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CIIAPTKR l . INTRODUCTION

I . Application of Modern Optimization Theory to Practical Processes

Optimization theory deals with achieving the best --maximum gain

or minimum loss--in a rational manner. This holds great interest for

the practical professions of engineering. Spectacular advances have

been made in optimization theory producing a massive, jargon -filled

literature on linear, non-linear and dynamic programming, the maximum

principle and many other optimization techniques. In the meantime,

electronic computers have been developed with enormous computational

speed and large memory capacities. With the extensive developments

in these two fields, the time has come when modern optimization theory

can be applied to find optimum policies for complicated practical

processes

.

Movement along this line has already been initiated at the Kansas

State University and several papers have already been published (1, 2,

3, 4). The present study has been undertaken to contribute to this

move. A multistage gas compression process is a well-known process

of great practical importance. In this study, system analysis is

applied to multistage gas compression, and the discrete analog of the

maximum principle is used to find the optimal policies and numerical

computations have been made for C02 gas compression under various

discharge conditions for illustration.

It is hoped that by showing practical applications of modern

optimization theories, the practicing engineers will be induced to

apply the modern theories to problems of their interests*



2 . MultJ.st.iHP Gas Comprcssi on

'Gas compression is very common in chemical process industries.

High pressures arc needed to obtain an improved equilibrium condition

for a separation process, to obtain an improved yield in a chemical

process, to attain a high reaction rate, to surpress side reactions,

and simply to overcome pressure drop due to friction in transmission

lines

.

For several reasons the ratio of the discharge pressure to the

suction pressure for a single-stage compressor is limited (5). One

reason is related to the efficiency of operation. Figure 1 illustrates

the compression process for adiabatic (1-2) and isothermal (1-3) paths.

The work required in the adiabatic compression is represented by area

1-2-8-7 and the work required in the isothermal compression is repre-

sented by area 1-3-3-7. Therefore, the isothermal process requires

less work than the adiabatic process by an amount equivalent to the

area 1-2-3. Actually the compression step is more nearly adiabatic

than isothermal, since it is impossible to transfer a large quantity

of heat through the cylinder walls in the short time accompanying the

stroke of the piston. Nevertheless, the benefits of isothermal oper-

ation can be partly achieved by dividing the process into two steps,

that is, by limiting the discharge pressure from the first compressor

cylinder to jP cooling the gas to the original temperature t , in an

intercooler (a process occurring at essentially constant pressure,

path 1-5), and finally completing thr compression to Pc in a second

cylinder. In this two-stage system a reduction of work equal to the

area 2-4-5-6 is accomplished. A further decrease in the work require-

ment would be obtained by increasing the number of stages to three or
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more. However, the maximum reduction in work is limited to the area

1-2-1; hence a point is soon reached at which the decrease in power

costs is balanced by the increased first cost of the equipment. The

number of stages employed in practice depends primarily upon the over-

all pressure differential and the capacity. In large machines the

pressure ratio per stage is seldom more than 5 or 6 and may be less.

In small compressors, where power costs are of less importance, this

ratio may be considerably higher.

Very high -pressure machines operating with discharge pressures of

the order of 10,000 psia are usually built with five or more stages.

As the pressure is increased, the specific volume of the gas decreases

and consequently the cylinder size necessary for a given capacity de-

creases. This is another important reason why high compression ratios

arc not justified with single-stage machines; large cylinders would be

required to handle the low-pressure intake gas, and the entire cylinder

would have to be of expensive construction to withstand the high-pressure

existing at the end of the stroke.

The efficiencies of reciprocating compressors generally are between

70 and 90 per cent. This means that the actual work required is 11 to

43 per cent greater than computed on the basis of reversible adiabatic

operation

.

3 . The Conventional Methods Used in Optimizing A
Multistage Gas Compression System

The conventional methods used in finding the optimal policy of a

multistage gas compression system are based on the following assumptions:

(1) Gas compression in each stage is reversible and adiabatic.



(2) Gas is cooled to the original temperature after each com-

pression .

(3) The objective function to be minimized is the total energy

used in the gas compression. The first costs of compressors,

heat exchangers, and pumps and the operational costs such

«*s cooling water cost are not included in the objective func-

tion.

The work required in the multistage gas compression is mostly cal-

culated on the assumption that the gas behaves ideally. Several approa-

ches have been proposed to calculate the compression work requirement

for a non-ideal gas.

However, the author is not aware of any publication in which non-

ideal gas behavior is taken into account in the optimization study.

The prior work directed to this problem is briefly reviewed as

follows

:

a) For ideal gases.

The optimal policy arrived at is to allocate the interstage

pressures in such a way as to have an equal horsepower requirement

per stage. This criterion gives rise to the optimal policy of allo-

cating the interstage pressures as the geometric means between the

suction and discharge pressures.

Derivations leading to the above conclusion are presented in

most thermodynamic books. They are mostly based on differentiating

the equation of the total energy requirement for the N-stage compression.

As an example, the formulation given by Happel (6) is outlined as

follows. Under the assumptions described earlier in this section, the



total energy used per mole in the N-stages gas compression is given

by

V
En = KT—L_

p \r-i

T + ...

p \ y-i
N

» T - n
N-l

'
(1)

3y defining the compression ratios

P

r
i+l

i + 1
i s 0, 1, 2, . . . , N - 1

,

(2)

and the constants

nRT y
r-

1

= K (3)

r- 1
(4)

so that Equation (1) becomes

% = k
j Z r

i - n (5)

Happel (6) sought to minimise E;j through appropriate choice of the

quantities r^ , i = 1, 2, ..., N, subject to the following constraints

r— 1, i = 1, 2, . . . , N

//
N-7-7- i'

< = /

(6)

(7)

and solved this problem for the case N = 3, making use of methods of

differential calculus.



L. T. Fan and C. S". Wang (7, 7a) have shown that the discrete

analog of the maximum principle can be applied to solve this problem.

They defined state variables, x^ and x OJ and a aecision variable,

as follows:

xn = pressure of the gas at the end of the n-th stage compression

x_ = work spent in compressing m moles of the gas up to and

including the n-th stage compression

,n _ n/ v.n-ln
• *i/ *i

They have then shown that the process can be described by the perfor-

mance equations

,

xj = xj"1 ^", x° = P , x? = PN (8)

xl = x^"
1 +m*rj?T7 [ien )°~1)/r

- O. x
2 " ° <

9 >

They have recognized that the process as represented by equations (8)

and (9) belongs to the one dimensional linear process and then con-

cluded that the optimum condition is represented by

e
1

= e
2

= e
3

This means the optimal increment of pressures at each stage corresponds

to the geometric means between the suction and discharge pressures.

Fan and Wang (25) have initiated the work on the optimal compression of

non-ideal gases.

R. Aris, R. Bellman and R. Kalaba (8) have solved this problem by

using the functional-equation techn ;ue of dynamic programming, which

reduces the N-dimensional optimization to a sequence of N one-dimensional
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optimizations. Then they have pointed out the relationship to the

well-known arithmetic-geometric mean inequality, and finally they have

discussed some qcnoralizations.

b) For non-ideal gases.

R. Aris, et aK (0) have described how a more realistic model

can be set up, but have not actually formulated the problem. They

suggested that the cost of compression in each stage, denoted as

f( T,P), be determined empirically and the optimum condition be found

by a search technique utilizing the condition of optimality.

R. York (9) has described ways of computing the work requirement

for compressing a non-ideal gas. To allow for gas law deviations, the

designer of gas compressors has a choice of two alternatives. The

first is to retain the expression obtained for an ideal gas and to add

suitable correction factors. The second alternative is to discard the

expression for idea gases and to determine the enthalpy change at con-

stant entropy between the states existing within the compressor

cylinder. These two fundamental properties of enthalpy and entropy

are presented in tables of thermodynamic properties or graphed as a

Mollicr diagram. York has adopted the first approach and proceeded

to show that in order to allow for deviations from the perfect gas law,

two correction factors are needed. The first is a correction for

volume, which can be expressed in terms of the compressibility factor.

The second is a correction for the enthalpy change (A}\)
s
along an

isentropic path of compression and is termed the "isentropic work

factor". He has then shown a figure for the isentropic work factor

for propane, but has not generalized it.



Other methods purporting to allow for gas law deviations have

boon proposed. The first of these is by Laverty (10). He has pointed

out that gas law deviations affect only the quantity of gas aspirated

per stroke with a given cylinder. Furthermore, he has stated: "It

(the compressor) has no way of correcting for the deviations of the

gas laws, and if the gas is more dense, it is compressed with no in-

crease in horsepower ." Both these statements are based upon the fact,

as is the practice, that gas quantities are reported as volumes at

measuring pressure PQ (usually 14.7 psia) and at suction temperature.

The statement regarding the gas aspirated is without doubt true. The

quoted statement regarding the power requirement is only partly true--

it does not tell the whole truth J Actually the power requirement is

decreased. In an example to illustrate the correction for gas law

deviations, Laverty shows that, for a given volume of gas at P, the

brake horsepower for an imperfect gas is decreased by the compressi-

bility factory. Sincere is a volume correction only, it cannot di-

rectly affect the horsepower. The power correction should be made along

an isentropic path of compression and not at one point for the volume.

The second method to allow for gas law deviations was proposed by

Edmister (11). By his method the ratio c /cv , here denoted by k, is

corrected for gas law deviations. This corrected ratio was presented

graphically as a generalized correlation in terms of reduced pressure

and reduced temperature. A study of his plot shows that k at any pres-

sure and temperature is always greater than k at zero pressure, the

state of a perfect gas. Such values of k necessarily give greater

power requirements than for a perfect gas. Unfortunately the reverse is

true--the power requirement decreases I His correlation is satisfactory
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for presenting values of k but unsatisfactory in the applications

mentioned. It must be remembered that, if a gas deviates from a per-

fect gas in its P-V-T relations, it will deviate in all its thermo-

dynamic properties, including enthalpy and entropy.

4 . The Special Features of the Present Study

The primary objective of this study is to improve the system

analysis and optimization study of a multistage gas compression system.

In this study most of the inadequacies of the conventional methods have

been removed. The special accomplishments in this study are summarized

as follows

:

(a) An improved system analysis is made and an objective function

more realistic than the one used in the conventional approach is

obtained. The unrealistic assumptions made in the conventional

methods have been removed. In this study, we take into con-

sideration the non-ideal behavior of a gas and irreversibilities

of the compressors. The first costs of the compressors, inter-

stage coolers and pumps, the cooling water cost, and energy cost

are included in the objective function.

(b) A generalized treatment is made so that the relations obtained

and even the computer program established can be readily applied

to any gas under any operating conditions by simply replacing

input data sheets. A generalized equation of state and the

generalized thermodynamic excess functions developed by

Hlrsh folder e_t rA_. (12, In) have been used in the system analysis.

Therefore, the equations obtained are applicable to practically all
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(c) An efficient computational scheme is established and a step-by-

step description of the Iterative numerical computation is given.

This is done in such a way that average engineers can easily

nil low the procedure to apply the method to the problems of their

interest

.

(a) It is demonstrated that the discrete analogue of the maximum prin-

ciple is very powerful in handling a multistage optimization

problem of high dimensionality, even though it does not always

give rise to an absolute optimum. The optimization problem for-

mulated in this study has six decision variables, seven state

variables in each stage together with four equality constraints.

(e) Numerical computations have been actually carried out for three

stage C02 gas compression under various discharge conditions.

The results obtained demonstrate the practical importance of this

study by showing the cost reduction realizable by this method as

compared with the conventional methods.



CHAPTER 2. PROCESS ANALYSIS OF A MULTISTAGE GAS COMPRESSION SYSTEM

1 . Int rociuct ion

In tli is chapter, a system analysis is made for a multistage irre-

versible compression of a non-ideal gas with arbitrary interstage

cooling. The gas is not necessarily cooled to the original temperature

after each compression as is usually assumed. A realistic objective

function which conforms to the industrial practice is formulated.

In the analysis, several thermodynamic functions at each stage

have been introduced. These are the entropies of the gas after a hypo-

thetical reversible compression and after the interstage cooling,

enthalpies of the gas after a hypothetical reversible compression,

after an actual compression and after interstage cooling and the cumu-

lative cost of the gas compression up to the stage. The work required

in the compression and the heat load for the intercoolers are found.

In order to establish performance equations in the form convenient

for the application of the discrete analog of the maximum principle,

the enthalpy, entropy, cumulative cost, and pressure have to be re-

lated to the respective temperature and density. The generalized

equation of state and generalized thermodynamic excess functions will

be obtained, and the optimization problem will be set up in the final

form in Chapter 4.

2 . Process Description

Figure 2 illustrates a general multistage (N-stage ) gas compression

system with interstage cooling. Each stage (say the n-th stage) consists
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of a gas compressor Jn and an intercoolcr M
p . In a multistage gas

compression system, the feed gas flows through the successive stages

and is compressed and cooled alternatively. The usual assumption of

cooling to the original temperature is removed in this analysis and

the temperature to which the gas is cooled in each stage is considered

as a control variable.

The following notations arc used in subsequent discussions:

P , Pn , PN = respectively, pressure of the feed gas, pressure

of the gas in the n-th stage and the pressure at

the last stage, or equivalently , the discharge

pressure, in psia.,

T , T , T^j = respectively, temperature of the feed gas, tempera-

ture of the gas leaving the n-th stage and the tem-

perature of the gas discharged from the system in

op. ,

to » f^o' S ,
HQ = respectively the reduced temperature, the re-

duced density, the entropy per lb-mole, the

enthalpy per lb-mole of the feed gas.

t
n ' In' S

n'
H
n

= respectively, the reduced temperature, the re-

duced density, the entropy per lb-mole, the

enthalpy per lb-mole of the gas after a hypo-

thetical (reversible) compression in the n-th

. | age

*n« P n'i '''l\,
H« respectively, the reduced temperature, the re-

duced density, the entropy per lb-mole, the en-

thalpy per lb-mole of the gas after an actual

( irreversible} compression in tho n-th stags,
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t„ i P. » S > I! = respectively, the reduced temperature, the re-n l n n n

duced density, the entropy per lb-mole, the

enthalpy per lb-mole of the gas after the n-th

stage cooler Mn

Cn = cumulative gas compression cost up to and including the n-th

s tage

,

Q. = cumulative gas compression cost up to and including the last

stage

.

Referring to the n-th stage of the system, a gas stream (character-

ized by tn-1 ,
/° n _i> ^x\-\ » ^n-1 ) ^ s pressurized by an actual compressor

Jn from a pressure Pn _i to a pressure Pn and the gas leaving the com-

ri _ it it

pressor is characterized by tn , pn' , Sn and Hn . After being cooled by

a cooler Mn , the gas properties become t
, fL, S and H . Assuming a

hypothetical reversible compression in Jn , the gas leaving the com-

pressor would have been characterized by tn , ^, S n and Hn . The

properties of this hypothetical gas stream are needed as linking

properties which are useful in evaluating actual compression.

It is assumed in this study that the cooling water enters each

cooler at the same temperature (t ). and leaves at the same tempera-

ture (t ) . (*,.,)• i s fixed in a chemical plant as the water tempera-

ture from a cooling tower or a cooling pond. In a chemical plant,

cooling water is generally regenerated and recycled within the plant

and lias a rather high dissolved solid content. Therefore, (tw ) Q is

limited to about 110° F to prevent scale formation. In a future study

(t ) may be considered as a control variable which may be different in
x w ' o *

each stage.
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3 . Process Analysis - Relations Among the- Ope ra t i Qfl Variables

Referring to the n-th stage of Figure 2, the following relations

can be established.

(a) lintropy is unaltered during a reversible adiabatic com-

pression. Therefore, we have

Sn-L
= Sn < l >

(b) The work of compression in a hypothetical reversible com-

pression is given by

W,.„_ = (AH ) = H* - H , (2)rev » n s n n-1 x '

(c) The work of compression in an actual compression is given

by

wirr = (^ Hn)a = H
n " Hn-1 (3)

(d) The efficiency of the compression, V , is defined as

y. = J?r_. "n-Hn.x
( Wirr HJJ - Hn _!

(4)

This gives rise to

(
Hn " Hn-l) = ^ ("n ' Hn-l) ( 5 )

The ^ value ranges from 70% to 90%. In the latter calculation >? will

1
be taken as .

1 .2

(e) The heat to be removed in the cooler Mn is given as

$ • -4H - £ - H». (6)
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( C) The heat transfer area, An , required is given by

. __M__ "n - "n'
(7)

' n U AT U Tr l(tj - t] )
- (tj - t 2 )]

, *1 - t2In -i
f.

*1 " t2

where t, , t are respectively temperatures in reduced unit of the gas

and the cooling water at one end of the heat exchanger and t^ and t 2 are

respectively temperatures in reduced unit of the gas and the cooling

Wetter at the other end of the heat exchanger.

4 . A Mathematical Model for a Multistage Gas Compression System

In optimizing any system, the operating variables may be classi-

fied into decision variables and state variables. Denoting a state

variable associated with the n-th stage as XV and denoting a decision

-n
varxable associated with the n-th stage as Q* , for a system repre-

sented by a set of finite difference equation, Xv can be expressed as

X? = I§(XT\ XS"
1
... X§-\ 0J.03, ...,*?) (8)

That is, X^ is a function of state variables associated with the (n-l)-th

stage and the decision variables of the n-th stage. The above equation

is called the performance or transition equation for X^,

The operating variables shown in Figure 2 are classified into

decision and state variables as follows:

(2.) decision variables:

#1 = *n> 02 " t n» 03 = *n
(9)

n _ Pei-A, e\-fni 0i-

f

n



(b) state variables:

18

x l - Pn>

n ;
X
5

= S n>

x2 - Hn>

n
X6 ~ Sn'

n " n
x3 = Hn» x4 = Hn

X7 l: ^n >

(10)

Figure 3 shows the structure of the finite difference or discrete

model. Decision variables are shown in association with vertical

arrows, and state variables are shown in association with horizontal

arrows. The constraint functions 0? shown in the figure will be

explained shortly.

5. The Performance Equations and the Degree of Freedom

With the above classification, it will be shown that all the state

variables can be expressed as follows:

State - space notation

nn n . „n
X
l " T

l

*Z = T2

n n
X., = T

X„ = T.

n n
X., = T5

6l> 4 >

el el)

r\ n ,-,n

02* 0.)

/i
n

/-i
n

ei. el)

9
n
„ 6?,)

,n-l „n-l• 1 ^-1
}

' 7

conventional notations

Pn = fl<C fn)

Hn = f2< t n» fn)

ii ii ii

»n = *3^n>fn)

"n = UUxx'fn)

" p"sn
= f(A t n« -Tn)

x
7

- T
y ( ^ 2 , ^ 3 , Q 5 , Q 6 ; C

f ^^n' t
n* •'n* '"

»

n

n-l n-1
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It is soon that the above performance equations do conform to the form

of equation (3). Explicit expressions for these equations will be de-

rived at the end of the next chapter.

In addition to the above performance equations, the following re-

lations which become equality constraints in the n-th stage must be

considered.

1. Pressure at the n-th stage is considered to be constant. That is,

pressure of the gas after the hypothetical (isentropic) compression,

pressure of the gas after the actual compression, and the pressure

after the cooler are the same. Therefore, one has

Pn = ^(C^n) = 'lCCO = *l<t„, /,,) (12)

The equality constraint functions, <P, and yo are defined as

fl
= vv /») - vv ;0 o da)

tl - vv /-»> - vv /V o <i4)

These equations can be written in maximum principle notations as

P V^. el) - V<?2- e") ° < l5 >

f2
- ijwj. el) - r;<*», el) o (i6)

2. During an reversible compression, the entropy value is unchanged.

Therefore , one has

i

Sn = Sn-1 (17)
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The equality constraint function Yn. is defined as

^3 = S
n - S n-1 °

<
18 )

This equation can be written in state-space notation as

<t>

n _ n n-1
3

x 5 " x6

Ts< er> e;> - c 1

= (19)

3. The compressor efficiency equation is given as

(
Hn " Hn-])= ^"(Hn - Hn -l

)

(20)

/n
The equality constraint function y> is defined as

j>l = ( Hn " Hn-1> " jr ("n " Hn-1 ) = ° <**>

This equation can be written in state-space notation as

JD4 = (x3 - x4 )
- JL (x2 - x4 ) = (22)

State variables are dependent variables as expressed by equation

(11). Out of the six decision variables in each stage only two are

truly independent due to the four equality constraints shown above.

In a multistage gas compression problem, the temperature and

pressure of the gas discharged from the last stage are usually pre-

assigned values. Due to these two additional constraints, the degree

of freedom of a multistage (N stages) gas compression system becomes

2(N-1) .
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6 . Mapping of a Multistage Gas Compression Operation on a H-S "Diagr

The operation of a multistage gas compression operation can best

be illustrated on either the T-S or the H-S diagram for the gas. The

operation of a three-stage compression of COp gas from pressure PQ

( =14.7 psia) and temperature T ( = 54 5° R) to the final condition

of pressure P3 ( = 1700 psia) and temperature T3 ( = 600° R) by

realistic compressors J^, J-^ and J 3 and coolers Mj_ , M^ and M3 is

illustrated by the path ( 1
) -( 3 ) -(4 ) -( 6 ) -(7) -(9 ) -( 10) in the Figure 4,

which is the T-S diagram for 00 2 (14).

The steps (l)-(3), (4)-(6) and (7)-(9) correspond to gas com-

pressions by J-^, ^2 <xnĉ J 3 respectively and the steps (3)-(4), (6)-(7)

(9) -(10) correspond to gas coolings by Mj_ , M2 , <inc^ M 3 respectively.

The construction of these steps is explained as follows:

a) Realistic gas compression step.

Take step (l)-(3) for example. The feed gas is compressed from

P to Pj_ and point (2) can be located as follows:

1) Locate point (1) corresponding to the feed gas condition P , T
,

2) Locate point (2) by following a constant entropy line from

point (1) until it hits the constant pressure line with

pressure Pj_. This point corresponds to the condition of the

gas after a hypothetical reversible compression to pressure

Pl-

3) Locate point (3) by the following two conditions

i. point (3) lies on the constant pressure line at P^

II (at point (3) ) - H (at point (1) ) _ 1

H (at point („0 ) - II (at point (1) ) ff

am
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S, ETU/ °R-lb

riy . Liquid-vapor- temperature -entropy diagram for carbon dioxide

(14)
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Other compression steps (4)-(6) and (7)-(9) can be similarly

constructed,

b) Gas cooling steps.

Temperatures of the gas leaving the coolers M, and M~ arc independent

variables. In the optimization study, these two temperatures will

be controlled together with other control variables to arrive at the

optimum policy.

Once T. and T„ are given point (4) and (7) can be located as corre-

sponding to the conditions (P,, T^ ) and (P
2 > T2 ^ respectively. Point

(10) corresponds to the final condition of the gas. The cooling steps

(3)-(4), (6)-(7), and (9)-(10) are on constant pressure lines.

7 . Gas Compression Cost

The gas compression cost may be considered to be consisting of the

n,
cost of the work of compression at each stage, E, s; costs allocated to

n •

the gas due to the initial costs of the compressors, E„ s; costs allo-

cated to the gas due to the intercoolers at each stage, E3 ' s ; and the

n
costs of cooling water used in individual stages, E 's.

Referring to Figure 4, the work of compression and the enthalpy

11

change in the intercooler at the n-th stage are (H - H » ) and

11

(II - H ) respectively. Assuming that the compressor cost and inter-

cooler cost are proportional to the power and the heat transfer area

respectively, the cost spent for compressing 1 lb-mole of the gas at

the n-th stage is given by

4
V"7 n n n n n

L E
i = E

l + E
2 * E

3 * E
4
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= C (H" - H , ) + ^ C (h" - H )c v n n-1 ' // IiP
v n n'

+ ^ CH . ("n " Hn) In *" - (tw) o

U.TC C*n (
tw)o) ' C*n " ttw)J tn - (tw ).

(23)
C 'L 1 1,,w n - n

(C ) T (t ) - (t ) •

p w c W o v w' 1

where Cc and C^ are respectively unit power cost and unit cooling water

cost, C„p and C„ are respectively unit compressor cost and unit heat

transfer area cost and y± and ^2 are tne fraction of initial costs of

the compressor and the intercooler respectively allocated and chargeable

to one operation hour and U is the overall coefficient of heat transfer.



CHAPTER 3. GENERALIZED EQUATION OF STATE AND GENERALIZED
THERMODYNAMIC EXCESS FUNCTION OF GASES

1 . Introduction

As has been described, the primary purpose of the present study

is to develop a system analysis and an optimization study for a multi-

stage gas compression system which are so general as to be applicable

to all gases under ideal as well as highly non-ideal states. Therefore,

a generalized equation of state which has a wide application range has

to be found. From such a generalized equation of state, generalized

thermodynamic excess functions can be derived. It is fortunate that

such a generalized equation of state is available.

The generalized equation of state adopted in the present study has

been taken from the works of J. 0. Hirshfelder, R. J. Buehler , H. A.

McGee, Jr., and J. R. Sutton (12). Although countless equations (15,

16, 17) and tables (18) are available for predicting the volumetric

and thermodynamic properties of gases, the equations developed by

Hirshfelder et a_l. best suit in the present study.

Hirshfelder e_t al_ . (13) have also derived generalized thermodynamic

excess functions for gases and liquids by starting from their generalized

equation of state. These equations are also utilized in formulating

performance equations for this study.

In their formulation of the equation of state, they divide the

field into three regions. System analysis and optimization made in

this study is limited to region I. But the procedure developed can be

applied to cover the whole field.
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PART A. EQUATION OF STATE

2 . The Special Features of the Generalized Equations
of State Developed by Hirshfelder et al

.

The equations developed by J. 0. Hirshfelder e_t al_. (12) are par-

ticularly suitable for the present study for the following reasons:

(1) The framework is believed adequate for practically all pure

substances. The equations are based on a modified principle of corre-

sponding states, and are applicable to noble gases, hydrocarbons, and

the highly polar substances, water and ammonia.

(2) The application range is wide. The full range of gases and

liquids is covered where experimental data exist: temperatures as

low as half and as high as three times the critical, densities up to

four times the critical; and pressures up to 190 times the critical.

(3) Standard input data required are available for most gases.

Standard input data required are: the three critical constants, the

normal boiling point, and (for the liquid region only) the density of"

the saturated liquid at two temperatures . When experimental data are

not available, known procedures can be used to estimate them. When

extensive data are available, they may be used to modify the equations.

(4) The equations are differentiable and thermodynamic excess

functions can be readily derived from them.

(5) The equations of state and all the derived equations can be

conveniently computed by a modern high-speed computer.

(6) There are no non-physical discontinuities in the equation of

state and in the derived properties. In their work, the P-V-T values

have been arbitrarily divided into three regions, but the boundary
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conditions arc so established that there are no non-physical discon-

tinuities in these equations.

3. The Generalized Equation of State by Hirshfelder et al .

(a) Division of the field into three regions.

In their approach the P-V-T values have been arbitrarily

divided into three regions, with different equations applying in each

region. Taken together these experessions define a single consistent

equation of state for all values of P,V, and T. The arbitrary division

is a compromise which makes possible the use of a relatively simple

equation at low densities; it is perhaps an esthetic defect, but it is

nevertheless a practical way of meeting conflicting requirements. The

regions of definition are shown in Figures 5-a and 5-b and are defined

by:

Region I. Gas. All temperatures; density less than the

critical, /*< 1

.

Region II. High Density Gas. Temperature above the criti-

cal, t > 1; density greater

than the critical, f 2. 1

.

Region III. Liquid. Temperature below the critical, t < 1;

density greater than the cri tical ,„P— 1

.

It should be noted that t and J* are reduced temperature and reduced

density respectively. At the junction
( P = 1) between Regions I and

II, the p. :.sure, its first and second derivatives with respect to

density, and all its derivatives with respect to temperature, are

continuous. At the junction (t = 1) between Regions II and III, the
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pressure, its first derivative with respect to temperature, and all its

derivatives with respect to density, are continuous. As might be ex-

pected, these continuity requirements lead to some complications; in

Region III, for example, the equation is somewhat more complicated than

one would like for a normal liquid because of the required continuity

along the critical isotherm.

Figures 5-a and 5-b show that at temperatures lower than the

critical there is a coexistence region between the liquid region II

and gas region I. On the liquid side this region is bounded by values

of ^ and _P given paratnetrically by A(t) and j^(t), where A(t) is

the vapor pressure and .^(t) is the density of the saturated liquid.

On the vapor side the boundary is given by /^(t) and j^-(t) , where

J^- (t) is the density of the saturated vapor. The coexistence region

can be found by knowing the vapor pressure of the substance, which can

be computed by such an equation as derived by Riedel (19). This co-

existence region is irrelevant to this study because gas compression in

which condensation is to be avoided, is considered.

Compression may be made within a single region, region I, II

and III. It may span two regions such as I and II, or II and III. For

a very high-pressure compression, it may even span the three regions I,

II and III. In the present study, gas compression is limited to region

I. However, the procedure developed is general, so that compressions

spanning several regions may also be handled.

In the following sections, equations of state will be given

for the three regions but the generalized excess thermodynamic functions

will be given only for region I. Equations for regions II and III are

available in the original reference (13).
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(h) Explicit relations for equations of state

The equations of state for the regions I, II, and III are

given as follows:

i . Region I . Gas

P = - (k
Q + kxt-l)f + k2 (-t + fl)/3 *

(/t Zc)
, ?

(1)

(1 - bf + b'j>
2

)

ii. Region II. Dense Gas

P = P
JI
=P (/,*) =

3 . _ ry O A c

S t J
-

[koj + k
1;j f + k2j / + k

3j / + k4j / + k 5j J> l/f (2)

iii. Region III. Liquid

P = P^ = P (f, t) =
Pjc

(/>,t) -
Pjr

[^(t), t ]+
Pir

(t) (3)

where

p, p y t = respectively reduced pressure, reduced density

and the reduced temperature,

P ( f > *) = vapor pressure evaluated by equation (2)

at y and t ,

p [£(*)> t
J
= vaP°r pressure evaluated by equation (2)

at reduced temperature t and reduced

density R(t), where _^(t) is the density

of the saturated liquid at t

p (t) = saturated vapor pressure at reduced temp. t.
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The constants used in the above equations are defined

as follows:

b = (l/
/
3)(3

/

5
2 - 6/3 - l)/(3/S - 1),

b' = (|3 - 3)/(3/3 - 1),

k Q
= 5.5,

k
l

= P ' k

k
2

= (1 - k - cK + 2^/2,

The constants, k^j, used in the equations (2) and (3)

are given in Table 1 as functions of ck
, (3 , and k .

where o< and /3 are defined later.

The saturated vapor pressure can be evaluated by the

Riedel's correlation (23)

In p^(t) = d In t + 0.0838 ( ck - 3.75)(36 t"
1

- 35 - t
6

+ 42 In t) (4)

and the reduced density of saturated liquid can be evaluated by Guggen-

heim's correlation (22)

jg(t) = 1 + 1.75 (1 - t)
1/3

0.75 (1 - t) (5)

The oL value in the above equations can be found either from Figure 6

or by the following equation

z c
~ l = 3.72 + 0.26 ( o( - 7) (6)

The /3 value can be found either in Table 2 or by the following equation

2
c = P <

3 P - 1 ><1 +
f
3 )' 3

<
7 >
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Table 2. Parameter B as a Function of Zc (12)

zc P Z
c P

0.230 9.24 0.266 7.34
0.232 9.12 0.263 7.25
0.234 9.00 0.270 7.15
0.236 8.88 0.272 7.06
0.238 8.77 0.274 6.97
0.240 8.65 0.276 6.89
0.242 8.55 0.278 6.80
0.244 8.44 0.280 6.71
0.246 8.33 0.282 6.63
0.248 8.23 0.284 6.54
0.250 8.12 0.286 6.46
0.252 8.02 0.288 6.38
0.254 7.92 0.290 6.30
0.256 7.82 0.292 6.21
0.258 7.72 0.294 6.13
0.260 7.62 0.296 6.05
0.262 7.53 0.298 5.98
0.264 7.43 0.300 5.90
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PART B. ENTHALPY AND ENTROPY OF A NON-IDEAL GAS

4. Enthalpy of a Non-Ideal Gas: H = fi ( f , t)

The thermodynamic excess function for enthalpy utilizing the

generalized equation of state developed by Hirshfelder et_ al_. will be

derived first and then the enthalpy function will be related to the

reduced temperature and the reduced density of the gas.

It is convenient to start from the internal energy function U. It

is known that

dU = Cv dT * ( T
[-§YJ

~ P J d ^ < 8 )

Under isothermal condition, this leads to

du = [ t(|£-) - p 3 dv (9)

Since

p = -£-
, t = —1_ , and P = £__ (io)

Pc Tc v

One can write

V
P = P Pc , T = t Tc , and V = —°- (11)

r

Substituting these relations into equation (9 ) ,
yields

du =
f

(tc - t) Jjl_
(
9LE_) - pc P 7 v

c Lsfl&J
T
c

l d t /
; 7*

= -Pcvc ft(|^)- PJ jf-

•
u - v*>

= -
:Vvc fft(2£L] - P l JJL (12)
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where U is the internal energy of the gas at a very low pressure and

at the sane temperature.

Since t is constant in the integration, and since

z c
=

P V
c c

R T
c

equation (12) can be rewritten as

U - 1

RT
° = Z Ji^r- (#*-;) f2

< i3 >

This equation represents the thermodynamic excess function for the

internal energy function.

We can proceed to derive the thermodynamic excess function for

enthalpy as follows:

Since

H = U + PV,

one can write

H - Hp = U - U + PV _
P
o
Vo

(14)
RT RT RT RT

where HQ is the enthalpy of the gas at a very low pressure and at the

same temperature. Since,

z --ZL = pP?V9
= l. pcVc

= z ,_£_
RT R Tc tf f-t R Tc

C f\

and

po vo = 1,

RT
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equation (14) becomes

H - Ho _ U - U Zc p
- 1 (16)

RT RT ft

3y substituting equation (13) into the above equation one obtains

^ = Zc/f(^-(^))^*^- UT,

This equation represents the thermodynamic excess function for the

enthalpy function. H can be related to P and t by integrating the

above equation.

For a non-idea gas in region I, one can substitute equation (1)

into the above equation and obtain

- Z.(/(2k t"
1

3klt
-2

) k2 />
2

(1 - 2t"2 )] +

RT

2

2

b/°- b'f
(18)

1 - bf+ b /'

In the above equation HQ is the enthalpy of the low-pressure gas at

temperature T. Therefore, its variation with respect to temperature

can be expressed as

r
T t

H = H° + / C^ dT = H° + Tc / C" dt (19)'o
T,

Cj dT = H° + Tc f C* dt

where 11° is the enthalpy of the gas under a very low pressure and at a

standard temperature To, arid t is the reduced temperature for the

standard temperature.
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Substituting equation (19) into equation (18) leads to the desired

relation H = fi (
,/* , t) as follows:

H =-2
cRTct/(2AQ t" + 3/CXt" ) - ZcRTctK2 /(l - 2t~

2
)

( bf - tif 2
)

rt
+ RT t — L + tc /

C dt + H° (20)

5. Entropy of a Non-ideal Geis : S = f2( f **)

Hirshfelder et al. have given detailed expressions for In (f/pc )

tinci (H-H )/RT without showing the detailed derivation. From these

equations (S-SQ )/R can be calculated and the desired S-function can

be found. Instead of following the treatise given by them, a ae tailed

derivation of the S-function will be given

One of Mcixwell's relations is

(21)
9V7t V 3 t

Therefore, under constant temperature, one has

dST =(-§y^

Since,

P = P
cp,

T = T
c

t, and V = V
Q/f ,

the above equation can be rewritten as

Tc \3 Vf f2 R Tc \ 5 XJf f
= - ZC R (|£) Ji£/ • (23)

at/ j> 2
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For a hypothetical ideal gas, one has

Referring to Figure 7, we let state 1 represent a real gas at

T, P, V dnd let state 2 represent a hypothetical ideal gas at the

same temperature and volume as the real gas of state 1, and let state 3

represent a hypothetical ideal gas at critical pressure Pc and at the

same temperature as states 1 and 2. Let S, S~* , and S • represent the

entropy per mole of the gas under states 1, 2, and 3 respectively.

S - S * can be obtained by integrating dS - dS*

•

Thus
,

S - S2
* = dS - dS*

(v(ffi) jfi- /i-5fr

Therefore

,

R (-*« (%$).*')*& (25)
/, '-/

Letting V * and V ' be the volume of the hypothetical ideal gas

at state 2 and state 3 respectively, S2
* - SQ

' can be expressed as

S 2* - S ' = R In -2- (26)
o

As has been described, the volume of state 2 is equal to that of state

1 . Therefore

,

Vo'
(27)
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Since accordina to the definition of V '

o

P~ V ' = RT1 c * v o * * >

equation (27) can be written as

S2* " s°' = m -5L (28)
R RT

Pc

Introducing the relations equations (11 ) into the above equation,

one has

$2* - So' ltl
Pc^ 1^——___

—

— — in ————

—

R R Tc t

= In Zc - In (ft) (29)

By subtracting equation (29) from equation (25), one has

f
£-Ir£- = Jo z c (-ffA*^^ * ln (/t) lnZc (30)

This is the desired thermodynamic excess function for entropy. The

desired S-function can be obtained by substituting the equation of

state, equation (1) of this chapter into this equation.

^T1 = - Z c [ - \ K 2 f
2

* V*lP - \ k2/)t"
2

J
- ln (ft)

+ -^ln(l - b f + b'/ ) - k 3 tan"
1

k 3 - k 3 tan" 1
(k4f- k 3 ) lnZc

= Zc f- k x /t"
2 I k2 f

x
(l t"

2
)j -ln(/t)

, 2-1-1
+ — ln(l - bj> + b'/ ) - k 3 tan k 3 - k 3 tan (k4 /» - k 3 ) ln Z c

(3D
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Letting S be the entropy of the gas at a hypothetical ideal gas

state at the standard pressure PQ (usually assumed at 1 atm) , under

the same temperature one has

S ' = So
+ " ln

(
Po/Pc)' (

32
)

Letting S be the entropy of the gas at a hypothetical standard

pressure PQ and at a standard temperature T , one has

J

s - s° = £l2_ dT = I S dt (33)
To T J t. t

where t and t are reduced temperatures of T and TQ respectively.

Introducing equations (32) and (33) into equation (31) and on

rearranging, yields

S = R { Z
c C - kl/ t + - k2/ (! + t )] - in(/t) + IA(l-b/ +t//>

:

- k3 tan" kj- k^tan (k-f -k.) + yfnZc } + S
-0

+f cpat + R ^n(P /P)

J tQ t

(34)

This is the desired equation

S = f
2
(/,t)



CHAPTER 4. PERFORMANCE EQUATIONS, CONSTRAINT RELATIONS
AND THEIR DERIVATIVES

A system analysis of a multistage gas compression system has been

made and definitions of the state variables and decision variables pre-

sented in Chapter 2. Quantitative relations relating p, H and S to t

and J3 have been described in Chapter 3. With these relations available,

the performance equations described in Chapter 2 can be formulated.

In part A of this chapter quantitative relations for the performance

equations and the constraint equations will be derived and in Part B

first derivatives of these functions which will be used in the later

optimization study will be given. In the present study, gas compression

within region I only is considered. The procedure developed in this

study can be easily extended to other regions.

PART A. PERFORMANCE EQUATIONS AND CONSTRAINT EQUATIONS

Figure 8 illustrates the mathematical model of a multistage gas

compression system and summarizes the definitions of decision variables

and state variables.

n n . r>n n n . _
1. x

i
=

^i ( C/i» C/4 ) : Pressure at the n-th stage.

The pressure of a gas is related to its reduced temperature and re-

duced density by the generalized equation of state, equation (1) of

Chapter 3. Since the pressure at the n-th stage can be related to

t n ( = 0") *nd/n (= #2). tn(«02) And -^n(=#5). and tn(" l§) and

J n (
= $£>)> respectively, the following equations can be written

using the state space notation for the multistage process.
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+ $J1) /[! . b(6)5 + b'(^)
2

]
(1)

xi = - [k - kl(^)
1

J (^)
2

+ k2 [- 02 * (02)' J (fs)

*
(
^iii) /[i - b(^> + h'iffi?} (2)

c

*1 = -[k KiCaS)"

1

^ (^6)
2 k2 [-0§* (63) J (^6)

(?iii) / c
i - b(^g) b-(^)

2

j o)
c

Equation (1) will be considered to be the performance equation

for x^ . Equations obtained by equating equation (1) to equation (2)

and by equating equation (1) to equation (3) will be considered as

constraint relations. These constraint relations will be further

described later.

2. x£ = TJJ ($J, #J) : Enthalpy of the gas after the hypothetical re-

versible compression in the n-th stage.

The enthalpy, H, of a gas is related to its reduced temperature

and reduced density by equation (20) of Chapter 3. Therefore, one can

write

x
2

= -7-
c
RTc^k

o> Ol - V?T
c<

3ki><V
L

(^) " *
c
w
c<*2 >Wi><fl!i>

2
+z

c
RT

<
2k 2>

a
n'l +* .n WW " b '(6.';)

2

j ,f « no
(01 ) (flj)

+ RTc^i) 7 57 / c tc dfii* H (4
{i - b{g%) * b'(02> / J*o

re H i^, the enthalpy per mole of the gas under hypothetical ideal

State at the standard temperature T .
' o
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3. X-} = T3 ( 02* 9 5) : Enthalpy of the gas after actual compression

in the n-th stage.

n
The performance equation for X3 can be obtained simply by re-

placing Xo
, Q\, and#4in equation (4) by X3, #2 and 0% respectively.

Thus we obtain

-1 2

X3 = -Zc RTc (2k ) S
n
5 - Zc RTc (3k 1 )(6)S) (05*) - ZC™c( *2 ) ( &2 ) ( 05

)

{1 - b(0") + b'«9§) 2 j-

+[£ c; Tc d^ + H° (5)

J t

4. X4 = T4 ( ^3, ^5): Enthalpy of the gas after actual compression

and cooling in the n-th stage.

n.
The performance equation for X* can be obtained simply by re-

n _n ^n n *n ~n
placing X2 , C/l> and (74 in equation (4) by X4» C/3 and P6 re ~

spectively. Thus we obtain

X2 = - Z
cRTc( 2ko) 05 - ZcRTc< 3kl)W3)"

1

W6) " Z
c
RTc( k2)(^)(^6)

2

2
- 1 2 |b(/52) - b'(/92) l

Zc RTc (2k2 )( fl5) (flg) RTC (^) L ^ ^ I-

{l -b(^) *b'(^) 2
J

3 Cp Tc d#3+ H (6)

J Xo

5. X5 = T 5 ( Si, Q4) 1 Entropy of the gas after the hypothetical

reversible compression in the n-th stage.
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The entropy, S, of a 9.1s is related to its reduced temperature

and reduced density through equation (34) of Chapter 3. Therefore

one has

-2 -2 2

X5 = (ZcRM-kiMflx
1

) (04) + (ZCR)(^ k2 ) { 1 (flj) J (#4)

- \Un { (0(6^)} +iR/n {l-b(#4
n

) + b' ( £4") } - Rk 3 tan~ k 3

- Rk3tan" { k4 (#4) - K3 }
+ R^n zc + R ^n (

po/pc ) + S° +

(

9l
fn^L (7,

=0 <9"

•Owhere S is the entropy per mole of the gas under hypothetical ideal

state at 1 atm and standard temperature TQ .

n n ^n „n
6. X5 = T5 ( C/3, (76) : Entropy of the gas after actual compression

and cooling in the n-th stage.

The performance equation for x£ can be obtained simply by replacing

n n n
. n n _n

x 5> U\, and 6/4 in equation (7) with x^ , ^j anc* & 6 respectively.

Thus one has

-2 -2 2

*6 = (
Zc R )("kl)(^3) <*6> +

(
Zc R )(| k2) { 1

+ (^3) > (*6>

- R^n {(^)(^6)} *^-R^n{ l-b(0g) * b (0g)
2
j - Rk^an" 1^

- Rk3tan { k4 (<5^) - k 3 J
* R/n Z c + R^n (P /Pc )

+ s

(V3 C d Q n

J2_2L (8)

0?
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n n .n - n n n n-l n-1
xy T7 ((';>, E73, (7 (, , {) 7 , X4 ,X7 ): The cumulative cost for

compressing a mole of gas up to and including the n-th stage.

By substituting values and H and H" from equations (20) of

Chapter 3 into equation (23) of Chapter 2, one has

"7 = X?"
1

^ CC[T"1( #5, 01) - xS"
1

] ft ChpC T5( tfS. 05>

U ' T
' [fill - (tw ) J-W3- (VJ " *S -(*.)i

n ~n -n n . „n ,,n
t 3 (02> ^5) - t4 (03 » Oe)J

(9)

8
- fi = fii el> el, el> el) = °> —

^ = g( 6l> 03. $2, 06) =

It has been described that the n-th stage pressure can be calcu-

lated by knowing tn and^p n in equation (1), tn and f in equation

(2), tn and fn in equation (3) respectively. Therefore, these

quantities are related through two constraint equations

,n n ^n ..n n „n ^n

fl = TX ( ei9 4 ) - TX ( 2 , 5 ) = (10)

/ n n y»n _n n -n -.n

$2 ' Tl( ^ir A ) ~ T1 ( ^3, <96 ) = ° ( 1X >
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By substituting equations (1), (2), and (3) into the above equations,

one obtains

n „n _

Z
c

n n
"

«r n 3 @ <=> &
- k2 (-0 2 + {$

n

2 ) J (^)
J

- (-%-i) / £1 - b(^) b' {0\)

" ° (12)

f 2 = - ^ k + k
l <*1> J (*4> + k2 f- <*1 + 0*1 > J (4J)

.n „n _^

(ftS) / £i - b(4g) b.(^)
2
J - fk kl(^)'j «£)

2

Z C

1
n n

r n n - » n 3 ^ A* P n 2
+ k2 f-^3 + (*3 ) ] (<%) + F|^) /fl - b(4) + b'(<?6 ) J

(13)

9 * 7 3
=
T3 ^i»^4» x6~

^
= 0: The constraint equation due to

sn = Sn _i
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Referring to equation (19) of Chapter 2, one can note that

f" = x
n

5 <
», el) - x^-

1
= o d4)

By substituting equation (7) into the above equation, we obtain

-2 -2

f
n

3 = (zcr)(^1 )(0
t

I) (el) +
(
zc R )(| k2 ) C

x +
(^i) J <04>

2

- R^n { (#")(
n

A ) } +| R/nfl-b(^) + b'(^)
2
} - Rk

3
tan"

1
k

Rk
3
tan"

L

I
k
4 (^) - k

3 )
+ rAi Z

c
+ R n (P /P

c ) S°

-E—l - X6 =0 (15)

<n ,n n n _n .-n n-1
10. 4>

4 = a>4 ( ^ 1 , 5/2 > U4 » C's* x4 )
= 0: The constraint equation for

the compressor efficiency.

Referring to equation (22) of Chapter 2, one can note that

fl =(T3 (^ 2 , 5 ) - X4 ] - I[T2 ( ^i, 4 ) - X4 J
= (16)

By substituting equations (4) and (5) into the above equation,
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n.2

f"
= -W : -,k

o> e\ - Z
c
RT

c
(3k

1 )(^) (flg) - Z
c
RT

c
(k

2 )(^)(^)

-1
n.2

+ Z
c
RT

c
(2k

2 )(^) (^5) + RT
c (^)

{l - b(*5> b'(^)
2
>

#'o
J

C* Tc d02 H° - 1.2 ( -Zc RTc (2k ) Q^

ji _n _n n 2
Z
cRTc (3k 1 )( 1̂ ) (04 ) " Z

c
RT

c
(k

2 )(^1 )(5>4 )

„n -1 „n 2 n {b(^) - b'(^)
2

j
ZcRTc (2k2 )(^) (04 )

+ RTC (^) 2—
,

{l - b(^J) * b {6l)
2
}

J C
p
T
c

d
#l

+ H° ]+ 0.2 X4 =0 (17)

PART B. THE FIRST DERIVATIVES OF THE STATE VARIABLES

AND THE 00NSTRAINT FUNCTIONS

Table 3 shows the check list for thederivatives which will be

used in the optimization study. These derivatives are obtained by

differentiating the performance equations and constraint functions

developed in Part A. The results of the differentiations are sum-

marized as follows:

n _n ~n ^.n n n n
1. Derivatives of x^ with respect to t7\ , C/ 2 » @3> p 4 , $5 and ^
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n
~ 2

n 2
^(60 (04 >

-2
n. 3

+ k
2
£-l -1 (0?) J ( 4 )

54

-2
n 2C s n . n 2 „n n

(--i) /£ 1 - b(5T4 ) + b ( 4̂ ) = k^) (£4 )

_n 3
- k2 (54 ) - k2 (^) (04 ) +

(tf)

Zc [l-b(*2) + b '(^4)
(18)

n
3*1

" 2 _n 2 n 3

<?0
n

= ki(02 ) (0 5 ) - k2 (0 5 )

«H ~ n 3
k2 (02 ) (*5>

(0 5 )

ZcCl-b(^s) + b'(^)
2

J

(19)

a7|

-2 n.2
= k

x (^) (^) " k2^6)
3 n-2 „3

- k
2 (<93 ) (06 )

(*
n 2

l-b(06 ) + b (06 ) j

(20)

-1n

L = - 2 [k + k
x (^) J (#4 ) 3 kj (- ^ (£ L ) J (*4 )

^4
6>"

, , n n a,
n

5 ^ (- 1
) C ' b * 2b '(*

4 )J
+ J-L/ £l - b(*4 ) + b»(A) J + -2—± L-S.

z
c [l - b(<93) b'(^)2j 2

-1 -1

n - b(^) + i)-(^r j (g") - gS 6>"r- b 2b- jit)]

Zc Tl - b((?4) * b'(^4 )

2
J

'



n -1 -1
«? x i , n_n ^ n n n 2

I = - 2Ck + k
L (/>) J (£5) + 3 k2 f-02 + (*2> 3 (^5)

5

n n 2 n n n n
11 - b(6 5 )

+ b'(* 5 ) J (42 )
" ^5 ^r-b + 2b' (^ 5 )J

+
r- »r' n 2,2

Z C C 1 - b(45 ) + b'(* 5 ) J

1 _

?s
6

= - 2 fk + k
x (^) j (^) + 3k

2
(- ^ + (^) ] ol)

[1 -b(^) + b-(^) 2
3 { f3 ) - ^jgf-b 2b- |jg>3

r n n 2 t 2
Zc t 1 " b <*6> + b '^6> J

n
2. Derivatives of x2 with respect to b^ and &^

n

| = + (Zc RTc )(3k 1
)(^)" (<£) - (Zc RTc )(k2 )(^4)

2

5>^

- (Z
c RTc )(2k2 )(p") (^)

2
+ RT

(

2 rb(^) - b'(^)
2
j

^xn - -1

55

(22)

(23)

fl-b(*4) + b'(^J) )

+ CgTc (24)

<
1= - (ZcRTc )(2kQ ) - (ZcRTc )(3k1 )(^) - (

Z

C RTC ) (2k2 ) (<£) (<$£ )

-1 £ + b - 2b '
( $A ) J

+ (Z
c
RTc )(4k2 )(*") (^4) + (HTC )(^) — (25)

fi-b(^") b»(^) 1
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3. Derivatives of X3 with respect to #2 ancl ^5

-I2
- = + (ZcRTc )(3ki)(02 ) (03) - (ZcRTc)(k2)(^5)

2

n
-2

n 2 IW^) -b.(^) 2
J

- (Zc RTc )(2k2 )(02 ) (£5 )
+ RT

[i-h{e
n

5 ) b'(^)
2

J

C
p

T
c (26)

3x"
|= " (Zc^cXSkc.) - (ZcKTcXaiX^)"

1
- (Z

c RTc)( 2k2)(^)(^5)
^5

(Zc RTc )(4k2 )(£2 ) (*5 ) + (RTC )(*2 ) ^ 2 2 (27)
,n - 1

j, n O b - 2b'(%) ]

fl-b(^j) b'(£)
2
)

4. Derivatives of x with respect to 0*1 and ^"

^xn
"2

2

£ + (2c
RT

c
)(3k l)(^) «$£) - (Z

c
RT

c
)(k

2 )(^)
3£

n
"2 n 2 fb( *?) - b'(^) 2

j
- (Z

c RTc )(2k2 )(^3 ) (^6 ) * RT 2 2_ * C* T (28)

ri-b(^) b-
(^)2j p

c
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Z

C RTC )
( 2k2 ) (03 ) (06 )

3Bl

nn"i n n (
+ b " 2b ' (06 )

)

(Z
c
RT

c
)(4k

2 )(6?3 ) (66 ) * (RT
C )(<?3 )

-
n 2 . 2 (29)

fi-b(^6 ) b-(^
6 ) ;

n -n n
5. Derivatives of x^ with respect to (p-^ and 0^ .

a^
n

5 _

as"

-3 -3 2
(ZcR)(2k 1 )(^1 ) (04 ) + (Z

c
R)(Ik2 ) { -2(^) } {04 )

- R
5 P /i^ _n j\ -3 n 2

+ -£- (ZcR)(2k1 )(^1 ) (04 ) - (ZC R) k2 (^) ftj
(^;)(^2)

c

ft

- R(^)"-1
+ cp (^)"

1

(30)

2* -2 -2 -1

2^| (Z
c
R)(-k

1 )(^) + (Z
c
R)(k

2 ) { 1 + (#") } (04 ) - R(^)

^4

+^-R
- b + 2b' (^)

,n
x
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-Rk-
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3 ]
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- R
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3
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-3
n 2 -1

n -1
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C
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- R(03 ) + C (<?3 ) (32)
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4 >

x77. Derivatives of x 7 with respect to #2 » ^3 > ^5» ^6» X/1
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3*7

**2
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Ce + & CHP

+

^^2
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<*3 - *$>{^2-Kv)oW*S-(t„)ij}-^n ^'' tM

'°J^g-(tw ) 7}

UT
C {W2 " <V>G J -^3" (*w>iW

2 ^2 - (^)oJ

3^ = ,^2CH l*3"JVi

(34)

a^ tUT
c ie\ - <*WU -W - (tw)J

cw
(C ) T (t ) - (t ) .

-> -* nv p'w c v w'o v w'i o o 3
t ) - (t ).J ^„n '

UT.
V

3 4 ;

2
" <tj

f /i
n 10 2 wo , n ., .- n -,

£g3-(tw)iM" gn . (tw) . ^^-(tJJ-^-C^)^

{(^ - 'WW'S - (ViJJ
2
^2-<ViJ

(35)



59

„ n n

a
^n

:

g^
[C

° h ™ (Cp)wTc (tw )
-(tw )i

0° " (t )

l°i—L^
^2

C
H #3 * <Vi

UT
c [^-(VoI-teS-cvJ

£7? v W ' O

(36)

3X7 3 X
"

r ^2
CH " 03 ~ (tw)i

Cw 1 -

^£n ra an^UTr r^n / x t rJ* . n i

+
(C ) T (t ) - (t ).

* 37 '

n
3 x~= -TCe + fx C^J (38)
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3 ^i _ , ,fC2 ,^ 2
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3
- k2 (<5?) (^)

3

c£)
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j
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"2 n 3
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CHAPTER 5. OPTIMIZATION STUDY OF A MULTISTAGE

GAS COMPRESSION SYSTEM

1. INTRODUCTION

A system analysis of a multistage gas compression system has been

made and the operating variables have been defined in Chapter 2. In

Chape r 3, the reduced pressure of a gas, the entropy and the enthalpy

of the gas per mole have been related to the reduced gas temperature

and the reduced gas density. In Chapter 4, state space notation has

been introduced and the quantitative relations among the operating

variables have been summarized. Figure 5 shows a mathematical model

of the 3-stage gas compression system. The functional relations among

the operating variables as summarized in Chapter 4 conform to the

condentional form of a discrete analog the maximum principle as

n n _n n n n-1 n-1
x
i

= Ti( "l> &2> ' " » &t '
X
l ' 'S* ' I 1 '

where t and S are respectively the number of decision variables in

the n-th stage and the number of state variables in the (n-l)th

stage.

It will be assumed that the following conditions are given in an

optimization problem:

1. Gas temperature and gas pressure at the inlet.

2. Gas temperature and gas pressure at the discharge from the

last stage. Referring to Fig. 3, it can be noted that the

gas entering the first stage is the gas discharged from

the hypothetical zero-th stage and, therefore, the reduced
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pressure, x^, the enthalpy of the gas per mole, x?, the

entropy of the gas per mole, x? at the inlet condition

are functions of the reduced temperature Q*\ and the re-

duced density Q, of the gas discharged from the zero-th

stage. Knowing the gas temperature and gas pressure at

o
the inlet, one can find the reduced temperature 0^ and

reduced pressure x^ . Knowing #3 and x^ , can find £?£, and

o 00
consequently x4 and x^. X7 is assumed to be zero. There-

fore, all of the $3, #5, x°, X4, x^, and x° are known

values in the present gas compression problem.

Excluding the hypothetical zero-th stage from consideration

(because the feed condition is fixed), and considering a three-stage

gas compression system, the following operating variables can be

identified.

1. There are six decision variables in each stage which are denoted

n
as 0± ( i = 1, , 6). Therefore, there are 6xN=6x3=18
decision variables in the whole system.

2. There are seven state variables in each stage which are denoted

n
as xj ( j = 1 , , 7). Therefore, there are 7xN=7x3=21 state

variables in the whole system.

Among these operating variables, there are the following re-

lations :

1. All the state variables xj's can be expressed as functions of

An n-1
j and x, by equations of the form of equatxon (1). There are

7xN=7x3=21 relations.
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2. In each staoo, there exist four constraint equations:

<j>" = 0, i = 1, 2, 3, 4.

There are 4xN=4x3=12 relations.

3. The temperature and pressure of the discharge gas are given as

stated above. Therefore, there are 2 additional relations.

From the above analysis, it is seen that the number of inde-

pendent variables in a 3-stage gas compression system is

(6N + 7N) - (7N + 4N + 2) = (2N - 2) = 2(N-1) = 4

In a general N-stage system, the number of independent variables

is given as 2(N-1).

For the present study of a three-stage gas compression system,

truly independent variables are chosen as

n 1 A /^2 „2
"l 1 ®3' ®1 and ®3*

When a set of values are assigned to these four decision variables,

it is possible to determine all the remaining operating variables

3
shown in Figure 3, and the gas compression cost xy can also be de-

termined.

An optimization problem for a multistage (say N-stage) gas com-

pression can be stated as follows:

In compressing a gas (say C£>2 ga s ) by a N-stage gas compression

system from a given initial condition (i.e. £L and x^ are given) to

N N
a given discharge condition (i.e. #3 and x, are given), find a set

1 1 2 2 N-l N-l
of values for { 0^ , 0^, &

lt £3, . . . , 0^ , 9^ J which will give
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. . N
the minimum value for the objective function Xy. A three-stage

system is treated in this study.

In the following sections, the following problems will be

specifically considered.

1. Given a set of values for the independent variables, \0\t12 2
$3> 0\ > G 3} determine the remaining operating variables. This

problem will be described in section 3.

r
1

2. Establish the algorithm for finding the optimum set of \0-\ t12 2
6^3, 0-^y Q 3J-.

This problem is described in section 2.

3. Establish an iterative numerical computational scheme for finding

the optimum set of independent variables. This problem is described

in section 4.

II. FINDING THE OPTIMAL POLICY OF A MULTISTAGE MULTI DECISION

PROCESS WITH EQUALITY CONSTRAINTS IN EACH STAGE --GENERAL DISCUSSION

In this section, we shall discuss an algorithm for finding the

optimal policy for a multistage (say 3-stage) process having six

decision variables, seven state variables, and four equality con-

straints in each stage and a state variable at the last stage being

fixed. The objective function is assumed to be expressible in the

following form

<X N N
S = ZL Ci • xi (2)

i=l

The algorithm obtained in this section can easily be generalized to

any number of stages, any number of decision variables, any number

of state variables and any number of equality constraints.
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Tho general functional relations are summarized as

1

.

Performance equations

n _ _n , n-1 n-1 Q^ ^n

.

/0 .

*i
T
i

(X
1 '

"""' X
7

5 &'' ""'
' <^6 ) (3)

for i = 1,2, ---, 7,

and n = 1 , 2 , 3.

2. Constraint relations

^ =
f.

(«;*. — , x- 1
, ^ — , ej, = o ( 4)

for j = 1, 2, 3, 4

and n = 1 , 2, 3.

3. x and ^ are given values.

o
4. x. for i = 1, 2, , 7 are known values.

i

With these assumptions, there are four independent variables which

are chosen to be $., Q q, Q •> and Q ~.

According to the classical differential calculus, the necessary

condition for an extremum of the objective function, when all the

independent variables are unbounded, is that the total differential

of the objective function be zero, i.e. dS = 0. It will be shown

that the exact differential of the objective function can be expressed

in terms of the differentials of the independent variables as

A 12 2dS=[A]d^+ (B j d(93 +[C_)d^+(D }d# 3 (5)

by eliminating the differentials of all the dependent variables

utilizing equations (3) and (4). Since the above equation contains

only differentials of independent variables which can be arbitrarily

varied, all the bracketed terms in equation (5) should be zero.
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There arc two ways by which dS can be expressed in the form

of equation (5). They are: (i) direct substitution followed by

differentiation, and (ii) differentiation followed by substitution.

In the former approach, the performance equations as represented by

equation (3) and the constraint equations as represented by equation

(4) are successively substituted into the objective function, equa-

tion (2), and the resulting equation is then differentiated. In

the latter approach, equations (2), (3), and (4) are differentiated

and the differential forms of equations (3) and (4) are successively

substituted into the differential form of equation (2) . Such suc-

cessive substitutions become increasingly difficult as the number of

stages, state variables and decision variables and equality con-

straints increase. It will be shown that when the adjoint variables,

Lagrange multipliers and Hamiltonian functions are introduced, the

substitution procedure can be simplified. It will further be shown

that the essential features of the algorithm to be developed can be

arrived at by comparing the two approaches.

1. Direct substitution followed by differentiation.

Equations (3) and (4) can be written in expanded forms as

z

1 = T1 {x°, 1
} for i = 1, — , 7 (6-a)x

x2 = T2 I x 1
,

2
}

" (6-b)
i i L J

x^ = T^ {x2 ,

3
}

» (6-c)

#=^{x°, ^} for i = 1, — , 4 (7-a)
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¥±
=

t\ i
x1

'
°
2
i f° r i = l

'
"""' 4 (? "b)

By successively substituting a pair of equations (6-2) and

(7-a), then equations (6-b) and (7-b) , and then equations (6-c)

and (7-c) into equation (2) it is possible to eliminate all the

dependent variables, and the objective function can ultimately be

expressed in the following form

s mf( e\, e\ t e\, e\) w
This equation can then be differentiated to give

dS = (^)d^ + (^S)d^ + (^>d<9* + (4) d^ < 9 )

d 6\ 30\ d&l 3?
3

On comparing equation (9) with equation (5) it is seen that ( . ?) ,

3
&L

(—-~), (
' '

| ) and (
'

S
) , correspond respectively toUJ, £B J ,

IC'X and (Djin equation (5). When all the independent variables

are unbounded, the optimal policy can be obtained by setting these

differentials equal to zero.

This equation will be compared with the equivalent expression

derived by the second approach, which may facilitate the identi-

fication of the significance of some terms to be derived.

2. Differentiation followed by Substitution. Upon differentiating

the objective function and the performance equations and the

constraint equations, the following relations are obtained:
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7 -}

dS = ?L* c
i

tlx
i

i = l

(10)

dxf = V $2i dxr + £ ±S. cl^ , i = 1, — , 7 (ll-a)

J=l d k=l 20

^ M „ i . ^> £_i d el ,dx = 21 —y dx^. -Z ~
isl 3*. J k=l 5J

J
<?;

(n-b)

k=l s>£

and d

j = l 3x. J k=l

^

lit
29~

(ll-c)

d ^ = , i = 1, , 4 (12-a)

k

6 ^2
ft = £ **; *} *Z-2̂ ^0Z"°' ± ' 1 ' —• 4

<
12 -b)

j=i j^ J k=i 3#~

' x k=i 3d:
i = 1, — , 4 (12-c)

Theoretically, an equation in the form of equation (5) can be ob-

tained by successively substituting equations (ll-a) and (12-a),

equations (11-b) and (12-b), and equations (ll-c) and (12-c) into

equation (10). But such substitutions are impossible in practice

for a complex system. An efficient way for handling this situation

is described as follows.

For each state variable x. , define an adjoint variable z. and,

,n . . _ n
for each constraint equation <p • , define a Lagrange multiplier A •

n
and then define a Hamiltonian function H as
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H
n

= y z
n

x
n

+ y a. <f>.

n , n
(13)

n n n
It will be assumed that z^, A-j , and H so defined are nontrivial.

For the last stage (N = 3), this is

h3 = z 44* z*]fi < i4 >

i=l j=l

Since cb.'s are zero, these equations are equivalent to

H" = Z Z
n

X
1

? (13-a)
1=1

and - 3
H3 = Z Z' *i ( 14"a )

i=l

respectively. Equations (13) and (13-a), and (14) and (14-a) will

be used interchangeably.

Differentiating equations (13) and (14) gives

7 4
n v-^ n n „, n ,n

dH = Z Z
i ^i + H A • d^> (15)

i=l j=l J J

and 7 43^33 A 3 ,3
dH = Z Z;L dXi + £> d#

i=i j = l
J J

(16)

In these differentiations, z. and X • are, by definition, kept con-

stant. Since d d) . = 0, these equations are equivalent to

n <2- n n
dH Z, 2

i <**! (15-a)
j-1

and _

3 xr- 3 3
dHJ = >_, Z^^ dxi (16-a)

i = l
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respectively. Equations (15) and (15-a), and (16) and (16-a) will

be used interchangeably.

N
The adjoint variables for the last stage, z.'s, defined in

such a way that

dS = cH?
1

(17)

or N N ^ N N (17-a)
Z^-^i = Z 2

i- ^i

N
Therefore, the adjoint variables associated with x- may be defined

as

,
N

= d? (18)11 K '

In the so called fixed end-point problem, however, one or more

N
of the x.'s are fixed, and for those variables we have

N
dx

i
= 0.

The adjoint variables associated with these state variables can

have any value and yet maintain the identity represented by equation

N
(17). The problem of defining the z^ associated with a fixed state

N
variable x- will be discussed later in this section.

Substituting equations (11-a) and (12-a) into equation (16)

gives

^ r^ 3 2
x
i 4 *3j?il

k=i L i=i 9^ k=l J 3^
k

A[A z —

^

+ z: A
j --^-

J d^ (19)
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n-1
Before further substitutions, it is convenient to introduce Z

k

as lol lows

:

7 n 4 n £
n

^ - n ^>
x
i + y A n 3 fj

= ZzVx
i + £ A5-i-2— (20)

n-
*

k
i=i ' ax"- 1 j=i d x

n_1

Note that

3 M n 7 ax. 4 30.^- E z\—\*7L A "S <21)

With these definitions, equation (19) becomes

^ = Zzl^l- z ^ *e\ (22)
k=l

k k
i=i 8 0? *

x

By introducing equation (15-a), the above equation can be written

as

dH3 = dH
2

j\ SA d«3
*=i a*J

or

^3 _ JTr2 . ^ aj£ _= dH
2

+ JZ
—~ d<9? (23)

j=i a^ J

Following similar derivations we obtain,

4 2
dH2 = dH 1

+ Z 2JL. d
2

(24)

and

2£j

2lL , m _ £ ^iL
1

dH i = dHo + ^ JUL. d * . ^^ d 0i (25)
j=i 2 0*. J j =i3 J

dii = because all dx. 's are zero,
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By adding equations (23), (24), and (25), one obtains

ds = <M
3

= f ^4 d *5 + z 4 d «i*2 ^4 v; < 26 >

j=i a#J
3-i 3$2 j=i 3 0* J

„n n
The above equation contains 18 d (j • terms, and most of the #-'s

are dependent variables except 4 terms. Therefore, the above

equation should be distinguished from equation (5), which contains

only the differentials of the independent variables.

Since it is assumed that Qz> is a given value, and d #;> = 0,

n
Equation (26) then contains 17 d & terms, from which 13 terms must

be eliminated in order to reduce equation (26) to equation (5).

This can be done by suitably selecting the following adjoint vari-

able and Lagrange multipliers.

3 . .3
1. z which is associated with x.

2. Aj, A*, 7\\, **; *|, 7\\, 7\2, 7\2. 7,3. ^3
f ^ 3 and ^

z. and A-'s are chosen so that

= (27)

for all dependent Q . 's. When Z and ?\ .
' s are so chosen to

satisfy equation (27), equation (26) is reduced to

30; * 3^3 3 a^ x 90
2
3

3

On comparing equations (5), (9) and (28), the following rela-

tions are obtained:
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(28-b)

[A] = (3S_^
)

= (Piii) (28 .a)

[C)= (ZS_) = (_£_}£) (28-c)

[D)= (21* = (-2i£) (28-d)

The selection of z and A 's as represented by equation (27) can
1 i

be written in an extended form as follows.

3 3.3-33
1. z^

, ^ i > ^2» 3» 4 are cnosen so as to satisfy the following

relations

.

5>H
3 A .3 3*f 4.3 ^ 3

,- z n -2-*+ r m ^ta
a0 (29 -a)

^iil = £ z
3 2Ja + ± A 3 -^ =o (29-b)

3 „ _ A 3^ 3 ^ x
i 4 3 3^-i

= / ZT i + Y A —i-1 = o

3^ 1 = 1 * ^4 j = 1 ' ^4

3

(29-c)

3^ fri St j-1
J ?*!
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Pi I
3 7

3
„ A,3

9*f * .3 9fi
3 = £ Z'i —i + 2 A' —4 =0 (29-e)

^<r i=i a#; j=i J ^#A

3 o

is not shown because ^lis a constant.

2 -2 . 2 2
2. A

2. > ^ 2 » 3 and ^4 are so chosen as to satisfy the following

relations

.

4 = £ z? ±4 + f A? i4=o
a^ i=1 i 5^2 j=1 j ^

o 7 -. ,, 49H"

(30-a)

^ 2 a x i £ «2 3fi

7>&l
i=l

X 3<?2 j = l J 9^

30~ 1 = 1 ^ j=l ^

(30-b)

(30-c)

3^ i=1 30* J=1 90*

3. Ai, A 2' ^3 and ^ 4 are so cnosen as to satisfy the following

relations

.

jl = r. z
1 *i + f a 1 ifi - oZ Zt ^-i + ZA -^=0 (31 -a)

9 $2
i=1 * ^ 5=1 " ^
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t$\ i=1 *9A J'
=1 *dA

(31-b)

i.£ z^2fl + h^lA . (3i.c)2_Li

3k1
_ Lz 1 - Z A —-J-

»*;
1=1

»*6 j = 1 ^6
(31 -d)

3 . n
With 2j_ and A^'s evaluated to satisfy equations (29), (30) and

(31), dS is represented by equation (28).

3 .n
When z, and A • ' s are evaluated as described, and if the inde-

pendent variables are unbounded, the locally optimal set of {^^,

Q , $ , 6 o\ , if it exists, is the set which satisfies the follow*

ing stationary conditions:

3H1 _ JLH
1 _ Z>H

2 _ 2H2 = (32)

^ ^3 . 19\ 1>6

where is defined by equation (21)

2&
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III. OPTIMIZATION OF A THREE-STAGES GAS COMPRESSION SYSTEM

The discussion in the preceding section applies to a multi-

stage (3-stage) gas compression system, and relations to be used

in the optimization study are developed.

1. Third stage

All the decision variables Q^ g3^ q3^ & 3^ ^ ^3^ at

the third stage are actually dependent variables, because there

3 „3
are four equality constraints and both x^ and #3 are given. The

objective function is defined as

S = x2 (33)
7

and the Hamiltonian function is defined as

7 4

H3 = Z 2 3 x3 + £ .3 ,3 (34)
i=i 1 1 j=i ^j n

Note that, as indicated by equation (18), one has

3 3 3 3 3^ ....
z
2 ~ z

3 ~ z4
= z

5
2
6

= ° (
35 '

2 3 = 1 (36)

3 3 3 .

2, is left undecided because x-^ is a fixed value. z± will be

o
evaluated along with^ • shortly.
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The Hamiltonian function H :i then becomes

3 3 .3 3*3,3,3,3 ^3.3 _ 3 / 3 ,

H = z
y

x
x

+ x ?
1- \ f 1

+*
2 f2

+ ^ 3 f3 A 4 f 4 (37)

'J *\ "3 O *1

z., ^. , A , 7\o,
"^

4 are to be found from the following relations

(see equation (27)].

^H3 BH3 3H3 3h3 _ 2H 3 . 0< / 38 v

^1 ^2 "^4 9 *5 9 *6

Equation (38) can be written in an expanded form as

Jh_ . z3 id «. id o ifi o 2& «. 3 iil + o id a
?** l

36>
3

3tf
3 L ^3 2 3*

3 3 34
3 4 ^ 3

Ul! = 2 3 _^ - id +>3 ^ ,3 I??! .3 id „ 3 2i| . Q
1

2* 3 2 <^ 3 3 ^ ^4 ^3

o2d +oid +o2d + o2d. <39)

^ >£
"
2

3 *
3 >3

)<» ^ ^

m. = ,
3 id id o id >

3 id * »
3 id , o 2il .

*h
3

. 23 *i *«? .3 v? old ^3 id old „

^ 3 ^ 3 ^3
» ^ 3 2 ^ 3 3 ^ 3 4 ^3

™2
1

I'l ^
2

3

3h3

z +
1 3
**4
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n i n.

Table 3 shows the functional relations of x- and Y\ respectively

n-1 „n
to x- and &jff • As shown, many terms in the above equations can

be eliminated, because there are no functional relations between

the variables involved.

The above equations can be rearranged as

(40-a)

3
3 <? x i

2
1 3

**'* **5 ^2 . ^3 ^3
3^ '

3
d$l

jl3

?9\

=

^
^l

•*2 ^ -

3

3 ^ x
l

21

*£
^ 3 3 fi \ 3 3fl ,3 3^3

3
+ ^ 3 3

.3 ^4
^4

=

(40-b)

(40-c)

dd3

5 i>e\ dg\
(40-d)

3
9 X

7 .^3 ^2 _T^i —L^. = (40-e)

3 3 3
By solving these equations simultaneous, one obtains z, >^i»^2 *

9\ , 7v as follows:
' 3

/x 4

3 ,-3 M\ ^3 P^ >3 9^3 -> 3 ^4 X / ^ *1
z
i = - (\ —\+\ --^ +^3 -^ +^4 —-)/(—-; < 41 >

?&\ ^e\ 2e\ ?>e\ 2g?'
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3
9x

7 .3 ^1 , ,^1K - - (—r^4—t) ' <-^> <
42

>

3
-3 ^ -2) B\ V0

2

3 ^jl3 « 3 j3
3*7 ^4 _ ^7 % .

^tf 3 2#3 3#3
0tf

3

(43)

^2 = > ( h / i—^) (44)

-del ve\

3 ^ ,3 „ /3 « „3 ^ j3 .3 „ /3 ^ „3

/.

A x +A 2 r + ^4 (—-J- *1 + ^2 r + ^4 )( r

3
3 ^ ^ p^ d o\ ve\ ve\ vq\ *e\

^3 3 ,3 3 (45)

(ZlA) (±A) - (-Z3
) (1-1)

3*1 ^4 ^ ^1

3 ^ ^ 2$\ -del
1

vol ?^ "del del^ = 1 2 2 L . 5 2 2 1- (46)

u
2 U S 5

u
2 u2 5 U S 2

2. Second Stage

Of all the decision variables, only two are truly independent

2 2
and thus 6 ^ and #3 arc chosen to be the independent variables. The

adjoint variables associated with the second stage are obtained

from equation (20) as
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z
x

=

2
/^ -

2
Z~ =

2 3
z
4

= z7 o ** o

4 4

= -H- (ce + ^lCHP)J +^4(0.2)

= (
Ce

+ ^1CHP) + °' 2 ^4 (47)

z
5

=

7
2 - 7v

3
Z
6 " " ^3

2 a z
3 ?x" = . =

3x
7

2 2 2 2
1» ^2' ^ 3 » ancl ^4 should be found from the following relations

[see equation (27)J

2H2
= ^H2 _ ^H2

= 9H2
=

(
48

)^ ^ td\ ^B\

By writing the above equations in expanded form, simplifying by

introducing functional relations from Table 3, and solving the four

simultaneous equations so obtained, one arrives at

2 2 2

,2 -

4
*'\

6

?'
2

6 ^6 (49)
2 ~ *2

2^ 2

3^
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2 ,2^2 ,2

,
_ ^j a£ *a? ag|

4

r
dfA dfi dfi -df\

d$
2

d0
5

^6
5

&d 2

_ 0^ v*i dfY

1 4 ^d\ ?>d\ ve\

M- ! ^ ^* ^ ,«,

(—
Z-f)

3. First stage

Following a derivation similar to that for the second stage,

one obtains

4 = °

2
1

*4

3 x
4

*3 x
4

(S3)
-5--

1 - \-
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r>

1 / _^ 1
a x_

- 1 _1 _ 1 1
and A , , A

2 , A„ and ?\4 arc obtained as

.1 11
, 1

dX4 1
^ X

6
gX

7 ,

^1 = $ _£ S (54)

(—f) (-^-) - (—t) (-if)
, 3^ ^ 3^ 94

/A A ; ; ; ;

—

( 55 )

2>^2 ^5 *&\ <^2

-A
1 rJL ^ ^ X

7. . M\. ,„,\= ^4T7 —J ) / (T^T> (56)

>3

1 3# 1 ^2 ,1 ^4
a #4 ^<?4 3i944£„ 3<S„ <5<9„

2*
4

With the z's and 7v ' s determined as above, the independent decision
v 2 » 2 .1 .1

stives of the Hamiltonian functions, , , r» 7" can

ial b&X >e\ »&\
be obtained as
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>H2
2 2 2 2

v 2 M' 2 V2' 2 ^3 .2 ^4
= A, + > —'— + ?\„ r + X r

1 ^ 2

^i
3 ^ /4

>#J

(58)

) H2
2 2

2 ^X4 2 ^X6 ^*7 .2 <^2
z ..

+ z ,. r + r + V r

>4
4 ^2 6 <2* 2

3 3
1)6

2 2 2*2
°
3 3

(59)

Sh 1 i^4 i K ^ x? si 2h /A1X

^
3 ^3 ^3 ^

3
^

3

112 2
When the independent decision variables d -, , <^o> ^ i > ^q are at

the local optimum values, these derivations, if they exist, should

be zero. 1111111
The above derivations show how z, , z2 , z

3 ,
z* , z,-, z^, z-

;

2222222333333
1> 2

2 '
2 3' 24' 2 5' 2 6> z

7 ;
2 2' 2 3' z4 '

2 5' 2 6 »
2 7 can be evaluatedz

3 > 3 \ 3 V 3 ^ 3 -s 2 ^ 2 ^ 2 -^ 2 . -* 1 -i
1 -vl Ov 1

and how z
L ; /

L
, A 2 , /\

3 , /^ ; 7^, 7^
2 , *

3 ,
?v
4 } 7^, <*

2 ' ^3» 4*»

2> H , ^ H , % H and ^H" are related to the decision derivatives

*e\ *£. *£ i>413 13 n ,n

of the state variables and constraint functions, and .

The decision derivatives of x. and d . are functions of decision
i /J

variables only (both independent and dependent) and are summarized

in Part B of Chapter 4.
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With these relations available, the optimization study for

determining locally optimal conditions of a multistage gas com-

pression system can be stated as follows:

The optimization study of a multistage gas compression system112 2
is to find the set of values for $ , Q , Q^ and £ which makes13 1 3

OH 1
, ^H 1

, III
2 and c> H2 as calculated by equations (58), (59),

^ b>\ U\ *,\

n _ n
(60), and (61) zero, when z.'s and A ' s are evaluated by the

relations derived in this section. It is theoretically possible

to find the optimum set by simultaneously solving the performance

equations and all the relations derived in this section. Such

simultaneous solution is practically impossible. Therefore, an

iterative numerical solution will be employed.

IV. ITERATIVE NUMERICAL SOLUTION FOR THE OPTIMIZATION OF A

MULTISTAGE GAS COMPRESSION SYSTEM

The iterative numerical solution used in the present study consists

of the following steps:

Step 1. Assume a set of numerical values for the independent de-112 2
cision variables 0-, , $3 ' &1* and ^3'

Step 2. Find the numerical values for all the remaining decision

variables and the state variables by the relations des-

cribed in Part A of Chapter 4.
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n
}xV

Step 3 . Calculate the numerical values for —and ^ by sub-

stituting the numerical values of the decision variables

and state variables into the relations derived in Part B

of Chapter 4.

Step 4. Calculate the numerical values for z. and A- by the rela-

tions derived in this section.

1 12
Step 5. Calculate the numerical values ^ H

, 2 SJ ,

^H and

2 1 3 1

by equations (50), (59), (60) and (61).

Step 6. Check if the assumed set of ( Q ) is the optimal policy

by noting that all values of ° " for all the independent
-* ^n

decision variables are zero or less than the allowable

errors preassigned to them.

Step 7. When the optimal condition is not reached a revised set

of decision variables should be assumed and the above

computations should be repeated. The new set of decision

variables may be automatically assumed by giving a set of

( A ) and input data to the computer. This set of

( a #
n

) may be varied at different stages of computation.

n
For example, we may use larger values for 4$. at the be-

ginning and use smaller values as the iteration converges,

The new decision variable is obtained by

+

( 6\ ) = ( d\) or
( 'A) ' («)

revised old -
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n . n
For a particular & , the sign before d@. is defined as

follows

:

when — > use ( - ) sign, (63)

} Hn
when < use ( + ) sign. (64)

>\ „n * ' y
'

assuming that in the region of computations, the sign of

h S and <2 H are always identical as suggested by equa-

tions (28-a), (28-b), (28-c), and (28-d). Note that this

assumption is not necessarily valid in every point of the

region especially at the very close vicinity of a stationary

point. The reasons for this rule can be explained by re-

ferring to a one-dimensional minimum seeking problem. Re-

ferring to Fig. 9, it is readily seen that the slope of the

S-curve, (*r-^-) is a positive value when $ exceeds the

— 2 Soptimum value, Q. In other words, when % . is positive the

sign before 4$ in equation (62) should be negative in order

<^ •

to approach the optimum value. Conversely, when ° s is
a &

negative, the d used is still lower than & . Therefore,

the sign should be positive. Incidentally, in a maximum

seeking problem the rule should be reversed as follows:

-) Tin
when a " > use ( + ) sign,

i

when < use ( - ) sign.

*4
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9

Fig. 9. One dimensional optimum secrch .
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It has to be kept in mind, when the second order varia-

tional effect becomes appreciable in comparison to the

\ jin
first order variational effect, the signs of and

^5
~c> S may be reversed and consequently the rule of

*\,,n

selecting the sign of-£—— may have to be reversed.

Step 8. When the above computation is repeated, a point will be

reached where all the change their signs between the

m-th and (m + 1 ) -th iteration. The optimum policy then

lies between the two sets of decision variables used in

the m-th and (m+l)th iterations.

In order to find the optimum more precisely, another

set of (a&) with smaller values assigned to Ad- mav De

used and the above computation repeated to again locate

the point where a complete reversal in sign of f takes

place. By successively assigning smaller values for the

(^0) set, we can approach the accuracy that is desired.

Step 2 in the above list requires further explanation. In

a multistage gas compression problem, inlet conditions and outlet

^o 3 3
conditions are given. Therefore #3, x^ , @-^ and x-^ are given

o
values, and x~ is assumed to be zero in this study. Due to step 1,112 2
^1> ^3> ^1 anci ^3 are 9iven values for each iteration. In step

2, numerical values are to be found for all the remaining decision

variables and all the state variables. The computation consists of

the following steps.
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o o o
1. Computation of 0^, x^ and x^ in stage (hypothetical stage)

o o o
1-a. Knowing Q. ^., calculate Q, by equation (IV-3).

o o o
1-b. Knowing Q ., and £>,-, calculate x4 by equation (IV-6).

o o .

1 -c . Knowing &„ and &,, calculate x, by equation (IV-8).

2. Computation of d. and x. in the first stage.

1 o
2-a. X5 is equated to x^

1 1 1
2-b. Knowing x^ and (j-^ > calculate &^ by equation (IV-7).

1 A 1
2-c. Knowing^ and 0^ , calculate x-^ by equation (IV-1).

.11 1
2-d. Knowing & -j_

and #4 , calculate X2 by equation (IV-4).

o 1 1
2-e. Knowing x4 and x2 , calculate x^ by equation (IV-16).11 1 A1
2-f. Knowing x-j_ and Xg calculate ^2 and ^5 by equations (IV-2)

and (IV-5).

.1 1 1
2-g. Knowing 8^ and x-^ calculate &^ by equation (IV-3).11 1
2-h. Knowing 0^ and 9 6 calculate x4 by equation (IV-6).11 1
2-i. Knowing Q^ an<^ Qh calculate x^ by equation (IV-8).

2-j. Knowing all the ^'s and x's calculate x7 by equation (IV-9)

2 2
3. Computation of @. and x- in the second stage. The computation

is similar to the computation for the first stage.

Q 3
4. Computation of & . and x. in the third stage.

3 2
4-a. Equate x_ to x,

5 6
.3 3

4-b. Knowing fi^ and x-^ (both are given values in an optimi-

zation problem), find $ by equation (IV-3).
6

4-c. Knowing ffi and £~
, calculate x by equation (IV-6)
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4-d. Knowing S and $ . , calculate x? by equation (IV-8).

3 3 a3 .3
4-e. Knowing x^ and x^ calculate "^ and 6^ by equations

(IV-1 ) and (IV-7) .

3 3 3
4-f. Knowing £>. and Q. , calculate x2 by equation (IV-4).

3 3 3
4-g. Knowing x and x. calculate x~ by equation (IV-16).

3 3 3 3
4-h. Knowing x

1
and x calculate Q and Q by equations

(IV-2) and IV-5)

.

3 3 3
4-i. Knowing x^ ' s and Pj's, calculate Xy by equation (IV-9).

In the above computations, the computations belonging to the

following two types require trial calculations.

.n n n
1. Type 1. Knowing 9-^ , x- calculate for ^-.

Examples are computations 1-a, 2-b, 2-g, and 4-b in the above

list. Transformation equations are written in the form of

n _n , „

n

=i
= T± ( * k> ^-),

and the function is implicit with respect to Q*} and $..
^ J

Therefore, in the numerical computation by a digital computor,

the following steps have been taken

„ n
a. Assume a value for $.,

b. Compute an x^ value from the above equation, and record the

result as (x?) calculated

n
.

c. Calculate 4x. value which is defined as

ax^ = (x?) - (X?)
known calculated

d. If A x is within the preassigned allowable error record the

assumed $ . as the root required.
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c. If Jx is greater than the preassigncd allowable error,

n
assume a new value of & by

( &) =
( 6%) + ^ (65)

new J old J

n
The sinn ahead of AS a should be decided by the nature of

n
transformation equation. The ( & .

)

value is considered
J new

as the new assumed value and all the steps repeated.

One may start with a large value of d&-\ at the be-

ginning and use a successively smaller value for the dfl- as

_ . n ,

the computation converges. One way is to compare A x^ values

n
in two successive computations. When the ^ xi value

changes its sign during two successive computations,

halve the <4£). value. This approach is incorporated in the

optimization calculations of CO? compression problems.

Note that other one dimension root finding methods

such as Newton's method and Fibnachi's method, which are

more efficient than the interval halving method mentioned

above, can also be used.

n n n _n
2. Type 2. Knowing x^ and x,- calculate Q\^ and 0^» Examples

are computations of equation (2-f ) ,
(3-f), (4-e), and (4-h) in

the above list.

Transformation equations are written in the form of

x
i

= T
i ( #k' &i)

(A)

xn = T*?( £?
n

, £n )
(B)
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The following computational steps have been taken:

a. Assume a value for /917k

b. Knowing #P and x^ , calculate £?* by equation (A) and by

the steps described in connection with the Type 1 prob-

lem.

c. Using values of B-^ (from step a) and On (from step b)

compute an x- value by equation (B), and record the re-

cord the result as (x-)v
J 'calculated

d. Calculate the A x,- value which is defined as

4x"=(x") - (x»)
J J known calculated

e. Similar to step (d) for Type 1.

f. Similar to step (e) for Type 1.

The relations derived and the methods described in this chapter

are used in solving various problems set up for compressing CC«2 gas

by a three-stage compression. The results of the computations are

described in the next chapter.



CHAPTER 6. OPTIMIZATION STUDY OF A MULTISTAGE (3-stage)

GAS COMPRESSION PROCESS OF CARBON DIOXIDE TO

VARIOUS DISCHARGE CONDITIONS

1. INTRODUCTION

The procedure developed in Chapter 5 is perfectly general and

can be applied to the optimization study of compressing any gas

from any inlet conditions to any discharge conditions, provided

equations of state are available. The equations of state developed

by Hirshfelder et_ al_. are quite general and accurate. According to

their approach, the field is divided into three regions; viz . low

density gas (Region I), high density gas (Region II) and liquid

(Region III). Gas compression in industrial processes may span

two regions or even three regions. The procedures developed can

handle even the most complex problem which can be formulated.

In order to illustrate the procedures and to demonstrate the

actual saving realizable by the application of the optimization

technique developed in this study as compared with the conventional

approach, the optimization technique has been applied to a multi-

stage CO2 gas compression problem in which the gas remains in

Region I only.

In order to assist visualization of the procedure and showing

how the successive iterations converge to the optimum condition, a

1 2two dimensional problem is formulated by fixing @ and £ and

A. .2
considering #-. and 6>% as the two independent variables controlling

the process. Optimization study of a two-dimensional problem is

described in S n II.
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Several opt imization problems have been set up by varying the

discharge conditions. These problems have been solved and the re-

sults of the calculations are described in Section III.

II. NUM£RIG\L SOLUTION OF A TWO DIMENSIONAL PROBLEM

The two dimensional problem is stated as follows:

C0„ gas is compressed by a 3-stage gas compression system

from 35 °F and 14.7 Psi to the discharge condition of 140 F and

1700 Psi. The gas is cooled to 100 °F after the first and second

stage compressions. The constants used in the problem are summarized

in Table 4. Find the optimum discharge pressures from the first

and second stage compressions and the cost under the optimum

operating condition.

The two parameter suboptimization problem can be solved by the

discrete analog of the maximum principle according to the numerical

computation procedure summarized in Chapter 5. Starting from a trial

11 IP
set of independent variables { T-, , T2 J-or equivalently i&±, @ \\.the

values of ^ H
. . and ^-H can be calculated and use these values

and the sign of the derivatives as a guide in selecting a new trial

set of decision variables. The successive iteration ultimately con-

verges to the optimum condition for the problem under consideration.

With a two dimensional problem, the contour lines of constant

gas compression cost can be shown graphically and show how the

locus of successive iterations shown converges to the sane optimal

1 1
condition for different starting trial sets of T. , T

2
or equiva-

f 1 2
lently i&-^ , 6 i), It should be noted that the present technique
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k =5.5
o

Tabic 4. Numerical Values for the Constants

PQ = 14.7 lb/in 2

P
c

= 1066 lb/in 2

$/Btu R = 1.987 Btu/lb-mole R

S° = 62.26 Btu/lb-mole R

at 492°R

$/Btu 14.7 psi (Ref 14)

T = 492 R
o

$/lb Tc = 547.8 R

>le

(t )
=

(

12° * 46
°) = 1.050

at 492°R, 14.7 psi w ° Tc

(Ref 14) . . .qc + 4An,
'

(t .
° ^OU a 0.995

b = 0.1983

b' = 0.739

C
e

= 2.94 x 10" 6

CH
= 7 $/ft2

CHP = 100 $/hp.hr

= 3.93 x 10"2

(S }w = 1

CW
= 1.5 x 10" 6

:

H° _ 1340 Btu/lb

c

k
x

= 1.43 U =5 Btu/ft. hr.F

k
2

= 1.33 V
c

= 0.0342 cu. ft/lb.

k
3

= 1.478 Z
c

= 0.275

kA = 0.794 df, , <J>^ = 9.4 x 10"6h-h

Note: Source of cost data (Ref. 24)
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is distinct from the gradient technique. In the gradient technique

the direction of the successive iterations arc taken normal to the

contour lines. In the present method, the direction of successive

iterations is not necessarily normal to the contour lines.

Figure 10 shows the gas compression cost vs. T^ at various

values of T~. The optimum condition is found to be T^ = 329 F,

T2 = 330 °F, and the gas compression cost is 2 .510£/lb-mole.

Figure 11 shows the contour lines of constant CO2 compression

cost. It also shows starting from conditions represented by points

1, 1', 1", 1 '"
, how the successive iterations lead to the optimum

condition of lowest cost.

III. RESULTS OF NUMERICAL COMPUTATION OF 3-STAGES C0
2

GAS COMPRESSION

PROBLEMS

Several problems have been formulated by varying the discharge

condition.

The problems are stated as follows:

CO2 gas is compressed by a 3-stage gas compression system

from 85 °F and 14.7 psi to the following discharge conditions:

Discharge Pressure (psi) Dis charge temperature ( F)

500 100, 140, 180, 220, 260

800 100, 140, 180, 220, 260

1100 100, 140, 180, 220, 260, 300

1400 140, 180, 220, 260, 300

1700 140, 180, 220, 260, 300
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Numerical values of the constants in the performance equations are

summarized in Table 4. Find the optimum conditions for all the

problems and also find the costs under the optimum conditions .

These problems have been solved and the results are summarized

by Figures 12-20.

Figure 12 summarizes how the intermediate stage pressures P^ and

P2 ( lines) vary with the discharge temperature at the discharge

pressure of 500 Psi. The optimum intermediate pressures as calcu-

lated by the conventional ideal gas assumption are also shown

( lines) for comparison. Figures 13, 14, 15 and 16 similarly

show the optimum intermediate stage pressures under discharge

pressures of 800, 1100, 1400 and 1700 psi respectively. By review-

ing the figures, it will be seen that the differences in the opti-

mum intermediate stage pressures increase as the discharge pressure

increases

.

Figures 17A and 17B respectively show how the optimum first

stage pressure and second stage pressure vary with discharge tem-

perature under various discharge pressures. Figure 18 shows how

the optimum intermediate stage temperature after hypothetical re-

versible compression varies with the discharge pressure under vari-

ous discharge pressures as calculated by the present method.

Figure 19 shows how the gas compression cost under optimum con-

ditions as calculated by the present method varies with the discharge

temperature under various discharge pressures. In the figure, gas

compression cost under the optimum condition as calculated by the

conventional approach is also shown for comparison. It shows that
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significant cost saving can be obtained if the gas compression is

conducted under the optimum condition as calculated by the present

method. Figure 20 shows the % cost reduction in gas compression

cost obtainable if gas compression is conducted under the optimum

policy calculated by the present method as compared with the case

where the optimum policy is calculated by the conventional ideal

r,as method. It shows that the % cost reduction increases as the

discharge pressure increases and the cost saving obtainable is

fairly significant. For example, a 2.5% cost saving is realizable

by operating under the optimum condition calculated by the present

study as compared with the case when the optimum policy is calcu-

lated by the conventional approach.

Figure 21 shows the computer flow diagram used in the program-

ming, and Table 6 shows the computer program used to obtain the

numerical results described above.

IV. SUMMARY

The optimization technique developed in this study is based on

the discrete analog of the maximum principle and an iterative search

method. The techniques employs four Lagrange multipliers in each

stage in association with the four equality constraints. The method

is fairly general and can be used in conjunction with any equation

of state.

The equation of state developed by Hirshfelder et al_. is used

in deriving the performance equations. Numerical computations have

been made for several problems related to 3-stage gas compression
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oJ carbon dioxide gas within region I. The computational scheme

developed here can be applied to any gas under a rather wide range

of temperature and pressure. The numerical computations have

given rise to the following significant results:

1. The optimal policy of a multistage gas compression system is

affected not only by the discharge pressure but also by the

discharge temperature. For example, Fig. 15 shows that the

optimum second stage pressure for a three-stage CO gas com-

pression system discharging at 1400 psia varies from 370 psia

o
to 400 psia as the discharge temperature varies from 120 F

to 300 °F.

2. The optimal policy of a three-stage carbon dioxide gas com-

pression system as computed by the present approach is signi-

ficantly different from the policy as computed by the conven-

tional approaches. For example, at the discharge pressure of

1400 psia and discharge temperature of 300 °F, the optimum

first and second stage pressures as computed by the present

approach are 86 psia and 400 psia respectively. The optimal

first and second stage pressures computed by the conventional

approaches are 56 psia and 296 psia respectively.

3. The gas compression cost evaluated by the present approach at

the optimum condition is significantly lower than the gas

compression cost evaluated at the optimum condition as deter-

mined by the conventional approach. The difference in these

costs is summarized in Figure 19. It is shown that the cost

difference increase as the discharge pressure increases.

Figure 20 shows % cost saving as a function of discharge tern-
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peraturc and pressure. The cost saving is about 2.5% for CO9

compression at the discharge pressure of 1700 psia.

All the numerical computation has been made by IBM 360

computer. Computing time for one iteration as described in

section IV of Chapter 5 is 20 seconds. Assuming that 15

iterations are required to arrive at the optimum policy, the

computing time required is 5 minutes for solving an optimiza-

tion problem considered in this work.
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Nononcla turc

An = heat transfer area of the n-th stage intercooler, ft

b = a constant appearing in the equation of state; 0.1985

for C02

b' = a constant appearing in the equation of state; 0.739

for C0
2

-6 j, ,C = unit power cost; 2.94 x 10 $/Btu.

Cj_j = capital cost per unit heat transfer area; 7 $/ft

CHP
= capital cost for compressors per HP; 100 $/HP =

3.93 x 10-2 $/Btu/hr

Cp = heat capacity of C02 gas per lb-mol, Btu/lb-mol °R:

6.53 xlO3 1.41 x 106
Cp = 16.2 -

J
+

2 (Ref. 21)

(Cp) w = heat capacity of cooling water; 1 Btu/lb R

C = unit cooling water cost; 1.5 x 10 $/lb

E-, = cost due to the power consumed in the n-th stage

compressor, $/lb-mole.

E = cost due to allocating the initial cost of the n-th

stage compressor, $/lb-mole

E^ = cost due to allocating the initial cost of the n-th

stage heat exchanger, $/lb-mole

E = cost due to the cooling water used in the n-th

stage intercooler, $/lb-mole

H = enthalpy of gas, Btu/lb-mol

H = enthalpy of the gas leaving the n-th stage intercooler

Btu/lb-mole
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»

Hn = enthalpy of the gas after the n-th stage reversible

compression , Btu/lb-mole

H = enthalpy of the gas after n-th stage actual compression,

Btu/lb-mole

H = enthalpy of the gas at hypothetical ideal gas state at

the temperature of the gas, Btu/lb-mole

H = enthalpy of the gas at hypothetical ideal gas state and

at a reference temperature TQ , Btu/lb-mole

H = Hamiltonian function at n-th stage

H = Hamiltonian function at the last stage

k_ = a constant appearing in the equation of state; 5.5

k^ = a constant appearing in the equation of state; 1.43

k^ = a constant appearing in the equation of state; 1.33

k~ = a constant appearing in the equation of state; 1.478

k4 = a constant appearing in the equation of state; 0.794

m = flow rate, lb-moles/hr

N = total number of stage

P = pressure of the gas, psi

P = pressure of the gas at inlet condition, psi

pressure of the gas at the standard condition, psi

P
c

= critical pressure of the gas, psi

p
p = reduced pressure of the gas, p = —

—

pc

pn = pressure of the gas at the n-th stage, dimensionless

Btu
R = gas law constant; 1.98 ib_rao le °R

S = entropy of the gas, Btu/lb-mole °R
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sn = entropy of the gas after the hypothetical reversible

compression at n-th stage, Btu/lb-mole °R.

S = entropy of the gas under hypothetical ideal gas

state at the temperature of the gas and at the

critical pressure of the gas, Btu/lb-mole R

S = entropy of the gas under the hypothetical ideal gas

state at the temperature of the gas and occupying

the same volume as the actual gas, Btu/lb-mole °R

S = entropy of the gas at a hypothetical ideal gas state

and at the standard pressure, Btu/lb-mole R

T = absolute temperature of the gas R

o
TQ = absolute temperature of the reference state, R

Tc = critical temperature of the gas, R

T
t = reduced temperature of the gas, t = ~Z

x c

tn = reduced temperature of the gas leaving the n-th stage

intercooler

tn
' = reduced temperature of the gas after n-th stage re-

versible compression

t " = reduced temperature of the gas after n-th stage

actual compression

(t )• = ratio of the absolute temperature of cooling water

entering the coolers over the critical temperature

of the gas

(t ) = ratio of the absolute temperature of cooling water

leaving the coolers over the critical temperature

of the gas
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U = overall coefficient of heat transfer in the inter-

coolers; 5 Btu/ft /hr. °R

V = volume of the gas; cu-ft/lb-mole

V = critical volume of the gas; cu-ft/lb-mole

VQ
' = volume of the gas under a hypothetical ideal gas

state at the temperature of the gas and at the

critical pressure of the gas

x? = a state variable

zc
= compressibility of the gas at critical condition;

for C02 gas 0.275

z- = adjoint variable associated with x.

Vc
p = reduced density of the gas; = •

fn = reduced density of the gas leaving the n-th stage

cooler

J*
' = reduced density of the gas after n-th stage reversi-

ble compression

Jn " = reduced density of the gas after n-th stage actual

compression

fi >l2 ~ fractions of the initial cost of a gas compressor and

an intercooler allocated and chargeable to an hour

operation respectively: in the numerical computations

they are assumed to be the same and taken as 9.4 x 10"

fn
Yi

= constraint functions at n-th stage
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Table 'i. Definition of Computer Notations

Computer
notation

DHT

DIT

CUT

DXT

DLT

HTI(n+l)

HT3(n+l

PlTl(n+l)

PlT2(n+l)

PlT4(n+l)

PlT5(n+l)

P2Tl(n+l)

P2T3(n+l)

P2T4(n+l)

P2T6(n+l)

Conventional
and/or

Compu ter maximum principle
not. at ion notation

AH H°

AKO ko

AK1 kl

AK2 k2

AK3 k3

AK4 k4

ALM1( n+1) *1

ALM2(:n+1) *3

ALM3( n+1)
n

7n 3

ALM4 (

;

n+1) ^4

AS S°

Bl b

B2 b'

CE ce

CH CH

CHP CHP

CPW V*
cw Cw

cz Zc

DET
n

DFT
n

A6 A

DGT Afi
U

Conventional
and/or

maximum principle
notation

n

AB
n
6

A el

A6\

?H

?H*
dd n

3

?s
n
5

H2

as defined

by equa-

tion 65 of

Chapter 5
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Table 5. Definition of Computer Notations--Continued

Computer
notation

Conventional
and/or

maximum principle
notation

Computer
notation

Conventional
and/or

maximum principle
notation

P3Tl(n+l) POC

P3T4(n+l

)

P3T6(n+l)

P4T4(n+l)

P4T5(n+l

)

P4X4(n+l)

PH

l£.
3*1

Hi
2o

n-l

(n+1) ^4
•\ „n

(n+1) Ml
5*»

5

2>x
n-l

ti

R

Tl(n+1)

T2(n+1)

T3(n+1)

T4(n+1)

T5(n+1)

T6(n+1)

TlP(n+l)

T3P(n+l)

TC

TO

TWI

TWO

U

Xl(n+1)

X2(n+1)

*V V
^2' n

n +

& A >

£
n
6' n

n
& -> in memory

^ in memory

o

u

n i ti

x
l '

P
n '

Pn '

Pn

n ,. i

x~ • H2
' n
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Table 5. Definition of Computer Notations--Continued

Computer
notation

X3(n+1)

X4(n+1)

X5(n+1)

X6(n+1)

X7(n+1)

XlTl(n+l)

X2Tl(n+l)

X2T4 ( n+1

)

Conventional
and/or

maximum principle
notation

x "n

n
xA , H.n

n
c-x 5» bn

x? Sx 6' °n

x
7 , C

del

^x.

n

XlT2(n+l)
2

"
2

XlT3(n+l)

2>0^

}*?
XlT4(n+l) 1

1^4

XlT5(n+l) b^l

^
XlT6(n+l)

i n

V0k

n2x2

^0 2

«\
n

*6l

Conventional
and/or

Computer maximum principle
notation notation

X3T2(n+l)
•\ ndx 3

Hi

X3T5(n+l)

n
2*3

X4T3(n+l)

X4T6(n+l)

X5Tl(n+l)

X5T4(n+l)

X6T3(n+l)

X6T6(n+l)

X7T2(n+l)

2>6

n

d0\

n

n
"c>X 5

3
n

3x'

te\

n

3*.

^

n

9 x.
n

n
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Table 5. Definition of Computer Notations--Continucd

Conventional
and/or

Computer maximum principle
notation notation

X7T3(n+l)

X7T6(n+l)

X7X4(n+l)

X7X7(n+l)

«, n

"^ n
X7T5(n+l) °7

a*;

n^
^^6

n
2>x7

axj"
i

^n

7

-v n-
2x

?

:

Conventional
and/or

Computer maximum principle
notation notation

Zl(n+1)
n

2
i

Z2(n+1) 2
2

Z3(n+1) 2
3

Z4(n+1) 2
4

Z5(n+1) 2S

Z6(n+1) z
n

6

Z7(n+1) *"
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T.vlilc 6. Computus Program

COST OPTIMIZATION OF PUMP SYSTEM
DIMENSION T I ( 4 ) , T2 ( 4 ) , T.'3 ( 4 ) , T4 ( 4

X4 ( 4 ) ,

X

r
> ( 4 ) , X6 ( 4 ) , X7 (

4

X JT2(4) ,X3T5(4) ,X4T5(4
X6T3 ( 4 ) , X0T6 ( 4 ) , X7T2 (

4

X7X7(4) ,P1T1(4) ,P1T2(4
P2T3(4) ,P2T4(4) ,P2T6(4
P4T2(4) ,P4T4(4) ,P4T5(4
Z1(4),Z2(4),Z3(4),Z4(4
ALM2 ( 4 ) , ALM 3(4) ,ALM4 (

4

,T5(4),T6(4),XL(4),X2(4),X3(4)
,XIT1(4) ,XIT4(4) ,X2T1(4) ,X2T4(4)
,X4T3(4) ,X4T6(4) , X5T1 ( 4 ) ,X5T4(4)
,X7T3(4) ,X7T6(4) ,X7X4(4)
,P1T4(4),P1T5(4),P2T1(4)
,P3T1(4) ,P3T4(4) ,P3X6(4 ) ,P4T1 (4)
,P4X4(4) ,DKT(4) ,DLT(4) ,T1P(4)
,Z5(4) ,Z6(4),Z7(4) ,ALM1(4)
,HT1(3),HT3(3),X7T5(4),T3P(4)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

1001 P0RMAT(SE10.4)
1002 FORMAT(7Fl6.8)

READ(1 ,1001) AKO,AKl,AK2,AK3,AK4,Bl,B2
READ( 1,1001) POC,CZ,R,TC
READ(1 ,1001) TWO,TWI ,TO ,CHP ,CH,PH,CW,CPW
READ(1,1001) AH,AS,U,CE
READ( 1,1001) T3(l) ,X1(1),X7(1)
N =

1 N=N+1
IF(N.EQ.3) GO TO 520
READ(1,1001) XI (4)
M=0

2 M=M+1
IF(M.EQ.6) GO TO 510
READ(1,1001) T3(4)
READ( 1,1001)
READ( 1,1001)
READ( 1,1001)
READ(1 ,1001)
L=0

4 L=L+1
IF(L.EQ.16) GO TO 500
READ( 1,1001) DET,DFT,DGT,DHT,DIT,DJT
READ( 1,1001) T4(2) ,T5(2),T6(2) ,T2(2)
READ( 1,1001) T4(3),T5(3),T6(3),T2(3)
READ(1,1001) T4(4),T5(4),T6(4),T2(4),T1(4)
DX5=1

.

1 = 1

5 DX1=1.
10 XIC =-(AK0+AKl/T3(I) )(T6(I)**2.+AK2*(-T3(I)+1./T3(I))*T6(I)**3.

1+T6(I)*T3(I)/(CZ*(1.-B1*T6(I)+B2*T6(I)*T6(I)))
DX1P=DX1
dxi=xi(i)-xic
1f(abs (dx1)-ab)80,80,30

30 1F(DX1P*DX1) 40,40,50
40 DF7=DET/2.
50 I] ;DXl)o0,60,70
60 T6(I)=T6(I)-DET

CO TO 10
70 18(I)=T6(I)+DET

GO TO 10

T1(2),T3(2),T1(3),T3(3)
HT1(2),HT3(2) ,T1P(2) ,T3P(2)
HT1(3) ,HT3(3) ,T1P(3) ,T3P(3)
EKT(2) ,DKT(3),DLT(2),DLT(3)
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80 CONTINUE
TT=ALOG ( T3 ( I

) *TC/TO

)

TT1=1./(T3(I)*TC)-1 ./TO
TCI 1

1 = Io.2*(T:3(I)*TC-TO)-35:}0.*TT-1410000.*TT1
TC^1=1o.2*TT+6530.*TT1 -705000. *(1./(T3( I )*TC)**2.-1./T0**2.

)

X4(l)=-CZ*R»TC»T3(I)*(T6(I)I(2.*AKO/T3(I)+3.*AKl/T3(I)*»2. )
)-

lCZ*R»TC*T3(I)*(AK2*T6(I)*16(I)*(l.-2./T3(I)**2. )
)+R*TC*T3( I )*B1*

2T6(I)-B2*T6(I)*T6(I) )/( 1 . -B1*T6( I ) +B2*T6( I )*T6( I )
)+AH+TCPl

X6 ( I )=R* ( CZ* ( -AK1*T6 ( I ) /T3 ( 1
) **2 . +0 . 5*AK2*T6 ( I

) *T6 ( I )* ( 1 . -

ll./T3(I)**2.
)
)-AL0G(T6(I)*T3(I))+0.5*ALOG(l.-Bl*T6(I)+

2B2*T6(1)*T6(I) )-AK3*ATAN ( AK3 ) -AK3*ATAN ( AK4*T6( I ) -AK3) +ALOG(CZ ) )
3R*AL0G(PCC)+A5+TCS1
KRITE(3,1002) T3(I),T6(1)
KRITE(3,1002) XI ( 1 ) ,X4( I )

,X6( I ) ,X7 ( I

)

IF(I.FQ.4) GO TO 100
DG 300 1=2,3

100 READ( 1,1001) DET,DFT,DCT,DHT,DIT
X5(I)=X6(1-1)
IF(I.F0.4) GO TO 305
TT1=1./(T1(I)*TC)-1./T0
TT=ALOG ( Tl ( I )

*TC/TO

)

TCP2=16.2*(T1(I)*TC-T0)-6530.*TT-1410000.*TT1
TCS2=16.2*TT+6530.*TT1-705000.*(1./(T1(I)*TC)**2.-1./T0**2.

)

DX1=1.
110 X5C = R*(CZ*(-AK1*T4(I)/T1(I)**2.+0.5*AK2*T4(I)*T4(*)*(1.-

1 1 . /Tl ( I
) **2

. )
) -ALOG ( T4 ( I

) *T1 ( I )
) +0 . 5*AL0G ( 1 . -B1*T4 ( I

)

+

2B2*T4(I)*T4(I) )-AK3*ATAN (AK3) -AK3*ATAN (AK4*T4( I )-AK3 )+AL0G(CZ )
)

3R*AL0G(P0C+AS+TCS2
DX1P=DX1
DX1=X5(I)-X5C
I F( ABS ( DX ) -AC) 1 50 , 1 50 , 1 1

5

115 IF(DX1)140,140,130
120 DFT=©FT/2.
125 IF(DX1)140,140,130
130 T4(I )=T4(I)-DFT

GO TO 110
140 T4(I)=T4(I)+DFT

GO TO 110
150 CONTINUE

X1(I)= -(AK0+AK1/T1(I))*T4(I)**2.+AK2*(-T1(I)+1./T1(I))*T4(I)**3.
I+T4(I)*T1(I)/(CZ*(1.-B1*T4(I)+B2*T4(I)*T4(I)))

160 TT=AL0G(TT=AL0G(T1(I)*TC/T0)
TT1=1./(T1(I)*TC)-1./T0
TCP2=16.2* (Tl ( I )*TC-TO) -6530.*TT-1410000.*TT1
X2(I)=-CZ*R*TC*T1(I)*(T4(I)*(2.*AK0/T1(I)+3.*AK1/T1(I)**2.))-
10Z*R*TC*Tl(I)*(AK2*T4(I)*T4(l)*(l.-2./Tl(I)**2.

) ) +R*TC*Tl ( I )*B1*
2T4 (I)-B2*T4(I)*T4(I) )/( 1 . -B1*T4 ( I ) +B2*T4( I )*T4( I )

)+AH+TCP2
.
)=1 .2*X2(I)-0.2*X4(I-1)

. . I 1 .

170 OONTINUB
rX3T=0.002
BX1=1.
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175 XIC = -(AX0+AIU/T2(I))*T5(I)**2.+AK2*(-T2(I)+WT2(I))«T5(I)*»3.
1+T5(

!

)*T2(10/(CZ*(1.-B1*T5(I)+B2*T5(I)*T5(I) ))
BX1P=BX1
BX1=X1(1 )-XlC

(ADS (BX1)-AB1220,330,180
ISO IF(BX1P*DX1) 185,185,190
185 DGT=DGT/2.
190 IF( 3X1)200,200, 210
200 T5(I)=T5(I)-DGT

GO TO 175
210 T5(I)=T5(I)+DGT

GO TO 175
220 CONTINUE

TT=ALOG ( T2 ( I
) *TC/TO

)

TT1=1 ./T2I )*TC) -1 .TO
TCP9=1 6 . 2* (T2( I

) *TCOTI ( 06539 , *TT01419999 , *TT1
X3C --CZ* R*TC*T2 ( I )* ( T5( I )* ( 2 .*AK0/T2 ( I )+3 .*AKl/T2 (

I

)**2 . )

)

1CZ* R*TC*T2 ( I )* (AK2*T5( I )*T5( I )
( 1 . -2 ./T2{ I )**2 .

) )+R*TC*T2( I )* (Bl*
2T5( I

) -B2*T5( I )*T5( I ) )/( 1 .B1*T5( I )+B2*T5( I )*T5( I
)
)+AH+TCP9

DX3P=DX3
DX3=X3(I)-X3C
IF(ABS(DX3)-AD) 255,255,225

225 IF(DX3P*DX3) 230,230,235
230 DHT=DHT/2.
235 IF(DX3) 240,240,250
240 T2(I)=T2(I)-DHT

GO TO 170
250 T2(I)=T2(I)+DHT

GO TO 170
255 CONTINUE

IF(I.EQ.4) GO TO 295
DX1=1

.

260 XIC =-(AK0+AKl/T3(I) )*T6( I )**2 . +AK2* ( -T3 (I )+l ./T3( I ) )*T6( I )**3.

1+T6(I)*T3(I)/CZ*(1.-B1*T6(I)+B2*T6(I)*T6(I)))
DX1P=DX1
DX1=X1(I)-X1C
IF(ABS (DXl)-AB) 290,290,265

265 IF(DX1P*DX1) 270,270,275
270 DIT=DIT/2.
275 IF(DX1)280,280,285
280 T6(I)=T6(I)-DIT

GO TO 2 60
285 T6(I)=T6(I)+DIT

GO TO 260
290 CONTINUE

IF(T3(I)-TWT) 292,292,293
292 T3( I )=TXI +0.0001
293 TT=AL0G(T3(I)*Tc?TO)

TT1=1./(T3(I)*TC)-I./T0
TCP3=16.2*(T3( I )*TC-TO) -6530.*TT-1410000.*TT1
X4(I}= -C2*R*TC*T3(I)*(T6(I)*(2.*AK0/T3(I)+3.*AK1/T3(I)**2.))-
1CZ*P*TC*T3(I)*(AK2*T6(I)*T6(I )* ( 1 . -2 ./T3(

I

)**2 .

)

)+R*TC*T3( I )*(B1*
216(I)-B2"16(1)*T6(I) )/( 1 . -B1*T6( I )+B2*T6( I )*T6(

I

)
)+AH+TCP3
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TCS 3=1 6. 2*TT65 10. « TTl -70^000. *(1./(T3( I )*TC)**2.-l./TO**2.
)

X6(I)=R* (CZ* ( -AKl *T6(I)/T3( I )**2-+0.5*AK2*T6(I )»T6(I)»(1.
1 I . /T i( I )** 2 . ) ) -AIjOG ( To ( I )*T3( I )

)+0. 5* ALOG ( 1 • -81* T6 ( I ) +

2B2*To(T)*T6(] )
) -AK3*ATAN ( AK3) -AK3*ATAN ( AK4*T6( I

) -AK3) +ALOG(CZ) )
3 R*ALOG ( TOC ) +AS+TCS 3

295 DELT=((T2(I)-TW0)-(T3(I)-TWI) )/ALOG( (T2 ( I
) -TWO )/(T3( I

) -TWI )

)

X7 ( I )=X7 (
I -1 ) +CE* ( X3 ( I

) -X4 ( I -1 )
) +PH*CI IP* ( X3 ( I

) -X4 ( I -1 )
) +PH*CH*

1 (X3 ( I ) -X4 ( I ) ) /( O* )C*DELT) +CII* ( X3 ( I ) -X4( I
)
)/CPW*TC* ( TWO-TWI ) )

WRITE(3,1002) 11(1) ,T2(I) ,T3(I) ,T4(I) ,T5(I) ,T6(I)
WRITE(3,1002) XI (1) ,X2(I) ,X3( I ) ,X4( I

)

,X5(I )
,X6(I),X7(I)

IF(I.EQ.4) GO TO 400
300 GO?s'TINUE

T=4
GO TO 5

305 DFT=0.002
BX1=1.

310 X1C = - ( AJCO+AK1 /Tl ( I ) )*T4(I )**2 .+AK2* ( -Tl ( I ) +1 ./Tl ( I ) )*T4(I)**3.
1+T4(I)*T1(I)/(CZ*(1.-B1*T4(I)+B2*T4(I)*T4(I) ))

BX1P=BX1
BX1=XI (I )=X1C
I F( ABS ( BX1 ) -AB ) 350 , 350 , 31

5

315 IF(BX1P»BX1) 320,320,325
320 DFT=DFT/2.
325 IF(BXl) 330,330,340
330 T4(I)=T4(I)-DFT

GO TO 310
340 T4(I)=T4(I)+DFT

GO TO 310
350 CONTINUE

TT1=1./(T1 ( I )*TC) -1 ./TO
TT=ALOG(T) (I)*TC/TO)
TCP2=16.2*(T1(I)*TC-TO)-6530.*TT-1410000.*TT1
TCS2=16.2*TT+6530.*TT1 -705000. *(1./(T1( I )*TC)**2.-1 .T0**2.

)

X5C = R*(CZ*(-AK1*T4(I)/T1(I)**2.+0.5*AK2*T4(I)*T4(I)*(1.+
11 ./Tl ( I )**2 . )

) -ALOG( T4 ( I )*T1 ( I )
) +0 . 5*ALOG( 1 . -B1*T4( I )

+

2B2*T4(I)*T4(I) )-AK3*ATAN (AK3 ) -AK3*ATAN ( AK4*T4( I
) -AK3) +AL0G(CZ) )

3B*ALOG ( POC ) +AS+TCS2
DX5P=DX5
DX5=X5(I)-X5C
IF(ABS(DX5)-AC) 390,390,355

355 IF(DX5P*DX5) 360,360,365
360 QJT=DJT/2.
365 IF(DX5) 370,370,380
370 T1(I)=T1(I)-DJT

GO TO 305
380 (1)(I)=T1(I)+DJT

GO TO 305
390 CONTINUE

GO TO 160
400 DO 440 K=2,4

TP1=1.-;U*T4(K)+B2*T4(K)*T4(K)
TP2=T4(X)*T4(K)*T4(i<)
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X1TI(K)=AIU*T4(K)*T4(K)/T1(K)**2-AK2*TP2-AK2*TP2/T1(K)**2
I+T4(K)/0/*TPl)
X1T4(K)=-2.*AK0+AK1/T1(K) )* T4 (K) + 3 .*AK2* ( -Tl (K ) +1 ./T1(K) )*

1T4(K)*T4(K) + (TP1*T1(K)-T4(K)*T1(K)*(-B1+2.*B2*T4(K) ))/
2(0Z*T?1*TP1

)

CP1=16.2- 6530./(TC*T10K) )+ 1410000. /( (TC*T1 (K) )**2

)

X2T1(K)=CZ*R*TC*3.*AK1*T (K)/(T1 (K) *T1 (K) ) -CZ*R*TC*AK2*T4(K)*
1T4(K)-2.*CZ*R*TC*AK2*T4( )*T4 (K )/(Tl (K )*T1 (K) )+

2K*TC*(81*T4(K)-B2*T4(4)*/4(K) )/ TP1 +CP1*TC
X2T4(K)=C2*R*TC*T1(K)*12.*AK0/T1(K)+3.*AK1/(T1(K)*T1(K)))-
12.*CZ*R*TC*Tl(K)*AK2*T4(K)*(l.-2./(Tl(K)*Tl(K)

)
)+

2K*TC*T1(K)*(B1-2.*B2*T4(K) )/TPl*TPl)
410 TP3=1. -B1*T5(K)+B2*T5(K)*T5(K)

CP2=16.2- 6530./(TC*T2(K) )+ 1410000. /( (TC*T2 (K) )**2

X3T2(K)=CZ*R*TC*3.*AK1*T5(K)/(T2(K)*T2(K) ) -CZ*R*TC*AK2*T5(K)*T5(K)
1-2.*CZ*R*TC*AK2*T5(K)*T5(K)/T2(K)*T2(K) )+R*TC* ( 81*T5(K)

-

282*T5(K)*T5(K))/TP3 +CP2*TC
X375(K)=-CZ*R*TC*T2(K)*(2.*AKO/T2(K)+3.*AKl/(T2(K)*T2(K)))-
12.*CZ*R*TC*T2(K)*AK2*T5(K)*(l.-2./(T2(K)*T2(K) )

)+

2R*TC*T2(K)*(B1~2.*B2*T5(K) )/(TP3*TP3)
TP4=1 . -Bl *T6 ( K ) +B2*T6 ( K ) *T6 ( K

)

CP3=16.2- 6530./(TC*T3(K) )+ 1410000. /( (TC*T3(K) )**2

)

X4T3(K)=CZ*R*TC*3.*AK1*T6(K)/(T3(K)*T3(K))-CZ*R*TC*AK2*T6(K)*
1T6(K)-2.*CZ*R*TC*AK2*T6(K)*T6(K)/(T3(K)*T3(K) )+R*TC* (B1*T6(K) -

*

2 2*T6(K)*T6(K) )/ TP4+CP3*TC
X4T6(K)=-CZ*R*TC*T3(K)*(2.*AK0/T3(K)+3.*AKl/(T3(K)*T3(K)))-
12.*CZ*R*TC*T3(K)*AK2*T6(K)*(l.-2./(T3(K)*T3(K) ) )+R*TC*T3(K)*
2(B1-2.*B2*T6(K) )/(TP4*TP4)
TP5=T1(K)*T1(K)*T1(K)
X5T1(K)=R*(CZ*(2.*AK1*T4(K)/TP5-AK2*T4(K)*T4(K)/TP5)-1./T1(K))+
1CP1/T1(K)
TP6=T3(K)*T3(K)*T3(K)
X6T3(K)=R*(C2*(2.*AK1*T6(K)/TP6=AK2*T6(K)*T6(K)/TP6)-1./T3(K))+
1CP3/T3(K)

420 X5T4(K)=R* ( CZ* ( -AK1/T1 (K )**2 .AK2*T4 (K)*(1.+1.T1 (K)**2 . ) )-l./
1T4(K)-B1-2.*B2*T4(K) )/(2 .* ( 1 . -B1*T4(K)+B2*T4(K)*T4(K) )

)-AK3*AK4.
2 ( 1 . + ( AK4*T4 ( K ) -AK 3 ) * ( AK4*T4 ( K ) -AK3 ) )

)

X6T6(K)=R*(CZ*(-AKl/T3(K)**2.+AK2*T6(K)*(l.+l./T3(K)**2.) )-l./
1T6(K)-(B1-2.*B2*T6(K) )/( 2 .* (2 . -B1*T6 (K)+B2*T6(K)*T6(K

) )
)

-

2AK3*AK4/(1.+(AK4*T6(K)-AK3)*(AK4*T6(K)-AK3)))
XRITE(3,1002) X1T1(K) ,X1T4(K) ,X2T1(K) ,X2T4(K)
X7T2(K)=X3T2(K)*CE+PH*CHP+CW/(CPVv1»TC*(TWO-TWI) )+PH*CH *(

1ALOG(T2(K)-TWO)-ALOG(T3(K)-TWI))/(U*TC*((T2(K)-TWO)-(T3(K)-TWI))))
2+PH*CH*(X3(K)-X4(K) )*( (T2 (K) -TWO ) -(T3(K) -TWI ) -(AL0G(T2 (K) -TWO)

-

3AL0G(T3(K)-TW1) )* ( T2 (K) -TWO) )/0*TC*( (T2 (K ) -TWO) -(T3(K) -TWI
)
)*

4( (I2(K)-TW0)-(T3(K)-1WI) )* (T2 (K )-TWO )

)

WRITE(3,1002) X3T2(K) ,X3T5(K)
X77 3 (K) =X4T3 (K ) * ( PH*CH * ( AIjOG( T2 (K ) -TWO ) -AL0G( T3 (K ) -TXI ) )

/

1 ( OTC* ( (T2 (K ) -TWO ) - ( T3 (K ) -TWI ) ) ) +CW/ ( CPW*TC* ( TWO-TWI ) ) )
-

2PH*CH *(X3(K)-X4 (il) )*( (
(T2(K)-TWO)-(T3(K)-TWI) )+(T3(K) -TWI )*

3(. MJ !(T3(K)-TW0)-AL0O(T3(K) -TWI ) ) )/(0*TC* ( (T2(K)-TWO)-
4(T3(K)-TWI )

)*((T2(K)-TWO)-T3(K)-TWI))»(T3(K)-TWI))
XRITE (3,1002 X4T3(K) ,X4T6(K) ,X5T1 (K ) ,X6T3(K)
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430 X7T5 ( K ) =X3T5( K )
*

( CE+PH*CHP+CW/ ( CPW*TC* ( TWO-TWI ) ) +PH*CHP*
l(ALOG(I2(K)-TWO)-ALOG(T3(K)-TWI) )/(0*TC* ( ( T2 (K) -TWO ) -(T3 (K

)

-TWI ) )

)

2)
:ITE(3,1002 X5T4(K) ,X6T6(K) ,X7I2(K) ,X7T3(K)

X7I6(K)=-X4I6(K)*(PH*CH * (ALOG( 12 (K) -TWO) -AL0G(T3(K) -TWI
) )/

1(0*TC*( (T2(K)-TW0)-T3(K)-TWI) )
)+CW/(CPW*TC* (TWO-TWI

) )

)

X7X4 ( K ) =
- ( CE+PH*CHP

)

P1T1(K)=X1T1(K)
P1T2(K)= -(AK1*T5(K)**2)/(T2(K)**2) +AK2* (T3(K )**3 )+AK2* (T5(K)«»3)
1/(T2(K)**2)-T5(K)/(CZ*TP3)
P1T4(K)=X1T4(K)
P1T5(K)= 2.*(AK0+AKl/T2(K) )*T5 (K) -3 .*AK2* ( -T2 (K )+l ,/T2 (K

)

)

1*T5(K)*T5(K)-(TP3*T2(K)-T5(K)*T2(K)*(-B1+2.*B2*T5(K)))
2/(CZ*TP3*TP3)
P2T4(K)=X1T4(K)
P2T1(K)=X1T1(K)
P2T6 ( K ) = 2 . * ( AK0+AK1 /T3 (K )

) *T6 ( K ) -3 . *AK2* ( -T3 (K ) +1 . /T3 ( K )

)

1/T3(K)**2-T6(K)/(CZ*(1.-B1*T6(K)+B2*T6(K)**2_
P3T1(K)=X5T1(K)
P3T4(K)=X5T4(K)
P3X6(K)=-1.

P4T1 ( K ) = -1 . 2*X2T1 (K

)

P4T2(K)=X3T2(K)
P4T4(K)=-1.2*(X2T4(K)

)

P4T5(K)=X3T5(K)
P4X4(K)=0.2

440 CONTINUE
22(4)=0.0
Z3(4)=0.0
Z4(4)=0.0
25(4)=0.0
Z6(4)=0.0
Z7(4) = l .0

ALM2 ( 4 ) = -X7T6 ( 4 ) /P2T6 ( 4 ) /P2T6 ( 4

)

ALM4(4)=(X7T5(4)*P1T2(4)-X7T2(4)*P1T5(4) )/( P4T2 (4 )*P1T5( 4)

-

1P4T5(4)*P1T2(4)

)

ALM1 ( 4 ) =
- ( X7T2 ( 4 ) +ALM4 ( 4 )*P4T1 ( 4 ) ) /P1T2 ( 4

)

ALM 3 ( 4 )
= ( XI Tl ( 4 ) * ( ALM 1 ( 4 )

* PIT4 ( 4 ) +ALM 3 ( 4 ) *P2T4 ( 4 ) +

1ALM4(4)*P4T4(4))-X1T4(4)*(ALM1(4)*P1T1(4) +ALM2(4)*P2T1(4)+
2ALM4(4)*P4T1(4)

)
)/(P3Tl ( 4 )*X1T4(4 ) -P3T4 (4 )*X1T1 (4 )

)

Zl ( 4 ) = - ( ALM1

(

4 ) *P1 Tl

(

4
)
+ALM2

(
4 ) *P2T1

(

4
) +ALM3 (

4
) *P3T1 (

4 ) +
1ALM4(4)*P4T1(4))/X1T1(4)
DO 490 K=2,3
I = 5-K
Zl(l )=0.0
Z2(I)=0.0
Z3(I)=0.0

(I)=-(CE+PH*CHP) +ALM4(I+1)*0.2
Z5(I}=0.0
Z6(I)=-ALM3(I+1)
Z7(I)=1.
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ALM 3( 1 ) = - (Z4( I )* X4T6 ( 1 ) +Z6 ( I
) * X6T6 ( I ) + X7T6 ( I ) ) /P2T6 ( I

)

ALM4(I)=( X7T5(1)*P1I2(I)- X7T2( I )*P1T5( I ) )/
1(P4T2(I )*P115(I)-P4T5(I )*P1T2(I)

)

ALM I (!) = -( ALM4 ( I
) * P4T5 ( I ) + X7T5 ( I ) ) /P1T5 ( I

)

ALM3 ( I
) = - ( ALM1 ( I

) *P1 T4 ( I ) +ALM2 ( I
) *P2T4

(

I
)
+ALM4

(
I )
*P4T4 ( I ) ) /P3T4 ( I )

B1=HT1(I)
HT1 ( I )=ALMl ( I )*P1T1 ( I )+ALM2( I )*P2T1 (I )+ALM3( I )*P3T1 ( I )+

1ALM4(I)*P4T1(I)
WRITE (3,1 002 ) Tl ( I ) , 1 IT1 ( 1

)

n3=Tl(l)-TlP(I)
T1P(1 )=T1(I

)

IF(ABS(DD) -0.002) 450,450,443
448 IF(HT1(I)*H1 ) 445,445,450
445 EKI(I)=EKT(I)/2.
450 IF(HT1(I)) 455,455,460
455 T1(I)=T1(I)+DKT(I)

GO TO 465
400 T1(I)=T1(I)-DKT(I)
465 H3 =HT3(I)

HT3(I)=Z4(I)*X4T3(I)+Z6(I)*X6T3(I)+ X7T3 (I )+ALM2( I )*P2T3(

I

)

WRITE( 3,1002) T3(I),HT3(I)
D0=T3(I)=T3(I)
IF(ABS(DD)-0.002) 475,475,468

468 IF(HT3(I)*H3 ) 470,470,475
470 DLT(I)=DLT(I)/2.
475 IF(HT3(I)) 480,480,485
480 T3(I)=T3(I)+ELT(I)

GO TO 490
485 T3(I)=T3(I)-DLT(I)
490 CONTINUE

WRITE(3,1002)(Z1(I),Z2(I),Z3(I),Z4(I),Z5(I),Z6(I),Z7(I),I=2,4)
WRITE(3,1002) (ALM1(I) ,ALM2( I )

,ALM3(

I

)
,ALM4(I) ,1=2,4)

WRITE(3,1002)HT1(2) ,HT3(2)
WRITE(3,1002) ,HT1(3) ,HT3(3)
GO TO 4

500 CONTINUE
GO TO 2

510 CONTINUE
GO TO 1

520 STOP
END
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CHAPTER 7. RECOMMENDATION FOR FUTURE WORK

The system analysis and the computational algorithm developed

in this study are fairly general and are adaptive to changes in the

equation of state, and changes in the cost models. Therefore, the

present approach can be applied to any gas and can be extended to

any gas mixture and to any operating range by proper selection of

the equation of state. In the cost analysis of this work, linear

cost relations have been used for the compressors and the inter-

coolers. These assumptions have been introduced not because of the

limitation of the methods, but because of the lack of cost informa-

tion required to establish better cost models.

The following studies are recommended for future work.

1. Establishment of realistic cost model. The manufacturers should

be contacted to establish the cost models for the compressors

and the intercoolers . The cost model for compressors should

show the variations in the compressor cost with respect to the

changes in the operating pressure and the capacity. The inter-

cooler cost should also vary with the operating pressure and

vary non-linearly with the heat transfer area.

2. Extension of the operating range. In this study, numerical

calculations have been carried out for CO, gas compression

within range I (low density gas). The computations can be

extended to gas compressions spanning among two or more ranges*
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3. Use of other equations of state. The approach used in this

study is quite general. Therefore, any equation of state may

be used to establish the performance equations.

4. Improvement of root finding methods. It has been shown that

quite often we have to find roots for implicit functions in

using the present method. Other root finding methods or

search techniques may be more efficient than the interval

halving method which has been used here.
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The primary objective of this study is to improve the system

analysis and optimization study of a multistage gas compression system.

In this study, we take into consideration the non-ideal behavior of a

gas and irreversibilities of the compressors. Furthermore, we include

the first costs of the interstage coolers and pumps, the cooling water

cost and energy cost in the objective function. The optimization tech-

nique developed in this study is based on the discrete analog of the

maximum principle and an iterative search method. The technique em-

ploys four Lagrange multipliers in each stage in association with four

constraint relations. The method developed is quite general and can be

used in combination with any equation of state.

The equation of state developed by J. 0. Hirshfelder e_t a_l. is used

and numerical computation is illustrated by 3-stage gas compression of

carbon dioxide. The numerical computations have shown the following

significant results:

1. The optimal policy of a multistage gas compression system is

affected not only by the discharge pressure but also by the dis-

charge temperature.

2. The optimal policy of a three stage carbon dioxide gas compression

system as computed by the present approach is significantly differ-

ent from the policy as computed by the conventional approaches.

3. The gas compression cost evaluated at the optimum condition as de-

termined by the present approach is significantly lower than the

gas compression cost evaluated at the optimum condition as

determined by the conventional approaches. The difference in these



costs increases as the discharge pressure increases. The cost

saving is about 2

.

5% for OO2 compression at discharge pressure

of 1700 psi.

All the numerical computation has been made by IBM 360 computer,

and one iteration takes 20 seconds of computer time. Assuming that 15

iterations are required to arrive at the optimum policy, the computer

time required is 5 minutes for solving an optimization problem.




