```
SYSTAR ANAIYSIS AND OPTIMIZATION STUDY OF
    A MULTISTAGF, GAS COMPRESSION SYSTEM
        by 54U
        SING-WANG CHENG
    B.S., Cheng Kung University, 1956
            A MASTER'S THESIS
submitted in partial fulfillment of the
    requirements for the degree
                MASTER OF SCIENCE
Department of Chemical Engineering
        KANSAS STATE UNIVERSITY
            Manhattan, Kansas
```

            1968
                    Approved by:
    

Major Professor

## TABIE OF CONTENTS

Page
CHAPTER 1. INTRODUCTION ..... 1

1. Application of Modern Optimization Theory to Practical Processes ..... 1
2. Multistage Gas Compression ..... 2
3. The Conventional Methods Used in Optimizing a Multi- stage Gas Compression System ..... 4
4. The Special Features of the Present Study ..... 10
CHAPTER 2. PROCESS ANALYSIS OF A MULTISTAGE GAS COMPRESSION SYSTEM ..... 12
5. Introduction ..... 12
6. Process Description ..... 12
7. Process Analysis - Relations Among the Operating Variables ..... 16
8. A Mathematical Model for a Multistage Gas Compression System ..... 17
9. The Performance Equations and the Degree of Freedom ..... 18
10. Mapping of a Multistage Gas Compression Operation on a $\mathrm{H}-\mathrm{S}$ Diagram ..... 22
11. Gas Compression Cost ..... 24
CHAPTER 3. GENERALIZED EQUATION OF STATE AND GENERALIZED THERMODYNAMIC EXCESS FUNCTION OF GASES ..... 26
12. Introduction ..... 26
13. The Special Features of the Generalized Equations of State Developed by Hirshfelder et al. ..... 27
14. The Generalized Equation of State by Hirshfelder et al. ..... 28
15. Enthalpy of a Non-Ideal Gas: $H=f_{1}(\rho, t)$ ..... 36
16. Entropy of a Non-Idcal Gas: $S^{-}=\mathrm{f}_{2}(\rho, t)$ ..... 39
CHAPTER 4. PERFORMANCE EQUATIONS, CONSTRAINT RELATIONS AND THEIR DERIVATIVES ..... 44
Part A. Performance Equations and Constraint Equations ..... 44
Part B. The First Derivatives of the State Variables and the Constraint Functions ..... 52
CHAPTER 5. OPTIMIZATION STUDY OF A MULTISTAGE GAS COMPRESSION SYSTEM ..... 64
I. INTRODUCTION ..... 64
II. FANDNG THE OPTIMAL POLICY OF A MULTISTAGE MULTIDECISION PROCESS WITH EQUALITY CONSTRAINTS IN EACH STAGE - general discuision ..... 67
JIT. OPTIMIZITION OF A THREE-STAGE GAS COMPRESSION SYSTEM ..... 79
IV. ITERNTTVE NLIERICAL SOLUTION FOR THE OPTIMIZATION OF A IILLTISTACE CAS COAPRESSION SYSTEM ..... 87
CHAPTER 6. OPTIMIZATION STUDY OF A MULTISTAGE (3-stage) GAS COITPRESSION PROCESS OF CARBON DIOXIDE TO VARIOUS DISCIIARGE CONDITIONS ..... 96
17. Introduction ..... 96
18. Numerical Solution of a Two Dimensional Problem ..... 97
19. Results of Numerical Computation of 3-stages $\mathrm{CO}_{2}$ Gas Compression Problems ..... 99
20. Summary ..... 112
CHAPTER 7. RECOMMENDATION FOR FUTURE WORK ..... 135
Nomenclature ..... 117
Definition of Computer Notations ..... 121
Computer Program ..... 125
References ..... 132
Acknowledgments ..... 137
21. Anlulication of Modern Ontimization Theory to Practical Processes

Optimization theory deals with achieving the best-maximum gain or minimuri loss--in a rational manner. This holds great interest for the practical professions of engineering. Spectacular advances have becn made in notimization theory producing a massive, jargon-filled literature on linear, non-linear and dynamic programming, the maximum principle and many other optimization techniques. In the meantime, electronic computers have been developed with enormous computational speed and large memory capacities. With the extensive developments in these two fields, the time has come when modern optimization theory can be applied to find optimum policies for complicated practical processes.

Movement along this line has already been initiated at the Kansas State University and several papers have already been published (1, 2, 3, 4). The present study has been undertaken to contribute to this move. A multistage gas compression process is a well-known process of great practical importance. In this study, system analysis is applied to multistage gas compression, and the discrete analog of the maximum principle is used to find the optimal policies and numerical computations have been made for $\infty_{2}$ gas compression under various discharge conditions for illustration.

It is hoped that by showing practical applications of modern optimization theories, the practicing engineers will be induced to apply the mocern theories to problems of their interests.

## 2. Multistane Gas Compression

Gas compression is very common in chemical process inclustries. High pressures are needed to obtain an improved equilibrium condition for a separation process, to obtain an improved yield in a chemical process, to attain a high reaction rate, to surpress side reactions, and simply to overcome pressure drop duc to friction in transmission lines.

For several reasons the ratio of the discharge pressure to the suction pressure for a single-stage compressor is limited (5). One reason is related to the efficiency of operation. Figure 1 illustrates the compression process for adiabatic (1-2) and isothermal (1-3) paths. The work required in the adiabatic compression is represented by area 1-2-8-7 and the work required in the isothermal compression is represented by area $1-3-3-7$. Therefore, the isotherinal process requires less work than the adiabatic process by an amount equivalent to the area 1-2-3. Actually the compression step is more nearly adiabatic than isothermal, since it is impossible to transfer a large quantity of heat through the cylinder walls in the short time accompanying the stroke of the piston. Nevertheless, the benefits of isothermal operation can be partly achieved by dividing the process into two steps, that is, by limiting the discharge pressure from the first compressor cylinder to $P_{B}$. cooling the gas to the original temperature $t$, in an intercooler (a process occurring at essentially constant pressure, path 1-5), and finally completing the compression to $P_{C}$ in a second cylinder. In this two-stage system a reduction of work equal to the area $2-6-5-6$ is accomplished. A further decrease in the work requirement would be obtained by increasing the number of stages to three or

F.g. 1. $\quad$ conporison of single and two-stage compresion operction.
more. However, the minimun reduction in wrosic is limited to the area 1-2-3; hence a point is soon reached at which the decrease in power costs is balanced by the increased first cost of the equipment. The number of stages employed in practice depends primarily upon the overall pressurc differential and the capacity. In large machines the pressure ratio per stage is seldom more than 5 or 6 and may be less. In small compressors, where power costs are of less importance, this ratio may be considerably higher.

Very high-pressure machines operating with discharge pressures of the order of 10,000 psia are usually built with five or more stages. As the pressure is increased, the specific volume of the gas decreases and consequently the cylinder size necessary for a given capacity decreases. This is another important reason why high compression ratios are not justified with single-stage machines; large cylinders would be required to handle the low-pressure intake gas, and the entire cylinder would have to be of expensive construction to withstand the high-pressure existing at the end of the stroke.

The efficiencies of reciprocating compressors generally are between 70 and 90 per cent. This means that the actual work required is 11 to 43 per cent greater than computed on the basis of reversible adiabatic operation.

## 3. The Conventional Methods Used in Optimizing $\Lambda$ Multistage Gas Compression System

The conventional methods used in finding the optimal policy of a multistage gas compression system are based on the following assumptions:
(1) Gas compression in each stage is reversible and adiabatic.
(2) Gus is cooled to the original temperature after each compression.
(3) The objective function to be minimized is the total energy used in the gas compression. The first costs of compressors, heat exchangers, and pumps and the operational costs such as cooling water cost are not included in the objective function.

The work req̧uired in the multistage gas compression is mostly calculated on the dssumption that the gas behaves ideally. Several approaches have been proposed to calculate the compression work requirement for a non-ideal gas.

However, the author is not aware of any publication in which nonideal gas behavior is taken into account in the optimization study.

The prior work directed to this problem is briefly reviewed as follows:
a) For ideal gases.

The optimal policy arrived at is to allocate the interstage pressures in such a way as to have an equal horsepower requirement per stage. This criterion gives rise to the optimal policy of allocating the interstage pressures as the geometric means between the suction and discharge pressures.

Derivations leading to the above conclusion are presented in most thermodynamic books. They are mostly based on differentiating the equation of the total energy requirement for the $N$-stage compression. As an example, the formulation given by Happel (6) is outlined as follows. Under the assumptions described earlier in this section, the
total energy used per mole in the $N$-stages gas compression is given b 3

$$
\begin{equation*}
r_{N}=R T \frac{\gamma}{\gamma-1}\left[\left(\frac{P_{1}}{\Gamma_{2}}\right)^{\gamma-1} \gamma^{\gamma}+\left(\frac{\Gamma_{2}}{\Gamma_{1}}\right) \frac{\gamma-1}{\gamma}+\ldots+\left(\frac{P_{N}}{P_{N-1}}\right) \frac{\gamma-1}{\gamma}-N\right] \tag{1}
\end{equation*}
$$

By defining the compression ratios

$$
\begin{equation*}
r_{i+1}=\frac{P_{i+1}}{P_{i}} i=0,1,2, \ldots, N-1 \tag{2}
\end{equation*}
$$

and the constants

$$
\begin{align*}
\mathrm{nRT} \frac{\gamma}{\gamma-1} & =\mathrm{K}  \tag{3}\\
\frac{\gamma}{\gamma-1} & =\alpha^{-1} \tag{4}
\end{align*}
$$

so that Equation (1) becomes

$$
\begin{equation*}
E_{N}=K\left\{\sum_{i=1}^{N} r_{i}^{\alpha}-N\right\} \tag{5}
\end{equation*}
$$

lampel (6) sought to minimize Eif through appropriate choice of the quantities $r_{i}, i=1,2, \ldots, N$, subject to the following constraints:

$$
\begin{align*}
r_{1} \geq 1, i & =1,2, \ldots, N  \tag{6}\\
\prod_{i=1}^{N} r_{1} & =r=\frac{P_{N}}{P_{0}} \tag{7}
\end{align*}
$$

and solved this problem for the case $N=3$, making use of methods of differential calculus.
L. T. Fan and C. S. Wang (7, 7a) have shown that the discrete amalon of the maximum principle can be applied to solve this problem. They defined state variables, $x_{1}^{n}$ and $x_{2}^{n}$, and a aecision variable, $\theta^{n}$ as follows:

$$
\begin{aligned}
x_{1}^{n}= & \text { pressure of the gas at the end of the } n-t h \text { stage compression. } \\
x_{2}^{n}= & \text { work spent in conpressing m moles of the gas up to and } \\
& \text { including the n-th stage compression } \\
\theta^{n}= & x_{1}^{n} / x_{1}^{n-1} .
\end{aligned}
$$

They have then shown that the process can be described by the performance equations,

$$
\begin{align*}
& x_{1}^{n}=x_{1}^{n-1} \theta^{n}, x_{1}^{0}=p_{0}, \quad x_{1}^{N}=P_{N}  \tag{8}\\
& x_{2}^{n}=x_{2}^{n-1}+m R T \frac{\gamma}{\gamma-1}\left[\left(\theta^{n}\right)^{(\gamma-1) / \gamma}-1\right], \quad x_{2}^{0}=0 \tag{9}
\end{align*}
$$

They have recognized that the process as represented by equations (8) and (9) belongs to the one dimensional linear process and then concluded that the optimum condition is represented by

$$
\theta^{1}=\theta^{2}=\theta^{3}
$$

This means the optimal increment of pressures at each stage corresponds to the geometric means between the suction and discharge pressures. Fan and Wang ( 25 ) have initiated the work on the optimal compression of non-ideal gases.
R. Aris, R. Bellman and K. Kalaba (8) have solved this problem by using the functional-equation technique of dynamic programming, which reduces the $N$-dimensional optimization to a sequence of $N$ one-dimensional
oplimizutions. Then they have pointed out the relationship to the woll-known arithmatic-goometric mean inequality, and finally they have discussed some gencralizations.
b) For non-ideal gases.
R. Aris, et al. (8) have described how a more realistic model can be set up, but have not actually formulated the problem. They suggested that the cost of compression in each stage, denoted as $f(\mathrm{~T}, \mathrm{P})$, be determined empirically and the optimum condition be found by a search technique utilizing the condition of optimality.
R. York (9) has described ways of computing the work requirement for compressing a non-ideal gas. To allow for gas law deviations, the designer of gas compressors has a choice of two alternatives. The first is to retain the expression obtained for an ideal gas and to add suitable correction factors. The second alternative is to discard the expression for idea gases and to determine the enthalpy change at constant entropy between the states existing within the compressor cylinder. These two fundamental properties of enthalpy and entropy are presented in tables of thermodynamic properties or graphed as a Mollier diagram. York has adopted the first approach and proceeded to show that in order to allow for deviations from the perfect gas law, two correction factors are needed. The first is a correction for volume, which can be expressed in terms of the compressibility factor. The second is a correction for the enthalpy change $(\Delta \mathrm{H})_{\mathrm{s}}$ along an iscntropic path of compression and is termed the "isentropic work factor". He has then shown a figure for the isentropic work factor for propane, but has not generalized it.

Other methods purporting to allow for gas law deviations have been proposed. The first of these is by Laverty (10). He has pointed out that gas law deviations affect only the quantity of gas aspirated per stroke with a given cylinder. Furthermore, he has stated: "It (the compressor) has no way of correcting for the deviations of the gas laws, and if the gas is more dense, it is compressed with no increase in horsepower." Both these statements are based upon the fact, as is the practice, that gas quantities are reported as volumes at measuring pressure $P_{o}(u s u a l l y 14.7$ psia) and at suction temperature. The statement regarding the gas aspirated is without doubt true. The quoted statement regarding the power requirement is only partly true-it does not tell the whole truth: Actually the power requirement is decreased. In an example to illustrate the correction for gas law deviations, Laverty shows that, for a given volume of gas at $P$, the brake horsepower for an imperfect gas is decreased by the compressibility factor $\mu$. Since $\mu$ is a volume correction only, it cannot directly affect the horsepower. The power correction should be made along an isentropic path of compression and not at one point for the volume. The second method to allow for gas law deviations was proposed by Edmister (11). By his method the ratio $c_{p} / c_{v}$, here denoted by $k$, is corrected for gas law deviations. This corrected ratio was presented graphically as a generalized correlation in terms of reduced pressure and reduced temperature. A study of his plot shows that $k$ at any pressure and temperature is always greater than $k$ at zero pressure, the state of a perfect gas. Such values of $k$ necessarily give greater power requirements than for a perfect gas. Unfortunately the reverse is true--the power requirement decreases: His correlation is satisfactory
for presenting values of $k$ but unsatisfactory in the applications mentioned. It must be remembered that, if a gas deviates from a perfect gas in its P-V-T relations, it will deviate in all its thermodynamic properties, including enthalpy and entropy.

## 4. The Special Features of the Present study

The primary objective of this study is to improve the system analysis and optimization study of a multistage gas compression system. In this study most of the inadequacies of the conventional methods have been removed. The special accomplishments in this study are summarized as follows:
(a) An improved system analysis is made and an objective function more realistic than the one used in the conventional approach is obtained. The unrealistic assumptions made in the conventional methods have been removed. In this study, we take into consideration the non-ideal behavior of a gas and irreversibilities of the compressors. The first costs of the compressors, interstage coolers and pumps, the cooling water cost, and energy cost are included in the objective function.
(b) A generalized treatment is made so that the relations obtained and even the computer program established can be readily applied to any gas under any operating conditions by simply replacing inpur data sheets. A generalized equation of state and the gomeralized thermodymamic excess functions developed by Hirnhfelder ot al. (12, 13) have been used in the system analysis. Therefore, the equations obtained are applicable to practically all gases.
(c) An veficiont computational schome is established and a step-bystoり kいocription of tho ilerative mumerical computation is given. This is cone in such a way that average engineers can easily follow the procedure to apply the method to the problems of their interest.
(a) It is demonstrated that the discrete analogue of the maximum principle is very powerful in handling a multistage optimization problem of high dimensionality, even though it does not always give rise to an absolute optimum. The optimization problem formulated in this study has six decision variables, seven state variables in each stage together with four equality constraints.
(e) Numerical computations have been actually carried out for three stage $\mathrm{CO}_{2}$ gas compression under various discharge conditions. The results obtained demonstrate the practical importance of this study by showing the cost reduction realizable by this method as compared with the conventional methods.

CIIMPr:̈R 2. PROCESS nNALYSIS OF ^ MULTISTAGE GAS COMPRESSION SYSTEM

1. Introcluction

In ihis chapter, a system analysis is made for a multistage irreversible compression of a non-ideal gas with arbitrary interstarge cooling. The gas is not necessarily cooled to the original temperature aiter eacl compression as is usually assumed. A realistic objective function which conforms to the industrial practice is formulated.

In the analysis, several thermodynamic functions at each stage have been introduced. These are the entropies of the gas after a hypothetical reversible compression and after the interstage cooling, enthalpies of the gas after a hypothetical reversible compression, after an actual compression and after interstage cooling and the cumulative cost of the gas compression up to the stage. The work required in the compression and the heat load for the intercoolers are found.

In order to establish performance equations in the form convenient for the application of the discrete analog of the maximum principle, the enthalpy, entropy, cumulative cost, and pressure have to be related to the respective temperature and density. The generalized equation of state and generalized thermodynamic excess functions will be obtained, and the optimization problem will be set up in the final form in Chapter 4.

## 2. Process Description

Figure 2 illustrates a general multistage (N-stage) gas compression system with interstage cooling. Each stage (say the $n-t h$ stage) consists


Fig. 2. Nultistcge compression with interstage cooling.


#### Abstract

of a gas enmprossor $J_{n}$ and an intercooler $M_{n}$. In a multistage gas compression system, the feed gas rlows through the successive stages and is compressed and cooled alternatively. The usual assumption of cooling to the original temperature is removed in this analysis and the temperature to which the gas is cooled in each stage is considered as a control variable.


The following notations are used in subsequent discussions:
$P_{0}, P_{n}, P_{N}=$ respectively, pressure of the feed gas, pressure of the gas in the $n-t h$ stage and the pressure at the last stage, or equivalently, the discharge pressure, in psia.,
$T_{0}, T_{n}, T_{N}=r e s p e c t i v e l y$, temperature of the feed gas, temperature of the gas leaving the $n-t h$ stage and the temperature of the gas discharged from the system in OF•,
$t_{0}, P_{0}, S_{0}, H_{0}=$ respectively the reduced temperature, the reduced density, the entropy per lb-mole, the enthalpy per lb-mole of the feed gas.
$t_{n}^{\prime}, P_{n}, S_{n}^{\prime}, H_{n}^{\prime}=$ respectively, the reduced temperature, the reduced density, the entropy per lb-mole, the enthalpy per lb-mole of the gas after a hypothetical (reversible) compression in the $n-t h$ $\therefore$ targo
$i_{n}^{\prime \prime}, \rho \ddot{n}, S_{n}^{\prime \prime}, \|_{n}^{\prime \prime}=$ respectively, the reduced temperature, the reduced density, the entropy per lb-mole, the enthalpy per lb-mole of the gas after an actual (irreversible) compression in the $n-t h$ stage,

$$
\begin{aligned}
t_{n}, P_{n}, S_{n}, H_{n}= & \text { respectively, the reduced temperature, the re- } \\
& \text { duced density, the entropy per ib-mole, the } \\
& \text { enthalpy per lb-mole of the gas after the } n-t h \\
& \text { stage cooler } M_{n} \\
C_{n}= & \text { cumulative gas compression cost up to and including the } n-t h \\
& \text { stage, } \\
C_{N}= & \text { cumulative gas compression cost up to and including the last } \\
& \text { stage. }
\end{aligned}
$$

Referring to the $n-t h$ stage of the system, a gas stream (characterized by $\left.t_{n-1}, \rho_{n-1}, S_{n-1}, H_{n-1}\right)$ is pressurized by an actual compressor $J_{n}$ from a pressure $P_{n-1}$ to a pressure $P_{n}$ and the gas leaving the compressor is characterized by $t_{n}^{\prime \prime}, \rho_{n}^{\prime \prime}, S_{n}^{\prime \prime}$ and $H_{n}^{\prime \prime}$. After being cooled by a cooler $M_{n}$, the gas properties become $t_{n}, \rho_{n}, S_{n}$ and $H_{n}$. Assuming a hypothetical reversible compression in $J_{n}$, the gas leaving the compressor would have been characterized by $t_{n}^{\prime}, \rho_{n}^{\prime}, S_{n}^{\prime}$ and $H_{n}^{\prime}$. The properties of this hypothetical gas stream are needed as linking propertics which are useful in evaluating actual compression.

It is assumed in this study that the cooling water enters each cooler at the same temperature $\left(t_{w}\right)_{i}$ and leaves at the same temperature $\left(t_{w}\right)_{0} \cdot\left(t_{w}\right)_{i}$ is fixed in a chemical plant as the water temperature from a cooling tower or a cooling pond. In a chemical plant, cooling water is generally regenerated and recycled within the plant and has a rather high dissolved solid content. Therefore, $\left(t_{w}\right)_{o}$ is limited to about $110^{\circ}$ F to prevent scale formation. In a future study $\left(t_{w}\right)_{o}$ may be considered as a control variable which may be different in each stage.

## 3. Process Analysis - Rolations Mmong the Operating Variables

Referring to the $n-t h$ stage of Figure 2, the following relations can bo established.
(a) Entropy is unaltered during a reversible adiabatic compression. Therefore, we have

$$
\begin{equation*}
s_{n-1}=s_{n}^{\prime} \tag{1}
\end{equation*}
$$

(b) The work of compression in a hypothetical reversible compression is given by

$$
\begin{equation*}
w_{r e v}=\left(\Delta H_{n}\right)_{s}=H_{n}^{\prime}-H_{n-1} \tag{2}
\end{equation*}
$$

(c) The work of compression in an actual compression is given by

$$
\begin{equation*}
w_{i r r}=\left(\Delta H_{n}\right)_{a}=H_{n}^{\prime \prime}-H_{n-1} \tag{3}
\end{equation*}
$$

(d) The efficiency of the compression, $\eta$, is defined as

$$
\begin{equation*}
\eta=\frac{W_{r}}{W_{i r r}}=\frac{H_{n}^{\prime}-H_{n-1}}{H_{n}^{\prime \prime}-H_{n-1}} \tag{4}
\end{equation*}
$$

This gives rise to

$$
\begin{equation*}
\left(H_{n}^{\prime \prime}-H_{n-1}\right)=\frac{1}{\eta}\left(H_{n}^{\prime}-H_{n-1}\right) \tag{5}
\end{equation*}
$$

The $\eta$ value ranges from $70 \%$ to $90 \%$. In the latter calculation $\eta$ will be taken as $\frac{1}{1.2}$.
(e) The heat to be removed in the cooler $M_{n}$ is given as

$$
\begin{equation*}
q=-\Delta H=H_{n}^{\prime \prime}-H_{n} \text {. } \tag{6}
\end{equation*}
$$

(i) The beat luansfer axoa, $\Lambda_{n}$, required is given by

$$
\begin{equation*}
\Lambda_{n}=\frac{q}{U \Delta T}=\frac{\left\|_{n}^{\prime \prime}-\right\|_{n}^{\prime \prime}}{U T_{c} \frac{\left[\left(t_{1}-t_{1}\right)-\left(t_{1}^{\prime}-t_{2}\right)\right]}{\ln \frac{t_{1}-t_{2}}{t_{1}^{\prime}-t_{2}^{\prime}}}} \tag{7}
\end{equation*}
$$

where $t_{1}$, $i_{2}$ are respectively temperatures in recluced unit of the gas and the cooling water at one end of the heat exchanger and $t_{1}^{\prime}$ and $t_{2}^{\prime}$ are respectively temperatures in reduced unit of the gas and the cooling Water at the other end of the heat exchanger.
4. A Mathematical Model for a Multistage Gas Compression System

In optimizing any system, the operating variables may be classified into decision variables and state variables. Denoting a state variable associated with the $n-t h$ stage as $X_{i}^{n}$ and denoting a decision variable associated with the $n-t h$ stage as $\theta_{i}^{n}$, for a system represented by a set of finite difference equation, $x_{i}^{n}$ can be expressed as

$$
\begin{equation*}
x_{i}^{n}=T_{i}^{n}\left(x_{1}^{n-1}, x_{i}^{n-1} \ldots x_{5}^{n-1}, \theta_{1}^{n}, \theta_{2}^{n}, \cdots, \theta_{t}^{n}\right) \tag{8}
\end{equation*}
$$

That is, $X_{i}^{n}$ is a function of state variables associated with the $(n-1)-t h$ stage and the decision variables of the $n-t h$ stage. The above equation is called the performance or transition equation for $x_{i}^{n}$,

The operating variables shown in Figure 2 are classified into decision and state variables as follows:
(a) decision variables:

$$
\begin{align*}
& \theta_{1}^{n}=t_{n}^{\prime}, \quad \theta_{2}^{n}=t_{n}^{\prime \prime}, \quad \theta_{3}^{n}=t_{n}  \tag{9}\\
& \theta_{4}^{n}=\rho_{n}^{\prime}, \quad \theta_{5}^{n}=\rho_{n}^{\prime \prime}, \quad \theta_{6}^{n}=\rho_{n}
\end{align*}
$$

(b) state variables:

$$
\begin{array}{lll}
x_{1}^{n}=p_{n}, & x_{2}^{n}=H_{n}^{\prime}, & x_{3}^{n}=H_{n}^{\prime \prime}, \quad x_{4}^{n}=H_{n}  \tag{10}\\
x_{5}^{1 n}=s_{n}^{\prime}, & x_{6}^{n}=s_{n}, & x_{7}^{n}=C_{n},
\end{array}
$$

Figure 3 shows the structure of the finite difference or discrete model. Decision variables are shown in association with vertical arrows, and state variables are shown in association with horizontal arrows. The constraint functions $\phi_{i}^{n}$ shown in the figure will be explained shortly.
5. The Performance Equations and the Degree of Freedom

With the above classification, it will be shown that all the state variables can be expressed as follows:

$$
\begin{array}{ll}
\text { State }- \text { space notation } & \text { conventional notations } \\
x_{1}^{n}=r_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right) & p_{n}=f_{1}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right) \\
x_{2}^{n}=T_{2}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right) & H_{n}^{\prime}=f_{2}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right) \\
x_{3}^{n}=r_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right) & H_{n}^{\prime \prime}=f_{3}\left(t_{n}^{\prime \prime}, \rho_{n}^{\prime \prime}\right) \\
x_{4}^{n}=r_{3}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right) & H_{n}=f_{4}\left(t_{n}, \rho_{n}\right) \\
x_{5}^{n}=r_{5}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right) & s_{n}^{\prime}=f_{5}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right) \\
x_{6}^{n}=r_{5}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right) & s_{n}=f_{6}\left(t_{n}^{\prime \prime}, \rho_{n}^{\prime \prime}\right) \\
x_{7}^{n}=r_{7}^{n}\left(\theta_{2}^{n}, \theta_{3}^{n}, \theta_{5}^{n}, \theta_{6}^{n} ;\right. & c_{n}=f_{7}\left(t_{n}^{\prime \prime}, t_{n}, \rho_{n}^{\prime \prime}, \rho_{n} ;\right. \\
\left.x_{4}^{n-1} x_{7}^{n-1}\right) &
\end{array}
$$



It is socn that the above performance equations do conform to the form of cquation (3). Explicit expressions for these equations will be derived at the end of the next chapter.

In addition to the above performance equations, the following relations which become equality constraints in the $n-t h$ stage must be considered.

1. Pressure at the $n-t h$ stage is considered to be constant. That is, pressure of the gas after the hypothetical (isentropic) compression, pressure of the gas after the actual compression, and the pressure after the cooler are the same. Therefore, one has

$$
\begin{equation*}
P_{n}=f_{1}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right)=f_{1}\left(t_{n}^{\prime \prime}, \rho_{n}^{\prime \prime}\right)=f_{1}\left(t_{n}, \rho_{n}\right) \tag{12}
\end{equation*}
$$

The equality constraint functions, $\phi_{1}^{n}$ and $\phi_{2}^{n}$ are defined as

$$
\begin{align*}
& \phi_{1}^{n}=f_{1}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right)-f_{1}\left(t_{n}^{\prime \prime}, \rho_{n}^{\prime \prime}\right)=0  \tag{13}\\
& \phi_{2}^{n}=f_{1}\left(t_{n}^{\prime}, \rho_{n}^{\prime}\right)-f_{1}\left(t_{n}, \rho_{n}\right)=0 \tag{14}
\end{align*}
$$

These equations can be written in maximum principle notations as

$$
\begin{align*}
& \phi_{1}^{n}=T_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-T_{1}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)=0  \tag{15}\\
& \phi_{2}^{n}=T_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-T_{1}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)=0 \tag{16}
\end{align*}
$$

2. During an reversible compression, the entropy value is unchanged. Therefore, one has

$$
\begin{equation*}
s_{n}^{\prime}=s_{n-1} \tag{17}
\end{equation*}
$$

The equality constraint function $\phi_{3}^{n}$ is defined as

$$
\begin{equation*}
\phi_{3}^{n}=s_{n}^{\prime}-s_{n-1}=0 \tag{18}
\end{equation*}
$$

This equation can be written in state-space notation as

$$
\begin{align*}
\phi_{3}^{n} & =x_{5}^{n}-x_{6}^{n-1} \\
& =T_{5}^{n}\left(\theta_{1}^{n}, \quad \theta_{4}^{n}\right)-x_{6}^{n-1} \\
& =0 \tag{19}
\end{align*}
$$

3. The compressor efficiency equation is given as

$$
\begin{equation*}
\left(H_{n}^{\prime \prime}-H_{n-1}\right)=\frac{1}{\eta}\left(H_{n}^{\prime}-H_{n-1}\right) \tag{20}
\end{equation*}
$$

The equality constraint function $\phi_{4}^{n}$ is defined as

$$
\begin{equation*}
\phi_{4}^{n}=\left(H_{n}^{\prime \prime}-H_{n-1}\right)-\frac{1}{\eta}\left(H_{n}^{\prime}-H_{n-1}\right)=0 \tag{21}
\end{equation*}
$$

This equation can be written in state-space notation as

$$
\begin{equation*}
\phi_{4}^{n}=\left(x_{3}^{n}-x_{4}^{n-1}\right)-\frac{1}{\eta}\left(x_{2}^{n}-x_{4}^{n-1}\right)=0 \tag{22}
\end{equation*}
$$

State variables are dependent variables as expressed by equation (11). Out of the six decision variables in each stage only two are truly independent due to the four equality constraints shown above.

In a multistage gas compression problem, the temperature and pressure of the gas discharged from the last stage are usually preassigned values. Due to these two additional constraints, the degree of freeciom of a multistage ( $N$ stages) gas compression system becomes $2(N-1)$.
6. Manpinn of a Multistare Gets Compression Operation on a ll-S Diagram

The ojeration of a multistage gas compression operation can best be illusirated on either the $I-S$ or the $H-S$ diagram for the gas. The operation of a three-stage compression of $\mathrm{CO}_{2}$ gas from pressure $\mathrm{P}_{0}$ $(=14.7 \mathrm{psia})$ and temperature $\mathrm{T}_{\mathrm{O}}\left(=545^{\circ} \mathrm{R}\right)$ to the final condition of pressure $P_{3}(=1700$ psia $)$ and temperature $T_{3}\left(=600^{\circ} \mathrm{R}\right)$ by realistic compressors $J_{1}, J_{2}$ and $J_{3}$ and coolers $M_{1}, M_{2}$ and $M_{3}$ is illustrated by the path $(1)-(3)-(4)-(6)-(7)-(9)-(10)$ in the Figure 4 , which is the $T-S$ aiagram for $O_{2}(14)$.

The steps (1)-(3), (4)-(6) and (7)-(9) correspond to gas compressions by $J_{1}, J_{2}$ and $J_{3}$ respectively and the steps (3)-(4), (6)-(7) (9)-(10) correspond to gas coolings by $M_{1}, M_{2}$, and $M_{3}$ respectively. The construction of these steps is explained as follows:
a) Realistic gas compression step.

Take step (1)-(3) for example. The feed gas is compressed from $P_{0}$ to $P_{1}$ and point (2) can be located as follows:

1) Locate point (1) corresponding to the feed gas condition $P_{o}, T_{0}$,
2) Locate point (2) by following a constant entropy line from point (1) until it hits the constant pressure line with pressure $P_{1}$. This point corresponds to the condition of the gas after a hypothetical reversible compression to pressure $P_{1}$.
3) Locate point (3) by the following two conditions i. point (3) lies on the constant pressure line at $P_{1}$ ii. $\frac{H(\text { at point }(3))-H(\text { at point }(1))}{H(\text { at point }(2))-H(\text { at point }(1))}=\frac{1}{\eta}$


Fig. \&. Liouid-vapor-temperoture - entropy diogrorn for carbon dioxide. (14)

Other compression steps (4)-(6) and (7)-(9) can be similarly constructed.
b) Gas cooling steps.

Temperatures of the gas leaving the coolers $M_{1}$ and $M_{2}$ are independent varial)les. In the optimization study, these two temperatures will be controlled together with other control variables to arrive at the optimum policy.

Once $T_{1}$ and $T_{2}$ are given point (4) and (7) can be located as corresponding to the conditions $\left(P_{1}, T_{1}\right)$ and $\left(P_{2}, T_{2}\right)$ respectively. Point (10) corresponds to the final condition of the gas. The cooling steps $(3)-(4),(6)-(7)$, and $(9)-(10)$ are on constant pressure lines.

## 7. Gas Compression Cost

The gas compression cost may be considered to be consisting of the cost of the work of compression at each stage, $E_{1}^{n_{1}}$ s; costs allocated to the gas due to the initial costs of the compressors, $E_{2}{ }_{2}^{\prime} s ;$ costs allocated to the gas due to the intercoolers at each stage, $E_{3}^{n}$ 's; and the costs of cooling water used in individual stages, $E_{4}^{n}$ 's.

Referring to Figure 4 , the work of compression and the enthalpy change in the intexcooler at the $n-t h$ stage are $\left(H_{n}^{\prime \prime}-H_{n-1}\right)$ and $\left(H_{n}^{\prime \prime}-H_{n}\right)$ respectively. Assuming that the compressor cost and intercooler cost are proportional to the power and the heat transfer area respectively, the cost spent for compressing 1 lb-mole of the gas at the $n-t h$ stage is given by

$$
\sum_{i=1}^{4} E_{i}^{n}=E_{1}^{n}+E_{2}^{n}+E_{3}^{n}+E_{4}^{n}
$$

$$
\begin{align*}
& =C_{e}\left(H_{n}^{\prime \prime}-H_{n-1}\right)+\psi_{1} C_{H P}\left(H_{n}^{\prime \prime}-H_{n}\right) \\
& +\frac{\psi_{2} C_{1}}{U \cdot T_{c}} \cdot \frac{\left(H_{n}^{\prime \prime}-H_{n}\right)}{\left[t_{n}^{\prime \prime}-\left(t_{w}\right)_{0}\right]-\left[t_{n}-\left(t_{w}\right)_{i}\right]} \ln \frac{t_{n}^{\prime \prime}-\left(t_{w}\right)_{0}}{t_{n}-\left(t_{w}\right)_{i}} \\
& +\frac{C_{w}}{\left(C_{p}\right)_{w} T_{c}} \frac{H_{n}^{\prime \prime}-H_{n}}{\left(t_{w}\right)_{o}-\left(t_{w}\right)_{i}} \tag{23}
\end{align*}
$$

where $C_{C}$ and $C_{w}$ are respectively unit power cost and unit cooling water cost, $C_{H P}$ and $C_{H}$ are respectively unit compressor cost and unit heat transfer area cost and $\psi_{1}$ and $\psi_{2}$ are the fraction of initial costs of the compressor and the intercooler respectively allocated and chargeable to one operation hour and $U$ is the overall coefficient of heat transfer.

# CIHPTER 3. GENERALIZED EQUATION OF STATE AND GENERALIZED THER:ODYNAMIC EXCESS FUNCTION OF GASES 

1. Introduction

As has been described, the primary purpose of the present study is io devclop a system analysis and an optimization study for a multistage gas compression system which are so general as to be applicable to all gases under ideal as well as highly non-ideal states. Therefore, a generalized equation of state which has a wide application range has to be founci. From such a generalized equation of state, generalized thermodynamic excess functions can be derived., It is fortunate that such a generalized equation of state is available.

The generalized equation of state adopted in the present study has been taken from the works of J. O. Hirshfelder, R. J. Buehler, H. A. McGee, Jr., and J. R. Sutton (12). Although countless equations (15, 16, 17) and tables (18) are available for predicting the volumetric and thermodynamic properties of gases, the equations developed by Hirshfelder et al. best suit in the present study.

Hirshfelder et al. (13) have also derived generalized thermodynamic excess functions for gases and liquids by starting from their generalized equation of state. These equations are also utilized in formulating performance equations for this study.

In their formulation of the equation of state, they divide the field into three regions. System analysis and optimization made in this study is limited to region $I$. But the procedure developed can be applied to cover the whole field.
2. The Special Features of the Generalized Equations of State Developed by Hirshfelder et al.

The equations developed by J. O. Hirshfelder et al. (12) are particularly suitable for the present study for the following reasons:
(1) The framework is believed adequate for practically all pure substances. The equations are based on a modified principle of corresponding states, and are applicable to noble gases, hydrocarbons, and the highly polar substances, water and ammonia.
(2) The application range is wide. The full range of gases and liquids is covered where experimental data exist: temperatures as low as half and as high as three times the critical, densities up to four times the critical; and pressures up to 190 times the critical.
(3) Standard input data required are available for most gases. Standard input data required are: the three critical constants, the normal boiling point, and (for the liquid region only) the density of the saturated liquid at two temperatures. When experimental data are not available, known procedures can be used to estimate them. When extensive data are available, they may be used to modify the equations.
(4) The equations are differentiable and thermodynamic excess functions can be readily derived from them.
(5) The equations of state and all the derived equations can be conveniently computed by a modern high-speed computer.
(6) There are no non-physical discontinuities in the equation of state and in the derived properties. In their work, the $P-V-T$ values have been arbitrarily divided into three regions, but the boundary
conditions are so established that there are no non-physical discontinuitics in these equations.
3. The Generalized Equation of State by Hirshfelder et al.
(a) Division of the field into three regions.

In their approach the $P-V-T$ values have been arbitrarily divided into three regions, with different equations applying in each region. Taken together these experessions define a single consistent equation of state for all values of $P, V$, and $T$. The arbitrary division is a compromise which makes possible the use of a relatively simple equation at low densities; it is perhaps an esthetic defect, but it is nevertheless a practical way of meeting conflicting requirements. The regions of definition are shown in Figures $5-a$ and $5-b$ and are defined by:

Region I. Gas.
All temperatures; density less than the critical, $\rho \leq 1$.

Region II. High Density Gas. Temperature above the critical, $t \geq 1 ;$ density greater than the critical, $\rho \geq 1$.

Region III. Liquid. Temperature below the critical, $t \leq 1$; density greater than the critical, $\rho \geq 1$.

It should be noted that $t$ and $\rho$ are reduced temperature and reduced density respectively. At the junction $(\rho=1)$ between Regions $I$ and II, tine prissure, its first and second derivatives with respect to density, ind all its derivatives with respect to temperature, are continuous. At the junction $(t=1)$ between Regions II and III, the

pressure, its first derivative with respect to temperature, and all its derivatives with respect to density, are continuous. As might be expected, these continuity requirements lead to some complications; in Region III, for example, the equation is somewhat more complicated than one would like for a normal liquid because of the required continuity along the critical isotherm.

Figures $5-a$ and $5-b$ show that at temperatures lower than the critical there is a coexistence region between the liquid region II and gas region $I$. On the liquid side this region is bounded by values of $p$ and $\rho$ given parametrically by $p_{v}(t)$ and $\rho_{l}(t)$, where $p_{v}(t)$ is the vapor pressure and $\rho_{l}(t)$ is the density of the saturated liquid. On the vapor side the boundary is given by $\rho_{v}(t)$ and $\rho_{v}(t)$, where $\rho_{v}(t)$ is the density of the saturated vapor. The coexistence region can be found by knowing the vapor pressure of the substance, which can be computed by such an equation as derived by Riedel (19). This coexistence region is irrelevant to this study because gas compression in which condensation is to be avoided, is considered.

Compression may be made within a single region, region I, II and III. It may span two regions such as I and II, or II and III. For a very high-pressure compression, it may even span the three regions $I$, II and III. In the present study, gas compression is limited to region I. However, the procedure developed is gencral, so that compressions spanning several regions may also be handled.

In the following sections, equations of state will be given for the three regions but the generalized excess thermodynamic functions will be given only for region I. Equations for regions II and III are available in the original reference (13).
(b) Explicit relations for equations of state

The equations of state for the regions I, II, and III are given as follows:
i. Region I. Gas
$p=-\left(k_{0}+k_{1} t^{-1}\right) \rho^{2}+k_{2}\left(-t+t^{-1}\right) \rho^{3}+\frac{\left(\rho t / z_{c}\right)}{\left(1-b \rho+b^{\prime} \rho^{2}\right)}$
ii. Region II. Dense Gas
$p=p_{\text {II }}=p \quad(\rho, t)=$
$\sum_{j=0}^{3} t^{j-1}\left[k_{o j}+k_{1 j} \rho+k_{2 j} \rho^{2}+k_{3 j} \rho^{3}+k_{4 j} \rho^{4}+k_{5 j} \rho^{5}\right] / \rho$
iii. Region III. Liquid
$p=p_{\text {III }}=p \quad(\rho, t)=p_{\text {II }}(\rho, t)-p_{\text {II }}\left[\rho_{l}(t), t\right]+p_{V}(t)$
where

$$
\begin{aligned}
& p, \rho, t= \text { respectively reduced pressure, reduced density } \\
& \text { and the reduced temperature, } \\
& P_{\text {II }}(\rho, t)= \text { vapor pressure evaluated by equation (2) } \\
& \text { at } \rho \text { and } t, \\
& P_{\text {III }}\left[\rho_{l}(t), t\right]= \text { vapor pressure evaluated by equation (2) } \\
& \text { at reduced temperature } t \text { and reduced } \\
& \text { density } \rho_{l}(t), \text { where } \rho_{l}(t) \text { is the density } \\
& \text { of the saturated liquid at } t
\end{aligned}
$$

The constants used in the above equations are defined as follows:

$$
\begin{aligned}
& b=(1 / \beta)\left(3 \beta^{2}-6 \beta-1\right) /(3 \beta-1) \\
& b^{\prime}=(\beta-3) /(3 \beta-1) \\
& k_{0}=5.5 \\
& k_{1}=\beta-k, \\
& k_{2}=\left(1-k_{0}-\alpha+2 \beta\right) / 2
\end{aligned}
$$

The constants, $k_{i j}$, used in the equations (2) and (3) are given in Table 1 as functions of $\alpha, \beta$, and $k_{0}$. where $\alpha$ and $\beta$ are defined later.

The saturated vapor pressure can be evaluated by the Riedel's correlation (23)

$$
\begin{align*}
& \ln p_{v}(t)=\alpha \ln t+0.0838(\alpha-3.75)\left(36 t^{-1}-35-t^{6}\right. \\
& \quad+42 \ln t) \tag{4}
\end{align*}
$$

and the reduced density of saturated liquid can be evaluated by Guggenheim's correlation (22)

$$
\begin{equation*}
\rho_{l}(t)=1+1.75(1-t)^{1 / 3}+0.75(1-t) \tag{5}
\end{equation*}
$$

The $\alpha$ value in the above equations can be found either from Figure 6 or by the following equation

$$
\begin{equation*}
z_{c}^{-1}=3.72+0.26(\alpha-7) \tag{6}
\end{equation*}
$$

The $\beta$ value can be found either in Table 2 or by the following equation

$$
\begin{equation*}
z_{c}=\beta(3 \beta-1)(1+\beta)^{-3} \tag{7}
\end{equation*}
$$

Table 1. Constants $k_{i j}$ for Dense Gas and Liquid Regions (12?

|  | $j=0$ | $j-1$ | $j=2$ | $j=3$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{i}=0$ | 0 | $88.5-3.12 \beta$ | $\begin{aligned} & -124.46+3.84 \beta \\ & +0.363 \beta^{2} \end{aligned}$ | $44.4-5.22 \beta$ |
| $\mathbf{i}=1$ | 0 | $-313.3+13.42 \beta$ | $\begin{aligned} & 405.3-\beta^{6.58 \beta} \\ & -1.814 \beta^{2} \end{aligned}$ | $-133.2+15.66 \beta$ |
| $i=2$ | 0 | 408.9-21.54 $\beta$ | $\begin{aligned} & -457.7-7.8 \beta \\ & +3.63 \beta^{2} \end{aligned}$ | $133.2-15.56 \beta$ |
| $i=3$ | $5.5-\beta$ | $-237.4+15.3 \beta$ | $\begin{aligned} & 191.9+25.48 \beta \\ & -3.63 \beta^{2} \end{aligned}$ | $-44.4+5.22 \beta$ |
| $i=4$ | $-2.25-\frac{\alpha}{2}+\beta$ | $47.8-4.06 \beta$ | $\begin{aligned} & \alpha / 2-3.35-19.44 \beta \\ & +1.815 \beta^{2} \end{aligned}$ | 0 |
| $i=5$ | 0 | 0 | $\begin{aligned} & -8.44+4.50 \beta- \\ & 0.363 \beta^{2} \end{aligned}$ | 0 |



Fig. 6. Comparison of parameters, $\alpha$ and $Z_{c}$, for different substonces. (12).

| Table 2. Parameter $\beta$ as a Function of $Z_{c}$ (12) |  |  |  |
| :---: | :---: | :---: | :---: |
| $Z_{c}$ | $\beta$ | $Z_{c}$ | $\beta$ |
|  |  |  |  |
| 0.230 | 9.24 | 0.266 | 7.34 |
| 0.232 | 9.12 | 0.263 | 7.25 |
| 0.234 | 9.00 | 0.270 | 7.15 |
| 0.236 | 8.88 | 0.272 | 7.06 |
| 0.238 | 8.77 | 0.274 | 6.97 |
| 0.240 | 3.65 | 0.276 | 6.89 |
| 0.242 | 8.55 | 0.278 | 6.80 |
| 0.244 | 8.44 | 0.280 | 6.71 |
| 0.246 | 8.33 | 0.282 | 6.63 |
| 0.248 | 8.23 | 0.284 | 6.54 |
| 0.250 | 8.12 | 0.286 | 6.46 |
| 0.252 | 8.02 | 0.288 | 6.38 |
| 0.254 | 7.92 | 0.290 | 6.30 |
| 0.256 | 7.82 | 0.292 | 6.21 |
| 0.253 | 7.72 | 0.294 | 6.13 |
| 0.260 | 7.62 | 0.296 | 6.05 |
| 0.262 | 7.53 | 0.298 | 5.98 |
| 0.264 | 7.43 | 0.300 | 5.90 |

PART B. ENTHALPY AND ENTROPY OF A NON-IDEAL GAS 4. Enthalpy of a Non-Ideal Gas: $H=f_{1}(\rho, t)$

The thermodynamic excess function for enthalpy utilizing the generalized equation of state developed by Hirshfelder et al. will be derived first and then the enthalpy function will be related to the reduced temperature and the reduced density of the gas.

It is convenient to start from the internal energy function $U$. It is known that

$$
\begin{equation*}
d U=C_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{v}-P\right] d V \tag{8}
\end{equation*}
$$

Under isothermal condition, this leads to

$$
\begin{equation*}
d U=\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
p=\frac{P}{P_{C}} \quad, t=\frac{T}{T_{C}} \quad \text {, and } \quad \rho=\frac{V_{c}}{V} \tag{10}
\end{equation*}
$$

One can write

$$
\begin{equation*}
P=P P_{C}, T=t T_{c} \quad, \text { and } \quad V=\frac{V_{c}}{\rho} \tag{11}
\end{equation*}
$$

Substituting these relations into equation (9), yields

$$
\begin{align*}
d U & =\left[\left(T_{c} \cdot t\right) \frac{P_{c}}{T_{c}}\left(\frac{\partial p}{\partial t}\right)-P_{c} p\right] V_{c} \frac{(-d \rho)}{\rho^{2}} \\
& =-P_{c} V_{c}\left[t\left(\frac{\partial n}{\partial t}\right)-p\right] \frac{d \rho}{\rho^{2}} \\
\therefore \quad \frac{U-U_{C}}{\pi i} & =-\frac{P_{c} V_{c}}{R T_{c} t} \int_{0}^{\rho}\left[t\left(\frac{\partial \rho}{\partial t}\right)-p\right] \frac{d \rho}{\rho^{2}} \tag{12}
\end{align*}
$$

where $U_{O}$ is the internal energy of the gas at a very low pressure and at the sanc temperature.

Since $t$ is constant in the integration, and since

$$
Z_{c}=\frac{P_{c} V_{c}}{R I_{c}}
$$

equation (12) can be rewritten as

$$
\begin{equation*}
\frac{U-U_{o}}{R T}=Z_{c} \int\left[\frac{P}{t}-\left(\frac{\partial p}{\partial t}\right)\right) \frac{d \rho}{\rho^{2}} \tag{13}
\end{equation*}
$$

This equation represents the thermodynamic excess function for the intermal energy function.

We can proceed to derive the thermodynamic excess function for enthalpy as follows:

Since

$$
H=U+P V
$$

one can write

$$
\begin{equation*}
\frac{H-H_{O}}{R T}=\frac{U-U_{O}}{R T}+\frac{P V}{R T}-\frac{P_{0} V_{O}}{R T} \tag{14}
\end{equation*}
$$

where $H_{0}$ is the enthalpy of the gas at a very low pressure and at the same temperature. Since,

$$
\begin{equation*}
z=\frac{P V}{R T}=\frac{P P_{c} V_{c}}{R T_{c} t \cdot \rho}=\frac{p}{\rho_{\cdot t}} \frac{P_{c} V_{c}}{R T_{c}}=z_{c} \cdot \frac{\rho}{\rho_{t}} \tag{15}
\end{equation*}
$$

and

$$
\frac{P_{0} V_{0}}{R i}=1
$$

equation (14) becomes

$$
\begin{equation*}
\frac{H-H_{0}}{R T}=\frac{U-U_{0}}{R T}+\frac{Z_{c} p}{\rho_{t}}-1 \tag{16}
\end{equation*}
$$

By substituting equation (13) into the above equation one obtains

$$
\begin{equation*}
\frac{H-H_{0}}{R T}=z_{c} \int_{0}^{\rho}\left[\left(\frac{\rho}{t}\right)-\left(\frac{\partial n}{\partial t}\right)\right] \frac{d \rho}{\rho^{2}}+\frac{z_{c} P}{\rho_{t}}-1 \tag{17}
\end{equation*}
$$

This equation represents the thermodynamic excess function for the enthalpy function. If can be related to $P$ and $t$ by integrating the above cquation.

For a non-icla gas in region $I$, one can substitute equation (1) into the above eruation and obtain

$$
\begin{align*}
& \frac{H-H_{o}}{R I}=-z_{c}\left[\rho\left(2 k_{o} t^{-1}+3 k_{1} t^{-2}\right)+k_{2} \rho^{2}\left(1-2 t^{-2}\right)\right]+ \\
& \frac{b \rho-b^{\prime} \rho^{2}}{1-b \rho+b^{1} \rho^{2}} \tag{18}
\end{align*}
$$

In the above equation $H_{0}$ is the enthalpy of the low-pressure gas at temperature T. Therefore, its variation with respect to temperature can be expressed as

$$
\begin{equation*}
H_{0}=H^{O}+\int_{T_{0}}^{T} C_{p}^{*} d T=H^{O}+T_{c} \int_{t_{0}}^{t} C_{p}^{*} d t \tag{19}
\end{equation*}
$$

Where 110 is the enthalpy of the gas under a very low pressure and at a standard temperature $T_{0}$, and to is the reduced temperature for the stinciard temperature.

Substituting equation (19) into equation (18) leads to the desired relation $H=f_{1}(\rho, t)$ as follows:

$$
\begin{align*}
H= & z_{c} R T_{c} t \rho\left(2 K_{o} t^{-1}+3 K_{1} t^{-2}\right)-Z_{c} R T_{c} t K_{2} \rho^{2}\left(1-2 t^{-2}\right) \\
& +R T_{c} t \frac{\left(b \rho-b^{\prime} \rho^{2}\right)}{\left(1-b \rho+b^{\prime} \rho^{2}\right)}+T_{c} \int_{t_{0}}^{t} c_{p}^{*} d t+H^{0} \tag{20}
\end{align*}
$$

## 5. Entropy of a Non-ideal Gas: $S=f_{2}(\rho, t)$

Hirshfelder et al have given detailed expressions for $\ln \left(f / p_{c}\right)$ and (H-Ho)/RT without showing the detailed derivation. From these equations $\left(S-S_{0}^{\prime}\right) / R$ can be calculated and the desired $S-f u n c t i o n ~ c a n ~$ be found. Instead of following the treatise given by them, a detailed derivation of the $S$-function will be given

One of Maxwell's relations is

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \tag{21}
\end{equation*}
$$

Therefore, under constant temperature, one has

$$
\begin{equation*}
d S_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} d V \tag{22}
\end{equation*}
$$

Since,

$$
P=P_{c} P, T=T_{c} t, \text { and } V=V_{c} / \rho,
$$

the above equation can be rewritten as

$$
\begin{align*}
d S & =-\frac{P_{c} V_{c}}{T c}\left(\frac{\partial P}{\partial t}\right)_{\rho} \frac{d \rho}{\rho^{2}}=-R \frac{P_{c} V_{c}}{R T_{c}}\left(\frac{\partial \rho}{\partial t}\right)_{\rho} \frac{d \rho}{\rho^{2}} \\
& =-Z_{c} R\left(\frac{\partial \rho}{\partial t}\right)_{\rho} \frac{d \rho}{\rho^{2}} \tag{23}
\end{align*}
$$

For a hypothetical ideal gas, one has

$$
\begin{equation*}
d S^{*}=\left(\frac{\partial P}{\partial T}\right)_{V} \cdot d V=\frac{k}{V} \cdot d V=\frac{R}{\frac{v_{c}}{\rho}} \cdot v_{c} \cdot \frac{-d \rho}{\rho^{2}}=-R \cdot \frac{d \rho}{\rho^{2}} \tag{24}
\end{equation*}
$$

Referring to Figure 7 , we let state 1 represent a real gas at $\because, P, V$ and let state 2 represent a hypothetical ideal gas at the same temperature and volume as the real gas of state 1 , and let state 3 represent a hypothetical ideal gas at critical pressure $P_{c}$ and at the same temperature $1 s$ states 1 and 2 . Let $S, S_{2}{ }^{*}$, and $S_{0}{ }^{\prime}$ represent the entropy per mole of the gas under states 1,2 , and 3 respectively.

$$
S-S_{2}^{*} \text { can be obtained by integrating is - aS*. }
$$

Thus,

$$
\begin{aligned}
S-S_{2^{*}} & =d S-d S^{*} \\
& =-\int_{0}^{\rho}\left[z_{c} R\left(\frac{\partial D}{\partial t}\right)_{\rho}\right] \frac{d \rho}{\rho^{2}}+\int_{0}^{\rho} R \cdot \rho \frac{d \rho}{\rho^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{s-s_{2}^{*}}{R}=\int_{0}^{\rho}\left[-z_{c}\left(\frac{\partial p}{\partial t}\right)_{\rho}+\rho\right] \frac{d \rho}{\rho^{2}} \tag{25}
\end{equation*}
$$

Letting $V_{2}^{*}$ and $V_{0}$ ' be the volume of the hypothetical ideal gas at state 2 and state 3 respectively, $S_{2}{ }^{*}-S_{0}$ ' can be expressed as

$$
\begin{equation*}
S_{2}^{*}-S_{0}^{\prime}=R \ln \frac{V_{2^{*}}}{v_{0}^{\prime}} \tag{26}
\end{equation*}
$$

As has been described, the volume of state 2 is equal to that of state 1. Therefore,

$$
\begin{equation*}
s_{2}^{*}-s \cdot=i<\ln \frac{V}{v_{0}^{\prime}} \tag{27}
\end{equation*}
$$



Fig. 7. Evaluation of $S$ for a non-ideal gas.

Since according to the definition of $\mathrm{V}_{\mathrm{o}}$ '

$$
P_{C} \cdot V_{O}^{\prime}=R T,
$$

equation (27) can be written as

$$
\begin{equation*}
\frac{S_{2}^{*}-S_{O^{\prime}}}{R}=\ln \frac{V}{\frac{R T}{P_{c}}} \tag{28}
\end{equation*}
$$

Introducing the relations equations (11) into the above equation, one has

$$
\begin{align*}
\frac{S_{2}^{*}-S_{0}^{\prime}}{R} & =\ln \frac{P_{C} V_{C} \cdot\left({ }^{1 / \rho}\right)}{R T_{C} t} \\
& =\ln Z_{c}-\ln (\rho t) \tag{29}
\end{align*}
$$

By subtracting equation (29) from equation (25), one has

$$
\begin{equation*}
\frac{s-S_{0}^{\prime}}{R}=\int_{0}^{\rho}\left[-z_{c}\left(\frac{\partial p}{\partial t}\right)_{\rho}+\rho\right] \frac{d \rho}{\rho^{2}}+\ln (\rho t)-\ln z_{c} \tag{30}
\end{equation*}
$$

This is the desired thermodynamic excess function for entropy. The desired S-function can be obtained by substituting the equation of state, equation (1) of this chapter into this equation.

$$
\begin{align*}
& \frac{S-S_{O}^{\prime}}{R}=-Z_{c}\left[-\frac{1}{2} k_{2} \rho^{2}+\left(k_{1} \rho-\frac{1}{2} k_{2} \rho^{2}\right) t^{-2}\right]-\ln (\rho t) \\
+ & \frac{1}{2} \ln \left(1-b \rho+b \cdot \rho^{2}\right)-k_{3} \tan ^{-1} k_{3}-k_{3} \tan ^{-1}\left(k_{4} \rho-k_{3}\right)+\ln Z_{c} \\
= & z_{c}\left[-k_{1} \rho t^{-2}+\frac{1}{2} k_{2} \rho^{2}\left(1+t^{-2}\right)\right]-\ln (\rho t) \\
& +\frac{1}{2} \ln \left(1-b \rho+b \cdot \rho^{2}\right)-k_{3} \tan ^{-1} k_{3}-k_{3} \tan ^{-1}\left(k_{4} \rho-k_{3}\right)+\ln z_{c} \tag{31}
\end{align*}
$$

Letting $S_{o}$ be the entropy of the gas at a hypothetical ideal gas state dit the standard pressure $P_{o}$ (usually assumed at 1 atm), under the same temperature one has

$$
\begin{equation*}
S_{0}{ }^{\prime}=S_{0}+k \ln \left(P_{o} / P_{c}\right) \tag{32}
\end{equation*}
$$

Letting $S^{\circ}$ be the entropy of the gas at a hypothetical standard pressure $P_{0}$ and at a standard temperature $T_{0}$, one has

$$
\begin{equation*}
S_{0}-S^{0}=\int_{T_{0}}^{T} \frac{C_{p}}{T} d T=\int_{t_{0}}^{t} \frac{C_{n}}{t} d t \tag{33}
\end{equation*}
$$

where $t$ and $t_{o}$ are reduced temperatures of $T$ and $T_{o}$ respectively. Introducing equations (32) and (33) into equation (31) and on rearranging, yields

$$
\begin{aligned}
S & =R\left\{z_{c}\left[-k_{1} \rho t^{-2}+\frac{1}{2} k_{2} \rho^{2}\left(1+t^{-2}\right)\right]-\ln (\rho t)+\frac{1}{2} \ln \left(1-b \rho+b^{\prime} \rho^{2}\right.\right. \\
& \left.-k_{3} \tan ^{-1} k_{3}-k_{3} \tan ^{-1}\left(k_{4} \rho-k_{3}\right)+\ln z_{c}\right\}+s^{0}+\int_{t_{0}}^{t} \frac{C_{p} d t}{t}+R \ln \left(P_{o} / P\right)
\end{aligned}
$$

This is the desired equation

$$
s=f_{2}(\rho, t)
$$

## CHIPTER 4. PERMORMANCE EQUATIONS, CONSTRAINT RELATIONS AND THEIR DERIVATIVES

A system analysis of a multistage gas compression system has been made and definitions of the state variables and decision variables presented in Chapter 2. Quantitative relations relating $p, H$ and $S$ to $t$ and $\rho$ have been described in Chapter 3 . With these relations available, the performance equations described in Chapter 2 can be formulated. In part $A$ of this chapter quantitative relations for the performance equations and the constraint equations will be derived and in Part B first derivatives of these functions which will be used in the later optimization study will be given. In the present study, gas compression within region $I$ only is considered. The procedure developed in this study can be easily extended to other regions.

## PART A. PERFORMANCE ERUATIONS AND OONSTRAINT EQUATIONS

Figure 8 illustrates the mathematical model of a multistage gas compression system and summarizes the definitions of decision variables and state variables.

1. $x_{1}^{n}=r_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)$ : Pressure at the $n-t h$ stage. The pressure of a gas is related to its reduced temperature and reduced density by the generalized equation of state, equation (1) of Chapter 3. Since the pressure at the $n-t h$ stage can be related to $i_{n}^{\prime}\left(=\theta_{1}^{n}\right)$ and $\rho_{n}^{\prime}\left(=\theta_{4}^{n}\right), t_{n}^{\prime \prime}\left(=\theta_{2}^{n}\right)$ and $\rho_{n}^{\prime \prime}\left(=\theta_{5}^{n}\right)$, and $t_{n}\left(=\theta_{3}^{n}\right)$ and $\rho_{n}\left(=\theta_{6}^{n}\right)$, respectively, the following equations can be written using the state space notation for the multistage process.


$$
\begin{align*}
x_{1}^{n} & =-\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2}+k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{3} \\
& +\left(\frac{\theta_{4}^{n} \theta_{1}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]  \tag{1}\\
x_{1}^{n} & =-\left[k_{0}+k_{1}\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{2}+k_{2}\left[-\theta_{2}^{n}+\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{3} \\
& +\left(\frac{\theta_{5}^{n} \theta_{2}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]  \tag{2}\\
x_{1}^{n} & =-\left[k_{0}+k_{1}\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)^{2}+k_{2}\left[-\theta_{3}^{n}+\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)^{3} \\
& +\left(\frac{\theta_{6}^{n} \theta_{3}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right] \tag{3}
\end{align*}
$$

Equation (1) will be considered to be the performance equation for $x_{1}^{n}$. Equations obtained by equating equation (1) to equation (2) and by equating equation (1) to equation (3) will be considered as constraint relations. These constraint relations will be further described later.
2. $x_{2}^{n}=r_{2}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)$ : Enthalpy of the gas after the hypothetical reversible compression in the $n-t h$ stage.

The enthalpy, $H$, of a gas is related to its reduced temperature and reduced density by equation (20) of Chapter 3. Therefore, one can write

$$
\begin{aligned}
x_{2}^{n}= & -\%_{c} R T_{c}\left(2 k_{0}\right) \theta_{4}^{n}-z_{c} R T_{c}\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right)-z_{c} R T_{c}\left(k_{2}\right)\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)^{2}+z_{c} R T\left(2 k_{2}\right) \\
& \left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right)^{2}+R T_{c}\left(\theta_{1}^{n}\right) \frac{\left\{b\left(\theta_{4}^{n}\right)-b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}}+\int_{t_{0}}^{\theta_{1}^{n}} c_{p}^{*} T_{c} d \theta_{1}^{n}+H^{o}
\end{aligned}
$$

where $H^{\circ}$ is the enthalpy jer mole of the gas under hypothetical ideal state at the standard temperature $T_{0}$.
3. $x_{3}^{n}=T_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)$ : Enthalpy of the gas after actual compression in the n-th stage.

The nerformance equation for $x_{3}^{n}$ can be obtained simply by replacing $x_{2}^{n}, \theta_{1}^{n}$, and $\theta_{4}^{n}$ in equation (4) by $x_{3}^{n}, \theta_{2}^{n}$ and $\theta_{5}^{n}$ respectively. Thus we obtain

$$
\begin{align*}
x_{3}^{n} & =-Z_{c} R T_{c}\left(2 k_{0}\right) \theta_{5}^{n}-Z_{c} R T_{c}\left(3 k_{1}\right)\left(\theta_{2}^{n}\right)^{-1}\left(\theta_{5}^{n}\right)-Z_{c} R T_{c}\left(k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right)^{2} \\
& +Z_{c} R T_{c}\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)^{-1}\left(\theta_{5}^{n}\right)^{2}+R T_{c}\left(\theta_{2}^{n}\right) \frac{\left\{b\left(\theta_{5}^{n}\right)-b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}} \\
& +\int_{t_{0}}^{\theta_{2}^{n}} C_{p}^{*} T_{c} d \theta_{2}^{n}+H^{o} \tag{5}
\end{align*}
$$

4. $X_{4}^{n}=T_{4}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)$ : Enthalpy of the gas after actual compression and cooling in the $n-t h$ stage.

The performance equation for $X_{4}^{n}$ can be obtained simply by replacing $x_{2}^{n}, \theta_{1}^{n}$, and $\theta_{4}^{n}$ in equation (4) by $X_{4}^{n}, \quad \theta_{3}^{n}$ and $\theta_{6}^{n}$ respectively. Thus we obtain
$x_{4}^{n}=-z_{c} R T_{c}\left(2 k_{0}\right) \theta_{5}^{n}-z_{c} R T_{c}\left(3 k_{1}\right)\left(\theta_{3}^{n}\right)^{-1}\left(\theta_{6}^{n}\right)-z_{c} R T_{c}\left(k_{2}\right)\left(\theta_{3}^{n}\right)\left(\theta_{6}^{n}\right)^{2}$
$+z_{c} R T_{c}\left(2 k_{2}\right)\left(\theta_{3}^{n}\right)^{-1}\left(\theta_{6}^{n}\right)^{2}+\operatorname{RT}_{c}\left(\theta_{3}^{n}\right) \frac{\left\{b\left(\theta_{6}^{n}\right)-b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right\}}$
$+\int_{t_{0}}^{\theta_{3}^{n}} c_{p}^{*} \mathrm{~T}_{\mathrm{c}} \mathrm{d} \theta_{3}^{\mathrm{n}}+\mathrm{H}^{\circ}$
5. $x_{5}^{n}=n_{5}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)$ : Entropy of the gas after the hypothetical reversible compression in the $n$-th stage.

The entropy, $S$, of a gas is related to its reduced temperature and reduced density through equation (34) of Chapter 3. Therefore one has

$$
\begin{align*}
x_{5}^{n} & =\left(z_{c} i 2\right)\left(-k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)+\left(z_{c} R\right)\left(\frac{1}{2} k_{2}\right)\left\{1+\left(\theta_{1}^{n}\right)^{-2}\right\}\left(\theta_{4}^{n}\right)^{2} \\
& -R \ln \left\{\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)\right\}+\frac{1}{2} R \ln \left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}-R k_{3} \tan ^{-1} k_{3} \\
& -R k_{3} \tan ^{-1}\left\{k_{4}\left(\theta_{4}^{n}\right)-k_{3}\right\}+R \ln Z_{c}+R \ln \left(P_{0} / P_{c}\right)+s^{o}+ \\
& \int t_{1}^{\theta_{1}^{n}} \frac{c_{n} a_{1}^{n}}{\theta_{1}^{n}} \tag{7}
\end{align*}
$$

where $S^{\circ}$ is the entropy per mole of the gas under hypothetical ideal state at 1 atm and standard temperature $T_{0}$.
6. $X_{6}^{n}=T_{6}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)$ : Entropy of the gas after actual compression and cooling in the $n-t h$ stage.

The performance equation for $x_{6}^{n}$ can be obtained simply by replacing $x_{5}^{n}, \quad \theta_{1}^{n}$, and $\theta_{4}^{n}$ in equation (7) with $x_{6}^{n}, \quad \theta_{3}^{n}$, and $\theta_{6}^{n}$ respectively. Thus one has

$$
\begin{align*}
x_{6}^{n} & =\left(z_{c} R\right)\left(-k_{1}\right)\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)+\left(z_{c} R\right)\left(\frac{1}{2} k_{2}\right)\left\{1+\left(\theta_{3}^{n}\right)^{-2}\right\}\left(\theta_{6}^{n}\right)^{2} \\
& -R \ln \left\{\left(\theta_{3}^{n}\right)\left(\theta_{6}^{n}\right)\right\}+\frac{1}{2} R \ln \left\{1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right\}-R k_{3} \tan ^{-1} k_{3} \\
& -R k_{3} \tan ^{-1}\left\{k_{4}\left(\theta_{6}^{n}\right)-k_{3}\right\}+R \ln z_{c}+R \ln \left(P_{0} / P_{c}\right)+s^{o} \\
& +\int_{r_{0}}^{\theta_{3}^{n}} \frac{c_{p} d_{3} \theta_{3}^{n}}{\theta_{3}^{n}} \tag{8}
\end{align*}
$$

$\therefore x_{7}^{n}=T_{7}^{n}\left(\theta_{2}^{n},()_{3}^{n}, \theta_{6}^{n}, \theta_{7}^{n}, x_{4}^{n-1}, x_{7}^{n-1}\right):$ The cumulative cost for compressing a mole of gas up to and including the $n-t h$ stage. By substituting values and $H$ and $H^{\prime \prime}$ from equations (20) of Chapter 3 into equation (23) of Chapter 2, one has

$$
\begin{align*}
x_{7}^{n} & =x_{7}^{n-1}+c_{c}\left[T_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)-x_{4}^{n-1}\right]+\psi_{1} c_{H P}\left[T_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)\right. \\
& \left.-x_{4}^{n-1}\right]+\frac{\psi_{2} \cdot c_{H}}{U \cdot T_{c}} \frac{\left[T_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)-r_{4}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)\right]}{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]} \ln \frac{\theta_{2}^{n}-\left(t_{w}\right)_{0}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}} \\
& +\frac{c_{w}}{\left(c_{p}\right)_{w} T_{c}} \frac{\left[r_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)-T_{4}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)\right]}{\left[\left(t_{w}\right)_{0}-\left(t_{w}\right)_{i}\right]} \tag{9}
\end{align*}
$$

8. $\phi_{1}^{n}=\phi_{1}^{n}\left(\theta_{1}^{n}, \theta_{2}^{n}, \theta_{4}^{n}, \theta_{6}^{n}\right)=0$, and

$$
\phi_{2}^{n}=\phi_{2}^{n}\left(\theta_{1}^{n}, \theta_{3}^{n}, \theta_{4}^{n}, \theta_{6}^{n}\right)=0
$$

It has been described that the $n-t h$ stage pressure can be calculated by knowing $t_{n}^{\prime}$ and $\rho_{n}^{\prime}$ in equation (1), $t_{n}^{\prime \prime}$ and $\rho_{n}^{\prime \prime}$ in equation (2), $t_{n}$ and $\rho_{n}$ in equation (3) respectively. Therefore, these quantities are related through two constraint equations

$$
\begin{align*}
& \phi_{1}^{n}=\mathrm{r}_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-\mathrm{T}_{1}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)=0  \tag{10}\\
& \phi_{2}^{n}=\mathrm{r}_{1}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-\mathrm{T}_{1}^{n}\left(\theta_{3}^{n}, \theta_{6}^{n}\right)=0 \tag{11}
\end{align*}
$$

By substituting equations (1), (2), and (3) into the above equations, one obtains

$$
\begin{align*}
\phi_{1}^{n}= & -\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2}+k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{3} \\
& +\left(\frac{\theta_{4}^{n} \theta_{1}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]+\left[k_{c}+k_{1}\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{2} \\
& -k_{2}\left[-\theta_{2}^{n}+\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{3}-\left(\frac{\theta_{5}^{n} \theta_{1}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right. \\
= & 0  \tag{12}\\
\phi_{2}^{n}= & -\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2}+k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{3} \\
& +\left(\frac{\left.\theta_{4}^{n} \theta_{1}^{n}\right) /\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]-\left[k_{0}+k_{1}\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)^{2}}{z_{c}}\right. \\
& +k_{2}\left[-\theta_{3}^{n}+\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)^{3}+\left(\frac{\theta_{6}^{n} \theta_{3}^{n}}{z_{c}}\right) /\left[1-b^{n}\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right] \\
= & 0 \tag{13}
\end{align*}
$$

9. $\phi_{3}^{n}=\phi_{3}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}, x_{6}^{n-1}\right)=0$ : The constraint equation due to

$$
s_{n}^{\prime}=s_{n-1}
$$

Referring to equation (19) of Chapter 2 , one can note that

$$
\begin{equation*}
\phi_{3}^{n}=x_{5}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-x_{6}^{n-1}=0 \tag{14}
\end{equation*}
$$

By substituting equation (7) into the above equation, we obtain

$$
\phi_{3}^{n}=\left(z_{c} R\right)\left(-k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)+\left(z_{c} R\right)\left(\frac{1}{2} k_{2}\right)\left[1+\left(\theta_{1}^{n}\right)^{-2}\right]\left(\theta_{4}^{n}\right)^{2}
$$

$$
-R \ln \left\{\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)\right\}+\frac{1}{2} R \ln \left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}-R k_{3} \tan ^{-1} k_{3}
$$

$$
-R k_{3} \tan ^{-1}\left\{k_{4}\left(\theta_{4}^{n}\right)-k_{3}\right\}+R \ln z_{c}+R n\left(P_{o} / P_{c}\right)+s^{\circ}
$$

$$
\begin{equation*}
+\int_{t_{0}}^{\theta_{1}^{n}} \frac{C_{p}^{*} d \theta_{1}^{n}}{\theta_{1}^{n}}-x_{6}^{n-1}=0 \tag{15}
\end{equation*}
$$

10. $\phi_{4}^{n}=\phi_{4}^{n}\left(\theta_{1}^{n}, \theta_{2}^{n}, \theta_{4}^{n}, \theta_{5}^{n}, x_{4}^{n-1}\right)=0$ : The constraint equation for the compressor efficiency.

Referring to equation (22) of Chapter 2, one can note that
$\phi_{4}^{n}=\left[T_{3}^{n}\left(\theta_{2}^{n}, \theta_{5}^{n}\right)-x_{4}^{n-1}\right]-\frac{1}{\eta}\left[T_{2}^{n}\left(\theta_{1}^{n}, \theta_{4}^{n}\right)-x_{4}^{n-1}\right]=0$
By substituting equations (4) and (5) into the above equation,

$$
\begin{align*}
\phi_{4}^{n} & =-z_{c} R T_{c}\left(2 k_{0}\right) \theta_{5}^{n}-z_{c} R T_{c}\left(3 k_{1}\right)\left(\theta_{2}^{n}\right)^{-1}\left(\theta_{5}^{n}\right)-z_{c} R T_{c}\left(k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right)^{2} \\
& +z_{c} R T_{c}\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)^{-1}\left(\theta_{5}^{n}\right)^{2}+R T_{c}\left(\theta_{2}^{n}\right) \frac{\left\{b\left(\theta_{5}^{n}\right)-b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}} \\
& +\int_{t_{0}}^{\theta_{2}^{n}} c_{p}^{*} T_{c} d \theta_{2}^{n}+H^{o}-1.2\left[-z_{c} R T_{c}\left(2 k_{0}\right) \theta_{4}^{n}\right. \\
& -z_{c} R T_{c}\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right)-z_{c} R T_{c}\left(k_{2}\right)\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)^{2} \\
& +z_{c} R T_{c}\left(2 k_{2}\right)\left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right){ }^{2}+R T_{c}\left(\theta_{1}^{n}\right) \frac{\left\{b\left(\theta_{4}^{n}\right)-b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}} \\
& +\int_{t_{0}}^{\left.\theta_{p}^{n} T_{c} d \theta_{1}^{n}+H^{o}\right]+0.2 x_{4}^{n-1}=0} \tag{17}
\end{align*}
$$

PART B. THE FIRST DERIVATIVES OF THE STATE VARIABLES AND THE CONSTRAINT FUNCTIONS

Table 3 shows the check list for thederivatives which will be used in the optimization study. These derivatives are obtained by differentiating the performance equations and constraint functions developed in Part A. The results of the differentiations are summarized as follows:

1. Derivatives of $x_{1}^{n}$ with respect to $\theta_{1}^{n}, \theta_{2}^{n}, \theta_{3}^{n}, \theta_{4}^{n}, \theta_{5}^{n}$ and $\theta_{6}^{n}$

|  | $\mathrm{x}_{1}^{n}$ | $\mathrm{x}_{2}^{n}$ | $\begin{array}{r}\text { n } \\ 3 \\ \hline\end{array}$ | ${ }^{n}$ | $x_{5}^{n}$ | $x_{6}^{n}$ | $\mathrm{x}_{7}$ | $\phi_{1}^{n}$ | $\phi_{2}^{n}$ | $\phi_{3}^{n}$ | $\phi_{4}^{n}$ | Derivalives of Hamiltonian Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta_{1}^{n}$ | X | X |  |  | X |  |  | X | X | X | X | $\frac{\partial H^{n}}{\partial \theta_{1}^{n}}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}+z_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}+z_{5}^{n} \frac{\partial x_{5}^{n}}{\partial \theta_{1}^{n}}+\lambda_{1}^{n} \frac{\partial \phi_{1}^{n}}{\partial \theta_{1}^{n}}+\lambda_{2}^{n} \frac{\partial \phi_{2}^{n}}{\partial \theta_{1}^{n}}+\lambda_{3}^{n} \frac{\partial \phi_{3}^{n}}{\partial \theta_{1}^{n}}+\lambda_{4}^{n} \frac{\partial \psi_{1}^{n}}{\partial \theta_{1}^{n}}$ |
| $\theta_{2}^{n}$ | (x) |  | X |  |  |  | X | X |  |  | X | $\frac{\partial H^{n}}{\partial \theta_{2}^{n}}=z_{3}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}+z_{1}^{n} \frac{\partial x_{7}^{n}}{\partial \theta_{2}^{n}}+\lambda_{1}^{n} \frac{\partial \phi_{1}^{n}}{\partial \theta_{2}^{n}}+\lambda_{4}^{n} \frac{\partial \phi_{4}^{n}}{\partial \theta_{2}^{n}}$ |
| $\theta_{3}^{n}$ | (x) |  |  | X |  | K | X |  | X |  |  | $\frac{\partial H^{n}}{\partial \theta_{3}^{n}}=z_{4}^{n} \frac{\partial x_{4}^{n}}{\partial \theta_{3}^{n}}+z_{6}^{n} \frac{\partial x_{6}^{n}}{\partial \theta_{3}^{n}}+z_{7}^{n} \frac{\partial x_{3}^{n}}{\partial \theta_{3}^{n}}+\lambda_{2}^{n} \frac{\partial \xi_{2}^{n}}{\partial \theta_{3}^{n}}$ |
| $\theta_{4}^{n}$ | X | X |  |  | X |  |  | X | X | X | X | $\frac{\partial H^{n}}{\partial \theta_{4}^{n}}=z_{1}^{n} \frac{\partial x_{1}^{n}}{\partial \theta_{4}^{n}}+j_{2}^{n} \frac{\partial x_{2}^{n}}{\partial \theta_{4}^{n}}+\partial_{5}^{n} \frac{\partial x_{5}^{n}}{\partial \theta_{4}^{n}}+\lambda_{1}^{n} \frac{\partial \phi_{1}^{n}}{\partial \theta_{4}^{n}}+\lambda_{2}^{n} \frac{\partial \phi_{2}^{2}}{\partial \theta_{4}^{n}}+\lambda_{3}^{n} \frac{\partial \phi_{5}^{n}}{\partial \theta_{4}^{n}}+\lambda_{4}^{n} \frac{\partial \phi_{4}^{n}}{\partial \theta_{4}^{n}}$ |
| $\theta_{5}^{n}$ | (X) |  | X |  |  |  | X | X |  |  | X | $\frac{\partial H^{n}}{\partial \theta_{5}^{n}}=Z_{3}^{n} \frac{\partial x_{5}}{\partial \theta_{5}^{n}}+z_{7}^{n} \frac{\partial x_{7}}{\partial \theta_{5}^{n}}+\lambda_{1} \frac{n \partial \phi_{s}^{n}}{\partial \theta_{5}^{n}}+\lambda \frac{\lambda^{n} \frac{\partial \phi_{f}^{n}}{\partial \theta^{n}}}{}$ |
| $\theta_{6}^{n}$ | (x) |  |  | X |  | X | X |  | X |  |  | $\frac{\partial H^{n}}{\partial \theta_{6}^{n}}=\partial_{4}^{n} \frac{\partial x_{4}^{4}}{\partial \theta \sigma_{6}^{n}}+\delta_{6}^{n} \frac{\partial x_{6}^{n}}{\partial \theta_{6}^{n}}+\partial_{7}^{n} \frac{\partial x_{7}^{n}}{\partial \theta_{6}^{n}}+\lambda_{2}^{n} \frac{\partial \phi_{2}^{n}}{\partial \theta_{6}^{n}}$ |
| $\mathrm{x}_{1}$ |  |  |  |  |  |  |  |  |  |  |  | $z_{1}^{n-1}=0$ |
| $\mathrm{x}_{2}^{n}$ |  |  |  |  |  |  |  |  |  |  |  | $z_{2}^{n-1}=0$ |
| $\mathrm{X}_{3}$ |  |  |  |  |  |  |  |  |  |  |  | $3^{n-1}=0$ |
| $\mathrm{x}_{4}$ |  |  |  |  |  |  | X |  |  |  | X | $Z_{4}^{n-1}=Z_{7}^{n} \frac{\partial x_{\eta}^{n}}{\partial x_{4}^{n-1}}+\lambda_{4}^{n} \frac{\partial \phi_{4}^{n}}{\partial x_{4}^{n-1}}$ |
| $\mathrm{X}_{5}^{n}$ |  |  |  |  |  |  |  |  |  |  |  | $z_{5}^{n-1}=0$ |
| $\mathrm{x}_{6}^{n}$ |  |  |  |  |  |  |  |  |  | X |  | $\partial_{6}^{n-1}=\lambda_{3}^{3} \cdot \frac{\partial \phi_{3}^{n}}{\partial x_{6}^{n-1}}=-\lambda_{3}^{n}$ |
| $\mathrm{x}_{7}$ |  |  |  |  |  |  | X |  |  |  |  | $z_{7}^{n-1}=z_{7}^{n} \frac{\partial x_{n}^{n}}{\partial x_{n}^{n-1}}=1$ |

$$
\begin{align*}
& \frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}=k_{1}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}+k_{2}\left[-1-1\left(\theta_{1}^{n}\right)^{-2}\right]\left(\theta_{4}^{n}\right)^{3} \\
& +\left(\frac{\theta_{5}^{n}}{z_{c}}\right) /\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}=k_{1}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}\right. \\
& -k_{2}\left(\theta_{4}^{n}\right)^{3}-k_{2}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{3}+\frac{\left(\theta_{4}^{n}\right)}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{1}\left(\theta_{4}^{n}\right)^{2}\right.} \\
& \frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}=k_{1}\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)^{2}-k_{2}\left(\theta_{5}^{n}\right)^{3}-k_{2}\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)^{3} \\
& +\frac{\left(\theta_{5}^{n}\right)}{z_{c}\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]} \\
& \frac{\partial x_{1}^{n}}{\partial \theta_{3}^{n}}=k_{1}\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)^{2}-k_{2}\left(\theta_{6}^{n}\right)^{3}-k_{2}\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)^{3} \\
& +\frac{\left(\theta_{6}^{n}\right)}{z_{c}\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]} \\
& \frac{\partial x_{1}^{n}}{\partial \theta_{4}^{n}}=-2\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)+3 k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2} \\
& +\frac{\theta_{1}^{n}}{z_{c}} /\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]+\frac{\theta_{5}^{n} \theta_{1}^{n}}{z_{c}} \frac{(-1)\left[-b+2 b^{\prime}\left(\theta_{4}^{n}\right)\right]}{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]^{2}} \\
& =-2\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)+3 k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2} \\
& +\frac{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]\left(\theta_{1}^{n}\right)-\theta_{4}^{n} \theta_{1}^{n}\left[-b+2 b \cdot\left(\theta_{4}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]^{2}} \tag{21}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial x_{1}^{n}}{\partial \theta_{5}^{n}}=-2\left[k_{0}+k_{1}\left(\theta_{2}^{n}\right)\right]\left(\theta_{5}^{n}\right)+3 k_{2}\left[-\theta_{2}^{n}+\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{2} \\
&+\frac{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]\left(\theta_{2}^{n}\right)-\theta_{5}^{n} \theta_{2}^{n}\left[-b+2 b^{\prime}\left(\theta_{5}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]^{2}}  \tag{22}\\
& \frac{\partial x_{1}^{n}}{\partial \theta_{6}^{n}}=-2\left[k_{0}+k_{1}\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)+3 k_{2}\left[-\theta_{3}^{n}+\left(\theta_{3}^{n}\right)^{-1}\right]\left(\theta_{6}^{n}\right)^{2} \\
&+\frac{\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]\left(\theta_{3}^{n}\right)-\theta_{6}^{n} \theta_{3}^{n}\left[-b+2 b^{\prime}\left(\theta_{6}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]^{2}} \tag{23}
\end{align*}
$$

2. Derivatives of $x_{2}^{n}$ with respect to $\theta_{1}^{n}$ and $\theta_{4}^{n}$

$$
\begin{align*}
& \frac{\partial x_{2}^{n}}{\partial \theta_{1}^{n}}=+\left(Z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)-\left(Z_{c} R T_{c}\right)\left(k_{2}\right)\left(\theta_{4}^{n}\right)^{2} \\
&-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}+R T_{c} \frac{\left[b\left(\theta_{4}^{n}\right)-b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]}{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]} \\
&+c_{p}^{*} T_{c}  \tag{24}\\
& \frac{\partial x_{2}^{n}}{\partial \theta_{4}^{n}}=-\left(Z_{c} R T_{c}\right)\left(2 k_{0}\right)-\left(Z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-1}-\left(Z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right) \\
&+\left(Z_{c} R T_{c}\right)\left(4 k_{2}\right)\left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right)+\left(R T_{c}\right)\left(\theta_{1}^{n}\right) \frac{\left[+b-2 b^{\prime}\left(\theta_{4}^{n}\right)\right]}{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]^{2}} \tag{25}
\end{align*}
$$

3. Derivatives of $x_{3}^{n}$ with respect to $\theta_{2}^{n}$ and $\theta_{5}^{n}$

$$
\begin{align*}
& \frac{\partial x_{2}^{n}}{\partial \theta_{2}^{n}}=+\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)-\left(z_{c} R T_{c}\right)\left(k_{2}\right)\left(\theta_{5}^{n}\right)^{2} \\
&-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)^{2}+R T_{c} \frac{\left[b\left(\theta_{5}^{n}\right)-b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]}{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]} \\
&+c_{p}^{*} T_{c}  \tag{26}\\
& \frac{\partial x_{2}^{n}}{\partial \theta_{5}^{n}}=-\left(z_{c} R T_{c}\right)\left(2 k_{0}\right)-\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{2}^{n}\right)-1-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right) \\
&+\left(z_{c} R T_{c}\right)\left(4 k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right)+\left(R T_{c}\right)\left(\theta_{2}^{n}\right) \frac{[1-b-26)}{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]^{2}} \tag{27}
\end{align*}
$$

4. Derivatives of $x_{4}^{n}$ with respect to $\theta_{3}^{n}$ and $\theta_{6}^{n}$

$$
\begin{align*}
& \frac{\partial x_{4}^{n}}{\partial \theta_{3}^{n}}=+\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)-\left(z_{c} R T_{c}\right)\left(k_{2}\right)\left(\theta_{6}^{n}\right)^{2} \\
&  \tag{28}\\
& -\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)^{2}+R T_{c} \frac{\left[b\left(\theta_{6}^{n}\right)-b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]}{\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]}+c_{p}^{*} T_{c}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial x_{4}^{n}}{\partial \theta_{0}^{n}}=-\left(z_{c} R T_{c}\right)\left(2 k_{0}\right)-\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{3}^{n}\right)^{-1}-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{3}^{n}\right)\left(\theta_{6}^{n}\right) \\
&  \tag{29}\\
& \quad+\left(z_{c} R T_{c}\right)\left(4 k_{2}\right)\left(\theta_{3}^{n}\right)^{-1}\left(\theta_{6}^{n}\right)+\left(R T_{c}\right)\left(\theta_{3}^{n}\right) \frac{\left\{+b-2 b^{\prime}\left(\theta_{6}^{n}\right)\right\}^{n}}{\left\{1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right\}^{2}}
\end{align*}
$$

5. Derivatives of $x_{5}^{n}$ with respect to $\theta_{1}^{n}$ and $\theta_{4}^{n}$.

$$
\begin{align*}
\frac{\partial x_{5}^{n}}{\partial \theta_{1}^{n}} & =\left(z_{c}^{R}\right)\left(2 k_{1}\right)\left(\theta_{1}^{n}\right)^{-3}\left(\theta_{4}^{n}\right)+\left(z_{c} R\right)\left(\frac{1}{2} k_{2}\right)\left\{-2\left(\theta_{1}^{n}\right)^{-3}\right\}\left(\theta_{4}^{n}\right)^{2} \\
& -R \frac{\theta_{5}^{n}}{\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)}+\frac{c_{p}}{\theta_{1}^{n}}=\left(z_{c}^{R}\right)\left(2 k_{1}\right)\left(\theta_{1}^{n}\right)^{-3}\left(\theta_{4}^{n}\right)-\left(z_{c} R\right) k_{2}\left(\theta_{1}^{n}\right)^{-3}\left(\theta_{4}^{n}\right)^{2} \\
& -R\left(\theta_{1}^{n}\right)^{-1}+c_{p}\left(\theta_{1}^{n}\right)^{-1} \tag{30}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial x_{5}^{n}}{\partial \theta_{4}^{n}} & =\left(z_{c}^{R}\right)\left(-k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}+\left(z_{c} R\right)\left(k_{2}\right)\left\{1+\left(\theta_{1}^{n}\right)^{-2}\right\}\left(\theta_{4}^{n}\right)-R\left(\theta_{4}^{n}\right)^{-1} \\
& +\frac{1}{2} R \frac{-b+2 b^{\prime}\left(\theta_{4}^{n}\right)}{\left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}}-R k_{3} \frac{k_{4}}{1+\left[k_{4}\left(\theta_{4}^{n}\right)-k_{3}\right]^{2}} \tag{31}
\end{align*}
$$

6. Derivatives of $x_{6}^{n}$ with respect to $\theta_{3}^{n}$ and $\theta_{6}^{n}$.

$$
\begin{align*}
\frac{\partial x_{6}^{n}}{\partial \theta_{3}^{n}} & =\left(z_{c} R\right)\left(2 k_{1}\right)\left(\theta_{3}^{n}\right)^{-3}\left(\theta_{6}^{n}\right)+\left(z_{c} R\right)\left(\frac{1}{2} k_{2}\right)\left\{-2\left(\theta_{3}^{n}\right)^{-3}\right\}\left(\theta_{6}^{n}\right)^{2} \\
& -R \frac{\theta_{5}^{n}}{\left(\theta_{3}^{n}\right)\left(\theta_{6}^{n}\right)}+\frac{c_{p}}{\theta_{3}^{n}}=\left(z_{c} R\right)\left(2 k_{1}\right)\left(\theta_{3}^{n}\right)^{-3}\left(\theta_{6}^{n}\right) \\
& -\left(z_{c} R\right) k_{2}\left(\theta_{3}^{n}\right)^{-3}\left(\theta_{6}^{n}\right)^{2}-R\left(\theta_{3}^{n}\right)^{-1}+c_{p}\left(\theta_{3}^{n}\right)^{-1} \tag{32}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial x_{6}^{n}}{\partial \theta_{6}^{n}} & =\left(z_{c} R\right)\left(-k_{1}\right)\left(\theta_{3}^{n}\right)^{-2}+\left(z_{c} R\right)\left(k_{2}\right)\left\{1+\left(\theta_{3}^{n}\right)^{-2}\right\}\left(\theta_{6}^{n}\right)-R\left(\theta_{6}^{n}\right)^{-1} \\
& +\frac{1}{2} R \frac{\left\{-b+2 b^{\prime}\left(\theta_{6}^{n}\right)\right\}}{\left\{1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right\}}-R k_{3} \frac{k_{4}}{1+\left[k_{4}\left(\theta_{6}^{n}\right)-k_{3}\right]^{2}} \tag{33}
\end{align*}
$$

7. Derivatives of $x_{7}^{n}$ with respect to $\theta_{2}^{n}, \theta_{3}^{n}, \theta_{5}^{n}, \theta_{6}^{n}, x_{4}^{n-1}, x_{7}^{n-1}$

$$
\begin{align*}
& \frac{\partial x_{7}^{n}}{\partial \theta_{2}^{n}} \\
& =\frac{\partial x_{3}^{n}}{\partial \theta_{2}^{n}}\left\{c_{e}+\psi_{1} c_{H P}+\frac{c_{w}}{\left(c_{p}\right)_{w} r_{c}} \frac{1}{\left(t_{w}\right)_{o}-\left(t_{w}\right)_{i}}\right. \\
& \left.+\frac{\psi / 2 c_{H}}{U T_{c}} \frac{\ln \frac{\theta_{2}-\left(t_{w}\right)_{o}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}}}{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{2}^{n}-\left(t_{w}\right)_{i}\right]}\right\} \\
& +\frac{\psi_{2} c_{H}}{U T_{c}} \cdot \frac{\left.\left(x_{3}^{n}-x_{4}^{n}\right)\left\{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]\right\}-\left[\ln \frac{\theta_{2}^{n}-\left(t_{w}\right)_{0}}{\theta \eta_{3}-\left(t_{w}\right)_{i}}\right]\left[\theta_{2}^{n}-\left(t_{w}\right)_{o}\right]\right\}}{\left\{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]\right\}^{2}\left[\theta_{2}^{n}-\left(t_{w}\right)_{o}\right]} \text { (34) } \\
& \frac{\partial x_{7}^{n}}{\partial \theta_{3}^{n}}=-\left\{\frac{\psi_{2} c_{H}}{U T_{c}} \frac{\ln \frac{\theta_{2}^{n}-\left(t_{w}\right)_{o}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}}}{\left[\theta_{2}^{n}-\left(t_{w}\right)_{o}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]}\right. \\
& \left.+\frac{c_{w}}{\left(C_{p}\right)_{w} T_{c}} \frac{1}{\left(t_{w}\right)_{0}-\left(t_{w}\right)_{i}}\right\}\left(\frac{\partial x_{4}^{n}}{\partial \theta_{3}^{n}}\right)-\frac{\psi_{2} C_{H}}{U T_{c}}\left(x_{3}^{n}-x_{4}^{n}\right) . \\
& \cdot \frac{\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right] \ln \frac{\theta_{2}^{n}-\left(t_{w}\right)_{0}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}}+\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]}{\left\{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]\right\}^{2}\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]} \tag{35}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial x_{7}^{n}}{\partial \theta_{5}^{n}}=\left(\frac{\partial x_{3}^{n}}{\partial \theta_{5}^{n}}\right)\left[c_{c}+\psi_{1}^{\prime} c_{T I P}+\frac{c_{w}}{\left(c_{p}\right)_{w} T_{c}} \frac{1}{\left(t_{w}\right)_{o}-\left(t_{w}\right)_{i}}\right. \\
& +\frac{\psi_{2} C_{H}}{U T_{c}} \cdot \frac{\ln \frac{\theta_{2}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}}}{\left[\theta_{2}^{\left.n-\left(t_{w}\right)_{o}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]}\right.} \\
& \frac{\partial x_{7}^{n}}{\partial \theta_{6}^{n}}=-\left(\frac{\partial x_{4}^{n}}{\partial \theta_{6}^{n}}\right)\left[\frac{\psi_{2} c_{H}}{U T_{c}} \frac{\ln \frac{\theta_{2}^{n}-\left(t_{w}\right)_{o}}{\theta_{3}^{n}-\left(t_{w}\right)_{i}}}{\left[\theta_{2}^{n}-\left(t_{w}\right)_{0}\right]-\left[\theta_{3}^{n}-\left(t_{w}\right)_{i}\right]}+\frac{c_{w}}{\left(c_{p}\right)_{w} T_{c}} \frac{1}{\left(t_{w}\right)_{o}-\left(t_{w}\right)_{i}}\right](37)  \tag{37}\\
& \frac{\partial x_{7}^{n}}{\partial x_{4}^{n-1}}=-\left[c_{e}+\psi_{1} c_{H P}\right]  \tag{38}\\
& \frac{\partial x_{7}^{n}}{\partial x_{7}^{n-1}}=1 \tag{39}
\end{align*}
$$

8. Derivatives of $\phi_{1}^{n}$ with respect to $\theta_{1}^{n}, \theta_{2}^{n}, \theta_{4}^{n}$, and $\theta_{5}^{n}$

$$
\begin{align*}
\frac{\partial \phi_{1}^{n}}{\partial \theta_{1}^{n}} & =k_{1}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}-k_{2}\left(\theta_{4}^{n}\right)^{3}-k_{2}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{3} \\
& +\frac{\left(\theta_{4}^{n}\right)}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]} \tag{40}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial \phi_{1}^{n}}{\partial \theta_{2}^{n}} & =k_{1}\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)^{2}-k_{2}\left(\theta_{5}^{n}\right)^{3}-k_{2}\left(\theta_{2}^{n}\right)^{-2}\left(\theta_{5}^{n}\right)^{3} \\
& +\frac{\left(\theta_{5}^{n}\right.}{z_{c}\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\right.} \frac{\left.\left(\theta_{5}^{n}\right)^{2}\right]}{} \tag{41}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial \phi_{1}^{n}}{\partial \theta_{4}^{n}} & =-2\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)+3 k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2} \\
& +\frac{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]\left(\theta_{1}^{n}\right)-\theta_{4}^{n} \theta_{1}^{n}\left[-b+2 b^{\prime}\left(\theta_{4}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]^{2}}  \tag{42}\\
\frac{\partial \phi_{1}^{n}}{\partial \theta_{5}^{n}} & =-2\left[k_{0}+k_{1}\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)+3 k_{2}\left[-\theta_{2}^{n}+\left(\theta_{2}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{2} \\
& +\frac{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]\left(\theta_{2}^{n}\right)-\theta_{5}^{n} \theta_{2}^{n}\left[-b+2 b^{\prime}\left(\theta_{5}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]^{2}} \tag{43}
\end{align*}
$$

9. Derivatives of $\phi_{2}^{n}$ with respect to $\theta_{1}^{n}, \theta_{3}^{n}, \theta_{4}^{n}$, and $\theta_{6}^{n}$

$$
\begin{align*}
\frac{\partial \phi_{2}^{n}}{\partial \theta_{1}^{n}} & =k_{1}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}-k_{2}\left(\theta_{4}^{n}\right)^{3}-k_{2}\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{3} \\
& +\frac{\left(\theta_{4}^{n}\right)}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]}  \tag{44}\\
\frac{\partial \phi_{2}^{n}}{\partial \theta_{3}^{n}} & =k_{1}\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)^{2}-k_{2}\left(\theta_{6}^{n}\right)^{3}-k_{2}\left(\theta_{3}^{n}\right)^{-2}\left(\theta_{6}^{n}\right)^{3} \\
& +\frac{z_{c}\left[1-b\left(\theta_{6}^{n}\right)+b^{\prime}\left(\theta_{6}^{n}\right)^{2}\right]}{\left.z_{6}^{n}\right)} \tag{45}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial \psi^{n}: 2}{\partial \theta_{4}^{n}} & =-2\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)+3 k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{4}^{n}\right)^{2} \\
& +\frac{\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]\left(\theta_{1}^{n}\right)-\theta_{4}^{n} \theta_{1}^{n}\left[-b+2 b^{\prime}\left(\theta_{4}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]^{2}}  \tag{46}\\
\frac{\partial \phi_{2}^{n}}{\partial \theta_{6}^{n}}= & -2\left[k_{0}+k_{1}\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)+3 k_{2}\left[-\theta_{1}^{n}+\left(\theta_{1}^{n}\right)^{-1}\right]\left(\theta_{5}^{n}\right)^{2} \\
& +\frac{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]\left(\theta_{1}^{n}\right)-\theta_{5}^{n} \theta_{1}^{n}\left[-b+2 b^{\prime}\left(\theta_{5}^{n}\right)\right]}{z_{c}\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]^{2}} \tag{47}
\end{align*}
$$

10. Derivatives of $\phi_{3}^{n}$ with respect to $\theta_{1}^{n}, \theta_{4}^{n}$, and $x_{6}^{n-1}$

$$
\begin{align*}
\frac{\partial \phi_{3}^{n}}{\partial \theta_{1}^{n}} & =\left(z_{c} R\right)\left(2 k_{1}\right)\left(\theta_{1}^{n}\right)^{-3}\left(\theta_{4}^{n}\right)-\left(z_{c} R\right) k_{2}\left(\theta_{1}^{n}\right)^{-3}\left(\theta_{4}^{n}\right)^{2} \\
& -R\left(\theta_{1}^{n}\right)^{-1}+c_{p}\left(\theta_{1}^{n}\right)^{-1}  \tag{48}\\
\frac{\partial \phi_{3}^{n}}{\partial \theta_{4}^{n}}= & \left(z_{c} R\right)\left(-k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}+\left(z_{c} R\right)\left(k_{2}\right)\left\{1+\left(\theta_{1}^{n}\right)^{-2}\right\}\left(\theta_{4}^{n}\right)-R\left(\theta_{4}^{n}\right)^{-1} \\
& +\frac{1}{2} R \frac{-b+2 b^{\prime}\left(\theta_{4}^{n}\right)}{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}}-R k_{3} \frac{k_{4}}{1+\left[k_{4}\left(\theta_{4}^{n}\right)-k_{3}\right]^{2}} \tag{49}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \phi_{3}^{n}}{\partial x_{6}^{n-1}}=-1 \tag{50}
\end{equation*}
$$

11. Derivatives or $\phi_{4}^{n}$ with respect to $\theta_{1}^{n}, \theta_{2}^{n}, 0_{4}^{n}, 0_{5}^{n}$ and $x_{4}^{n-1}$

$$
\begin{align*}
\frac{\partial \phi_{4}^{n}}{\partial \theta_{1}^{n}} & =-1 \cdot 2\left[\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)-\left(z_{c} R T_{c}\right)\left(k_{2}\right)\left(\theta_{4}^{n}\right)^{2}\right. \\
& -\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{1}^{n}\right)^{-2}\left(\theta_{4}^{n}\right)^{2}+R T_{c} \frac{\left[b\left(\theta_{4}^{n}\right)-b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right]}{\left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}} \\
& \left.+c_{p}^{*} T_{c}\right] \\
\frac{\partial \phi_{4}^{n}}{\partial \theta_{2}^{n}} & =+\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{2}^{n}\right) \\
& \left(\theta_{5}^{n}\right)-\left(z_{c} R T_{c}\right)\left(k_{2}\right)\left(\theta_{5}^{n}\right)^{2} \\
& -\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right)^{2}+R T_{c} \frac{\left\{b\left(\theta_{5}^{n}\right)-b b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}}{\left\{1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right\}}  \tag{52}\\
& +c_{p}^{*} T_{c}
\end{align*}
$$

$$
\frac{\partial \phi_{4}^{n}}{\partial \theta_{4}^{n}}=-1.2\left[-\left(z_{c} R T_{c}\right)\left(2 k_{o}\right)-\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{1}^{n}\right)^{-1}\right.
$$

$$
-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{1}^{n}\right)\left(\theta_{4}^{n}\right)+\left(z_{c} R T_{c}\right)\left(4 k_{2}\right)\left(\theta_{1}^{n}\right)^{-1}\left(\theta_{4}^{n}\right)
$$

$$
\begin{equation*}
+\left(R T_{c}\right)\left(\theta_{1}^{n}\right) \frac{\left\{+b-2 b^{\prime}\left(\theta_{4}^{n}\right)\right\}}{\left\{1-b\left(\theta_{4}^{n}\right)+b^{\prime}\left(\theta_{4}^{n}\right)^{2}\right\}^{2}} \tag{53}
\end{equation*}
$$

$$
\frac{\partial \phi_{4}^{n}}{\partial \theta_{5}^{n}}=-\left(z_{c} R T_{c}\right)\left(2 k_{0}\right)-\left(z_{c} R T_{c}\right)\left(3 k_{1}\right)\left(\theta_{2}^{n}\right)^{-1}-\left(z_{c} R T_{c}\right)\left(2 k_{2}\right)\left(\theta_{2}^{n}\right)\left(\theta_{5}^{n}\right)
$$

$$
\begin{equation*}
+\left(z_{c} R T_{c}\right)\left(4 k_{2}\right)\left(\theta_{2}^{n}\right)^{-1}\left(\theta_{5}^{n}\right)+\left(R T_{c}\right)\left(\theta_{2}^{n}\right) \frac{\left[+b-2 b^{\prime}\left(\theta_{5}^{n}\right)\right]}{\left[1-b\left(\theta_{5}^{n}\right)+b^{\prime}\left(\theta_{5}^{n}\right)^{2}\right]^{2}} \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \phi_{4}^{n}}{\partial x_{4}^{n-1}}=0.2 \tag{55}
\end{equation*}
$$

## CIIAPTER 5. OPTIMIZATION STUDY OF A MULTISTAGE GAS COMPRESSION SYSTEM

1. INTIODUCTION

A system analysis of a multistage gas compression system has been made and the operating variables have been defined in Chapter 2 . In Chaper 3, the reduced pressure of a gas, the entropy and the enthalpy of the gas per mole have been related to the reduced gas temperature and the reduced gas density. In Chapter 4 , state space notation has been introduced and the quantitative relations among the operating variables have been summarized. Figure 5 shows a mathematical model of the 3-stage gas compression system. The functional relations among the operating variables as summarized in Chapter 4 conform to the condentional form of a discrete analog the maximum principle as

$$
\begin{equation*}
x_{i}^{n}=r_{i}^{n}\left(\theta_{1}^{n}, \theta_{2}^{n}, \ldots, \theta_{t}^{n}, x_{1}^{n-1}, \cdots, x_{s}^{n-1}\right) \tag{1}
\end{equation*}
$$

where $t$ and $S$ are respectively the number of decision variables in the $n-t h$ stage and the number of state variables in the $(n-1)$ th stage.

It will be assumed that the following conditions are given in an optimization problem:

1. Gas temperature and gas pressure at the inlet.
2. Gas temperature and gas pressure at the discharge from the last stage. Referring to Fig. 3, it can be noted that the gas entering the first stage is the gas discharged from the hypothetical zero-th stage and, therefore, the reduced


#### Abstract

Hiossure, $x_{1}^{0}$, the enthalpy of the gas per mole, $x_{4}^{0}$, the entropy of the gas per mole, $x_{G}^{0}$ at the inlet condition are Iunctions of the reduced temperature $\theta_{3}^{0}$ and the reduced density $\theta_{6}^{n}$ of the gas discharged from the zero-th stage. Knowing the gas temperature and gas pressure at the inlet, one can find the reduced temperature $\theta_{3}^{0}$ and reduced pressure $x_{1}^{0}$. Knowing $\theta_{3}^{0}$ and $x_{1}^{0}$, can find $\theta_{6}^{0}$, and consequently $x_{4}^{0}$ and $x_{6}^{0} \quad x_{7}^{0}$ is assumed to be zero. Therefore, all of the $\theta_{3}^{0}, \theta_{6}^{0}, x_{1}^{0}, x_{4}^{0}, x_{6}^{0}$, and $x_{3}^{0}$ are known values in the present gas compression problem.


Excluding the hypothetical zero-th stage from consideration (because the feed condition is fixed), and considering a three-stage gas compression system, the following operating variables can be identified.

1. There are six decision variables in each stage which are denoted as $\theta_{i}^{n}(i=1, \ldots-6)$. Therefore, there are $6 \times N=6 \times 3=18$ decision variables in the whole system.
2. There are seven state variables in each stage which are denoted as $x_{j}^{n}(j=1, \ldots-7)$. Therefore, there are $7 \times N=7 \times 3=21$ state variables in the whole system.

Among these operating variables, there are the following relations:

1. All the state variables $x_{j}^{n}$ 's can be expressed as functions of $\theta^{n}$ and $x_{k}^{n-1}$ by equations of the form of equation (1). There are $7 \times N=7 \times 3=21$ relations.
2. In each stage, there exist four constraint equations:

$$
\phi_{i}^{n}=0, \quad i=1,2,3,4
$$

There arc $4 \times N=4 \times 3=12$ relations.
3. The temperature and pressure of the discharge gas are given as stated above. Therefore, there are 2 additional relations.

From the above analysis, it is seen that the number of independent variables in a 3 -stage gas compression system is

$$
(6 N+7 N)-(7 N+4 N+2)=(2 N-2)=2(N-1)=4
$$

In a general N-stage system, the number of independent variables is given as $2(N-1)$.

For the present study of a three-stage gas compression system, truly independent variables are chosen as
$\theta_{1}^{1}, \quad \theta_{3}^{1}, \quad \theta_{1}^{2}$ and $\theta_{3}^{2}$

When a set of values are assigned to these four decision variables, it is possible to determine all the remaining operating variables shown in Figure 3, and the gas compression cost $\times_{7}^{3}$ can also be determined.

An optimization problem for a multistage (say N-stage) gas compression can be stated as follows:

In compressing a gas (say $\mathrm{O}_{2}$ gas) by a $N$-stage gas compression system from a given initial condition (i.e. $\hat{O}_{3}^{0}$ and $x_{1}^{0}$ are given) to a given discharge condition (i.c. $\theta_{3}^{N}$ and $x_{1}^{N}$ are given), find a set of values for $\left\{\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}, \theta_{3}^{2}, \ldots, \theta_{1}^{N-1}, \theta_{3}^{N-1}\right\}$ which will give
the minimurn value for the objective function $x_{7}^{N}$. A three-stage system is treated in this study.

In the following sections, the following problems will be specifically consicicred.

1. Given a set of values for the independent variables, $\left\{\theta_{1}^{1}\right.$,
$\theta_{3}^{1}, \theta_{1}^{2}, \quad \theta_{3}^{2}$, determine the remaining operating variables. This problem will be described in section 3 .
2. Establish the algorithm for finding the optimum set of $\left\{\theta_{1}^{1}\right.$, $\left.\theta_{3}^{1}, \quad \theta_{1}^{2}, \quad \theta_{3}^{2}\right\}$. This problem is described in section 2.
3. Establish an iterative numerical computational scheme for finding the optimum set of independent variables. This problem is described in section 4.
II. FINDING THE OPTIMAL POLICY OF A MULTISTAGE MULTIDECISION PROCESS WITH ERUALITY CONSTRAINTS IN EACH STAGE-GENERAL DISCUSSION

In this section, we shall discuss an algorithm for finding the optimal policy for a multistage (say 3-stage) process having six decision variables, seven state variables, and four equality constraints in each stage and a state variable at the last stage being fixed. The objective function is assumed to be expressible in the following form

$$
\begin{equation*}
s=\sum_{i=1}^{7} c_{i}^{N} \cdot x_{i}^{N} \tag{2}
\end{equation*}
$$

The algorithm obtained in this section can easily be generalized to any number of stages, any number of decision variables, any number of state variables and any number of equality constraints.

Tha のomoral rumetional relations are summarized as

1. Derformance erfuntions

$$
\begin{gather*}
x_{i}^{n}=T_{i}^{n}\left(x_{1}^{n-1}, \cdots, x_{7}^{n-1} ; \theta_{1}^{n}, \cdots, \theta_{6}^{n}\right)  \tag{3}\\
\text { for } i=1,2, \cdots, 7, \\
\\
\text { and } n=1,2,3 .
\end{gather*}
$$

2. Constraint relations

$$
\begin{aligned}
\phi_{j}^{n}=\phi_{j}^{n} & \left(x_{1}^{n-1}, \cdots, x_{7}^{n-1}, \theta_{1}^{n}, \cdots, \theta_{6}^{n}\right)=0 \\
& \text { for } j=1,2,3,4 \\
& \text { and } n=1,2,3 .
\end{aligned}
$$

3. $x_{1}^{3}$ and $\theta_{3}^{3}$ are given values.
4. $x_{i}^{\circ}$ for $i=1,2, \ldots, 7$ are known values.

With these assumptions, there are four independent variables which are chosen to be $\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}$ and $\theta_{3}^{2}$.

According to the classical differential calculus, the necessary condition for an extremum of the objective function, when all the independent variables are unbounded, is that the total differential of the objective function be zero, i.e. $d S=0$. It will be shown that the exact differential of the objective function can be expressed in terms of the differentials of the independent variables as

$$
\begin{equation*}
\mathrm{dS}=[\mathrm{A}] \mathrm{d} \theta_{1}^{1}+[\mathrm{B}] \mathrm{d} \theta_{3}^{1}+[\mathrm{C}] \mathrm{d} \theta_{1}^{2}+[\mathrm{D}] \mathrm{d} \theta_{3}^{2} \tag{5}
\end{equation*}
$$

by eliminating the differentials of all the dependent variables utilizinc equations (3) and (4). Since the above equation contains only differentials of independent variables which can be arbitrarily varied, all the bracketed terms in equation (5) should be zero.

There are two ways by which $d S$ can be expressed in the form of equation (5). They are: (i) direct substitution followed by differentiation, and (ii) differentiation followed by substitution. In the former approach, the performance equations as represented by equation(3) and the constraint equations as represented by equation (4) are successively substituted into the objective function, equation (2), and the resulting equation is then differentiated. In the latter approach, equations (2), (3), and (4) are differentiated and the differential forms of equations (3) and (4) are successively substituted into the differential form of equation (2). Such successive substitutions become increasingly difficult as the number of stages, state variables and decision variables and equality constraints increase. It will be shown that when the adjoint variables, Lagrange multipliers and Hamiltonian functions are introduced, the substitution procedure can be simplified. It will further be shown that the essential features of the algorithm to be developed can be arrived at by comparing the two approaches.

1. Direct substitution followed by differentiation. Equations (3) and (4) can be written in expanded forms as

$$
\begin{array}{lc}
x_{i}^{1}=T_{i}^{1}\left\{x^{0}, \theta^{1}\right\} & \text { for } i=1, \ldots, 7 \\
x_{i}^{2}=T_{i}^{2}\left\{x^{1}, \theta^{2}\right\} & " \\
x_{i}^{3}=T_{i}^{3}\left\{x^{2}, \theta^{3}\right\} & \text { for } i=1, \cdots, 4
\end{array}
$$

$$
\begin{array}{lc}
\varphi_{i}^{2}=\phi_{i}^{2}\left\{x^{1}, \theta^{2}\right\} \quad \text { for } i=1,-\cdots, 4 & (7-b) \\
\phi_{i}^{3}=\phi_{i}^{3}\left\{x^{2}, \theta^{3}\right\} & (7-c)
\end{array}
$$

By successively substituting a pair of equations (6-2) and $(7-a)$, then equations $(6-b)$ and $(7-b)$, and then equations $(6-c)$ and $(7-c)$ into equation (2) it is possible to eliminate all the dependent variables, and the objective function can ultimately be expressed in the following form

$$
\begin{equation*}
s=f\left(\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}, \quad \theta_{3}^{2}\right) \tag{8}
\end{equation*}
$$

This equation can then be differentiated to give

$$
\begin{equation*}
d S=\left(\frac{\partial S}{\partial \theta_{1}^{1}}\right) d \theta_{1}^{1}+\left(\frac{\partial S}{\partial \theta_{3}^{1}}\right) d \theta_{3}^{1}+\left(\frac{\partial S}{\partial \theta_{1}^{2}}\right) d \theta_{1}^{2}+\left(\frac{\partial S}{\partial \theta_{3}^{2}}\right) d \theta_{3}^{2} \tag{9}
\end{equation*}
$$

On comparing equation (9) with equation (5) it is seen that $\left(\frac{\partial S}{\partial \theta_{1}^{1}}\right)$, $\left(\frac{\partial S}{\partial \theta_{3}^{1}}\right),\left(\frac{\partial S}{\partial \theta_{1}^{2}}\right)$ and $\left(\frac{\partial S}{\partial \theta_{3}^{2}}\right)$, correspond respectively to $[A],[B]$, [C], and [D] in equation (5). When all the independent variables are unbounded, the optimal policy can be obtained by setting these differentials equal to zero.

This equation will be compared with the equivalent expression derived by the second approach, which may facilitate the identification of the significance of some terms to be derived.
2. Differentiation followed by Substitution. Upon differentiating the objective function and the performance equations and the constraint equations, the following relations are obtained:

$$
\begin{align*}
d ; & =\sum_{i=1}^{7} c_{i} d x_{i}^{3}  \tag{10}\\
d x_{i}^{3} & =\sum_{j=1}^{7} \frac{\partial x_{i}^{3}}{\partial x_{j}^{2}} d x_{j}^{2}+\sum_{k=1}^{6} \frac{\partial x_{i}^{3}}{\partial \theta_{k}^{3}} d \theta_{k}^{3}, \quad i=1, \ldots, 7  \tag{11-a}\\
d x_{i}^{2} & =\sum_{j=1}^{7} \frac{\partial x_{i}^{2}}{\partial x_{j}^{1}} d x_{j}^{1}+\sum_{k=1}^{6} \frac{\partial x_{i}^{2}}{\partial \theta_{k}^{2}} d \theta_{k}^{2},  \tag{11-b}\\
d x_{1}^{1} & =\sum_{k=1}^{6} \frac{\partial x_{i}^{1}}{\partial \theta_{k}^{1}} d \theta_{k}^{1} \tag{11-c}
\end{align*}
$$

and $d \phi_{i}^{3}=\sum_{j=1}^{7} \frac{\partial \phi_{i}^{3}}{\partial x_{j}^{2}} d x_{j}^{2}+\sum_{k=1}^{6} \frac{\partial \phi_{i}^{3}}{\partial \theta_{k}^{3}} d \theta_{k}^{3}=0, i=1, \ldots, 4$
$d \phi_{i}^{2}=\sum_{j=1}^{7} \frac{\partial \phi_{i}^{2}}{\partial x_{j}^{1}} d x_{j}^{1}+\sum_{k=1}^{6} \frac{\partial \phi_{i}^{2}}{\partial \theta_{k}^{2}} d \theta_{k}^{2}=0, i=1, \cdots, 4$ $d \phi_{i}^{1}=\sum_{k=1}^{7} \frac{\partial \phi_{2}^{1}}{\partial \theta_{k}^{1}} d \theta_{k}^{1}=0$,

$$
\begin{equation*}
i=1,-\infty, \tag{12-c}
\end{equation*}
$$

Theoretically, an equation in the form of equation (5) can be obtained by successively substituting equations (11-a) and (12-a), equations (11-b) and (12-b), and equations (11-c) and (12-c) into equation (10). But such substitutions are impossible in practice for a complex system. An efficient way for handling this situation is described as follows.

For each state variable $x_{i}^{n}$, define an adjoint variable $z_{i}^{n}$ and, for each constraint equation $\phi_{j}^{n}$, define a Lagrange multiplier $\lambda_{j}^{n}$ and then define a Hamiltonian function $H^{n}$ as

$$
\begin{equation*}
H^{n}=\sum_{j=1}^{7} z_{i}^{n} x_{i}^{n}+\sum_{j=1}^{4} \lambda_{j}^{n} \phi_{j}^{n} \tag{13}
\end{equation*}
$$

It will be assumed that $z_{i}^{n}, \lambda_{j}^{n}$, and $H^{n}$ so defined are nontrivial. For the last stage $(\mathbb{N}=3)$, this is

$$
\begin{equation*}
H^{3}=\sum_{i=1}^{7} z_{i}^{3} x_{i}^{3}+\sum_{j=1}^{4} \lambda_{j}^{3} \phi_{j}^{3} \tag{14}
\end{equation*}
$$

Since $\phi_{j}^{n}$ 's are zero, these equations are equivalent to

$$
\begin{equation*}
H^{n}=\sum_{i=1}^{7} z_{i}^{n} x_{i}^{n} \tag{13-a}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{3}=\sum_{i=1}^{7} z_{i}^{3} x_{i}^{3} \tag{14-a}
\end{equation*}
$$

respectively. Equations (13) and (13-a), and (14) and (14-a) will be used interchangeably.

Differentiating equations (13) and (14) gives

$$
\begin{equation*}
d H^{n}=\sum_{i=1}^{7} z_{i}^{n} d x_{i}^{n}+\sum_{j=1}^{4} \lambda_{j}^{n} d \phi_{j}^{n} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
d H^{3}=\sum_{i=i}^{7} z_{i}^{3} d x_{i}^{3}+\sum_{j=1}^{4} \lambda_{j}^{3} d \phi_{j}^{3} \tag{16}
\end{equation*}
$$

In these differentiations, $z_{i}^{n}$ and $\lambda_{j}^{n}$ are, by definition, kept constant. Since $d \phi_{j}^{n}=0$, these equations are equivalent to

$$
\begin{equation*}
d H^{n}=\sum_{j=1}^{7} z_{i}^{n} d x_{i}^{n} \tag{15-a}
\end{equation*}
$$

and

$$
\begin{equation*}
d H^{3}=\sum_{i=1}^{7} z_{i}^{3} d x_{i}^{3} \tag{16-2}
\end{equation*}
$$

respectively. Equations (15) and (15-a), and (16) and (16-a) will be used interchangeably.

The adjoint variables for the last stage, $z_{i}^{N}$, , defined in. such a way that

$$
\begin{align*}
& d S=d N^{N}  \tag{17}\\
& \quad \sum C_{i}^{N} \cdot d x_{i}^{N}=\sum z_{i}^{N} \cdot d x_{i}^{N}
\end{align*}
$$

Therefore, the adjoint variables associated with $x_{i}^{N}$ may be defined as

$$
\begin{equation*}
z_{i}^{N}=C_{i}^{N} \tag{18}
\end{equation*}
$$

In the so called fixed end-point problem, however, one or more of the $x_{i}^{N}$ 's are fixed, and for those variables we have

$$
d x_{i}^{N}=0
$$

The adjoint variables associated with these state variables can have any value and yet maintain the identity represented by equation (17). The problem of defining the $z_{i}^{N}$ associated with a fixed state variable $x_{i}$ will be discussed later in this section.

$$
\begin{equation*}
\text { Substituting equations }(11-a) \text { and }(12-a) \text { into equation } \tag{16}
\end{equation*}
$$ gives

$$
\begin{align*}
& d S=d H^{3}=\sum_{k=1}^{7}\left[\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial x_{k}^{2}}+\sum_{k=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial x_{k}^{2}}\right] d x_{k}^{2}+ \\
& \sum_{l=1}^{4}\left[\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial \theta^{3}}\right] d \theta^{3} \tag{19}
\end{align*}
$$

Beiore further substitutions, it is convenient to introduce $z_{k}^{n-1}$ as follows:

$$
\begin{equation*}
z_{k}^{n-1}=\sum_{i=1}^{7} z_{i}^{n} \frac{\partial x_{i}^{n}}{\partial x_{k}^{n-1}}+\sum_{j=1}^{4} \lambda_{j}^{n} \frac{\partial \phi_{j}^{n}}{\partial x_{k}^{n-1}} \tag{20}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}=\sum_{i=1}^{7} Z_{i}^{n} \frac{\partial x_{i}^{n}}{\partial \theta_{i}^{n}}+\sum_{j=1}^{4} \lambda_{j}^{n} \frac{\partial \phi_{j}^{n}}{\partial \theta_{1}^{n}} \tag{21}
\end{equation*}
$$

With these definitions, equation (19) becomes

$$
\begin{equation*}
d H^{3}=\sum_{k=1}^{7} Z_{k}^{2} d x_{k}^{2}+\sum_{i=1}^{4} \frac{\partial H^{3}}{\partial \theta_{l}^{3}} d \theta_{\mathbb{L}}^{3} \tag{22}
\end{equation*}
$$

By introducing equation $(15-a)$, the above equation can be written as

$$
d H^{3}=d H^{2}+\sum_{x=1}^{4} \frac{\partial H^{3}}{\partial \theta_{l}^{3}} d \theta_{l}^{3}
$$

or

$$
\begin{equation*}
d H^{3}=d H^{2}+\sum_{j=1}^{4} \frac{\partial H^{3}}{\partial \theta_{j}^{3}} d \theta_{j}^{3} \tag{23}
\end{equation*}
$$

Following similar derivations we obtain,

$$
\begin{equation*}
d H^{2}=d H^{1}+\sum_{j=1}^{4} \frac{\partial H^{2}}{\partial \theta_{j}^{2}} d \theta_{j}^{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
d H^{1}=d H^{0}+\sum_{j=1}^{4} \frac{\partial H^{1}}{\partial \theta_{j}^{1}} d \theta_{j}^{1}=\sum_{j=1}^{4} \frac{\partial H^{1}}{\partial \theta_{j}^{1}} d \theta_{j}^{1} \tag{25}
\end{equation*}
$$

$d H^{0}=0$ because all $d x_{i}^{0}$ s are zero.

By adding equations (23), (24), and (25), one obtains

$$
\begin{equation*}
d S=d H^{3}=\sum_{j=1}^{6} \frac{\partial H^{3}}{\partial \theta_{j}^{3}} d \theta_{j}^{3}+\sum_{j=1}^{6} \frac{\partial H^{2}}{\partial \theta_{j}^{2}} d \theta_{j}^{2}+\sum_{j=1}^{6} \frac{\partial H^{1}}{\partial \theta_{j}^{1}} d \theta_{j}^{1} \tag{26}
\end{equation*}
$$

The above equation contains $18 \mathrm{~d} \theta_{j}^{n}$ terms, and most of the $\theta_{j}^{n}$ 's are dependent variables except 4 terms. Therefore, the above equation should be distinguished from equation (5), which contains only the differentials of the independent variables.

Since it is assumed that $\theta_{3}^{3}$ is a given value, and $d \theta_{3}^{3}=0$, Equation (26) then contains $17 \mathrm{~d} \theta_{j}^{n}$ terms, from which 13 terms must be eliminated in order to reduce equation (26) to equation (5). This can be done by suitably selecting the following adjoint variable and Lagrange multipliers.

1. $z_{1}^{3}$ which is associated with $x_{1}^{3}$
2. $\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1}, \lambda_{4}^{1} ; \lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}, \lambda_{4}^{2} ; \lambda_{1}^{3} ; \lambda_{2}^{3}, \lambda_{3}^{3}$ and $\lambda_{4}^{3}$. $z_{i}^{3}$ and $\lambda_{i}^{n}$ 's are chosen so that

$$
\begin{equation*}
\frac{\partial H^{n}}{\partial \theta_{i}^{n}}=0 \tag{27}
\end{equation*}
$$

for all dependent $\theta_{i}^{n}$ 's. When $z_{1}^{3}$ and $\lambda_{i}^{n}$ 's are so chosen to satisfy equation (27), equation (26) is reduced to

$$
\begin{equation*}
d S=d H^{3}=\frac{\partial H^{1}}{\partial \theta_{1}^{1}} d \theta_{1}^{1}+\frac{\partial H^{1}}{\partial \theta_{3}^{1}} d \theta_{3}^{1}+\frac{\partial H^{2}}{\partial \theta_{1}^{2}} d \theta_{1}^{2}+\frac{\partial H^{2}}{\partial \theta_{3}^{2}} d \theta_{3}^{2} \tag{28}
\end{equation*}
$$

On comparing equations (5), (9) and (28), the following relations are obtained:

$$
\begin{align*}
& {[A]=\left(\frac{\partial S}{\partial \theta_{1}^{1}}\right)=\left(\frac{\partial H^{1}}{\partial \theta_{1}^{1}}\right)}  \tag{28-a}\\
& {[B]=\left(\frac{\partial S}{\partial \theta_{3}^{1}}\right)=\left(\frac{\partial H^{1}}{\partial \theta_{3}^{1}}\right)}  \tag{28-b}\\
& {[C]=\left(\frac{\partial S}{\partial \theta_{1}^{2}}\right)=\left(\frac{\partial H^{2}}{\partial \theta_{1}^{2}}\right)}  \tag{28-c}\\
& {[D]=\left(\frac{\partial S}{\partial \theta_{3}^{2}}\right)=\left(\frac{\partial H^{2}}{\partial \theta_{3}^{2}}\right)} \tag{28-d}
\end{align*}
$$

The selection of $z_{1}^{3}$ and $\lambda_{i}^{n}$ 's as represented by equation (27) can be written in an extended form as follows.

1. $z_{1}^{3}, \lambda_{1}^{3}, \lambda_{2}^{3}, \lambda_{3}^{3}, \lambda_{4}^{3}$ are chosen so as to satisfy the following relations.

$$
\begin{align*}
& \frac{\partial H^{3}}{\partial \theta_{1}^{3}}=\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta_{1}^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial \theta_{1}^{3}}=0  \tag{29-a}\\
& \frac{\partial H^{3}}{\partial \theta_{2}^{3}}=\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta_{2}^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial \theta_{2}^{3}}=0 \tag{29-b}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial H^{3}}{\partial \theta_{4}^{3}}=\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta_{4}^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial \theta_{4}^{3}}=0 \tag{29-c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H^{3}}{\partial \theta_{5}^{3}}=\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta_{5}^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{i}^{3}}{\partial \theta_{5}^{3}}=0 \tag{29-d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial 1^{3}}{\partial \theta_{0}^{3}}=\sum_{i=1}^{7} z_{i}^{3} \frac{\partial x_{i}^{3}}{\partial \theta_{6}^{3}}+\sum_{j=1}^{4} \lambda_{j}^{3} \frac{\partial \phi_{j}^{3}}{\partial \theta_{6}^{3}}=0 \tag{29-e}
\end{equation*}
$$

$\frac{\partial H^{3}}{\partial \theta_{3}^{3}}$ is not shown because $\theta_{3}^{3}$ is a constant.
2. $\quad \lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}$ and $\lambda_{4}^{2}$ are so chosen as to satisfy the following rclations.

$$
\begin{align*}
& \frac{\partial H^{2}}{\partial \theta_{2}^{2}}=\sum_{i=1}^{7} z_{i}^{2} \frac{\partial x_{i}^{2}}{\partial \theta_{2}^{2}}+\sum_{j=1}^{4} \lambda_{j}^{2} \frac{\partial \phi_{j}^{2}}{\partial \theta_{2}^{2}}=0  \tag{30-a}\\
& \frac{\partial H^{2}}{\partial \theta_{4}^{2}}=\sum_{i=1}^{7} z_{i}^{2} \frac{\partial x_{i}^{2}}{\partial \theta_{4}^{2}}+\sum_{j=1}^{4} \lambda_{j}^{2} \frac{\partial \phi_{j}^{2}}{\partial \theta_{4}^{2}}=0 \tag{30-b}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial H^{2}}{\partial \theta_{5}^{2}}=\sum_{i=1}^{7} z_{i}^{2} \frac{\partial x_{i}^{2}}{\partial \theta_{5}^{2}}+\sum_{j=1}^{4} \lambda_{j}^{2} \frac{\partial \phi_{j}^{2}}{\partial \theta_{5}^{2}}=0 \tag{30-c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H^{2}}{\partial \theta_{6}^{2}}=\sum_{i=1}^{7} z_{i}^{2} \frac{\partial x_{i}^{2}}{\partial \theta_{6}^{2}}+\sum_{j=1}^{4} \lambda_{j}^{2} \frac{\partial \phi_{j}^{2}}{\partial \theta_{6}^{2}}=0 \tag{30-d}
\end{equation*}
$$

3. $\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1}$ and $\lambda_{4}^{1}$ are so chosen as to satisfy the following relations.

$$
\begin{equation*}
\frac{\partial H}{\partial \theta_{2}^{1}}=\sum_{i=1}^{7} z_{i}^{1} \frac{\partial x_{i}^{1}}{\partial \theta_{2}^{1}}+\sum_{j=1}^{4} \lambda_{j}^{1} \frac{\partial \phi_{j}^{1}}{\partial \theta_{2}^{1}}=0 \tag{31-a}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial H^{1}}{\partial \theta_{4}^{1}}=\sum_{i=1}^{7} z_{i}^{1} \frac{\partial x_{i}^{1}}{\partial \theta_{4}^{1}}+\sum_{j=1}^{4} \lambda_{j}^{1} \frac{\partial \phi_{j}^{1}}{\partial \theta_{4}^{1}}=0  \tag{31-b}\\
& \frac{\partial H^{1}}{\partial \theta_{5}^{1}}=\sum_{i=1}^{7} z_{i}^{1} \frac{\partial x_{i}^{1}}{\partial \theta_{5}^{1}}+\sum_{j=1}^{4} \lambda_{j}^{1} \frac{\partial \phi_{j}^{1}}{\partial \theta_{5}^{1}}  \tag{31-c}\\
& \frac{\partial H_{i}^{1}}{\partial \theta_{6}^{1}}=\sum_{i=1}^{7} z_{i}^{1} \frac{\partial x_{i}^{1}}{\partial \theta_{6}^{1}}+\sum_{j=1}^{4} \lambda_{j}^{1} \frac{\partial \phi_{j}^{1}}{\partial \theta_{6}^{1}} \tag{31-d}
\end{align*}
$$

With $z_{1}^{3}$ and $\lambda_{i}^{n}$ 's evaluated to satisfy equations (29), (30) and (31), dS is represented by equation (28).

When $z_{1}^{3}$ and $\lambda_{i}^{n}$ 's are evaluated as described, and if the independent variables are unbounded, the locally optimal set of $\left\{\theta_{1}^{1}\right.$, $\left.\theta_{3}^{1}, \quad \theta_{1}^{2}, \quad \theta_{3}^{2}\right\}$, if it exists, is the set which satisfies the following stationary conditions:

$$
\begin{equation*}
\frac{\partial H^{1}}{\partial \theta_{1}^{1}}=\frac{\partial H^{1}}{\partial \theta_{3}^{1}}=\frac{\partial H^{2}}{\partial \theta_{1}^{2}}=\frac{\partial H^{2}}{\partial \theta_{3}^{2}}=0 \tag{32}
\end{equation*}
$$

where $\frac{\partial_{H}^{n}}{\partial \theta_{6}^{n}}$ is defined by equation (21).
III. OPTIMIZATION OF A THREE-STAGES GAS COMPRESSION SYSTEM

The discussion in the preceding section applies to a multistage (3-stage) gas compression system, and relations to be used in the optimization study are developed.

1. Third stage

All the decision variables $\theta_{1}^{3}, \theta_{2}^{3}, \theta_{3}^{3}, \theta_{4}^{3}, \theta_{5}^{3}, \theta_{6}^{3}$, at the third stage are actually dependent variables, because there are four equality constraints and both $x_{1}^{3}$ and $\theta_{3}^{3}$ are given. The objective function is defined as

$$
\begin{equation*}
s=x_{7}^{3} \tag{33}
\end{equation*}
$$

and the Hamiltonian function is defined as

$$
\begin{equation*}
H^{3}=\sum_{i=1}^{7} z_{i}^{3} x_{i}^{3}+\sum_{j=1}^{4} \lambda_{j}^{3} \phi_{j}^{3} \tag{34}
\end{equation*}
$$

Note that, as indicated by equation (18), one has

$$
\begin{align*}
& z_{2}^{3}=z_{3}^{3}=z_{4}^{3}=z_{5}^{3} z_{6}^{3}=0  \tag{35}\\
& z_{7}^{3}=1 \tag{36}
\end{align*}
$$

$z_{1}^{3}$ is left undecided because $x_{1}^{3}$ is a fixed value. $z_{1}^{3}$ will be evaluated along with $\lambda_{j}^{3}$ shortly.

The Hamiltonian function $H^{3}$ then becomes

$$
\begin{equation*}
H^{3}=z_{1}^{3} x_{1}^{3}+x_{7}^{3}+\lambda_{1}^{3} \phi_{1}^{3}+\lambda_{2}^{3} \phi_{2}^{3}+\lambda_{3}^{3} \phi_{3}^{3}+\lambda_{4}^{3} \phi_{4}^{3} \tag{37}
\end{equation*}
$$

$z_{1}^{3}, \lambda_{1}^{3}, \lambda_{2}^{3}, \lambda_{3}^{3}, \lambda_{4}^{3}$ are to be found from the following relations [see equation (27)].

$$
\begin{equation*}
\frac{\partial H^{3}}{\partial \theta_{1}^{3}}=\frac{\partial H^{3}}{\partial \theta_{2}^{3}}=\frac{\partial H^{3}}{\partial \theta_{4}^{3}}=\frac{\partial H^{3}}{\partial \theta_{5}^{3}}=\frac{\partial H^{3}}{\partial \theta_{6}^{3}}=0 \tag{38}
\end{equation*}
$$

Equation (38) can be written in an expanded form as

$$
\begin{align*}
& \frac{\partial H}{\partial \theta_{1}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+\frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{1}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{1}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{1}^{3}}=0 \\
& \frac{\partial H^{3}}{\partial \theta_{2}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{2}^{3}}+\frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{2}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{2}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}}=0 \\
& \frac{\partial H^{3}}{\partial \theta_{4}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{4}^{3}}+\frac{\partial x_{7}^{3}}{\partial \theta_{4}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{4}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{4}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{4}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{4}^{3}}=0 \tag{39}
\end{align*}
$$

$$
\frac{\partial H}{\partial \theta_{5}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{5}^{3}}+\frac{\partial x_{7}^{3}}{\partial \theta_{5}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{5}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{5}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}}=0
$$

$$
\frac{\partial H^{3}}{\partial \theta_{6}^{3}}=z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{6}^{3}}+\frac{\partial x_{7}^{3}}{\partial \theta_{6}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{6}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{6}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{6}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{6}^{3}}=0
$$

Table 3 shows the functional relations of $x_{i}^{n}$ and $\phi_{i}^{n}$ respectively to $x_{i}^{n-1}$ and $\theta_{\ell}^{n}$. As shown, many terms in the above equations can bc climinatcd, because there arc no functional relations between the variables involved.

The above equations can be rearranged as

$$
\begin{align*}
& z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{1}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{1}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{1}^{3}}=0  \tag{40-a}\\
&  \tag{40-b}\\
& \frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}}=0  \tag{40-c}\\
& z_{1}^{3} \frac{\partial x_{1}^{3}}{\partial \theta_{4}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{4}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{4}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{4}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{4}^{3}}=0  \tag{40-d}\\
& \frac{\partial x_{7}^{3}}{\partial \theta_{5}^{3}}+\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}}=0 \\
& \\
& \frac{\partial x_{7}^{3}}{\partial \theta_{6}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{6}^{3}}=0
\end{align*}
$$

(40-e)

By solving these equations simultaneous, one obtains $z_{1}^{3}, \lambda_{1}^{3}, \lambda_{2}^{3}$, $\lambda_{3}^{3}, \lambda_{4}^{3}$ as follows:

$$
\begin{equation*}
z_{1}^{3}=-\left(\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{1}^{3}}+\lambda_{3}^{3} \frac{\partial \phi_{3}^{3}}{\partial \theta_{1}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{1}^{3}}\right) /\left(\frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}\right) \tag{41}
\end{equation*}
$$

$$
\begin{aligned}
& \lambda_{1}^{3}=-\left(\frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}}\right) /\left(\frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}\right) \\
& =\frac{\left[\frac{\partial x_{7}^{3}}{\partial \theta_{5}^{3}} \frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}}-\frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}} \frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}}\right]}{\left[\frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}} \frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}}-\frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}} \frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}}\right]} \\
& \lambda_{2}^{3}=-\left(\frac{\partial x_{7}^{3}}{\partial \theta_{6}^{3}}\right) /\left(\frac{\partial \phi_{2}^{3}}{\partial \theta_{6}^{3}}\right) \\
& \lambda_{3}^{3}=\frac{\left(\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{4}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{4}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{4}^{3}}\right)\left(\frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}\right)-\left(\lambda_{1}^{3} \frac{\partial \phi_{1}^{3}}{\partial \theta_{1}^{3}}+\lambda_{2}^{3} \frac{\partial \phi_{2}^{3}}{\partial \theta_{1}^{3}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial \theta_{1}^{3}}\right)\left(\frac{\partial x_{1}^{3}}{\partial \theta_{4}^{3}}\right)}{\left(\frac{\partial \phi_{3}^{3}}{\partial \theta_{1}^{3}}\right)\left(\frac{\partial x_{1}^{3}}{\partial \theta_{4}^{3}}\right)-\left(\frac{\partial \phi_{3}^{3}}{\partial \theta_{4}^{3}}\right)\left(\frac{\partial x_{1}^{3}}{\partial \theta_{1}^{3}}\right)} \\
& \lambda_{4}^{3}=-\frac{\left[\frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}-\frac{\partial x_{7}^{3}}{\partial \theta_{5}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}\right]}{\left[\frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}} \cdot \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}-\frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}\right]}=\frac{\left[\frac{\partial x_{7}^{3}}{\partial \theta_{5}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}-\frac{\partial x_{7}^{3}}{\partial \theta_{2}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}\right]}{\left[\frac{\partial \phi_{4}^{3}}{\partial \theta_{2}^{3}} \frac{\partial \phi_{1}^{3}}{\partial \theta_{5}^{3}}-\frac{\partial \phi_{4}^{3}}{\partial \theta_{5}^{3}} \cdot \frac{\partial \phi_{1}^{3}}{\partial \theta_{2}^{3}}\right]}(46)
\end{aligned}
$$

## 2. Second Stage

Of all the decision variables, only two are truly independent and thus $\theta_{1}^{2}$ and $\theta_{3}^{2}$ are chosen to be the independent variables. The adjoint variables associated with the second stage are obtained from equation (20) as

$$
\begin{aligned}
& z_{1}^{2}=0 \\
& z_{2}^{2}=0 \\
& z_{3}^{2}=0 \\
& z_{4}^{2}=z_{7}^{3} \frac{\partial x_{7}^{3}}{\partial x_{4}^{2}}+\lambda_{4}^{3} \frac{\partial \phi_{4}^{3}}{\partial x_{4}^{2}}=-1\left[-\left(c_{e}+\psi_{1} c_{H P}\right)\right]+\lambda_{4}^{3}(0.2) \\
& z_{5}^{2}=0 \\
& z_{6}^{2}=-\lambda_{3}^{3} \\
& \left.z_{7}^{2}=z_{7}^{3} \frac{\partial x_{7}^{n}}{\partial x_{7}^{n-1}}=1 \cdot \psi_{1} c_{H P}\right)+0.2 \lambda_{4}^{3}
\end{aligned}
$$

$\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}$, and $\lambda_{4}^{2}$ should be found from the following relations [see equation (27)]

$$
\begin{equation*}
\frac{\partial H^{2}}{\partial \theta_{2}^{2}}=\frac{\partial H^{2}}{\partial \theta_{4}^{2}}=\frac{\partial H^{2}}{\partial \theta_{5}^{2}}=\frac{\partial H^{2}}{\partial \theta_{6}^{2}}=0 \tag{48}
\end{equation*}
$$

By writing the above equations in expanded form, simplifying by introducing functional relations from Table 3, and solving the four simultaneous equations so obtained, one arrives at

$$
\begin{equation*}
\lambda_{2}^{2}=\frac{-\left\{z_{4}^{2} \frac{\partial x_{4}^{2}}{\partial \theta_{6}^{2}}+z_{6}^{2} \frac{\partial x_{6}^{2}}{\partial \theta_{6}^{2}}+\frac{\partial x_{7}^{2}}{\partial \theta_{6}^{2}}\right\}}{\frac{\partial \phi_{2}^{2}}{\partial \theta_{6}^{2}}} \tag{49}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{4}^{2}=\frac{\left[\left(\frac{\partial x_{7}^{2}}{\partial \theta_{5}^{2}}\right)\left(\frac{\partial \phi_{1}^{2}}{\partial \theta_{2}^{2}}\right)-\left(\frac{\partial x_{7}^{2}}{\partial \theta_{2}^{2}}\right)\left(\frac{\partial \phi_{1}^{2}}{\partial \theta_{5}^{2}}\right)\right]}{\left[\left(\frac{\partial \phi_{4}^{2}}{\partial \theta_{2}^{2}}\right)\left(\frac{\partial \phi_{1}^{2}}{\partial \theta_{5}^{2}}\right)-\left(\frac{\partial \phi_{4}^{2}}{\partial \theta_{5}^{2}}\right)\left(\frac{\partial \phi_{1}^{2}}{\partial \theta_{2}^{2}}\right)\right]}  \tag{50}\\
\lambda_{1}^{2}=-\left(\lambda_{4}^{2} \frac{\partial \phi_{4}^{2}}{\partial \theta_{5}^{2}}+\frac{\partial x_{7}^{2}}{\partial \theta_{5}^{2}}\right) /\left(\frac{\partial \phi_{1}^{2}}{\partial \theta_{5}^{2}}\right)  \tag{51}\\
\lambda_{3}^{2}=  \tag{52}\\
-\left(\lambda_{1}^{2} \frac{\partial \phi_{1}^{2}}{\partial \theta_{4}^{2}}+\lambda_{2}^{2} \frac{\partial \phi_{2}^{2}}{\partial \theta_{4}^{2}}+\lambda_{4}^{2} \frac{\partial \phi_{4}^{2}}{\partial \theta_{4}^{2}}\right) \\
\left(\frac{\partial \phi_{3}^{2}}{\partial \theta_{4}^{2}}\right)
\end{gather*}
$$

3. First stage

Following a derivation similar to that for the second stage, one obtains

$$
\begin{align*}
& z_{1}^{1}=0 \\
& z_{2}^{1}=0 \\
& z_{3}^{1}=0 \\
& z_{4}^{1}=z_{7}^{2} \frac{\partial x_{7}^{2}}{\partial x_{4}^{1}}+\lambda_{4}^{2} \frac{\partial \phi_{4}^{2}}{\partial x_{4}^{1}}=\left[c e+\psi_{1} c_{H P}\right]+0.2 \lambda_{4}^{2} \\
& z_{5}^{1}=0  \tag{53}\\
& z_{6}^{1}=-\lambda_{3}^{2}
\end{align*}
$$

$$
z_{1}^{1}=z_{7}^{2} \frac{\partial x_{7}^{2}}{\partial x_{7}^{1}}=1 \cdot 1=1
$$

and $\lambda_{1}^{1}, \quad \lambda_{2}^{1}, \quad \lambda_{3}^{1}$ and $\lambda_{4}^{1}$ are obtained as

$$
\begin{align*}
& \lambda_{2}^{1}=-\left\{z_{4}^{1} \frac{\partial x_{4}^{1}}{\partial \theta_{6}^{I}}+z_{6}^{1} \frac{\partial x_{6}^{1}}{\partial \theta_{6}^{1}}+\frac{\partial x_{7}^{1}}{\partial \theta_{6}^{1}}\right\}  \tag{54}\\
& \frac{\partial \phi_{2}^{1}}{\partial \theta_{6}^{1}}  \tag{55}\\
& \lambda_{4}^{1}=\left(\frac{\partial x_{7}^{1}}{\partial \theta_{5}^{1}}\right)\left(\frac{\partial \phi_{4}^{1}}{\left.\partial \theta_{2}^{1}\right)}\left(\frac{\partial \phi_{1}^{1}}{\partial \theta_{5}^{1}}\right)-\left(\frac{\partial \phi_{4}^{1}}{\partial \theta_{5}^{1}}\right)\left(\frac{\partial \phi_{1}^{1}}{\partial \theta_{2}^{1}}\right)\right.  \tag{56}\\
&-\left(\frac{\partial \phi_{1}^{1}}{\partial \theta_{5}^{1}}\right)  \tag{57}\\
& \lambda_{1}^{1}=-\left(\lambda_{4}^{1} \frac{\partial \phi_{4}^{1}}{\partial \theta_{5}^{1}} \frac{\partial x_{7}^{1}}{\partial \theta_{5}^{1}}\right) /\left(\frac{\partial \phi_{1}^{1}}{\partial \theta_{5}^{1}}\right) \\
&-\left(\lambda_{1}^{1} \frac{\partial \phi_{1}^{1}}{\partial \theta_{4}^{1}}+\lambda_{2}^{1} \frac{\partial \phi_{2}^{1}}{\partial \theta_{4}^{1}}+\lambda_{4}^{1} \frac{\partial \phi_{4}^{1}}{\partial \theta_{4}^{1}}\right) \\
& \lambda_{3}^{1}=\frac{\partial \phi_{3}^{1}}{\left.\partial \theta_{4}^{1}\right)}
\end{align*}
$$

With the z's and $\lambda$ 's determined as above, the independent decision Gi: 之ivatives of the Hamiltonian functions, $\frac{\partial H^{2}}{\partial \theta_{1}^{2}}, \frac{\partial H^{2}}{\partial \theta_{3}^{2}}, \frac{\partial H^{1}}{\partial \theta_{1}^{1}}, \frac{\partial H^{1}}{\partial \theta_{3}^{1}}$ can be obtained as

$$
\begin{align*}
& \frac{\partial H^{2}}{\partial \theta_{1}^{2}}=\lambda_{1}^{2} \frac{\partial \phi_{1}^{2}}{\partial \theta_{1}^{2}}+\lambda_{2}^{2} \frac{\partial \phi_{2}^{2}}{\partial \theta_{1}^{2}}+\lambda_{3}^{2} \frac{\partial \phi_{3}^{2}}{\partial \theta_{1}^{2}}+\lambda_{4}^{2} \frac{\partial \phi_{4}^{2}}{\partial \theta_{1}^{2}}  \tag{58}\\
& \frac{\partial H^{2}}{\partial \theta_{3}^{2}}=z_{4}^{2} \frac{\partial x_{4}^{2}}{\partial \theta_{3}^{2}}+z_{6}^{2} \frac{\partial x_{6}^{2}}{\partial \theta_{3}^{2}}+\frac{\partial x_{7}^{2}}{\partial \theta_{3}^{2}}+\lambda_{2}^{2} \frac{\partial \phi_{2}^{2}}{\partial \theta_{3}^{2}}  \tag{59}\\
& \frac{\partial H^{1}}{\partial \theta_{1}^{1}}=\lambda_{1}^{1} \frac{\partial \phi_{1}^{1}}{\partial \theta_{1}^{1}}+\lambda_{2}^{1} \frac{\partial \phi_{2}^{1}}{\partial \theta_{1}^{1}}+\lambda_{3}^{1} \frac{\partial \phi_{3}^{1}}{\partial \theta_{1}^{1}}+\lambda_{4}^{1} \frac{\partial \phi_{4}^{1}}{\partial \theta_{1}^{1}}  \tag{60}\\
& \frac{\partial H_{1}^{1}}{\partial \theta_{3}^{1}}=z_{4}^{1} \frac{\partial x_{4}^{1}}{\partial \theta_{3}^{1}}+z_{5}^{1} \frac{\partial x_{6}^{1}}{\partial \theta_{3}^{1}}+\frac{\partial x_{7}^{1}}{\partial \theta_{3}^{1}}+\lambda_{2}^{1} \frac{\partial \phi_{2}^{1}}{\partial \theta_{3}^{1}} \tag{61}
\end{align*}
$$

When the independent decision variables $\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}, \theta_{3}^{2}$ are at the local optimum values, these derivations, if they exist, should be zero.

The above derivations show how $z_{1}^{1}, z_{2}^{1}, z_{3}^{1}, z_{4}^{1}, z_{5}^{1}, z_{6}^{1}, z_{7}^{1}$; $z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{4}^{2}, z_{5}^{2}, z_{6}^{2}, z_{7}^{2} ; z_{2}^{3}, z_{3}^{3}, z_{4}^{3}, z_{5}^{3}, z_{6}^{3}, z_{7}^{3}$ can be evaluated and how $2_{1}^{3} ; \lambda_{1}^{3}, \lambda_{2}^{3}, \lambda_{3}^{3}, \lambda_{4}^{3} ; \lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}, \lambda_{4}^{2} ; \lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1}, \lambda_{4}^{1}$;
$\frac{\partial H^{1}}{\partial \theta_{1}^{1}}, \frac{\partial H^{1}}{\partial \theta_{3}^{1}}, \frac{\partial H^{2}}{\partial \theta_{1}^{2}}$ and $\frac{\partial H^{2}}{\partial \theta_{3}^{2}}$ are related to the decision derivatives of the state variables and constraint functions, $\frac{\partial x_{i}^{n}}{\partial \theta_{l}^{n}}$ and $\frac{\partial \phi_{i}^{n}}{\partial \theta_{\ell}^{n}}$. The decision derivatives of $x_{i}^{n}$ and $\oint_{j}^{n}$ are functions of decision variables only (both independent and dependent) and are summarized in Part $B$ of Chapter 4.

With thesc relations available, the optimization study for deicrmining locally optimal conditions of a multistage gas compression system can be stated as follows:

The optimization study of a multistage gas compression system is to find the set of values for $\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}$ and $\theta_{3}^{2}$ which makes $\frac{\partial H^{1}}{\partial \theta_{1}^{1}}, \frac{\partial H^{1}}{\partial \theta_{3}^{1}}, \frac{\partial H^{2}}{\partial \theta_{1}^{2}}$ and $\frac{\partial H^{2}}{\partial \theta_{3}^{2}}$ as calculated by equations $(58),(59)$, (60), and (61) zero, when $z_{i}^{n}$ 's and $\lambda_{j}^{n}$ 's are evaluated by the relations derived in this section. It is theoretically possible to find the optimum set by simultaneously solving the performance equations and all the relations derived in this section. Such simultaneous solution is practically impossible. Therefore, an iterative numerical solution will be employed.
IV. ITERATIVE NUMERICAL SOLUTION FOR THE OPTIMIZATION OF A MULTISIAGE GAS COMPRESSION SYSTEM

The iterative numerical solution used in the present study consists of the following steps:

Step 1. Assume a set of numerical values for the independent decision variables $\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}$, and $\theta_{3}^{2}$.

Step 2. Find the numerical values for all the remaining decision variables and the state variables by the relations described in Part A of Chapter 4.

Step 3. Calculate the numerical values for $\frac{\partial x_{i}^{n}}{\partial \theta_{l}^{n}}$ and $\frac{\partial \phi_{i}^{n}}{\partial \theta_{l}^{n}}$ by substituting the numerical values of the decision variables and state variables into the relations derived in Part B of Chapter 4.
Step 4. Calculate the numerical values for $z_{i}^{n}$ and $\lambda_{i}^{n}$ by the relations derived in this section.
Step 5. Calculate the numerical values $\frac{\partial H^{1}}{\partial \theta_{1}^{1}}, \frac{\partial H^{1}}{\partial \theta_{3}^{1}}, \frac{\partial H^{2}}{\partial \theta_{1}^{2}}$ and $\frac{\partial H^{2}}{\partial \theta_{3}^{2}}$ by equations (58), (59), (60) and (61).

Step 6. Check if the assumed set of $\left(\theta_{i}^{n}\right)$ is the optimal policy by noting that all values of $\frac{\partial_{H^{n}}}{\partial \theta_{i}^{n}}$ for all the independent decision variables are zero or less than the allowable errors preassigned to them.

Step 7. When the optimal condition is not reached a revised set of decision variables should be assumed and the above computations should be repeated. The new set of decision variables may be automatically assumed by giving a set of ( $\Delta \theta_{i}^{n}$ ) and input data to the computer. This set of ( $\Delta \theta_{i}^{n}$ ) may be varied at different stages of computation. For example, we may use larger values for $\Delta \theta_{i}^{n}$ at the beginning and use smaller values as the iteration converges. The new decision variable is obtained by

$$
\begin{equation*}
\left(\theta_{i}^{n}\right)_{\text {revised }}=\left(\theta_{i}^{n}\right) \stackrel{+}{\text { or }}\left(\Delta \theta_{i}^{n}\right) \tag{62}
\end{equation*}
$$

For a particular $\theta_{i}^{n}$, the sign before $\Delta \theta_{i}^{n}$ is defined as follows:

$$
\begin{array}{ll}
\text { when } \frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 & \text { use }(-) \text { sign, } \\
\text { when } \frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 & \text { use }(+) \text { sign. } \tag{64}
\end{array}
$$

assuming that in the region of computations, the sign of $\frac{\partial S}{\partial \theta_{i}}$ and $\frac{\partial H}{\partial \theta_{i}}$ are always identical as suggested by equations $(28-a),(28-b),(28-c)$, and $(28-d)$. Note that this assumption is not necessarily valid in every point of the region especially at the very close vicinity of a stationary point. The reasons for this rule can be explained by referring to a one-dimensional minimum seeking problem. Referring to Fig. 9, it is readily seen that the slope of the S-curve, $\left(\frac{\partial S}{\partial \theta}\right)$ is a positive value when $\theta$ exceeds the optimum value, $\bar{\theta}$. In other words, when $\frac{\partial S}{\partial \theta}$ is positive the sign before $\Delta \theta$ in equation (62) should be negative in order to approach the optimum value. Conversely, when $\frac{\partial S}{\partial \theta}$ is negative, the $\theta$ used is still lower than $\bar{\theta}$. Therefore, the sign should be positive. Incidentally, in a maximum seeking problem the rule should be reversed as follows:

$$
\begin{array}{ll}
\text { when } \frac{\partial H^{n}}{\partial \theta_{i}^{n}}>0 & \text { use }(+) \text { sign, } \\
\text { when } \frac{\partial H^{n}}{\partial \theta_{i}^{n}}<0 & \text { use }(-) \text { sign. }
\end{array}
$$



Fig. S. One dimensional optimum search .

It has to be kept in mind, when the sceond orcler variational effect becomes appreciable in comparison to the first order variational. cffect, the signs of $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ and $\frac{\partial s}{\partial \theta_{i}^{n}}$ may be reversed and consequently the rule of selecting the sign of $\frac{\partial H^{n}}{\partial \theta_{i}^{n}}$ may have to be reversed.

Step 8. When the above computation is repeated, a point will be reached where all the $\frac{\partial H}{\partial \theta}$ change their signs between the $m-t h$ and $(m+1)-t h$ iteration. The optimum policy then lies betwecn the two sets of decision variables used in the $m-t h$ and $(m+1)$ th iterations.

In order to find the optimum more precisely, another set of $(\Delta \theta)$ with smaller values assigned to $\Delta \theta_{i}^{n}$ may be used and the above computation repeated to again locate the point where a complete reversal in sign of $\frac{\partial H}{\partial \theta}$ takes place. By successively assigning smaller values for the $(\Delta \theta)$ sct, we can approach the accuracy that is desired.

Step 2 in the above list requires further explanation. In a multistage gas compression problem, inlet conditions and outlet conditions are given. Therefore $\theta_{3}^{0}, \quad x_{1}^{0}, \theta_{3}^{3}$ and $x_{1}^{3}$ are given values, and $x_{7}^{0}$ is assumed to be zero in this study. Due to step 1 , $\theta_{1}^{1}, \theta_{3}^{1}, \theta_{1}^{2}$ and $\theta_{3}^{2}$ are given values for cach iteration. In step 2, numerical values are to be found for all the remaining decision variables and all the state variables. The computation consists of the following steps.

1. Computation of $\theta_{0}^{0}, \quad x_{4}^{0}$ and $x_{6}^{0}$ in stage $O$ (hypothetical stage) 1-a. Knowing $\theta_{3}^{0}, x_{1}^{0}$, calculate $\theta_{6}^{0}$ by equation (IV-3).
l-b. Knowing $\theta_{3}^{\circ}$ and $\theta_{6}^{\circ}$, calculate $x_{4}^{\circ}$ by equation (IV-6). l-c. Knowing $\theta_{3}^{0}$ and $\theta_{6}^{0}$, calculatc $x_{6}^{\circ}$ by equation (IV-8).
2. Computation of $\mathcal{\theta}_{i}^{1}$ and $x_{j}^{1}$ in the first stage. 2-a. $x_{5}^{1}$ is equated to $x_{6}^{0}$
2-b. Knowing $x_{5}^{1}$ and $\theta_{1}^{1}$, calculate $\theta_{4}^{1}$ by equation (IV-7). 2-c. Knowing $\theta_{1}^{1}$ and $\theta_{4}^{1}$, calculate $x_{1}^{1}$ by equation (IV-1). 2-d. Knowing $\theta_{1}^{1}$ and $\theta_{4}^{1}$, calculate $x_{2}^{1}$ by equation (IV-4). 2-e. Knowing $x_{4}^{\circ}$ and $x_{2}^{1}$, calculate $x_{3}^{1}$ by equation (IV-16). 2-f. Knowing $x_{1}^{1}$ and $x_{3}^{1}$ calculate $\theta_{2}^{1}$ and $\theta_{5}^{1}$ by equations (IV-2) and (IV-5).
2-9. Knowing $\theta_{3}^{1}$ and $x_{1}^{1}$ calculate $\theta_{6}^{1}$ by equation (IV-3). 2-h. Knowing $\theta_{3}^{1}$ and $\theta_{6}^{1}$ calculate $x_{4}^{1}$ by equation (IV-6). 2-i. Knowing $\theta_{3}^{1}$ and $\theta_{6}^{1}$ calculate $x_{6}^{1}$ by equation (IV-8). 2-j. Knowing all the $\theta^{\prime}$ s and $x^{\prime}$ s calculate $x_{7}^{1}$ by equation (IV-9).
3. Computation of $\theta_{i}^{2}$ and $x_{j}^{2}$ in the second stage. The computation is similar to the computation for the first stage.
4. Computation of $\theta_{i}^{3}$ and $x_{j}^{3}$ in the third stage. 4-a. Equate $x_{5}^{3}$ to $x_{6}^{2}$
s-b. Knowing $\theta_{3}^{3}$ and $x_{1}^{3}$ (both are given values in an optimization problem), find $\theta_{6}^{3}$ by equation (IV-3).
4-c. Knowing $\theta_{3}^{3}$ and $\theta_{6}^{3}$, calculate $x_{4}^{3}$ by equation (IV-6)

4-d. Knowing $\theta_{3}^{3}$ and $\theta_{6}^{3}$, calculate $x_{6}^{3}$ by equation (IV-8). $4-c$. Knowing $x_{1}^{3}$ and $x_{5}^{3}$ calculate $\theta_{1}^{3}$ and $\theta_{4}^{3}$ by equations (IV-1) and (IV-7).
4-f. Knowing $\theta_{1}^{3}$ and $\theta_{4}^{3}$, calculate $x_{2}^{3}$ by equation (IV-4).
4-g. Knowing $x_{2}^{3}$ and $x_{4}^{3}$ calculate $x_{3}^{3}$ by equation (IV-16). $4-h$. Knowing $x_{1}^{3}$ and $x_{3}^{3}$ calculate $\theta_{2}^{3}$ and $\theta_{5}^{3}$ by equations (IV-2) and IV-5).
4-i. Knowing $x_{i}^{3}$ 's and $\theta_{j}^{3}$ 's, calculate $x_{7}^{3}$ by equation (IV-9).

In the above computations, the computations belonging to the following two types require trial calculations.

1. Type 1. Knowing $\theta_{k}^{n}, x_{i}^{n}$ calculate for $\theta_{j}^{n}$. Examples are computations $1-\mathrm{a}, 2-\mathrm{b}, 2-\mathrm{g}$, and $4-\mathrm{b}$ in the above list. Transformation equations are written in the form of

$$
x_{i}^{n}=T_{i}^{n}\left(\theta_{k}^{n}, \quad \theta_{j}^{n}\right),
$$

and the function is implicit with respect to $\theta_{k}^{n}$ and $\theta_{j}^{n}$. Therefore, in the numerical computation by a digital computor, the following steps have been taken
a. Assume a value for $\theta_{j}^{n}$.
b. Compute an $x_{i}^{n}$ value from the above equation, and record the result as $\left(x_{i}^{n}\right)$ calculated
c. Calculate $\Delta x_{i}^{n}$ value which is defined as

$$
\Delta x_{i}^{n}=\left(x_{i}^{n}\right)_{\text {known }}-\left(x_{i}^{n}\right)_{\text {calculated }}
$$

d. If $\Delta x$ is within the preassigned allowable error record the assumed $\theta_{j}^{n}$ as the root required.
c. If $\Delta x$ is greater than the preassigned allowable error, assume a new value of $\theta_{j}^{n}$ by

$$
\begin{equation*}
\left(\theta_{j}^{n}\right)_{\text {new }}=\left(\theta_{j}^{n}\right)_{\text {old }} \pm \Delta \theta_{j}^{n} \tag{65}
\end{equation*}
$$

The sign ahead of $\Delta \theta_{j}^{n}$ should be decided by the nature of transformation equation. The $\left(\theta_{j}^{n}\right)_{n e w}$ value is considered as the new assumed value and all the steps repeated.

One may start with a large value of $\Delta \theta_{j}^{n}$ at the beginning and use a successively smaller value for the $\Delta \theta_{j}^{n}$ as the computation converges. One way is to compare $\Delta x_{i}^{n}$ values in two successive computations. When the $\Delta x_{i}^{n}$ value changes its sign during two successive computations, halve the $\Delta \theta_{j}^{n}$ value. This approach is incorporated in the optimization calculations of $\mathrm{CO}_{2}$ compression problems.

Note that other one dimension root finding methods such as Newton's method and Fibnachi's method, which are more efficient than the interval halving method mentioned above, can also be used.
2. Type 2. Knowing $x_{i}^{n}$ and $x_{j}^{n}$ calculate $\theta_{k}^{n}$ and $\theta_{l}^{n}$. Examples are computations of equation $(2-f),(3-f),(4-e)$, and $(4-h)$ in the above list.

Transformation equations are written in the form of

$$
\begin{align*}
& x_{i}^{n}=T_{i}^{n}\left(\theta_{k}^{n}, \quad \theta_{l}^{n}\right)  \tag{A}\\
& x_{j}^{n}=T_{j}^{n}\left(\theta_{k}^{n}, \quad \theta_{i}^{n}\right) \tag{B}
\end{align*}
$$

The following computational steps have been taken:
a. Assume a value for $\theta_{k}^{n}$
b. Knowing $\theta_{k}^{n}$ and $x_{i}^{n}$, calculate $\theta_{l}^{n}$ by equation $(A)$ and by tine steps described in connection with the Type 1 prob1 cm.
c. Using values of $\theta_{k}^{n}$ (from step a) and $\theta_{l}^{n}$ (from step b) compute an $x_{j}^{n}$ value by equation $(B)$, and record the record the result as $\left(x_{j}^{n}\right)$ calculated
d. Calculate the $\Delta x_{j}^{n}$ value which is defined as

$$
\Delta x_{j}^{n}=\left(x_{j}^{n}\right)_{\text {known }}-\left(x_{j}^{n}\right)_{\text {calculated }}
$$

e. Similar to step (d) for Type 1.
f. Similar to step (e) for Type 1.

The relations derived and the methods described in this chapter are used in solving various problems set up for compressing $\mathrm{CO}_{2}$ gas by a three-stage compression. The results of the computations are described in the next chapter.

## VARIOUS DISCHARGE CONDITIONS

## 1. INTRODUCTION

The procedure developed in Chapter 5 is perfectly general and can be applied to the optimization study of compressing any gas from any inlet conditions to any discharge conditions, provided equations of state are available. The equations of state developed by Hirshfelder et al. are quite general and accurate. According to their approach, the field is divided into three regions; viz. low density gas (Region I), high density gas (Region II) and liquid (Region III). Gas compression in industrial processes may span two regions or even three regions. The procedures developed can handle even the most complex problem which can be formulated.

In order to illustrate the procedures and to demonstrate the actual saving realizable by the application of the optimization technique developed in this study as compared with the conventional approach, the optimization technique has been applied to a multistage $\mathrm{CO}_{2}$ gas compression problem in which the gas remains in Region I only.

In order to assist visualization of the procedure and showing how the successive iterations converge to the optimum condition, a two dimensional problem is formulated by fixing $\theta_{3}^{1}$ and $\theta_{3}^{2}$ and considering $\theta_{1}^{1}$ and $\theta_{1}^{2}$ as the two independent variables controlling the process. Optimization study of a two-dimensional problem is described in Scerion II.

Several optimization problems have been set up by varying the discharge conditions. These problems have been solved and the results of the calculations are described in Section III.
II. NUMERICAL SOLUTION OF $\AA$ TWO DIMENSIONAI, PIROBLEM

The two dimensional problem is stated as follows:
$\mathrm{CO}_{2}$ gas is compressed by a 3-stage gas compression system from $35^{\circ} \mathrm{F}$ and 14.7 Psi to the discharge condition of $140^{\circ} \mathrm{F}$ and 1700 Psi. The gas is cooled to $100^{\circ} \mathrm{F}$ after the first and second stage compressions. The constants used in the problem are summarized in Table 4. Find the optimum discharge pressures from the first and second stage compressions and the cost under the optimum operating condition.

The two parameter suboptimization problem can be solved by the discrete analog of the maximum principle according to the numerical computation procedure summarized in Chapter 5. Starting from a trial set of independent variables $\left\{T_{1}^{1}, T_{2}^{1}\right\}$ or equivalently $\left\{\theta_{1}^{1}, \theta_{1}^{2}\right\}$, the values of $\frac{\partial H^{1}}{\partial \theta_{1}^{1}}$ and $\frac{\partial H^{2}}{\partial \theta_{1}^{2}}$ can be calculated and use these values and the sign of the derivatives as a guide in selecting a new trial set of decision variables. The successive iteration ultimately converges to the optimum condition for the problem under consideration. With a two dimensional problem, the contour lines of constant gas compression cost can be shown graphically and show how the locus of successive iterations shown converges to the same optimal condition for different starting trial sets of $T_{1}^{1}, T_{2}^{1}$ or equivalently $\left\{\theta_{1}^{1}, \quad \theta_{1}^{2}\right\}$, It should be noted that the present technique

Table 4. Numerical Values for the Constants

| b | $=0.1983$ | $P_{0}$ | $=14.7 \mathrm{lb} / \mathrm{in}^{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{b}^{\prime}$ | $=0.739$ | $P_{C}$ | $=1066 \mathrm{lb} / \mathrm{in}^{2}$ |
| $C_{c}$ | $=2.94 \times 10^{-6} \$ /$ Btu | R | $=1.987 \mathrm{Btu} / \mathrm{lb}-$ mole R |
| $\mathrm{CH}_{\mathrm{H}}$ | $=7 \mathrm{~s} / \mathrm{ft}^{2}$ | $s^{\circ}$ | $=62.26 \mathrm{Btu} / \mathrm{lb}-$ mole R |
| $\mathrm{C}_{\mathrm{HP}}$ | $=100 \mathrm{~s} / \mathrm{hp} \cdot \mathrm{hr}$ |  | at $492{ }^{\circ} \mathrm{R}$ |
|  | $=3.93 \times 10^{-2}$ \$/Btu |  | 14.7 psi (Ref 14) |
| $\left(c_{p}\right)_{w}$ | $=1$ | To | $=492 \mathrm{R}$ |
| $C_{\text {w }}$ | $=1.5 \times 10^{-6} \$ / 1 \mathrm{~b}$ | $\mathrm{T}_{\mathrm{c}}$ | $=547.8 \mathrm{R}$ |
| $\mathrm{H}^{\circ}$ | $\begin{aligned} = & 1340 \mathrm{Btu} / \mathrm{lb}-\mathrm{mole} \\ & \text { at } 492^{\circ} \mathrm{R}, 14.7 \mathrm{psi} \end{aligned}$ | $\left(t_{w}\right)_{0}$ | $=\left(\frac{120+460}{T_{C}}\right)=1.050$ |
| $k_{0}$ | $\begin{aligned} & (\operatorname{Ref~14)} \\ = & 5.5\end{aligned}$ | $\left(t_{w}\right)_{i}$ | $=\left(\frac{85+460}{T_{C}}\right)=0.995$ |
| $\mathrm{k}_{1}$ | $=1.43$ | U | $=5 \mathrm{Btu} / \mathrm{ft} \cdot{ }^{2} \mathrm{hr} \cdot{ }^{\circ} \mathrm{F}$ |
| $\mathrm{k}_{2}$ | $=1.33$ | $\mathrm{V}_{\mathrm{c}}$ | $=0.0342 \mathrm{cu} . \mathrm{ft} / \mathrm{lb}$. |
| $\mathrm{k}_{3}$ | $=1.478$ | $\mathrm{Z}_{\mathrm{c}}$ | $=0.275$ |
| $\mathrm{k}_{4}$ | $=0.794$ | $\psi_{1}, \psi_{2}$ | $=9.4 \times 10^{-6}$ |

Note: Source of cost data (Ref. 24)
is ristinct from the gradient technique. In the gradient technique the direction of the successive iterations are taken normal to the contour lines. In the present method, the direction of successive iterations is not necessarily normal to the contour lines.

Figure 10 shows the gas compression cost vs. $T_{1}^{\prime}$ at various values of $\mathrm{T}_{2}^{\prime}$. The optimum condition is found to be $\mathrm{T}_{1}^{\prime}=329{ }^{\circ} \mathrm{F}$, $T_{2}=330^{\circ} \mathrm{F}$, and the gas compression cost is $2.510 c / 1 b-m o l e$. Figure 11 shows the contour lines of constant $\mathrm{CO}_{2}$ compression cost. It also shows starting from conditions represented by points 1, $1^{\prime \prime}, 1^{\prime \prime}, 1^{\prime \prime}$, how the successive iterations lead to the optimum condition of lowest cost.
III. RESULTS OF NUMERICAL COMPUTATION OF 3-STAGES $\mathrm{CO}_{2}$ GAS COMPRESSION PROBLEMS

Several problems have been formulated by varying the discharge condition.

The problems are stated as follows:
$\mathrm{CO}_{2}$ gas is compressed by a 3-stage gas compression system from $85^{\circ} \mathrm{F}$ and 14.7 psi to the following discharge conditions:

Discharge Pressure (psi)

| 500 | $100,140,180,220,260$ |
| :--- | :--- |
| 800 | $100,140,180,220,260$ |
| 1100 | $100,140,180,220,260,300$ |
| 1400 | $140,180,220,260,300$ |
| 1700 | $140,180,220,260,300$ |







C. : Cost ice compresoing $\mathrm{CO}_{2}$ sos ( ¢ / Ib-micle)

-...... .





Numerical valucs of the constants in the performance equations are summarized in Table 4. Find the optimum conditions for all the problems and also find the costs under the optimum conditions.

These problems have been solved and the results are summarized by Figures 12-20.

Figure 12 summarizes how the intermediate stage pressures $P_{1}$ and $P_{2}$ (—lines) vary with the discharge temperature at the di scharge pressure of 500 Psi. The optimum intermediate pressures as calculated by the conventional ideal gas assumption are also shown ( --- lines) for comparison. Figures 13, 14, 15 and 16 similarly show the optimum intermediate stage pressures under discharge pressures of $800,1100,1400$ and 1700 psi respectively. By reviewing the figures, it will be seen that the differences in the optimum intermediate stage pressures increase as the discharge pressure increases.

Figures 17 A and 17 B respectively show how the optimum first stage pressure and second stage pressure vary with discharge temperature under various discharge pressures. Figure 18 shows how the optimum intermediate stage temperature after hypothetical reversible compression varies with the discharge pressure under various discharge pressures as calculated by the present method.

Figure 19 shows how the gas compression cost under optimum conditions as calculated by the present method varies with the discharge temperature under various discharge pressures. In the figure, gas compression cost under the optimum $\infty$ ndition as calculated by the conventional approach is also shown for comparison. It shows that

こ00－

$$
P_{3}=500
$$


ここ－

Fig．2．Opiral internedicie pressuras，$P_{1}$ and $P_{2}$ ，vs．discharge tempercture $T_{3}$ as colculated by the conventional ideal gas cajercoch（－－－－－）and the present approcih（——）of $P_{\mathrm{E}}=500$ psi．


Fight. Canc! intarracicia pressure $P_{1}$ and $P_{2}$ vs. discharge terizercture $T_{3}$ as calculated by the conventional ideal caa approach (----) and the present approach $(\longrightarrow)$ ai $P_{5}=800 \mathrm{psi}$.

340-

$$
P_{3}=1100 \mathrm{psi}
$$




100
200
300
Fig. 14.
Discharge temperature ( ${ }^{\circ} \mathrm{F}$ )



$P_{3}=1400 \mathrm{psi}$

$300-$ an
苛
C Iniermediaie pressure $4 0 \longdiv { 1 0 0 }$
二.j.









Fio. 10. Temperoture cffer reversible compressions and ofter interstoce coolings.



sigmificant cost saving can be obtained if the gas compression is conducted under the oftimun condition as calculated by the present methoci. Figure 20 shows the \% cost reduction in gas compression cost obtainable if gas compression is conducted under the optimum policy calculated by the present method as compared with the case where the optimum policy is calculated by the conventional ideal gas method. It shows that the \% cost reduction increases as the discharge pressure increases and the cost saving obtainable is fairly significant. For example, a $2.5 \%$ cost saving is realizable by operating under the optimum condition calculated by the present study as compared with the case when the optimum policy is calculated by the conventional approach.

Figure 21 shows the computer flow diagram used in the programming, and Table 6 shows the computer program used to obtain the numerical results described above.
IV. SUMMIRRY

The optimization technique developed in this study is based on the discrete analog of the maximum principle and an iterative search method. The techniques employs four Lagrange multipliers in each stage in association with the four equality constraints. The method is fairly general and can be used in conjunction with any equation or state.

The equation of state developed by Hirshfelder et al is used in deriving the performance equations. Numerical computations have been made for several problems related to 3-stage gas compression



Fig. 21. Computer flow diagram

Oi carbobl dioxids nas within region $I$. The computational scheme doveloprd bore can be arplied to any gas under a rather wide range of tomperature and pressure. The numerical computations have given risc to the following significant results:

1. The optimal policy of a multistage gas compression system is affected not only by the discharge pressure but also by the discharge temperature. For example, Fig. 15 shows that the optimum second stage pressure for a three-stage $\mathrm{CO}_{2}$ gas compression system discharging at 1400 psia varies from 370 psia to 400 psia as the discharge temperature varies from $120^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$.
2. The optimal policy of a three-stage carbon dioxide gas compression system as computed by the present approach is significantly different from the policy as computed by the conventional approaches. For example, at the discharge pressure of 1400 psia and discharge temperature of $300^{\circ} \mathrm{F}$, the optimum first and second stage pressures as computed by the present approach are 86 psia and 400 psia respectively. The optimal first and second stage pressures computed by the conventional approaches are 56 psia and 296 psia respectively.
3. The gas compression cost evaluated by the present approach at the optimum condition is significantly lower than the gas compression cost evaluated at the optimum condition as determined by the conventional approach. The difference in these costs is summarized in Figure 19. It is shown that the cost difference increase as the discharge pressure increases. Figure 20 shows \% cost saving as a function of discharge tem-
perature and pressure. The cost saving is about $2.5 \%$ for $\mathrm{CO}_{2}$ compression at the discharge pressure of 1700 psia.

All the numerical computation has been made by IBM 360 computer. Computing time for one iteration as described in section IV of Chapter 5 is 20 seconds. Assuming that 15 iterations are required to arrive at the optimum policy, the computing time required is 5 minutes for solving an optimization problem considered in this work.
$A_{n}=$ heat transfer area of the $n-t h$ stage intercooler, $f t^{2}$
$b=a$ constant appearing in the equation of state; 0.1985 for $\mathrm{CO}_{2}$
$b^{\prime} \quad=\quad$ a constant appearing in the equation of state; 0.739 for $\mathrm{CO}_{2}$
$C_{e}=$ unit power cost; $2.94 \times 10^{-6} \$ /$ Btu.
$C_{H}=$ capital cost per unit heat transfer area; $7 \$ / f t^{2}$
$C_{H P}=$ capital cost for compressors per $\mathrm{HP} ; 100 \$ / \mathrm{HP}=$ $3.93 \times 10^{-2} \$ /$ Btu/hr
$C_{P}=$ heat capacity of $\mathrm{CO}_{2}$ gas per $1 \mathrm{~b}-\mathrm{mol}$, Btu/lb-mol ${ }^{\circ} \mathrm{R}$ : $C P=16.2-\frac{6.53 \times 10^{3}}{T}+\frac{1.41 \times 10^{6}}{T^{2}} \quad$ (Ref.21)
$\left(C_{p}\right)_{w}=$ heat capacity of cooling water; $1 \mathrm{Btu} / \mathrm{lb}^{\mathrm{O}_{\mathrm{R}}}$
$C_{w}=$ unit cooling water cost; $1.5 \times 10^{-6} \$ / 1 \mathrm{~b}$
$E_{I}^{n}=$ cost due to the power consumed in the $n-t h$ stage compressor, \$/lb-mole.
$E_{2}^{n} \quad=\cos t$ due to allocating the initial cost of the $n-t h$ stage compressor, $\$ / 1 b-m o l e$
$E_{3}^{n} \quad=$ cost due to allocating the initial cost of the $n-t h$ stage heat exchanger, $\$ / 1 \mathrm{~b}-\mathrm{mole}$
$E_{4}^{n}=\operatorname{cost}$ due to the cooling water used in the $n-t h$ stage intercooler, \$/lb-mole
$H \quad=$ enthalpy of gas, Btu/lb-mol
$H_{n}=$ enthalpy of the gas leaving the $n-t h$ stage intercooler Btu/lb-mole

```
Hn}=\mathrm{ enthalpy or the (fas aricr the n-th stage reversible
    compression, Btu/lb-mole
H" = enthalpy of the gas after n-th stage actual compression,
    Btu/lb-mole
H}= enthalpy of the gas at hypothetical ideal gas state at
    the temperature of the gas, Btu/lb-mole
H
    at a reference temperature To, Btu/lb-mole
H}=\mp@code{Hamiltonian function at n-th stage
N
k
k1}=a\mp@code{constant appearing in the equation of state; 1.43
k}2=a\mathrm{ constant appearing in the equation of state; 1.33
k}3=a\mathrm{ constant appearing in the equation of state; 1.478
k}
m = flow rate, lb-moles/hr
N = total number of stage
P = pressure of the gas, psi
P
    pressure of the gas at the standard condition, psi
P
p reduced pressure of the gas, }P=\frac{P}{\mp@subsup{P}{c}{}
Pn}=\mathrm{ pressure of the gas at the n-th stage, dimensionless
R = gas law constant; 1.98 % Btu
S = entropy of the gas, Btu/lb-mole 镇
```


$U \quad=\quad$ overall coefficient of heat transfer in the inter-
coolers; $5 \mathrm{Btu} / \mathrm{ft}^{2} / \mathrm{hr} .{ }^{\mathrm{o}_{R}}$
$V=$ volume of the gas; cu-ft/lb-mole
$V_{c}=c r i t i c a l$ volume of the gas; cu-ft/lb-mole
$V_{0}{ }^{\prime}=$ volume of the gas under a hypothetical ideal gas
state at the temperature of the gas and at the
critical pressure of the gas
$x_{i}^{n}=a$ state variable
$z_{c}=$ compressibility of the gas at critical condition;
for $\mathrm{CO}_{2}$ gas 0.275
$z_{i}^{n} \quad=$ adjoint variable associated with $x_{i}^{n}$
$\rho=$ reduced density of the gas; $=\frac{V_{c}}{V}$
$\rho_{n}=$ reducod density of the gas leaving the $n-t h$ stage
cooler
$\rho_{n}^{\prime}=$ reduced density of the gas after $n-t h$ stage reversi-
ble compression
$\rho_{n} \prime \prime=$ reduced density of the gas after $n-t h$ stage actual
compression
$\psi_{1}, \psi_{2}=$ fractions of the initial cost of a gas compressor and
an intercooler allocated and chargeable to an hour
operation respectively: in the numerical computations
they are assumed to be the same and taken as $9.4 \times 10^{-6}$.
$\phi_{i}^{n}=$ constraint functions at $n$-th stage

Table 5. DCPinition of Computer Notations


Table 5. Definition of Computer Notations--Continued

| Computer notation | ```Conventional and/or maximum principle notation``` | Computer notation | ```Conventional and/or maximum principle notation``` |
| :---: | :---: | :---: | :---: |
| $\operatorname{P3T1}(\mathrm{n}+1)$ | $\frac{\partial \dot{p}_{3}^{n}}{\partial \theta_{1}^{n}}$ | POC | $\frac{\mathrm{P}_{\mathrm{O}}}{\mathrm{P}_{\mathrm{C}}}$ |
|  |  | R | R |
| P3T4(n+1) | $\frac{\partial \phi_{3}^{n}}{\partial \theta_{4}^{n}}$ | T1 ( $\mathrm{n}+1$ ) | $\theta_{1}^{n}, t_{n}{ }^{\prime}$ |
| P3T6 (n+1) | $\partial \phi_{3}^{n}$ | $\mathrm{T} 2(\mathrm{n}+1)$ | $\theta_{2}^{n}, t_{n}^{\prime \prime}$ |
|  | $\partial \theta_{6}^{n-1}$ | T3(n+1) | $\theta_{3}^{n}, t_{n}$ |
| $\mathrm{P} 4 \mathrm{~T} 1(\mathrm{n}+1)$ | $\partial \phi_{4}^{n}$ | T4(n+1) | $\theta_{4}^{n}, \quad 4$ |
|  | $\partial \theta_{1}^{n}$ | $T 5(n+1)$ | $\theta_{5}^{n}, \quad n$ |
| P4T2(n+1) | $\frac{\partial \phi_{4}^{n}}{\partial \theta_{2}^{n}}$ | $T 6(n+1)$ | $\theta_{6}^{n}, \quad n$ |
| P4T4( $n+1$ ) |  | $\operatorname{T1P}(\mathrm{n}+1)$ | $\theta_{1}^{n}$ in memory |
|  | $\frac{\partial \phi_{4}}{\partial \theta_{4}^{n}}$ | T3P $(n+1)$ | $\theta_{3}^{n}$ in memory |
|  |  | TC | $\mathrm{T}_{\mathrm{c}}$ |
| $\mathrm{P} 4 \mathrm{~T} 5(\mathrm{n}+1)$ | $\partial \phi_{4}^{n}$ | T0 | $t_{0}$ |
|  | $\partial \theta_{5}^{n}$ | TWI | $\left(t_{w}\right)_{i}$ |
| $\mathrm{P} 4 \times 4(\mathrm{n}+1)$ | $\frac{\partial \phi_{4}^{n}}{\partial x_{4}^{n-1}}$ | TWO | $\left(t_{w}\right)_{0}$ |
|  |  | U | U |
|  |  | X1( $n+1$ ) | $x_{1}^{n}, P_{n}, P_{n}^{\prime}, P_{n}^{\prime \prime}$ |
| PH | $\psi_{1}, \psi_{2}$ | X2 $2(n+1)$ | $x_{2}^{n}, H_{n}^{\prime}$ |

Table 5. Definition of Computer Notations--Continued

| Comnuter notation | Conventional and/or maximum principle notation | Computer notation | Conventional and/or maximum principle notation |
| :---: | :---: | :---: | :---: |
| X3( $\mathrm{n}+1$ ) | $x_{3}^{n}, H_{n}^{\prime \prime}$ | X3T2 $2(n+1)$ | $\partial x_{3}^{n}$ |
|  |  |  | $\partial \theta_{2}^{n}$ |
| $\mathrm{X} 4(\mathrm{n}+1)$ | $\mathrm{x}_{4}, \mathrm{H}_{\mathrm{n}}$ | X3T5(n+1) |  |
| $\mathrm{x} 5(\mathrm{n}+1)$ | ${ }^{n}{ }_{5}^{n}, S_{n}^{\prime}$ |  | $\frac{\partial x_{3}^{n}}{}$ |
| xo ( $n+1$ ) | $x_{6}^{n}, s_{n}$ |  | $\partial \theta_{5}^{n}$ |
| $\mathrm{X7}(\mathrm{n}+1)$ | $x_{7}^{n}, c_{n}$ | X4T3( $\mathrm{n}+1$ ) | $\partial x_{4}^{n}$ |
| $\mathrm{xlcl}(\mathrm{n}+1)$ | $\frac{\partial x_{1}^{n}}{\partial \theta_{1}^{n}}$ |  | $\partial \theta_{3}^{n}$ |
| $\mathrm{X1T} 2(\mathrm{n}+1)$ | $\frac{\partial x_{1}^{n}}{\partial \theta_{2}^{n}}$ | X4T6( $\mathrm{n}+1$ ) | $\frac{\partial x_{4}^{n}}{\partial \theta_{6}^{n}}$ |
| $\mathrm{XIT3}(\mathrm{n}+1)$ | $\partial x_{1}^{n}$ | $\mathrm{X} 5 \mathrm{Tl}(\mathrm{n}+1)$ |  |
|  | $\partial \theta_{3}^{n}$ |  | $\partial \theta_{1}^{n}$ |
| $\mathrm{XIT} 44(\mathrm{n}+1)$ | $\frac{\partial x_{1}^{n}}{\partial \theta^{n}}$ | X 5 T4( $\mathrm{n}+1$ ) | $\frac{\partial x^{n}}{}$ |
|  | ${ }_{4}$ |  | $\partial \theta_{4}^{n}$ |
| $\mathrm{XIT5}(\mathrm{n}+1)$ | $\partial x_{1}^{n}$ | $\mathrm{x} 6 \mathrm{~T} 3(\mathrm{n}+1)$ |  |
|  | $\frac{\partial \theta_{5}^{n}}{}$ |  | 2x ${ }^{\text {n }}$ |
| X1 $\mathrm{T}^{\prime}(\mathrm{n}+1)$ |  |  | $\partial \theta_{3}$ |
|  | $\partial x_{1}^{n}$ | X6T6( $\mathrm{n}+1$ ) |  |
|  | $\partial \theta_{6}$ |  | $\partial x_{6}^{n}$ |
| $\mathrm{x} 2 \mathrm{Tl}(\mathrm{n}+1)$ | $\frac{\partial x_{2}^{n}}{\partial \theta^{\prime}}$ |  | $\partial \theta_{6}$ |
|  | $\partial \theta_{2}^{n}$ | X7T2 $(\mathrm{n}+1)$ | $\frac{\partial x_{7}^{n}}{}$ |
| $\mathrm{X} 2 \mathrm{~T} 4(\mathrm{n}+1)$ | $\frac{\partial x_{2}}{}$ |  | $\partial \theta_{2}^{n}$ |
|  | $\partial \theta_{4}^{n}$ |  |  |

Taule 5. Definition of Computer Notations-Continued

| Computer notation | ```Conventional and/or maximum principle notation``` | Computer notation | ```Conventional and/or maximum principle notation``` |
| :---: | :---: | :---: | :---: |
| x7T3(n+1) | $\frac{\partial x_{7}^{n}}{\partial \theta_{3}^{n}}$ | $21(n+1)$ | $z_{1}^{n}$ |
|  |  | $22(n+1)$ | $z_{2}^{n}$ |
| $\mathrm{X7T5}(\mathrm{n}+1)$ | $\frac{\partial x^{n}}{}$ | $23(n+1)$ | $z_{3}^{n}$ |
|  | $\partial \theta_{5}^{n}$ | $24(n+1)$ | $2_{4}^{n}$ |
| X7T6 (n+1) | $\partial x_{7}^{n}$ | $25(n+1)$ | $2 \frac{n}{5}$ |
|  | $\partial \theta_{6}^{n}$ | $26(n+1)$ | $z_{6}^{n}$ |
|  |  | $27(n+1)$ | $z_{7}^{n}$ |
| $\mathrm{X7X4}(\mathrm{n}+1)$ | $\frac{\partial x_{7}^{n}}{\partial x_{4}^{n-1}}$ |  |  |
| X7X7 $(\mathrm{n}+1)$ | $\frac{\partial x_{7}^{n}}{\partial x_{7}^{n-1}}$ |  |  |

Thい! (\%. Computer Prorrram

C

```
COST OPTIMIZATION OF PUMP SYSTEM
```

    DIIENSION TL(4), T2 (4) ,T3(4),T4(4),T5(4),T6(4),X1(4),X2(4),X3(4)
    DIMENSION X4(4), X5(4),X6(4),X7(4),X1T1(4),X1T4(4),X2T1(4),X2T4(4)
    DIMENSION X3T2(4),X3T5(4),X4T5(4),X4T3(4),X4T6(4),X5T1 (4),X5T4(4)
    DIMENSION XOT.3(4), XGT6(4),X7T2(4),X7T3(4),X7T6(4),X7X4(4)
    DIMENSION X7X7(4), P1T1(4), P1T2(4),P1T4(4),P1T5(4),P2T1(4)
    DIMENSION P2T3(4), P2T4(4),P2TG(4),P3T1(4),P3T4(4),P3X6(4),P4T1(4)
    DIMENSION P4T2(4), P4T4(4),P4T5(4),P4X4(4), DKT(4), DLT(4),T1P(4)
    DIMENSION Z1(4),Z2(4),Z3(4),Z4(4),Z5(4),Z6(4),Z7(4),ALM1 (4)
    DTMIENSION ALMP(4), ALM3(4), ALM4 (4), \(\operatorname{HT1}(3), \operatorname{HT} 3(3), \operatorname{X7T}(4), \operatorname{T3P}(4)\)
    1001 FOMMAT(3E10.4)
1002 Folmat (7F16.8)
READ(1,1001) AKO, AK1,AK2,AK3,AK4, B1, B2
READ(1,1001) POC,CZ,R,TC
READ(1,1001) TWO, TWI, TO, CHP , CH, PH, CW, CPW
READ (1,1001) AH,AS,U,CE
$\operatorname{READ}(1,1001) \mathrm{T} 3(1), \mathrm{X1}(1), \mathrm{X7}(1)$
$\mathrm{N}=\mathrm{O}$
$\mathrm{N}=\mathrm{N}+1$
IF (N.ER.3) GO TO 520
$\operatorname{READ}(1,1001) \mathrm{X1}(4)$
$\mathrm{M}=\mathrm{O}$
$M=M+1$
IF(M.EQ.6) GO TO 510
READ (1,1001) T3(4)
READ(1,1001) T1(2),T3(2),T1(3),T3(3)
$\operatorname{READ}(1,1001) \operatorname{HT1}(2), \operatorname{HT} 3(2), \operatorname{T1P}(2), \mathrm{T} 3 \mathrm{P}(2)$
$\operatorname{READ}(1,1001) \operatorname{HTI}(3), \operatorname{HT} 3(3), \operatorname{T1P}(3), \mathrm{T} 3 \mathrm{P}(3)$
$\operatorname{READ}(1,1001) \operatorname{DKT}(2), \operatorname{DKT}(3), \operatorname{DLT}(2), \operatorname{DLT}(3)$
L=0
$L=L+1$
IF(L.ER.16) © TO 500
READ (1,1001) DET, DFT,DGT, DHT,DIT,DJT
$\operatorname{READ}(1,1001) \mathrm{T} 4(2), \mathrm{T} 5(2), \mathrm{T} 6(2), \mathrm{T} 2(2)$
$\operatorname{READ}(1,1001) \mathrm{T} 4(3), \mathrm{T} 5(3), \mathrm{T} 6(3), \mathrm{T} 2(3)$
$\operatorname{READ}(1,1001) \mathrm{T} 4(4), \mathrm{T} 5(4), \mathrm{T} 6(4), \mathrm{T} 2(4), \mathrm{Tl}(4)$
DK $5=1$.
$1=1$
DK1=1.
XIC $=-(\mathrm{AKO}+\mathrm{AK} 1 / \mathrm{T} 3(\mathrm{I}))(\mathrm{T} 6(\mathrm{I}) * * 2 .+\mathrm{AK} 2 *(-\mathrm{T} 3(\mathrm{I})+1 . / \mathrm{T} 3(\mathrm{I})) * T 6(\mathrm{I}) * * 3$.
$1+\mathrm{T} 6(\mathrm{I}) * \mathrm{~T} 3(\mathrm{I}) /\left(\mathrm{CZ}^{*}\left(1 .-\mathrm{B1}{ }^{*} \mathrm{~T} 6(\mathrm{I})+\mathrm{B} 2^{*} \mathrm{~T} 6(\mathrm{I}) * \mathrm{~T} 6(\mathrm{I})\right)\right)$
$D \times 1 P=D \times 1$
$D \times 1=X 1(I)-X 1 C$
$15(A B S(D X 1)-A B) 80,80,30$
1F (DX1P*DK1) 40,40,50
Dr: $=D E T / 2$.
I: (DXI) 60,60,70
$T E(I)=26(工)-D E T$
CO TO 10
$18(I)=T 6(I)+D E T$
GOTO 10

Continue
Tr=ALOG (T3(I)*TC/TO)
TT1=1./(T3(I)*TC)-1./TO $3 R^{*}$ ALOG (PCC) + A $5+$ TCS 1
KRITE(3,1002) T3(I),T6(I)
IF(I.FQ.4) GO TO 100
DG $300 \quad \mathrm{I}=2,3$
$\chi 5(I)=\times 6(1-1)$
IF(I.MO.4) GO TO 305
TT1=1./(T1 (I)*TC) $-1 . / T O$
Tr=ALOG(TI (I)*TC/TO) $D K 1=1$.

3R*ALOG(POC+AS+TCS2
DK1P=DK1
DK1 $=\times 5(I)-X 5 C$
$\operatorname{IF}(A B S(D K)-A C) 150,150,115$
IF (DKíl) 140,140,130
DFT=DRT/2.
$\mathrm{T} 4(\mathrm{I})=\mathrm{T} 4(\mathrm{I})-\mathrm{DFT}$
$\infty$ TO 110
$T 4(I)=T 4(I)+D F T$
GO TO 110
CONTINUE
$T T=A L O G(T T=A L O G(T 1(I) * T C / T O)$
$T T 1=1 . /(T I(I) * T C)-1 . / T 0$

X3(こ) $=1.2 * \times 2(I)-0.2 * \times 4(I-1)$
D $\because: 3=1$.
Continua
$\mathrm{TC} \Gamma=16.2^{*}(\mathrm{~T} 3(\mathrm{I}) * \mathrm{TC}-\mathrm{TO})-3530 . * \mathrm{TT}-1410000$. TT 1

 1C2* R*TC*T3(I)* (NK2*T6(I)*16(I)* (1. - $2 . / T 3(I) * * 2)).+R^{*} T C^{*} T 3(I) * B 1 *$ $2 T 6(I)-B 2 * T S(I) * T 6(I)) /(1 .-B 1 * T 6(I)+B 2 * T 6(I) * T 6(I))+A H+T C P I$ X $\sigma(I)=R^{*}\left(C Z^{*}\left(-N K 1 * T G(I) / T 3(1) * * 2 .+0.5^{*} A K 2 * T 6(I) * T 6(I) *(1 .-\right.\right.$ 11./T3(I)**2.)) -ALOG(T6(I)*T3(I))+0.5*ALOG(1.-B1*T6(I)+

2:32*T6(I)*T6(I)) -AK3*ATAN (AK3) -AK 3*ATAN (AK4*T6(I)-AK3) +ALOG(CZ)) +

KRITE(3,1002) X1(1),X4(I),X6(I),X7(I)

READ (1,1OO1) DET,DFT,DCT, DHT,DIT

TCP2 $=16.2^{*}(\mathrm{Tl}(\mathrm{I}) * \mathrm{TC}-\mathrm{TO})-6530 . * \mathrm{TT}-1410000 . * \mathrm{TT} 1$
TCS2 $=16.2^{*} \mathrm{~T} T+6530 . * T T 1-705000 . *(1 . /(T 1(\mathrm{I}) * T C) * * 2 .-1 . / T 0 * * 2$.
$\mathrm{X} 5 \mathrm{C}=\mathrm{R}^{*}\left(\mathrm{C} Z^{*}\left(-\mathrm{AK} 1^{*} \mathrm{~T} 4(\mathrm{I}) / \mathrm{T} 1(\mathrm{I})^{* *} 2 .+0.5^{*} \mathrm{AK} 2^{*} \mathrm{~T} 4(\mathrm{I})^{*} \mathrm{~T} 4\left({ }^{*}\right){ }^{*}(1 .-\right.\right.$ 11. $/ \mathrm{Tl}(\mathrm{I}) * * *$. $)$ ) - $\mathrm{ALOG}(\mathrm{T} 4(\mathrm{I}) * \mathrm{~T} 1(\mathrm{I}))+0.5^{*} \mathrm{ALOG}(1 .-\mathrm{Bl} * \mathrm{~T} 4(\mathrm{I})+$
$\left.2 \mathrm{~B} 2 * \mathrm{~T} 4(\mathrm{I}) * \mathrm{~T} 4(\mathrm{I}))-\operatorname{AK} 3 * \operatorname{ATAN}(\mathrm{AK} 3)-\operatorname{AK} 3^{*} \operatorname{ATAN}(\mathrm{AK} 4 * T 4(\mathrm{I})-A K 3)+A L O G(C Z)\right)+$
$\mathrm{XI}(\mathrm{I})=-(\mathrm{AKO}+\mathrm{AK} 1 / \mathrm{Tl}(\mathrm{I})) * T 4(\mathrm{I}) * * 2 .+\mathrm{AK} 2^{*}(-\mathrm{Tl}(\mathrm{I})+1 . / T 1(\mathrm{I}))^{*} \mathrm{~T} 4(\mathrm{I}) * * 3$.
$\mathrm{I}+\mathrm{T} 4(\mathrm{I}) * \mathrm{~T} 1$ (I)/(CZ* (1.-B1*T4.(I) $+\mathrm{B} 2 * T 4(\mathrm{I}) * T 4(I)))$

TCP2 $=16.2^{*}(\mathrm{~T} 1(\mathrm{I}) * T C-T O)-6530 . * T T-1410000 . * T T 1$
X2 (I) $=-Z^{*} \mathrm{R}^{*} \mathrm{TC} \mathrm{T}^{*} \mathrm{TI}(\mathrm{I}) *(\mathrm{~T} 4(\mathrm{I}) *(2 . * A K O / T 1(I)+3 . * A K 1 / T 1(I) * * 2))-$.
$10 Z^{*} R^{*} T C^{*} T 1(I) *\left(A K 2^{*} T 4(I) * T 4(1)^{*}\left(1 .-2 . / T 1(I){ }^{*}{ }^{*} 2 \cdot\right)\right)+R^{*} T C^{*} T 1(I) * B 1 *$
$\left.2 T 4(I)-R 2^{*} T 4(I) * T 4(I)\right) /\left(1 .-B 1 * T 4(I)+B 2^{*} T 4\right.$ (I)*T4(I))+AH+TCP2

DGI $=0.002$
$B \times 1=1$.
XIC $=-(A K O+A K L / T 2(I)) * T 5(I) * * 2 .+A K 2 *(-T 2(I)+1 . / T 2(I)) * T 5(I) * * 3$.
$1+\mathrm{T} 5(!) * \mathrm{~T} 2\left(10 /\left(C Z^{*}\left(1 .-\mathrm{B} 1^{*} \mathrm{~T} 5(\mathrm{I})+\mathrm{B} 2 * \mathrm{~T} 5(\mathrm{I}) * \mathrm{~T} 5(\mathrm{I})\right)\right)\right.$
13X15= BXI
$B \times 1=\times 1(1)-\times 1 C$
$\operatorname{IF}(\operatorname{ADS}(B \times 1)-A B 1220,330,180$
IF $(B \times 1 P * D \times 1) 185,185,190$
DGT=DGT/2.
IF (BX1)200,200,210
$T 5(I)=T 5(I)-D G T$
GO TO 175
T5 (I) $=\mathrm{T} 5(\mathrm{I})+$ DGT
© TO 175
CONTINUE
$T \mathrm{~T}=\mathrm{ALOG}(\mathrm{T} 2(\mathrm{I}) * T C / T O)$
$T M 1=1 . / T 2 T) * T C)-1 . T O$
TCP9 $=16.2^{*}(\mathrm{~T} 2(\mathrm{I}) * \mathrm{TCOTI}(06539$, *TTO1419999,*TT1
X3C $-C^{*} Z^{*} T C^{*} T 2(I) *(T 5(I) *(2 . * A K O / T 2(I)+3 . * A K 1 / T 2(I) * * 2)$.
1CZ*R*TC*T2 (I)* (AK2*T5 (I)*T5 (I) (1.-2./T2 (I)**2.) ) +R*TC*T2 (I)* (B1*
2T5(I) $\left.-\mathrm{B}^{*} \mathrm{~T} 5(\mathrm{I}) * \mathrm{~T} 5(\mathrm{I})\right) /(1 . \mathrm{BI} * \mathrm{~T} 5(\mathrm{I})+\mathrm{B} 2 * \mathrm{~T} 5(\mathrm{I}) * \mathrm{~T} 5(\mathrm{I}))+\mathrm{AH}+\mathrm{TCP9}$
DX.3P=DX. 3
DX3=X3(I)-X3C
IF (ABS (DX3) -AD) 255,255,225
IF (DK3P*DX3) 230,230,235
DHT=DHT/2.
IF (DX3) 240,240,250
$\mathrm{T} 2(\mathrm{I})=\mathrm{T} 2(\mathrm{I})-\mathrm{DHT}$
GO TO 170
$\mathrm{T} 2(\mathrm{I})=\mathrm{T} 2(\mathrm{I})+\mathrm{DHT}$
GO TO 170
CONTINUE
IF(I.ER.4) GO TO 295
DX1=1.
$\mathrm{XIC}=-(\mathrm{AKO}+\mathrm{AK} 1 / \mathrm{T} 3(\mathrm{I}))^{*} \mathrm{~T} 6(\mathrm{I}) * * 2 \cdot+\mathrm{AK} 2 *(-\mathrm{T} 3(\mathrm{I})+1 \cdot / \mathrm{T} 3(\mathrm{I}))^{*} \mathrm{~T} 6(\mathrm{I}) * * 3$.
$1+\mathrm{T} 6$ (I)*T3(I)/C2* (1.-B1*T6(I)+B2*T6(I)*T6(I)))
DX1P=DX1
$\mathrm{DXI}=\mathrm{XI}(\mathrm{I})-\mathrm{XIC}$
IF (ABS (DXI)-AB) 290,290,265
IF (DX1P*DXI) 270,270,275
DIT=DIT/2.
IF (DX1) 280,280,285
$T 6(I)=T 6(I)-D I T$
GO TO 260
$T 6(I)=T 6(I)+D I T$
GO TO 260
CONTINUE
IF(T3(I)-TWT) 292,292,293
$T 3(I)=T X I+0.0001$
$T M=A L O G(T 3(I) * T c ? T O)$
Trl=1./(T3(I)*TC)-「./TO
TCP3=16.2* (T3(I) * TC-20) -6530.*TT-1410000.*TT1
$X_{\&}(I)=-Z^{*} R^{*} T C^{*}-3(I) *(T 6(I) *(2 . * A K O / T 3(I)+3 . * A K 1 / T 3(I) * * 2))-$.

$216(\mathrm{I})-\mathrm{B} 2 * 16(1) * T o ́(I)) /\left(1 .-\mathrm{BI} \mathbf{N}^{*} \mathrm{~T} 6(\mathrm{I})+\mathrm{B} 2^{*} \mathrm{~T} 6(\mathrm{I}) * \mathrm{~T} 6(\mathrm{I})\right)+\mathrm{AH}+\mathrm{TCP} 3$




$3 R^{*} \Lambda L O G(10 C)+\Lambda S+$ TCS.
DELT $=((T 2(I)-T W O)-(T 3(I)-T W I)) / \Lambda L O G((T 2(I)-T W O) /(T 3(I)-T W I))$
$\mathrm{X} 7(\mathrm{I})=\mathrm{X} 7(\mathrm{I}-1)+\mathrm{CE}^{*}(\mathrm{X} 3(\mathrm{I})-\mathrm{X} 4(\mathrm{I}-1))+\mathrm{PH}{ }^{*} \mathrm{CH} \mathrm{H}^{*}(\mathrm{X} 3(\mathrm{I})-\mathrm{X} 4(\mathrm{I}-1))+\mathrm{PH}^{*} \mathrm{CH}^{*}$
$\left.1(X 3(I)-X 4(I)) /\left(O^{*}\right) C^{*} D E L T\right)+C I^{*}(X 3(I)-X 4(I)) / C P W^{*} T C^{*}$ (TWO-TWI))
WNITE(3,2002) $11(1), T 2(I), T 3(I), T 4(I), T 5(I), T G(I)$
WRITE ( 3,1002 ) X1 (1), X2 (I), X3(I), X4 (I), X5 (I) ,X6(I),X7 (I)
IF (I.E(2.4) GO TO 400
OONTINUE
$\mathrm{T}=4$
GO TO 5
$\mathrm{DFT}=0.002$
$B X 1=1$.

$1+\mathrm{T} 4(\mathrm{I}) * \mathrm{TI}(\mathrm{I}) /\left(\mathrm{C} Z^{*}(1 \cdot-\mathrm{Bl} * \mathrm{~T} 4(\mathrm{I})+\mathrm{B} 2 * \mathrm{~T} 4(\mathrm{I}) * \mathrm{~T} 4(\mathrm{I}))\right)$
BKL1"=13K1
$13 X L=X I(I)=X 1 C$
IF (A13S (Bス1) - AB) 350, 350,315
$\operatorname{IF}(B X 1 P * 13 X 1) \quad 320,320,325$
$\mathrm{DFT}=\mathrm{DFT} / 2$.
IF (BXI) $330,330,340$
$T 4(I)=T 4$ (I) -DFT
GO TO 310
$T 4(I)=T 4(I)+D F T$
00 TO 310
CONTINUE
$\mathrm{TTI}=1 . /(\mathrm{Tl}(\mathrm{I}) * \mathrm{TC})-1 \cdot / \mathrm{TO}$
$\left.\mathrm{TT}=\wedge \operatorname{LOG}(\mathrm{T})(\mathrm{I})^{*} \mathrm{TC} / \mathrm{TO}\right)$
$\mathrm{TCP2}=16.2^{*}\left(\mathrm{~T} 1(\mathrm{I}){ }^{*} \mathrm{TC}-\mathrm{TO}\right)-6530 . * \mathrm{TT}-1410000$. TT

X5C $=R^{*}\left(C Z^{*}\left(-A K I * T 4(I) / T 1(I) * * 2 .+0.5^{*} A K 2^{*} T 4(I){ }^{*} T 4(I) *(1 .+\right.\right.$
11./T1 (I)**2.)) -ALOG(T4 (I)*T1 (I)) +0.5*ALOG(1.-B1*T4(I)+
$\left.2 \mathrm{~B} 2 * \mathrm{~T} 4(\mathrm{I}) * \mathrm{~T} 4(\mathrm{I}))-\mathrm{AK} 3^{*} \operatorname{ATAN}(\mathrm{AK} 3)-\mathrm{AK} 3^{*} \operatorname{ATAN}\left(\mathrm{AK} 4^{*} \mathrm{~T} 4(\mathrm{I})-\mathrm{AK} 3\right)+\mathrm{ALOG}(\mathrm{CZ})\right)+$
$3 B^{*} A L O G(P O C)+A S+T C S 2$
DX5P=DX5
DK5 $=\times 5$ (I) $-\times 5 \mathrm{C}$
IF (ABS (DX5)-AC) 390,390,355
IF (DX5P*DK5) 360,360,365
$\mathrm{DUT}=\mathrm{DT} / 2$.
IF (DX5) 370,370,380
$T 1(I)=T 1(I)-D I T$
GO 10305
(1) (I) $=\mathrm{T} 1(\mathrm{I})+\mathrm{DJT}$
GO 10305
CONTINUE
GO io 160
DO $440 \mathrm{~K}=2,4$
$T P 1=2 \cdot-B 2 * T 4(K)+B 2 * T 4(K) * T 4(K)$
$T P 2=T 4(K) * T 4(K) * T 4(K)$

K1II（K）$=\Lambda K 1 * T 4(K) * T<(K) / T 1(K) * * 2-A K 2 * T P 2-A K 2 * T P 2 / T 1(K) * * 2$ $\mathrm{I}+\mathrm{T} 4(\mathrm{~K}) / \mathrm{O} / * \mathrm{TP} 1)$
X1T4（K）$=-2 . * A K O+\Lambda K 1 / T 1(K)) * T 4(K)+3 . * A K 2 *(-T 1(K)+1 \cdot / T 1(K)) *$
$1 \mathrm{~T} 4(\mathrm{~K}) * \mathrm{~T} 4(\mathrm{~K})+\left(\mathrm{TP} \mathrm{I}^{*} \mathrm{~T} 1(\mathrm{~K})-\mathrm{T} 4(\mathrm{~K}) * \mathrm{~T} 1(\mathrm{~K}) *(-\mathrm{B} 1+2\right.$ 。＊B2＊T4（K）））／
2（OZ＊TP1＊TP1）
$\mathrm{CPI}=16.2$－ $\left.6530 . /\left(\mathrm{TC}^{*} \mathrm{~T} 1 \mathrm{OK}\right)\right)+1410000 . /\left(\left(\mathrm{TC}^{*} \mathrm{~T} 1(\mathrm{~K})\right)^{* *} 2\right)$
X2T1 $(K)=C Z^{*} R^{*} T C^{*} 3 . * A K I * T(K) /(T 1(K) * T 1(K))-C Z^{*} R^{*} T C * A K 2 * T 4(K) *$ $1 \mathrm{~T} 4(\mathrm{~K})-2 . \mathrm{K}^{*} \mathrm{C}^{*} \mathrm{R}^{*} \mathrm{TC} \mathrm{C}^{*} \mathrm{AK} 2^{*} \mathrm{~T} 4()^{*} \mathrm{~T} 4(\mathrm{~K}) /\left(\mathrm{T} 1(\mathrm{~K})^{*} \mathrm{~T} 1(\mathrm{~K})\right)+$
2K＊TC＊$(81 * T 4(K)-B 2 * T 4(4) * / 4(K)) / T P 1+C P 1 * T C$
X2T4（K）$=\mathrm{CZ}^{*} \mathrm{R}^{*} \mathrm{TC} \mathrm{C}^{*} \mathrm{~T} 1(\mathrm{~K})^{*} 12$ ．＊ $\left.\mathrm{NKO} / \mathrm{Tl}(\mathrm{K})+3 . * A K 1 /\left(\mathrm{Tl}(\mathrm{K})^{*} \mathrm{Tl}(\mathrm{K})\right)\right)$－ 12．＊CZ＊ $\mathrm{R}^{*} \mathrm{TC} \mathrm{C}^{*} \mathrm{~T} 1(\mathrm{~K})^{*} \mathrm{AK} 2^{*} \mathrm{~T} 4(\mathrm{~K}) *\left(1 .-2 \cdot /\left(\mathrm{T} 1(\mathrm{~K}){ }^{*} \mathrm{~T} 1(\mathrm{~K})\right)\right)+$
$2 \mathrm{~K}^{*} \mathrm{TC} \mathrm{T}^{*} \mathrm{~T}$（K）＊（B1－2．＊B2＊T4（K））／TP1＊TP1）
TP3＝1．$\quad-\mathrm{B} 1 * T 5(\mathrm{~K})+\mathrm{B} 2 * \mathrm{~T} 5(\mathrm{~K}) * \mathrm{~T} 5(\mathrm{~K})$
CR2＝16．2－6530．／（TC＊T2（K））＋1410000．／（（TC＊T2（K））＊＊2
X322（K）＝CZ＊R＊TC＊3．＊AK1＊T5（K）／（T2（K）＊T2（K））－CZ＊R＊TC＊AK2＊T5（K）＊T5（K）

282＊T5（K）＊T5（K））／TP3＋CP2＊TC
$\mathrm{X} 375(\mathrm{~K})=-\mathrm{C} Z^{*} \mathrm{R}^{*} \mathrm{~T} \mathrm{C}^{*} \mathrm{~T} 2(\mathrm{~K})^{*}(2 . * A K O / \mathrm{T} 2(\mathrm{~K})+3 . * \mathrm{AK} 1 /(\mathrm{T} 2(\mathrm{~K}) * \mathrm{~T} 2(\mathrm{~K})))-$ 12．＊CZ＊ $\mathrm{R}^{*} \mathrm{TC} \cdot \mathrm{T} 2(\mathrm{~K})^{*} \mathrm{AK} 2^{*} \mathrm{~T} 5(\mathrm{~K})^{*}(1 .-2 \cdot /(\mathrm{T} 2(\mathrm{~K}) * \mathrm{~T} 2(\mathrm{~K})))+$
$2 R^{*} T C^{*} T 2(K) *(B 1-2 \cdot * B 2 * T 5(K)) /(T P 3 * T P 3)$
TP4＝1．－B1＊T6（K）＋B2＊T6（K）＊T6（K）
$\mathrm{CP} 3=16.2-\quad 6530 . /(\mathrm{TC}$＊ $\mathrm{T} 3(\mathrm{~K}))+1410000 . /\left(\left(\mathrm{TC}^{*} \mathrm{~T} 3(\mathrm{~K})\right)^{* *} 2\right)$ X4T3（K）$=C Z^{*} R^{*} T C^{*} 3 . * A K 1 * T 6(K) /(T 3(K) * T 3(K))-C Z^{*} R^{*} T C * A K 2 * T 6(K) *$ 1T6（K）－2．${ }^{*} \mathrm{CZ}^{*} \mathrm{R}^{*} \mathrm{~T} \mathrm{C}^{*} \mathrm{AK} 2^{*} \mathrm{~T} 6(\mathrm{~K})^{*} \mathrm{~T} 6(\mathrm{~K}) /(\mathrm{T} 3(\mathrm{~K}) * \mathrm{~T} 3(\mathrm{~K}))+\mathrm{R}^{*} \mathrm{TC} \mathrm{T}^{*}(\mathrm{~B} 1 * \mathrm{~T} 6(\mathrm{~K})-$ $\left.22^{*} \mathrm{~T} 6(\mathrm{~K}) * \mathrm{~T} 6(\mathrm{~K})\right) / \mathrm{TP} 4+\mathrm{CP} 3^{*} \mathrm{TC}$
X4T6（K）$=-C^{*} R^{*} T C^{*} T 3(K) *(2 . * A K O / T 3(K)+3 . * A K 1 /(T 3(K) * T 3(K)))-$ 12．＊ $\mathrm{C} Z^{*} \mathrm{R}^{*} \mathrm{TC} \mathrm{T}^{*} \mathrm{~T} 3(\mathrm{~K}){ }^{*} A K 2^{*} \mathrm{~T} 6(\mathrm{~K}) *\left(1 .-2 . /\left(\mathrm{T} 3(\mathrm{~K}){ }^{*} \mathrm{~T} 3(\mathrm{~K})\right)\right)+\mathrm{R}^{*} \mathrm{TC} \mathrm{T}^{*} \mathrm{~T} 3(\mathrm{~K})^{*}$ 2（B1－2．＊B2＊Tó（K））／（TP4＊TP4）
$T P 5=T 1(K) * T 1(K) * T 1(K)$
X5T1（K）$=R^{*}\left(C^{*}(2 . * A K 1 * T 4(K) / T P 5-A K 2 * T 4(K) * T 4(K) / T P 5)-1 . / T 1(K)\right)+$ 1CP1／T1（K）
TP6＝T3（K）＊T3（K）＊T3（K）
$\mathrm{X} 6 \mathrm{~T} 3(\mathrm{~K})=\mathrm{R}^{*}(\mathrm{C} 2 *(2 . * A K 1 * \mathrm{~T} 6(\mathrm{~K}) / \mathrm{TP} 6=\mathrm{AK} 2 * \mathrm{~T} 6(\mathrm{~K}) * \mathrm{~T} 6(\mathrm{~K}) / \mathrm{TP} 6)-1 . / \mathrm{T} 3(\mathrm{~K}))+$ 1CP3／T3（K）
420
 $\left.1 T 4(K)-B 1-2 \cdot * B 2^{*} T 4(K)\right) /(2 \cdot *(1 .-B 1 * T 4(K)+B 2 * T 4(K) * T 4(K)))-A K 3^{*} A K 4$.
$2(1 .+(A K 4 * T 4(K)-A K 3) *(A K 4 * T 4(K)-A K 3)))$
※6T6（K）$=\mathrm{R}^{*}(\mathrm{C} 2 *(-\mathrm{AK} 1 / \mathrm{T} 3(\mathrm{~K}) * * 2 .+A K 2 * T 6(K) *(1 .+1 . / T 3(K) * * 2))-.1 . /$
$1 \mathrm{~T} 6(\mathrm{~K})-(\mathrm{B} 1-2 . * \mathrm{~B} 2 * \mathrm{~T} 6(\mathrm{~K})) /(2 . *(2 .-\mathrm{B} 1 * \mathrm{~T} 6(\mathrm{~K})+\mathrm{B} 2 * \mathrm{~T} 6(\mathrm{~K}) * \mathrm{~T} 6(\mathrm{~K})))-$
2AK 3＊AK $4 /(1 .+(A K 4 * T 6(K)-A K 3) *(A K 4 * T 6(K)-A K 3)))$
XRITE（3，1002）X1T1（K），X1T4（K），X2T1（K），X2T4（K）
$\mathrm{X} 7 \mathrm{~T} 2(\mathrm{~K})=\mathrm{X} 3 \mathrm{~T} 2(\mathrm{~K})^{*} \mathrm{CE}+\mathrm{PH}^{*} \mathrm{CHP}+\mathrm{CW} /\left(\mathrm{CPW} \mathrm{CH}^{*}(\mathrm{TWO}-\mathrm{TWI})\right)+\mathrm{PH}^{*} \mathrm{CH}{ }^{*}($
1ALOG（T2（K）－TWO）－ALOG（T3（K）－TWI））／（U＊TC＊（（T2（K）－TWO）－（T3（K）－TWI））））
$2+P I H^{*} \mathrm{CH}^{*}(\mathrm{X} 3(\mathrm{~K})-\mathrm{X} 4(\mathrm{~K}))^{*}((\mathrm{~T} 2(\mathrm{~K})-\mathrm{TWO})-(\mathrm{T} 3(\mathrm{~K})-$ TWI $)-(\mathrm{ALOG}(\mathrm{T} 2(K)-$ TWO $)-$
3ALOG（T3（K）－TW1））＊$(T 2(K)-T W O)) / O * T C *((T 2(K)-T W O)-(T 3(K)-T W I)) *$
4（（I2（K）－TWO）－（T3（K）－1WI））＊（T2（K）－TWO ））
WRITE（3，1002）X3T2（K），X3T5（K）
X7\％3（K）＝X4T3（K）＊（PH＊CH＊（ALOG（T2（K）－TWO）－ALOG（T3（K）－TXI））／
$1\left(C^{*} T C^{*}((12(K ;-T W O)-(T 3(K)-T W I)))+C W /\left(C P W * T C^{*}(T W O-T W I)\right)\right)-$
$2 \mathrm{Pi}^{*} \mathrm{CH} *(X 3(\mathrm{~K})-\mathrm{K} 4(\mathrm{~K}))^{*}(((\mathrm{~K} 2(\mathrm{~K})-\mathrm{TWO})-(\mathrm{T} 3(\mathrm{~K})-$ TWI $))+(\mathrm{T} 3(\mathrm{~K})-$ TWI $) *$


火火RITE $(3,1002$ X4T³（K），X4T6（K），X5T1（K），X6T3（K）

87T5 (K) $=2.3 \mathrm{~T} 5(\mathrm{~K}) *\left(\mathrm{CE}+\mathrm{PH} H^{*} \mathrm{CHP}+\mathrm{CW} /\left(\mathrm{CPW} \mathrm{CH}^{*}(\mathrm{TWO}-T W I)\right)+\mathrm{PH} \mathrm{CH}^{*} \mathrm{CHP} *\right.$
$1(A L O G(I 2(K)-T W O)-A L O G(T 3(K)-T W I)) /\left(O^{*} T C^{*}((T 2(K)-T W O)-(T 3(K)-T W I))\right)$
2)
WRITE ( $3,1002 \times 5 T 4(K), X 6 T G(K), X 7 I 2(K), X 7 T 3(K)$
X7I $6(K)=-X 4 \mathrm{I} 6(\mathrm{~K}) *\left(\mathrm{PH}^{*} \mathrm{CH} * *(\operatorname{ALOG}(12(\mathrm{~K})-\right.$ TWO $)-\operatorname{ALOG}(\mathrm{T} 3(\mathrm{~K})-\mathrm{TWI})) /$
$1(0 * T C *((T 2(K)-T W O)-T 3(K)-T W I)))+C W /(C P W * T C *(T W O-T W I)))$
X7X4 (K) $=-\left(\mathrm{CE}+\mathrm{PH} H^{*} \mathrm{CHP}\right)$
PIT1 (K) =X1T1 (K)
P1T2 $(K)=-(A K 1 * T 5(K) * * 2) /(T 2(K) * * 2)+A K 2 *(T 3(K) * * 3)+A K 2 *(T 5(K) * * 3)$
1/(T2 (K)**2)-T5 (K)/(CZ*TP3)
P1T4 (K) =X1T4 (K)
PlT5 (K) $=2 \cdot *(\Lambda K O+A K 1 / T 2(K)) * T 5(K)-3 . * A K 2 *(-T 2(K)+1 . / T 2(K))$

2/(CZ*TP3*TP3)
P2T4 (K) $=X 1 T 4(K)$
$\operatorname{P2T1}(K)=X 1 T 1(K)$
$\operatorname{P2TO}(K)=2 . *(\Lambda K O+A K 1 / T 3(K))^{*} T 6(K)-3 . * A K 2 *(-T 3(K)+1 . / T 3(K))$
$1 / T 3(K) * * 2-T G(K) /\left(C Z^{*}\left(1 .-B 1 * T 6(K)+B 2^{*} T 6(K)\right)^{*} 2\right.$
$\operatorname{P3T1}(K)=X 5 T 1(K)$
P3T4 (K) $=\times 5 \mathrm{~T} 4(\mathrm{~K})$
$\operatorname{P3X6}(K)=-1$.
$P 厶_{k} T 1(K)=-1 \cdot 2^{*} \times 2 T 1(K)$
P\&T2 (K) $=\times 3 T 2(K)$
P4T4 (K) $=-1 \cdot$ 2* $^{*}(\mathrm{X2T} 4(K))$
P4T5 (K) $=\times 3 \mathrm{~T} 5(\mathrm{~K})$
$\mathrm{P} 4 \mathrm{X} 4(\mathrm{~K})=0.2$
CONTINUE
$22\left(4_{2}\right)=0.0$
$23(4)=0.0$
$Z 4(4)=0.0$
$25(4)=0.0$
$26(4)=0.0$
$27(4)=1.0$
ALA12 (4) $=-\operatorname{XVTV}^{2}(4) / \mathrm{P} 2 \mathrm{~T} 6(4) / \mathrm{P} 2 \mathrm{~T} 6(4)$
$\operatorname{ALS14}(4)=(X 7 T 5(4) * \operatorname{P1T2}(4)-X 7 T 2(4) * P 1 T 5(4)) /(P 4 T 2(4) * P 1 T 5(4)-$
1P4T5 (4)*P1T2 (4))
$\operatorname{ALM1}(4)=-(\operatorname{X7T2}(4)+\operatorname{ALM4}(4) * \operatorname{P4T1}(4)) / \mathrm{P} 1 \mathrm{~T} 2(4)$
$\operatorname{ALM3}(4)=\left(\operatorname{X1T1}(4)^{*}(\operatorname{ALM1}(4) * \operatorname{P1T4}(4)+\operatorname{ALM} 3(4) * \operatorname{P2T4}(4)+\right.$
$\left.\left.1 \operatorname{AJSi4}(4)^{*} \operatorname{PAT} 4(4)\right)-\operatorname{X1T4} 4\right)^{*}\left(\operatorname{ALM1}(4)^{*} \operatorname{P1T1}(4)+\operatorname{ALM} 2(4) * P 2 T 1(4) \pm\right.$
$2 \operatorname{ALD} 4(4) * \operatorname{P4T1}(4))) /(\operatorname{P3T1}(4) * \operatorname{XIT} 4(4)-\operatorname{P3T4}(4) * X 1 T 1(4))$
$21(4)=-(\operatorname{ALM1}(4) * \operatorname{P1T1}(4)+\operatorname{ALN} 2(4) * \operatorname{P2T1}(4)+\operatorname{ALN13}(4) * \operatorname{P3T1}(4)+$
1 ALM4 (4)*P4T1 (4))/X1T1 (4)
DO $490 \mathrm{~K}=2,3$
$I=5-K$
$21(1)=0.0$
$22(I)=0.0$
$Z 3(I)=0.0$
$Z 4(I)=-(C E+P H * C H P) \quad+A L M 4(I+1) * 0.2$
$Z 5(I)=0.0$
$26(I)=-\operatorname{ALN} 3(I+1)$
$27(I)=1$ 。

```
    ALi:3(I)=-(Z.4(I)**4T6(1)+26(I)*X6T6(I)+ X7T6(I))/P2T6(I)
    ALN4(I)=( X7T5(1)*P1I2(I)- X7T2(I)*P1T5(I))/
    1(P4T:?(I)*P115(I)-P4T5(I)*P1T2(I))
    ALM1L(I)=-(NLN4(I)*P4T5(I)+ X7T5(I))/P1T5(I)
    ALMi3(I)=-(ALNM1 (I)*P1T4(I)+ALM2(I)*P2T4(I)+ALM4(I)*P4T4(I))/P3T4(I)
    Bl=11T1 (I)
    HTl(I)=ALM12(I)*P1T1(I)+ALM2(I)*P2T1(I)+ALM3(I)*P3T1(I) +
    1^LMA(I)*リ4Tl(I)
    WRITE(3,1OO2) T1(I),MT1 (1)
    DK3=T1 (1)-T1P(I)
    T1P(1)=T1(I)
    IF(ABS (DD)-0.002) 450,450,443
```

```
    IF(HTl(I)*H1 ) 445,445,450
    XKI(I)= DKT(I)/2.
    IF(HTL(I)) 455,455,460
    Tl(I)=T1(I)+DKT(I)
    O TO 465
    T1 (I) =T1(I)-DKT (I)
    H3 = HT3(I)
    HT3(I)=Z4(I)*X4T3(I)+Z6(I)*X6T3(I)+X7T3(I)+ALM2(I)*P2T3(I)
    WRITE(3,1002) T3(I),HT3(I)
    DO=T3(I)=T3(I)
    IF(ABS (DD)-0.002) 475,475,468
    IF(HT3(I)*H3 ) 470,470,475
    DLT(I)=DLT(I)/2.
    IF(HT3(I)) 480,480,485
    T3(I)=T3(I)+DLT(I)
    O TO 490
    T3(I)=T3(I)-DLT(I)
    CONTINUE
    WRITE(3,1002)(Z1(I),Z2(I),Z3(I),Z4(I),Z5(I),Z6(I),Z7(I),I=2,4)
    WRITE(3,1002)(ALM1(I),ALM2(I),ALM3(I),ALM4(I),I=2,4)
    WRITE(3,1002)HTl (2),HT3(2)
    WRITE(3,1002),HT1 (3),HT3(3)
    GO TO 4
    CONTINUE
    GO TO 2
    CONTINUE
    OOTO 1
    STOP
    END
```

1. Fan, L. T., C. Y. Cheng, C. L. Hwang, L. E. Erickson, and K. D. Kiang, "Analysis and Optimization of a Multieffect, Multistage Flash Evaporation System," Special Report No. 74, Kansas Engincering Experiment Station, Manhattan, Kansas (1967)
2. Fan, L. T., C. Y. Cheng, L. E. Erickson, and C. L. Hwang, "The Optimal Design of Desalination Systems," presented at the $2 n d$ European Symposium on Fresh Water from the Sea, Athens, Greece, May 1967.
3. Fan, L. T., C. Y. Cheng, L. Y. S. Ho, C. L. Hwang, and L. E. Erickson, "Analysis and Optimization of a Reverse Osmosis Water Purification System," Special Report No. 73, Kansas Engineering Experiment Station, Manhattan, Kansas.
4. Chen, Y. C., C. Y. Cheng, L. E. Erickson, C. L. Hwang, and L. T. Fan, "Process Analysis and Design of a Reverse Osmosis Water Purification System," Division of Water, Air and Waste Chemistry, American Chemical Society, General Papers, Vol. 6, No. 1, 29 (1966).
5. Smith, J. M. and H. C. Van Ness, "Introduction to Chemical Engincering Thermodynamics," p. 266, Mc Graw-Hill Co. (1959).
6. Happel, J., "Chemical Process Economics," John Wiley (1958).
7. Fan, L. T., and C. S. Wang, "The Discrete Maximum Principle", John Wiley Co., 1964, p. 71-72.

7a. Fan, L. T., and C. S. Wang, "Optimization of One-Dimensional Multistage Lincar Processes", App. Sci. Res. Section B, Vol. 11, No. 5, p. 321-334.
8. Aris, R., R. Bcllman, and R. Kalaba, "Some Optimization Problems in Chemical Engincering', Chem. Engg. Progr. Symp., Series No. 31,56 , 95 (1960).
9. York, R. Jr., Ind. Eng. Chem., 34, 535 (1942).
10. Laverty, F. W., Oil Gas Jour., 33, 32 (Nov. 2, 1939).
11. Edmister, W. C., Ind. Eng. Chem., 30, 352 (1938).
12. Hirshfolder, J. O., R. J. Buchler, H. A. McGee, Jr., J.R. Sutton, Ind. Eng. Chem., 50, 375 (1953).
13. Hirshfelder, J.O., R. J. Buchler, H. A. McGee, Jr., and J. R. Sutton, Ind. Eng. Chem., 50, 386 (1958).
14. Dodge, B. F., "Chemical Engineering Thermodynamics," 1st ed., Fig. 4, McGraw-ilill (1944).
15. Beattie, J. A. and O. C. Bridgeman, J. Am. Chem. Soc., 50, 3133 (1928.
16. Benedict, M., G. W. Webb and L. C. Rubin, J. Chem. Phys., 8, 334 (1940).
17. Martin, J. J., and Y. C. Hou, A. I. Ch. E. Journal, 1, 142 (1955).
18. Hougen, O. A., K. M. Watson and R. A. Ragatz," Chemical Process Principles", Vol. 2, 569, John Wiley Co., (1959).
19. Riedcl, L., Chem. - Ing. Tech., 26, 83 (1954)

## REPERENCES--Continued

20. Lyderscn, A. L., R. A. Greenkorn and O. A. Hougen, "Generalized Thermodynamic Properíies of Pure Fluids," University of Wisconsin, Enginecring Experiment Station, Rept. 4 (1955).
21. Van Wylcn, G. J. and R. E. Sonntan, "Fundamentals of Classical Thermodynamics", p. 601, John Wiley (1965).
22. Guggenheim, E. A., J. Chem. Phys. 13, 253 (1945).
23. Ricdel, L.., Chem. Ing. Tech., 26, 259 (1954).
24. Standard Procedure of Cost Estimation, Office of Saline Water, Washington, D. C. (1958).
25. Fan, L. T. Private communication (1965).

## CHAPTER 7. RECOMMENDATION FOR FUTURE WORK

The system analysis and the computational algorithm developed in this study are fairly general and are adaptive to changes in the cquation of state, and changes in the cost models. Therefore, the prescnt approach can be applicd to any gas and can be extended to any gas mixture and to any operating range by proper selection of the equation of state. In the cost analysis of this work, linear cost relations have been used for the compressors and the intercoolers. These assumptions have been introduced not because of the limitation of the methods, but because of the lack of cost information required to establish better cost models. The following studies are recommended for future work. 1. Establishment of realistic cost model. The manufacturers should be contacted to establish the cost models for the compressors and the intercoolers. The cost model for compressors should show the variations in the compressor cost with respect to the changes in the operating pressure and the capacity. The intercooler cost should also vary with the operating pressure and vary non-linearly with the heat transfer area.
2. Extension of the operating range. In this study, numerical calculations have been carried out for $\mathrm{CO}_{2}$ gas compression within range $I$ (low density gas). The computations can be extended to gas compressions spanning among two or more ranges.
3. Use of other equations of state. The approach used in this stucly is quite general. Therefore, any equation of state may be used to establish the performance equations.
4. Improvement of root finding methods. It has been shown that quite often we have to find roots for implicit functions in using the present method. Other root finding methods or search techniques may be more efficient than the interval halving method which has been used here.

## ACKivOLILEDGMENTS

The author wishes to express his sincere gratitude to his major advisor, Dr. Liang-tseng Fan for his advice and guidance in this study. The author also wishes to express his gratitude to Dr. Chenyon Cheng for his suggestions and assistance and to Mr. H. C. Chung and Mr. S. N. Hong for their assistances in the computer programming. He also wishes to acknowledge Kansas State University Engineering Experiment Station (Project 345 under direction of Dr. Liang-tseng Fan) for financially supporting this project and the Kansas State University Computer Center for the use of the IBM 360/50 computer.

# A MULTISTAGE GAS COMPRESSION SYSTEM 

## by

SING-WANG CHENG
B.S., Cheng Kung University, 1956

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1968

The primary objoctive of this study is to improve the system analysis and optimization study of a multistage gas compression system. In this study, we take into considcration the non-ideal behavior of a gas and irreversibilities of the compressors. Furthermore, we include 1he Iirst costs of the interstage coolers and pumps, the cooling water cost and energy cost in the objective function. The optimization technique developed in this study is based on the discrete analog of the maximum principle and an iterative search method. The technique employs four Lagrange multipliers in each stage in association with four constraint relations. The method developed is quite general and can be used in combination with any equation of state.

The equation of state developed by J. O. Hirshfelder et al. is used and numerical computation is illustrated by 3-stage gas compression of carbon dioxide. The numerical computations have shown the following significant results:

1. The optimal policy of a multistage gas compression system is affected not only by the discharge pressure but also by the discharge temperature.
2. The optimal policy of a three stage carbon dioxide gas compression system as computed by the present approach is significantly different from the policy as computed by the conventional approaches.
3. The gas compression cost evaluated at the optimum condition as determined by the present approach is significantly lower than the gas compression cost evaluated at the optimum condition as determined by the conventional approaches. The difference in these
costs increases as the discharge pressure increases. The cost saving is aloout $2.5 \%$ for $\mathrm{OO}_{2}$ compression at discharge pressure of 1700 psi.

All the numerical computation has been made by IBM 360 computer, and one iteration takes 20 seconds of computer time. Assuming that 15 iterations are required to arrive at the optimum policy, the computer time required is 5 minutes for solving an optimization problem.

