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Abstract 

 Nanoscale modifications of polymer surfaces by scratching them with sharp tips with 

curvature radii of tens of nanometers and at variable temperatures are expected to provide wealth 

of information characterizing wear response of these polymers. Such studies are important in the 

light of understanding the nanoscale behavior of matter for future applications in advanced 

polymer coatings. 

This thesis describes how Atomic Force Microscopy (AFM) and hot-tip AFM (HT-AFM) 

methods were used to characterize thermal and mechanical properties of a 30 nm thick film of 

poly(styrene-block-ethylene oxide), PS-b-PEO, and modify its lamellar surface patterns. 

Additionally, it is revealed how contact AFM and HT-AFM methods can efficiently characterize 

the wear response of two popular polymer surfaces, poly(methyl methacrylate), PMMA, and 

polystyrene, PS. 

The AFM and HT-AFM studies on PS-b-PEO copolymer were aimed at producing spatial 

alignment of respective PS and PEO parts. Instead, however, surface ripples were obtained. 

These measurements are explained using mode I crack propagation model and stick-and-slip 

behavior of an AFM tip. In addition, HT-AFM studies allowed extraction of several thermo-

physical properties of a PS-b-PEO film at local volumes containing about 30 attograms of a 

polymer. These thermo-physical quantities are: PEO melting enthalpy of, 111 ± 88 J g
-1

, PS-b-

PEO local specific heat of 3.6 ± 2.7 J g
-1

K
-1

, and molecular free energy of Helmholtz of 10
-20

 J 

nm
-2

 for the PEO within PS-b-PEO.  

Utilizing a spiral scan pattern at constant angular speed and at various temperatures at the 

AFM tip-polymer interfaces, the wear response of PS and PMMA polymers was characterized. 

Cross-sections along the obtained spiral wear patterns provided plots of polymer corrugation as a 

function of scanning speed. From these studies it was found that the corrugation of the modified 

polymer surface decays exponentially with linear velocity of the scanning tip.   
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Introduction 

Polymers are present in nearly everything one encounters daily. Some toothpaste contain 

polymers such as polyethylene, the automobiles on the road today couldn’t exist without 

polymers and the food eaten by a large portion of society is packaged, cooked and served on 

objects made from polymers. The amount of polymers encountered daily explodes when 

considering a technology dependent world. As technology starts to allow substantial 

miniaturization, nanoscale polymer properties and resistance to wear become of increasing 

importance.  In particular thermal, mechanical and velocity dependant wear of polymers are the 

focus of this thesis.  

An exciting group of polymers that may become essential to technology are copolymers. 

Capable of forming nanopatterns in a range of geometries, copolymers are extremely important 

to electronics and photonics as masks for industrial scale fabrication
1-3

 and might also be used as 

templates for biological tissue scaffolding.
4
 To unlock this potential, the geometries formed must 

be ordered in a manner specific to the application. Geometry of particular interest is the lamellar, 

or fingerprint pattern. This pattern is formed from copolymers having equal or nearly equal 

volume fractions of amorphous and crystalline parts
1, 5

. Through various methods, 
1, 6-13

 

fingerprints can be ordered over a few micrometers
14-16

. This is an important step in 

advancement of that field, however, the methods used to achieve this alignment are very tedious. 

Acceleration of advancement is limited without simple methods for macroscopically ordering 

fingerprints and fast characterization techniques of copolymers.  

With advancement of producing order geometries from copolymers, developments in 

microelectromechanical systems (MEMS) and nanoelectromechanical (NEMS) systems may 

follow. As MEMS and NEMS technologies become prevalent, the wear of individual 

components becomes crucial to long term operation. To reduce wear and increase the life time of 

these systems, individual components could use ultra thin polymer coatings. Unfortunately, these 

coatings are also subject to wear, thus resulting in damage or failure of the system. To allow 

MEMS and NEMS prevalence, accurate prediction of system component maintenance will be 

paramount.  

Macroscopic alignment of fingerprints, characterization techniques of copolymers, and 

investigating wear of polymer thin films requires an instrument capable of seeing, measuring and 

manipulation at nanometer scales with high resolution and accuracy. Atomic Force Microscopy 



xi 

 

(AFM) is such a powerful instrument.  One AFM method, Hot-tip (HT) AFM, has already been 

shown to produce ordered structures known as surface nano-ripples.
17-19

 HT-AFM and other 

methods have also probed characteristic of materials at nanometer scales.
20-23

 A less exploited 

AFM capability is to modify morphology locally and track variations of the surface before, after, 

and during the modification process
18-19

. This ability is ideal for investigations of wear at 

nanometer scales.  

This thesis uses AFM to explore thermal, mechanical and velocity dependant wear of thin 

polymer films. Chapter 1-Experimental Methods, introduces the reader to AFM methods,  AFM 

hardware, AFM Software, and ends with polymer sample preparation methods Chapter 2-Local 

Thermomechanical Analysis of a Microphase-Separated Thin Lamellar PS-b-PEO Film, 

introduces copolymers, explains AFM experiments conducted attempting to induce alignment of 

fingerprint patterns, produces a model for nano-ripple development on the sample, and discusses 

how thermo-mechanical properties are derived from experiments.  Chapter 3-Velocity 

Dependence of Nano-Abrasive Wear Obtained Using a Spiral Scan Pattern, utilized the 

geometric properties of an Archimedean Spiral AFM scan pattern to characterize the velocity 

dependence of the wear rate on polymer surfaces. This thesis ends with general conclusions of 

the experiments in Chapter 4. Chapter 4 also includes a section on future work in the areas 

covered within Chapters 2 and 3. The appendices included provide specifics on software coding, 

certain calculations used, calibrations of HT-AFM hardware and polymer sample preparation.   
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Chapter 1- Experimental Methods 

1.1.  Atomic Force Microscopy (AFM) methods 

The first AFM was invented by G. Binning, C.F. Quate, and C. Gerber in 1986.
24

 The 

need arose from the fact that the AFM’s predecessor, the scanning tunneling microscope (STM), 

was limited by working only for conducting samples. Binning et al. desired a microscope that 

could image insulating samples. They replaced the wire of a tunneling probe of the STM with a 

thin strip of gold with a tiny diamond glued to the end. The movement of the gold strip was 

monitored by tracking the tunneling current between a wire suspended above the strip.
25

 With the 

invention of the AFM extremely high-resolution images of virtually any sample could be 

obtained. Inexpensive and simple AFM systems became commercially available in 1988.
25

 

AFM is primarily used to attain the topography of a sample’s surface at nanometer and 

micrometer length scales. Nowadays, however, varieties of other AFM usages have been found. 

For example protein unfolding mesurements,
20

  roughness of high-performance materials
21-23

, 

nanoparticle properties
26-28

, and the 14 September 2012 cover of Science magazine featured an 

AFM image of a hexabenzocoronene molecule in which bond orders and lengths of the 

individual bonds are distinguishable.
29

 In this thesis, surface imaging, force-distance methods, 

and hot tip AFM methods are described and used. For a comprehensive treatise of other possible 

AFM modes,  the reader is referred to Refs,
22, 24-26, 28-40

 chapters three and four of Ref.,
25

 and 

chapter 15 of Ref.
41

  In the case of measuring the sample topography with AFM, the so-produced 

image is called a topograph. Figure 1.1 is a schematic of a typical AFM system. To produce 

topographs the AFM must ‘feel’ the surface with a sharp tip and build a contrast map of surface 

height. This map is constructed using the AFM’s most critical components: the photodiode, 

piezoelectric scanner, and the cantilever.  

The four-section photodiode measures the position of the reflected laser beam as a 

change in voltage between its quadrants. As the cantilever interacts with the sample surface, the 

position of the reflected beam changes and corresponds to a change of force at the tip sample 

interface. Due to the distance the laser beam travels from the sample to the photodiode, the 

system is very sensitive to tiny movements of the cantilever.  
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Figure 1.1. Typical AFM System. A laser beam is focused and reflects off the backside of a cantilever 

onto the photodetector. The photodiode, piezoelectric scanner, and the cantilever, work together to send 

information to the AFM hardware and software produces the topographs from the signals.  

 

To maintain a constant tip-sample force, i.e. keep the laser dot from moving on 

photodiode, as the cantilever responses to topographical changes the piezoelectric scanner must 

also react. Scanners are piezoelectric crystals used for precise positioning of the sample with 

respect to the AFM cantilever, or vice versa. Their operating principle is a piezoelectric effect, 

i.e., size change as a function of applied voltage. Scanners of different shapes and sizes may be 

purchased based on the application. The most common is the tube scanner. More than 75%
25

 of 

commercially available AFM systems use a tube scanner. The tube scanner can generate 

problems with topographs that will be discussed later.  

No topograph would be possible without the cantilever. A large range of AFM cantilevers 

is available depending on applications. Most cantilevers are made of silicon or silicon nitride. 

Stiff levers are used to apply up to several nN of force, whereas, compliant levers are used to 

apply up to tens of pN of force. Cantilevers are usually either rectangular or “V”-shaped. Figure 

1.2A shows both rectangular and “V”-shaped cantilevers on a model MLCT chip from Bruker.  

Figure 1.2B is an example of a specialized cantilever used throughout this thesis to deliver heat 

to the sample. The sharp tip on the end of one side of a cantilever serves as a probe.  Most of the 

probes look like either square base pyramids or cones, although some more complicated shapes 

can be manufactured. This is typically done via electron beam lithography or ion beam 
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lithography. Typical radii of curvature at the extremity of the tips are ~10 nm and typical lengths 

of a tip are ~20 µm. 

   

Figure 1.2. Examples of cantilevers. View 

is of the tip side. A) Standard MLCT Multi-

Cantilever chip from Bruker in comparison 

with B) a thermal cantilever. 

 

1.1.1.  Surface imaging modes    

There are various AFM imaging modes. The most common mode types are: contact mode 

non-contact mode, and tapping mode. Each mode gives different information about the sample 

being imaged and is useful for different situations and different sample types. Contact mode is 

used in this work exclusively therefore non-contact and tapping mode is discussed briefly.  

Contact mode derives its name from the fact cantilever tip remains in contact with the 

sample at all times during scanning. In many commercial AFM systems the sample resides on 

top of a piezo scanner and a laser beam is reflected off of the cantilever’s top side and goes to the 

PSPD, as in Figure 1.1. In this arrangement, the deflection signal is a measure of force and 

scanner movement in Z direction is controlled by feedback electronics. Two variations of contact 

mode are constant force mode and constant height mode. In constant force mode a feedback 

mechanism keeps the tip-sample force constant. In this mode the Z movement of the scanner is 

transformed into a topograph. Contrary is constant height mode. Here the feedback is turned 

“off”; so the Z-height of the scanner remains constant resulting in changes in the deflection 

signal from a cantilever creates the topograph.  

In non-contact (NC) mode, the cantilever tip is held between 5 to 100 nm above the 

sample surface. The cantilever is vibrated with amplitude of tens of nanometers with a constant 

frequency near the resonant frequency for the cantilever. The amplitude and frequency of the 

cantilever’s vibration change in response to force gradients which vary with the tip-to-sample 

distance as the tip scans over the sample surface. The change in vibration amplitude or 

frequency, respectively, is followed upon and transformed into a topograph by AFM computer 
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software. Since the tip does not touch the surface NC mode is ideal for soft polymers and 

biological samples. Intermittent-contact (IC) or tapping mode is similar to NC mode, but in IC 

mode, the vibrating cantilever briefly contacts the sample within its each oscillation period.  

1.1.2.  Force-distance (FD) curves 

Besides imaging, the AFM is often used to record FD curves. This is done by monitoring 

the deflection, i.e., force, of the cantilever during approach, contact and withdrawal, i.e., change 

of distance, from the sample surface. The FD Curves are recorded without scanning in the X or 

Y direction. The operator of the AFM controls multiple aspects of the FD curve such as 

maximum deflection, e.g., maximum contact force, speed of the sample to the tip and many 

others. The resulting FD curve is a measure of cantilever deflection verses vertical distance 

traveled by the sample. The forces exerted on the tip by the sample are often used in calibration 

of the spring constant of the cantilever.  

1.1.3.  Hot-tip (HT) AFM 

Hot-tip AFM (HT-AFM) is an ensemble of AFM methods to produce local topographical 

and/or chemical change to the surface using heat transferred from the tip of a thermal cantilever. 

These cantilevers were originally developed for data storage applications.
42

 From there they have 

been used to locally chemically modify certain polymers
18, 43-44

, create conducting nanoribbons 

on graphene
45

 and have found to be very useful in metrology
46

, thermophysical property 

measurements,
47-49

 and manufacturing at the nanoscale.
19

  Figure 1.2B gives an example one of 

the thermal cantilevers used in chapters three and four. The heating of the tip is achieved by the 

different levels of silicon doping. With the Si above the tip doped less than the legs the tip 

becomes more resistive then the legs and will heat up with applied voltage. Figure 1.3 shows the 

set-up used to send voltage across the tip. Heating power is applied by an external generator and 

a resulting voltage is measured across an external resistor in series with the HT-AFM cantilever. 

Such an arrangement protects the lever from sudden voltage spikes, and allows a reproducible 

way of electrical power delivery to the tip. 

The uniqueness of the HT-AFM is irrelevant if one cannot accurately know the 

temperature of the tip, and consequently on temperature at the tip-sample interface. To calibrate 

the temperature on the polymer surface two calibration steps are needed. First, one needs to find 

out the temperature on the tip as a function of the power delivered. Second, the calibration factor 
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relating the temperature on the tip to the temperature on the tip-sample interface needs to be 

obtained. Temperature of the cantilever tip cannot easily be measured directly, but it has been 

found to be linearly related to the power delivered to the cantilever.
46

 Thus, to find the tip 

temperature means to relate the temperature of the tip to the applied generator voltage measured 

across a known resistor with a voltage meter. The resistance of the cantilever varies with 

temperature, but one needs some reference points, i.e., to say that at such and such resistance the 

temperature is such and such. Room temperature and initial cantilever’s resistance to a very 

small voltage provides a first reference point. Another one is obtained as follows. Due to the 

differing levels of doping,
50

 once the tip reaches a certain temperature the resistance of the tip 

drops sharply. This is called the thermal runaway and occurs at 550° C for the HT-AFM 

cantilevers used in this work.
46

 Once the tip temperature is known, the tip-sample interface 

temperature is found here by following the work of Hinz et al.
30

 FD curves are performed at 

various temperatures on silicon; this provides a reference for cantilever deflection. Then, FD 

curves are performed on polymer samples with well known softening temperatures and at 

various tip temperatures. Once the indentation slope of the FD curves decreases and the loading 

and unloading parts of the FD curves start to separate substantially the tip-sample interface has 

reached the softening temperature of a given polymer sample. See Appendix A for more details. 

 

Figure 1.3. HT-AFM 

Set up. The components 

used to deliver voltage to 

the thermal cantilever 

and measure the resulting 

voltage. 

1.1.4.  Spring constant calibration of cantilevers using a thermal method 

To obtain an accurate force applied to the sample the spring constant of the cantilever 

must be known. Manufacturers of cantilevers provide a nominal spring constant, but an actual 

value for each cantilever can be significantly different. In this thesis the thermal method 
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originally developed by Hutter and Bechhoefer is used. 
33, 36

 Using a custom-made AFM system 

in our lab
20

 the elastic spring constant,  k,  for cantilevers was calibrated as follows :
 

22 * SlopePower

Tk

x

Tk
k BB 


  

where: kB  is the Boltzmann’s constant, T is temperature in absolute scale, and <x
2
>= 

(Power)*(Slope)
2 

is the mean square deflection of the cantilever, where “Power” is the area 

under the fundamental resonant frequency, shown in Figure 1.4 and “slope” is the ratio of 

extension (in nm) to force (in volts) when the cantilever is in contact with the surface. The 

corrections and other important aspects of thermal calibration are described extensively in Ref. 

20, 33, 36
 

 

Figure 1.4. Example of power for 

calculations of cantilever spring 

constant. Shown is the 

fundamental resonant frequency for 

a thermal cantilever. 

1.1.5.  AFM limitations and imaging artifacts  

The AFM is a very versatile system but it has limitations like any other experimental set-

up. The AFM system “feels” the sample surface and from this process, imaging artifacts can 

arise. Artifacts can be due to the following: tip profile, X-Y-Z couplings of various sorts, sensing 

of additional kinds of surface forces, various kinds of noise, AFM feedback and poor cantilever 

selection.  

The common cause of artifacts topographs is the shape of the tip. Usually the tip is a cone 

with spherical or paraboloidal ending characterized by a radius of curvature between 10nm and 

100nm. This is important when dealing with nm size surface features. The measured lateral size 

of such features will seem larger by geometrical arguments because of convolution with the tip 

profile. Furthermore, wear of the tip from repeated use will also change the tip profile. The tip 
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can pick up debris from the samples surface.  Additionally, manufacturing mistakes lead to tip 

profile artifacts such as; double, tilted, and non-centered tips. To characterize accurately the 

given shape of the tip, the tips can be scanned over a calibration grating or imaged with a 

scanning electron microscope.  

Additional kinds of surface forces can also create scanning artifacts. A local change in 

elasticity and adhesion of the sample at the tip-sample contact produces change in attraction or 

repulsion between tip and sample. This causes the laser position to suddenly change on the 

photodiode and will produce a deviation in the topograph. 

Unwanted X-Y-Z couplings in cantilever and scanner displacements are as follows. Only 

one end of the cantilever is clamped to the cantilever chip, which is visualized by the black box 

in Figure 1.5A. This causes tip movements to be parabolic, not linear, so any displacement in one 

axis is coupled to the other two axes. The scanners couplings originate due to the AFM scanner 

being a tube. Figure 1.5B illustrates how a displacement in one direction induces additional 

displacement in other directions. Some accountability on the X-Y-Z couplings in the scanner 

displacements comes from internal calibrations of the scanner, which has its own X-Y-Z position 

sensors.  In the AFM set up used in this work, the sample resides on top of the scanner and the 

tip is brought into the contact with the sample by motors in the AFM head, where the tip resides. 

Thus, the X-Y-Z couplings in the scanner and in the cantilever add up. These effects are often 

small enough not to interfere with typical scanning conditions used in this work.  

 

Figure 1.5. X-Y-Z coupling. This 

exaggerated carton of scanner movement 

shows how movements of the cantilever 

and/or scanner can result in 

displacements in other directions. 

Three types of noise are detrimental to AFM measurements: mechanical, thermal and 

electronic. Mechanical noise reduction is accomplished through the AFM system placed on a 

float table with minimal cables connecting the AFM to the computers. Also, warnings during 

scanning are placed on the lab door to alert others to move slowly while entering. Thermal noise 
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is reduced simply by allowing the equipment to warm up for 30 minutes. The scanner becomes 

heated as several hundred volts are applied; the 30 minute warm up allows the scanner and 

surrounding components to become approximately the same temperature. The electronics can 

add additional noise that is electromagnetic in nature. This noise can interfere with the feedback 

electronics and produce topographs with unreliable data. Reduction of this is achieved by proper 

wire insulation and the use of covers over the AFM system.  

AFM feedback and poor cantilever selection is more connected to the AFM operator then 

to the microscope itself. Nevertheless, these two pitfalls will generate substantial artificial 

topographical information if improperly executed. If AFM feedback is set too low, surface 

tracking quality suffers and the tip may miss surface features. On the contrary, when too high, a 

tiny topography change will cause the system to over react and produce topography spikes. This 

overreaction of the system may also cause the scanner to move fast enough to excite cantilever’s 

vibrations at its resonances, and thus additional artificial topography. Cantilever selection is 

therefore crucial also. A very stiff cantilever may destroy a soft sample during imagining, if too 

compliant the movement of the cantilever will be large even over small topographical changes.  

If improper AFM feedback settings are combined with poor cantilever selection topographs 

become extremely defective. Overall, the sample stiffness and the cantilever’s stiffness should be 

similar and the feedback settings should be tested to minimize these artifacts. 

1.2.  Preparation of custom thickness polymer films by a spin coating method 

Spin coating a dilute solution is a common way to produce uniform thickness polymer 

films on a substrate of choice. Figure 1.6 presents the equipment and supplies used for spin 

coating. When producing a sample an excess amount of solution is placed on a substrate and then 

rotated at high speeds. This causes the solution to spread evenly over the substrate, expelling 

excess and evaporating the solvent out of the solution. The thickness of the film depends on 

spinning time, liquid density, spin speed, and initial solution viscosity
51

. Many models
51-54

 have 

been purposed to predict film thickness and work well to get the film within a range of thickness. 

Because of variations in the predictions of the models, the scratch test is performed to measure 

sample thickness. The scratch test is nothing more than using a razor blade remove the polymer 

film to the substrate (glass or silicon so intents into the substrate can be ignored) and measuring 

the thickness change via a surface profiler or an AFM. Appendix D contains a detailed 

preparation procedure for creating a thin polymer sample used in this work.  
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Figure 1.6. Spin coating equipment. 

Tools used during the spin coating 

process to produce samples. A) Spin 

coater, Model WS-400E-6NPP-LITE, 

Laurell Technologies Corp., B) 

Pipettes, C) Ultrasonic Cleaner, Model 

2510 Branson Ultrasonics Corporation, 

D) Sample preparation materials, see 

Appendix D for detail on the use of 

these materials.  

 

 

1.3.  Hardware methods 

The AFM topographs and thermal tip experiments were conducted using a di-CP-II 

AFM, di-CP-II Controller, Proscan software, both from Bruker USA, and IGOR Pro software 

from WaveMetrics, Inc. Figure 1.7 illustrates the hardware setup used in the case of the 

controlled polymer imaging. The schematic HT-AFM setup has been produced in Figure 1.3. 

 

Figure 1.7. AFM hardware.  

Schematic of the AFM control and 

data recording hardware. Red lines 

indicate control signals to the AFM 

while black indicate data signal output 

and recording. In the figure the toggle 

switch is in the “external” position 

giving the IGOR Pro computer control 

of the X-Y movement of the scanner.   

 

Signals are sent to and recorded from the AFM through the di-CP-II controller. Using a 

signal access module, the data signals from the AFM can also be recorded by a data acquisition 

card in the IGOR Pro computer.   

To override the di-CP-II controller, a toggle switch was installed by the Kansas State 

University Electronics Lab on the back of the di-CP-II controller. The switch is labeled “XY-
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Internal” and ‘XY-External”. Internal means the di-CP-II controller and Proscan software control 

all AFM functions while external gives X-Y control of the scanner to the IGOR Pro computer.  

There is also a custom switch for Z axis control but is not used in this thesis. The XY-External 

setting allows the IGOR Pro computer to send voltage signals for X-Y position control to the 

scanner directly, while the di-CP-II controller still maintains Z-axis position control (Z switch 

remains on internal). 

1.4.  Software methods 

The AFM alone is a very elaborate paperweight. The AFM needs software to create 

topographs, conduct experiments, record and measure data or move the scanner. Therefore when 

using an AFM system one must rely on multiple computer software programs. The most 

prevalent programs used in this work are Proscan, WSxM, and IGOR. 

Proscan version 1.9 is the factory software to control the di-CP-II AFM. It is Microsoft 

Windows based software that has simple to use command boxes to control all aspects of AFM 

operations. These controls enhance the quality of topographs, allow the operator to generate FD 

curves, change the scanning size/speed, move the tip on the surface, plus many others. Most 

important it is the user interface with the di-CP-II controller and allows commands to be given to 

the microscope. 

Windows Scanning x Microscope (WSxM) version 5 is commercial but free software 

from Nanotec Electronica available at http://www.nanotec.es/products/wsxm/download.php. 

Like Proscan, it is designed to control an AFM system produced by Nanotec Electronica. The 

advantage to WSxM is the included image processing software, which seems easier to use and 

more powerful that the Proscan image processing software. The WSxM processing software 

allows the user to measure topographs along curved profile lines. It also has the ability to save 

topograph files with profile lines embedded on the image for later use. These features proved 

invaluable while processing topographs for this thesis. Other notable AFM image processing 

software includes Gwyddion, and many other programs exist and are listed in Appendix C of  

Ref.
25

, but WSxM was simple to use and contained the best features to quickly transfer 

topograph data to IGOR Pro software. 

The software workhorse is IGOR Pro. IGOR is a commercial Windows based software 

environment from Wavemetrics, USA. It is used both for data processing and acquisition. Igor 

processes large data sets quickly, can acquire the AFM data through a data acquisition card 



11 

 

(here: PCI-6289 from National Instruments), and is programmable. The programmability of 

IGOR is most important to generate custom and calibrated AFM scan patterns. This is because, 

the scan pattern generated by the di-CP-II controller is a raster pattern extending out and back 

along the fast scan axis, normally X, and moving up incrementally along the slow scan axis, 

normally Y. This was verified using a 64 line scan over a 60 μm
2
 area, allowing visual 

confirmation of the scan pattern through a microscope. This pattern is ideal for general imaging, 

but seriously limiting achieving any other possible scanning geometry. For example, to explore 

sample reactions with the tip on nanometer scales one scan line cannot interfere with the 

previous. Appendix A contains specific Igor software coding used in the following chapters to 

generate custom scanning patterns.  Lastly, graphics produced by IGOR are easily formatted to 

publication quality with minimal effort.  
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Chapter 2- Local Thermomechanical Analysis of a Microphase-

Separated Thin Lamellar PS-b-PEO Film 

The work in this chapter has been done in collaboration between Reginald H. Rice and 

Dr. Robert Szoszkiewicz with Dr. Parvaneh Mokarian-Tabari and Dr. William P. King. Dr. 

Mokarian-Tabari is with the Materials Research Group, School of Chemistry and the Tyndall 

National Institute, University College Cork, and Centre for Research on Adaptive Nanostructures 

and Nanodevices, Trinity College Dublin, Ireland. Dr. Mokarian-Tabari provided the copolymer 

sample and insight to experimental findings. Dr. King is with the Department of Mechanical 

Science and Engineering, University of Illinois Urbana–Champaign. Dr. King provided the 

thermal cantilevers used in this chapter, and helped to write a manuscript describing these 

findings. Finally, Dr. Amit Chakrabarti is acknowledged for discussion about arrangements of 

copolymer molecules on the silicon surfaces. 

2.1.  Introduction 

Diblock copolymers having equal or nearly equal volume fractions of amorphous and 

crystalline parts often display the “fingerprint-like” lamellar morphology,
1, 5

 with a mean spacing 

between neighboring fingerprint lines of several tens of nanometers. Directional ordering of 

lamellar fingerprints over mesoscopic lengths has potential applications in electronics and 

photonics, for example, as masks for industrial scale fabrication of microprocessors and UV 

diffraction gratings.
1-3

 Ordered nanopatterns might also be used as templates for biological tissue 

scaffolding.
4
 Many strategies to align the lamellar fingerprint-like structures use tediously 

prepared substrates obtained via a combination of topographical
6
 and/or chemical substrate 

patterning,
7
 graphoepitaxy, epitaxial crystallization, and substrate’s modification with polymer 

brushes.
1, 8-10, 14

 Other approaches manipulate annealing conditions by using electric fields,
11

 

shear forces,
12

 solvent fields,
55

 thermal gradients,
8, 13

 and combinations of conditions as in a 

stepwise thermo/solvent annealing.
56

 Using some of these methods, few micrometers long 

fingerprint structures have been obtained for several asymmetric block copolymers.
14-16

 

However, a simple method for producing macroscopically ordered fingerprint areas and fast 

characterization techniques are needed to advance in this field. 

Application of local heat and force to copolymers via HT-AFM techniques is well suited 

to organize polymer nanopatterns. Rapid heat flows and sharp temperature gradients in the 
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vicinity of a heated AFM tip can achieve a topographical modification of the polymer surface.
18, 

34, 46-47, 57-58
 For example, force and heat applied while scanning amorphous polymers with 

thermal AFM cantilevers have produced ordered structures known as surface nano-ripples.
17-19

  

In this chapter AFM and HT-AFM
17-18, 34, 58-59

 methods are used to modify fingerprint 

alignment and thermophysically characterize an ultra-thin film of nearly symmetric PS-b-PEO. A 

fingerprint pattern of lamellar PS-b-PEO is obtained on “as received” silicon substrate, that is, 

without any underlying polymer brush or surface modifications. Next, investigations of several 

strategies to align the fingerprint pattern via AFM scanning at various conditions are conducted. 

These investigations yield either abrasive surface patterns or surface nano-ripples and not 

macroscopically ordered fingerprints. The evolution of lamellar patterns is explained by the 

polymer film molecular structure and mode I crack propagation in the polymer
60

 combined with 

stick-and-slip effects of the AFM tip.
61

 By comparing AFM scans obtained at various tip-sample 

temperatures and at several scanning conditions the PEO melting temperature, Tm
PEO

, and the PS 

glass transition temperature Tg
PS 

is calculated. The number of PS-b-PEO molecules affected 

mechanically and thermally at each contact point between an AFM tip and a polymer surface is 

found using elastic contact mechanics and heat propagation models. Then, at the tip-polymer 

contact points in the vicinity of Tm
PEO

 and Tg
PS

 revealed the PS-b-PEO specific heat, the PEO 

melting enthalpy, and the free energy of Helmholtz for PEO folding (and melting).  

2.2.  Materials and Methods  

The polymer was a PS-b-PEO diblock copolymer from Polymer Source, with number 

average molecular mass Mn,PS = 12.3 kg mol
–1

 and Mn,PEO = 14 kg mol
–1

, polymer polydispersity 

1.09, an average polymer density 1.1 g cm
-3

, and a PEO volume fraction of 52%. The PS-b-PEO 

film was produced by spin coating and stepwise thermo/solvent annealing directly onto a Si 

substrate.
62

 Spin coating was done 3000 rpm for 30 s and from 1 wt % polymer solution in 

HPLC-grade toluene from Sigma-Aldrich, USA. In the stepwise thermo/annealing process the 

films of PS-b-PEO were thermally annealed in a vacuum oven at 90 °C for 150 minutes, and 

then cooled to 77 °C, which is still above the PEO melting point. The samples were then 

removed from the oven and placed in a 100 ml vessel with HPLC-grade toluene and DI water 

reservoirs and returned to the oven at 66 °C and annealed for additional two hours at 40 °C, 

which is also above the PEO crystallization temperature.
56

 The resulting film thickness of 30 ± 2 

nm was determined by a scratch test with AFM.  
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The AFM topographs of the PS-b-PEO were recorded in contact mode with the di-CP-II 

AFM system, photographed in Figure 1.7, Proscan software, and SiNx MLCT-D cantilevers, see 

Figure 1.2A. The cantilevers had a nominal elastic spring constant between 0.03 to 0.05 N m
-1

. 

For scanning at various tip-sample temperatures the HT-AFM set up in discussed in Chapter 

1.1.3.  was mounted in the di-CP-II. The tip temperature calibration was based on methods 

covered in Appendix C and the elastic spring constants of the cantilevers found with techniques 

in Chapter 1.1.4.  

2.3.  Results 

2.3.1.  Micro- and nano-scale topography of the PS-b-PEO films 

Figure 2.1A presents a typical 50 m by 50 m AFM topograph of the PS-b-PEO film. 

The fingerprint morphology in Figure 2.1B has a pitch of 39 ± 3 nm and displays local order on 

the length scales up to several hundreds of nanometers. Every 5 – 10 μm the polymer surface 

shows two other kinds of uniformly distributed structures: bubbles in Figure 2.1C and craters in 

Figure 2.1D and 2.1E. The bubbles are several microns wide and ornamented by fingerprints. 

Their base is 11 ± 3 nm below the surrounding surface and has RMS roughness of 0.3 nm. The 

craters are several micrometers long. Their base is 29 ± 2 nm below the surrounding surface and 

has a typical Si surface roughness, so it must be the Si substrate. Distinct dendrites with height of 

12 ± 2 nm above the Si substrate grow from their perimeters towards the center.  

 

Figure 2.1. General topography of the PS-b-PEO film. A) 50 m x 50 m AFM topograph of the PS-

b-PEO film stepwise thermo/solvent annealed on silicon substrate. B) Fingerprint pattern showing local 

order. C) Example of a bubble. D) An example of a crater. E) Dendritic structures within a crater with a 

topography cross section on the inset and a characteristic tip splitting event marked by a black circle. 
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2.3.2.  Application of local force to align the fingerprint pattern 

Figure 2.2 shows a 0.9 m by 0.9 m area within a 2.9 m by 2.9 m zone of a fingerprint 

pattern scanned using an MCLT-D cantilever at 1 m/s scanning speed and 3 nN AFM tip-

sample contact force (setpoint). Upon scanning fingerprints developed into ripples.
17, 19, 35, 63-65

 

The pattern spacing, , stabilized at 105 ± 10 nm in about 10 rescans. After 15 scans, the value 

of  increased to 120 ± 10 nm and after 21 scans it jumped to 135 ± 10 nm. Similar experiments 

at higher tip-sample contact force did not produce any fingerprint alignment, but showed faster 

change to the ripple pattern. Thus, force alone did not produced alignment of the fingerprints, 

and prolonged scanning produced ripples.   

 

Figure 2.2. Pattern 

spacing plotted against 

the N scans. Dashed lines 

mark local plateaus. Inset: 

the AFM topographs 

showing evolution of 

fingerprints after A) N=1 

B) N=8, C) N=9, and D) 

N=30. 

2.3.3.  Application of local heat to induce fingerprint alignment 

Next, the fingerprint morphology was heated by cantilevers with integrated heaters 

(thermal levers) at the tip-polymer interface and at the lowest setpoints (1 to 3 nN) to allow 

consistent contact between the tip and the surface. First, a series of contact mode scans at a 

constant tip temperature modified the polymer surface. Figure 2.3 presents two AFM surface 

topography rescans obtained after one and six scans with a thermal tip at 32 ± 3 °C yielding 28 ± 

7 °C at the tip-polymer interface. Topographs in Figure 2.3 were obtained with a MLCT-D 

cantilever at a setpoint of less than 3 nN to minimize any additional surface change. The pattern 

in Figure 2.3B has a period of 100 nm. Thus, these are rather ripples rather than fingerprints.  
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Figure 2.3. Multiple force 

only scans. AFM topographs 

of a polymer surface after N 

scans with a thermal tip at 28 

± 7
 
°C. A) N=1, B) N=6. 

Heated areas are in the 

middle.  

Also, the effects of a single scan with a heated tip were investigated in thermally 

modified smaller-scale areas of 2 m by 2 m and  larger-scale areas of 50 m by 50 m. Figure 

2.4 and Figure 2.5 show the respective contact mode rescans with a MLCT-D lever at <3 nN 

setpoints. In both cases initial scans with a thermal tip contained 256 scans lines with 256 data 

points along each line, which is why some lateral line spacing of 200 nm shows up in Figure 

2.5C-F. Despite local thermal modifications comprising only several PS-b-PEO molecules at a 

time, no thermally induced alignment of the fingerprints was evident. Imaging at setpoints >10 

nN destroyed the film quickly, see Figure 2.6, and other scanning rates did not produce 

noticeable alignment of the fingerprint pattern either.  

 

Figure 2.4. Single scans 

with thermal tip. 3 m x 3 

m AFM topographs of a 

polymer surface after a single 

scan with a thermal tip in 2 

m x 2 m areas modified at 

tip-polymer interface 

temperatures of: A) 36 ± 8 

°C, B) 41 ± 8 °C, C) 66 ± 10 

°C, and D) 79 ± 11 °C, the 

inset shows a cross-section 

along the white line. 
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Figure 2.5. Single thermal 

scans with increased line 

spacing. 2 m x 2 m AFM 

topographs of a polymer 

surface after a single scan with 

a thermal tip over 50 m x 50 

m areas modified at tip-

polymer interface temperatures 

of: A) 26 ± 7 °C, B) 30 ± 7 °C 

C) 73 ± 10 °C, D) 81 ± 11 °C, 

E) 86 ± 11 °C, and F) 155 ± 20 

°C. 

 

 

 

Figure 2.6. High force and 

heat scans. Various sizes AFM 

topographs of high force scans 

(few nN) with a tip heated to 63 

± 10 °C. A) a box with an 

original 2 μm x 2 μm scan B) a 

box with a 10 μm x 10 μm scan 

repeated 3 times C) a box with 

a 7 μm x 7 μm scan. 

2.4.  Discussion 

2.4.1.  Molecular structure of the PS-b-PEO 

To explain the results, this section develops a microscopic model of the polymer film. 

Once PS and PEO segregate into the lamellar phases the equilibrium fingerprint spacing, dEQ, is 

determined by i) packing constraints and energy for the PEO blocks folding in the crystalline 

domains and ii) entropic conformational and stretching free energy for the PS blocks in the 

amorphous domains.
66

 Various equilibrium mean field models for these energy contributions 

were proposed and tested,
66-70

 but the mean field theory of Whitmore and Noolandi
66

 predicted 

dEQ specifically for PS-b-PEO copolymers. Whitmore and Noolandi suggested that a given 
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lamella comprises either one or two stacks of crystalline PEO layers arranged side-by-side 

shown in Figure 2.7.  

 

 

Figure 2.7. Whitmore and Noolandi PS-b-PEO stacks. A) A double stack and B) a single stack 

arrangement of PS-b-PEO lamellae. According the theory of Whitmore and Noolandi
66

 a single stack 

lamella corresponds closer to the results presented in this work. 

By applying their model with the single PEO stack configuration for ZPS  = 130 and ZPEO 

= 350, dEQ = 57.8 ± 9.6 nm and the ratio of dPEO to dPS is 2.7. Appendix B contains the 

calculations in Mathmatica coding. The calculated value of dEQ is about 40% higher than 

experimental measurements found with AFM, but mean field theories do not follow 

experimental data strictly.
71

 Possible reasons for inconsistencies are that Whitmore and Noolandi 

do not include the effects of the surface energy on the PS-b-PEO stack, variations of the free 

energy of Helmholtz gain per each fold Efold in the crystalline PEO phase,
72

 and dependence of 

dEQ on annealing temperature.
14

 Thus, instead of a predicted value of dEQ, the 2.7 ratio of dPEO to 

dPS is further used to obtain dPEO_PREDICTED = 28 ± 5 nm and dPS_PREDICTED = 11 ± 2 nm. 

The PEO and PS structures are predicted as follows. PEO crystallizes in the lamellar 

phase in a 72 helix with a pitch ≈1.95 nm.
73

 Figure 2.8 approximates that each PEO molecule is 

parallel to the substrate surface and comprises several folds. The theoretical length of an n-folded 

PEO chain is dPEO_THEORY = (1.95/7)ZPEO/(1+n).  Equating dPEO_THEORY with dPEO_PREDICTED we get 

two folds per each PEO chain (n = 2), and an apparent height of the PEO molecule as 3 x 1.95 

nm = 6 nm.
74

 In a typical lamellar structure, PEO is concentrated in the valleys, and PS in the 

hills. This was not checked on the sample, e.g., by binding selective markers to the PEO
75

 and 

PS,
76

 respectively, but in Figure 2.1A a measured 1 nm difference between the valleys and the 

hills in lamellas is present. To explain this finding, approximate the PS part of each PS-b-PEO 

molecule as an ellipse with a longer radius of dPS_PREDICTED/2 ≈ 5.5 nm, and a shorter radius x. To 

find the value of x, equate a volume of such an ellipse with a volume a sphere with the PS 
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gyration radius, RG,PS. The value of RG,PS = bPS (ZPS/6)
(1/2)

 = 3.2 ± 0.5 nm, where bPEO = 0.7 ± 0.1 

nm is the PS Kuhn’s length.
77

 RG,PS in a toluene is 10 – 30% more,
78

 so estimate that RG,PS = 3.8 

± 0.5 nm. With the preceding information,  x ≈ 3.5 nm. This also makes the PS component to be 

about one nm thicker than the PEO cylinder.  

 
Figure 2.8. Proposed molecular structure of the PS-b-PEO lamella. The PEO chains (28 nm long and 

6 nm high) are folded and arranged into one stack with two folds. The PS chains are amorphous, partially 

stretched along the lamella, and approximated as an ellipse (11 nm long and 7 nm high). The PS-b-PEO 

film comprises five lamellar layers.  

 

The molecular model in Figure 2.8 implies that lamellae are laterally and vertically 

connected. For any two lamellar layers on top of each other there is 50% chance that a given PS-

b-PEO molecule sits entirely atop just one PS-b-PEO molecule. For five layers in the film, the 

probability is only (1/2)
4 

= 1/16 or ≈ 6% for creating long ordered structures, which are easy to 

disrupt at the interface between neighboring PS-b-PEO molecules. Laterally mixed and vertically 

“not easy to break through” lamellae are expected to be predominant. A given lamellar 

arrangement of all five consecutive layers must propagate laterally in the sample, because any 

single flips of the PS-b-PEO molecules would produce a defective lamella with two PEO stacks, 

that is, a longer and less thermodynamically stable lamella.  

The stepwise thermo/annealing method depends on dewetting, local solvent 

concentration, temperature, pressure, and material permeation to the solvent,
56, 76, 79

 so that local 

non-equilibrium morphologies are expected.
 56, 76, 79-80

 Figure 2.1E shows dendritic branches of 

similar size and with many tip-splitting events. Similar growth pattern was observed in the case 

of amorphous polymeric nanowires.
81

 These observations were explained as diffusion limited 

aggregation/solidification of amorphous material by Mullins-Sekerka and Gibbs-Thompson 

effects. Mullins-Sekerka effects relate to dendritic growth of higher surface energy phase and 

Gibbs-Thompson effects related to dissolving sharp protrusions.
81-84

 Strong affinity of the PEO 

blocks to the Si substrate and higher PEO surface energy than that of the PS block (γPS ≈ 33 mN 

m
-1

, and γPEO ≈ 43 mN m
-1

)
76

 are yet another reasons for the dendrites to be in amorphous or in a 

very weakly separated state. Only then, the dendrite’s height, here: 12 nm, is substantially less 
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than twice the sum of the gyration radii for the PS and PEO blocks, here: 20 nm (RG,PS = 3.8 ± 

0.5 nm and RG,PEO = 6.1 ± 0.7 nm). In contrary, the “bubble” base in Figure 2.1C is smooth and 

non-dendritic, so likely there was no lack of solute and/or polymer there during an annealing 

process. One could hypothesize that frayed edges of the bubbles result from fast solvent 

evaporation producing locally supercooled structures of amorphous PS-b-PEO, which did not 

crystallize or dewetted due to solvent induced entanglements between the PEO blocks.  

2.4.2.  Modeling a change from fingerprints to ripples 

This section explains observations from Figure 2.2. These are: i) a smear-like, or 

abrasive, initial topography of the PS-b-PEO sample, ii) an exponential-like growth of ripples 

with a scan number, iii) saturation of this growth, and iv) a step-like ripple growth thereafter. 

The initial abrasive topography of the PS-b-PEO sample originates in the PS and PEO 

properties. The PS films with Mn,PS of less than 40 kg mol
–1

 are “liquid-like” and not-liking to 

form ripples.
64-65

 Aioke et al.
64

 and Meyers et al.
65

 obtained the initial abrasive pattern on PS 

films, which only after at least 15 consecutive scans started to show some ripples. The PEO films 

do not like to form ripples either. Leung and Goh
35

 were unable to produce ripples on the PEO 

films on mica despite using a range of contact forces from several nN to 100 nN, which was 

sufficient to obtain ripples on other polymers.
17, 19, 35, 63-65

  

Growth and evolution of ripples were investigated on several amorphous polymers, e.g., 

on poly(methyl methacrylate), polycarbonate, or polysulfonate.
17, 19, 35, 63-65

 Literature models 

relate the origins and evolution of ripples to polymer properties alone,
65, 85

 local cracks formation 

and subsequent polymer peeling,
86

 or wearing the surface during each scan balanced by the 

surface relaxation.
19, 87

 In the case of amorphous polymers ripples align almost perpendicular to 

the fast scanning direction, which is also observed in Figure 2.2. However, in the case of this 

sample’s PS-b-PEO lamellae, see Figure 2.8, one would expect less surface relaxation, and faster 

formation of ripples than in the case of amorphous polymers. Then, as in Figure 2.A, the value of 

 is dominated by an extensive elasto-plastic deformation of the polymer surface conforming to 

the shape of a scanning AFM tip to yield: 

242 DRD  Equation 2.1      

Using Equation 2.1and an AFM tip curvature radius of R = 38 ± 5 nm,
88

  = 39 ± 5 nm 

for D = 2.5 ± 0.5 nm from Figure 2.2C and  = 68 ± 6 nm for D = 8 ± 1 nm from Figure 2.2D. 
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The measured  ≈100 nm in Figure 2.2C and ≈140 nm in Figure 2.2D. Equation 2.1 yields about 

half of the expected values of , so a more detailed model is needed. 

To fill this need, a model is developed based on the crack propagation and stick-and-slip 

of an AFM cantilever. Another model with a lateral crack propagation underneath the sample 

and resulting polymer peeling was proposed in the literature to explains ripples on amorphous 

polymers.
86

 However, we did not observe peeling on the copolymer sample. Figure 2.B shows 

that due to wedge-like geometry of an AFM tip indenting the polymer a change from fingerprints 

to ripples might be understood in terms of a vertical mode I type crack, also known as “tension” 

or “opening mode”,
60

 growing upon cyclic loading. During each pass of the AFM tip over a 

given area, a crack grows till its strain energy release rate, G, surpasses the polymer surface 

energy w.
60

 Using the Dugdale model of a crack growth,
60

 the equilibrium value of G is 

calculated as G = t 0, where t is the surface opening of a crack, and 0 is the crack opening 

stress. A spherical cap of “2R(D+H)” approximates the tip-sample contact area with H being 

the height of a polymer material pile removed during indentation of the depth D. The crack 

grows when an AFM tip “sticks” to it. Once mechanical energy stored in the cantilever due to 

lateral bending of the tip (0.5 klat Δ
2
) exceeds the tip-polymer surface energy over the contact 

area, the tip “slips” laterally by the distance, Δ, to a new contact point. Thus: 

 HDR
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wG lat

ot



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


2

5.0 2

  lat

ot

k

HDR  )(4 
  Equation 2.2      

Here, klat = 32 ± 11 N m
-1

 is the lateral stiffness of the MLCT-D cantilever, which was 

calculated using the Neumeister and Ducker model.
38, 89

 Using the same model, the normal 

spring constant is 46 ± 3 mN m
-1

, which is typical for this cantilever.
20, 40

 The usual 

approximation of 0 = 1.2 ,
60

 was used. Where  = 50 MPa is an estimated actual stress at the 

plastic yield point for polymers.
60

 Overall, the lateral wavelength of the ripples, , becomes: 

 t  Equation 2.3      

Using the values of R = 38 ± 5 nm, D = 3 ± 1 nm, H = 7 ± 2 nm, and t = 55 ± 10 nm 

taken along a slow scanning direction from Figure 2.2C and Equation 2.3 wavelength of the 

ripples becomes,  = 77 ± 16 nm.
90

 Such a value of  is much closer to the experimentally 

observed 100 nm than the results of Equation 2.1. Furthermore, in the Dugdale model the crack’s 

depth and lateral mouth opening increase upon cycled loading or consecutive scanning according 

to a power law. This would explain fast and non-linear growth of  with the scan number. 
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Saturation of  resembles the crack growth due to material hardening,
60

 but it can also be due to 

a small thickness of the film, which inherently limits the crack’s growth. Finally, the jumps of  

in the saturated region might be due to partial unfolding of the PEO chains, see Figure 2.8. The 

crack propagation and stick-and-slip model appears to closely represent the experimental data in 

Figure 2.2.  

2.4.3.  Thermal analysis 

There are several characteristic temperatures of the PS-b-PEO polymer: the melting 

temperature, Tm
PEO

, for the PEO block, the local glass transition, Tg
PS

, for the PS component, and 

the order-disorder transition temperature, TODT, at which symmetric copolymers with lamellar 

phases transition directly into disordered melts.
77

 These temperatures decrease with an increase 

of the film thickness,
91-93

 increase for longer polymer chains,
94

 and are lower for copolymers 

than their components alone or in melts.
95

 They depend on a film deposition method,
77

 

crystallization temperature and speed,
96

 film-sample interfacial energy.
48

 In AFM-based 

experiments, Tg
PS

 decrease with increasing the tip-sample contact force,
91-93

 and the tip-sample 

contact time.
97

 To estimate these temperatures we compared various studies using calorimetry, X 

ray scattering, and AFM methods for the PS and PEO components, their melts, and PS-b-PEO 

copolymers with different Mn,PS and Mn,PEO. The estimated values are: Tm
PEO 

between 50 to 60 

°C, Tg
PS

 between 60 to 70 °C, and TODT above 170 °C.  

 

Figure 2.9. Model to explain surface 

nano-ripples. A) Basic tip-surface 

indentation model. B) Crack propagation 

– slip-and-stick model. An AFM tip 

“sticks” in the crack, opens it by t,
60

 and 

later “slips” a distance Δ to a new 

location. Scanning over the same area 

deepens the crack. Bottom drawings are 

surface profiles of idealized cracks. 
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In the following section the Tm
PEO 

and
 
Tg

PS
 are obtained from experimental 

measurements. Repetitive scanning over the same area at 28 ± 7
 
°C at tip-surface shown in 

Figure 2.3B and scanning at 41 ± 8 °C tip-surface temperature shown in Figure 2.4B, produce 

abrasive patterns seen in the literature for non-melted PS polymers.
64-65

 However, the polymer 

film in Figure 2.4C obtained at 66 ± 10 °C is removed from the surface in chunks. Since contact 

force in Figure 2.4C is no larger than in Figure 2.4A-B, this implies that both melting and glass 

transition must have occurred between 41 °C and 66 °C. The Tg
PS

 estimate is only marginally 

larger than the Tm
PEO

 estimate, so within the experimental error these two temperatures are 

expected to fall within 54 ± 12 °C. The time-temperature superposition principle
97

 applied to 

Figure 2.4C and Figure 2.5C confirms the PS glass transition temperature at 54 ± 12 °C. Figure 

2.5C shows first visible plastic indentation lines while scanning (50 m/s) / (1.7 m/s) ≈ 30 

times faster than in Figure 2.4C. Then, aT = /REF = 30 is the time-temperature superposition 

shift factor, where  is the time scale of a glass transition temperature at a temperature T from 

Figure 2.4C, and REF is the respective time scale associated with a glass transition temperature at 

a reference temperature, TREF = 73 ± 10 °C from Figure 2.5C. The value of T is obtained from 

the Williams-Landel-Ferry equation:
97
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where C1 and C2 are material constants at TREF. Using C1 = 13.6 and C2 = 51 °C obtained 

for bulk PS at 100°C,
98

 we get T = 67 ± 10 °C. This estimate might not strictly apply here, but 

the value of T = 67 ± 10 °C compares well with the temperature of 66 ± 10 °C in Figure 2.4C.  

The following is a comment about the TODT. The data in Figure 2.4D was obtained above 

Tg
PS

 and Tm
PEO

. At these conditions, as marked by a 30 nm deep cross-section on an inset of 

Figure 2.4D, the thermal tip removed all of the polymer film from the surface. This suggests 

melting and/or softening over a whole thickness of the polymer film, which agrees with the 

thermal analysis below. However, after melting amorphous polymer is not expected to get 

entirely removed from the surface due to some plowing through the material. Increasing the 

temperature did not produce plowing effects either. Similarly, it is difficult to distinguish pure 

plowing at a larger imaging scale in Figure 2.5. Therefore, both on small and large AFM imaging 

scales one could not conclusively observe any order-disorder transition. 

The number of molecules affected mechanically at Tg
PS

 ~ Tm
PEO

 is found next. Elastic 

contact mechanics fails for large indentations expected in the vicinity of Tm
PEO

 and Tg
PS

. At these 
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temperatures the tip-sample contact radius a estimate is directly from the convolution with a tip 

profile in Figure 2.5C to get a = 19 ± 3 nm.
99

 Contact mechanics predicts that vertical stresses in 

the sample vanish at indentation of more than 3a, and that the lines of equal pressure form a 

“semi-bone” shape as Figure 2.10A.
60

 Thus, in the vicinity of Tm
PEO

 and Tg
PS

, mechanical force 

affects the entire 30 nm thickness of the polymer film. To obtain the mechanically affected 

volume approximate it as a hemi-ellipse with a minor radius of 19 nm ± 3 nm and a major radius 

of 30 nm, which yields ≈22,700 nm
3
. A volume of 39 x 7 x 6 nm

3 
for each PS-b-PEO molecule, 

see Figure 2.8, yields 13 PS-b-PEO mechanically affected molecules.  

 

Figure 2.10. Thermal and 

mechanical affected contours. A) 

Thermally (outer semi-ellipse 

contour) and mechanically (inside 

semi-bone contour) affected zones at 

the onset of PEO melting and PS 

softening. B) Thermally affected 

zones are substituted by equivalent 

hemi-spheres for calculations of the 

heat flow using Equation 2.5. 

To find how many molecules are affected thermally at Tg
PS

 ~ Tm
PEO

; find the thermal 

isotherm, IT, kept at Tm
PEO

 ≈ Tg
PS

 = 54 ± 12 °C, i.e., encompassing a polymer volume beyond 

which no significant melting/softening happens. A good estimate of IT is so-called the “critical 

core” isotherm reaching down to the Si substrate. This is because the polymer film is very thin, 

so the Si substrate is a potent heat sink,
100

 which absorbs heat and limits any further growth of 

the melting/glass transition zone. The critical core isotherm estimate comes from finite element 

modeling in Ref.
43

, yielding that IT is a hemi-ellipse with major radius being the film thickness 

(30 ± 2 nm), and a minor radius of 22.5 ± 3 nm, see Figure 2.8A.
101

 The critical core volume is 

31,800 nm
3
. The tip-sample contact in Figure 2.5C is a 5 nm deep spherical cap with a contact 

radius of 19 ± 3 nm, and a volume 2850 nm
3
. The difference of these respective volumes is 

29,000 nm
3
, which corresponds to 17 thermally affected PS-b-PEO molecules, and 30 attograms 

of the polymer.  

Knowing the mechanically and thermally affected volumes and number of molecules 

several thermophysical parameters can be calculated as follows. Figure 2.10B shows how to 

obtain the heat flux, q, which flows from the AFM tip into an area bound by the isotherm IT, by 

calculating it between two hemispheres defined to match the respective volumes of the tip-
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surface contacting spherical cap and the critical core zone.
59

 The spherical cap is substituted by 

an equivalent hemisphere with the radius Rin = 11 ± 1 nm, and the elliptical critical core cap is 

substituted by an equivalent hemisphere with the radius Rout = 25 ± 1 nm. Yeilding:
59
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where: k = 0.15 ± 0.01 W K
-1

m
-1 

is the polymer conductivity estimated from Ref.
18

, and 

ΔT = 73 °C - 54 °C = 19 ± 12 °C. 

Knowing q, one can estimate the local specific heat Cp as Cp = Q/[(Δm) (ΔT)], where: Q = 

qt is the heat delivered in the time, t, to the thermally affected mass Δm within IT in order to raise 

its temperature by ΔT. One would evaluate t from the time an AFM tip resides at a contact radius 

a, so that t = a/υ, where υ is the scanning speed. However, one should rather use the time, ts, it 

takes to establish the temperate gradient, and consequently a steady-state heat flow.
18, 57

 

Derivations in Ref.
18

 yield ts ≈ 6 ± 1 ns for 30 nm thick polymer film, so that Cp = 3.6 ± 2.7 J g
-

1
K

-1
. Such a value of Cp matches very well typical values for polymers. Then, the PEO melting 

enthalpy, ΔHmelt, is obtained as ΔHmelt = Cp (Tm
PEO

 – Troom) = 111 ± 88 J g
-1

, where Troom is the 

room temperature estimated at 23 ± 1 °C. This value of ΔHmelt matches the PEO melting 

enthalpies of 50 to 150 J g
-1

 obtained using calorimetric methods
95

 in the case of the PEO block 

copolymers with PMA. Finally, taking into account that PEO melting affects about 17 PS-b-PEO 

molecules, the melting enthalpy per each PEO molecule is ΔHmelt/17 ≈ (2 ± 1) x 10
-16

 J. 

Calculating an apparent “surface” of each PEO molecule, and accounting on three pieces of the 

crystalline PEO within each PS-b-PEO molecule, the molecular free energy of Helmholtz 

estimate for unfolding (and melting) of a PEO component with the PS-b-PEO molecule, which is 

of the order ≈10
-20

 J nm
-2

. Such calculations must be treated cautiously, the value ≈10
-20

 J nm
-2

 is 

of the same order of magnitude as Efold used in the mean field theories of Whitmore and 

Noolandi.
66

 Furthermore, the molecular free energy of Helmholtz estimate for unfolding (and 

melting) of  PEO compares with AFM estimates on globally melted PEO films.
94

  

2.5.  Conclusions 

This chapter has explained the thermomechanical response of an ultrathin film of the PS-

b-PEO polymer to a local force and heat using elasto-plastic contact mechanics and heat flow 

models. Combining the Dugdale model of crack formation with the stick-and-slip behavior of the 

AFM tip explained how the fingerprints develop into ripples. Several thermophysical properties 
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of the copolymer film have been calculated using analytical models and results of the finite 

element modeling. These values are: Cp = 3.6 ± 2.7 J g
-1

K
-1

, ΔHmelt = 111 ± 88 J g
-1

, and 

molecular free energy of Helmholtz for the PEO within the PS-b-PEO molecule at volumes 

comprising 30 attograms of a polymer material. Also, good lateral connectivity within copolymer 

layers and easiness to form surface ripples are the limited factors, which prevented inducing 

alignment of the fingerprint pattern over microscopic length scales. Small free molecular surface 

energy of the PEO melting and close proximity of Tg
PS

 to Tm
PEO

 produces excessive disorder in 

the locally heated polymer film. This additionally hinders thermally induced alignment of the 

fingerprint pattern. Thinner copolymer films are less laterally connected, but are not expected to 

work either, since both melting and softening temperature decrease with the film thickness. 

Suggestions to possibly achieve thermally induced alignment are better separation between PEO 

melting and PS softening and increased interactions between PS-PS and/or PEO-PEO. This 

might result in using higher molecular weight block copolymers. Such polymers, however, 

would have larger lamellar periodicity, which is not a preferred strategy. Lastly, another 

approach is to use asymmetric block copolymers.  
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Chapter 3- Velocity Dependence of Nano-Abrasive Wear Obtained 

Using a Spiral Scan Pattern 

The work in this chapter has been done in collaboration between Reginald H. Rice and 

Dr. Robert Szoszkiewicz with Dr. Enrico Gnecco and Dr. Reinhold Wannemacher. Drs. Gnecco 

and Wannemacher are with Instituto Madrileño de Estudios Avanzados en Nanociencia,Campus 

Universitario de Cantoblanco, Madrid, Spain. Both collaborators provided ideas, help to explain 

the observed phenomena, and provided valuable corrections to communicate findings clearly. 

Thermal levers used in this chapter were again provided by Dr. William P. King.   

3.1.  Introduction 

One of the most interesting, but less exploited features of AFM is its capability of locally 

modifying the morphology of a surface and tracking its variations before, after, and during the 

modification process. For instance, periodic ripple patterns can be formed on polymers
31, 35

, 

metals
39

, ionic crystals
39

 and semiconductors
102

 if the probing tip of an AFM repeatedly scans 

back and forth on these surfaces with a normal pressure exceeding the yield strength of the 

material. Polymers can also be patterned with a single scan line when the temperature of the 

contact region exceeds the glass transition temperature of the sample
91

. 

In most experimental investigations, the scan path of the probing tip is the same as the 

one usually adopted for imaging the sample surface, i.e. zigzag or raster scanning on a square 

area. However, while the scanning pattern does not play an important role for imaging, the 

situation is very deferent when the surface is worn out by the tip. In a recent study, `traveling' 

ripples have indeed been observed when a circular track is continuously scanned
19

. In this case 

one can measure the `group velocity' of the ripples and relate it to the wear rate of the material. 

This chapter’s focus is on a deferent shape, i.e. an Archimedean spiral, and takes advantage of its 

geometric properties to study the abrasive response of polymers at temperatures elevated locally 

at the tip-sample interface. In this way, a single AFM image acquired after scratching the 

polymer surface can provide important information for a quantitative characterization of the 

velocity dependence in nano-wear processes with applications in NEMS, MEMS as well as 

polymer coatings.  
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3.2.  Materials and methods  

The polymers used in this chapter are PMMA and PS polymers from American Polymer 

Standards Corporation, with number average molecular weight Mw,PS = 215.7 kg mol
-1

 and Mw; 

PMMA = 120 kg mol
-1

, and polymer polydispersity 1.1. Both films were produced with methods 

discussed in Chapter 1.2. and preparation steps for PS are detailed in Appendix D. The PMMA 

film was prepared just as PS except chloroform from Sigma-Aldrich was used as the solvent and 

the PMMA was annealed 15.5 h at 55 °C followed by 1 h at 90 °C.  

The AFM topographs of polymer films were recorded in contact mode with the di-CP-II 

AFM system, photographed in Figure 1.7, Proscan software, and SiNx MLCT-D cantilevers, see 

Figure 1.2A. The MLCT-D cantilevers had a nominal elastic spring constant between 0.04 to 

0.07 N/m and nominal curvature radii below 20 nm. For scanning at various tip-sample 

temperatures the HT-AFM set up in discussed in Chapter 1.1.3 was mounted in the di-CP-II. The 

tip temperature calibration was based on methods covered in Appendix A and the elastic spring 

constants of the cantilevers found with techniques in Chapter 1.1.4. From the SEM (see Figure 

3.4) the radius of curvature of the tip apex in the transverse direction (Rx = 120±10 nm) is 

significantly smaller than the longitudinal radius (Ry = 170±10 nm).  

3.3.  Results  

Assuming that the radial distance r of the spiral grows linearly with the time t as r(t) = At, 

and that the angular velocity ω is constant, it is easy to see that the linear velocity v of the 

probing tip grows with r as v = √( A
2
 + (ωr)

2
). This dependence becomes almost linear, and the 

velocity almost tangential, when r ≫ A/ω, which is the case for all spiral windings in this 

experiment, except the very first one. 

 Figure 3.1A shows a representative AFM topograph of a spiral generated on the PS 

sample at 206 °C on the cantilever, which corresponds to 97 ± 12 °C on the tip-sample interface. 

A cross section profile is shown in Figure 3.1B. Note that in the first windings the material 

pushed aside of the groove partially overlaps, whereas this is not the case after the eighth 

revolution of the tip around the spiral center. In any case, the amplitude of the indentation profile 

dramatically decreases with the scan speed. Intuitively, this can be understood as follows. The 

longer the tip keeps indenting a given spot on the surface, the more damage is caused, so that the 

amplitude is expected to decay with v. To explore this assumption the corrugation as a function 

of the scan velocity was plotted (Figure 3.2). In a previous AFM analysis on abrasive nanowear 
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of alkali halides
32

 researchers found that the wear rate decreases exponentially with the `time of 

residence' spent by the tip at a given location on the surface. A similar assumption was proposed 

by Mulhearn and Samuels to interpret the abrasion of steel sliding against silicon carbide 

paper
103

. Since in the present case the time of residence is inversely proportional to the scan 

velocity, the data points in Figure 3.2 have been fitted with the following function:                   









 )exp(1)(

v

v
hvh o

o  Equation 3.1      

As shown by the continuous curve in Figure 3.2, an excellent agreement is found when h0 

= 209±10 nm and v0 = 6.0±0.4 μm/s. In Equation 3.1the parameter h0 corresponds to the 

indentation depth of the sample at a given load, when the tip is not driven along the surface, 

whereas the parameter v0 quantifies how fast the wear damage decays with the linear speed. 

 

 

Figure 3.1.  Archimedean spiral with azimuthal cross section. A) An Archimedean spiral on PS made 

with a hot-tip AFM with a normal force FN = 10 ± 3 nN and an angular velocity ω = 3.14 s
-1

. This 

topography rescan (frame size: 28 μm) was obtained with a regular contact mode AFM using MLCT-D 

lever from Bruker at load of 2±1 nN. Note the deep pit at the end of the spiral, where the tip motion is 

stopped. B) A cross section along the dashed lines in A. 
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Figure 3.2. Corrugation profile. 

Corrugation profile obtained from 

Figure 3.1B by subtracting the 

maximum height of the material 

pushed aside from the indentation 

depth of each groove along the 

profile. Corrugation profile is 

plotted by Equation 3.1 with h0 = 

209 ±10 nm and v0 = 6.0 ± 0.4 

μm/s. 

 

This analysis is extended to other spirals obtained in the PMMA and PS samples at 

different conditions. In particular, a range of temperatures around the glass transition has been 

explored, which occurs at 95 ± 5 °C and 105 ± 5 °C for the PS and PMMA samples respectively. 

The limit value h0 was always in the range of 100 nm, i.e. comparable to the obtained 

corrugations, whereas the ‘decay velocity’ v0 remained on the order of 10 μm/s in the series of 

measurements performed. However, the values of both quantities exhibit significant scattering. 

This is not surprising, since the roughening rate of polymers on the nanoscale has been reported 

to peak up and scatter in the region of Tg
104

. Even more scattered are the values for the ‘decay 

velocity’ v0, which was found to vary between 1.8 and 20 μm/s in the series of measurements 

performed. 

Two extreme cases, corresponding to v0 = 5±1 μm/s and 0.6±0.2 μm/s respectively, are 

showed in Figure 3.3A and B. The spiral in Figure 3.3A was obtained on PMMA at 97 ± 12 °C. 

In this case the corrugation did not decrease significantly after the first windings, as if the 

material opposed almost no resistance to dragging. This is not the case for the spiral in Figure 

3.3B, the amplitude of which quickly decayed after only two revolutions. However, this spiral 

was produced at lower temperature of 89 ± 12 °C at the tip-sample interface, which is below the 

glass transition of PMMA. One should also note that the indentation patterns along each winding 

are not varying uniformly, but undulate, which is presumably related to the elongated shape of 

the tip apex. 
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Figure 3.3. Variations in nano-plowing near Tg.  As the glass transition temperature is 

approached, the response of a polymer surface to nano-plowing can be quite variable. This 

is shown in the case of two spirals made on an initially at PMMA surface A) at 97 ± 12 °C 

and B)at 89 ±12 °C. Frame sizes: 15 μm. 

To investigate this claim further, the thermal tip used in this study was imaged with SEM 

and analysis details are presented in Figure 3.4. Figure 3.4B shows that its radius of curvature is 

much smaller along the transverse direction then along the longitudinal direction. This should 

contribute to less surface heating along horizontal scanning, and higher molds and mountains in 

the vertical scanning direction. 

Examining Figure 3.4A and C an additional structure on the tip side of the cantilever is 

present. One might get an impression the structure or “other tip” will touch the surface during 

making of the spirals either contributing to or causing the undulation of indentation patterns. 

First, no observation of any eccentrically overlapping spirals was noticed. Second, using the 

presented data, calculated below the other tip is not expected to touch the surface for typical 

indentations of few hundreds of nanometers. In fact, the “other tip” is ~ 7 m from the actual tip 

in Figure 3.4A, and it appears ~200 nm higher than the actual tip in Figure 3.4C. However, 

Figure 3.4C is tilted in such a way that the cantilever’s width of about 10 m shows there as 1 

m height. Thus, using similar triangles, the height of the other tip in Figure 3.4C needs to be 

diminished by 0.7 m. This effectively places the other tip 500 nm below the actual tip. When 

producing the spirals the cantilever is tilted in a way that increases the vertical distance between 

the actual and the other tip further. 
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Figure 3.4. SEM images of the thermal tip. 

This tip produced all spirals presented in this 

chapter. A) Bird’s view of the cantilever with 

the tip as well as another structure, which 

shows up at C), but is too low and too far from 

the actual tip to influence the scans B) The tip 

curvature radii, which are measured along two 

perpendicular directions in C)-F). SEM 

images were taken by Dr. Dan Boyle at the 

Biology Research Microscope and Image 

Processing Facility, Kansas State University.  

On the other side, since the different spring constants of the cantilever in the x and y 

directions do not influence the contact stiffness responsible for friction (and wear) on the sample 

surface
105

, the torsional and bending deformations of the cantilever seem not to have a major 

influence on the spiral patterning.  

Finally, the experiments resulted in the formation of ripples inside all spiral tracks. An 

example is given in Figure 3.5, showing the surface profile in the bottom of a spiral. The ripples 

are aligned along the radii, which means that their periodicity is proportional to the radial 

distance r as well as to the scan velocity v. The ripple wavelengths are comparable to previous 

results of ripples produced in circular scanning in the vicinity of the glass transition temperature 

on PMMA
19

 at corresponding velocities. Although the ripples are seen along the whole spiral, 

they are more pronounced in two quadrants. This is related to the asymmetry of the indentation 

patterns along windings previously discussed.  

 

Figure 3.5. Nano-ripples in the spiral 

grove. Occurrence of surface ripples along 

a spiral groove. The undulation is enhanced 

in the second and fourth quadrant of the xy 

plane compared to the first and third one. 

 



33 

 

3.4.  Conclusions 

In conclusion, this chapter has introduced a simple method to characterize the velocity 

dependence of the wear rate on polymer surfaces. The surface is first scanned by contact AFM 

adopting a spiral pattern, the damaged area is then rescanned using a ‘standard’ raster pattern and 

the surface corrugation is finally extracted using azimuthal profiles along the spiral and fitted 

with an exponential decay law. This method can be extended to other materials, provided that 

they are brittle enough to be damaged within a single scan. Quantitative information for 

modeling abrasive wear on the nanoscale can thus be provided by this kind of measurement. 
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Chapter 4- General Conclusions 

This thesis has explored the thermal and mechanical properties of a diblock copolymer, 

poly(styrene)-b-poly(ethylene oxide),  and wear properties of poly(methyl methacrylate) and 

poly(styrene) thin films. The experiments conducted allowed development of a model explaining 

PS-b-PEO’s lamellar geometry development to ripples. Additionally, measurements provided 

information to calculate thermophysical properties of the PS-b-PEO. These properties are local 

specific heat, PEO melting enthalpy and molecular free energy of Helmholtz for the PEO within 

the PS-b-PEO molecule at volumes comprising of a few tens of attograms of the material. Lastly, 

a simple method to investigate thin film wear properties to obtain quantitative information for 

modeling abrasive wear on the nanoscale is presented. 

Accomplishment of this was achieved with AFM and HT-AFM methods combined with 

computer hardware and software to conduct the experiments and record measurements. The 

information obtained led to the combination of the Dugdale model of crack formation with the 

stick-and-slip behavior of the AFM tip to model the PS-b-PEO fingerprint to ripple 

transformation. With analytical models and results of finite element modeling measurements 

allowed for the calculation the PEO melting enthalpy, 111 ± 88 J g
-1

, local specific heat, 3.6 ± 

2.7 J g
-1

K
-1

, and molecular free energy of Helmholtz, 10
-20

 J nm
-2

, for the PEO within PS-b-PEO 

at volumes comprising 30 attograms of a polymer material The Archimedean spiral scan pattern 

provided advantages to investigate the velocity dependence of wear of thin PS and PMMA films 

at locally elevated temperatures. This advantage allowed for development of an exponential 

decay law for modeling abrasive wear. 

Properties of polymer thin films importance are contingent on technological 

development. Technology continues to shrink in size, thus investigations into the properties of 

polymer thin films will continue to be critical. This thesis demonstrated that many properties, 

specifically thermal, mechanical, and velocity dependant wear properties can be examined 

through simple methods using AFM.  

4.1.  Future Work 

Verification of the models proposed in this thesis over a wider range of variables is of 

utmost importance. Currently experiments are being conducted to investigate wear of thin 

polymer films as a function of force, scan speed, scan geometry and cantilever tip radius. This 
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may also allow new insight into proper choices of cantilever for specific applications. 

Additionally, data collected during experiments in Chapter 3 are being further analyzed to 

investigate tip radius effects on velocity dependant wear of thin polymer films.  

Future work also needs to be dedicated to improving the accuracy of thermal cantilever 

tip and tip-surface interface temperature. The error in these temperatures can be significant, near 

50%, and a device to directly measure these quantities is currently out of technology’s reach. 

With modeling improvements or a device to directly measure tip and tip-surface interface 

temperature the accuracy of HT-AFM will improve significantly.  
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Appendix A. WaveMetrics, Inc. IGOR Pro software coding 

This appendix provides specific coding used in the IGOR Pro software. Section A.1 is 

used to move the AFM scanner in an Archimedes spiral and section A.2 is coding used to 

process data. A.2 is provided for anyone wanting to have a way to find peaks and troughs within 

an IGOR wave. Note that all comments that are not directly related to coding are of the following 

format: //{comment}, these will help anyone wanting to change the coding to suit their needs. 

Also, be sure to check the coding line for line as copying and pasting between IGOR and word 

will cause some characters to change. 

A.1. Spirals 

In order to generate the spiral pattern of the scanner used in Chapter 3, hardware methods 

discussed in Chapter 1.3. gave control of the scanner to the IGOR computer. The procedure 

below is the coding used to generate the Archimedes spiral pattern sent to the scanner. The code 

was written by Dr. R. Szoszkiewicz and is published here with his permission, but for non-

commercial use only. 

 

 

#pragma rtGlobals=1      // Use modern global access method. 

 

/////////////////////////////////////////////// 

// Activate via RipplesSetupPanel() 

// 

////////////////////////////////////////////// 

 

Menu “Macros” 

 “-“ 

 “Ripples Controls”, RipplesSetupPanel() 

 “ZeroXYSignals”, ZeroXYSignals() 

 “-“ 

End 

 

Override Function Initial_Values()     // Initialization 

 NewDataFolder/O root:Variables 

 NewDataFolder/O root:Config 

  

 Variable /G root:Variables:CircleRadius  = 6000 //nm 

 Variable /G root:Variables:CircleFreq  = 0.5 //Hz 

 Variable /G root:Variables:NumCycles  = 20 //s 

 Variable /G root:Variables:ExperTime 

  

 Variable /G root:Variables:TipTemperature  = 250 //deg C 

 Variable /G root:Variables:Temperature  = 27 //deg C 
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 Variable /G  root:Variables:Humidity  = 45 // % 

 Variable /G root:Variables:AFMTipVelocity 

  

 Variable /G root:Variables:XpiezoScale  = 4000 //nm/V As done by Anthony 

 Variable /G root:Variables:YpiezoScale  = 4000 //nm/V CHECK IT !!!!!!!!!! 

  

 Variable /G root:Variables:NyquistFraction  = 1  //for filtering the signal 

 Variable /G root:Variables:SamplingFrequency = 2E4 //inverse of  the dt spacing between  

sent/acquired data points 

 Variable /G root:Variables:DeltaT    // inverse of sampling frequency 

 Variable /G root:Variables:FilterFrequency    //half the sampling freq. due to Nyquist  

theorem 

  

 Variable /G root:Variables:AplusBGain   =1 //defines the sensitivity of data acquisition,  

i.e., +/-10/gain is the voltage range of data 

acquisition 

 Variable /G root:Variables:AminusBGain  =1 

 Variable /G root:Variables:LFMGain  =1 

  

 Variable/G root:Variables:WriteFileNumber  =1 

 Variable/G root:Variables:XcommandRange 

 Variable/G root:Variables:YcommandRange 

 

  

 SetFormula root:Variables:AFMTipVelocity,“2*Pi*root:Variables:CircleRadius*root:Variables:CircleFreq”

 SetFormula root:Variables:ExperTime ,  “root:Variables:NumCycles/root:Variables:CircleFreq”  

 SetFormula root:Variables:FilterFrequency,  “root:Variables:SamplingFrequency /2” 

 SetFormula root:Variables:DeltaT,  “1/root:Variables:SamplingFrequency” 

  

        // prepares the DAQ 

 fDAQmx_ResetDevice(“Dev1”) 

 SetDataFolder root:Config 

  

        // Prepare information about last self- 

calibration of DAQs 

 String/G root:Config:LastSelfCalibrationDev1 = “PCI-6289 (Dev1) last self-calibration: “ 

 SVAR LastSelfCalibrationDev1 = root:Config:LastSelfCalibrationDev1 

  

 Variable TimeNow = DateTime    //The time now, as we run the  

procedure, in Igor format (seconds since 

1/1/1904) 

 Variable Dev1SCT = fDAQmx_SelfCalDate(“Dev1”) //Time since last self-calibration of  

Device 1 

Variable MaxUncalibrateTime = (60*60*24)*7 //(sec * min* hours)* days <= how many 

days between self-calibrate 

 If(numtype(Dev1SCT) ==0) 

  If(TimeNow-Dev1SCT>MaxUncalibrateTime) 

   LastSelfCalibrationDev1 += “\\K(65280,0,0)” 

Print “You should self-calibrate Dev1 -> close Igor, go to Meas&Instrum Program, then 

return to Igor” 

  Else 

   LastSelfCalibrationDev1 += “\\K(0,52224,0)” 

   Print “No need to self-calibrate Dev1 today -> continue working with Igor” 

  EndIF 

  LastSelfCalibrationDev1 +=Secs2Date(Dev1SCT, 2 ) 

 Else 

  LastSelfCalibrationDev1 += “\\K(0,9472,39168) Unknown” 
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 EndIF  

  

 String SaveHistory=”History of saved traces” 

 DoWindow NotebookSaveHistory 

 if(V_Flag==1) 

  DoWindow/F/D NotebookSaveHistory 

 else 

  NewNotebook/K=0/f=0/N=NotebookSaveHistory/W=(600,0,800,120) as SaveHistory 

 endif 

 

End 

////////////////////////////////////////////////////////////////////////// 

Window RipplesSetupPanel() : Panel 

 PauseUpdate; Silent 1     // building window... 

 Initial_Values()  

 NewPanel /W=(525,492,1062,782) as “Nanoscale Ripples Data Acquisition Panel” 

 //ShowTools 

  

 Button RipplesStart,pos={60, 230},size={63,41},proc=StartRipples,title=”Start” 

 Button RipplesStart,fColor=(52224,0,0) 

 Button RipplesStop,pos={160, 230},size={93,41},proc=StopRipples,title=”STOP \r click abort first” 

 Button RipplesStop,fColor=(0,0,65280) 

 SetVariable VarCircleRadius,pos={30,43},size={220,16},title=”Circle radius (nm)” 

 SetVariable VarCircleRadius,limits={0,50000,5},value= root:Variables:CircleRadius,bodyWidth= 60 

 SetVariable VarCircleFreq,pos={30,69},size={220,16},title=”Circle frequency (Hz)” 

 SetVariable VarCircleFreq,limits={0.05,100,0.05},value= root:Variables:CircleFreq,bodyWidth= 60 

ValDisplay VarTipVelocity,pos={30,95},size={220,16},title=”approx. AFM tip velocity 

nm/s”,limits={0,0,0} 

 ValDisplay VarTipVelocity,format=”%1.2e” 

 ValDisplay VarTipVelocity,value= #”root:Variables:AFMTipVelocity” 

 SetVariable VarNumCycles,pos={20,121},size={120,16},title=”# cycles?” 

 SetVariable VarNumCycles,limits={1,1000,1},value= root:Variables:NumCycles,bodyWidth= 60 

 ValDisplay VarExpTime,pos={145,121},size={130,10},title=”Exper. Time (s)”,limits={0,0,0} 

 ValDisplay VarExpTime,format=”%.1f” 

 ValDisplay VarExpTime,value= #”root:Variables:ExperTime” 

 SetVariable VarSamplingFreq,pos={30,147},size={230,16},title=”Data sampling freq. (Hz)” 

 SetVariable VarSamplingFreq,limits={1E3,1E5,1E2},value= root:Variables:SamplingFrequency 

 SetVariable VarSamplingFreq,format=”%1.1e”, bodyWidth=70 

 ValDisplay VarSamplingTime,pos={30,173},size={230,16},title=”dt between data points (s)” 

 ValDisplay VarSamplingTime,value= #”root:Variables:DeltaT” 

 ValDisplay VarSamplingTime,format=”%1.1e”, bodyWidth=60 

 ValDisplay VarNpoints,pos={30,199},size={220,16},title=”# points in the cycle”,bodyWidth= 60 

 ValDisplay VarNpoints,value= #”floor(root:Variables:SamplingFrequency/root:Variables:CircleFreq)” 

  

 SetVariable ExtrasXCalibFactor,pos={340,43},size={150,16},title=”X piezo scale (nm/V)” 

 SetVariable ExtrasXCalibFactor,limits={10,15000,1},value= root:Variables:XpiezoScale,bodyWidth= 60 

 SetVariable ExtrasYCalibFactor,pos={340,69},size={150,16},title=”Y piezo scale (nm/V)” 

 SetVariable ExtrasYCalibFactor,limits={10,15000,1},value= root:Variables:YpiezoScale,bodyWidth= 60 

 SetVariable ExtrasTipTemperature,pos={340,121},size={150,16},title=”AFM tip temp. ”I" 

SetVariable ExtrasTipTemperature,limits={0,600,5},value= root:Variables:TipTemperature,bodyWidth= 

60 

 SetVariable ExtrasTemperature,pos={340,147},size={150,16},tit”e="Air temperatu”I(C)" 

 SetVariable ExtrasTemperature,limits={0,50,1},value= root:Variables:Temperature,bodyWidth= 60 

 SetVariable ExtrasHumidity,pos={340,173},size={150,16},”itle="Air rel. humidi”y (%)" 

 SetVariable ExtrasHumidity,limits={0,100,1},value= root:Variables:Humidity,bodyWidth= 60 

 SetVariable ExtrasNyFraction,pos={340,225},size={150,16},”itle="Nyquist Fr”ction" 

 SetVariable ExtrasNyFraction,limits={0,1,0.01},value= root:Variables:NyquistFraction,bodyWidth= 60 
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 GroupBox Var,pos={20,13},size={260,268},”itle="Initial Var”ables" 

 GroupBox Extras,pos={300,13},size={205,268},”itle="”xtras"    

EndMacro 

 

///////////////////////////////////////////////////////////////////////////////////// 

Function CreateCommand(name,amplitude,offset, phase, numPoints) //Creates ramp of piezo 

 String name 

 Variable amplitude, offset, phase, numPoints 

  

 NVAR freq = root:Variables:CircleFreq 

 NVAR duration = root:Variables:ExperTime 

  

 Make/O/N=(numPoints) $name 

 Wave w=$name 

        // t=total duration *p/number of points 

 w = amplitude*(p/numPoints)*Sin(((Pi)/180)*(360*(p/numPoints)*freq*duration  + phase) ) 

 w=w+offset 

End 

 

///////////////////////////////////////////////////////////////////////////////////// 

Function ZeroXYSignals()      //zeros X and Y channels after doing the  

spiral, keeps the same card range as for the 

signal acquisition 

 NVAR XCommandRange=root:Variables:XCommandRange 

 NVAR YCommandRange=root:Variables:YCommandRange 

 

fDAQmx_Writ“Chan”"Dev1", 0, 0, -XCommandRange,XCommandRange) 

fDAQmx_Writ“Chan”"Dev1", 1, 0, -YCommandRange,YCommandRange) 

 

End 

 

Function StartRipples(ctrlName) : ButtonControl 

 String ctrlName 

  

 NVAR NumCyc = root:Variables:NumCycles 

 NVAR TotDuration = root:Variables:ExperTime 

 NVAR Size = root:Variables:CircleRadius   // in nm 

 nVAR XScale = root:Variables:XPiezoScale     // in nm/V 

 nVAR YScale = root:Variables:YPiezoScale 

 NVAR NyquistFraction = root:Variables:NyquistFraction 

 NVAR FilterFrequency = root:Variables:FilterFrequency 

 NVAR SamplingFrequency = root:Variables:SamplingFrequency 

 NVAR DeltaT = root:Variables:DeltaT 

 NVAR AplusBGain = root:Variables:AplusBGain  

 NVAR AminusBGain = root:Variables:AminusBGain 

 NVAR LFMGain = root:Variables:LFMGain 

 nVAR XCommandRange=root:Variables:XCommandRange 

 nVAR YCommandRange=root:Variables:YCommandRange 

  

 Variable XAmplitude, YAmplitude, Offset, Npnts, NpntsCommand  //, XCommandRange,  

YCommandRange 

 Variable Backg  

 String DA_String, AD_String     // to stop any background  

scanning processes at the beginning 

 BackgroundInfo 

 Backg = V_Flag 
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 if (Backg==2) 

  CtrlBackground stop 

 endif 

 

// define waves and set frequencies 

to match PCI-6289 capabilities! 

 XAmplitude = (size/XScale)     //in V to be sent to the  

microscope 

 YAmplitude = (size/YScale)     //in V to be sent to the microscope 

  

//time spacing between 

consecuitive data points -> NOW 

global variable 

//DeltaT = (1/SamplingFrequency)  

//minimal delta time between data 

points, i.e., 1/sampling frequency,  

// for OUTput channels 2.8 

MSamples/s, but for input only 500 

kSamples/s (multichannels) (NI 

PCI 6289) 

// so to match input and output 

waves, 500 kSamples/s is max for 

both. 

// 5 kHz used just for now !!!!!!!! 

There were Problems with 500 

kHz, but 5kHz is enough 

       

         

Npnts =   floor(TotDuration/DeltaT)    // Npoints for command wave  

depends on the type of data 

acquisition process 

 NpntsCommand = 3*Npnts     // WE SUPpOSE! that we trigger 

data acquisition by input waves! Than there is three input waves (A+B, A-B, LFM)  and each point of each of these 

input waves is scanned clock“d by "”eltaT", so Output waves (fast speed of 2.8MS/s), need to have (number of input 

channels = 3) “imes "data ”oints" separated by DeltaT, and INPUT waves will“have "data ”oints" separated by 3x 

time spacing otherwise: t1=t_start: output channels send and one input wave scanned, t2=t1+deltaT: output channels 

sent and another input  wave scanned, t3=t1+2*DeltaT: output channel sent, and third input wave scanned, t4: as 

t_start; 

 Offset = 0 

    

 CreateCommand("XCommand", XAmplitude,Offset, 90, NpntsCommand)  

//Create X sin wave // cos from 12/6/2011 

 CreateCommand("YCommand", YAmplitude,Offset, 0, NpntsCommand)  

//Create Y cosine wave //sin from 12/6/2011 

 

Make/O/N=(Npnts) AplusB = NaN, AminusB = NaN, LFM = NaN //create receiving waves with one 

third of the # of command points/channel for 

three channels 

 SetScale/I x 0,TotDura“i”n, "s", XCommand, YCommand, AplusB, AminusB, LFM   

//set acquisition rate by scaling th“m to 

"TotDuration”, get data as fast as possible, 

but later filter!!! 

  

             

        // use IGOR filters!!!! 

 FilterFrequency =  (1/DeltaT)/2 * NyquistFraction  //NyquistFreq * NyquistFraction =  

Sampling Freq/2 * NyFraction 
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 sleep/s 0.5 

  

//execute simultaneous A/D and D/A, and 

redefine X, Y command ranges 

 XCommandRange = min(10, XAmplitude) 

 YCommandRange = min(10, YAmplitude)  

 DA_String = "XCommand, 0,"+Num2str(-XCommandRange)+","+Num2Str(XCommandRange)+"; 

YCommand,1,"+Num2str(-YCommandRange)+","+Num2Str(YCommandRange)+";"   

 AD_String = "AplusB,0”Diff,"+Num2Str(-

10/AplusBGain)+","+Num2Str(10/AplusBGain)+";AminusB,1/Diff,"+Num2Str(-

10/AminusBGain)+","+Num2Str(10/AminusBGain)+";LFM,2/Diff,"+Num2Str(-

10/LFMGain)+","+Num2Str(10/LFMGain)+";" 

 

  

// the way we do spiral leaves max.  

voltage on Y channel from a previous spiral, 

we have to zero the initial voltage 

          

 DAQmx_WaveformGen/“RIG={"/dev1/ai/starttrigger"}/DEV”"Dev1"/NPRD=1 DA_String  

 DAQmx_Scan/BKG/DEV=”Dev1" WAVES=AD_String 

  

 DoWindow OscilloscopeDisplay 

 if (V_Flag == 1) 

  RemoveFromGraph/Z/W=OscilloscopeDisplay AminusB  

  AppendToGraph/W=OscilloscopeDisplay AminusB  

  ModifyGraph/W=OscilloscopeDisplay rgb(Force)=(0,52224,0) 

 else 

  DoWindow/K TemporalDisplay 

  Display/K=1 AminusB 

  SetAxis/A left 

  DoWindow/N/C TemporalDisplay  

  Label b“ttom "Ti”e (s)" 

  Label“le–t "A -”B (V)" 

 endif 

 Do 

  DoUpdate 

While( !fDAQmx_ScanGetAvailable("Dev1")) //fDAQmx_ScanGetAvai“able”"Dev1") 

returns 1 if scanning is finished so  

!fDAQmx_ScanGetAvai“able”"Dev1") 

returns 0 

   

 fDAQmx_Wavefor“Stop”"Dev1")    //just in case   

 

SaveTraces()       //  very important  

to save the traces for future use! 

End 

 

//////////////////////////////////////////////////////////////////////////////////// 

Function StopRipples(ctrlName) : ButtonControl 

 String ctrlName 

 

 Variable Backg  

// stop any background scanning processes at 

the beginning 

 BackgroundInfo 

 Backg = V_Flag 

 if (Backg==2) 
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  CtrlBackground stop 

 endif 

 

fDAQmx_WaveformStop("Dev1") 

printf "OK. No signal applied to the AFM scann”r. \r"    

End 

 

///////////////////////////////////////////////////////////////////////////////////// 

Function SaveTraces() 

 NVAR WriteFileNumber=root:Variables:WriteFileNumber  

 NVAR Temperature =root:Variables:Temperature   

 NVAR CircleRadius = root:Variables:CircleRadius   

 NVAR CircleFreq = root:Variables:CircleFreq   

 NVAR NumCycles=root:Variables:NumCycles   

 NVAR ExperTime= root:Variables:ExperTime 

 NVAR TipTemperature =root:Variables:TipTemperature  

 NVAR  Humidity=root:Variables:Humidity   

 NVAR  AFMTipVelocity=root:Variables:AFMTipVelocity 

 NvAR  XPiezoScale=root:Variables:XPiezoScale   

 NvAR  YPiezoScale= root:Variables:YPiezoScale   

 NVAR  NyquistFraction=root:Variables:NyquistFraction  

 NVAR  SamplingFrequency=root:Variables:SamplingFrequency  

 NVAR  DeltaT=root:Variables:DeltaT     

 NVAR  FilterFrequency=root:Variables:FilterFrequency  

 NVAR  AplusBGain=root:Variables:AplusBGain    

 NVAR  AminusBGain=root:Variables:AminusBGain   

 NVAR  LFMGain =root:Variables:LFMGain    

  

 String AminusB_waveName, AplusB_waveName, LFM_waveName, InfoNote="" 

    

 AminusB_waveName ="AminusB_"+Num2Str(WriteFileNumber) 

 AplusB_waveName ="AplusB_"+Num2Str(WriteFileNumber) 

 LFM_waveName ”"LFM_"+Num2Str(WriteFileNumber) 

  

 Duplicate/O AminusB $AminusB_waveName 

 Duplicate/O AplusB $AplusB_waveName 

 Duplicate/O LFM $LFM_waveName 

   

 InfoNote += ”Date=" + Date() + ";”Time=" + Time() 

 InfoNote += "; Air temperature=" + num2str(Temperature) 

 InfoNote += "; Approx. AFM temperature=" + num2str(TipTemperature) 

 InfoNote += "; Relative humidity=" + num2str(Humidity) 

 InfoNote += "; Circle Radius”(nm)=" + num2str(CircleRadius)  

 InfoNote += "; Circle frequency”(Hz)=" + num2str(CircleFreq) 

 InfoNote += "; Approx. AFM tip velocity (nm/s)=" + num2str(AFMTipVelocity)  

 InfoNote +=  "; Data sampling frequency”(Hz)=" + num2str(SamplingFrequency) 

 InfoNote += "; Nyquist Fraction="  + num2str(NyquistFraction)  

 InfoNote += "; X piezo calib (nm of motion per V fed to its controller)=" + num2str(XPiezoScale)  

 InfoNote += "; Y piezo calib (nm of motion per V fed to its controller)=" + num2str(YPiezoScale)  

 Note $AminusB_waveName, InfoNote 

 Note $AplusB_waveName, InfoNote 

 Note $LFM_waveName, InfoNote 

Notebook NotebookSaveHistory text="Ripples recording # " + num2str(WriteFileNumber) + " saved at " + 

time()+ "\r" 

 WriteFileNumber += 1      //Beep 

End 
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A.2. Finding peaks and troughs of data 

The IGOR procedure coding below is from John Weeks at WaveMetrics and published 

with his permission for non-commercial use only. WaveMetrics support can be reached at 503-

620-3001. Tell the operator you want to talk to Mr. Weeks or generally explain your issue and 

you will be connected to the expert in that area. This procedure allows the IGOR user to find 

peaks and troughs of an IGOR wave and used throughout this thesis to greatly increase data 

processing times.  

#pragma rtGlobals=1      // Use modern global access method. 

 

// Modified 120220 by John Weeks at 

WaveMetrics to use the graph cursors 

 

Menu "Macros" 

 "Find Peaks in Top GraphAB", /Q, mFindPeaksInTopGraph() 

end 

 

Function mFindPeaksInTopGraph() 

 

 String gname = WinName(0,1) 

 if (strlen(gname) == 0) 

  return -1 

 endif 

  

 String tracename = StringFromList(0, TraceNameList(gname, ";", 1)) 

 Variable minLevel = 0 

 Variable doNeg = 2 

 String outbasename="OutPeaks" 

  

 Prompt tracename, "Which graph trace contains peaks?", popup, TraceNameList(gname, ";", 1) 

 Prompt minLevel, "Minimum (or maximum for negative peaks) level:" 

 Prompt doNeg, "Negative peaks?", popup, "Yes;No;" 

 Prompt outbasename, "Base name for output waves:" 

 DoPrompt "Find Peaks in Top Graph", tracename, minLevel, doNeg, outbasename 

 if (V_flag) 

  return -1 

 endif 

 

 String wavenameY = GetWavesDataFolder(TraceNameToWaveRef(gname, tracename), 2) 

 String wavenameX = GetWavesDataFolder(XWaveRefFromTrace(gname, tracename), 2) 

  

        // JW 120220 added test for presence of  

graph cursors 

 Variable startPoint, endPoint 

 if (strlen(CsrInfo(A, gname)) > 0) 

  startPoint = pcsr(A) 

 else 

  startPoint = 0 

 endif 

 if (strlen(CsrInfo(B, gname)) > 0) 

  endPoint = pcsr(B) 

 else 
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  endPoint = numpnts($wavenameY) - 1 

 endif 

 if (startPoint > endPoint) 

  Variable temp = startPoint 

  startPoint = endPoint 

  endPoint = temp 

 endif 

FindPeaksMakeXYPair($wavenameY, $wavenameX, minLevel, doNeg == 1, outbasename, startPoint, 

endPoint) 

  

 Wave outy = $(outbasename+"Y") 

 Wave outx = $(outbasename+"X") 

 CheckDisplayed/W=$gname outy 

 if (V_flag == 0) 

  AppendToGraph/W=$gname outy vs outx 

 endif 

end 

 

// JW 120220 added startPoint and endPoint inputs to 

support use of graph cursors. 

Function FindPeaksMakeXYPair(inY, inX, minLevel, doNeg, outbasename, startPoint, endPoint) 

 Wave inY, inX 

 Variable minLevel    // Peaks below (or above for doNeg true) this level  

are not peaks 

 Variable doNeg     // find the minima instead of the maxima' 

 String outbasename 

 Variable startPoint, endPoint 

  

       // JW 120220 changed initialization of startP and  

endP to support use of graph cursors. 

 Variable startP = startPoint 

 Variable endP = endPoint 

 Make/N=(numpnts(inY))/O/D $(outbasename+"Y"), $(outbasename+"X")     //  

Make/N=(numpnts(inY))/O/D $(outbasename+"Y") /WAVE=outPeaksY, $(outbasename+"X")/WAVE=outPeaksX    

 WAVE outPeaksY=$(outbasename+"Y") 

 Wave outPeaksX=$(outbasename+"X") 

 outPeaksY = NaN 

 outPeaksX = NaN 

 Variable peakNumber = 0 

 Variable peakPoint 

 Do 

  if (doNeg) 

   FindPeak/M=(minLevel)/N/P/I/Q/R=(startP, endP)/B=0 inY 

   if (V_flag) 

    break; 

   endif 

peakPoint = inY[floor(V_peakLoc)] < inY[ceil(V_peakLoc)] ? floor(V_peakLoc) : 

ceil(V_peakLoc) 

  else 

   FindPeak/M=(minLevel)/P/I/Q/R=(startP, endP)/B=0 inY 

   if (V_flag) 

    break; 

   endif 

   peakPoint = inY[floor(V_peakLoc)] > inY[ceil(V_peakLoc)] ? floor(V_peakLoc) : 

ceil(V_peakLoc) 

  endif 

  outPeaksY[peakNumber] = inY[peakPoint] 



53 

 

  outPeaksX[peakNumber] = inX[peakPoint] 

  peakNumber += 1 

  startP = ceil(V_PeakLoc) 

 while(1) 

  

 Redimension/N=(peakNumber) outPeaksY, outPeaksX  // remove extra points 

end 
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Appendix B. Calculations of the equilibrium lamellar spacing, dEQ, 

using the model of Whitmore and Noolandi 

The equilibrium value of dEQ comes from the minimization (with respect to distance d) of 

the free energy of the amorphous and crystalline parts as described in the Equation 7.4 in the 

paper of Whitmore and Noolandi.
66

 

The code in Mathematica 6.0, Wolfram Research, USA (pasted below) reproduces the 

calculations of the model in the case of the copolymer in Chapter 2. There are several parameters 

in the model, which originate in Eq. 7.1 in Whitmore and Noolandi,
66

 and are labeled and 

discussed briefly below. 

ClearAll["Global`*"] 
This command clears all previous variables 

stored in the memory 

fB[d_]:=((rhoOC)/(rhoOA))*(1/Zc) 

*(W*c*rhoOB*Zc/(R*rhoOC*d)-1)*(EkbT) 

This is the free energy of the crystalline part, 

see Eq. 7.1 in Whitmore and Noolandi, 

explanation of the key parameters below   

PhiCA = Zca*rhoOC/(Zc*rhoOA) 

$Assumptions=Zca>0 
Prepare to define the free energy of the 

amorphous part   

alpha[d_]:= ((3/Zca)^(1/2))*(PhiCA*d)/ba 
Universal function “α” in the Whitmore and 

Noolandi paper   

gammaA = ((Zca)^(-1/2)) 
Universal function “γ” in the Whitmore and 

Noolandi paper   

gAred[d_]:=0.016*alpha[d]^(muA)/((gammaA)^(1/2)) 

+0.74/(alpha[d]*gammaA)+0.21 

Free energy function of “γ” and “α” for the 

amorphous, PS, part   

fA[d_]:= PhiCA*gAred[d]/Zca 

This is a complete free energy of the 

amorphous part, see Eq. 7.1 in Whitmore and 

Noolandi   

  
We enter numerical values for the parameters 

next  

muA = 2.5 

This is an arbitrary parameter in the model, 

discussion in Whitmore and Noolandi, p. 

1489   

ba =0.68      
Kuhn's length of the PS, references in the 

main text   

EkbT = 16/4.1  

Interaction energy (or energy gain), E, per 

each fold in a single PEO molecule, the value 

of E=16 pN*nm is cited after Whitmore and 

Noolandi, and provided in the units of kB*T, 

which is 4.1 pN*nm at room temperature; 

EkbT is the most contentious parameter in 

our estimation, and we use 50% of error of 

its determination to estimate the error of dEQ   

W =1  Number of layers in a given lamella   

R =7  

Crystallographic parameter for the PEO to 

say that PEO crystallizes in 7-2 helix (R=7), 

with a pitch "c"   

c=1.95  Crystallographic parameter for the PEO, see 
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above   

Zca = 130  Degree of the polymerization for PS   

Zcb = 350  Degree of the polymerization for PEO   

Zc =  Zca + Zcb 
 

Mca=104.15*Zca  Molar mass of the PS   

Mcb = 44*Zcb  Molar mass of the PEO   

t=20  Temperature in degrees of Celsius   

rhoOA=5.782/(0.9199+5.098*(10^(-

4))*t+2.354*(10^(-7))*t+(32.46+0.1017*t)/Mca) 

Formula for the density of the PS, references 

in Whitmore and Noolandi   

rhoOB = 16.9  
Density of the PEO, units of densities are 

here in nm
-3

   

rhoOC=(rhoOA*rhoOB)*(Zca+Zcb)/(Zca 

*rhoOB+Zcb*rhoOA) 
Weighted density of the PS-b-PEO   

Now we solve the main equation, i.e. then minimization equation for dEQ= fA + fB with respect to a 

distance “d” 

Solve[D[fA[d],d]+D[fB[d],d]==0, d] 

{{d→-12.8663-56.3711i},{d→-

12.8663+56.3711i},{d→57.8208}} 

d/.Solve[D[fA[d],d]+D[fB[d],d]==0, d][[3]] 

57.8208 

We use only the real solution of this equation 

  

  

dPS=(d/.Solve[D[fA[d],d]+D[fB[d],d]==0, 

d][[3]])*Zca/Zc 

dPEO=(d/.Solve[D[fA[d],d]+D[fB[d],d]==0, 

d][[3]])*Zcb/Zc 

15.6598 

42.161 

The corresponding thicknesses of the PS and 

the PEO parts are calculated  
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Appendix C. Details of thermal tip calibration steps 

Step 1. The local heating of the film was done with a resistively heated probe (rh lever) 

attached to a home-made cartridge. To obtain the tip temperature, the probe is in series with a 

resistor of a known resistance (1985 ± 3 ohms) and a commercial voltage generator, model 

E3620A, from Agilent, USA. To find the tip temperature one relates the temperature of the tip to 

the applied generator voltage. The temperature of the cantilever tip cannot be easily measured 

directly, but known is that tip temperature is linearly related to the power delivered to the 

cantilever.
46

 Thus, one measures the voltage across the known resistor with a voltmeter.  

Let “Ve” be the voltage across the known resistor, “Vs” be the generator voltage, “Vc” be 

the voltage across the cantilever, “Re” be the known resistor value, “Rc” be the cantilever 

resistance, “I” be the current in the circuit, “Pc” be the power delivered to the cantilever, “T” be 

the temperature of the tip, “a” be the slope of the temperature-power graph, and “B” be the room 

temperature in Celsius. 

With these relations:  

Vc = Vs – Ve 

I = Ve/Re 

Rc = Vc/I 

Pc = Vc*I 

T = a*Pc + B 

and thus, 

T = a*(Vs-Ve)*Ve/Re + B 

All these quantities are measurable except “a”. To find “a”, use the fact that at 

approximately 550
o 
C, the cantilever begins thermal runway and its resistance starts to drop 

rapidly.
46

 One can find the power that corresponds to this event by measuring the external 

voltage for various generator voltages and calculating the cantilever resistance. Since the power 

(P2) corresponding to 550 degrees (T2) is known and zero power (P1) corresponds to room 

temperature (T1), we can find a simply by a = (T2-T1)/(P2-P1), See Figure C.1. 

Knowing the temperature of the tip is extremely valuable information, but to calculate 

many (WHAT) thermophysical properties of a sample the temperature just below the tip-sample 

interface must also be know. This is done in step 2 of the calibration process.  

Step 2. To obtain the temperature at the surface below the tip, one can follow the work 

done by Hinz et al.
30

 In this work PMMA is globally heated to a uniform temperature and force-

distance curves (FDCs) are recorded. Hinz et al. were looking for penetration depth as a function 

of force applied to the surface with the sample near its glass transition temperature. The 



57 

 

indentation slope of the FDCs decrease and the loading and unloading parts of the FDC separate 

with increasing temperature compared to a calibration force curve on a hard substrate (Si), which 

confirms the softening of the PMMA film. FD Curves where conducted on a silicon substrate 

with the tip at room temperature to measure tip deflection at varying temperatures. Next, using 

PS (Mw= 215K, 5% b/w in Cyclohexanone and Tetrahydrofuran) and PMMA(Mw= 120K 2.5% 

b/w in chloroform), FDCs were taken with the tip at room temperature (0 volts on voltage 

generator) and increasing temperatures until the change in slope and the loading and unloading 

parts of the FDC started to separate
30

 as noted by Hinz. These polymers were chosen due to their 

well documented glass transition temperatures. Prior to measurements, polymers were spin 

coated on steel discs purchased from Ted Pella, USA (product Number 16219, 20mm Specimen 

Disks) and measured the resulting film thickness to make sure the films were thicker than 50 nm, 

so that to avoid issues of glass transition temperature dependence on the film thickness.
47-48

  

From the comparison of the obtained glass transition temperatures for PS and PMMA with their 

literature values,
106

 one obtains a calibration relation (see Figure C.1) between the temperature 

on the surface and the temperature on the tip.  

 

Figure C.1. Calibration details of thermal levers. A) Tip temperature as a function of Generator 

Voltage (Vs from Step 1) for various Vs (Black crosses) and a polynomial fitted curve. B) Force-

Distance Curves on PMMA for tip temperatures below (214°C), at (234°C) and above (253°C) the Tg 

of PMMA. C) Force-Distance Curves on PS for tip temperatures below (124°C), at (191°C) and above 

(227°C) the Tg of PMMA, the separation of extension on retraction curves indicates that Ts has 

reached Tg. D) Linear fit of the calculated tip temperature and the accepted Tg for PMMA and PS 

with room temperature as reference.  
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Appendix D. Polymer sample preparation steps 

Below are steps used to create the Polystyrene sample used in this thesis. The steps are 

written as instructions in order to provide anyone wanting to continue this work a guide to 

reproduce the samples used. 

 

1. Choose a solvent appropriate for the polymer you want to deposit, here PS(American 

Polymer Standards Corporation, Product #PS215K), Mw=215K and toluene(Sigma-

Aldrich, Product #179418) many solvents can be found at the polymer manufactures 

websites or polymer handbooks.
98, 106

 

2. Find the percent solution by weight you need for the thickness of film you want at the 

end. Here 2.5% solution of PS in toluene was used.  

3. Get the density of the solvent (here toluene: 866.5 mg/mL) found on the bottle or the 

manufactures website, the mg of polymer per 1 mL of final solution is found by: 

           
  

  
     

  

  
  

4. For example if you want 2 mL of 2.5% by weight solution, you’ll need 43.2 mg of PS. 

Here only one mL of solution was needed.  

5. Put on gloves, they are needed for the next steps.  

6. Clean a spatula (Ted Pella, product # 13523) by washing it in the following order 

acetone*, ethanol
Θ
, isopropanol*(*Fisher Scientific, 

Θ
Decon Labs), DI water, finally dry 

with nitrogen. Set aside with the scoop end propped up.  

7. Zero the scale (here; Scientech ZSA 210), weigh an eppendorf (Eppendorf North 

America, product 022363204) and re-zero the scale. 

8. With the spatula add polymer into the eppendorf until you reach the amount needed 

(here: 21.6 mg). 

9. With a pipette, get the amount of solvent you need, here 1 mL, and pour the solvent in the 

eppendorf with the polymer.  

10. Close the cap of the eppendorf and place on the vortex mixer (Southwest Science, 

BV1000) until you cannot visually see any polymer. 

11. Retrieve a new eppendorf, a 0.45 μm filter (TPP model#99745) and a syringe (Becton 

Dickinson & Co, Model 309623) with a needle.  

12. Carefully draw the solution into the syringe through a needle attached, remove the 

needle, then attach the 0.45 μm filter to the syringe.  

13. Open the new eppendorf, line up the filter exit with the eppendorf, and slowly but firmly 

push the plunger until the solution is in the new eppendorf. Close the cap when finished 

and label the eppendorf appropriately. Set aside. 

14. Choose the substrate, here silicon (Silicon Materials Inc. Part# 3NO 5-10 381-20-5) was 

chosen. 
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a. When cutting the Si with the diamond cutter: 

i. Wear gloves, eye protection 

ii. The shape of the final piece of Si should be symmetric, squares are easiest. 

iii. Score a straight line on the Si wafer, Figure D.11-3. The unmounted Chip 

Carrier Toolkit (Bruker USA, Product# APCC-0001) is marked to help 

scoring a line and to break the Si wafer as cleanly as possible. 

iv. To beak the Si, align with the steps on the tool kit and gently press down.  

v. Rotate and repeat scoring, then break Figure D.1 4-6.  

 

 

Figure D.1. Steps for cutting substrate for sample preparation. 

 

15. Clean a pair of AFM tweezers (Ted Pella, Product #5599), in this order: acetone, ethanol, 

isopropanol, DI water, finally dry with nitrogen. Set aside with the “pick up” end propped 

up.  

 

In the following steps it is implied that Si is manipulated with the clean tweezers.  

 

16. Get four 10 mL glass beakers, fill individual beakers with a few mLs of acetone, ethanol, 

isopropanol, and DI water. Don’t mix solvents, you’ll have one beaker with acetone one 

with ethanol, and so on.  

17. Rinse the SI square with DI water from the squirt bottle to remove any chunks from 

cutting, dry with nitrogen. 

18. Place the Si in the beaker containing acetone, cover the beaker with parafilm. 

19. Follow the manufacturer’s instructions for the sonicator (Branson Ultrasonics 

Corporation, Model 2510) and sonicate the beaker for 10 minutes, remove and dry with 

nitrogen.  

20. Repeat step 19 for ethanol, isopropanol, and DI water. Be sure to do steps 21 & 22 before 

the end of the final sonication.  
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21. Rinse an AFM sample disk (Ted Pella, Product# 16219, 20mm) with acetone, (ethanol, 

isopropanol,) and DI water, dry with nitrogen. Place on a clean piece of lens paper. 

22. Place an adhesive tab (Ted Pella Product #16082) in the center (best you can) of the AFM 

sample disk, press firmly with a gloved finger to remove any air trapped between the disk 

and tab. 

23. Take the clean SI square and gently place centered on the adhesive tab.  

24. Open the tweezers to the diagonal width of the Si square and gently press the four 

corners, two at a time into the adhesive tab. If needed you can press parts of the squares 

parameter into the tab also to remove the air between the Si and the tab. Do not touch the 

central portion of the Si square with the tweezers. See Figure D.2.  

 

Figure D.2. Locations to adhere substrate. 

Locations to press the Si square to avoid 

damaging central area and minimize air 

bubbles. The different color tweezers ends 

indicate that opposite corners are secured 

simultaneously.  

 

 

25. Place the disk with Si square in a clean petri-dish and cover. 

26. Take a 10 μL pipette and an appropriate size tip; fill a 10mL beaker with Di water, 

practice getting a drop of water to form and fall from the tip. This μL setting is 

approximate due to the properties of the water verses the solution but will give a rough 

estimate for the solution. Once finished discard the tip.  

27. Follow the instructions posted to set up the spin coater (Laurell Technologies Corp 

Model WS-400E-6NPP-LITE) and spin program, here the program was 10 seconds at 

500 RPM and 50 second at 2000 RPM.  

28. Once the program is set and the disk is secured by the vacuum on the chuck, run the 

program to make sure it is correct.  

29. Place a new tip on the 10 μL pipette and open the eppendorf from step 13 (the one with 

the 2.5% solution), practice a few times with the pipette letting to drop fall back into the 

eppendorf. Record the setting on the pipette that gave a satisfactory drop. 

30. Draw solution into the pipette tip and place a drop on the center of the Si square, don’t 

touch the Si with the pipette tip, repeat until a bead of solution is on the Si that you know 

will cover the Si when spun.  

31. Run the program. 

32. Remove the sample and place in a clean container. 

33. Clean the spin coater according to the posted instructions.  

34. If you do not plan to anneal the sample skip to step 41. 
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35. To anneal: warm up the hot plate (Fisher Scientific, Model Isotemp) at this point, get the 

thermocouple (Cen-Tech Model p37772) and prop the senor end so that is rests on the 

plate, do not trust the reading on the hot plate itself (inaccurate).  

36. Find the glass transition temperature for the molecular weight (bulk) of the polymer 

you’re using. Glass transition is a function of the film thickness and normally decreases 

when the film is less than 150 μm thick, so if you are attempting a thinner film, a scratch 

test or other method of determining film thickness may be needed. The final temperature 

on the plate used here was 85°C by the thermocouple, 95° C was the value for bulk but 

the expected film thickness was greater than 200 μm.  

37. Anneal the sample, here 14 hours, remove and allow cooling to room temperature. 

38. Use the AFM to image the sample. You’re checking for pits and overall quality, here 

after 14 hours, 20 μm x 20 μm scans reveled many 2-4 nm deep pits. The polymer sits 

above the hot plate and has the Si, adhesive tab and disk between it so most likely the 

polymer was not at 85°C.  

39. You can anneal above glass transition to further remove unwanted surface features, this 

sample was annealed a second time at 120°C for 2.5 hours. Caution is advised though. 

These instructions haven’t mentioned to this point that three samples of PS at different 

molecular weights were being made. Why? Because two were destroyed at this point. 

40. Following the second annealing, the sample was allowed to cool, and a scratch test 

performed to determine film thickness.  

41. Scratch test: 

a. Heavily rinse a new razor blade with acetone, ethanol, isopropanol, and DI water 

in that order and dry with nitrogen. 

b. Angle the blade so that one end will cut the polymer and gently pass the blade 

over the sample through the center. 

c. Observe the scratch under the optical microscope; if the blade successfully cut 

through the thickness of the polymer you see the Si substrate in the scratch. 

d. Image scratch with AFM. Note: In most cases the tip will encounter a sharp 

topography change of 100-300 nm while imaging the scratch. For an accurate 

measurement cantilever selection and feedback settings are crucial.   

42. Finally ensure that sample preparation notes and all AFM measurements are documented 

for later use. 

 

 

 


