulum to the Golgi. 40 

41 
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Introduction.  Enterohemorrhagic Escherichia coli (EHEC) and other Shiga-like toxin-producing E. coli 42 

(STEC) are endemic health threats and major causes of food borne disease (Clarke, 2001). These human 43 

pathogens cause hemorrhagic colitis and are a leading cause of pediatric renal failure. In addition to the 44 

Shiga-like toxin, STEC encode a large number of virulence proteins, which they translocate into intestinal 45 

epithelial cells using a type III secretion system [T3SS, (Cornelis, 2010)], a mechanism conserved among 46 

the other attaching/effacing (A/E) pathogens, enteropathogenic E. coli (EPEC) and Citrobacter rodentium. 47 

While it is known that these translocated proteins (effectors) subvert host cell function to promote diarrheal 48 

disease and bacterial transmission, the biochemical mechanisms and host targets of many of these 49 

effectors are unknown.  50 

The mammalian protein secretory pathway relies on vesicular trafficking to transport cargo 51 

between different organelles. Transport vesicles composed of protein coat complexes known as COPI and 52 

COPII mediate protein trafficking between the endoplasmic reticulum (ER) and Golgi (Wessels et al., 53 

2006). Proteins are transported from the ER to the Golgi (anterograde transport) by COPII carrier vesicles 54 

that bud from the ER (Kaiser and Ferro-Novick, 1998). Proteins arriving at the Golgi are modified and 55 

sorted into transport vesicles destined for the plasma membrane (PM), the endo/lysosomal system, or to 56 

secretory granules. A subset of proteins is recycled to the ER from the Golgi (retrograde transport) in 57 

COPI vesicles (Orci et al., 2000). 58 

Bacterial exploitation of eukaryotic secretory pathways is of interest. For example, Salmonella 59 

recruits exocytic transport vesicles to the Salmonella-containing vacuole, possibly to interfere with antigen 60 

presentation (Kuhle et al., 2006). Brucella abortus utilizes the endoplasmic reticulum (ER) GTPase Sar1 61 

for intracellular replication (Celli et al., 2005). The E.coli effector NleA inhibits COPII-dependent protein 62 

export from the ER by binding to Sec24 (Kim et al., 2007). 63 

We previously identified the NleF protein in a proteomic screen of EHEC and C. rodentium 64 

secreted proteins (Deng et al., 2004). NleF is found in the E. coli lineages associated with human disease 65 

(Zhang et al., 2007) and with epidemic potential (Coombes et al., 2008). NleF is present with 100 % amino 66 

acid identity in EPEC E2348/69 and an ortholog is also found in C. rodentium. Our previous experiments 67 

demonstrated that NleF is a T3SS-translocated effector (Echtenkamp et al., 2008). Infection experiments 68 

using C. rodentium in mice and EHEC in gnotobiotic piglets indicated that NleF contributes to bacterial 69 
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colonization of the host (Echtenkamp et al., 2008). The goal of this study was to determine the mammalian 70 

binding partner of NleF. We demonstrate here that NleF binds to the human Tmp21 protein and 71 

subsequently disrupts intracellular protein trafficking. 72 

73 



 5

Materials and Methods 74 

Chemicals and antibodies. Chemicals and antibodies were used according to manufacturer’s 75 

recommendations. GFP and Tmp21 antibodies were obtained from Cell Signaling. Golgin-97 antibody was 76 

obtained from Invitrogen. Calnexin, HA, and His antibodies were obtained from Sigma. NleF antiserum 77 

was described previously (Echtenkamp et al., 2008). pEGFP-VSVG was provided by J. Lippincott-78 

Schwartz [Addgene #11912; (Presley et al., 1997)]. 79 

Bacterial strains, cell culture, and infection experiments. The bacterial strains and plasmids used in 80 

this study are described in Table 1. HeLa cells were maintained in Dulbecco’s modified Eagle’s medium 81 

(DMEM) supplemented with 10 % fetal bovine serum. Cells were transfected using TransPass (New 82 

England Biolabs). Bacteria were cultured in Luria-Bertani broth at 37 °C for 18 h without shaking. 83 

Overnight LB cultures were diluted 1:10 into DMEM, followed by a further incubation for 3 h at 37 °C, 5 % 84 

CO2. Cell culture medium was replaced with DMEM prior to infection and bacteria were added at a 85 

multiplicity of infection of 25-50.  86 

Protein purification. NleF and Tmp21 were cloned into pFLAG-CTC and pET28a, respectively, and 87 

expressed in E. coli BL21(DE3). Bacterial cultures were grown to an OD600 of 0.3 and then induced with 1 88 

mM IPTG for 2 h. Cells were centrifuged, lysed by sonication, applied to -FLAG M2 beads and Ni-NTA 89 

agarose, respectively, and incubated at 4 ˚C overnight. After washing, proteins were eluted with either 0.1 90 

M glycine HCl, pH 3.5, or with imidazole and then analyzed on SDS-12 % PAGE.  91 

Yeast two-hybrid assay. NleF was cloned into the yeast two-hybrid GAL4 DNA binding domain vector 92 

pGBKT7 to generate the ‘bait’ plasmid. The NleF bait was used to screen a pre-transformed human HeLa 93 

cell cDNA library for proteins interacting with NleF according to protocols in the BD Matchmaker Pre-94 

transformed Libraries User Manual (Clontech). Yeast clones containing library plasmids encoding human 95 

proteins interacting with NleF were purified by restreaking on selective media and retested for growth 96 

phenotypes. -galactosidase activity was calculated using equation 1, where t refers to the incubation time 97 

(min) and v refers to the concentration factor. Eq. 1:  98 

Pull down assay. Purified proteins (~20 µg) were applied to -FLAG M2 beads and incubated with 99 

rotation for 5 h at 4 C. Beads were washed three times with PBS and resuspended in SDS-PAGE buffer. 100 

The samples were interrogated for the presence of His- and FLAG-tagged proteins by immunoblotting.   101 
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Immunoblotting. Cells were lysed in RIPA buffer [150 mM NaCl, 50 mM Tris pH 8.0, 0.5 % sodium 102 

deoxycholate, 0.1 % SDS, 1 % Nonident P-40], incubated on ice for 30’, and centrifuged. Proteins were 103 

resolved by SDS-PAGE, transferred to nitrocellulose membranes, blocked in Odyssey blocking buffer (Li-104 

Cor) and then probed with appropriate primary and secondary antibodies. After rinsing in PBS, blots were 105 

imaged using an Odyssey infrared imaging system.  106 

Bimolecular fluorescence complementation. HeLa cells were co-transfected with two BiFC plasmids 107 

(250 ng each) representing NleF and Tmp21 sequences cloned as fusions to the N- or C-terminus of 108 

Venus eYFP (designated VN and VC). The fluorescence derived from BiFC was visualized using Eclipse 109 

80i fluorescence microscope (Nikon) after 24 h incubation and was quantified using a fluorescence plate 110 

reader with appropriate filters (excitation: 500/20 nm; emission: 535/30 nm). 111 

VSVG trafficking and immunofluorescence microscopy. HeLa cells were grown on glass coverslips in 112 

24-well tissue culture plates. For VSVG experiments, cells were transfected in 4 replicates with pEGFP-113 

VSVG in the presence or absence of NleF-HA. After 24 h, one replicate was left at 37 ˚C while the other 114 

replicates were transferred to 19 ˚C, 32 ˚C, or 40 ˚C. Three hours after temperature shift, cells were rinsed 115 

3 times with PBS, fixed in 3.7 % formaldehyde and permeabilized in 0.2 % saponin in PBS, blocked with 116 

10 % goat serum, and incubated with primary antibodies for 1 h at room temperature. Cells were washed 117 

with PBS and probed with Alexa Fluor-conjugated secondary antibodies for 1 h. Coverslips were mounted 118 

in Mowiol and samples were visualized using Eclipse 80i fluorescence or Eclipse C1Si confocal 119 

microscopes (Nikon). 120 

Statistical analyses. -galactosidase data were analyzed using t-tests. BiFC data were analyzed using 121 

one-way ANOVA. VSVG trafficking data were evaluated with Fisher’s exact test. p-values <0.05 were 122 

considered significant. 123 

 124 

125 
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Results and Discussion.  126 

NleF binds to Tmp21. We used a yeast two-hybrid (Y2H) screening assay to determine the mammalian 127 

binding partners of NleF. EHEC nleF was cloned as a fusion to the Gal4 DNA-binding domain (DBD) and 128 

co-expressed in the yeast reporter strain AH109 with a HeLa cell cDNA library. Co-transformants were 129 

plated on synthetic quadruple-dropout (QDO) medium to select for interactions between NleF and a library 130 

component that activated the transcriptional reporter. We isolated 153 colonies after 21 d growth on QDO 131 

plates, 26 of which had a high level of reporter gene activation as measured in -galactosidase assays 132 

(data not shown).  133 

 We identified 3 different human cDNA sequences (Tmp21, CD151, PAIP2) that may encode 134 

proteins that interact with NleF. Among these, we further studied Tmp21 (also named p23/p24d) as a 135 

putative NleF binding partner. We confirmed the Tmp21-NleF interaction using direct Y2H assays and by 136 

quantifying -galactosidase activity resulting from NleF-Tmp21 co-expression (Fig. 1A).  137 

Tmp21 is a 219 amino acid integral type I transmembrane protein that functions as an integral 138 

receptor for the COPI-vesicle coat (Blum et al., 1999). Tmp21 is a member of the p24 139 

(p24/gp25L/emp24/Erp) protein family. These proteins provide cargo receptors to proteins (Anantharaman 140 

and Aravind, 2002) and regulate protein packaging into COPI vesicles in concert with a small GTPase, the 141 

ADP-ribosylation factor 1 (Arf1). p24 proteins are assembled into heteromeric complexes that cycle 142 

between the ER and the Golgi and recruit Arf1 in early stages of vesicle formation (Gommel et al., 2001). 143 

p24 proteins thus play active roles in retrograde protein transport from Golgi to ER by facilitating the 144 

formation of COPI-coated vesicles (Aguilera-Romero et al., 2008).  145 

By expressing and purifying recombinant forms of NleF and Tmp21 in E. coli BL21(DE3) and then 146 

using these proteins in pulldown assays, we confirmed that NleF and Tmp21 bind directly in vitro (Fig. 147 

1B). We also used immunofluorescence microscopy to determine the extent of NleF-Tmp21 colocalization. 148 

To do this, we used polyclonal NleF antisera (Echtenkamp et al., 2008) to detect NleF after its 149 

translocation into HeLa cells during C. rodentium infection (Fig. 1C). Co-staining for Tmp21 revealed that 150 

both proteins colocalized in a perinuclear location (Fig. 1D). 151 

BiFC. To determine whether NleF and Tmp21 interact when they are co-expressed in mammalian cells, 152 

we used bimolecular fluorescence complementation (BiFC) assays. This technology utilizes the 153 
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reconstitution of two fragments of the enhanced yellow fluorescent protein (eYFP) to generate a 154 

fluorescent signal at the site of the protein-protein interaction under investigation (Hu et al., 2002). We 155 

generated protein chimeras with split N- and C-terminal fragments (VN and VC, respectively) of eYFP 156 

fused to either NleF or Tmp21 (Fig. 2A). Co-expressing eYFP chimeras of Tmp21 and NleF reconstituted 157 

YFP fluorescence, to a similar magnitude as the reconstitution of the actin positive control (Fig. 2B). By 158 

contrast, transfecting individual plasmids did not reconstitute YFP fluorescence (Fig. 2B), suggesting that 159 

NleF binds to Tmp21 in mammalian cells. 160 

The N-terminal luminal domain of Tmp21 mediates cargo uptake into transport vesicles, whereas 161 

the KKLIE cytoplasmic tail at the Tmp21 carboxy-terminus mediates COPI-dependent transport vesicle 162 

formation (Blum and Lepier, 2008). To map the binding domain of NleF on Tmp21, we carried out a BiFC 163 

study with C-terminal deletions of NleF. These experiments revealed that deleting the NleF C-terminus 164 

beyond amino acid 84 eliminated NleF binding to full length Tmp21, as indicated by loss of fluorescence 165 

with the sequentially truncated constructs (Fig. 2C). A similar BiFC analysis revealed that the C-terminal 166 

region of Tmp21, amino acids 63-180, was required for binding to NleF (Fig. 2D). Overall, these data 167 

suggest that NleF and Tmp21 associate through their respective C-termini. 168 

NleF alters VSVG trafficking. We tested the hypothesis that NleF binding to Tmp21 would cause defects 169 

in protein trafficking by characterizing the localization of a vesicular stomatitis virus glycoprotein (VSVG)-170 

GFP fusion as a function of NleF expression and of temperature. VSVG localization is commonly used to 171 

study mammalian protein trafficking (Wessels et al., 2005). This glycoprotein is essential for viral envelope 172 

fusion with the host PM and traffics intracellularly via the ER and Golgi (Lippincott-Schwartz et al., 2000).  173 

VSVG-GFP transport can be manipulated by incubating cell cultures at different temperatures 174 

(Toomre et al., 1999). If incubated at 40 ˚C, VSVG-GFP becomes reversibly misfolded and retained in the 175 

ER. If shifted to 19 ˚C, VSVG-GFP refolds and can be transported to the TGN. A further temperature shift 176 

to 32 ˚C allows subsequent trafficking to the PM (Fig. 3A).  177 

We first transfected HeLa cells with VSVG-GFP and then evaluated VSVG-GFP localization using 178 

immunofluorescence microscopy. As expected, when cells were shifted from 37 ˚C to 40 ˚C, VSVG-GFP 179 

fluorescence became localized primarily in the ER, as shown by its colocalization with the ER protein 180 

calnexin (Fig. 3B). When cells were subsequently shifted to 19 ˚C, VSVG-GFP localization with calnexin 181 
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was reduced and VSVG-GFP was primarily redistributed to the Golgi, as shown by its colocalization with 182 

the Golgi protein golgin-97 (Fig. 3C). Incubating cells at 32 ˚C also resulted in the expected subsequent 183 

shift of VSVG-GFP from the Golgi to the PM.  184 

 We predicted that if NleF disrupts Tmp21 function, VSVG-GFP redistribution to the Golgi would 185 

either be delayed or blocked by NleF. After transfecting NleF and performing temperature shift 186 

experiments, we observed that VSVG-GFP was retained in the ER at 19 ˚C in 74 % of cells examined, 187 

rather than redistributing to the Golgi (p < 0.05, Fisher’s exact test; Fig. 3D). Similarly, in the presence of 188 

NleF, VSVG-GFP was mislocalized to the Golgi at 32 ˚C in 58 % of cells examined, rather than trafficking 189 

to the PM (p < 0.05, Fisher’s exact test; Fig. 3E).  190 

 191 

Conclusions. Overall, the yeast two-hybrid, immunoprecipitation, and BiFC data suggest that NleF binds 192 

to Tmp21. Expressing NleF disrupted VSVG-GFP localization, suggesting that the NleF-Tmp21 interaction 193 

disrupts intracellular protein trafficking. The functional significance of these data in subverting host cells in 194 

the context of E. coli and C. rodentium infection awaits further experimentation. 195 
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Figures. 268 

 269 

Figure 1. NleF binds Tmp21. A. -galactosidase assays. NleF was expressed in yeast in the presence 270 

or absence of human Tmp21 and -galactosidase activity was quantified. Asterisks indicate significantly 271 

different -galactosidase activity as compared with untransformed yeast (p < 0.05, t-test). B. Co-272 

immunoprecipitation. His-Tmp21 and was co-expressed with NleF-FLAG in E. coli BL21(DE3). NleF was 273 

immunoprecipitated and its binding to His-Tmp21 binding was assessed using immunoblotting. C. 274 

Immunofluorescence microscopy. HeLa cells were infected with C. rodentium DBS100/pnleF-FLAG 275 

and stained with an -NleF antibody (red). D. NleF and Tmp21 co-localize. HeLa cells were infected with 276 

C. rodentium/pnleF-FLAG, transfected with Tmp21-HA and stained with -NleF (green) and -HA (red) 277 

antibodies. 278 

 279 
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 280 

Figure 2. BiFC. A. NleF and Tmp-21 expression. NleF and Tmp21 were cloned into eYFP-VN and 281 

eYFP-VC vectors and protein expression was evaluated by immunoblotting. B. BiFC quantification. 282 

Relative fluorescence intensity after co-transfecting indicated NleF- and Tmp21-eYFP plasmid 283 

combinations (n = 3). Asterisks indicate significantly different fluorescence intensity as compared with 284 

untransfected samples (p < 0.05, ANOVA). C. NleF truncations binding to Tmp21. NleF truncations 285 

were cloned into eYFP-VC vectors and protein expression was evaluated by immunoblotting. Binding to 286 

Tmp21-eYFP-VN was measured using BiFC and is scored as positive (+) or negative (-) in the respective 287 

columns. D. Tmp21 truncations binding to NleF. Tmp21 truncations were cloned into eYFP-VC vectors 288 

and protein expression was evaluated by immunoblotting.  Binding to NleF-eYFP-VN was measured using 289 

BiFC and is scored as positive (+) or negative in the respective columns. 290 

 291 

 292 
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 293 

Figure 3. NleF alters VSVG-GFP trafficking. A. VSVG-GFP localization schematic. At 40 ˚C, VSVG-294 

GFP becomes reversibly misfolded and retained in the ER. Incubation at 19 ˚C allows VSVG-GFP 295 

refolding and transport to the TGN. Further incubation at 32 ˚C allows VSVG-GFP trafficking to the PM. B. 296 

VSVG-GFP colocalization with calnexin. HeLa cells were transfected with VSVG-GFP and then 297 

incubated at 37 ˚C or shifted to 19 ˚C, 32 ˚C, or 40 ˚C. Cells were stained with an -calnexin antibody. C. 298 

VSVG-GFP colocalization with golgin-97. Experiment performed as in (B). Cells were stained with an -299 

golgin-97 antibody. D. Impact of NleF on VSVG-GFP colocalization with calnexin. HeLa cells were 300 

cotransfected with both VSVG-GFP and NleF-HA and then incubated at 37 ˚C or shifted to 19 ˚C, 32 ˚C, or 301 

40 ˚C. Cells were stained with -calnexin (red) and -HA (blue) antibodies. E. Impact of NleF on VSVG-302 

GFP colocalization with golgin-97. Experiment performed as in (D). Cells were stained with -golgin-97 303 

(red) and -HA (blue) antibodies.   304 
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Table 1. Strains and plasmids used in this study. 305 
Strain or plasmid Description Reference 

Yeast strains   
S. cerevisiae AH109  MATa,trp1-901,leu2-3,112,ura3-52,his3-

200,gal4D,gal80D,LYS2::GAL1UAS-GAL1TATA-HIS3,GAL2UAS-GAL2TATA-

ADE2,URA3::MEL1UAS-MEL1TATA-lacZ 

Clontech 

S. cerevisiae Y187 MAT,ura3-52,his3-200,ade2-101,trp1-901,leu2-3,112,gal4D,met-

,gal80D,URA3::GAL1UAS-GAL1TATA-lacZ 

Clontech 

yPRH-5 HeLa cDNA library in Y187 Clontech 

yPRH-11 AH109/nleF-Gal4DBD-Myc This study 

Bacterial strains   

C. rodentium DBS100/NleF-FLAG C. rodentium ATCC 51459 expressing FLAG-tagged NleF This study 

E. coli BL21(DE3) E. coli F- ompT hsdSB (rB
-mB

-) gal dcm (DE3) Novagen 

E. coli BL21(DE3)/NleF-FLAG NleF-FLAG This study 

E. coli BL21(DE3)/Tmp21-His Tmp21-His This study 

E. coli BL21(DE3)/NleF-FLAG/Tmp21-His NleF-FLAG + Tmp21-His coexpression This study 

Plasmids   

pGBKT7 Two-hybrid bait plasmid Clontech 

pGADT7 Two-hybrid library plasmid Clontech 

nleF-Gal4DBD-Myc NleF-Gal4-Myc bait plasmid This study 

pFLAG-CTC Bacterial FLAG fusion protein expression Sigma 

NleF-pFLAG-CTC NleF-FLAG (Echtenkamp et al., 2008) 

pET28a Bacterial hexahistidine fusion protein expression Novagen 

Tmp21-pET28a Tmp21-His This study 

VN Venus fluorescence protein (AAs 1-173) (Gao et al., 2009) 

VC Venus fluorescence protein (AAs 155-238) (Gao et al., 2009) 

VN-actin Venus 1-173 fused to human actin (Gao et al., 2009) 

VC-actin Venus 155-238 fused to human actin (Gao et al., 2009) 

VN-NleF Venus 1-173 fused to NleF This study 

VC-NleF Venus 155-238 fused to NleF This study 

VC-NleF (1-162) Venus 155-238 fused to NleF (AAs 1-162) This study 

VC-NleF (1-117) Venus 155-238 fused to NleF (AAs 1-117) This study 

VC-NleF (1-84) Venus 155-238 fused to NleF (AAs 1-84) This study 

VC-NleF (1-65) Venus 155-238 fused to NleF (AAs 1-65) This study 

VN-Tmp21 Venus 1-173 fused to Tmp21 This study 

VC-Tmp21 Venus 155-238 fused to Tmp21 This study 

VC-Tmp21 (1-180) Venus 155-238 fused to Tmp21 (AAs 1-180) This study 

VC-Tmp21 (1-150) Venus 155-238 fused to Tmp21 (AAs 1-150) This study 

VC-Tmp21 (1-124) Venus 155-238 fused to Tmp21 (AAs 1-124) This study 

VC-Tmp21 (1-63) Venus 155-238 fused to Tmp21 (AAs 1-63) This study 

pEGFP-VSVG VSVG in pEGFP-N1 (Presley et al., 1997) 

 306 
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