
Keyphrase extraction and its applications to digital libraries

by

Krutarth Indubhai Patel

B.Tech., Dharmsinh Desai University, India, 2014

M.S., University of North Texas, USA, 2017

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Abstract

Scholarly digital libraries provide access to scientific publications and comprise useful

resources for researchers. Moreover, they are very useful in many applications such as doc-

ument and citation recommendation, expert search, scientific paper summarization, col-

laborator recommendation, topic classification, and keyphrase extraction. Despite the ad-

vancements in search engine features, ranking methods, technologies, and the availability

of programmable APIs, current-day open-access digital libraries still rely on crawl-based

approaches for acquiring their underlying document collections. Furthermore, keyphrases

associated with research papers provide an effective way to find useful information in the

large and growing scholarly digital collections. Keyphrases are useful in many applications

such as document indexing and summarization, topic tracking, contextual advertising, and

opinion mining. However, keyphrases are not always provided with the papers, but they

need to be extracted from their content. A growing number of scholarly digital libraries,

museums, and archives around the world are embracing web archiving as a mechanism to

collect born-digital material made available via the web. To create the specialized collection

from the Web archived data, there is a substantial need for automatic approaches that can

distinguish the documents of interest for a collection.

In this dissertation, we first explore keyphrase extraction as a supervised task and for-

mulated as sequence labeling and utilize the power of Conditional Random Fields in cap-

turing label dependencies through a transition parameter matrix consisting of the transition

probabilities from one label to the neighboring label. Our proposed CRF-based supervised

approach exploits word embeddings as features along with traditional, document-specific

features. Our results on five datasets of research papers show that the word embeddings

combined with document-specific features achieve high performance and outperform strong

baselines for this task. We also propose KPRank, an unsupervised graph-based algorithm for

keyphrase extraction that exploits both positional information and contextual word embed-

dings into a biased PageRank. Our experimental results on five benchmark datasets show

that KPRank that uses contextual word embeddings with additional position signal outper-

forms previous approaches and strong baselines for this task. Furthermore, we investigate

and contrast three supervised keyphrase extraction models to explore their deployment in

CiteSeerX digital library for extracting high-quality keyphrases.

Further, we propose a novel search-driven framework for acquiring documents for such

scientific portals. Within our framework, publicly-available research paper titles and author

names are used as queries to a Web search engine. We were able to obtain ≈ 267, 000 unique

research papers through our fully-automated framework using ≈ 76, 000 queries, resulting in

almost 200, 000 more papers than the number of queries. Furthermore, We propose a novel

search-driven approach to build and maintain a large collection of homepages that can be

used as seed URLs in any digital library including CiteSeerX to crawl scientific documents.

We use Self-Training in order to reduce the labeling effort and to utilize the unlabeled data

to train the efficient researcher homepage classifier. Our experiments on a large-scale dataset

highlight the effectiveness of our approach, and position Web search as an effective method

for acquiring authors’ homepages.

Finally, we explore different learning models and feature representations to determine

the best-performing ones for identifying the documents of interest from the web archived

data. Specifically, we study both machine learning and deep learning models and “bag of

words” (BoW) features extracted from the entire document or from specific portions of the

document, as well as structural features that capture the structure of documents. Moreover,

we explore dynamic fusion models to find, on the fly, the model or combination of models

that perform best on a variety of document types. We proposed two dynamic classifier selec-

tion algorithms: Dynamic Classifier Selection for Document Classification (or DCSDC), and

Dynamic Decision level Fusion for Document Classification (or DDFC). Our experimental

results show that the approach that fuses different models outperforms individual models

and other ensemble methods on all three datasets.

Keyphrase extraction and its applications to digital libraries

by

Krutarth Indubhai Patel

B.Tech., Dharmsinh Desai University, India, 2014

M.S., University of North Texas, USA, 2017

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Approved by:

Co-Major Professor
Dr. Cornelia Caragea

Approved by:

Co-Major Professor
Dr. Doina Caragea

Copyright

© Krutarth Indubhai Patel 2021.

Abstract

Scholarly digital libraries provide access to scientific publications and comprise useful

resources for researchers. Moreover, they are very useful in many applications such as doc-

ument and citation recommendation, expert search, scientific paper summarization, col-

laborator recommendation, topic classification, and keyphrase extraction. Despite the ad-

vancements in search engine features, ranking methods, technologies, and the availability

of programmable APIs, current-day open-access digital libraries still rely on crawl-based

approaches for acquiring their underlying document collections. Furthermore, keyphrases

associated with research papers provide an effective way to find useful information in the

large and growing scholarly digital collections. Keyphrases are useful in many applications

such as document indexing and summarization, topic tracking, contextual advertising, and

opinion mining. However, keyphrases are not always provided with the papers, but they

need to be extracted from their content. A growing number of scholarly digital libraries,

museums, and archives around the world are embracing web archiving as a mechanism to

collect born-digital material made available via the web. To create the specialized collection

from the Web archived data, there is a substantial need for automatic approaches that can

distinguish the documents of interest for a collection.

In this dissertation, we first explore keyphrase extraction as a supervised task and for-

mulated as sequence labeling and utilize the power of Conditional Random Fields in cap-

turing label dependencies through a transition parameter matrix consisting of the transition

probabilities from one label to the neighboring label. Our proposed CRF-based supervised

approach exploits word embeddings as features along with traditional, document-specific

features. Our results on five datasets of research papers show that the word embeddings

combined with document-specific features achieve high performance and outperform strong

baselines for this task. We also propose KPRank, an unsupervised graph-based algorithm for

keyphrase extraction that exploits both positional information and contextual word embed-

dings into a biased PageRank. Our experimental results on five benchmark datasets show

that KPRank that uses contextual word embeddings with additional position signal outper-

forms previous approaches and strong baselines for this task. Furthermore, we investigate

and contrast three supervised keyphrase extraction models to explore their deployment in

CiteSeerX digital library for extracting high-quality keyphrases.

Further, we propose a novel search-driven framework for acquiring documents for such

scientific portals. Within our framework, publicly-available research paper titles and author

names are used as queries to a Web search engine. We were able to obtain ≈ 267, 000 unique

research papers through our fully-automated framework using ≈ 76, 000 queries, resulting in

almost 200, 000 more papers than the number of queries. Furthermore, We propose a novel

search-driven approach to build and maintain a large collection of homepages that can be

used as seed URLs in any digital library including CiteSeerX to crawl scientific documents.

We use Self-Training in order to reduce the labeling effort and to utilize the unlabeled data

to train the efficient researcher homepage classifier. Our experiments on a large-scale dataset

highlight the effectiveness of our approach, and position Web search as an effective method

for acquiring authors’ homepages.

Finally, we explore different learning models and feature representations to determine

the best-performing ones for identifying the documents of interest from the web archived

data. Specifically, we study both machine learning and deep learning models and “bag of

words” (BoW) features extracted from the entire document or from specific portions of the

document, as well as structural features that capture the structure of documents. Moreover,

we explore dynamic fusion models to find, on the fly, the model or combination of models

that perform best on a variety of document types. We proposed two dynamic classifier selec-

tion algorithms: Dynamic Classifier Selection for Document Classification (or DCSDC), and

Dynamic Decision level Fusion for Document Classification (or DDFC). Our experimental

results show that the approach that fuses different models outperforms individual models

and other ensemble methods on all three datasets.

Table of Contents

List of Figures . xii

List of Tables . xv

Acknowledgements . xvii

1 Introduction . 1

1.1 Background . 1

1.2 Motivation and Contributions . 3

1.2.1 Keyphrase Extraction from Scientific Documents 5

1.2.2 Applications of Keyphrases/Keywords 6

1.2.3 Document Classification in Web Archiving Collections 7

1.3 Dissertation Outline and Published Work . 9

2 Keyphrase Extraction from Scientific Documents 11

2.1 Introduction . 12

2.2 Related Work . 16

2.3 Proposed Approaches and Methods Used in CiteSeerX Case Study 18

2.3.1 CRF-Based Supervised Keyphrase Extraction 18

2.3.2 KPRank: An Unsupervised Keyphrase Extraction Algorithm 20

2.3.3 Methods Used in CiteSeerX Case Study 23

2.4 Datasets . 25

2.5 Experimental Design and Results . 28

2.5.1 Word Embeddings as Features in CRFs for Keyphrase Extraction . . 29

viii

2.5.2 CRF vs. Bi-LSTM-CRF for Keyphrase Extaction 31

2.5.3 Baseline Comparisons for Our CRF-Based Supervised Keyphrase Ex-

traction Model . 33

2.5.4 Anecdotal Evidence for Our CRF-Based Model 35

2.5.5 KPRank: The Effect of Position, Contextual Embeddings, and the

Comparison With Previous Works . 36

2.5.6 Anecdotal Evidence for KPRank . 38

2.6 Keyphrase Extraction in CiteSeerX . 39

2.6.1 Click-log Analysis . 41

2.6.2 Experiments and Results . 43

2.6.3 Crowd-sourcing . 46

2.6.4 Development and Deployment . 48

2.6.5 Maintenance . 49

2.7 Summary and Future Directions . 50

3 Applications of Keyphrases/Keywords . 52

3.1 Introduction . 53

3.2 Related Work . 58

3.3 Proposed Frameworks and Approaches . 60

3.3.1 Scientific Documents Discovery . 60

3.3.2 Researchers’ Homapages Discovery 63

3.4 Datasets . 67

3.4.1 Scientific Documents Discovery . 67

3.4.2 Researchers’ Homepages Discovery 69

3.5 Experiments and Results . 72

3.5.1 Scientific Documents Discovery . 72

3.5.2 Researchers’ Homepages Discovery 80

ix

3.6 Development and Deployment of Researchers’ Homepages Discovery Frame-

work in CiteSeerX . 87

3.7 Maintenance of Researchers’ Homepages Discovery Framework in CiteSeerX 88

3.8 Summary and Future Directions . 88

4 Document Classification in Web Archiving Collections 90

4.1 Introduction . 91

4.2 Related Work . 95

4.3 Datasets . 98

4.3.1 UNT.edu Dataset . 98

4.3.2 Texas.gov Dataset . 99

4.3.3 USDA.gov Dataset . 99

4.4 Base Classifiers . 101

4.4.1 Bag of Words (BoWs) . 101

4.4.2 Structural Features . 102

4.4.3 Convolutional Neural Networks (CNNs) 103

4.5 Proposed Model: Dynamic Classifier Selection 104

4.6 Proposed Model: Dynamic Decision Level Fusion 105

4.6.1 Step-1: Finding Neighborhood Documents 106

4.6.2 Step-2: Competence Estimation . 107

4.6.3 Step-3: Dynamic Decision-Level Fusion 109

4.7 Experiments and Results . 111

4.7.1 Baselines . 111

4.7.2 Experimental Setup . 112

4.7.3 Experiments with Base Classifiers . 114

4.7.4 Exploratory Analysis . 122

4.7.5 Proposed Model DCSDC vs. Individual Models and Baselines 122

4.7.6 Proposed Model DDFC vs. Individual Models and Baselines 124

x

4.8 Conclusions and Future Directions . 126

5 Summary and Discussion . 127

5.1 Dissertation Summary . 127

5.2 Summary of Contributions . 130

5.3 Future Directions . 133

Bibliography . 135

xi

List of Figures

2.1 Layers in a CRF network. 19

2.2 Layers in a Bi-LSTM-CRF network. 20

2.3 Illustration of our approach. 21

2.4 A small citation network for Paper 1. 24

2.5 The title, abstract, human-input keyphrases and predicted keyphrases of an ACM

paper. The phrases marked with cyan in the title and abstract shown on the top

of the figure are gold keyphrases, whereas the words and phrases marked with dark

blue in the title and abstract shown on the bottom of the figure are predicted

keywords/keyphrases. 35

2.6 Keyphrase extraction confusion matrices of KPRank(SB) using @5 predictions

on all the datasets. The darker the blue on the main diagonal, the more

accurate the model is. 38

2.7 The title, abstract, gold-standard keyphrases and predicted keyphrases of a

paper. The phrases marked with cyan in the title and abstract shown on the

top of the figure are gold-standard keyphrases. 38

2.8 Number of documents crawled and ingested from past few years in CiteSeerX. 39

2.9 log(Rank) vs log(Clicks) for top-10, 000 keyphrases clicked by users of Cite-

SeerX during years 2016, 2017, and 2018. 41

2.10 Venn Diagram for all 3 years based on unique keyphrases. 42

2.11 The title, abstract, author-supplied keyphrases and predicted keyphrases of

an ACM paper. The phrases marked with cyan in the title and abstract shown

in the figure are author-supplied keyphrases. 45

xii

2.12 A clip of a portion of a CiteSeerX paper’s summary page containing a “Keyphrase”

section that displays keyphrases extracted. Each keyphrase has a thumbup

and a thumbdown button. A logged in user can vote by clicking these buttons. 46

2.13 CiteSeerX architecture. 49

2.14 Schematic diagram of keyphrase extraction module. 49

3.1 An anecdotal search example for illustration. 54

3.2 An anecdotal search example using paper title search. Green highlighted

response is located on the first author’s homepage. Newly discovered authors

are highlighted by a red color. 55

3.3 Schematic Diagram of our Scientific Documents Discovery Framework. . . . 61

3.4 Illustration of our CNN architecture used for homepage classification. 65

3.5 Teacher-Student architecture of self training. 66

3.6 Number of URLs corresponding to homepage from different domains in our

DBLP dataset. 71

3.7 The top-20 domains from which papers were obtained along Path 1 of our

framework. 77

3.8 Comparison of the Search/Crawl framework with the CiteSeerx breadth-first

search crawler. 80

3.9 Top-20 domains from author and title searches. 86

4.1 Example documents from a Web Archiving collection and classifiers’ confi-

dences. 93

4.2 CNN architecture for classification. 103

4.3 Illustration of our approach using an example. 107

4.4 Performance of BoW using different portions of the documents on all three

datasets under study. 115

xiii

4.5 Performance of BoW and its feature selection using the entire content of doc-

uments for the BoW encoding, on all three datasets. 117

4.6 Performance of 43 structural features and its feature selection on all three

datasets. 119

4.7 Performance of the CNN using different portions of the documents on different

datasets. 121

xiv

List of Tables

2.1 Summary of the keyphrase extraction datasets used for model evaluation. . . 27

2.2 Examples of gold standard keyphrases (present in the title + abstract) of a

paper randomly selected from each dataset. 27

2.3 The dataset used during the case study on CiteSeerX. 28

2.4 CRF performance using word embeddings (EMB), document features (DOC)

and DOC+EMB. 30

2.5 Contrasting CRF with Bi-LSTM-CRF. The input to both models is DOC+EMB. 31

2.6 Performance of DOC+EMB on SemEval, Krapivin, Inspec and NUS while

training on ACM-10k. 32

2.7 The comparison of CRF that uses DOC+EMB with previous works. Perfor-

mance is shown in %. 34

2.8 The comparison of SciBERT (SB) based KPRank, and previous works. . . . 37

2.9 The number of full text documents, the total number of keyphrase-clicks, and

unique keyphrases clicked for years 2016, 2017, and 2018 in CiteSeerX. . . . 41

2.10 Top-20 keyphrases clicked during years 2016, 2017, and 2018. 43

2.11 The comparison of different models using 10-fold cross-validation on ACM-

CiteSeerX-KE. 44

3.1 Example of author name and paper title queries. 64

3.2 Example URLs and candidate URLs. 67

3.3 Summary of datasets. Total and positive instances are shown using (T) and

(+), respectively. 68

3.4 Conference venue (#papers) in the CiteSeerx dataset. 69

xv

3.5 Datasets characteristics. 71

3.6 RankSVM vs. supervised classifiers on DBLP. 73

3.7 Performance of paper classifier on “Test”. “P” stands for the paper class,

while “A” for the average of classes. “B” and “M” stand for binary and

multi-class, respectively. 74

3.8 Example of title and author name queries. 75

3.9 Number of papers obtained through Path 1 and Path 2 in our Search/Crawl/Process

framework. 76

3.10 A few examples where our framework was not able to locate the correct home-

page . 79

3.11 CNN vs. co-training and supervised models. 81

3.12 The performance of CNN-Combined model with and without self training. . 83

3.13 Errors made by CNN-Combined model, along with model’s confidence values.

The blue part in each URL indicates the part of the URL that is used as input

to a model. 84

3.14 Homepages from 10, 000 title and 14, 808 author search responses in a large-

scale experiment. 84

4.1 Notations. 106

4.2 Datasets description. 113

4.3 Top-30 selected features from the BoW (encoded from the entire content of

documents) by using information gain. 118

4.4 Top-30 selected features from the 43 structural features using information gain.120

4.5 Exploratory analysis. 122

4.6 Performance of different features/models on our datasets. 123

4.7 Performance (in %) of different features/models on our datasets. 125

xvi

Acknowledgments

I would like to appreciate all of the people who have supported my research and this

dissertation. I begin by thanking my advisor, Dr. Cornelia Caragea, for her patience,

guidance and support during my graduate studies. I deeply admire Dr. Cornelia Caragea

for her persistence in the pursuit of long-term visions. I would like to thank all other members

of my dissertation committee, Dr. Doina Caragea, Dr. Daniel Andresen, and Dr. Caterina

Scoglio and the outside chair Dr. Jaebeom Suh. Their feedback was valuable and helped me

improve my dissertation.

I am very grateful to my colleagues from Kansas State University, University of North

Texas, and Column for their support during my graduate studies. I would like to thank the

department of Computer Science at Kansas State University for giving me an admission and

financial support for my graduate study.

Finally, my deepest appreciation to my parents, Indubhai Patel and Kalpanaben Patel,

my brother Vishrut Patel, my sister Shruti Patel, my brother-in-law Jignesh Patel, and

my grand parents, Babubhai Patel and Savitaben Patel for their support, encouragement,

prayers, and being there for me in every situation. I would also like to thank all of my friends

from Dharmsinh Desai University, University of North Texas, and Kansas State University.

I dedicate this dissertation to my parents for their unconditional love and support through-

out my entire life.

xvii

Chapter 1

Introduction

In this chapter, we discuss the background and motivation of our study on keyphrase ex-

traction and its applications to digital libraries.

1.1 Background

Scientific portals such as Google Scholar, Semantic Scholar, ACL Anthology, CiteSeerx, and

ArnetMiner, provide access to scholarly publications and comprise indispensable resources for

researchers who search for literature on specific subject topics. Moreover, many applications

such as document and citation recommendation1–3, expert search4;5, topic classification6;7,

and keyphrase extraction and generation8–11, involve Web-scale analysis of up-to-date re-

search collections. Moreover, open access scientific portals usually collect the documents

from online repositories as well as maintains a list of seed URLs for crawling the documents.

Keyphrases associated with research papers provide an effective way to find useful in-

formation in the large and growing scholarly digital collections. Keyphrase extraction is

the task of automatically extracting a small set of descriptive words or phrases that can

accurately summarize the topics discussed in a document12;13. Keyphrases are useful in

many applications such as document indexing, classification, clustering, recommendation,

and summarization14–17, contextual advertising18, and opinion mining19. Most of the previ-

1

ous approaches to keyphrase extraction are either supervised or unsupervised. Due to their

high importance, many approaches to keyphrase extraction have been proposed in the liter-

ature. While supervised approaches perform generally better20, the unsupervised ones have

the advantage that they do not require large human-annotated corpora for training reliable

models. Most of the keyphrase extraction approaches work in two steps. First, a set of

candidate words or phrases are formed using certain part-of-speech (POS) tags (e.g., nouns

and adjectives) and patterns (e.g., at least one noun possibly preceded by adjectives)21. Sec-

ond, the candidate words or phrases are ranked based on the aggregated “informativeness”

scores of the individual words comprising a phrase22;23 in unsupervised approaches, or are

classified as keyphrases or non-keyphrases based on a set of linguistic and statistical features

such as tf-idf, POS tags, and the relative position of phrases in documents21;24 in supervised

approaches.

A growing number of research libraries, museums, and archives around the world are

embracing web archiving as a mechanism to collect born-digital material made available

via the web. The Web archived data can also provide access to the documents of different

types and domains. The Web archived data usually contains high-quality documents that

are very useful for creating specialized collections of documents. To create such collections,

there is a substantial need for automatic approaches that can distinguish the documents of

interest for a collection out of the large collections (of millions in size) from Web Archiving

institutions. The amount of data that these web archiving initiatives generate is typically

at levels that dwarf traditional digital library collections. As an example, in a recent im-

promptu analysis, Jefferson Bailey of the Internet Archive noted that there were 1.6 Billion

PDF files in the Global Wayback Machine25. If just 1% of these PDFs are of interest for

collection organizations, that would result in a collection larger than the 15 million volumes

in HathiTrust26.

2

1.2 Motivation and Contributions

Open access scientific portals usually collect the documents from online repositories as well

as maintains a list of seed URLs for crawling the documents. However, given the dynamic

nature of the Web, maintaining comprehensive, up-to-date collections of seed URLs is very

challenging task. For automatically augmenting the document collections, we propose a

novel framework based on Web search. To motivate our framework, we recall how a Web

user typically searches for research papers or authors. As with regular document search,

a user typically issues Web search queries comprising of representative keywords or paper

titles for finding publications on a topic. Similarly, if the author is known, a “navigational

query”27 may be employed to locate the homepage where the paper is likely to be hosted.

For maintaining the accurate list of researchers’ homepages, one approach would be to crawl

academic websites (e.g., from a university domain) and use a machine learning classifier

to predict whether a website accessed during the crawl is an author homepage or not28.

However, this approach: (1) is still inefficient (e.g., in terms of bandwidth and storage

resources) since only a small fraction of the websites hosted in an academic domain are

author homepages (with many websites corresponding to departments, courses, groups, etc),

and (2) misses homepages from research industry labs, which do not belong to the academic

domain (e.g., ∼51% of the homepages in our dataset are not from the .edu domain). An

alternative, more efficient approach, is to use a broader Web search for author discovery

together with an accurate homepage classifier.

For the keyphrase extraction, in the supervised setting, researchers have started to ad-

dress keyphrase extraction as a sequence labeling task29–31. For example, Gollapalli et al. 29

formulated keyphrase extraction as sequence labeling and showed on several datasets of

research papers that using Conditional Random Fields (CRFs) can improve the perfor-

mance over previous supervised and unsupervised models for this task. The authors used

word features such as “WordIsCapitalized,” “WordIsStopword,” NP-chunking and POS tags,

and “WordIsInTitle,” as well as their combinations, e.g., “WordIsInTitle and Word POS

tag=noun.” However, this approach does not capture the semantics of words in context

3

that are often hidden in text. We posit that incorporating word semantics in context in a

CRF model has the potential to further improve the performance of keyphrase extraction

from research papers. In the unsupervised setting, more recently, Mahata et al. 32 proposed

a theme-weighted biased PageRank, called Key2Vec, for keyphrase extraction. In Key2Vec,

a theme-vector is computed by averaging the embeddings of words and phrases from the

title of a scientific document to capture its theme and the PageRank is biased based on the

similarity of candidate words or phrases to the computed theme vector. However, this model

is oblivious to the position of words in a scientific document, in which more important words

appear not only frequently, but also close to the beginning of the document33.

While the number of Web Archiving institutions increases, the technologies needed to

provide access to these large collections have not improved significantly over the years. The

use of full-text search has increased in many web archives around the world, but often

provides an experience that is challenging for users because of the vast amount of content

and the limitations of strictly text-based searches for these large heterogeneous collections

of content. Our research is aimed at understanding how well machine learning and deep

learning models can be employed to provide assistance to collection maintainers who are

seeking to classify the PDF documents from their web archives into being within scope for

a given collection or collection policy or out of scope.

The main purpose of this dissertation

In this dissertation we divided this research into three parts and they are as following.

1. Keyphrase Extraction from Scientific Documents

2. Applications of Keyphrases/Keywords

• Scientific Documents Discovery

• Researchers’ Homapages Discovery

3. Document Classification in Web Archiving Collections

4

1.2.1 Keyphrase Extraction from Scientific Documents

For the keyphrase extraction task, we proposed a supervised CRF based approach that ex-

ploits un contextual word embeddings along with document specific features. Furthermore,

we proposed an unsupervised keyphrase extraction approach, KPRank, that utilizes posi-

tional information of the words along with the contextual word embeddings for computing

the biased pagerank score to rank candidate phrases. Furthermore, investigate and contrast

three supervised keyphrase extraction models to explore their deployment in CiteSeerX dig-

ital library. In summary, our contributions are as follows:

• We propose to incorporate word semantics in CRF models for keyphrase extraction

through the use of word embeddings. We study the sensitivity of CRFs based on word

embedding types, i.e., those pre-trained on Google News as well as those trained on a

large collection of ACM research papers. As part of our contributions, we will make

available the IDs of our ACM dataset and the word embeddings.1

• We experimentally show that the CRF models that use word embeddings in addition

to features extracted from the document itself outperform strong baselines and other

previous approaches for keyphrase extraction.

• We propose KPRank, an unsupervised graph-based algorithm that exploits both the

position of words in a document and the contextual word embeddings for computing

a biased PageRank score for ranking candidate phrases

• We show empirically that infusing position information into our biased KPRank model

yields better performance compared with its counterpart that does not use the position

information. In addition, KPRank with contextual SciBERT embeddings performs

better than FastText-based KPRank. Finally, we show that KPRank outperforms

many previous unsupervised models.

• We review keyphrase extraction in scholarly digital libraries, using CiteSeerX as a

1The code and data are available upon request.

5

case study. Moreover, we show the development and deployment requirements of the

keyphrase extraction models and the maintenance requirements.

1.2.2 Applications of Keyphrases/Keywords

Keyphrases or keywords are very useful to formulate queries that can retrieve topically-

related articles from the Web. We propose two search driven approaches for acquiring sci-

entific documents and maintaining a large collection of researcher homepages. Moreover, we

also designed a traditional machine learning based researcher homepage ranking approach

and a convolutional neural network based researcher homepage classifier used in our scientific

document acquisition framework and researcher homepage discovery framework, respectively.

Our contributions are as follows:

• We propose a novel integrated framework based on search-driven methods to automat-

ically acquire research documents for scientific collections. To our knowledge, we are

the first to use “Web Search” based on author names to obtain seed URLs for initiat-

ing crawls in an open-access digital library. Moreover, we design a traditional machine

learning based novel homepage identification module and adapt existing research on

academic document classification, which are crucial components of our framework. We

show experimentally that our homepage identification module and the research paper

classifier substantially outperform strong baselines.

• To automatically acquire research documents, we perform a large-scale, first-of-its-

kind experiment using 43, 496 research paper titles and 32, 816 author names from

Computer and Information Sciences. We compare our framework with two baselines,

a breadth-first search crawler and, to the extent possible, the Microsoft Academic. We

discuss that our framework does not substitute these systems, but rather they very well

complement each other. We compare our framework with two baselines, a breadth-first

search crawler and, to the extent possible, the Microsoft Academic. We discuss that

our framework does not substitute these systems, but rather they very well complement

6

each other. As part of our contributions, we will make all the constructed datasets

available.

• We propose a search-driven homepage finding approach that uses author names and

paper titles to find researcher homepages. To our knowledge, we are the first to use

“paper titles” as queries to discover researcher homepages. Furthermore, we explore

Convolutional Neural Networks (CNNs) for author homepage identification,2 which is

a crucial component in our approach. We conduct a thorough evaluation of the CNN

models trained on both URLs and page content, and show significant improvements in

performance over baselines and prior works. Furthermore, we show that self training

can improve the performance of the classifier with the small amount of labeled data

along with the unlabeled data.

• To discover researcher homepages, we perform a large-scale experiment using author

names and paper titles from Computer Science as queries, and show the effectiveness

of our approach in discovering a large number of homepages. Finally, as part of our

contributions, all resulting datasets for author homepage identification and homepage

discovery will be made available to further research in this area. We show the devel-

opment and deployment requirements of our proposed approach in CiteSeerX and the

maintenance requirements.

1.2.3 Document Classification in Web Archiving Collections

We explore different learning models and feature representations to determine the best per-

forming ones for identifying the documents of interest from the web archived data. Moreover,

we explore dynamic fusion models to find, on the fly, the model or combination of models that

performs best on a variety of document types. We focus our evaluation on three datasets

that we created from three different Web archives. In summary, we make the following

contributions:

2We use author homepage classification or identification interchangeably.

7

• We built three datasets from three different web archives collected by the UNT libraries,

each covering different domains: UNT.edu, Texas.gov, and USDA.gov. Each dataset

contains the PDF document along with the label indicating whether a document is in

scope of a collection or not. We will make these datasets available to further research

in this area.

• We show that BoW classifiers that use only some portion of the documents outperform

BoW classifiers that use full text from the entire content of a document, the structural

features based classifiers, and the CNN classifier. We also show that feature selection

using information gain improves the performance of the BoW classifiers and structural

features based classifiers, and present a discussion on the most informative features for

each collection.

• We propose a dynamic classifier selection for document classification (DCSDC) to dy-

namically select an appropriate classifier to predict the probability of a target document

as being in scope of a collection or not. To dynamically select the classifiers, we con-

sider textual similarity along with the structural aspects of the documents. We show

that DCSDC outperforms all the individual feature set models (base classifiers) and

other strong baselines.

• We propose a dynamic decision-level fusion for document classification (DDFC) that

derives competence features from neighborhood documents and learns a classifier to

assign a competence score for each base classifier (BoW, Str, and CNN) in order to fuse

them and to predict the probability of a target document as being in scope of a col-

lection or not. To derive the competence features, we consider textual similarity along

with the structural aspects of the documents. We show that DDFC outperforms all

the individual feature set models (base classifiers) and other strong baselines including

DCSDC.

8

1.3 Dissertation Outline and Published Work

In what follows, we provide a brief description of the chapters in the dissertation. Each chap-

ter corresponds to multiple papers. The research work of the dissertation has been published

either in conference proceedings, or will be submitted to a conference proceeding. Our goal is

to study keyphrase extraction and its applications to digital libraries. Precisely, we propose

CRF-based supervised and an unsupervised keyphrase extraction algorithm named KPRank.

We also explored integration of different keyphrase extraction models in to CiteSeerX. More-

over, we propose two search driven approaches for acquiring scientific documents, and main-

taining a large collection of researcher homepages. We use research paper titles (keywords)

and author names as queries in our frameworks. Furthermore, we explored different machine

learning and deep learning models for identifying documents in-scope of a collection from

Web archives. We explore dynamic fusion models to find, on the fly, the model or combina-

tion of models that performs best on a variety of document types. We proposed two dynamic

classifier selection algorithms: Dynamic Classifier Selection for Document Classification (or

DCSDC), and Dynamic Decision level Fusion for Document Classification (or DDFC).

This dissertation is structured as follows:

Chapter 2: In this chapter, we present our proposed work on keyphrase extraction tasks

that is briefly described in Section 1.2.1. The proposed CRF-based supervised keyphrase

extraction approach is published in the 10th International Conference on Knowledge Capture

(K-Cap 2019)10. Moreover, the proposed KPRank, an unsupervised keyphrase extraction

algorithm, is accepted at the 16th Conference of the European Chapter of the Association

for Computational Linguistics (ECAL 2021). And, the explorarion of the deployment of

keyphrase extrations models in CiteSeerX is published in the 2020 International Conference

on Web Services (ICWS 2020)34.

Chapter 3: In this chapter, we present our proposed work on the applications of

kephrases/keywords for acquiring scientific documents and maintaining a large collection

of researcher homepages as briefly described in Section 1.2.2. The proposed framework for

augmenting the document collections in the scientific digital library is published in the First

9

Workshop on Scholarly Document Processing (SDP@EMNLP 2020)35. And, the proposed

framework for maintaining the accurate list of researchers’ homepages is published in the

Thirty-Third Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-

21)36.

Chapter 4: In this chapter, we present our work on the document classification task

in the Web archiving collections briefly explained in Section 1.2.3. The exploration of dif-

ferent base classifiers for identifying documents in-scope of a collection from Web archives

is published in the ACM/IEEE Joint Conference on Digital Libraries (JCDL 2020)37. Our

proposed dynamic classifier selection approach (DCSDC) is published in the 12th Language

Resources and Evaluation Conference (LREC 2020)38. Moreover, our competency learning-

based dynamic classifier selection approach (DDFC) will be submitted to the ACM/IEEE

Joint Conference on Digital Libraries (JCDL 2021).

Chapter 5: We summarize and conclude the dissertation. We also provide a summary

of contributions and directions for future research.

10

Chapter 2

Keyphrase Extraction from Scientific

Documents

Keyphrases associated with research papers provide an effective way to find useful informa-

tion in the large and growing scholarly digital collections. However, keyphrases are not always

provided with the papers, but they need to be extracted from their content. In this chapter,

we explore keyphrase extraction as a supervised task and formulated as sequence labeling

and utilize the power of Conditional Random Fields in capturing label dependencies through

a transition parameter matrix consisting of the transition probabilities from one label to the

neighboring label. We aim at identifying the features that, by themselves or in combination

with others, perform well in extracting the descriptive keyphrases for a paper. Specifically,

we explore word embeddings as features along with traditional, document-specific features

for keyphrase extraction. Our results on five datasets of research papers show that the word

embeddings combined with document specific features achieve high performance and out-

perform strong baselines for this task. Moreover, we also propose KPRank, an unsupervised

graph-based algorithm for keyphrase extraction that exploits both positional information

and contextual word embeddings into a biased PageRank. Our experimental results on five

benchmark datasets show that KPRank that uses contextual word embeddings with addi-

tional position signal outperforms previous approaches and strong baselines for this task.

11

Scholarly digital libraries provide access to scientific publications and comprise useful

resources for researchers who search for literature on specific subject areas. CiteSeerX is

an example of such a digital library search engine that provides access to more than 10

million academic documents and has nearly one million users and three million hits per day.

Artificial Intelligence (AI) technologies are used in many components of CiteSeerX includ-

ing Web crawling, document ingestion, and metadata extraction. CiteSeerX also uses an

unsupervised algorithm called noun phrase chunking (NP-Chunking) to extract keyphrases

out of documents. However, often NP-Chunking extracts many unimportant noun phrases.

Thus, we investigate and contrast three supervised keyphrase extraction models to explore

their deployment in CiteSeerX for extracting high quality keyphrases. To perform user eval-

uations on the keyphrases predicted by different models, we integrate a voting interface into

CiteSeerX. We show the development and deployment of the keyphrase extraction models

and the maintenance requirements.

2.1 Introduction

Keyphrase extraction is the task of automatically extracting a small set of meaningful words

or phrases that can accurately summarize the topics discussed in a document12. Keyphrases

therefore provide a high-level topic description of a document, can allow for efficient data

organization and information processing, and have a high impact on document understand-

ing and reading comprehension. Additionally, keyphrases associated with a document are

often useful in many applications such as document indexing, classification, clustering, rec-

ommendation, and summarization14–17, contextual advertising18, and opinion mining19. Due

to their high importance, many approaches to keyphrase extraction have been proposed in

the literature. Most of these approaches are either supervised or unsupervised and work in

two steps. First, a set of candidate words or phrases are formed using certain part-of-speech

(POS) tags (e.g., nouns and adjectives) and patterns (e.g., at least one noun possibly pre-

ceded by adjectives)21. Second, the candidate words or phrases are ranked based on the

aggregated “informativeness” scores of the individual words comprising a phrase22;23 in un-

12

supervised approaches, or are classified as keyphrases or non-keyphrases based on a set of

linguistic and statistical features such as tf-idf, POS tags, and the relative position of phrases

in documents21;24 in supervised approaches.

In the supervised setting, more recently, researchers started to address keyphrase extrac-

tion as a sequence labeling task29–31. For example, Gollapalli et al. 29 formulated keyphrase

extraction as sequence labeling and showed on several datasets of research papers that using

Conditional Random Fields (CRFs) can improve the performance over previous supervised

and unsupervised models for this task. The authors used word features such as “WordIsCap-

italized,” “WordIsStopword,” NP-chunking and POS tags, and “WordIsInTitle,” as well as

their combinations, e.g., “WordIsInTitle and Word POS tag=noun.” However, this approach

does not capture the semantics of words in context that are often hidden in text. We posit

that incorporating word semantics in context in a CRF model has the potential to further

improve the performance of keyphrase extraction from research papers.

One way to capture word semantics is to use word embeddings or the distributed vector

representations of words, trained on very large collections of documents in an unsupervised

fashion39. Along this line, Turian et al. 40 showed on two NLP tasks, chunking and named

entity recognition, that using word embeddings in existing supervised systems is a simple

and general method to improve their performance. Marujo et al. 41 and Mahata et al. 32

showed promising results on keyword extraction by incorporating word embeddings into su-

pervised and unsupervised models. However, unlike these works, we investigate the discrimi-

native power of word embeddings in sequence labeling based models. Specifically, we address

keyphrase extraction as sequence labeling using CRF models and explore word embeddings

as features, by themselves or in combination with other statistical and linguistic features, to

determine their discriminative power in correctly extracting the descriptive keyphrases for a

research paper.

In the unsupervised setting, more recently, Mahata et al. 32 proposed a theme-weighted

biased PageRank, called Key2Vec, for keyphrase extraction. In Key2Vec, a theme-vector is

computed by averaging the embeddings of words and phrases from the title of a scientific

document to capture its theme and the PageRank is biased based on the similarity of can-

13

didate words or phrases to the computed theme vector. However, this model is oblivious

to the position of words in a scientific document, in which more important words appear

not only frequently, but also close to the beginning of the document33. Inspired by the

Transformer models42 that infuse positional information into the word embeddings to pro-

duce embeddings with time signal, we propose an extension of Key2Vec that incorporates

words’ positions into a biased PageRank. Moreover, different from Mahata et al. 32 , who

used non-contextual FastText embeddings43, we propose to integrate SciBERT contextual

embeddings44 into our biased PageRank extension.

Due to the high importance of keyphrases, several online digital libraries such as the

ACM Digital Library have started to impose the requirement for author-supplied keyphrases.

Specifically, these libraries require authors to provide keyphrases that best describe their pa-

pers. However, keyphrases have not been integrated into all sharing mechanisms. For exam-

ple, the AAAI digital library (http://www.aaai.org/) does not provide keyphrases associated

with the papers published in the AAAI conferences. In an effort to understand the coverage

of papers with author-supplied keyphrases in open access scholarly digital libraries, we per-

formed the following analysis: we randomly sampled 2, 000 papers from CiteSeerX, and man-

ually inspected each paper to determine whether a paper contains author-supplied keyphrases

and if the paper was published by ACM. Note that in most of the ACM conference proceeding

templates, the authors need to provide keyphrases (keywords) after the “Abstract” section.

For completeness, the ACM templates from years 1998, 2010, 2015, and 2017 were adopted

for visual inspection. Out of our 2, 000 sample, only 31 (1.5%) papers were written using

ACM templates and only 769 papers (38%) contain author-supplied keyphrases. Out of 31

papers written using ACM templates, 25 contain author-supplied keyphrases. The fact that

around 62% of papers sampled do not have author-supplied keyphrases indicates that auto-

matic keyphrase extraction is needed for scholarly digital libraries. The CiteSeerX website

currently displays keyphrases extracted using an unsupervised phrase chunking method45.

Thus, we review keyphrase extraction in scholarly digital libraries, using CiteSeerX as a case

study. . We investigate the impact of displaying keyphrases on promoting paper down-

loading by analyzing search engine access logs in three years from 2016 to 2018. Then, we

14

interrogate the quality of several supervised keyphrase extraction models to explore their

deployment in CiteSeerX and perform a large scale keyphrase extraction - first of its kind for

this task. Moreover, to get user evaluations on the predicted keyphrases on a large scale, we

implement and integrate a voting interface, which is widely used in social networks and multi-

media websites, such as Facebook and YouTube. We show the development and deployment

requirements of the keyphrase extraction models and the maintenance requirements.

Our contributions are as follows:

• We propose to incorporate word semantics in CRF models for keyphrase extraction

through the use of word embeddings. We study the sensitivity of CRFs based on word

embedding types, i.e., those pre-trained on Google News as well as those trained on a

large collection of ACM research papers. As part of our contributions, we will make

available the IDs of our ACM dataset and the word embeddings.1

• We experimentally show that the CRF models that use word embeddings in addition

to features extracted from the document itself outperform strong baselines and other

previous approaches for keyphrase extraction.

• We propose KPRank, an unsupervised graph-based algorithm that exploits both the

position of words in a document and the contextual word embeddings for computing

a biased PageRank score for ranking candidate phrases

• We show empirically that infusing position information into our biased KPRank model

yields better performance compared with its counterpart that does not use the position

information. In addition, KPRank with contextual SciBERT embeddings performs

better than FastText-based KPRank. Finally, we show that KPRank outperforms

many previous unsupervised models.

• We review keyphrase extraction in scholarly digital libraries, using CiteSeerX as a

case study. Moreover, we show the development and deployment requirements of the

keyphrase extraction models and the maintenance requirements.

1The code and data are available upon request.

15

2.2 Related Work

Keyphrase extraction has been the focus of many supervised and unsupervised studies12. In

the supervised studies, the prediction is done based on a selection of linguistic and statistical

features extracted from the text of a document, e.g., a word or phrase part of speech (POS)

tags, tf-idf scores, and position information, used in conjunction with machine learning clas-

sifiers such as Näıve Bayes and Support Vector Machines21;24;46;47. These features were also

combined with features extracted from external sources such as WordNet and Wikipedia48;49

or from various document neighborhoods, e.g., a document’s citation network11;50.

Unsupervised studies include phrase scoring methods based on measures such as tf-idf

and topic proportions51–53, graph-based ranking using centrality measures, e.g., PageRank

scores22;23;33;54;55, and keyphrase selection from topics detected using topic modeling56;57.

Blank et al. 58 ranked keyphrases for a target paper using keyphrases from the papers that

are cited by the target paper or that cite at least one paper that the target paper cites. In

the unsupervised context, several extensions of PageRank have been proposed that make

use of a document’s citation network59 or that bias the random walk based on the words’

positions in text33 or the words’ topic distribution estimated using topic models60. In order

to add semantic relatedness between the words in a word graph, Martinez-Romo et al. 61

used information from WordNet. The best performing SemEval 2010 system used term

frequency thresholds to filter out phrases that are unlikely to be keyphrases, where the

thresholds were estimated from the data62. The candidate phrases were ranked using tf-idf

in conjunction with a boosting factor that was aimed at reducing the bias towards single

words. Danesh et al. 63 computed an initial weight for each phrase based on a combination

of the tf-idf score and the first position of a phrase in a document. Phrases and their

initial weights were then incorporated into a graph-based algorithm which produces the final

ranking of keyphrases. Adar and Datta64 extracted keyphrases by mining abbreviations

from scientific literature and built a semantic hierarchical keyphrase database. Many of the

above approaches, both supervised and unsupervised, are compared and analyzed in the ACL

survey on keyphrase extraction by Hasan and Ng 13 . Fan et al.65 used a random-walk method

16

to extract keyphrases using word embeddings combined with the features of candidate words

and edges from the word graph.

Neural networks and word embeddings have started to be incorporated into models for

keyphrase extraction. For example, Wang et al. 66 investigated word embeddings to measure

the relatedness between words in graph-based models. Marujo et al. 41 used word embed-

dings in the existing supervised MAUI system48 to extract keywords from tweets. Mahata

et al. 32 exploited word and phrase embeddings in an unsupervised topic-biased PageRank

to extract keyphrases from research papers and showed improvements in performance over

models that do not use embeddings. Bennani-Smires et al. 67 explored simple models for

keyphrase extraction based on sentence embeddings. A Recurrent Neural Network (RNN)

based approach was proposed by Zhang et al. 68 to identify keyphrases in Twitter data, us-

ing a joint-layer RNN to capture the semantic dependencies in the input sequence, but did

not address the dependencies in the labels. Ray Chowdhury et al. 69 extended this joint-

layer RNN to capture informal writing in tweets. Augenstein and Søgaard 70 used multi-task

learning to classify keyphrase boundaries.

Inspired from work in machine translation, Meng et al. 71 focused on keyphrase generation

(rather than keyphrase extraction) and addressed the task as a sequence to sequence learning

problem, where the sequence of words in a document is used to generate a sequence of

keyphrases. An Encoder-Decoder RNN, originally proposed by Cho et al. 72 , was used to

generate the keyphrase sequences. Several other works focused on keyphrase generation73–75.

Unlike these works, we focus on keyphrase extraction and not keyphrase generation, which

generates words that may or may not be present in the text. Specifically, we mine the

content of documents to extract keyphrases that are present in their content, using CRF-

based sequence labeling and the power of unsupervised word embeddings.

Sequence labeling models for keyphrase extraction have shown promising results in several

studies29–31. For example, Gollapalli et al. 29 trained a CRF to extract keyphrases from

scholarly documents, using features such as tf-idf and POS tags to predict a label for each

token position in a document as being a keyphrase token (KP) or not (Non-KP). Recently,

a sequence labeling framework has been explored on a variety of NLP tasks such as POS

17

tagging, noun phrase chunking, named entity recognition, and keyphrase extraction76–79 that

combines a Bi-LSTM network as the first layer to capture sequential text dependencies with

a second CRF layer to capture label dependencies.

In our work, we explore word embeddings in CRF models as a simple and general ap-

proach for keyphrase extraction from scholarly documents, and contrast this with the more

sophisticated model, Bi-LSTM-CRF. To our knowledge, in the context of keyphrase extrac-

tion from scholarly documents, we are the first to directly use word embeddings as features

in CRF-based models and show improved results over previous models. Moreover, differ-

ent from Mahata et al. 32 , who used non-contextual FastText embeddings43, we propose to

integrate SciBERT contextual embeddings44 into our biased PageRank extension.

2.3 Proposed Approaches and Methods Used in Cite-

SeerX Case Study

First, we discuss our proposed CRF-based supervised keyphrase extraction approach. Sec-

ond, we discuss our proposed KPRank, an unsupervised keyphrase extraction algorithm.

Last, we discuss different keyphrase extraction methods that we used in CiteSeerX case

study.

2.3.1 CRF-Based Supervised Keyphrase Extraction

CRF: We formulate keyphrase extraction as sequence labeling using Conditional Random

Fields80. CRFs combine the advantages of graphical modeling and discriminative classifica-

tion and have majors advantages over other graphical models, e.g., the ability to handle a

large number of rich features and the ability to avoid the label bias problem (favoring the

states with less outgoing transition) by using global normalization and accounting for the

entire sequence at once. In CRFs, for an input sequence x = {x1,x2, · · · ,xn}, where each

xi represents the feature vector for the ith word wi in the sequence, the task is to predict a

sequence of labels y = {y1, y2, · · · , yn}, where yi is assigned to wi. In our CRF model, each

18

x1 x2 xn−1 xn

input · · ·

output · · ·
y1 y2 yn−1 yn

Figure 2.1: Layers in a CRF network.

feature vector xi consists of individual or combinations of two types of features, document

specific features and word embeddings, described below. Figure 2.1 shows a simple CRF

network. The features that we use in our CRF models are described below.

Document Specific Features (DOC): We use six features for each word that are

extracted from the target paper: a word’s POS tag (POS)21, term frequency-inverse doc-

ument frequency (tf-idf) computed based on the target paper24; the position of the first

occurrence of a word normalized by the length of the target paper (in the number of tokens)

(relative position)21;24; the distance of the first occurrence of a word from the beginning

of a paper (first position)11; a binary feature indicating the presence of the word in the

title (is-in-title)81;82; and a binary feature indicating whether the word was capitalized (is-

capitalized)29. The choice of these features was motivated by their good performance in

previous models11;21;24.

Word Embedding Features (EMB): Word embeddings are vector representations

of words as dense vectors. Precisely, using word embeddings, words are expressed as dense

vectors by projecting each word into a multidimensional vector space. The position of a

word within the vector space or the embedding is learned from the text by considering the

surrounding words from its local context, and hence, can capture the semantic relations

from text. We use the components of multidimensional word embeddings of each word as

its features.

Bi-LSTM-CRF: In order to build a sequence labeling model that incorporates long

distance information over a sequence of input as well as information on the output sequence,

we consider the Bi-LSTM-CRF network as a more sophisticated and complex model. The

network architecture is shown in Figure 2.2. As shown in the figure, the first layer of the

model is a Bi-LSTM network with the purpose of capturing the semantics of the input text

19

x1 x2 xn−1 xn

input · · ·

hidden

backward

· · ·
· · ·

forward

output · · ·
y1 y2 yn−1 yn

Figure 2.2: Layers in a Bi-LSTM-CRF network.

sequence. The output of the Bi-LSTM layer is passed to a CRF layer that produces a

probability distribution over the tag sequence using the dependencies among labels of the

entire sequence.

2.3.2 KPRank: An Unsupervised Keyphrase Extraction Algo-

rithm

Here, we describe our unsupervised graph-based algorithm called KPRank, that exploits both

position information of the words in a document along with contextual word embeddings

for computing a biased PageRank score for each candidate word. Our approach consists of

three steps: (1) candidate word selection and word graph construction; (2) word scoring by

biased PageRank; and (3) candidate phrase formation.

Candidate Word Selection and Graph Construction

For a target doucment D, we first apply a part-of-speech filter2 and select only nouns and

adjectives as candidate words, consistent with previous works22;23;59. We build a word graph

G = (N,E) for D using the candidate words as nodes in G. N and E are the sets of nodes

and edges, respectively. We consider an edge (ni, nj) ∈ E between two nodes ni and nj in N

if the words corresponding to these nodes appear within a window of k consecutive words in

the content of D. We experimented with values of k from 1 to 10 and obtained best results

with k = 10, which is consistent with22. The weight of an edge (ni, nj), denoted as wij, is

computed based on the co-occurrence count of the two words within k consecutive words in

2We used Python’s NLTK toolkit for POS tagging.

20

Figure 2.3: Illustration of our approach.

D (k = 10). Here, we build undirected graphs because prior work23;60 observed that the type

of graph (directed or undirected) used to represent the text does not significantly influence

the performance of the keyphrase extraction task.

Biased PageRank

Preliminaries. PageRank83 is a graph-based ranking algorithm that iteratively calculates

the importance of each node in a graph through endorsements from its neighbors. For

document D, we construct an undirected graph G as explained above. Initially, the score of

each node in G is set to 1
|N | . This score is then iteratively updated using PageRank. That

is, the score s for node ni is obtained by applying the equation:

s(ni) = (1− α)p̃i + α
∑

nj∈Adj(ni)

wji

O(nj)
s(nj) (2.1)

where O(nj) =
∑

nk∈Adj(nj) wjk and Adj(nj) is the set of all adjacent nodes of node nj ∈ N .

p̃i is defined below.

In order to prevent the PageRank from getting stuck in cycles or dead ends, a dumping

factor α was added to Eq. (1) to allow the PageRank to randomly jump to any node in the

graph (α = 0.85). Let p̃ = [p̃1, · · · , p̃i, · · · , p̃|N |] be the probability distribution of randomly

jumping to any node in the graph. For an unbiased PageRank, this is a uniform distribution,

with p̃i = 1
|N | , for all i from 1 to |N |. For a biased PageRank, this probability distribution

is not uniform, but rather the nodes in the graph are visited preferentially, with some nodes

being visited more often than others, depending on the p̃i value for node ni
84. Key2Vec

is an example of (topic) biased PageRank for keyphrase extraction that computes p̃i for

node ni using the cosine similarity between the embedding of word/phrase corresponding to

21

node ni and a theme vector for the entire document, which corresponds to the aggregated

word/phrase embeddings from the document’s title32. That is, p̃i is higher for words/phrases

that are topically (semantically) more similar to the overall theme vector for the document.

Next, we describe our extension KPRank of Key2Vec.

KPRank. In our proposed approach, we calculate p̃i for node ni using two types of

scores: theme (or topic) score and positional score. We multiply both scores to assign a final

weight to node ni before running the biased PageRank algorithm. Both scores and their

calculation are explained below.

To calculate the theme score (tsi) for node ni ∈ N , we first calculate a theme vector (TD)

for document D. A theme vector is obtained by averaging SciBERT44 word embeddings of

adjectives and nouns from D’s title. The theme score for node ni is calculated using the

cosine similarity of the SciBERT word embedding corresponding to node ni and TD. The

idea is to assign a higher score to a word if that word is closer to the theme (topic) of a

given document. For obtaining word embeddings, for all the words with similar stemmed

version (obtained with Porter stemmer), we averaged the contextualized word embeddings

of a word obtained by using SciBERT. We used the title and abstract of a document as input

to the SciBERT model. We also experimented with pretrained BERT85, and found that the

performance of BERT-based KPRank and SciBERT-based KPRank are very similar.

To calculate the positional score (psi) for node ni, we consider the set Pi that contains

all the positions of occurrence in the text of the word corresponding to node ni. Then, psi is

calculated as psi =
∑

j∈Pi

1
j
. For example, for a word occurring on positions 1 and 10 in the

text, its psi score is 1
1

+ 1
10

, whereas for a word occurring on position 100, its psi score is 1
100

.

The intuition behind this weighting scheme is to give higher weight to words appearing in the

beginning of a document since in scientific writing, authors tend to use keyphrases very early

in the document (even from the title)33. Based on these considerations, the first position

of a phrase/word and its relative position are also used in many supervised approaches as

powerful features10;21;86.

To calculate the weight wi for ni, we perform multiplication of both the theme score (tsi)

and the positional score (psi). The intuition is that we give preference to words that appear

22

near the beginning of the document and are more frequent as compared with less frequent

words appearing later in document even though both words may be equally close to the

theme of the document or may have similar theme score. The vector p̃ is last set to the

normalized weights for each node as follows:

p̃ =

[
w1∑|N |
i=1wi

,
w2∑|N |
i=1 wi

, ...,
w|N |∑|N |
i=1 wi

]
(2.2)

The biased PageRank scores for each node ni are finally calculated by iteratively applying

Eq. (1) with p̃ as in Eq. (2). Figure 2.3 shows the illustration of our approach. As can be

seen, even though both n1 and n4 have similar theme score, final weights are different based

on different positional scores.

In our experiments, the PageRank scores are updated until the difference between two

consecutive iterations is ≤ 0.001 or for 100 iterations.

Candidate Phrases Formation

Candidate words appearing continuously in the document are concatenated to generate can-

didate phrases. We consider phrases with the regular expression (adjective)*(noun)+, of

length up to four words, to generate candidate phrases. We used stemmed version of each

word using Porter stemmer. We use POS tagger from Python’s NLTK toolkit. The score

for each candidate phrase is calculated by summing up the scores of its individual words22.

The top-scoring phrases are output as predicted keyphrases for a given document.

2.3.3 Methods Used in CiteSeerX Case Study

Here we describe three supervised keyphrase extraction models that we explore to integrate

into CiteSeerX: KEA87, Hulth21, and Citation-enhanced Keyphrase Extraction (CeKE)11.

Unlike KEA and Hulth, which only use the title and abstract of a given research article,

CeKE exploits citation contexts along with the title and abstract of the given document. A

citation context is defined as the text within a window of n words surrounding a citation

23

Figure 2.4: A small citation network for Paper 1.

mention. A citation context includes cited and citing contexts. A citing context for a target

paper p is a context in which p is citing another paper. A cited context for a target paper p

is a context in which p is cited by another paper. For a target paper, all cited contexts and

citing contexts are aggregated into a single context.

Figure 2.4 shows an example of a small citation network using a paper (Paper 1) and

its citation network neighbors. We can see the large overlap between the authors-submitted

keyphrases and the citation contexts.

KEA: Frank et al.87 used statistical features for the keyphrase extraction task and pro-

posed a method named KEA. KEA uses following statistical features: tf-idf, i.e., the term

frequency - inverse document frequency of a candidate phrase and the relative position of

a candidate phrase, i.e., the position of the first occurrence of a phrase normalized by the

number of words of the target paper. KEA extracts keyphrases from the title and abstract

of a given paper.

Hulth: Hulth21 argued that adding linguistic knowledge such as syntactic features can

yield better results than relying only on statistics such as a term frequency (tf) and n-

grams. Hulth showed remarkable improvement by adding part-of-speech (POS) tag as a

feature along with statistical features. The features used in Hulth’s approach are tf, cf (i.e.,

collection frequency), relative position and POS tags (if a phrase is composed by more than

one word, then the POS will contain the tags of all words). Similar to KEA, Hulth extracts

24

keyphrases only from the title and abstracts.

Citation-Enhanced Keyphrase Extraction (CeKE): Caragea et al.11 proposed

CeKE and showed that the information from the citation network in conjunction with tradi-

tional frequency-based and syntactical features improves the performance of the keyphrase

extraction models.

CeKE uses the following features: tf-idf; relative position; POS tags of all the words in

a phrase; first position of a candidate phrase, i.e., the distance of the first occurrence of a

phrase from the beginning of a paper; tf-idf-Over, i.e., a boolean feature, which is true if

the tf-idf of a candidate phrase is greater than a threshold θ; firstPosUnder, also a boolean

feature, which is true if the distance of the first occurrence of a phrase from the beginning

of a target paper is below a certain threshold β. Citation Network based features include:

inCited and inCiting, i.e., boolean features that are true if the candidate phrase occurs in

cited and citing contexts, respectively; and citation tf-idf, i.e., the tf-idf score of each phrase

computed from the aggregated citation contexts.

In our experiments, we compare three variants of CeKE: CeKE-Target that uses only the

text from the target document; CeKE-Citing that uses the text from the target document

and its citing contexts; CeKE-Cited that uses the text from the target document and its

cited contexts; and CeKE-Both that uses both types of contexts.

2.4 Datasets

For evaluation of our proposed CRF-based approach and KPRank, we used five datasets

of research papers for evaluation of our both proposed approaches. The first four datasets

are widely used in keyphrase extraction and include SemEval-2010, Krapivin, Inspec, and

NUS. The fifth dataset, called ACM, is a much larger dataset compared with the previous

four datasets and is created from the collection of research papers published by ACM.3 We

used the title and abstract of each paper. Note that, for each dataset we use its test set for

evaluation of unsupervised approaches. The five datasets are described below.

3https://dl.acm.org/

25

https://dl.acm.org/

1. SemEval88 contains 288 research papers from the ACM digital library along with

author-assigned keyphrases. The dataset has a train and test split consisting of 188

and 100 papers, respectively.

2. Krapivin89 contains 2,304 ACM research papers with full text and author-assigned

keyphrases. Similar to71, since the dataset does not have a train-test split, we sampled

400 papers as the test set with the remaining papers being used as the training set.

3. Inspec21 contains abstracts of 2,000 research papers. It has a train-validation-test split

of 1,000, 500 and 500 papers, respectively. In our experiments, we use the combination

of train and validation sets to train different models.

4. NUS46 contains 211 research papers. This dataset does not have a train and test

split and it is relatively small. Hence, while testing supervised algorithms, consistent

with71, we performed five-fold cross-validation.

5. ACM: Since none of the above datasets is very large, we constructed a new dataset

of 30,000 papers published in ACM conferences. These papers were sampled from the

211,028 papers available in ACM Digital Library and published after 2010. In our

experiments, we used 10,000 papers (at random) as the train set (ACM-10k) and the

remaining 20,000 papers as the test set (ACM-20k). During the dataset construction,

we ensured that there was no overlap between our ACM dataset and any of the four

datasets above.

Table 2.1 shows a summary of all five datasets and contains the number of papers in each

dataset, the average number of keyphrases per paper, and the number of n-gram keyphrases,

for n = 1, 2, 3, and n > 3, for each collection. The gold-standard for each paper contains

the author-assigned keyphrases present in a paper (its title and abstract). For finding gold

keyphrases in a paper, we used the stemmed version of each. Table 2.2 shows examples of

gold keyphrases (shown for one paper) from each dataset. For the unsupervised approaches,

we use the combination of controlled (author assigned) and uncontrolled (reader assigned)

keyphrases as gold-standard phrases. We used uncontrolled keyphrases when available.

26

Dataset
Num. (#)

Papers
Avg.

Keyphrases
Number of Keyphrases of Different Lengths

SemEval 288 7.15
#unigrams: 440, #bigrams: 769,

#trigrams: 383, # > trigrams:145

Krapivin 2,304 3.03
#unigrams: 1,476, #bigrams: 3,598,
#trigrams: 1,210, # > trigrams:328

Inspec 2,000 7.65
#unigrams: 2,153, #bigrams: 7,068,

#trigrams: 4,050, # > trigrams:1,955

NUS 211 2.71
#unigrams: 183, #bigrams: 258,
#trigrams: 76, # > trigrams:16

ACM-30k 30,000 2.67
#unigrams: 30,658, #bigrams: 36,017,
#trigrams: 10,916, # > trigrams:2,489

Table 2.1: Summary of the keyphrase extraction datasets used for model evaluation.

Dataset Keyphrases

SemEval
congestion game, load-dependent failure, identical resource, nash equilibrium,
nondecreasing cost function, potential function, failure probability,
load-dependent failure, pure strategy nash equilibrium

Kapivin bessel function, modified Bessel function, order zero and one, vectorized software

Inspec
evolving fuzzy rule-based models, identification, noniterative update,
rule-base structure, incremental unsupervised learning, ranking, informative potential,
fuzzy rules, complex processes, air-conditioning component modeling

NUS Nearest Neighbour Search, TLAESA, Approximation Search

ACM-30k Control abstractions, Data abstractions, Programming languages,
Programming methodology

Table 2.2: Examples of gold standard keyphrases (present in the title + abstract) of a paper
randomly selected from each dataset.

For a case study on CiteSeerX, we created a dataset from CiteSeerX by matching 30, 000

randomly selected ACM papers against all CiteSeerX papers by title. We found 6, 942

matches. Among these papers, 6, 942, 5, 743, and 5, 743 papers have citing, cited, and both

types of contexts, respectively. To create a dataset, we consider the documents for which we

have both types of contexts and at least 3 author-supplied keyphrases appearing in titles or

abstracts. We name this dataset as ACM-CiteSeerX-KE. Using these criteria, we identi-

fied 1,846 papers, which we used as our dataset for evaluation. The gold-standard contains

the author-supplied keyphrases present in a paper (its title and abstract). Table 2.3 shows a

summary of ACM-CiteSeerX-KE and contains the number of papers in the dataset, the

average number of author-supplied keyphrases, and the number of n-gram author-supplied

keyphrases, for n = 1, 2, 3, and n > 3.

27

ACM-CiteSeerX-KE

Num. (#)
Papers

Avg.
keyphrases

keyphrases
#unigrams #bigrams #trigrams # > trigrams

1,846 3.79 3,027 3,015 871 83

Table 2.3: The dataset used during the case study on CiteSeerX.

2.5 Experimental Design and Results

First, we show the experiments related to our proposed CRF-based supervised keyphrase

extraction approach. Second, we show the experiments related to our proposed unsupervised

keyphrase extraction approach KPRank. Lsatly, we show the case study on CiteSeerX.

For evaluation of our CRF-based supervised approach, we performed three types of ex-

periments. First, we evaluate the quality of word embeddings by themselves or combined

with document specific features and contrast the learned CRFs with the CRFs that do not

use word embeddings. Second, we contrast the CRF model that uses word embeddings and

document features with a more sophiticated and complex model, Bi-LSTM-CRF. In this

experiment, we also study the performance of CRF and Bi-LSTM-CRF when trained on

the ACM-10k dataset and evaluated on the test set of each of the four datasets, SemEval,

Krapivin, Inspec, and NUS. Third, we compare the CRF against several baselines and prior

works, including supervised, sequence labeling and neural models. Finally, we show anec-

dotal evidence that demonstrates the quality of word embeddings in extracting appropriate

keyphrases.

For our sequence labeling task, for model training, we convert a pair of the paper (title

and abstract) and keyphrases pairs such that each sentence of a paper is a sequence of word

tokens, each token has a positive label (KP) if it occurs in a keyphrase in the gold-standard,

or a negative label (Non-KP), otherwise. Predicted keyphrases are obtained by combining

all consecutive words predicted as KP (i.e., the longest sequence). We did not impose a

constraint on the length of keyphrases since, as we can see from Table 2.1, particularly for

Inspec and ACM-30k datasets, the number of keyphrases with length greater than three is

very large.

28

Evaluation metrics while comparison with CRF-based model. To evaluate the

performance of the CRF models, we used the following metrics: precision, recall and F1-score

for the positive class since the correct identification of positive examples (keyphrases) is more

important. These metrics are widely used in previous works11;21–23. To match the predicted

keyphrases with gold-standard keyphrases, we do exact match between the stemmed version

of each. For the NUS we perform 5-fold cross validation and for the other four datasets we

perform a single train and test (on the train-test split provided by the authors of each dataset,

or our train-test split for ACM). Because NUS is very small, cross-validation experiments are

more appropriate on this dataset71. For the 5-fold cross validation experiments, the reported

values are averaged across all (document level) folds.

Evaluation metrics for KPRank and unsupervised approaches. To evaluate the

performance of different unsupervised methods, we use micro avg. F1-score. We report

the performance for the top 5 and 10 candidate phrases returned by different methods as

in71. To create a word graph for a given document, we use its title and abstract. To match

the predicted keyphrases with gold-standard keyphrases, we do exact match between the

stemmed version of each.

2.5.1 Word Embeddings as Features in CRFs for Keyphrase Ex-

traction

We contrast CRF models that use embedding features by themselves (EMB) and their com-

bination with document specific features (EMB+DOC). We also contrast these models with

the CRF models that use only document specific features (DOC) to understand the benefits

of word embeddings in accurately predicting keyphrases. We also study the effect of embed-

ding type (i.e., those trained on Google News and the ACM collection of research paper)

and the embedding dimension.

We trained word embeddings of different dimension sizes (50, 100, 200, 300) on the ACM

Digital Library collection of 211, 028 research papers using the Gensim implementation90 of

word2vec39. We kept words appearing in at least 5 documents for building the vocabulary.

29

DOC EMB DOC+EMB

Pr% Re% F1% Emb. Dim. Pr% Re% F1% Dim. Pr% Re% F1%

SemEval 36.18 61.26 45.49
ACM 300 27.02 43.38 33.30 300 33.74 65.14 44.46
GNews 300 28.41 50.28 36.30 300 34.38 68.29 45.73

Krapivin 33.99 54.25 41.79
ACM 300 24.39 37.52 29.56 300 33.62 63.76 44.02
GNews 300 29.69 26.49 28.00 300 38.95 64.64 48.61

Inspec 46.86 74.48 57.52
ACM 300 46.37 64.50 53.95 300 49.36 83.34 62.00
GNews 300 49.64 59.53 54.14 300 51.73 84.91 64.29

NUS 32.44 53.46 40.38
ACM 50 19.09 30.91 23.60 50 25.50 43.75 32.22
GNews 300 18.82 30.08 23.16 300 26.52 49.18 34.46

ACM 37.41 55.00 44.53
ACM 300 27.15 29.28 28.18 300 39.50 63.56 48.72
GNews 300 14.50 8.65 10.83 300 38.40 54.99 45.22

Table 2.4: CRF performance using word embeddings (EMB), document features (DOC)
and DOC+EMB.

The full text has around 1.2B tokens and 879K unique tokens. We compared the ACM word

embeddings (denoted “ACM”) with the pre-trained word2vec embeddings of 300-dimensional

vectors on Google News of about 100B words (denoted “GNews”).

Table 2.4 shows the results of these comparisons using ACM and GNews with the best

performing embedding dimension, for all five datasets. For SemEval, Krapivin, Inspec,

and ACM, we used the train-test split for model training and evaluation, as described in

Section 2.4, whereas for NUS, we used five-fold cross-validation.

As can be seen from Table 2.4, word embeddings alone (EMB) perform worse than the

document specific features alone (DOC), for all datasets, in terms of most compared mea-

sures. For example, on the ACM dataset, EMB achieves an F1-score of 28.19% (using ACM

embeddings) as compared with 44.53% achieved by DOC. When we add word embeddings

to document features (DOC+EMB), we can see substantial improvements in performance

over the individual features, DOC or EMB alone, for Krapivin, Inspec, and ACM, in terms

of all compared measures, regardless of the embedding type used, ACM or GNews. For

example, on ACM, DOC+EMB achieves an F1-score of 48.72% (using ACM embeddings),

whereas DOC and EMB alone achieve an F1-score of 44.53% and 28.18%, respectively.

However, on SemEval and NUS, DOC alone performs similarly or better than DOC+EMB,

e.g., on SemEval, DOC achieves an F1-score of 45.49% as compared to 45.73% achieved

by DOC+EMB using GNews embeddings, whereas on NUS, DOC achieves an F1-score of

40.38% as compared to 34.46% achieved by DOC+EMB using GNews embeddings. One po-

30

ACM Semeval Krapivin Inspec NUS

Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

CRF

39.5 63.5 48.7 34.3 68.2 45.7 38.9 64.6 48.6 51.7 84.9 64.2 26.5 49.1 34.4

Bi-LSTM-CRF

36.0 50.0 41.9 23.1 28.3 25.4 22.8 42.3 29.6 27.6 19.6 23.0 24.5 47.8 32.6

Table 2.5: Contrasting CRF with Bi-LSTM-CRF. The input to both models is DOC+EMB.

tential explanation for this similar or drop in performance for SemEval and NUS is that both

datasets have a relatively small size (see Table 2.1), with less than 200 papers for training in

each dataset, that hinders to learn robust parameters for CRFs when the number of features

is large as is the case with DOC+EMB, as compared with the number of DOC alone (only six

features). These results show that word embeddings combined with document features help

to improve the performance of CRF models when we have a sufficient amount of training

data available.

From Table 2.4, we can also see that the embeddings trained on GNews perform similarly

or better than those trained on ACM for DOC+EMB based CRFs on all datasets, except

ACM. Also, for ACM embeddings, an embedding size of 300 generally works best among all

compared sizes.

2.5.2 CRF vs. Bi-LSTM-CRF for Keyphrase Extaction

Next, we compare the CRF models with the more sophisticated Bi-LSTM-CRF models that

are able to exploit the long-distance dependencies in the text. For the Bi-LSTM-CRF models,

we used adam optimizer with learning rate 0.001, 300 cells for Bi-LSTM, and 30 epochs for

model training.

Table 2.5 shows the results of this comparison for all five datasets. For model training and

evaluation in this experiment, we used the train-test split of ACM, SemEval, Krapivin, and

Inspec, and 5-fold cross-validation for NUS, with the embedding type and dimension that

worked best on each dataset. The input of both CRFs and Bi-LSTM-CRFs is DOC+EMB.

As can be seen from the table, CRFs consistently outperform the Bi-LSTM-CRFs on all

five datasets. While the difference in F1-score is only 6.8% on ACM, it ranges between

31

Semeval Krapivin Inspec NUS

Train: ACM-10k Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

CRF 43.9 49.8 46.7 37.8 58.0 45.7 42.5 31.1 35.9 38.2 67.3 48.7

Bi-LSTM-CRF 32.2 55.4 40.7 27.8 54.1 36.7 36.0 59.4 44.9 26.4 56.4 35.9

Table 2.6: Performance of DOC+EMB on SemEval, Krapivin, Inspec and NUS while
training on ACM-10k.

20% and 40% on SemEval, Krapivin, and Inspec, which is attributed to the small size of

these three datasets. Moreover, the difference in F1-score on NUS is low compared with the

other datasets (only 1.8%). We believe that both CRF and Bi-LSTM-CRF are incapable of

learning good model parameters due to the very small size of NUS.

To understand the impact of the training set size on the performance of the CRF and

Bi-LSTM-CRF models on SemEval, Krapivin, Inspec, and NUS, and determine which model

is a better for keyphrase extraction, we performed the following experiment: we trained both

CRFs and Bi-LSTM-CRFs on the ACM-10k training set and evaluated their performance

on the test splits of each SemEval, Krapivin, Inspec, and on the NUS dataset. Table 2.6

shows the results of this experiment using ACM word embeddings (300 dimensional).

From Table 2.6, we can make several observations. First, the performance of Bi-LSTM-

CRF increases in terms of all compared measures on all four datasets when we train the model

on a much larger dataset size, i.e., 10,000 research papers, compared with the relatively small

sizes of the training set of each dataset, supporting our intuition that the Bi-LSTM-CRF

model overfits in the experiments in Table 2.5. A similar trend is observed on NUS for

the CRF model, suggesting that the small size of NUS hinders both models to learn robust

parameters. Second, the difference in F1-score between the CRF abd Bi-LSTM-CRF is

smaller when we train the models on ACM-10k. Third, we observe that the F1-score of

CRF is higher than that of Bi-LSTM-CRF on three datasets, SemEval, Krapivin, and NUS,

but is lower on Inspec. Interestingly, on Inspec, Bi-LSTM-CRF achieves a higher recall as

compared with CRF, i.e., 59.4% vs. 31.1%. Inspec has a much higher average number of

keyphrases per paper (≈ 8 vs. 3) and contains a large number of keyphrases of length greater

than 3 (1, 955 n-grams with n > 3). Hence, the Bi-LSTM-CRF model, which exploits the

long distance dependencies in the text, is able to accurately cover and identify these longer

32

keyphrases. A similar result on recall is observed on SemEval (see Tables 2.1 and 2.2 for

datasets characteristics and gold keyphrases).

Moreover, on Inspec, the performance of CRF when trained on ACM-10k (Table 2.6) is

consistently smaller than that of CRF when trained on Inspec itself (the training portion).

We believe this is due to the distribution of author-assigned keyphrases, which are different

for Inspec and ACM-10k, and the size of Inspec training set is good enough to train a good

CRF model.

2.5.3 Baseline Comparisons for Our CRF-Based Supervised Keyphrase

Extraction Model

Last, we compare the performance of CRF DOC+EMB using the best performing word

embeddings and vector dimensions with several baseline approaches. Precisely, we compare

the CRF DOC+EMB with six keyphrase extraction models: Hulth21, KEA24, Maui48, the

CRF model with posterior regularization (CRF/PR) from Gollapalli et al.29, CopyRNN71,

and Key2Vec32. The choice of some of these models was motivated by their wide-spread

usage as baselines in other related works71, their good performance, and the integration of

embeddings in existing systems as in Key2Vec. We used the implementations of Maui,4

CRF/PR29,5 and CopyRNN,6 and developed our implementation of Key2Vec.

Hulth uses POS tags, relative position, term frequency, and collection frequency as fea-

tures. KEA uses tf-idf and relative position as features. Maui uses traditional and Wikipedia

features, e.g., node degree, Wikipedia keyphraseness. The model proposed by Gollapalli et

al.29 uses CRF with posterior regularization, with three types of features: word, ortho-

graphic, and stopword features; parse-tree features; and title features, as well as their com-

binations incorporated with expert knowledge (i.e., predictions from other supervised and

unsupervised methods). The CRF/PR model is the best performing model from Gollapalli

et al.29 and uses information solely from the document itself. CopyRNN uses an encoder-

4https://github.com/zelandiya/maui
5https://sites.google.com/site/sujathadas/home/pubslist
6https://github.com/memray/seq2seq-keyphrase

33

https://github.com/zelandiya/maui
https://sites.google.com/site/sujathadas/home/pubslist
https://github.com/memray/seq2seq-keyphrase

SemEval Krapivin Inspec NUS ACM
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

CRF on DOC+EMB
34.4 68.3 45.7 39.0 64.6 48.6 51.7 84.9 64.3 26.5 49.2 34.5 39.5 63.6 48.7

Previous Models
Hulth 28.7 10.7 15.6 21.2 8.4 12.1 27.5 70.5 39.6 20.2 12.4 15.4 20.0 14.2 16.6
KEA 25.6 10.0 14.4 22.2 10.1 13.9 26.6 5.1 8.5 25.3 24.2 24.7 22.6 17.0 19.4
Maui 27.4 38.1 31.9 20.0 56.0 29.5 24.2 34.2 28.4 20.3 54.7 29.6 22.0 63.2 32.7
CRF/PR 29.7 54.0 38.3 29.3 15.2 20.1 56.9 35.6 43.8 33.2 61.4 43.1 24.9 13.5 17.5
CopyRNN 24.7 39.5 30.4 17.6 54.2 26.6 29.2 40.9 34.1 26.6 42.1 32.6 17.8 42.2 25.0
Key2Vec 38.6 38.6 38.6 23.0 47.5 31.0 32.8 38.1 35.2 25.4 49.0 33.4 27.4 50.2 35.4

Table 2.7: The comparison of CRF that uses DOC+EMB with previous works. Perfor-
mance is shown in %.

decoder Recurrent Neural Network with a copying mechanism as a generative model instead

of extracting phrases only from the document text. We run CopyRNN for all five datasets

with the parameter settings mentioned by the authors71. Key2Vec is a biased PageRank

algorithm. We created a word graph by from nouns and adjectives and added an edge if

two words appear within w words of each other in text. A theme vector for each paper was

obtained by summing the embedding of the candidate words from its title. We used the

GNews embeddings (300 dimension), which performed better than ACM in Key2Vec.

Table 2.7 shows the results of these comparisons for all five datasets, using the train-

test split available for SemEval, Krapivin, Inspec, and ACM, and 5-fold cross-validation on

NUS. As can be seen from the table, the DOC+EMB-based CRF that uses word embeddings

in addition to document features substantially outperforms Hulth, KEA, Maui, CopyRNN,

and Key2Vec, in terms of most compared measures, on four datasets, SemEval, Krapivin,

Inspec, and ACM. For example, DOC+EMB based CRF achieves the highest F1-score of

64.3% on Inspec. Interestingly, on NUS, CRF/PR achieves the highest F1-score of 43.1%

among all models. Moreover, CRF/PR achieves the highest precision on Inspec dataset,

and the highest value among all measures on NUS. Key2Vec achieves the highest precision

of 38.6% on SemEval. It is worth noting that the DOC+EMB based CRF models yield

improvements in performance over more complex deep learning model, CopyRNN, on all

five datasets.

34

Incorporating site-level knowledge to extract structured data from web forums

Web forums have become an important data resource for many web applications, but extracting
structured data from unstructured web forum pages is still a challenging task [...]. In this paper,
we study the problem of structured data extraction from various web forum sites. Our target
is to find a solution as general as possible to extract structured data, such as post title, post
author, post time, and post content from any forum site. In contrast to most existing information
extraction methods, which only leverage the knowledge inside an individual page, we incorporate
both page-level and site-level knowledge and employ Markov logic networks (MLNs) [...]. The
experimental results on 20 forums show a very encouraging information extraction performance,
and demonstrate the ability of the proposed approach on various forums. [...]

Incorporating site-level knowledge to extract structured data from web forums

Web forums have become an important data resource for many web applications, but extracting
structured data from unstructured web forum pages is still a challenging task [...]. In this paper,
we study the problem of structured data extraction from various web forum sites. Our target is
to find a solution as general as possible to extract structured data, such as post title, post author,
post time, and post content from any forum site. In contrast to most existing information
extraction methods, which only leverage the knowledge inside an individual page, we incorporate
both page-level and site-level knowledge and employ Markov logic networks (MLNs) [...]. The
experimental results on 20 forums show a very encouraging information extraction performance,
and demonstrate the ability of the proposed approach on various forums. [...]
Human-input keyphrases: Web forums, Structured data, Information extraction, Site level knowl-
edge, Markov logic networks
Predicted keyphrases: Web forums, Information extraction, Markov logic networks, Ex-
tracting structured data, Data, Knowledge, Data extraction, Web, Forum site, Web forum sites

Figure 2.5: The title, abstract, human-input keyphrases and predicted keyphrases of an ACM

paper. The phrases marked with cyan in the title and abstract shown on the top of the figure are gold

keyphrases, whereas the words and phrases marked with dark blue in the title and abstract shown

on the bottom of the figure are predicted keywords/keyphrases.

2.5.4 Anecdotal Evidence for Our CRF-Based Model

To see the quality of predicted phrases by the best EMB+DOC based CRF, we randomly

selected a paper from our ACM dataset and evaluated the CRF model on it. Note that this

selected paper belongs to the test portion of the dataset. We manually inspected the CRF

predictions and contrasted them with the author-annotated (gold) keyphrases. The title,

abstract, human annotated keyphrases and predicted keyphrases for this paper are shown

in Figure 2.5. Specifically, the cyan bold phrases shown in the text on the top of the figure

represent author-assigned keyphrases, whereas the dark blue bold phrases shown in the text

35

on the bottom of the figure represent the positively predicted phrases using the CRF trained

on DOC+EMB features. It can be seen from the figure that the predicted keyphrases cover

three out of five author assigned keyphrases, and for the remaining two author assigned

keyphrases the CRF model predicted one super-string and one substring.

We can also observe that the model was not able to predict “structured data” nor “site

level knowledge” even though both these gold keyphrases appear in the title of the document.

However, for the two gold keyphrases missed by the model, the model predicted “extract-

ing structured data”, “data”, and “knowledge” as keyphrases which are a super-string or

substring of them. Moreover, predicted keyphrases “web”, “forum site”, and “web forum

sites” are related to one of the author-assigned keyphrase “web forums,” which was correctly

predicted by the DOC+EMB CRF model. As there exist a semantic relation between “data”

and “information,” DOC+EMB is able to predict “data extraction,” which is similar with

the author-assigned keyphrase “information extraction”.

2.5.5 KPRank: The Effect of Position, Contextual Embeddings,

and the Comparison With Previous Works

To see the effect of positional information, we compare the performance of KPRank that

uses contextual SciBERT (SB) embeddings along with positional information (denoted as

KPRank(SB)) with that of its counterpart that does not use positional information (de-

noted as KPRank(SB−POS)). Moreover, to see the effect of contextual embeddings, we

compare the performance of SciBERT-based KPRank (KPRank(SB)) with that of KPRank

that uses FastText non-contextual word embeddings43 (denoted as KPRank(FastText)). For

FastText, we used pre-trained 300 dimensional embeddings trained on subword information

on Common Crawl. Note that KPRank(SciBERT) and KPRank(FastText) use positional

information along with the theme score. Last, we compare the performance of KPRank

with Tf-Idf and six PageRank based unsupervised methods as baselines: PositionRank33,

Key2Vec32, TextRank23, SingleRank22, ExpandRank22, TopicRank91.

Table 2.8 shows these comparisons on SemEval, Inspec, Krapivin, NUS, and ACM.

36

SemEval Inspec Krapivin NUS ACM
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

KPRank(SB) 22.51 25.76 27.72 32.30 17.74 18.57 21.09 22.36 14.79 15.17
KPRank(SB−POS) 17.33 23.97 26.88 32.72 15.81 16.97 16.79 19.68 12.13 13.14
KPRank(FastText) 22.04 25.39 27.28 32.12 18.20 18.91 20.69 22.12 14.77 15.08

PositionRank 22.51 24.99 26.73 31.84 18.49 18.30 18.65 20.99 13.04 14.09
Key2Vec 17.54 23.63 26.97 32.82 15.50 16.68 16.80 20.10 12.08 13.07
Tf-Idf 18.13 21.82 24.73 31.41 15.67 17.23 14.22 18.05 11.07 12.90
TextRank 12.12 17.90 22.81 30.47 09.15 12.91 09.04 12.64 05.02 07.54
SingleRank 11.22 18.24 24.11 31.96 10.25 13.53 08.69 13.78 05.66 08.32
ExpandRank 14.65 20.46 24.81 31.45 12.32 15.32 10.90 15.29 10.02 11.28
TopicRank 10.77 11.04 14.65 17.46 08.11 07.82 11.79 11.45 09.39 07.62

Table 2.8: The comparison of SciBERT (SB) based KPRank, and previous works.

It can be seen from the table that adding position information shows much higher im-

provement in the performance of KPRank, i.e. KPRank(SB) substantially outperforms

KPRank(SB−POS). Moreover, KPRank(SB) outperforms KPRank(FastText) on all the

datasets except for Krapivin. Importantly, KPRank(SB) outperforms most baseline meth-

ods, including Key2Vec (by a large margin) e.g., on SemEval, KPRank(SB) achieves an F1@5

of 22.51% as compared with 17.54% achieved by Key2Vec. We can also notice from Table 2.8

that KPRank(SB) achieves comparable performance whenever any baseline method achieves

the best performance.

Figure 2.6 shows the confusion matrices of KPRank(SB) using @5 predictions on all five

datasets. Each matrix is represented as a heat map, i.e., the darker the blue color the higher

the value at that position and the darker the blue on the main diagonal, the more accurate

the model is.

Comparison with a supervised approach. Usually, the performance of the super-

vised keyphrase extraction models is better than the unsupervised models20. We compare

the performance of KPRank(SB) with the CRF-based sequence classification model for the

keyphrase extraction10 that uses word embeddings as features along with document specific

features. The CRF model outperforms KPRank(SB) on all five datasets, e.g., CRF model

achieves an F1 of 45.73% as compared with 25.76% achieved by KPRank(SB) on SemEval.

37

Figure 2.6: Keyphrase extraction confusion matrices of KPRank(SB) using @5 predictions
on all the datasets. The darker the blue on the main diagonal, the more accurate the model
is.

Organization design: The continuing influence of information technology

Drawing from an information processing perspective, this paper examines how information tech-
nology (IT) has been a catalyst in the development of new forms of organizational structures. [...]
to the present environmental instability that now characterizes many industries. Specifically, the
authors suggest that advances in IT have enabled managers to adapt existing forms and create new
models for organizational design that better fit requirements of an unstable environment. [...]. IT
has gone from a support mechanism to a substitute for organizational structures in the form of the
shadow structure. [...]

Gold-standard keyphrases: Organization design, Information processing perspective, Organizational
structures, Environmental instability, Information technology

Predicted keyphrases: Organization design, Information technology, Information process-
ing perspective, Organizational structures, Organizational design, Organization, Information
processing, Shadow structure, New forms, Bureaucratic structure

Figure 2.7: The title, abstract, gold-standard keyphrases and predicted keyphrases of a
paper. The phrases marked with cyan in the title and abstract shown on the top of the figure
are gold-standard keyphrases.

2.5.6 Anecdotal Evidence for KPRank

To see the quality of predicted phrases by the KPRank(SB), we randomly selected a paper

from the Inspec dataset and evaluated the KPRank(SB) on it. We manually inspected

the top-10 predictions by the KPRank(SB) and contrasted them with the gold-standard

keyphrases. The title, abstract, gold-standard keyphrases and top-10 predicted keyphrases

for this paper are shown in Figure 2.7. Precisely, in the figure, the cyan italic phrases

shown in the text on the top of the figure represent gold-standard keyphrases, whereas the

bottom of the figure shows gold-standard keyphrases and the top-10 predicted keyphrases

by KPRank(SB) (shown in the order of their prediction). It can be seen from the figure that

38

Figure 2.8: Number of documents crawled and ingested from past few years in CiteSeerX.

four out of five gold-standard keyphrases are present in the top-5 predicted keyphrases.

We can also see that KPRank(SB) did not predict gold-standard phrase “environmental

instabily.” A closer inspection of the document and both types of scores (theme score and

positional score) assigned by KPRank(SB) to both constituent words of the gold-standard

phrase that was not ranked in top-10 predictions revealed that these constituent words

have lower values of theme score and they both appear only once in the document. Hence,

the Pagerank algorithm will not boost these words. Inspecting other errors, we found that

KPRank can fail to predict phrases that contain words that are less frequent in the document

and their word embeddings are far from the theme vector.

2.6 Keyphrase Extraction in CiteSeerX

There are in general two types of digital library search engines. The first type obtains

publications and metadata from publishers, such as ACM Digital Library, IEEE Xplore,

and Elsevier. The other type, such as CiteSeerX92, crawls the public Web for scholarly

documents and automatically extracts metadata from these documents.

CiteSeer was launched in 199892 and its successor CiteSeerX93 has been online since 2008.

Since then, the document collection has been steadily growing (see Figure 2.8). The goal of

39

CiteSeerX is to improve the dissemination of and access to academic and scientific literature.

Currently, CiteSeerX has 3 million unique users world-wide and is hit 3 million times a

day. CiteSeerX reaches about 180 million downloads annually94. Besides search capabilities,

CiteSeerX also provides an Open Archives Initiative (OAI) protocol for metadata harvesting.

CiteSeerX receives about 5,000 requests per month to access the OAI service. Researchers

are interested in more than just CiteSeerX metadata. For example, CiteSeerX receives about

10 requests for data per month via the contact form on the front page95. These requests

include graduate students seeking project datasets and researchers that were looking for

large datasets for experiments. CiteSeerX hosts a dump of the database and other data on

Google Drive.

In the early stage, the crawl seeds were mostly homepages of scholars in computer and

information sciences and engineering (CISE). In the past decade, CiteSeerX added to the

crawls seed URLs from the Microsoft Academic Graph96, and directly incorporated PDFs

from PubMed, arXiv, and digital repositories in a diverse spectrum of disciplines. A recent

work on subject category classification of scientific papers estimated that the fractions of

papers in physics, chemistry, biology, materials science, and computer science are 11.4%,

12.4%, 18.6%, 5.4%, and 7.6%, respectively97. CiteSeerX is increasing its document collec-

tion by actively crawling the Web using new policies and seeds to incorporate new domains.

We expect this to encourage users from multiple disciplines to search and download academic

papers and to be useful for studying cross discipline citation and social networks.

Since CiteSeerX was developed, many artificial intelligence techniques have been devel-

oped and deployed in CiteSeerX93, including but not limited to header extraction98, cita-

tion extraction99, document type classification100, author name disambiguation101, and data

cleansing102. In addition, an unsupervised NP-Chunking method is deployed for automatic

keyphrase extraction. Besides author-submitted keyphrases, CiteSeerX extracts on average

16 keyphrases per paper using NP-Chunking. Users can search for a particular keyphrase by

clicking it. This feature provides a shortcut for users to explore scholarly papers in related

topics of the current paper they are browsing. All automatically extracted keyphrases are

displayed on the summary page, and they deliver detailed domain knowledge in scholarly

40

Year #Docs. #Keyphrase-Clicks #Unique-Keyphrases
(Millions) (Millions) (Millions)

2016 8.44 4.41 1.60
2017 10.1 7.17 1.86
2018 10.1 7.52 1.74

Table 2.9: The number of full text documents, the total number of keyphrase-clicks, and
unique keyphrases clicked for years 2016, 2017, and 2018 in CiteSeerX.

Figure 2.9: log(Rank) vs log(Clicks) for top-10, 000 keyphrases clicked by users of Cite-
SeerX during years 2016, 2017, and 2018.

documents. Every time a keyphrase is clicked, CiteSeerX searches the clicked keyphrase and

refreshes the search results. To understand how keyphrases promote paper browsing and

downloading, we analyze the access logs retrieved from three web servers from 2016 to 2018.

2.6.1 Click-log Analysis

Table 2.9 shows the total number of documents, keyphrase clicks, and unique keyphrases

clicked from 2016 to 2018. The total number of keyphrase clicks increased significantly by

∼ 63% from 2016 to 2017. For years 2017 and 2018, although the total number of documents

stayed about the same (10.1 million), the total number of keyphrase clicks increased by 5%.

Although there is a slight decrease in the number of unique keyphrases clicked, the increase

in the number of keyphrase clicks from year 2016 to year 2018 showcases the increasing use

and the popularity of keyphrases.

41

Figure 2.10: Venn Diagram for all 3 years based on unique keyphrases.

Figure 2.9 shows the ranking versus the number of clicks (#clicks) in logarithmic scale

for the 10,000 most popular keyphrases during the three years. We can see that the #click

decreases exponentially as the rank increases, which mimics the Zipf’s law for all three years.

Figure 2.10 shows the Venn diagram for the unique keyphrases clicked during years 2016,

2017, and 2018. As seen from the figure, in two consecutive years, only about one third of

the keyphrases are common, whereas two third of the keyphrases are new. For example, 1.6

million unique keyphrases were clicked in 2016 but only about 551k (33%) were carried to

2017. Similarly, 1.86 million unique keyphrases were clicked in 2017, but only 555k (30%)

were carried out in 2018. This trend implies that user interests have been rapidly evolving

over these years, but there is still a considerable number of topics searched among several

years. These conclusions are made based on the analysis of open-access documents from

a three years time period. However, further analysis is needed for more comprehensive

conclusions.

Table 2.10 shows the top-20 most frequent keyphrases clicked. We can see that the

extracted keyphrases are not always terminological concepts as seen usually in author-

submitted keyphrases. Examples such as ”local”, ”experimental results”, ”wide range”,

and ”recent year” were extracted just because they are noun phrases. This indicates that

more sophisticated models are necessary to improve the quality of extracted keyphrases. It

is interesting that these phrases were highly clicked, but investigating the reason is beyond

42

Year Keywords

2016 DgNe, local, bullying, violence, bullied, bully, aggressive, aggression, R. Nobrega,
experimental result, data, wide range, machine, lpEu, dvd, last year, recent year,
artificial intelligence, key word, new technology

2017 key word, experimental result, wide range, large number, string theory, bullying,
violence, bullied, bully, aggressive, aggression, recent year, new method,
artificial intelligence, important role, machine learning, neural network,
online version, environmental protection agency, wide variety

2018 JMQi, experimental result, key word, large number, wide range, aggression,
violence, bullying, bully, bullied, aggressive, recent year, case study, wide variety,
different type, sustainable development, informational security, VWBc,
sensor network, simulation result

Table 2.10: Top-20 keyphrases clicked during years 2016, 2017, and 2018.

the scope of this paper.

2.6.2 Experiments and Results

During CiteSeerX case study, we generate candidate phrases for each document by applying

POS filters. Consistent with previous works11;21–23;60, these candidate phrases are identified

using POS-tags of words, consisting of only nouns and adjectives. We apply Porter stemmer

on each word. The initial position of each word is kept before removing any words. Second,

to generate candidate phrases, contiguous words extracted in the first step are merged into

n-grams (n = 1, 2, 3). Finally, we eliminate candidate phrases that end with an adjective

and unigrams that are adjectives11;22.

Evaluation metrics. To evaluate the performance of the keyphrase extraction methods,

we use the following metrics: precision, recall and F1-score for the positive class since the

correct identification of positive examples (keyphrases) is more important. The reported

values are averaged in 10-fold cross-validation experiments, where folds were created at

document level and candidate phrases were extracted from the documents in each fold to

form the training and test sets. In all experiments, we used Näıve Bayes on the feature

vectors extracted by each model.

Table 2.11 shows the performance of NP-Chunking, KEA, Hulth, CeKE-Target, CeKE-

Citing, CeKE-Cited, and CeKE-Both. The table shows the evaluation measures and time

43

Model
Pr Re F1 Time/Doc
(%) (%) (%) (Sec)

NP-Chunking 04.26 29.19 07.44 1.01

Hulth 25.91 16.15 19.86 4.47

KEA 30.41 20.78 24.65 4.53

CeKE-Target 27.31 35.57 30.86 4.69
CeKE-Citing 25.65 40.45 31.37 6.61
CeKE-Cited 26.49 42.73 32.68 7.14
CeKE-Both 25.07 42.19 31.42 7.97

Table 2.11: The comparison of different models using 10-fold cross-validation on ACM-
CiteSeerX-KE.

taken by each method using 10-fold cross-validation on ACM-CiteSeerX-KE. In NP-

Chunking, the given text is first tokenized and tagged by a POS tagger. Based on the POS-

tagging result, a grammar-based chunk parser is applied to separate two types of phrase

chunks: (1) nouns or adjectives, followed by nouns (e.g., “relational database” or “support

vector machine”), and (2) two chunks of (1) connected with a preposition or conjunction

(e.g., “strong law of large numbers”). Time is measured on a computer with Xenon E5-2630

v4 processor and 32GB RAM. In CiteSeerX, the header extraction tool can extract the title,

abstract, and citing contexts for a target document. However, to extract cited contexts in

CiteSeerX, there is an overhead of 1.2 seconds per document on average to search and extract

it from the CiteSeerX database.

It can be seen from Table 2.11 that, CeKE-Cited achieves the highest recall and F1 of

42.73% and 32.68%, respectively. KEA achieves the highest precision of 30.41% compared

with other models with top-5 predictions. NP-Chunking takes the shortest time of 1.01

seconds to extract keyphrases from a document. However, NP-Chunking suffers from low

precision and F1. CeKE variants outperform Hulth and KEA in terms of recall and F1,

i.e., CeKE-Citing achieves an F1 of 32.68% as compared with 24.65% achieved by KEA.

Moreover, CeKE variants that make use of citation contexts outperform CeKE-Target that

does not use any citation contexts.

It can be seen from the table that CeKE-Cited achieves highest F1 of 32.68%. How-

ever, CeKE-Citing takes less time compared with CeKE-Cited, i.e., CeKE-Citing takes 6.61

seconds on average per document compared with 7.14 seconds taken by CeKE-Cited. CeKE-

44

Title: Incorporating site-level knowledge to extract structured data from web forums

Abstract: Web forums have become an important data resource for many web applications,
but extracting structured data from unstructured web forum pages is still a challenging task
[...]. In this paper, we study the problem of structured data extraction from various web
forum sites. Our target is to find a solution as general as possible to extract structured data,
such as post title, post author, post time, and post content from any forum site. In contrast to
most existing information extraction methods, which only leverage the knowledge inside an
individual page, we incorporate both page-level and site-level knowledge and employ Markov
logic networks (MLNs) [...]. The experimental results on 20 forums show a very encouraging
information extraction performance, and demonstrate the ability of the proposed approach
on various forums. [...]

Author-supplied keyphrases: Web forums, Structured data, Information extraction, Site
level knowledge, Markov logic networks

CeKE-Citing predicted keyphrases: web forum, Site Level Knowledge, forum, structured
data
Hulth predicted keyphrases: forum, page, Knowledge, post, Site Level Knowledge, web fo-
rum, structured data
KEA predicted keyphrases: Site Level Knowledge, web forum, forum, post

Figure 2.11: The title, abstract, author-supplied keyphrases and predicted keyphrases of
an ACM paper. The phrases marked with cyan in the title and abstract shown in the figure
are author-supplied keyphrases.

Citing and CeKE-Both achieve comparable F1 of 31.37% and 31.42%, respectively. In terms

of speed, CeKE-Target is the fastest among other variants because it does not need to perform

POS tagging for citation contexts. Citing contexts can be extracted relatively straightfor-

ward from the content of the document. On the other hand, to extract cited contexts, we

need the citation graph, from which we can obtain documents citing the target paper. We

plan to select CeKE-Citing to deploy along with Hulth and KEA for the following reasons:

CeKE-citing is faster than CeKE-cited and CeKE-Both; extracting cited contexts has an

extra overhead to find it within a citation network; and cited context may not be present

for all the articles.

Anecdotal Example:

To demonstrate the quality of extracted phrases by different methods (CeKE-Citing, Hulth,

and KEA), we select an ACM paper at random from the testing corpus and manually com-

45

Figure 2.12: A clip of a portion of a CiteSeerX paper’s summary page containing a
“Keyphrase” section that displays keyphrases extracted. Each keyphrase has a thumbup and
a thumbdown button. A logged in user can vote by clicking these buttons.

pared the keyphrases extracted by the three methods and the author-supplied keyphrases

(Figure 2.11). Specifically, the cyan bold phrases shown in the text on the top of the

figure represent author-supplied keyphrases, whereas the bottom of the figure shows author-

supplied keyphrases and predicted keyphrases by each evaluated model. It can be seen from

the figure that the CeKE-Citing predicted four keyphrases out of which three are ASKs.

Hulth predicted seven keyphrases out of which three are author-supplied keyphrases. KEA

predicted three keyphrases out of which two belong to author-supplied keyphrases. The pre-

dicted keyphrases by all three models that do not belong to author-supplied keyphrases are

single words. This example demonstrates that CeKE-citing exhibits a better performance

than the other two models.

2.6.3 Crowd-sourcing

The comparison between different keyphrase extraction models relies on ground truth datasets

compiled from a small number of papers. We propose to evaluate keyphrase extraction mod-

els using crowd-sourcing, in which we allow users to vote for high quality keyphrases on

papers’ summary pages in CiteSeerX. These keyphrases are extracted using different mod-

els, but the model information is suppressed to reduce judgment bias. Voting systems are

ubiquitous in social networks and multimedia websites, such as Facebook and YouTube, but

46

they are rarely seen in scholarly digital libraries. A screenshot of an example of the voting

interface is shown in Figure 2.12. A database is already setup to store the total number

of counts for each voting type as well as each voting action. The database contains the

following tables.

• Model table. This table contains information of keyphrase extraction models.

• Voting table. This table contains the counts of upvotes and downvotes of keyphrases

extracted using all models from all papers. The table also records the time the voting

of a keyphrase is last updated. The same keyphrase extracted by two distinct models

will have two entries in this table.

• Action table. This table contains information of all voting actions on keyphrases,

such as the action time, the type of action (upvote vs. downvote), the IDs of keyphrases

voted, and the IDs of voters. A voter must log in first before they can vote. If a voter

votes a keyphrase extracted by two models, two actions will be recorded in this table.

If a user reverses his vote, two actions (unvote and vote) are recorded in this table.

The extraction modules can be evaluated by the summation of eligible votes over all

papers. In classic supervised machine learning, predicted keyphrases are evaluated by com-

paring extraction results against the author-supplied keyphrases11. However, the list of

author-supplied keyphrases may not be exhaustive, i.e., certain pertinent keyphrases may

be omitted by authors, but extracted by trained models. Crowd-sourcing provides an alter-

native approach that evaluates the pertinence of keyphrases from the readers’ perspectives.

However, there are certain potential biases that should be considered when deploying the

system. One factor that can introduce bias is ordering because voters may not go through

the whole list and vote all items. To mitigate this bias, we will shuffle keyphrases when

displaying them on papers’ summary pages. Another bias is the “Mathew’s Effect” in which

items with higher votes tend to receive more upvotes. We will hide the current votes of

keyphrases to mitigate this effect.

We plan to collect votes after opening the voting system for at least 6 months. Using this

47

approach, the keyphrase extraction models can be evaluated at two levels. At the keyphrase

level, we only consider keyphrases with at least 10 votes and apply a binary judgment for

keyphrase quality. A keyphrase is “favored” if the number of upvotes is higher than the

downvotes, otherwise, it is labeled as “disfavored”. We can then score each model based

on the number of favored vs. disfavored. At the vote level, we can score each model using

upvotes and downvotes of all keyphrases. The final scores should be normalized by the

number of keyphrase extracted by a certain model and voted by users.

2.6.4 Development and Deployment

Although CiteSeerX utilizes open source software packages, many core components are not

directly available from open source repositories and require extensive programming and test-

ing. The current CiteSeerX codebase inherited little from its predecessor’s (CiteSeer) for

stability and consistency. The core part of the main web apps were written by Dr. Isaac

Councill and Juan Pablo Fernández-Ramı́rez and many components were developed by other

graduate students, postdocs and software engineers, which took at least 3-4 years.

CiteSeerX has been using keyphrases extracted using an unsupervised NP-Chunking

method. This method is fast and achieves high recall, but it has a relatively low preci-

sion. Thus, we are exploring supervised models to extract keyphrases more accurately into

CiteSeerX. Our keyphrase extraction module employs three methods: CeKE, Hulth, and

KEA. The keyphrase extraction module runs on top of several dependencies, which han-

dle metadata extraction from PDF files and document type classification in CiteSeerX. For

example, GROBID103 is used to extract titles, abstracts, and citing contexts. We also devel-

oped a program to extract cited contexts for a given article from the CiteSeerX database. In

addition, a POS tagger7 is a part of our keyphrase extraction module and is integrated in the

keyphrase extraction module. Even though we selected CeKE-Citing, the keyphrase extrac-

tion package supports other variants of CeKE and it is straightforward to switch between

them. Figure 2.13 and Figure 2.14 show the CiteSeerX system architecture and schematic

7We have used NLP Stanford part of speech tagger.

48

Figure 2.13: CiteSeerX architecture.

Figure 2.14: Schematic diagram of keyphrase extraction module.

diagram of our keyphrase extraction module, respectively.

2.6.5 Maintenance

The keyphrase extraction module is developed and maintained by about 3 graduate stu-

dents and a postdoctoral scholar in an academic setting. The keyphrase extraction project

received partial financial support from the National Science Foundation. The maintenance

work includes, but is not limited to fixing bugs, answering questions from GitHub users,

updating extractors with improved algorithms, and rerunning new extractors on existing

49

papers. Specific to the keyphrase extraction module, it can easily integrate new models

trained on different or large data for the existing methods. In future, we aim to integrate

new keyphrase extraction models. The key bottleneck is to integrate keyphrase modules

into the ingestion system, so both author-supplied keyphrases and predicted keyphrases can

be extracted with other types of content at scale. One solution is to encapsulate keyphrase

extraction modules into Java package files (.jar files) or Python libraries so they can easily be

invoked by PDFMEF104, a customizable multi-processing metadata extraction framework for

scientific documents. Currently, the CiteSeerX group is developing a new version of digital li-

brary framework that employs PDFMEF as part of the information extraction pipeline. The

encapsulation solution can potentially reduce the maintenance cost and increase modularity.

2.7 Summary and Future Directions

In this chapter, we explored keyphrase extraction as sequence labeling using CRFs and stud-

ied the benefits of using word embeddings in conjunction with document specific features in

order to capture the semantics of words in context. Our results showed interesting perfor-

mance variability, according to training set sizes, the number of keyphrases per document,

and their length in the number of words, but clearly highlighted the benefits of using word

embeddings as features in CRFs along with document specific features. Our results also

showed improvements in performance over complex models including more sophisticated

deep learning models. Moreover, we proposed a novel unsupervised graph-based algorithm,

KPRank, that incorporates both positional appearances of the words along with contextual

word embeddings for computing a biased PageRank score for each candidate word. Our

experimental results on five datasets show that incorporating position information into our

biased KPRank model yields better performance compared with a KPRank that does not use

the position information, and SciBERT-based KPRank usually outperforms FastText-based

KPRank on this task. Moreover, KPRank outperforms strong baseline methods. By analyz-

ing access logs of CiteSeerX in the past 3 years, we found that there are 3% of keyphrases

common across all years, while there are many keyphrases which are only clicked during

50

a particular year. In the CiteSeerX case study, we proposed to integrate three supervised

keyphrase extraction models into CiteSeerX which are more robust than the previously used

NP-Chunking method. To evaluate the keyphrase extraction methods from a user perspec-

tive, we implemented a voting system on papers’ summary pages in CiteSeerX to vote on

predicted phrases without showing the model information to reduce potential judgment bias

from voters.

In the future, it would be interesting to integrate posterior regularization in the word

embeddings based CRF models. It would also be interesting to explore keyphrase extraction

from research papers from other fields in Computer Science such as Computational Linguis-

tics, as well as other scientific domains, such as Biology, Social Science, Political Science, and

Material Sciences. Moreover, since these scientific domains do not generally have author-

annotated keyphrases, developments of domain adaptation and transfer learning techniques

should also be investigated. It would be interesting to explore KPRank on other domains,

such as Biology, and Social Science. Moreover, it would be fascinating to explore integration

of other keyphrase extraction models as well as other information extraction tools such as

name-entity extraction tool into CiteSeerX to improve the user experience.

51

Chapter 3

Applications of Keyphrases/Keywords

Scholarly digital libraries provide access to scientific publications and comprise useful re-

sources for researchers. Despite the advancements in search engine features, ranking meth-

ods, technologies, and the availability of programmable APIs, current-day open-access digital

libraries still rely on crawl-based approaches for acquiring their underlying document collec-

tions. In this chapter, we propose a novel search-driven framework for acquiring documents

for such scientific portals. Keyphrases or keywords are very useful to formulate queries

that can retrieve topically-related articles from the Web. Within our framework, publicly-

available research paper titles (keywords) and author names are used as queries to a Web

search engine. We were able to obtain ≈ 267, 000 unique research papers through our fully-

automated framework using ≈ 76, 000 queries, resulting in almost 200, 000 more papers than

the number of queries. Moreover, through a combination of title and author name search,

we were able to recover 78% of the original searched titles.

Furthermore, We propose a novel search-driven approach to build and maintain a large

collection of homepages that can be used as seed URLs in any digital library including Cite-

SeerX to crawl scientific documents. Precisely, we integrate Web search and classification

in a unified approach to discover new homepages: first, we use publicly-available author

names and research paper titles (keywords) as queries to a Web search engine to find rel-

evant content, and then we identify the correct homepages from the search results using a

52

powerful deep learning classifier based on Convolutional Neural Networks. Moreover, we use

Self-Training in order to reduce the labeling effort and to utilize the unlabeled data to train

the efficient researcher homepage classifier. Our experiments on a large scale dataset high-

light the effectiveness of our approach, and position Web search as an effective method for

acquiring authors’ homepages. We show the development and deployment of the proposed

approach in CiteSeerX and the maintenance requirements.

3.1 Introduction

Scientific portals such as Google Scholar, Semantic Scholar, ACL Anthology, CiteSeerx, and

ArnetMiner, provide access to scholarly publications and comprise indispensable resources for

researchers who search for literature on specific subject topics. Moreover, many applications

such as document and citation recommendation1–3, expert search4;5, topic classification6;7,

and keyphrase extraction and generation8–11, involve Web-scale analysis of up-to-date re-

search collections.

Open-access, autonomous systems such as CiteSeerx and ArnetMiner acquire and index

freely-available research articles from the Web105;106. In order to enlarge its document collec-

tion, CiteSeerX maintains whitelists / blacklists of URLs and lists of researchers’ homepages

to direct the crawl for documents. Thus, maintaining comprehensive, up-to-date collections

of researchers’ homepages is an essential component in CiteSeerX. However, this task is very

challenging since not only do new authors emerge, but also existing authors may stop pub-

lishing or may change affiliations, resulting in outdated (4XX error) or invalid URLs. An

analysis of a subset of 13, 239 homepages available in DBLP revealed that ≈ 42% of them

were outdated within a time span of three years. This represents about half of the original

homepages in the set. Given this challenge, how can we automatically augment the document

collections and accurate lists of researchers’ homepages in open-access scientific portals?

For automatically augmenting the document collections, we propose a novel framework

based on Web search. To motivate our framework, we recall how a Web user typically

searches for research papers or authors. As with regular document search, a user typically

53

Figure 3.1: An anecdotal search example for illustration.

issues Web search queries comprising of representative keywords or paper titles for finding

publications on a topic. Similarly, if the author is known, a “navigational query”27 may be

employed to locate the homepage where the paper is likely to be hosted. To illustrate this

process, Figure 3.1 shows an anecdotal example of a search using Google for the title and

authors of a research article. As can be seen from the figure, the intended research paper and

the researchers’ homepages (highlighted in sets 2 and 3) are accurately retrieved. Moreover,

among the top-5 results shown for the title query (set 1), four of the five results are research

papers on the same topic (i.e., the first four results). The document at the Springer link is

not available for free, whereas the last document corresponds to course slides. The additional

three papers are potentially retrieved because scientific paper titles comprise a large fraction

of keywords107, and hence, the words in these titles serve as excellent keywords that can

retrieve not only the intended paper, but also other relevant documents. Our research

papers discovery framework mimics precisely the above search and scrutinize the approach

adopted by Scholarly Web users. Freely-available information from the Web for specific

subject disciplines1 is used to frame title and author name queries in our framework.

For maintaining the accurate list of researchers’ homepages, one approach would be

to crawl academic websites (e.g., from a university domain) and use a machine learning

1For example, from bibliographic listings such as DBLP or paper metadata available in ACM DL.

54

Figure 3.2: An anecdotal search example using paper title search. Green highlighted re-
sponse is located on the first author’s homepage. Newly discovered authors are highlighted by
a red color.

classifier to predict whether a website accessed during the crawl is an author homepage or

not28. However, this approach: (1) is still inefficient (e.g., in terms of bandwidth and storage

resources) since only a small fraction of the websites hosted in an academic domain are author

homepages (with many websites corresponding to departments, courses, groups, etc), and (2)

misses homepages from research industry labs, which do not belong to the academic domain

(e.g., ∼51% of the homepages in our dataset are not from the .edu domain). An alternative,

more efficient approach, is to use a broader Web search for author discovery together with

an accurate homepage classifier.

Furthermore, we propose a novel search-then-classify approach to find researchers home-

pages on the Web and identify them with powerful deep learning models. Our approach is

inspired from the way humans search for scholarly information on the Web. Using hints from

the titles, snippets and the URL strings, human searchers are often able to locate the correct

homepage from the Web search results, e.g., by navigating from the paper URL to the index

55

of the homepage where the paper is located. To illustrate this process, Figure 3.2 shows an

example of a Web search using the Bing search engine for the title of a paper published in

WWW 2008. In the figure, the link shown in hosted on the homepage of the first author of

the searched paper, while the links shown in red point to newly discovered authors. For the

paper title search, the homepage of the first author of the searched paper can be accurately

retrieved by navigating from the paper’s URL to the index of the homepage (see the first

result of the figure). Interestingly, notice that homepages belonging to seven other authors

(different from the authors of the searched paper) can be discovered through the title search.

We posit that this is because scientific paper titles comprise a large fraction of keywords108,

and hence, the words in paper titles serve as excellent keywords to formulate queries that

can retrieve topically-related research papers, which are likely to be hosted on researchers’

homepages.

Our search-then-classify approach specifically captures the above aspects by first “issu-

ing” a query to find relevant content from the Web, and subsequently using a homepage

classification module to identify homepages from the retrieved content (i.e., from the Web

search results). Identifying homepages “in the wild” is very challenging since they have dif-

ferent structures and content and the URLs where they are hosted are very diverse and new

URLs appear over time (e.g., many researchers use now github for their homepages, which

was unlikely 5 or 10 years ago). Using author names and paper titles as queries, together

with a homepage classifier, we are able to discover not only homepages of intended authors

(e.g., those searched directly by name or those of the searched titles), but also homepages of

other authors who work on semantically-related topics. We use deep learning models to learn

powerful representations of URLs and page content. Moreover, we explore self training109 in

order to reduce the human effort needed to label the data by exploiting unlabeled data for

the homepage classification task.

Our contributions are as follows:

• We propose a novel integrated framework based on search-driven methods to automat-

ically acquire research documents for scientific collections. To our knowledge, we are

56

the first to use “Web Search” based on author names to obtain seed URLs for initiat-

ing crawls in an open-access digital library. Moreover, we design a traditional machine

learning based novel homepage identification module and adapt existing research on

academic document classification, which are crucial components of our framework. We

show experimentally that our homepage identification module and the research paper

classifier substantially outperform strong baselines.

• To automatically acquire research documents, we perform a large-scale, first-of-its-

kind experiment using 43, 496 research paper titles and 32, 816 author names from

Computer and Information Sciences. We compare our framework with two baselines,

a breadth-first search crawler and, to the extent possible, the Microsoft Academic. We

discuss that our framework does not substitute these systems, but rather they very well

complement each other. We compare our framework with two baselines, a breadth-first

search crawler and, to the extent possible, the Microsoft Academic. We discuss that

our framework does not substitute these systems, but rather they very well complement

each other. As part of our contributions, we will make all the constructed datasets

available.

• We propose a search-driven homepage finding approach that uses author names and

paper titles to find researcher homepages. To our knowledge, we are the first to use

“paper titles” as queries to discover researcher homepages. Furthermore, we explore

Convolutional Neural Networks (CNNs) for author homepage identification,2 which is

a crucial component in our approach. We conduct a thorough evaluation of the CNN

models trained on both URLs and page content, and show significant improvements in

performance over baselines and prior works. Furthermore, we show that self training

can improve the performance of the classifier with the small amount of labeled data

along with the unlabeled data.

• To discover researcher homepages, we perform a large-scale experiment using author

names and paper titles from Computer Science as queries, and show the effectiveness

2We use author homepage classification or identification interchangeably.

57

of our approach in discovering a large number of homepages. Finally, as part of our

contributions, all resulting datasets for author homepage identification and homepage

discovery will be made available to further research in this area.3 We show the devel-

opment and deployment requirements of our proposed approach in CiteSeerX and the

maintenance requirements.

3.2 Related Work

Work related to our proposed search-driven approaches follows in several categories, including

scientific portals, standard supervised learning (based on feature engineering) and graph-

based approaches, semi-supervised learning approaches that can leverage unlabeled data and

complementary sets of features (or views), deep learning approaches to text classification and

focused crawling approaches. We discuss the most relevant works in each of these categories

in the remaining of this section.

Scientific Portals. There are many prior works that have focused on enhancing digital

libraries content to better satisfy the needs of digital library users110–112. Several works

studied the coverage in scientific portals such as Microsoft Academic, Google Scholar, Scopus

and the Web of Science113;114.

Supervised and Graph-based Approaches. Homepage finding and document classi-

fication are well-studied in information retrieval. The homepage finding track in TREC 2001

resulted in various machine learning systems for finding homepages115–117. Author/researcher

homepage identification is a type of homepage finding task, which has been studied exten-

sively in the context of digital libraries such as CiteSeer105 and ArnetMiner106. Among

works focusing specifically on researcher homepages, both Tang et al.118 and Gollapalli et

al.28 treated homepage finding as a binary classification task and used various URL and

webpage content features for classification. Ranking methods were also explored for home-

page finding using the top terms obtained from topic models119. Qi and Davison120 used

HTML structure-based features and content-based features for classifying webpages. Wang

3https://www.cs.uic.edu/∼cornelia/datasets/homepage discovery

58

and Oyama117 studied the problem of collecting researcher homepages for Japanese websites

using on-page and anchor text features. Ye et al.121 also focused on finding high quality

researcher homepages. Kang et al.122 used the last name of a given author followed by a

title of one of his/her publication as a query to a search engine to locate a publication list

of the author.

Semi-supervised Learning Approaches. For a given webpage, both URL and the

HTML content can be used for classifying the webpage. Multi-view learning is usually

considered as maximizing the unanimity between different views123;124. Co-training (usually

with two views) is a type of multi-view learning. Gollapalli et al.28 proposed an algorithm

for “learning a conforming pair of classifiers” that imitates co-training by using the URL and

the HTML content as two different views. Jing et al.125 addressed the webpage classification

problem using a discriminant common space by learning a multi-view shared transformation

in a semi-supervised way. Self training109 uses labeled and unlabeled data usually with a

single view to improve the classifier performance.

Deep Learning Approaches. Despite the effectiveness of feature engineering used in

traditional machine learning, this is a labor intensive task and sometimes fails to extract

all the discriminative information from the data126. Existing models for homepage classifi-

cation/identification generally use hand-engineered features extracted from URLs and page

content118;127. However, improved semantic representations can be obtained directly from the

data using deep learning, and can help avoid problems related to feature engineering. For ex-

ample, Kim128 used Convolutional Neural Networks for representation learning for sentence

classification and achieved remarkable results. The author used one convolutional/pooling

layer (consisting of filters of three different sizes), together with a word embedding layer

that encodes tokens in the input sequence and experimented with several variants of word

embeddings, including fixed pre-trained vectors, or randomly initialized word vectors later

tuned for a specific task. Zhao et al.129 used neural network based homepage identifier

to find a homepage of a given researcher within a set of HTML pages which are retrieved

for a given researcher name as a query. In contrast, inspired from Kim128, we use CNNs

for representation learning for homepage classification and aim to identify homepages of

59

semantically-related authors (not just the targeted author) for a given query.

Focused Crawling. Focused crawling was introduced by Chakrabarti et al.130 to deal

with the information overload on the Web in order to build specialized collections focused

on specific topics. Zhuang et al.111 demonstrated the feasibility of using author homepages

as alternative resources to collect research papers that are missing from an academic dig-

ital library. Garcia et al.131 proposed a framework to gather publication list of different

researchers by using author names as queries to a web search engine.

As opposed to previous approaches that used researcher names and their affiliations to

locate a given researcher’s homepage, we focus on researcher homepage discovery and propose

an approach that mimics how people skim through the search results to discover homepages

on the Web. In addition, we are the first to interleave various components of Web search,

crawl, and document processing to build an efficient paper acquisition framework.

3.3 Proposed Frameworks and Approaches

We have proposed search based approaches to automatically augment the scientific document

collections and accurate lists of researchers’ homepages. In this section we discuss both.

3.3.1 Scientific Documents Discovery

Figure 3.3 shows the control flow paths of our proposed framework to obtain research papers

and thus augment existing collections. In Path 1, paper titles are used as queries and the

PDF documents resulting from each title search are classified with a paper classifier based on

Random Forest. Author names comprise the queries for Web search in Path 2, the results

of which are filtered by a homepage identification module trained using RankSVM. The

predicted author homepages from Path 2 serve as seed URLs for the crawler module that

obtains all documents up to a depth 2 starting from each seed URL. The paper classification

module is once again employed to retain only research papers. Note that we crawl only

publicly available and downloadable documents those appear in the search responses of the

60

Figure 3.3: Schematic Diagram of our Scientific Documents Discovery Framework.

Web search or from the researcher homepages.

Homepage Ranking

Among the works focusing on researcher homepages, both Tang et al.118 and Gollapalli et

al.127 treated homepage finding as a binary classification and used URL string features and

content features (extracted from the entire .html page) for classification. However, given

our Web search setting, the non-homepages retrieved in response to an author name query

can be expected to be diverse with webpages ranging from commercial websites such as

LinkedIn, social media websites such as Twitter and Facebook, and several more. To han-

dle this aspect, we frame homepage identification as a supervised ranking problem. Thus,

given a set of webpages in response to a query, our objective is to rank homepages higher

relative to other types of webpages, capturing our preference among the retrieved webpages.

Preference information needed for the ranking can be easily modeled through appropriate

objective functions in learning to rank approaches132. For example, RankSVM133 minimizes

the Kendalls τ measure based on the preferential ordering information in the training ex-

amples. We design the following feature types for our ranking model, which capture aspects

(e.g., snippets) useful for a Web user to find homepages:

61

1. URL Features: Intuitively, the URL strings of academic homepages can be expected

to contain (or not) certain tokens. For example, a homepage URL is less likely to be

hosted on domains such as “linkedin” and “facebook.” On the other hand, terms such

as “people” or “home” can be expected to occur in the URL strings of homepages (see

examples of homepage URLs in Figure 3.1). We tokenize the URL strings based on

the “slash (/)” separator and the domain-name part of the URL based on the “dot

(.)” separator to extract our URL and DOMAIN feature dictionaries.

2. Term Features: The current-day search engines display the Web search results as a

ranked list, where each webpage is indicated by its HTML title, the URL string as well

as a brief summary of the content of the webpage (also known as the “snippet”). We

posit that Scholarly Web users are able to identify homepages among the search results

based on the term hints in titles and snippets (for example, “professor”, “scientist”,

“student”), and use words from titles and snippets to extract our TITLE and SNIPPET

dictionaries.

3. Name-match Features: These features capture the common observation that re-

searchers tend to use parts of their names in the URL strings of their homepages118;127.

We specify two types of match features: (1) a boolean feature that indicates whether

any part of the author name matches a token in the URL string, and (2) a numeric

feature that indicates the extent to which name tokens overlap with the (non-domain

part of) URL string given by the fraction: #matches

#nametokens
. For the example author name

“Soumen Chakrabarti” and the URL string: www.cse.iitb.ac.in/∼soumen, the two

features have values “true” and 0.5, respectively.

The dictionary sizes for the above feature types based on our training datasets (see

Section 3.4.1) are listed below:

62

Feature Type Size

URL+DOMAIN term features 2025

TITLE term features 19190

SNIPPET term features 25280

NAME match features 2

Paper/Non-Paper Classification

In order to obtain accurate paper collections, it is important to employ a high-accuracy

paper/non-paper classifier. Caragea et al.100 studied the classification of academic documents

into six classes: Books, Slides, Theses, Papers, CVs, and Others. The authors showed

that a small set of 43 structural, text density, and layout features (Str) that are designed

to incorporate aspects specific to research documents, are highly indicative of the class of

an academic document. Because we are mainly interested in research papers to augment

research collections and because binary tasks are considered easier to learn than multi-class

tasks134, we adapted this prior work on multi-class document type classification100 and re-

trained the classifiers for the two-class setting: paper/non-paper.

3.3.2 Researchers’ Homapages Discovery

Task Description. Our task is to automatically discover new researchers’ homepages on

the Web, and augment and maintain up-to-date lists of homepages in open-source digital

libraries to enable effective and efficient crawls for collecting documents. To address this task,

we propose a search-then-classify approach for discovering researchers’ homepages from the

Web that mimics the search process adopted by humans. Author names and paper titles,

freely available on the Web for specific subject disciplines are used to form suitable queries

in our approach. Specifically, Path 1 starts with queries for authors names, while Path 2

starts with queries for paper titles. To identify researchers’ homepages, pages retrieved on

either path are classified with a CNN model. Table 3.1 shows examples of queries issued in

Path 1 (author names) and Path 2 (paper titles), respectively.

63

Path 1: Author Name Query

Eric T. Baumgartner filetype:html

Path 2: Paper Title Query

Solving Time-Dependent Planning Problems. filetype:pdf

Table 3.1: Example of author name and paper title queries.

Application Description. Our implementation of the search-then-classify framework

represents a critical part towards a sustainable CiteSeerX, in that it maintains and augments

up-to-date lists of researchers’ homepages found on the Web. Given the infeasibility of

collecting the entire content on the Web, our search-then-classify framework aims to minimize

the use of network bandwidth and hardware resources by selectively crawling only pages

relevant to a (specified) set of topics.

Innovative Use of AI Technology

Convolutional Neural Networks. A key component in our framework is a classification

module that identifies whether a retrieved webpage is a homepage or not. Inspired by Kim128,

we use Convolutional Neural Networks for representation learning of URLs and page content.

Convolutional Neural Networks (CNNs)135 are a special kind of neural networks to process

grid-like structured data, including sequence or time series data. CNNs are associated with

the idea of a “moving filter.” Thus, in our approach, we explore a CNN based classifier for

identifying homepages from the retrieved results in both search paths.

The CNN architecture used in our experiments is shown in Figure 3.4, and is comprised

of mainly three layers: a word embedding layer, a convolutional layer followed by max

pooling, and a fully connected layer for the classification. The embedding layer for tuning

task specific word embeddings is initialized to a random vector corresponding to the input

sequence. A convolutional layer consists of multiple filters of different sizes (e.g., sizes 3 and

4, respectively) that generate multiple feature maps (e.g., 300) for each filter size. Pooling

is usually used after the convolutional layer to reduce the dimensionality (i.e., number of

parameters) and prevent overfitting. The common practice for text is to extract the most

important feature within each feature map136, called 1-max pooling. In our architecture,

1-max pooling is applied over each feature map and the maximum values from each filter

64

Figure 3.4: Illustration of our CNN architecture used for homepage classification.

are selected. These maximum values are then concatenated and used as input to a fully

connected layer for the classification task (homepage versus not-homepage). We minimize

a sigmoid (or binary) cross-entropy loss function using Adam optimizer to correctly predict

the class label. If yi is the true label and p(yi) is the predicted label, then the cross-entropy

loss function (L) for N examples is calculated as:

L = − 1

N

N∑
i=1

yi.log(p(yi)) + (1− yi).log(1− p(yi)) (3.1)

We investigate two types of representations derived using CNN: (1) word based HTML

content; and (2) word based URL. As can be seen from Figure 3.4, we explore the CNN

models individually on either URL or page content, or jointly on both URL and page content.

The URLs and corresponding pages (content) are those obtained as the result of our search

for author name and paper title queries.

For the word based HTML model, we consider the first 1000 words from the HTML

content of each page (given that the average length of HTMLs in the homepage class in our

65

Figure 3.5: Teacher-Student architecture of self training.

dataset is 982, and most of the homepage characteristics often appear in the beginning of a

page). Furthermore, we remove stop words and digits, and consider words appearing in at

least 10 documents. For the URL based model, we tokenize the URLs with ‘/’ as a delimiter,

and form the vocabulary from all unigrams that appear in WordNet137. Consistent with

Gollapalli et al.28, for words that do not appear in WordNet, we add URL string patterns

to the vocabulary, including underscored or hyphenated words, words with the ‘∼’ sign,

alphanumeric words, and long words (i.e., words with more than 30 characters). These

patterns can help to filter out course pages, announcements, calendars, etc. For this model,

we consider words appearing in at least 3 URLs.

Semi-supervised Teacher-Student Model. As discussed in the Introduction, one

major challenge in identifying homepages is that the URLs where homepages can be hosted

change over time. In order to reduce the human effort for data annotation, we investigate

self-training in a Teacher-Student fashion to utilize the unlabeled data together with already

labeled data. The model works in four steps in an iterative manner (Figure 3.5): (1) labeled

data is used to train a teacher model; (2) the teacher model is used on unlabeled data to

generate pseudo labels; (3) the student model is trained using both labeled data and pseudo

labeled data (unlabeled data); (4) iterate the process by putting back the student as a teacher

to generate new pseudo labels for training new student model. We considered examples which

are predicted positive or negative with the probability ≥ 0.8 and ≤ 0.2, respectively. In our

case, we used data balancing while using pseudo labeled data and sampled same number

66

Actual URL www.cc.gatech.edu/∼mnaik7/pubs/popl16.pdf

Candidate
URLs

www.cc.gatech.edu/∼mnaik7/pubs/
www.cc.gatech.edu/∼mnaik7/
www.cc.gatech.edu/

Table 3.2: Example URLs and candidate URLs.

of examples as the training set with equally sampling from each slot of 0.05 range. As an

example, for the positively labeled data using the teacher model we sample equally from

0.8 to 0.85, 0.85 to 0.90, and so on. The backbone of our model is the CNN on both page

content and URL.

Generating Candidate URLs

Note that for each query, a set of URLs are retrieved. We discard responses from a list of

25 domains such as “ResearchGate”, “LinkedIn”, etc. Candidate homepage URLs for each

retrieved URL in Path 2 are generated by first splitting the URL on “/” and then removing

the last part of the URL, iteratively, until the domain is reached. In the candidate set of

URLs, we keep only the URLs for which we are able to obtain the corresponding HTML.

Examples of candidate URLs for a paper title search is shown in Table 3.2. For Path 1, we

use retrieved search results for the candidate URLs.

3.4 Datasets

In this section, we explain the datasets used by our frameworks and their components.

3.4.1 Scientific Documents Discovery

The datasets used in the evaluation of our Scientific Documents Discovery framework and

its components are summarized in Table 3.3 and are described below:

DBLP Homepages. For evaluating homepage finding using author names, we use the

researcher homepages from DBLP. In contrast to previous works that use this dataset to train

67

Dataset

DBLP Homepages 42,548(T) 4,255(+)

Research Papers (Train) 960(T) 472(+)
(Test) 959(T) 461(+)

CiteSeerx 43,496 (Titles), 32,816 (Authors)

Table 3.3: Summary of datasets. Total and positive instances are shown using (T) and
(+), respectively.

homepage classifiers on academic websites127, in our Web search scenario, the non-homepages

from the search results of an author name query need not be restricted to academic web-

sites. Except the true homepage, all other webpages therefore correspond to negatives. We

constructed the DBLP homepages dataset as follows: DBLP provided a set of author home-

pages along with the authors’ names. Using these authors’ names as queries, we perform

Web search using Bing API and scan the top-10 results138 in response to each query. If the

true homepage provided by DBLP is listed among the top-10 search results, this URL and

the others in the set of Web results are used as training instances. We were able to locate

homepages for 4, 255 authors in the top-10 results for the author homepages listed in DBLP.

Research Papers. To evaluate the paper/non-paper classifier, we used two independent

sets of ≈ 1000 documents each, randomly sampled from the crawl data of CiteSeerx, obtained

from Caragea et al.100. These sets, called Train and Test, respectively, were manually labeled

with six classes: Paper, Book, Thesis, Slides, Resume/CV, and Others. We transform the

documents’ labels as the binary labels, Paper/Non-paper.

CiteSeerx. Our third dataset is compiled from the CiteSeerx digital library. Specifically,

we extracted research papers that were published in venues related to machine learning, data

mining, information retrieval and computational linguistics. These venues along with the

number of papers in each venue are listed in Table 3.4. Overall, we obtained a set of 43, 496

paper titles and 32, 816 authors (unique names) for the evaluation of our framework at a

large scale.

68

Total # of papers: 43,496, #authors (unique): 32,816

NIPS (5211), IJCAI (4721), ICRA (3883), ICML (2979),
ACL (2970), VLDB (2594), CVPR (2373), AAAI (2201),
CHI (2030), COLING (1933), KDD (1595), SIGIR (1454),
WWW (1451), CIKM (1408), SAC (1191), LREC (1128),
SDM (1111), EMNLP (920), ICDM (891), EACL (760),
HLT-NAACL (692)

Table 3.4: Conference venue (#papers) in the CiteSeerx dataset.

3.4.2 Researchers’ Homepages Discovery

Here we discuss the datasets used in the evaluation of our Researchers’ Homepages Discovery

framework and its components.

DBLP Dataset

The WebKB dataset collected in 1997 has been previously used for homepage classification28.

However, due to continuous changes in the information content on academic websites, this

dataset has become outdated. For example, academic websites today contain invited talks,

newsletters, job postings, and other events that do not occur in WebKB. In addition, the

WebKB dataset does not contain homepages from industry lab researchers. To address the

above limitations and in order to enable the exploration of deep learning for author homepage

identification, we constructed a labeled dataset for this task as follows.

We obtained a list of author names and their homepages from DBLP in 2015. After

data processing, we found that the original DBLP list had a repetition of 21 homepages and

contained some URLs that were easily identified as non-homepages, specifically, 56 URLs

from Wikipedia, 2 from DBLP and 1 from Springer. After removing repetitions and pages

linking to Wikipedia, DBLP, and Springer, we ended up with a list of 13, 239 homepages. We

further refined the original DBLP list by removing all outdated URLs, 5, 596 in total (HTTP

4xx client errors, non-valid homepages, or redirects to the default university/company page).

We ended up with a list of 7, 643 author names and their homepages. We used the author

names as queries to the Bing search API and retrieved the top-10 results for each query,

69

obtaining 76, 375 search responses from Bing in total. From the Bing responses, we filtered

out pages from the list of 25 domains such as “ResearchGate,” “LinkedIn,” “Wikipedia,”

“YouTube”, etc. After removing such pages, and the overlap with the original DBLP set

of homepages, we ended up with 20, 229 Bing responses. We manually inspected the set

of 27, 872 URLs (7, 643 DBLP URLs + 20, 229 Bing URLs) for the labeling task, using

three Amazon Mechanical Turk (AMT) workers and two undergraduate students, who were

trained in an iterative fashion and worked closely with the researchers. Whenever there

was agreement between the three AMT workers, we labeled the example accordingly (as

homepage or non-homepage). When there was disagreement, the data was labeled further

by the undergraduate students, and if a decision could not be reached, the final adjudication

was made by one of the researchers. During the labeling task, we removed outdated and

non-English pages. At the end of the annotation task, we found 8, 529 positive examples

(homepages) and 16, 245 negative examples (non-homepages). After this manual annotation,

we found that only 5, 851 out of 7, 643 DBLP homepages are valid (with the others being,

e.g., moved to a different page). The result of this search validates our intuition that we

can obtain homepages for the intended authors, but also additional homepages of related

authors (e.g., co-authors).

In the set of negative domains, we observed that there were hundreds of URLs from

domains such as “healthgrades.com”, “ratemyprofessor.com”, etc. Thus, we constructed

the final dataset by sampling only 50 negative URLs from a given domain (Threshold θ ≥

50). For domains with less than 50 URLs, we used all URLs. The final dataset used in

our experiments contains 18, 733 examples, specifically 8, 529 homepages and 10, 204 non-

homepages.

Characteristics of the DBLP Dataset. Table 3.5 contains the characteristics of

the DBLP dataset. As we can see, the percentage of URLs containing a ∼ sign or being

from the ‘.edu’ domain is higher in the positive set as compared to the two negative sets

(specifically, 3, 974 out of 8, 529 URLs from the positive set contain the ∼ sign). On the

other hand, in both negative sets, the percentage of URLs containing a digit or from the

‘.com’ domain is higher as compared with the positive set. Moreover, 43%, 20%, and 23% of

70

+ve
-ve

(θ ≥ 50)
-ve (all)

#Examples 8,529 10,204 16,245

#URLs as a domain 439 1,097 1,156

#URLs with ∼ sign 3,974 113 120

#URLs from ‘.edu’ 4,192 1,304 2,307

#URLs from ‘.com’ 464 5,290 8,929

#URLs containing digit 1,034 5,191 9,130

#Pages with ‘homepage’
word or its synonyms

3,639 2,048 3,759

Max. #characters/URL 158 232 297
Avg. #characters/URL 32 50 52

Max. #words/webpage 86K 530K 530K
Avg. #words/webpage 982 2,011 2,418

Table 3.5: Datasets characteristics.

Figure 3.6: Number of URLs corresponding to homepage from different domains in our
DBLP dataset.

webpages contain the keyword ‘homepage’ or its synonyms such as personal page, personal

site, personal website, etc. in the positive set, negative set (threshold-50), and negative set

(all), respectively. Also the maximum and average #characters per URL and #words per

webpage are smaller in the positive set as compared with both negative sets. Figure 3.6

shows the top-20 domains for the positive set.

CiteSeerX Dataset

Our second dataset, which we used for the large scale evaluation of our overall framework,

is compiled from CiteSeerX. Specifically, we extracted papers published in venues related to

machine learning, information retrieval, and computational linguistics. Overall, we obtained

a random set of 10, 000 paper titles and 14, 808 authors (unique names corresponding to

71

the selected titles) for the evaluation of our search-driven approach on a large scale. These

venues along with the number of papers in each venue are as follows: ACL (1193), IJCAI

(1167), COLING (1010), ICRA (827), NIPS (650), VLDB (613), ICML (564), AAAI (411),

CHI (399), CVPR (371), KDD (366), EACL (333), SIGIR (305), SAC (296), SDM (242),

ICDM (236), CIKM (235), WWW (231), LREC (226), HLT-NAACL (209), and EMNLP

(116).

3.5 Experiments and Results

In this section, we describe our experiments on both frameworks, Scientific Documents Dis-

covery and Researchers’ Homepages Discovery, and their corresponding components.

3.5.1 Scientific Documents Discovery

In this section, we describe our experiments on homepage identification and paper classifica-

tion along with their performance within the search then crawl then process paper acquisition

framework.

Performance measures. We use the standard measures Precision, Recall, and F1 for

summarizing the results of author homepage identification and paper classification139. Unlike

classification where we consider the true and predicted labels for each instance (webpage),

in RankSVM the prediction is per query133. That is, the results with respect to a query are

assigned ranks based on scores from the RankSVM and the result at rank-1 is chosen as the

predicted homepage.

Author Homepage Identification

We aim to determine how accurate is RankSVM in identifying a homepage for each author

name query. Table 3.6 shows the five-fold cross-validation performance of the homepage

identification on the positive class trained using RankSVM compared with various classifica-

tion algorithms, Näıve Bayes, Maximum Entropy and Support Vector Machines. The results

72

in the table are averaged across all five test sets of cross-validation. Hyperparameter tuning

(e.g., C for SVM) was performed on a development set extracted from training.

Method Precision Recall F1

RankSVM 0.8933 0.8933 0.8933

Näıve Bayes 0.4830 0.9239 0.63432
MaxEnt 0.8207 0.8002 0.8102
Binary SVM 0.8353 0.8149 0.8249

Table 3.6: RankSVM vs. supervised classifiers on DBLP.

As can be seen from the table, RankSVM performs much better compared with the

classification approaches, in terms of Precision and F1, although Recall is higher for Näıve

Bayes. Hence, RankSVM is able to capture the relative preferential ordering among the

search results and performs the best in identifying the correct author homepage in response

to a query. A possible reason for the lower performance of the classification approaches

such as Binary SVMs, Näıve Bayes, and Maximum Entropy is that they model the positive

and negative instances independently and not in relation to one another for a given query.

Moreover, the diversity in webpages among the negative class is ignored and they are modeled

uniformly as a single class in the classification approaches.

Research Paper Classification

We compare the performance of classifiers trained using the 43 structural features (Str)

with that of classifiers trained using the “bag of words” (BoW), URL-based features (URL),

and a Convolutional Neural Network (CNN) model. For BoW and URL, we used the same

text processing operations as in Caragea et al.100. We experimented with several classifiers:

Random Forest (RF), Decision Trees (DT), Näıve Bayes Multinomial (NBM), and Support

Vector Machines with a linear kernel (SVM). For CNN, we use the words as a sequence as

an input; we first get the word embeddings as a part of the network followed by the CNN

filter, max-pooling, concatenation, and the fully connected layer for the classification task,

similar to Kim128. All models are trained on the “Train” dataset and are evaluated on the

“Test” dataset. We tuned model hyper-parameters in 10-fold cross-validation experiments

73

on “Train” (e.g., C for SVM and the number of trees for RF).

Feature/Cls. (Setting) Precision Recall F1

BoW / DT (P-B) 0.860 0.920 0.889
URL / SVM (P-B) 0.729 0.729 0.729
Str / RF (P-B) 0.933 0.967 0.950
CNN (P-B) 0.816 0.890 0.851

Str / RF (A-B) 0.952 0.951 0.951

Str / RF (P-M) 0.918 0.965 0.941
Str / RF (A-M) 0.893 0.902 0.892

Table 3.7: Performance of paper classifier on “Test”. “P” stands for the paper class, while
“A” for the average of classes. “B” and “M” stand for binary and multi-class, respectively.

Table 3.7 shows the performance (Precision, Recall, and F1) for the binary setting on

“Test” for each feature type, BoW, URL, and Str, and the CNN, with the classifiers that give

the best results for the corresponding feature type or model (first four lines). The results

are shown for the “paper” class (P). In the table, we also show the performance on the

“paper” class with the multi-class (M) setting and the weighted averages (A) of all measures

over all classes for both the settings. As can be seen from the table, the best classification

performance is obtained using Random Forest trained on the 43 structural features with the

overall performance above 95% being substantially higher in the binary setting compared

with the multi-class setting. The reason behind lower performance of the CNN classifier can

be the wide variety of documents present in the dataset and the small number of the training

examples.

Large-Scale Experiments

Finally, we evaluate our “search then crawl then process” framework and its components in

practice in large scale experiments, using our CiteSeerx subset. To this end, we evaluate the

capability of our framework to obtain large document collections, quantified by the number of

research papers it acquires (through both paths). For Path 1, we use the 43, 496 paper titles

directly as search queries. Structural features extracted from the resulting PDF documents

of each search are used to identify research papers with our paper classifier. For Path 2, the

32, 816 unique author names are used as queries. The RankSVM-predicted homepages from

74

Title Queries

Knowledge-based Knowledge Elicitation. filetype:pdf
Solving Time-Dependent Planning Problems. filetype:pdf

Author Name Queries

Eric T. Baumgartner filetype:html
Nelson Alves filetype:html

Table 3.8: Example of title and author name queries.

the results of each author name query are crawled for PDF documents up to a depth of 2,

using the wget utility.4 Again, the paper classifier is employed to identify the papers from

the crawled documents. In all experiments, we used the Bing API to perform Web searches.

Examples of title and author name queries are provided in Table 3.8.

Overall Yield. The total numbers of PDFs and research papers found through the two

paths in our Search/Crawl/Process framework are shown in Table 3.9 (the columns labeled

as #CrawledPDFs and #PredictedPapers, respectively). Intuitively, the overall yield can be

expected to be higher through Path 2. This is because once an author homepage is reached,

other research papers that are linked from this homepage can be directly obtained. Indeed,

as shown in the table, the numbers of PDFs as well as predicted papers are significantly

higher along Path 2. Crawling the RankSVM-predicted homepages of the 32, 816 authors,

we obtain on average ≈ 14 research papers per query (452273
32816

= 13.78). In contrast, examining

only the top-10 search results along Path 1, we obtain ≈ 5 papers per query on average

(213683
43496

= 4.91). The high percentage of papers found along Path 2 is consistent with

previous findings that researchers tend to link to their papers via their homepages127;140.

Note that in all experiments, since the original 43, 496 titles are extracted from CiteSeerx,

for a fair evaluation, we removed all title search results that point to the CiteSeerx domain,

i.e., http://citeseerx.ist.psu.edu/.

Furthermore, the numbers of unique papers found along each of the two paths are shown

in Table 3.9 (the column labeled as #UniquePapers). We used ParsCit5 to extract the titles

of the research papers obtained from both the paths and then calculated the duplicates from

4https://www.gnu.org/software/wget/
5http://aye.comp.nus.edu.sg/parsCit/

75

#Queries #CrawledPDFs #PredictedPapers #UniquePapers #MatchesWithOriginalTitles

43,496 titles (Path 1) 322,029 213,683 91,237 32,565
32,816 names (Path 2) 665,661 452,273 204,014 17,627

Overlap: Path 1 &
Path 2

- - 28,374 16,188

Total # of papers:
Path 1 + Path 2

- - 266,877 34,004

Table 3.9: Number of papers obtained through Path 1 and Path 2 in our
Search/Crawl/Process framework.

these titles.6 As can be seen from the table, we are able to obtain 91, 237 and 204, 014

unique papers from Path 1 and Path 2, respectively, which account for ≈ 2 papers per title

query on average (91237
43496

= 2.09) and ≈ 6 papers per author query on average (204014
32816

= 6.21).

However, since our objective is not to use one path or the other, but use a combination of

both Path 1 and Path 2, we further expanded our analysis to show the overlap between Path

1 and Path 2 in terms of unique titles.

Overlap between Path 1 and Path 2. Table 3.9 shows also the overlap in the

two sets of unique papers (between Path 1 and Path 2), which is 28, 374. Compared to

the overall yields along Path 1 and Path 2 (213, 683 and 452, 273, respectively) and even

with the number of unique papers along each path, this small overlap indicates that the two

paths are capable of reaching different sections of the Web and play complementary roles

in our framework. For example, the top-20 domains of the URLs from which we obtained

research papers along Path 1 are shown in Figure 3.7. As can be seen from the figure, via

Web search, we are able to reach a wide range of domains. This is unlikely in crawl-driven

methods without an exhaustive list of seeds since only links up to a specified depth from a

given seed are explored139. Interestingly, using a combination of both Path 1 and Path 2,

we were able to obtain 266, 877 (=91, 237+204, 014-28, 374) unique papers.

Next, we investigate the recovery power of our framework. Precisely, how many of the

original 43, 496 titles were found through each path as well as their combination?

Overlap with the Original Titles. The numbers of papers that we were able to

obtain from the original 43, 496 titles through both paths are shown in the last column of

6To find duplicates, we convert the text to lowercase, and remove punctuation and whitespace.

76

Figure 3.7: The top-20 domains from which papers were obtained along Path 1 of our
framework.

Table 3.9, labeled as #MatchesWithOriginalTitles. To compute these matches, we used the

title and author names available in our CiteSeerx subset to look up the first page of each PDF

document. As can be seen from the table, we were able to recover 75% (32565
43496

) of the original

titles through Path 1 compared to the 40% (17627
43496

) through Path 2. The total number of

matches with the original titles between Path 1 and Path 2 was 16, 188. Overall, through

a combination of both Path 1 and Path 2, we were able to recover 78% (34,004
43496

) of the

original titles (34, 004=32, 565+17, 627-16, 188 papers obtained through both paths out of

the original titles).

To summarize, using about 76, 312 queries (43, 496 + 32, 816) through Path 1 and Path

2, we are able to build a collection of 665, 956 papers (213, 683 + 452, 273) and 266, 877

unique titles (91, 237 + 204, 014 − 28, 374). About 32-33% of the obtained documents are

“non-papers” along both paths. Scholarly Web is known to contain a variety of documents

including resumes, and presentation slides141. Some of these documents may include the

exact paper titles and may appear in paper search results as well as be linked from author

homepages.

Anecdotal Evidence. Given the size of our CiteSeerx dataset and the large number

of documents obtained via our framework (as shown in Table 3.9), it is extremely labor-

intensive to manually examine all documents resulting from the large scale experiment.

However, since our classifiers and rankers achieve performance above 95% and 89% based on

77

our test datasets compiled specifically for these tasks, we expect them to continue to perform

well “in the wild.” We show anecdotal evidence to support this claim, i.e., an estimate of how

many true papers we are able to obtain via our Search/Crawl/Process framework starting

from a small set of titles.

To obtain such an estimate, we randomly selected 10 titles from the CiteSeerx dataset.

From the corresponding papers of these 10 titles, we extracted 33 unique authors. We

manually inspected all PDFs that can be obtained via title search (Path 1) as well as

the homepages obtained via author name search (in Path 2) That is, through Path 1, we

searched the Web for the 10 selected titles and manually examined and annotated the top-10

resulting PDFs for each title query. The title search resulted in 59 PDFs, of which 33 are true

papers and 26 are non-papers. Our paper classifier predicted 32 out of 33 papers correctly

and 38 papers overall and achieved a precision and recall of 84% and 97%, respectively.

Similarly, through Path 2, we searched for the 33 author names from the Web and

manually examined and annotated the top-10 resulting webpages for each author name query.

From the author search, manually, we were able to locate 19 correct homepages of the 33

authors. A manual inspection of the predicted homepages revealed that our framework was

not able to locate 6 out of the 19 correct homepages. Table 3.10 shows a few examples where

our framework was not able to locate the correct homepages. For example, occasionally,

RankSVM ranks university faculty profile or faculty research group at the first rank, which

is then predicted as a homepage by RankSVM (e.g., URLs 4 and 6 in Table 3.10). URL 5

in Table 3.10 is wrongly predicted by RankSVM as the homepage for the researcher name

“David Bell.” This is precisely because there is a well known novel writer and also baseball

player with the same name, which get ranked higher in the results of the search engine.

Note that, interestingly, the actual homepage of David Bell, corresponding to URL 2 was

not retrieved in the top 10 search responses of Bing.

Baseline Comparisons

Breadth-first search crawler. We compare our Search/Crawl/Process framework, through

78

Actual homepage

1. http://destrin.smalldata.io/
2. http://www.cs.qub.ac.uk/∼D.Bell/dbell.html
3. http://www.ai.sri.com/∼yang

Predicted homepage

4. http://research.cens.ucla.edu/people/estrin/
5. http://davidbellnovels.com/
6. http://www.ai.sri.com/people/yang/

Table 3.10: A few examples where our framework was not able to locate the correct homepage

Path 1, with a breadth-first search crawler as implemented in CiteSeerx. The CiteSeerx

crawler starts with a list of seed URLs, performs a breadth-first search crawl and saves

open-access PDF documents.

For this experiment, we randomly selected 1, 000 titles from DBLP. We then searched

the Web for these titles and retrieved the top-10 resulting PDFs for each query. Through

this search, we obtained a total of 5, 793 PDFs, from which we removed 110 documents

that were downloaded from CiteSeerx, since they were obtained as a result of the CiteSeerx

breadth-first search crawler. Note that there is an overlap of 6 documents, i.e., only located

on CiteSeerx (and nowhere else on the Web), between the 110 removed documents and the

1000 DBLP initial titles. From the remaining documents, our paper classifier predicted 3, 427

documents as papers, out of which 2, 797 are unique papers/titles. We searched CiteSeerx

for these 2, 797 titles to determine how many of them are found by the CiteSeerx crawler.

We found 1, 037 titles in CiteSeerx by checking if one title string contains the other. Thus,

with our framework, we were able to obtain 2, 797−1, 037 = 1, 760 additional papers. Out of

the 994 (1000− 6) DBLP titles, only 121 papers were found by both our framework and the

CiteSeerx crawler. In addition, our framework found 165 more papers (with a total of 286

out of 994 DBLP titles), whereas the CiteSeerx crawler found only 92 more papers (with a

total of 213 out of 994 DBLP titles). Moreover, out of the additional yield of our framework,

i.e., 2511 (= 2797− 286) papers, only 552 are found by the CiteSeerx crawler (identified by

searching for the 2511 titles in the CiteSeerx digital library - by exact match). These results

are summarized in Figure 3.8. We note that the two approaches are not substituting, but

rather complementing each other.

79

Figure 3.8: Comparison of the Search/Crawl framework with the CiteSeerx breadth-first
search crawler.

Microsoft Academic. Searching for feeds from publishers (e.g., ACM and IEEE) and

using webpages indexed by Bing is also considered by Microsoft Academic (MA) to collect

entities such as paper, author, and venue, to be added to the MA graph96. An edge in the

graph is added between two entities if there is a relationship between them, e.g., publishedIn.

In contrast, in our framework, we collect not only the intended paper for a title search, but

also all papers that are found for that search. In addition, we identify author homepages

through author name search and, unlike MA, we use them to collect research papers from

these homepages. To our knowledge, we are the first to use “Web Search” based on author

names to obtain seed URLs for initiating crawls to acquire documents in scientific portals.

Both our framework and MA use Bing for searches. Thus, using MA strategy to collect paper

entities, 32, 565 papers are recovered out of the 43, 496 original titles. Adding the author

search in our framework, we are able to collect an additional 1, 439 (=34, 004 − 32, 565)

papers from the original titles and 234, 312 (=266, 877 − 32, 565) overall additional unique

papers (see Table 3.9).

3.5.2 Researchers’ Homepages Discovery

Next, we describe our experiments and results on homepage classification along with the

performance of our overall search-then-classify framework.

80

Model Precision Recall F1 Accuracy

CNN-URL 0.91 0.75 0.82 85.11%
CNN-Content 0.89 0.90 0.89 90.38%
CNN-Combined 0.90 0.94 0.92 92.35%

Co-training 0.87 0.86 0.87 87.64%

RF-URL 0.89 0.84 0.87 88.10%
RF-Content 0.83 0.92 0.87 87.35%
RF-Combined 0.85 0.91 0.88 88.55%

Table 3.11: CNN vs. co-training and supervised models.

Author Homepage Classification

To evaluate the performance of the CNN models on homepage classification, and compare

them with previous approaches for this task, we divided our DBLP dataset into train, vali-

dation and test sets. The train, validation, and test sets have 60%, 20% and 20% examples,

respectively. All the splits are constructed by keeping the original distribution of the URL

set. We use the validation set for parameter tuning and model selection. We report precision,

recall and F1-score for the positive class and the overall accuracy for each model on the test

set (using the model that performed best on the validation set). For CNN models, we run

the experiments with three different random initialization of the network weights and we

report average values for each measure. The model that achieved the highest performance

on the test set was chosen for the large scale experiment.

CNN vs. Supervised Models and Co-training. We contrast the performance of

CNNs on different input types (URL, HTML content, and the combination) with the per-

formance of several traditional supervised classifiers (Random Forest, Decision Trees, Näıve

Bayes, and Support Vector Machines with a linear kernel), as well as with the performance

of a semi-supervised co-training classifier for homepage identification as described in28.

We used the tf-idf vector representations for all input types (URL and content based) for

the traditional supervised classifiers. We trained the CNN models using mini-batches of size

64, with a sigmoid cross-entropy loss function and Adam optimizer with a learning rate of

0.0005. After experimenting with a large spectrum of parameters for CNNs on the validation

set, the best parameters are as follows: for CNN-URL, 100 embedding size and 100 filters

of size 5; for CNN-content, 300 embedding size and 100 filters of size 5. For co-training, we

81

obtained the code and unlabeled data from Gollapalli et al. 28 .7

Table 3.11 shows the performance on the test set of the CNN classifiers compared with

co-training and supervised Random Forest (RF) classifiers. The RF classifiers performed the

best among all the traditional supervised classifiers (and therefore we only show its results

in the table). CNN classifiers are comparable and in many cases outperform their traditional

supervised counterparts except the URL based classifier, and also the co-training approach

proposed in28. We can also see that the CNN-combined, which uses both word-based content

and word-based URL, achieves the highest performance among all models, in terms of recall

and F1-score. For example, CNN-combined achieves the highest F1 of 0.92, whereas the RF-

combined (URL + content) yields an F1-score of 0.88. We can also observe that CNN-URL

achieves a highest precision of 0.91.

The Effect of Self-training. To see the effectiveness of self-training, we perform

experiments using different portion of the training data along with unlabeled data to train

our homepage classifier (CNN-Combined) using self-training. For the unlabeled data used

in the self-training of our homepage classifier, we use candidate URLs of Path 1 (author

name queries) of our proposed framework. We used 56, 339 HTML pages and URLs as the

unlabeled set. We went up to 5 iterations of self-training, iteratively learning a teacher-

student model. Table 3.12 shows the results highlighting the effect of self-training on the

CNN-Combined classifier. We can see that the performance of the classifier improves when

the labeled data is ≤ 25% (only 2, 811 labeled examples). For example, while using only

1% (112) labeled examples, the performance of the classifier increased by ≈ 8% using self-

training from F1 of 0.78 to 0.84. For the error analysis and the large-scale experiments, we

used the CNN-Combined classifier trained using self-training with 100% training examples.

These results show that self-training can be very useful when we want to deploy/train the

homepage classifier for other domains where the labeled data is not easily available, but we

can easily collect the unlabeled data relevant to the task. Also, self-training can be very

useful in order to reduce the human labeling effort, especially given the changing nature of

the URL types/domains where homepages can be located.

7https://sites.google.com/site/sujathadas/home/datasets

82

Labeled
Precision Recall F1 Accuracy

Data

Without self training

1% 0.77 0.80 0.78 79.37%
5% 0.88 0.86 0.87 88.33%
10% 0.88 0.89 0.88 89.20%
25% 0.88 0.92 0.90 90.81%
50% 0.89 0.94 0.92 92.06%
100% 0.90 0.94 0.92 92.35%

With self training (uses unlabeled data)

1% 0.83 0.85 0.84 84.96%
5% 0.85 0.91 0.88 88.85%
10% 0.87 0.91 0.89 89.60%
25% 0.87 0.94 0.91 91.06%
50% 0.90 0.93 0.92 92.14%
100% 0.91 0.93 0.92 92.63%

Table 3.12: The performance of CNN-Combined model with and without self training.

Error analysis. Table 3.13 shows sampled URLs along with model’s confidence value

where CNN-Combined model made errors. The blue part of each URL indicates the part of

the URL that is used as an input to a deep learning model. Most of the false positive examples

are pointing to webpages of a research group/lab or their list of people/members, and to

webpages containing basic information regarding a professor or a person. Specifically, URL-

1, URL-2 and URL-3 are pointing to a webpage of a member of the research group/lab, while

URL-4 is pointing to a webpage containing basic information regarding a professor. Most

of the false negative examples are pointing to a homepage containing very little research-

related information, or a homepage with very different content than that expected on a usual

researcher homepage. URL-5 contains very little HTML content (unlike a typical researcher

homepage). URLs 6, 7, and 8 are also homepages with very different content than the

content on a usual researcher homepage.

Large-Scale Experiments

We now evaluate the capability of our search-then-classify approach to discover author home-

pages in a large-scale experiment, using the CiteSeerX dataset. To this end, we use the

14, 808 author names and the 10, 000 paper titles as search queries on the Bing search API

83

False Positives

Example Confidence

1. http://users.ics.aalto.fi/eugenc 1.0
2. http://www.nott.ac.uk/∼itzbl/ 1.0
3. http://www.eng.usf.edu/∼rfrisina/ 0.9999
4. http://www.ssrc.ucsc.edu/person/phartel.html 0.9952

False Negatives

Example Confidence

5. http://zh-anse.com 0.9995
6. http://www.brookings.edu/experts/yuq 0.9989
7. https://blog.xot.nl/about-2 0.9858
8. http://freudenbergs.de/bert 0.9805

Table 3.13: Errors made by CNN-Combined model, along with model’s confidence values.
The blue part in each URL indicates the part of the URL that is used as input to a model.

Queries URLs
Candidate CNN-comb. HPs

URLs All Unique

Author names 148,042 56,339 12,093 11,016
Paper titles 75,612 51,451 17,685 12,199

Overlapping - - - 2,622

Total - - - 20,593

Table 3.14: Homepages from 10, 000 title and 14, 808 author search responses in a large-
scale experiment.

and employ the CNN-combined homepage classifier to identify homepages from the top-10

search results of each query. We used only the top-10 results as they are shown to often be

sufficient to retrieve the relevant information138.

Overall yield. The total number of Bing URL responses for our author name and paper

title queries, the number of resulting candidate URLs (corresponding to the retrieved URLs),

and the number of predicted homepages (overall and unique) obtained using the CNN-

combined classifier are shown in Table 3.14. Individually, for the 14, 808 author name queries

we obtained 148, 042 Bing URL responses (i.e., URLs pointing to html pages). After filtering

out the easy-to-identify non-homepage commercial URLs, we generated 56, 339 candidate

URLs (see Table 3.2 for examples of candidate URLs), out of which 12, 093 are classified as

homepages by our CNN-combined classifier. From this set of 12, 093 predicted homepages,

we obtained 11, 016 unique author homepages.

84

For the 10, 000 paper title queries, we obtained 75, 612 Bing URL responses (i.e., URLs

pointing to PDF documents). After filtering out the commercial URLs, we generated 51, 451

candidate URLs, out of which 17, 685 are classified as homepages by our CNN-combined

classifier. From this set of 17, 685 predicted homepages, we obtained 12, 199 unique author

homepages.

Table 3.14 shows also the overlap in the two sets of unique homepages between author

name search and paper title search, which consists of 2, 622 unique homepages. As expected,

this small overlap of homepages between author name search and paper title search indicates

that research paper titles, formulated as queries, have a great potential to discover new

researcher homepages (in addition to the homepages of researchers searched specifically).

Precisely, through the paper title search and using the CNN-combined classifier, we were able

to find an additional 9, 577 (= 12, 199−2, 622) unique homepages (as compared to the author

name search). This result also suggests that the two types of searches complement each other

and are capable to reach different sections of the Web. The total number of homepages we

discover through the author name search and paper title search in our approach is 20, 593

(= 11, 016 + 12, 199 - 2, 622). This total number of homepages showcases the potential of

our approach to acquire and maintain large collections of homepages.

To see where the homepages acquired using our approach come from (what parts of the

Web), we extracted the number of different domains and ranked them based on the number

of URLs in each domain. Figure 3.9 shows the top-20 domains for the 20, 593 homepages. In

total, we found 107 domains. Around 48% of homepages are from the “.edu” domain. The

top-20 domains shown in the figure cover ≈ 89% of total homepages that we discovered.

To see for how many authors out of 14, 808 authors we were able to locate the homepages,

we used Stanford Named Entity Recognizer. 8 We used the first appearing name from the

predicted homepage as the owner of the homepage. To match the author names, we consider

a match if we were able to match first and last name. We recovered homepages for 5, 815

and 2, 782 intended authors using author names and paper title queries, respectively. These

results also showcase the potential of paper title queries to locate the homepages of other

8https://nlp.stanford.edu/software/CRF-NER.html

85

Figure 3.9: Top-20 domains from author and title searches.

authors than the authors of the queried titles.

Overlap with DBLP author homepages. One interesting question that can be

raised is the following: “Is our approach able to discover homepages that are not already

available in some online resource?” That is, starting with our sets of author names and

paper titles, which are independent from the author names in the DBLP list of homepages,

how many homepages can we discover that are not already in the DBLP list? To answer

this question, we compare our overall 15, 203 homepages predicted by the CNN-combined

classifier with the list of known DBLP homepages (5, 851 homepages). The overlap between

the 15, 203 predicted homepages in our approach and 5, 851 DBLP homepages is 1, 882.

Hence, remarkably, overall, we are able to discover 18, 711 = 20, 593 - 1, 882 homepages that

are not present in our DBLP dataset.

Human Assessment and Validation. Key to our large scale experiment is to ensure

data quality of the discovered homepages. In order to analyze the impact of the system

effectiveness, we performed human assessment and validation. Specifically, we sampled 600

CNN-predicted homepages for human assessment and validation. We asked a human an-

notator (the first author of this paper) to determine if each page provided in the set is a

homepage or not. The human annotator labeled 496 out of 600 URLs as homepages. In

other words, 82.67% URLs from the sampled set were identified as true homepage. Close

inspection of the remaining 104 URLs revealed that, most of those URLs are pointing to a

group or lab or course page. Furthermore, we noticed that 266 out of 600 URLs contain a

86

∼ sign, and 246 URLs with a ∼ sign were marked as a homepage by the human annotator.

3.6 Development and Deployment of Researchers’ Home-

pages Discovery Framework in CiteSeerX

Although CiteSeerX utilizes open source software packages, many core components are not

directly available from open source repositories and require extensive programming and test-

ing. The current CiteSeerX codebase inherited little from its predecessor’s (CiteSeer) for

stability and consistency. The core part of the main web apps were written by Dr. Isaac

Councill and Juan Pablo Fernández-Ramı́rez and many components were developed by other

graduate students, postdocs and software engineers, which took at least 3-4 years. Differ-

ent components of CiteSeerX are built using several languages such as JAVA, Python, Perl,

Scala, etc. The homepage classifier component is developed using Python 2.7. We have used

the Amazon AWS service for training the deep learning-based homepage classifier. The AWS

instance that was used for training the classifier has Intel(R) Xeon(R) CPU E5-2686 v4 @

2.30GHz processor, 64GB RAM, and Tesla V100 SXM2 16GB GPU.

To collect documents, CiteSeerX crawls researchers’ homepages, URLs from the Microsoft

Academic Graph and Google Scholar, and maintains whitelists and blacklists for crawling.

Our framework is integrated in CiteSeerX to continuously augment and maintain the URLs

collection used for crawling (in order to preserve network bandwidth and hardware). Cite-

SeerX also directly incorporates PDFs from PubMed, arXiv, and digital repositories in a

diverse spectrum of disciplines such as mathematics, physics, and medical science. These

crawled documents are passed to multiple AI modules such as document classification, doc-

ument de-duplication and citation graph, metadata extraction, header extraction, citation

extraction, etc. The ingestion module writes all metadata into the database. The PDF doc-

uments are renamed under a document ID (csxDOI) and saved to the production repository

with XML metadata files. The index data are also updated. During the application devel-

opment, we have learned that identifying homepages “in the wild” is very challenging since

87

they have very diverse structures and content. Moreover, based on the human annotation

task, identifying author homepages is difficult sometimes even for human annotators.

3.7 Maintenance of Researchers’ Homepages Discov-

ery Framework in CiteSeerX

The researcher homepage classifier is developed and maintained by one graduate student,

whereas the web-crawler component in CiteSeerX is developed and maintained by several

graduate students. The homepages finding project received partial financial support from

the National Science Foundation aimed at a sustainable CiteSeerX. While collecting the

documents from homepages (seed URLs), multiple types of documents can be found on

homepages such as CVs, slides, syllabus, homeworks, etc. which should not be included in

CiteSeerX. Thus we found that a classifier that distinguishes research articles from other

types of documents, as described in100, should be used on the crawled documents. During

maintenance, as new homepages emerge and also existing authors may change affiliations or

the homepage may get outdated (4XX error), periodically we need to automatically update

the list of homepages as well as remove the outdated homepages without the human effort.

The maintenance work includes, but is not limited to fixing bugs, updating the list of URLs

including researcher homepages, periodically checking the system health, and running the

web-crawlers. CiteSeerX data is updated regularly. The crawling rate varies from 50,000

to 100,000 PDF documents per day. Of the crawled documents, about 40% are eventually

identified as being academic and ingested into the database.

3.8 Summary and Future Directions

We proposed a framework for automatically acquiring research papers from the Web. We

showed the experiments illustrating the state-of-the-art performance for two major modules

of our framework: a homepage identifier and a paper classifier. Through an experiment using

88

a large collection of ≈ 76, 000 queries (titles + authors names), our framework was able to

automatically acquire an overall collection of ≈ 267, 000 unique research papers and was able

to recover 78% of the original searched titles, i.e., ≈ 34, 000 papers from the 43, 496 original

searched titles. We also showed that our approach is not meant to replace existing crawling

strategies, but can be used in conjunction, to enhance the content of digital libraries.

Moreover, we proposed another novel search-then-classify approach to discover researcher

homepages using author names and paper titles as queries in order to augment and maintain

the URL lists for document crawling in CiteSeerX. To our knowledge, we are the first to

interleave Web search and deep learning for researcher homepage identification to build an

efficient author homepage acquisition approach. This is a useful component in CiteSeerX,

which crawls researchers’ homepages to collect research papers for inclusion in the library.

Moreover, we show that self-training can be very useful to train deep learning based re-

searcher homepage classifiers using small amount of labeled data along with unlabeled data.

Since data annotation is very expensive, we show that human effort can be reduced through

self-training, which could be useful when deploying this into another system in future. Our

results showcase the potential of our approach. More interestingly, we discovered 12, 199

researcher homepages using 10, 000 paper title queries. This shows the capability of research

paper titles for finding researcher homepages. We show the integration of our framework in

CiteSeerX for collecting URLs for crawling scientific documents. The new datasets that we

created are made available online to foster research in this area.

In the future, it would be interesting to apply our frameworks to other domains, and

study the integration of topic classification.

89

Chapter 4

Document Classification in Web

Archiving Collections

The Web archived data usually contains high-quality documents that are very useful for cre-

ating specialized collections of documents. To create such collections, there is a substantial

need for automatic approaches that can distinguish the documents of interest for a collection

out of the large collections (of millions in size) from Web Archiving institutions. However,

the patterns of the documents of interest can differ substantially from one document to an-

other, which makes the automatic classification task very challenging. In this chapter, we

explore different learning models and feature representations to determine the best perform-

ing ones for identifying the documents of interest from the web archived data. Specifically, we

study both machine learning and deep learning models and “bag of words” (BoW) features

extracted from the entire document or from specific portions of the document, as well as

structural features that capture the structure of documents. Moreover, we explore dynamic

fusion models to find, on the fly, the model or combination of models that performs best on

a variety of document types. We focus our evaluation on three datasets that we created from

three different Web archives. Our experimental results show that the approach that fuses

different models outperforms individual models and other ensemble methods on all three

datasets.

90

4.1 Introduction

A growing number of research libraries, museums, and archives around the world are em-

bracing web archiving as a mechanism to collect born-digital material made available via

the web. Between the membership of the International Internet Preservation Consortium,

which has 55 member institutions142, and the Internet Archive’s Archive-It web archiving

platform with its 529 collecting organizations143, there are hundreds of institutions currently

engaged in building collections with web archiving tools. The amount of data that these

web archiving initiatives generate is typically at levels that dwarf traditional digital library

collections. As an example, in a recent impromptu analysis, Jefferson Bailey of the Internet

Archive noted that there were 1.6 Billion PDF files in the Global Wayback Machine25. If

just 1% of these PDFs are of interest for collection organizations, that would result in a

collection larger than the 15 million volumes in HathiTrust26.

While the number of Web Archiving institutions increases, the technologies needed to

provide access to these large collections have not improved significantly over the years. At this

time, the standard way of accessing web archives is with known URL lookup using tools like

the OpenWayback1 or pywb2. The use of full-text search has increased in many web archives

around the world, but often provides an experience that is challenging for users because of

the vast amount of content and the limitations of strictly text-based searches for these large

heterogeneous collections of content. Another avenue of access to web archived data that is

of interest to Web Archiving institutions is the ability to extract high-quality, content-rich

publications from the web archives in order to add them to their existing collections.

Our research is aimed at understanding how well machine learning and deep learning

models can be employed to provide assistance to collection maintainers who are seeking to

classify the PDF documents from their web archives into being within scope for a given col-

lection or collection policy or out of scope. By identifying and extracting these documents,

institutions will improve their ability to provide meaningful access to collections of materials

harvested from the web that are complementary, but oftentimes more desirable than tradi-

1https://github.com/iipc/openwayback
2https://github.com/webrecorder/pywb

91

tional web archives. At the same time, building specialized collections from web archives

shows usage of web archives beyond just replaying the web from the past. Our research focus

is on three different use cases that have been identified for the reuse of web archives and

include populating an institutional repository from a web archive of a university domain,

the identification of state publications from a web archive of a state government, and the

extraction of technical reports from a large federal agency. These three use cases were chosen

because they have broad applicability and cover different Web archive domains.

Precisely, in this chapter, we explore and contrast different learning models and types

of features to determine the best performing ones for identifying the documents of interest

that are in-scope of a given collection. Our study includes both an exploration of traditional

machine learning models in conjunction with either a “bag of words” representation of text or

structural features that capture the characteristics of documents, as well as an exploration of

Convolutional Neural Networks (CNN). The “bag of words” (BoW) or tf-idf representation is

commonly used for text classification problems144;145. Structural features designed based on

the structure of a document have been successfully used for document type classification100.

Moreover, for text classification tasks, Convolutional Neural Networks are also extensively

used in conjunction with word embeddings and achieve remarkable results128;146;147.

In Web Archiving collections, usually, the documents are very diverse, with different

types of documents having a different textual structure and covering different topics. As

an example, consider a scholarly works repository, which contains publications that are

typical for an institutional repository such as research articles, white papers, slide decks

from presentations, and other scholarly publications. Documents not considered as part

of the scholarly works repository include curriculum vitae, resumes, publications lists, and

student manuals. The beginning and the end portions of a document might contain useful

and sufficient information (either structural or topical) for deciding if a document is in scope

of a collection or not. For example, research articles usually contain the abstract and the

introduction in the beginning of the document, with the conclusion, acknowledgements, and

references occurring towards the end of the document. Being on the proper subject (or in

scope of a collection) can often also be inferred from the beginning and the end portions

92

Single classifier is correct

Document Class Label Description Prob.

+ve Slides BoW: 0.15
Str: 0.74
CNN: 0.16
SEM: 0.35

(a)

-ve CV BoW: 0.55
Str: 0.40
CNN: 0.87
SEM: 0.61

(b)

Two classifiers are correct

Document Class Label Description Prob.

+ve Research article BoW: 0.40
Str: 0.85

CNN: 0.63
SEM: 0.63

(c)

-ve Publication list BoW: 0.45
Str: 0.11
CNN: 0.97
SEM: 0.51

(d)

Figure 4.1: Example documents from a Web Archiving collection and classifiers’ confi-
dences.

of a document. To this end, we consider the task of finding documents being in-scope of

a collection as a binary classification task. In our work, we experiment with bag of words

(“BoW”) by using text from the entire document as well as by focusing only on specific

portions of the document (i.e., the beginning and the end part of the document). Although

structural features were originally designed for document type classification, we used these

features for our binary classification task. We also experiment with a CNN classifier that

exploits pre-trained word embeddings.

Moreover, we conjecture that simply using any of the above individual classifiers or com-

bining them with static decision-level fusion (e.g., aggregating all three BoW, Str, and CNN

classifiers’ confidences) may not always help in finding relevant documents to a particular

repository from Web Archiving collections that contain a wide variety of documents. Fig-

ure 4.1 illustrates this phenomenon using a few examples sampled from one of our datasets

(a scholarly works repository). The figure contains the predicted probabilities for textual

content based BoW and CNN classifiers, structural features classifier (Str), and static en-

semble model (SEM) that averages the probability of each individual classifier (BoW, Str,

and CNN, in our case). For the document (a) (slides) in Figure 4.1, only Str classifier cor-

rectly predicts the class label with a probability of 0.74. However, BoW, CNN and SEM

miss-classified the document with very low probability of 0.15, 0.16, and 0.35, respectively.

Similarly for document (b) (CV), only Str classifier correctly predicts the document as out of

93

collection, while all others (BoW, CNN, and SEM) mistakenly classify the CV as being part

of the repository. Interestingly, for the research article (document) (c), only BoW classifier

miss-labeled the document with 0.40 probability, whereas Str, CNN, and SEM correctly clas-

sified the document. Similar observations can be seen for the document (d) (a publications

list). To this end, we further explore dynamic decision-level classifier selection or fusion to

identify on the fly the best suited classifier or combination of classifiers that can on a variety

of document types.

Our contributions are as follows:

• We built three datasets from three different web archives collected by the UNT libraries,

each covering different domains: UNT.edu, Texas.gov, and USDA.gov. Each dataset

contains the PDF document along with the label indicating whether a document is in

scope of a collection or not. We will make these datasets available to further research

in this area.

• We show that BoW classifiers that use only some portion of the documents outperform

BoW classifiers that use full text from the entire content of a document, the structural

features based classifiers, and the CNN classifier. We also show that feature selection

using information gain improves the performance of the BoW classifiers and structural

features based classifiers, and present a discussion on the most informative features for

each collection.

• We propose a dynamic classifier selection for document classification (DCSDC) to dy-

namically select an appropriate classifier to predict the probability of a target document

as being in scope of a collection or not. To dynamically select the classifiers, we con-

sider textual similarity along with the structural aspects of the documents. We show

that DCSDC outperforms all the individual feature set models (base classifiers) and

other strong baselines.

• We propose a dynamic decision-level fusion for document classification (DDFC) that

derives competence features from neighborhood documents and learns a classifier to

94

assign a competence score for each base classifier (BoW, Str, and CNN) in order to fuse

them and to predict the probability of a target document as being in scope of a col-

lection or not. To derive the competence features, we consider textual similarity along

with the structural aspects of the documents. We show that DDFC outperforms all

the individual feature set models (base classifiers) and other strong baselines including

DCSDC.

4.2 Related Work

Web Archiving. Web archiving as a method for collecting content has been conducted by

libraries and archives since the mid-1990’s. The most known web archiving is operated by

the Internet Archive who began harvesting content in 1996. Other institutions throughout

the world have also been involved in archiving the web based on their local collection context

whether it is based on a subject or as part of a national collecting mandate such as with

national libraries across the world. While the initial focus of these collections was to preserve

the web as it exists in time, there were subsequent possibilities to leverage web archives to

improve access to resources that have been collected, for example, after the collaborative

harvest of the federal government domain by institutions around the United States for the

2008 End of Term Web Archive whose goal was to document the transitions from the Bush

administration to the Obama administration. After the successful collection of over 16TB of

web content, Phillips and Murray148 analyzed the 4.5M unique PDFs found in the collection

to better understand their makeup. Jacobs149 articulated the value and importance of web-

published documents from the federal government that are often found in web archives.

Nwala et al.150 studied bootstrapping of the web archive collections from the social media and

showed that sources such as Reddit, Twitter, and Wikipedia can produce collections that are

similar to expert generated collections (i.e., Archive-It collections). Alam et al.151 proposed

an approach to index raster images of dictionary pages and built a Web application that

supports word indexes in various languages with multiple dictionaries. Alam et al.152 used

CDX summarization for web archive profiling, whereas AlNoamany et al.153 proposed the

95

Dark and Stormy Archive (DSA) framework for summarizing the holdings of these collections

and arranging them into a chronological order. Aturban et al.154 proposed two approaches to

to establish and check fixity of archived resources. More recently, the Library of Congress155

analyzed its web archiving holdings and identified 42,188,995 unique PDF documents in its

holdings. These initiatives show interest in analyzing the PDF documents from the web as

being of interest to digital libraries. Thus, there is a need however for effective and efficient

tools and techniques to help filter or sort the desirable PDF content from the less desirable

content based on existing collections or collection development policies. We specifically

address this with our research agenda and formulate the problem of classifying the PDF

documents from the web archive collection into being of scope for a given collection or being

out of scope. We use both traditional machine learning and deep learning models. Below we

discuss related works on both of these lines of research.

Ensemble models and dynamic fusion. Ensemble models have been used previously

in many systems156–158. Bagging is an ensemble technique that builds a set of diverse classi-

fiers, each trained on a random sample of the training data to improve the final (aggregated)

classifiers’ confidence156;158. Since the classifiers in an ensemble may learn very different pat-

terns, dynamic ensembles that extend bagging have also been proposed159–161. In dynamic

ensembles, a pool of classifiers are trained on a single feature type (e.g., bag-of-words), each

using a different subset of examples or features, within the bagging technique156;158 and

the competence of the base classifiers is determined dynamically. Our work extends these

approaches to exploit various feature types or classifiers to capture different aspects of doc-

uments (structure and topicality) to perform classifiers’ fusion for document categorization

(rather than one single feature type).

Ensemble classifiers have also been used in a multi-modal setting162;163, in which different

modalities are coupled, e.g., images and text for image retrieval164 and image classification162.

Zahavy et al.165 urged the development of optimal unification methods to combine different

classifiers trained on different modalities. Co-training approaches166 use multiple views of

the data to “guide” different classifiers in the learning process. However, co-training methods

are semi-supervised and assume that all views are “sufficient” for learning. In contrast with

96

the above approaches, we aim to capture different aspects of documents (structure and

topicality), with each aspect having a different competence power, and perform dynamic

selection of classifiers for classifying the textual documents from a Web Archiving collection

into being in scope for the collection or not.

Traditional Text Classification. Text classification is a well-studied problem. The

BoW (binary, tf, or tf-idf) representations are commonly used as input to machine learning

classifiers, e.g., Support Vector Machine167 and Näıve Bayes Multinomial168 for text classi-

fication. Feature selection is often applied to these representations to remove irrelevant or

redundant features169;170. In the context of digital libraries, the classes for text classification

are often document topics, e.g., papers classified as belonging to “machine learning” or “in-

formation retrieval”7. Structural features that capture the structural characteristics of docu-

ments are also used for the classification of documents in digital libraries100. Comprehensive

reviews of the feature representations, methods, and results on various text classification

problems are provided by Sebastiani145 and Manning171. Craven and Cumlien172 classified

bio-medical articles using the Naive Bayes classifier. Kodakateri Pudhiyaveetil et al.173 used

the k-NN classifier to classify computer science papers into 268 different categories based on

the ACM classification tree. Other authors174;175 experimented with different classification

methods such as unigram, bigram, and Sentence2Vec176 to identify the best classification

method for classifying academic papers using the entire content of the scholarly documents.

Deep Learning. Deep learning models have achieved remarkable results in many NLP

and text classification problems39;136;146;177–179. Most of the works for text classification

with deep learning methods have involved word embeddings. Among different deep learning

architectures, convolutional neural network (CNN), recurrent neural network (RNN), and

their variations are the most popular architectures for text applications. Kalchbrenner et

al.179 proposed a deep learning architecture with multiple convolution layers that uses word

embeddings initialized with random vectors. Zhang et al.180 used encoded characters (“one-

hot” encoding) as an input to the deep learning architecture with multiple convolution layers.

They proposed a 9-layer deep network with 6 convolutional layers and 3 fully-connected

layers. Kim181 used a single layer of CNN after extracting word embeddings for tokens in

97

the input sequence. The author experimented with several variants of word embeddings, i.e.,

randomly initialized word vectors later tuned for a specific task, fixed pre-trained vectors,

pre-trained vectors later tuned for a specific task, and a combination of the two sets of

word vectors. Yin et al.182 used the combination of diverse versions of pre-trained word

embeddings followed by a CNN and a fully connected layer for the sentence classification

problem.

4.3 Datasets

For this research, we constructed datasets from three web archives collected by the UNT

Libraries. For each of the datasets we extracted all PDF documents within each of the web

archives. Next, we randomly sampled 2,000 PDFs from each collection that we used as the

basis for our labeled datasets. Each of the three sets of 2,000 PDF documents were then

labeled in scope and out of scope by subject matter experts who are responsible for collecting

publications from the web for their collections. Each dataset includes PDF files along with

their labels (in scope/out of scope or relevant/irrelevant). Further description of the datasets

is provided below.

4.3.1 UNT.edu Dataset

The first dataset was created from the UNT Scholarly Works web archive of the unt.edu

domain. This archive was created in May 2017 as part of a bi-yearly crawl of the unt.edu

domain by the UNT Libraries for the University Archives. A total of 92,327 PDFs that

returned an HTTP response of 200 were present in the archive. A total of 3,141,886 URIs

were present in the entire web archive with PDF content making up just 3% of the total

number of URIs.

A set of 2,000 PDFs were randomly sampled from the full set of PDF documents and

were given to two annotators for labeling. These annotators were: one subject matter expert

who was responsible for the maintenance of the UNT Scholarly Works Repository and one

98

graduate student with background in Library and Information Systems. They proceeded

to label each of the PDF documents as to whether a document would be of interest to the

institutional repository or if the document would not be of interest. The labeling of the PDF

files resulted in 445 documents (22%) identified as being of interest for the repository and

1,555 not being of interest. In case of disagreement between annotators, a final decision was

made by the researchers of this paper after a discussion with the annotators.

4.3.2 Texas.gov Dataset

The next dataset was created from a web archive of websites that constitute the State of

Texas web presence. The data was crawled from 2002 until 2011 and was housed as a

collection in the UNT Digital Library. A total of 1,752,366 PDF documents that returned

an HTTP response of 200 were present in the archive. A total of 26,305,347 URIs were

present in the entire web archive with PDF content making up 6.7% of the total number of

URIs.

As with the first dataset, a random sample of 2,000 PDF documents was given to two

annotators for labeling: a subject matter expert from the UNT Libraries and a graduate

student (as before). In this case, items were identified as either being in scope for a collection

called the “Texas State Publications Collection” at the UNT Libraries, or out of scope. This

collection contains a wide range of publications from state agencies. The labeling of the

PDF files resulted in 136 documents (7%) identified as being of interest for the repository

and 1,864 not being of interest. Again, in case of disagreement between annotators, a final

decision was made by the researchers of this paper after a discussion with the annotators.

4.3.3 USDA.gov Dataset

The last dataset created for this study came from the End of Term (EOT) 2008 web archive.

This web archive was created as a collaborative project between a number of institutions

at the transition between the second term of George W. Bush and the first term of Barack

Obama. The entire EOT web archive contains 160,212,141 URIs. For this dataset we selected

99

the United States Department of Agriculture (USDA) and its primary domain of usda.gov.

This usda.gov subset of the EOT archive contains 2,892,923 URIs with 282,203 (9.6%) of

those being PDF files that returned an HTTP 200 response code.

Similar to the previous datasets, a random sample of 2,000 PDF documents was given

to two annotators for labeling: a subject matter expert who has worked as an engineering

librarian for a large portion of their career and a graduate student (as before). The subject

matter expert has also been involved with the Technical Report Archive and Image Library

(TRAIL) that was collecting, cataloging, and digitizing technical reports published by, and

for, the federal government throughout the 20th century. The annotators labeled each of the

PDF files as either being of interest for inclusion in a collection of Technical Reports or not

being of interest to that same collection. The final labeled dataset has 234 documents (12%)

marked as potential technical reports and 1,766 documents identified as not being technical

reports. The disagreements between the annotators were finally adjudicated by one of the

researchers of this paper.

The three datasets represent a wide variety of publications that would be considered for

inclusion into their target collections. Of these three, the Texas.gov content is the most

diverse as the publications range from strategic plans and financial audit reports (which

are many pages in lengths) to pamphlets and posters (which are generally very short).

The UNT.edu dataset contains publications that are typical for an institutional repository

such as research articles, white papers, slide decks from presentations, and other scholarly

publications. The publications from the UDSA.gov dataset are similarly scoped as the

UNT.edu content, but they also contain a wider variety of content that might be identified

as a “technical report.” A goal in the creation of the datasets used in this research was to

have a true representative sample of the types of content that are held in collections of this

kind.

100

4.4 Base Classifiers

In this section, we discuss different types of features that are used in conjunction with

traditional machine learning classifiers for finding documents of interests, and the CNN

model that does not require any feature engineering. These models form our base classifiers.

4.4.1 Bag of Words (BoWs)

“Bag of words” (BoW) is a simple fixed-length vector representation of any variable length

text based on the occurrence of words within the text, with the information about the

positions of different words in a document being discarded. First, a vocabulary from the

words in the training documents is generated. Then, each document is represented as a

vector based on the words in the vocabulary. The values in the vector representation are

usually calculated as normalized term frequency (tf) or term frequency - inverse document

frequency (tf-idf) of the corresponding word calculated based on the given document/text.

We experiment with BoW extracted from the full text of the documents as well as from

only some portions of documents. Our intuition behind using only some portion of the

documents is that many types of documents contain discriminative words at the beginning

and/or at the end. For selecting these portions of documents, we consider first-X words

from each document, and first-X words combined with last-X words from each document

before any type of preprocessing was performed. We experimented with values of X ∈

{100, 300, 500, 700, 1000, 2000}. For documents with less than 2 ·X words, we considered the

entire document without repeating any parts/words from the document.

Moreover, for BoW encoded from the full text of documents, we also compared the

performance of the top-N selected features, using the information gain (IG) feature selection

method, where N ∈ {300, 500, 1000, 2000, 3000}, with the performance of all features.

101

4.4.2 Structural Features

Structural features (Str) are designed to incorporate aspects specific to documents’ structure

and are shown to be highly indicative of the classification of academic documents into their

document types such as Books, Slides, Theses, Papers, CVs, and Others100.

These features can be grouped into four categories: file specific features, text specific

features, section specific features, and containment features. Each of these feature categories

are described below.

File specific features include the characteristics of a document such as the number of

pages and the file size in kilobytes.

Text specific features include specifics of the text of a document: the length in characters;

the number of words; the number of lines; the average number of words and lines per page;

the average number of words per line; the count of reference mentions; the percentage of

reference mentions, spaces, uppercase letters, symbols; the ratio of length of shortest to

the longest line; the number of lines that start with uppercase letters; the number of lines

starting with non-alphanumeric letters; the number of words that appear before the reference

section.

Section specific features include section names and their position within a document.

These features are boolean features indicating the appearance of “abstract”, “introduction”,

“conclusion”, “acknowledgements”, “references” and “chapter,” respectively, as well as nu-

meric features indicating position for each of these sections. These features also include two

binary features indicating the appearance of “acknowledgment” before and after “introduc-

tion.”

Containment features include containment of specific words or phrases in a document.

These features include binary features indicating the appearance of “this paper,” “this book,”

“this thesis,” “this chapter,” “this document,” “this section,” “research interests,” “research

experience,” “education,” and “publications,” respectively. These features also include three

numeric features indicating the position of “this paper,” “this book,” and “this thesis” in a

102

Figure 4.2: CNN architecture for classification.

document.

Similar to BoW, for the structural features (which are 43 in total), we also compared the

performance of the top-N selected features, ranked using the information gain (IG) feature

selection method, where N ∈ {10, 20, 30}, with the performance of all 43 features.

4.4.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNN or ConvNets)135 are a special kind of neural networks

to process grid-like structured data, e.g., image data. CNNs are associated with the idea of

a “moving filter.” A convolution consists of a filter or a kernel, that is applied in a sliding

window fashion to extract features from the input. This filter is shifted after each operation

over the input by an amount called strides. The convolution layer consists of multiple filters

of different region sizes that generate multiple feature maps for different region sizes. Pooling

is usually used after the convolution layer to modify the output or reduce the dimensionality.

The common practice is to extract the most important feature within each feature map128;136,

called 1-max pooling. Max pooling is applied over each feature map and the maximum values

from each filter are selected. Maximum values from each feature map are then concatenated

and used as input to a fully connected layer for the classification task. Generally, pooling

103

helps to make the representation become approximately invariant to small changes in the

input. The CNN architecture that we used in our experiments is shown in Figure 4.2 and is

similar to the CNN architecture developed by Kim128.

For CNN, we experimented with using the text from specific portions of the document.

While selecting the portions of documents, as before, we considered first-X words and first-

X words combined with last-X words from each document before any preprocessing was

performed (where X ∈ {100, 300, 500, 700, 1000}). For the documents with less than 2 ·

X words, we considered the whole document without repeating any part/words from the

document.

4.5 Proposed Model: Dynamic Classifier Selection

In contrast with the approaches that use a single model to identify relevant documents to a

given collection, we propose an approach called “Dynamic Classifier Selection for Document

Classification” (or DCSDC), that dynamically selects an appropriate classifier to identify if

a given document is relevant to a collection by dynamically capturing different aspects of

the document. The intuition behind using this approach is that there is a high variability in

the type of the documents in each dataset.

The proposed approach consists of a three-step process for classifying a given document:

• Step-1: Find its neighborhood documents. We identify the neighborhood docu-

ments of the target document by considering textual similarity along with their struc-

tural aspects using K-Nearest Neighbors algorithm (K ∈ {5, 10, 15, 20, 50}). In the

first step, we consider the documents in the Dev set that fall under the range of X±L

pages (X is the number of pages of the target document and L is a page range limit; we

consider L = 3). After that, we calculate the textual similarity between the target doc-

ument and those documents from Dev that are within X±L page range from the target

document. In order to calculate the textual similarity between the documents, we use

104

two different methods by considering top N most frequent words (N ∈ {25, 50, 100}):

(a) tf-idf based cosine similarity, and (b) Word centroid based cosine similarity, where

the centroid is calculated by a weighted average word vectors. We consider pre-trained

word embeddings trained on Google News for the word vectors.

• Step-2: Find the most competent classifier. Here we find the set of features and

classifiers that perform best on neighborhood documents. The goal is to find the most

competent classifier for a particular type of document. We apply each individual or

the combination of different feature sets to neighborhood documents and find which

classifier has the highest success rate for labeling them correctly.

• Step-3: Use the most competent classifier on the test example. The classifier

with the highest success rate based on step-2 is used to classify the given test document.

In case of multiple classifiers with the highest success rate, we selected the majority

vote.

4.6 Proposed Model: Dynamic Decision Level Fusion

In contrast with the approaches that use a single model to identify relevant documents

for a given collection, we propose an approach called “Dynamic Decision level Fusion for

Document Classification” (or DDFC), that effectively blends different classifiers to identify

if a document is relevant to a collection by dynamically capturing different aspects of the

document. The intuition behind using this approach is that there is a high variability in the

type of the documents in Web archiving collections and, for a given document, only a small

subset of base classifiers might be useful for its classification. For example, in Figure 1(a)

only the Str classifier is competent, and hence, useful. Our approach specifically learns base

classifiers’ competences and dynamically selects one or more base classifiers at decision level,

based on their competence (or expertise) for a given document.

DDFC makes use of two datasets, indicated as DTr and DDev containing both positive

105

Notation Description
DTr = {(T1, L1), · · · , (Tm, Lm)} a dataset of m labeled documents for base classifier training.
DDev = {(V1, L1), · · · , (Vn, Ln)} a dataset of n labeled documents for competence estimation.
T A target document.
B = {Bb, Bs, Bc} trained on DTr using BoW, Str, and CNN, respectively.
NT The neighborhood documents of T by considering textual similarity along with their

structural aspects.
kN The size of NT , where 1 ≤ kN < n.
C = {Cb, Cs, Cc} a set of “competence” classifiers corresponding to the base classifiers from

B (e.g., Cb for Bb).
Φ = {φb, φs, φc} a set of “competence” feature vectors to train the “competence” classifiers.

Table 4.1: Notations.

and negative examples. We use DTr to train our base classifiers. Particularly, we train three

base classifiers B = {Bb, Bs, Bc} on DTr, BoW classifier, Str classifier, and CNN classifier,

respectively. The competence (or expertise) of these base classifiers are learned on DDev

(Section 5.2.2). For a target document T , we first identify its neighborhood documents

from DDev by considering textual similarity along with their structural aspects using the

K-Nearest Neighbors algorithm (Section 4.6.1). Second, we estimate the competence of each

base classifier (or their expertise in classifying T) by using the neighborhood documents found

in the first step (Section 4.6.2). Last, we use the competence classifiers and their competence

scores to dynamically select base classifiers to predict the class label for T (Section 4.6.3).

Figure 4.3 shows an illustration of our approach at test time. We explain the stages of DDFC

in detail below. The notation used is provided in Table 4.1.

4.6.1 Step-1: Finding Neighborhood Documents

For a document T , we identify the neighborhood documents NT from DDev by considering

textual similarity along with their structural aspects using the K-Nearest Neighbors algo-

rithm (K or kN ∈ {5, 10, 15, 20, 50}). We first consider the documents which fall under the

range of X±L pages (X is number of pages of a given document and L is a page range limit,

we consider L = 3). After that, we calculate the similarity between the document T and

each of the documents in DDev that fall within the required page range, and select the top kN

106

Figure 4.3: Illustration of our approach using an example.

most similar documents to T . In order to calculate the similarity between the documents, we

use two different methods by considering up to N most frequent words (N ∈ {25, 50, 100}):

(a) tf-idf based cosine similarity, and (b) Word centroid based cosine similarity, where the

word centroid is calculated by a weighted average word vectors. We consider pre-trained

word embeddings trained on Google News for the word vectors.

4.6.2 Step-2: Competence Estimation

Here, we discuss the competence estimation of each base classifier.

Extracting “Competence” Features.

We use two sets of features to learn each competence classifier on DDev. The first set of

features φ1 for a document T is obtained using the neighborhood NT and the second feature

φ2 utilizes the probability of T being in scope of the collection, P (+|T,Bi), as predicted by

the base classifiers, Bi. We concatenate both set of features to generate the “competence”

107

Algorithm 1 Learning Competence Classifiers

1: Input: A dataset DDev = {(V1, L1), · · · , (Vn, Ln)} of labeled documents; neighborhood
size kN ; pre-trained word embeddings E ; a set of base classifiers B = {Bb, Bs, Bc}.

2: Output: A set of “competence” classifiers C = {Cb, Cs, Cc}.
3: F = {F b, F s, F c} ← ∅; // Examples for training competence classifiers, initially empty.

4: C ← {}; // A set of competence classifiers, initially empty.

5: for all Vj ∈ DDev do
6: NVj ← IdentifyNeighborhood(kN , Vj, E ,DDev); // kN textually and/or structurally

similar documents of Vj .

7: for all Bi ∈ B do // Iterate through the set of base classifiers.

8: φi,j ← CompetenceFeatures(Vj, N
Vj , Bi);

9: if Predict(Bi, Vj) = Lj then // predicted correctly.

10: Lij ← 1; // Bi is competent for Vj .

11: else
12: Lij ← 0; // Bi is not competent for Vj .

13: end if
14: F i ← F i ∪ {(φi,j, Lij)}
15: end for
16: end for
17: for all F i ∈ F do // Train competence classifiers.

18: Ci ← TrainCompetenceClassifier(Di);
19: C ← C ∪ Ci

20: end for
21: return C;

feature vector of length kN + 1. We generate the “competence” feature vector corresponding

to each base classifier.

• φ1: For T , a vector of length kN capturing the correctness of a base classifier calculated

using the neighborhood documents NT . An entry j in φ1 is 1 if a base classifier Bi ∈ B

accurately predicts the document j being in scope or not Xj ∈ NT , and is 0 otherwise,

where j = 1, · · · , kN . For T in Figure 4.3, φ1 = {1, 0, 0, 1, 1, 1, 0, 0, 1}, obtained by Bb.

• φ2: For T , we use the class probability predicted by a given base classifier P (+|T,Bi),

where Bi ∈ B. In Figure 4.3, for the target document T , φ2 = 0.76, obtained using Bb.

Next, we discuss how we learn a competence classifier for each base classifier. Note that

the competence classifiers are learned only once corresponding to each base classifier using

documents from DDev.

108

“Competence” Learning.

For calculating the competence score for each base classifier we train a “competence” classi-

fier for each base classifier on DDev. A competence classifier predicts the competence score

for the corresponding base classifier. Algorithm 1 explains the steps for “competence” learn-

ing. To train the “competence” classifiers, each document from DDev is considered as a

target document one by one. For each document, neighborhood documents from DDev are

collected (Alg. 1, line 6). Then for each base classifier, competence features are extracted as

explained earlier in step-2, and we consider label as 1 if the base classifier Bi has predicted

the document correctly Alg. 1, lines 8-14). At the end, “competence” classifiers (Cb, Cs, and

Cc) corresponding to each base classifier (Bb, Bs, and Bc) are trained (Alg. 1, lines 17-20).

4.6.3 Step-3: Dynamic Decision-Level Fusion

In this step, For a target document T , we dynamically combine a subset of base classifiers.

If not all the base classifiers agree (Algo. 2, line 6), then we first find the neighborhood

documents for T (Algo. 2, line 7). Then, for each base classifier the competence features are

extracted as we described in step-2 and given to the corresponding “competence” classifiers

(Algo. 2, line 9,10). A “competence” score CSi is output as a probability of base classifier

Bi being competent. The base classifiers with the competence score > 0.5 are selected to

classify T . To predict T , we use the weighted sum of the probability of individual class label

assigned by each selected base classifier with CSi as the weight for Bi, and the class label

with the highest probability is considered as the predicted label (Algo. 2, line 16).

Illustration of the proposed method.

Figure 4.3 shows the illustration of our approach using an anecdotal example. We consider

a research article as a target document T . First, we identify kN = 9 neighborhood docu-

ments for T , which are highlighted in red. From these neighborhood documents and the

109

Algorithm 2 Dynamic Decision Level Fusion

1: Input: A target document T ; DDev = {(V1, L1), · · · , (Vn, Ln)} a dataset of labeled
documents; neighborhood size kN ; pre-trained word embeddings E ; a set of base classifiers
B = {Bb, Bs, Bc}; and a set of competence classifiers C = {Cb, Cs, Cc}.

2: Output: Class label LT .
3: B′ ← {}; // the subset of most competent base classifiers.

4: CS ← {}; // the set of competence scores.

5: BAT ← Agreement(B, T); // Base classifiers’ agreement on T ’s label.

6: if BAT ≤ |B| then
7: NT ← IdentifyNeighborhood(kN , T, E ,DDev); // kN textually and/or structurally sim-

ilar documents of T .

8: for all Bi ∈ B & Ci ∈ C do // Iterate through the set of base and competence classifiers.

9: φi ← CompetenceFeatures(T,NT , Bi);
10: CSi ← PredictCompetence(φi, Ci); // Predict competence score for base classifier

Bi.

11: if CSi > 0.5 then // If the predicted competence score is greater than 0.5 then the

base classifier Bi is competent.

12: B′ ← B′ ∪ {Bi}
13: CS ← CS ∪ {CSi}
14: end if
15: end for
16: LT = WeightedScoreLabel(T,B′, CS) // weighted sum of individual class probabilities

are calculated and the highest score is taken.

17: end if
18: return LT ;

base classifiers’ predicted probability for T , we generate the “competence” feature vectors

corresponding to each base classifier (φb, φs, and φc). Then, the “competence” classifiers

(Cb, Cs, and Cc) are used on the corresponding “competence” feature vectors to find the

competence score for each base classifier (CSb, CSs, and CSc). At last, the base classifiers

with the competence score > 0.5 are used to predict the class label for T by doing weighted

sum of the individual class probabilities for all the selected base classifiers with CSi as the

weight for Bi, and selecting the class label with the highest probabilty.

110

4.7 Experiments and Results

In this section, we first discuss the baselines and then the experimental setup for our doc-

ument classification task. Next, we present the preliminary set of experiments to fix base

classifier parameters and to find which portion of a document to use on different classifiers.

We then present an analysis to highlight the potential of the proposed algorithm. At last,

we compare our proposed approach with the individual base classifiers and strong baselines.

4.7.1 Baselines

The baselines used for comparison are described below.

1. KNN: For a target document T , we calculate its K-nearest neighbors from DTr

and then select the majority class label from the neighbors set. We experiment with K ∈

{1, 5, 9, 15} and select the best value of K using the DDev set.

The next two baselines do not use competence learning for selecting a best classifier or

assigning a score to a classifier.

2. Dynamic Ensemble Model (DEM): We create this baseline as follows: We use

the correctly classified neighborhood documents to calculate the score for each classifier and

then use the scores for doing weighted sum of predicted probabilities of each base classifier

as described below:

• Find the score for each base classifier. Here we compute the score for each base

classifier by applying each base classifier to neighborhood documents. Then the score

becomes:

Score(Bi) = #correctly classified neighbors(Bi)/#neighbors.

• Predict the class label for target document T . We use weighted sum (similar

to our main approach) of predicted probabilities of each base classifier by using scores

calculated as above as a weight for each base classifier.

111

3. Static Ensemble Model (SEM): In this baseline, to make a final prediction,

probability for each class label is averaged among all the base classifiers.

4. Majority Vote: We consider a majority vote as another baseline. We predict the

document label by a label predicted by a majority of the base classifiers.

5. Bagging156: In Bagging, a bag of classifiers, each trained on a random sample of

examples from the training set are used to predict the class label for a test example. To

predict the target document T , the individual class probabilities assigned by the classifiers

in the bag are averaged and the class label with the highest probability is selected. We used

BoW classifier for the bagging.

6. META-DES by Cruz et al.159: Here, similar to bagging, a pool of classifiers

are trained and then the competence or meta-classifier learning is performed to select the

competent classifiers out of a pool of classifiers. The majority vote rule is applied over the

selected competent classifiers. For META-DES, we used BoW classifiers to generate a pool of

classifiers. Note that this baseline includes the competence learning component, but unlike

our approach, it uses only one feature type (i.e., BoW).

4.7.2 Experimental Setup

As base classifiers, we experiment with the “bag of words” (BoW) extracted from the entire

documents as well as from some portion of the documents, 43 structural features, and the

convolutional neural networks (CNN). For the preprocessing step of the BoW, we remove

stop words and punctuation, and perform stemming. Moreover, we keep only words that

appear in at least 5 documents.

For the traditional base classifiers, we experiment with several machine learning classi-

fiers: Gaussian Naive Bayes (GNB), Multinomial Naive Bayes (MNB), Random Forest (RF),

Decision Trees (DT), and Support Vector Machines with a linear kernel (SVM). In addition

to these models, we also investigate the performance of CNNs on our task. Our CNNs com-

prise of mainly two layers (as shown in Figure 4.2): a CNN layer followed by a max pooling

112

and a fully connected layer for the classification. For the CNN input, we consider a document

(partial) as a sequence of words and use pre-trained Word2Vec39 word embeddings for each

word.

Train, Development, Test Splits. From the original datasets of 2,000 PDF files, we

divided each dataset into three parts by randomly sampling training set (Train), develop-

ment set (Dev), and test set (Test) from each dataset. All Train, Dev, and Test follow

a similar distribution as the original dataset. Table 4.2 shows the number of positive (+)

and negative (-) examples (i.e., documents of interest or not of interest, respectively) in each

of the three datasets for which we were able to extract the text (from a given PDF docu-

ment). For our purpose, to extract the text from the PDF documents, we used PDFBox.3

The scanned documents and other documents for which the text was not correctly extracted

were ignored.

UNT.edu Texas.gov USDA.gov
Datasets − + − + − +

Train 869 250 981 72 907 121
Dev 290 83 327 24 300 40
Test 290 83 327 24 300 40

Train-2 869 434 981 490 907 453

Table 4.2: Datasets description.

Because the original datasets are very skewed (see Section 3), with only around 22%,

7%, and 12% of the PDF documents being part of the positive class (i.e., to be included in

a collection), we asked the subject matter experts of each web archive collection to further

identify more positive examples. The supplemental positive examples (for each collection)

were added to the training set of the corresponding collection. Specifically, for the training

set, we sampled from the newly labeled set of positive examples so that the number of

negative examples is doubled as compared with the number of positive examples. We denote

this set as Train-2 (see Table 4.2). Note that the test and dev sets of each collection

remained the same (i.e., having the original distribution of the data to mimic a real world

3http://pdfbox.apache.org/

113

scenario in which data at test come is fairly skewed).

Note that we studied the performance of our models using other positive to negative data

distributions in the training set. However, we found that the models trained on Train-2

perform better than when we train on other data distributions (e.g., the original or 1:1 data

distributions). We estimated this on the development set that we constructed as explained

above. Thus, in the next sections, we report the results when we train on Train-2 (2:1

distribution) and evaluate on Test (original distribution).

Moreover, we use the development set also for the hyper-parameter tuning for the classi-

fiers, and for the best classifier selection (which in our experiments was a Random Forest). In

experiments, we tuned hyper-parameters for different classifiers as follows: the C parameter

in SVM ∈ {0.01, 0.05, 0.1}; the number of trees in RF ∈ {20, 23, 25, 27, 30}; in CNN, single

as well as three types of filters with region sizes ∈ {1, 3, 4, 5, 7}; the number of each type of

filters in CNN ∈ {100, 128, 200}.

Evaluation Measures. To evaluate the performance of various classifiers, we use pre-

cision, recall, and F1-score for the positive class. All experiments are repeated three times

with a different train/dev/test split obtained using three different random seeds, and the

final results are averaged across the three runs. We first discuss the results in terms of the

F1-score using bar plots. Then we present all measures: precision, recall, and F1-score, in a

table.

4.7.3 Experiments with Base Classifiers

Here, we report the performance of the base classifiers when we train on Train-2 (2:1

distribution) and evaluate on Dev set.

114

Figure 4.4: Performance of BoW using different portions of the documents on all three
datasets under study.

The Performance of the BoW Classifier

BoW Performance. First, we compare the performance of the BoW classifiers when we

use various portions of the text of the documents with that of the BoW classifiers that

use the full text of the documents. For the various portions of the text, we use first X

words and first-X words combined with last-X words from each document, where X ∈

{100, 300, 500, 700, 1000, 2000}. The results of this set of experiments are shown in Figure

4.4 for all three datasets, UNT.edu, Texas.gov, and USDA.gov, respectively. Random Forest

performs best among all classifiers for the BoW features, and hence, we show the results

using only Random Forest.

As can be seen from Figure 4.4, on UNT.edu, the BoW that uses the first-100 words

combined with last-100 words from each document performs best compared with the perfor-

mance of the BoW that uses other parts of the documents and achieves a highest F1-score of

0.86. Interestingly, the BoW that uses the entire text of documents performs worse than the

BoW that focuses only on specific portions of the text of each document, i.e., the BoW that

uses the entire text of the documents achieves a lowest F1-score of 0.80 as compared with

0.86 achieved by BoW that uses only the first-100 + last-100 words from each document.

This means that using the entire text of a document introduces redundant or irrelevant

features that are not beneficial for the classification task.

On the Texas.gov dataset, it can be seen from Figure 4.4 that the performance of the

115

BoW classifiers increases as we add more words from the beginning and the end of each

document up to 700 words and after that the performance starts decreasing. The BoW

classifier that uses the first-700 words combined with last-700 words from each document

achieves a highest F1-score of 0.78. On the other hand, the BoW that uses the entire text

of documents mostly performs worse than the BoW that focuses only on specific portions

of the documents, e.g., the BoW that uses the entire content of the documents achieves an

F1-score of 0.66 as compared with the BoW that uses only the first-700 + last-700 words,

which achieves an F1-score of 0.78. On Texas.gov, the BoW classifiers that use words from

the beginning and ending of the documents generally outperform those that use words only

from the beginning of the documents.

On USDA.gov, as can be seen from Figure 4.4, the BoW classifiers that use words from

the beginning combined with the ending of the documents (first-X + last-X words) generally

outperform the BoW classifiers that use words only from the beginning of documents. These

results are similar to those obtained on Texas.gov, although the difference in performance

is much smaller compared with Texas.gov. However, interestingly, we notice that the BoW

classifier that uses only the first-2000 words performs best and achieves an F1-score of 0.85,

which is followed closely by the BoW classifier . As before, the BoW that uses the entire text

of documents usually performs worse than the BoW that focuses only on specific portions of

each document, e.g., the BoW that uses the entire text of the documents achieves an F1 of

0.80 as compared to 0.85 achieved by BoW on first-2000 words from the documents.

From Figure 4.4, we can also notice that the performance of BoW classifiers on Texas.gov

is lower compared with that of classifiers on UNT.edu and USDA.gov, which could be ex-

plained by a higher diversity in Texas.gov compared with the other two collections.

Feature selection on the BoW extracted from the entire document text. Next,

we show the effect of feature selection on the performance of BoW classifiers that use the

full text of the documents. To rank the features and select the top N best features, we

use information gain. Figure 4.5 compares the performance of the BoW classifiers that use

all features (denoted BoW-all) with that of classifiers that use the top-N selected features

116

Figure 4.5: Performance of BoW and its feature selection using the entire content of doc-
uments for the BoW encoding, on all three datasets.

by information gain, for all three datasets, where N ∈ {300, 500, 1000, 2000, 3000}. In to-

tal, BoW-all has 19733, 19625, and 22255 features for UNT.edu, Texas.gov, and USDA.gov,

respectively. From the figure, we notice that performing feature selection improves the per-

formance of BoW-all extracted from the full text of documents for UNT.edu and Texas.gov,

whereas the performance decreases slightly on USDA.gov. For example, on UNT.edu, top-

300 selected features achieve an F1-score of 0.85 as compared with 0.80 achieved by BoW-all.

On Texas.gov, the highest performance is obtained using top-2000 selected features, which

achieve a highest F1-score of 0.71 as compared with 0.66 achieved by BoW-all. On USDA.gov,

the top-1000, 2000, and 3000 features achieve higher performance as compared to top-300

and top-500 features. Unlike the other two datasets, on the USDA.gov dataset, BoW-all

achieves a highest F1 of 0.80 as compared with other top-N selected features. Comparing

Figure 4.4 with Figure 4.5, it is interesting to note that, although feature selection improves

the performance of BoW-all for UNT.edu and Texas.gov, still the performance of feature

selection performed on words from the entire content of documents is not as good as the

performance of BoW that uses words from the beginning or the beginning and ending of

documents.

Table 4.3 shows the top-30 ranked words using information gain feature selection method

on each dataset. For the UNT.edu data, we see tokens that appear to be associated with

academic publications such as “data, result, figure, research, or conclusion,” which seem to

117

Dataset Top-30 Features

UNT.edu
data, al, result, figur, compar, increas, similar, rang, semest, larg, tabl,
model, conclusion, research, measur, recent, abstract, exist, show, low,
comparison, de, high, usa, observ, doi, base, signific, lack, suggest

Texas.gov
www, texa, program, tx, area, ag, includ, year, inform, system, site,
public, nation, contact, result, import, number, manag, reduc, increas,
continu, level, servic, plan, base, qualiti, state, work, time, design

USDA.gov
studi, method, research, result, al, effect, potenti, observ, occur, found,
measur, speci, water, larg, determin, similar, environ, high, natur,
introduc, differ, increas, reduc, analysi, environment, signific, suggest,
experi, control, site

Table 4.3: Top-30 selected features from the BoW (encoded from the entire content of
documents) by using information gain.

match the general scope of this collection as it contains research articles and publications

authored by faculty members. The Texas.gov BoW features include tokens that align with

publications or other official documents including “texa (texas), program, area, site, nation,

or system.” These also seem to align very well with the kind of publications selected as being

in scope in the dataset. Finally, the USDA.gov BoW selected features include tokens from

research and technical publications with tokens such as “study, method, research, result, and

effect.” There is more overlap between these tokens in USDA.gov and the tokens from the

UNT.edu dataset. This suggests that there is some overlap in the kind of content between

the two datasets (confirmed by subject matter experts as well).

Next, we explore the following question: Where are the best performing selected features

located in the documents? To answer this question, we check the overlap between the best

performing top-N selected features and the best performing BoW that uses only specific

portions of the text of the documents. For all three datasets, we found that all best perform-

ing top-N selected features are present in the best performing BoW that uses only specific

portions of the document, e.g., on Texas.gov, all top-2000 selected features occur in the BoW

that uses the first-700 + last-700 words from each of the documents.

118

Figure 4.6: Performance of 43 structural features and its feature selection on all three
datasets.

The performance of structural features and its feature selection

Here, we compare the performance of the 43 structural features with the performance of

different top-N selected structural features by information gain. Again, Random Forest

performs best compared with any other classifier we experimented with for the structural

features and their feature selection. Figure 4.6 shows the performance of the 43 structural

features (Str) and the top-N selected features by information gain, for all three datasets.

As can be seen from the figure, for UNT.edu and Texas.gov, the performance of the Str

classifiers keeps increasing from top-10 features to all 43 features. As expected, on Texas.gov,

the performance of Str classifiers is much lower compared with that of Str classifiers on

UNT.edu. This is because the Str features are more aligned with academic documents,

whereas Texas.gov covers a more diverse set of documents. On USDA.gov, the performance

of the Str classifiers keeps increasing from top-10 selected features to top-30 features, and

the classifiers corresponding to top-30 and all 43 features perform the same.

Table 4.4 shows the top-30 ranked structural features using the information gain feature

selection method on each dataset. Interpreting these structural features is similar to the

BoW results discussed above. The UNT.edu shows that the most informative features include

those that are closely aligned with the scholarly publications including positionOfThisPaper,

refCount, refRatio, and positionOfReferences.

The USDA.gov has similar structural features that key off of the content of the publica-

119

Dataset Top-30 Features

UNT.edu

positionOfThisPaper, refCount, refRatio, positionOfReferences, fileSize,
tokBeforeRef, references, pgCount, positionOfAbstract, thisPaper, concl,
positionOfConcl, strLength, numLines, abstract, numTok, positionOfIntro,
ucaseStart, positionOfAck, ack, avgNumWordsPerPage, avgNumLinesPerPage,
AckAfterIntro, symbolRatio, spcRatio, symbolStart, lnratio, ucaseRatio,
intro, publications

Texas.gov

fileSize, numLines, lnratio, strLength, pgCount, numTok, thisDocument,
publications, positionOfIntro, intro, education, positionOfThisPaper,
avgNumLinesPerPage, symbolStart, ucaseStart, spcRatio, avgNumWordsPerLine,
refRatio, positionOfAck, ack, positionOfConcl, concl, positionOfReferences,
positionOfAbstract, tokBeforeRef, references, refCount, avgNumWordsPerPage,
ucaseRatio, AckBeforeIntro

USDA.gov

refCount, refRatio, strLength, positionOfThisPaper, pgCount, numTok,
positionOfIntro, intro, numLines, positionOfAbstract, positionOfReferences,
references, abstract, tokBeforeRef, ucaseStart, fileSize, positionOfConcl, concl,
spcRatio, positionOfAck, ack, symbolRatio, ucaseRatio, thisPaper, symbolStart,
AckAfterIntro, lnratio, avgNumWordsPerPage, avgNumWordsPerLine,
avgNumLinesPerPage

Table 4.4: Top-30 selected features from the 43 structural features using information gain.

tions but also start to include more generic features such as strLength, pgCount, and numTok

into the most informative features. The Texas.gov is very different, with the most informa-

tive structural features being those that are very generic such as fileSize, numLines, lnratio,

strLength, and pgCount. This seems to match the content in the datasets where UNT.edu

is well focused on scholarly publications, USDA.gov includes both scholarly publications as

well as technical reports, and Texas.gov is very broad in the kind of publications included in

the collection. Because of this broad range of publications in Texas.gov, it appears that the

43 structural features selected are not being used to their fullest capability for this dataset.

The Performance of the CNN Classifier

Next, we compare the performance of the CNN classifiers when we consider the text from

different portions of the documents. Figure 4.7 shows the performance of the CNN classifiers

that use word sequences from various portions of the documents, i.e., first X words and first-

X words combined with last-X words (where X ∈ {100, 300, 500, 700, 1000}).

120

Figure 4.7: Performance of the CNN using different portions of the documents on different
datasets.

On UNT.edu, it can be seen from Figure 4.7 that the CNN that uses the first-100 words

from each of the documents performs best and achieves a highest F1-score of 0.79. Also,

on UNT.edu, the CNNs that use words from the beginning and ending of each document

generally outperform the CNNs that use words only from the beginning of the documents

(except for 100-length sequences). Moreover, we notice the drastic performance gap between

the performance of the CNN that uses the first-100 words and the CNNs that use other

portions of the documents’ text.

On Texas.gov, it can be seen from Figure 4.7 that the CNN classifier that uses the first-

700 words combined with the last-700 words performs best and achieves an F1-score of 0.72.

For Texas.gov, the CNN classifiers that use words from the beginning and ending portions

of documents outperform the CNNs that use words only from the beginning of documents.

On USDA.gov, we can see from Figure 4.7 that the CNN classifier that uses the first-

100 words from each document performs best and achieves a highest F1-score of 0.69. The

performance of the CNN classifiers that use word sequences from the beginning and ending

of documents perform better than those that use only the beginning of documents for word

sequence lengths greater than 500. Comparing the results in Figure 4.7 with the previous

results, we can notice that the deep learning CNN models perform worse than the Random

Forest classifiers that use BoW from various portion of the document text.

121

Lib.edu State.gov USDA.gov
+(%) All (%) + (%) All (%) +(%) All (%)

BoW is correct 78 92 85 96 84 94
Str is correct 84 93 88 93 83 94
CNN is correct 80 90 83 94 78 91
All are correct 63 91 71 97 66 95
All are wrong 4 1.2 2.7 1 5.8 1.4
At least one 96 90 97 89 94 90

Table 4.5: Exploratory analysis.

4.7.4 Exploratory Analysis

We perform an exploratory analysis in Table 4.5 to highlight the potential of using our

algorithm for selecting best classifier for classifying a document. We predict the class label

for a given document by using different individual classifiers and obtained the coverage of the

positive class (+ve) and the overall accuracy (All) for the cases when: (1) an individual base

classifier is correct, (2) all base classifiers are correct, (3) all base classifiers are wrong, and

(4) at least one base classifier is correct. It can be seen from the table that, the last row has

the highest value regarding the coverage of the positive class (+ve) among all the datasets

and it shows that there is room for improvement for the base classifiers (first three rows), i.e.,

“At least one” covers 96%, 97%, and 94% of the positive examples as compared with 84%

(Str), 88% (Str), and 84% (BoW) for the Lib.edu, State.gov, and USDA.gov, respectively.

The large gap between the coverage of the base classifiers (first three rows) and the “At

least one” (last row) for the coverage of the positive class (+ve) showcases the potential of

combining base classifiers for improving on individual base classifier.

4.7.5 Proposed Model DCSDC vs. Individual Models and Base-

lines

We contrast the performance of our proposed model DCSDC with that of the three base

classifiers (Section 4.4: BoW, CNN, and Str), late fusion of the base classifiers (BoW+Str,

122

Classifier
UNT.edu Texas.gov USDA.gov

Pr(+) Re(+) F1(+) Acc.(%) Pr(+) Re(+) F1(+) Acc.(%) Pr(+) Re(+) F1(+) Acc.(%)

BoW 0.87 0.78 0.82 92.4 0.64 0.85 0.73 95.7 0.75 0.84 0.79 94.7
Str 0.86 0.84 0.85 93.2 0.50 0.88 0.64 93.3 0.70 0.83 0.76 93.8
CNN 0.75 0.80 0.77 89.5 0.53 0.83 0.65 93.7 0.62 0.78 0.68 91.5

DCSDC3 0.88 0.85 0.87 94.2 0.69 0.88 0.77 96.5 0.77 0.86 0.81 95.2

BoW+Str 0.94 0.83 0.88 95.0 0.61 0.89 0.72 95.4 0.74 0.88 0.80 94.8
BoW+CNN 0.83 0.81 0.82 92.1 0.64 0.89 0.74 95.7 0.75 0.84 0.79 94.7
Str+CNN 0.88 0.86 0.87 94.2 0.65 0.93 0.77 96.1 0.76 0.85 0.80 95.0
BoW+Str+CNN 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5

DCSDC7 0.94 0.86 0.90 95.5 0.74 0.94 0.83 97.3 0.81 0.89 0.85 96.3

KNN 0.85 0.17 0.29 80.9 0.34 0.49 0.35 88.5 0.51 0.12 0.19 88.6
DEM 0.93 0.84 0.88 95.1 0.59 0.88 0.70 95.0 0.74 0.88 0.80 94.9
SEM 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5
Majority Vote3 0.90 0.83 0.86 94.1 0.70 0.88 0.78 96.6 0.76 0.85 0.80 95.0
Majority Vote7 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5

Bagging 0.90 0.78 0.84 92.7 0.67 0.86 0.75 95.9 0.76 0.86 0.80 95.1
META-DES 0.92 0.82 0.86 94.2 0.73 0.85 0.78 96.8 0.84 0.88 0.85 96.5

Table 4.6: Performance of different features/models on our datasets.

BoW+CNN, Str+CNN, and BoW+Str+CNN) and six baselines (Section 4.7.1: KNN, DEM,

SEM, Majority Vote, Bagging, and META-DES) in terms of all compared measures, preci-

sion, recall and F1-score for the positive class, Pr(+), Re(+), and F1(+), and the overall

accuracy of the classifier on the Test set. DCSDC3 considers only the three base classifiers

(BoW, CNN, and Str) and DCSDC7 considers the three base classifiers along with their four

late fusions (BoW+Str, BoW+CNN, Str+CNN, and BoW+Str+CNN). For DEM, SEM and

Majority Vote, we experiment with considering only three base classifiers as well as base clas-

sifiers along with their late fusion, but the performance for DEM and SEM did not change.

Majority Vote3 and Majority Vote7 indicate Majority Vote baseline by considering only three

base classifiers and base classifiers along with their late fusion, respectively.

As we can see from Table 4.6, the DCSDC3 outperforms the individual base classifiers

(BoW, Str, and CNN). Moreover, we can see that the DCSDC7 is the highest performing

model across all three datasets in terms of all compared measures except the precision and

accuracy on USDA.gov. On the other hand, the performance of the KNN classifier is worst

as compared with all other compared classifiers.

On UNT.edu, Str outperforms the other two base classifiers, i.e., Str achieves an F1 of

0.85 as compared with 0.82 and 0.77 achieved by BoW and CNN, respectively. Late fusion

123

of base classifiers outperforms the corresponding base classifiers, i.e., Str+CNN achieves an

F1 of 0.87 as compared with 0.85 and 0.77 achieved by Str and CNN, respectively. KNN,

DEM, and both Majority Vote baselines outperform individual base classifiers. DCSDC7

achieves the highest values among all the measures. Furthermore, BoW+Str and Str+CNN

also achieve highest precision and highest recall, respectively.

On Texas.gov, BoW outperforms the other two base classifiers, i.e., BoW achieves an F1

of 0.73 as compared with 0.64 and 0.65 achieved by Str and CNN, respectively. Late fusion of

base classifiers outperforms the corresponding base classifiers except BoW+Str. All baselines

except KNN, and DEM outperform individual base classifiers. DCSDC7 achieves again the

highest values overall.

On USDA.gov, BoW outperforms the other two base classifiers, i.e., BoW achieves an F1

of 0.79 as compared with 0.76 and 0.68 achieved by Str and CNN, respectively. Late fusion of

base classifiers outperforms the corresponding base classifiers, i.e., Str+CNN achieves an F1

of 0.80 as compared with 0.76 and 0.68 achieved by Str and CNN, respectively. All baselines

except KNN outperform individual base classifiers. Surprisingly, META-DES achieves the

highest recall, F1 and accuracy. DCSDC7 achieves the highest values for the recall and F1.

4.7.6 Proposed Model DDFC vs. Individual Models and Baselines

We contrast the performance of our proposed model DDFC with three base classifiers (Sec-

tion 4.4: BoW, CNN, and Str) and seven baselines (Section 4.7.1: KNN, DCSDC3, DEM,

SEM, Majority Vote, Bagging, and META-DES) in terms of all compared measures (in %),

precision, recall and F1-score for the positive class, Pr(+), Re(+), and F1(+), and the overall

accuracy of the classifier on the Test set.

Table 4.7 shows the performance of three base classifiers, seven baselines including two

previous works, and the proposed approach DDFC. As we can see from the table, META-

DES generally outperforms all the base classifiers and other baseline models. However, our

proposed approach DDFC that dynamically assigns score to the each base classifier with

124

Classifier/Model
UNT.edu Texas.gov USDA.gov

Pr(+) Re(+) F1(+) Acc. Pr(+) Re(+) F1(+) Acc. Pr(+) Re(+) F1(+) Acc.

BoW 86.67 77.91 82.02 92.40 64.21 84.72 73.05 95.73 74.71 84.17 78.95 94.71
Str 85.68 83.53 84.56 93.21 50.41 87.50 63.96 93.26 70.23 83.33 76.10 93.82
CNN 75.16 80.32 77.48 89.54 52.78 83.33 64.55 93.73 62.20 77.50 68.29 91.47

KNN 85.05 17.27 28.68 80.88 34.05 48.61 35.25 88.51 51.09 11.67 18.78 88.62
DCSDC3 88.36 85.14 86.71 94.19 69.30 87.50 77.32 96.49 76.76 85.83 80.81 95.20
DEM 93.41 83.94 88.40 95.08 58.95 87.50 70.41 94.97 74.07 87.50 80.19 94.90
SEM 91.46 84.74 87.90 94.82 68.55 93.06 78.92 96.58 78.08 86.67 81.97 95.49
Majority Vote 90.09 82.73 86.20 94.10 70.36 87.50 77.94 96.58 75.68 85.00 79.95 95.00

Bagging 89.97 77.91 83.51 92.73 67.42 86.11 75.48 95.90 75.58 85.93 79.94 95.14
META-DES 91.66 81.53 86.13 94.19 72.62 84.72 78.21 96.77 83.90 87.50 85.38 96.47

DDFC 93.55 85.94 89.52 95.53 82.92 91.68 86.94 98.15 84.59 85.83 85.16 96.47

Table 4.7: Performance (in %) of different features/models on our datasets.

competence learning, outperforms all three base classifiers and all the baseline methods in

terms of F1 (in most cases). Bagging that uses a pool of classifiers based on BoW from

a subset of documents outperforms BoW baseline. Moreover, baselines that select from

or make use of all the base classifiers (DCSDC3, DEM, SEM, Majority Vote, and META-

DES) usually outperform base classifiers except BoW outperforms DEM on State.gov. On

the other hand, the performance of the KNN classifier is worst as compared with all other

compared classifiers. All baselines except KNN outperform all three base classifiers.

On UNT.edu, DDFC outperforms all other classifiers among all the measures, i.e., DDFC

achieves the highest F1 of 89.52%. Among the base classifiers, Str outperforms the other

two base classifiers, i.e., Str achives an F1 of 84.56% as compared with 82.02% and 77.48%

achieved by BoW and CNN, respectively.

On Texas.gov, DDFC achieves highest values among all the measures except the recall,

i.e., DDFC achieves a highest F1 of 0.87. Surprisingly, SEM baseline achieves a highest recall

of 93.06%. BoW outperforms the other two baselines, i.e., BoW achieves F1 of 73.05% as

compared with 63.96% and 64.55% achieved by Str and CNN, respectively.

On USDA.gov, DDFC achieves a highest value of precision and accuracy of 84.59% and

96.47%, respectively. Moreover DDFC achieves an F1 of 85.16% which is very close to a

highest F1 of 85.38% achieved by META-DES. Among the base classifiers, BoW outperforms

the other two baselines, i.e., BoW achives an F1 of 78.95% as compared with 76.10% and

125

68.29% achieved by Str and CNN, respectively.

4.8 Conclusions and Future Directions

In this chapter, we studied different types of features and learning models to accurately dis-

tinguish documents of interest for a collection, from web archive data. Experimental results

show that BoW features extracted using only some portions of the documents outperform

BoW features extracted using the entire content of documents (full text) as well as the top-N

selected BoW features, structural features, top-N selected structural features, and a CNN

classifier. We found that feature selection done using information gain improved the perfor-

mance of the BoW classifier. However, our conclusion is that text from specific portions of

documents (e.g., the first-X or first-X+last-X number of words from the content of docu-

ments) is more useful than the text from the entire content for finding documents of interest

to a given collection. Furthermore, we proposed an approach named DDSDC that dynam-

ically selects a classifier to identify if a document is relevant to a collection by dynamically

capturing relevant aspects of the given document. Our experimental results show that the

DDSDC performs better than the individual classifiers and other strong baseline models for

finding documents of interest to a given collection as the collections may include documents

of diverse types. Moreover, proposed another competence learning based dynamic classifier

selection algorithm named DDFC, and showed that it outperforms strong baselines. Our

datasets and code will be made available to the research community to further research in

this area.

In the future work, other approaches may produce more powerful models that could be

more difficult to interpret or explain. Such models and in depth explorations of deep learning

will be tested in the future. Moreover, it will be interesting to explore domain adaptation

by training the classifiers on one type of a Web archiving collection and testing on another

collection.

126

Chapter 5

Summary and Discussion

In this chapter, we summarize the the contributions of this work and present future direction

in our research.

5.1 Dissertation Summary

Our main goal in this study is to explore keyphrase extraction and its applications to digital

libraries. In this study, we have proposed two keyphrase extraction algorithms, CRF-based

supervised approach and unsupervised approach KPRank. We also explored integration of

different keyphrase extraction models in to CiteSeerX. Moreover, we proposed two search

based frameworks for acquiring scientific documents and maintaining the accurate list of

researchers’ homepages: Scientific Documents Discovery and Researchers’ Homepages Dis-

covery. Furthermore, we explored different machine learning and deep learning models for

identifying documents in-scope of a collection from Web archives. We proposed two dynamic

classifier selection algorithms: Dynamic Classifier Selection for Document Classification (or

DCSDC), and Dynamic Decision level Fusion for Document Classification (or DDFC).

The following is a summary of this dissertation:

127

• Keyphrase Extraction from Scientific Documents: In this chapter, we discussed

keypharse extraction approaches and the exploration of deployment of keyphrase ex-

traction models in to CiteSeerX digital library. We proposed a CRF based supervised

keyphrase extraction approach that utilizes word embeddings as features along with

document specific features. We showed that the proposed CRF based model outper-

forms strong baseline methods. Moreover, we proposed a novel unsupervised graph-

based algorithm, KPRank, that incorporates both positional information of the words

along with contextual word embeddings for computing a biased PageRank score for

each candidate word. Our experimental results on five datasets show that incorpo-

rating position information into our biased KPRank model yields better performance

compared with a KPRank that does not use the position information. Moreover, we

showed that KPRank outperforms strong baseline methods. In the CiteSeerX case

study, we proposed to integrate three supervised keyphrase extraction models into

CiteSeerX which are more robust than the previously used NP-Chunking method. To

evaluate the keyphrase extraction methods from a user perspective, we implemented

a voting system on papers’ summary pages in CiteSeerX to vote on predicted phrases

without showing the model information to reduce potential judgment bias from voters.

• Applications of Keyphrases/Keywords: In this chapter, we proposed two search

driven approaches for acquiring scientific documents and maintaining a large collection

of researcher homepages. Keyphrases or keywords are very useful to formulate queries

that can retrieve topically-related articles from the Web. Scholarly digital libraries

provide access to scientific publications and comprise useful resources for researchers.

Through an experiment using a large collection of ≈ 76, 000 queries (titles + authors

names), our scientific documents discovery framework was able to automatically ac-

quire an overall collection of ≈ 267, 000 unique research papers and was able to recover

78% of the original searched titles, i.e., ≈ 34, 000 papers from the 43, 496 original

searched titles. To our knowledge, we are the first to interleave Web search and deep

learning for researcher homepage identification to build an efficient author homepage

128

acquisition approach. We deploy our framework in to CiteSeerX for researcher home-

page discovery. We show that self-training can be very useful to train deep learning

based researcher homepage classifiers using small amount of labeled data along with

unlabeled data. Since data annotation is very expensive, we show that human effort

can be reduced through self-training, which could be useful when deploying this into

another system in future. More, we discovered 12, 199 researcher homepages using

10, 000 paper title queries. This shows the capability of research paper titles for find-

ing researcher homepages. We show the integration of our framework in CiteSeerX for

collecting URLs for crawling scientific documents.

• Document Classification in Web Archiving Collections: In this chapter, we

explore different learning models and feature representations to determine the best

performing ones for identifying the documents of interest from the web archived data.

Specifically, we study both machine learning and deep learning models and “bag of

words” (BoW) features extracted from the entire document or from specific portions

of the document, as well as structural features that capture the structure of documents.

Moreover, we explore dynamic fusion models to find, on the fly, the model or combi-

nation of models that performs best on a variety of document types. We proposed two

dynamic classifier selection algorithms: Dynamic Classifier Selection for Document

Classification (or DCSDC), and Dynamic Decision level Fusion for Document Classi-

fication (or DDFC). We focus our evaluation on three datasets that we created from

three different Web archives. Experimental results show that BoW features extracted

using only some portions of the documents outperform BoW features extracted using

the entire content of documents (full text) as well as the top-N selected BoW features,

structural features, top-N selected structural features, and a CNN classifier. We found

that feature selection done using information gain improved the performance of the

BoW classifier. Our experimental results show that the approach that fuses differ-

ent models outperforms individual models and other ensemble methods on all three

datasets. However, our conclusion is that text from specific portions of documents

129

(e.g., the first-X or first-X+last-X number of words from the content of documents)

is more useful than the text from the entire content for finding documents of interest

to a given collection. We show that the DDSDC performs better than the individual

classifiers and other strong baseline models. Furthermore, we showed that DDFC also

outperforms strong baselines including DDSDC.

5.2 Summary of Contributions

This section presents the contributions of our works in this dissertation:

1. Keyphrase Extraction from Scientific Documents:

• We propose to incorporate word semantics in CRF models for keyphrase extrac-

tion through the use of word embeddings. We study the sensitivity of CRFs

based on word embedding types, i.e., those pre-trained on Google News as well

as those trained on a large collection of ACM research papers. As part of our

contributions, we will make available the IDs of our ACM dataset and the word

embeddings.

• We experimentally show that the CRF models that use word embeddings in ad-

dition to features extracted from the document itself outperform strong baselines

and other previous approaches for keyphrase extraction.

• We propose KPRank, an unsupervised graph-based algorithm that exploits both

the position of words in a document and the contextual word embeddings for

computing a biased PageRank score for ranking candidate phrases

• We show empirically that infusing position information into our biased KPRank

model yields better performance compared with its counterpart that does not

use the position information. In addition, KPRank with contextual SciBERT

embeddings performs better than FastText-based KPRank. Finally, we show

that KPRank outperforms many previous unsupervised models.

130

• We review keyphrase extraction in scholarly digital libraries, using CiteSeerX as

a case study. Moreover, we show the development and deployment requirements

of the keyphrase extraction models and the maintenance requirements.

2. Applications of Keyphrases/Keywords:

• We propose a novel integrated framework based on search-driven methods to

automatically acquire research documents for scientific collections. To our knowl-

edge, we are the first to use “Web Search” based on author names to obtain seed

URLs for initiating crawls in an open-access digital library. Moreover, we design

a traditional machine learning based novel homepage identification module and

adapt existing research on academic document classification, which are crucial

components of our framework. We show experimentally that our homepage iden-

tification module and the research paper classifier substantially outperform strong

baselines.

• To automatically acquire research documents, we perform a large-scale, first-of-

its-kind experiment using 43, 496 research paper titles and 32, 816 author names

from Computer and Information Sciences. We compare our framework with two

baselines, a breadth-first search crawler and, to the extent possible, the Microsoft

Academic. We discuss that our framework does not substitute these systems,

but rather they very well complement each other. We compare our framework

with two baselines, a breadth-first search crawler and, to the extent possible,

the Microsoft Academic. We discuss that our framework does not substitute

these systems, but rather they very well complement each other. As part of our

contributions, we will make all the constructed datasets available.

• We propose a search-driven homepage finding approach that uses author names

and paper titles to find researcher homepages. To our knowledge, we are the first

to use “paper titles” as queries to discover researcher homepages. Furthermore,

we explore Convolutional Neural Networks (CNNs) for author homepage identi-

fication, which is a crucial component in our approach. We conduct a thorough

131

evaluation of the CNN models trained on both URLs and page content, and show

significant improvements in performance over baselines and prior works. Further-

more, we show that self training can improve the performance of the classifier

with the small amount of labeled data along with the unlabeled data.

• To discover researcher homepages, we perform a large-scale experiment using au-

thor names and paper titles from Computer Science as queries, and show the ef-

fectiveness of our approach in discovering a large number of homepages. Finally,

as part of our contributions, all resulting datasets for author homepage identifi-

cation and homepage discovery will be made available to further research in this

area. We show the development and deployment requirements of our proposed

approach in CiteSeerX and the maintenance requirements.

3. Document Classification in Web Archiving Collections:

• We built three datasets from three different web archives collected by the UNT

libraries, each covering different domains: UNT.edu, Texas.gov, and USDA.gov.

Each dataset contains the PDF document along with the label indicating whether

a document is in scope of a collection or not. We will make these datasets available

to further research in this area.

• We show that BoW classifiers that use only some portion of the documents out-

perform BoW classifiers that use full text from the entire content of a document,

the structural features based classifiers, and the CNN classifier. We also show

that feature selection using information gain improves the performance of the

BoW classifiers and structural features based classifiers, and present a discussion

on the most informative features for each collection.

• We propose a dynamic classifier selection for document classification (DCSDC) to

dynamically select an appropriate classifier to predict the probability of a target

document as being in scope of a collection or not. To dynamically select the

classifiers, we consider textual similarity along with the structural aspects of the

132

documents. We show that DCSDC outperforms all the individual feature set

models (base classifiers) and other strong baselines.

• We propose a dynamic decision-level fusion for document classification (DDFC)

that derives competence features from neighborhood documents and learns a clas-

sifier to assign a competence score for each base classifier (BoW, Str, and CNN)

in order to fuse them and to predict the probability of a target document as being

in scope of a collection or not. To derive the competence features, we consider

textual similarity along with the structural aspects of the documents. We show

that DDFC outperforms all the individual feature set models (base classifiers)

and other strong baselines including DCSDC.

5.3 Future Directions

Below are different future directions for our work:

• For the keyphrases extraction task, our both proposed aproaches, CRF-based super-

vised approach and unsupervised approach KPRank, can be explored in the other fields

in Computer Science such as Computational Linguistics, as well as other scientific do-

mains, such as Biology, Social Science, Political Science, and Material Sciences. More-

over, since these scientific domains do not generally have author-annotated keyphrases,

developments of domain adaptation and transfer learning techniques should also be in-

vestigated.

• In our CRF-based supervised keyphrase extraction approach, posterior regularization

can be integrated.

• For acquiring scientific documents and maintaining the accurate list of researchers’

homepages, our both proposed frameworks, Scientific Documents Discovery and Re-

searchers’ Homepages Discovery, can be applied to other domains, and study the inte-

gration of topic classification.

133

• For identifying documents in-scope of a collection from the Web archived data, other

approaches may produce more powerful models that could be more difficult to interpret

or explain. Such models and in depth explorations of deep learning will be tested in the

future. Moreover, it will be interesting to explore domain adaptation by training the

classifiers on one type of a Web archiving collection and testing on another collection.

134

Bibliography

[1] Chandra Bhagavatula, Sergey Feldman, Russell Power, and Waleed Ammar. Content-

based citation recommendation. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 238–251, New Orleans, Louisiana, June

2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1022. URL

https://www.aclweb.org/anthology/N18-1022.

[2] Ding Zhou, Shenghuo Zhu, Kai Yu, Xiaodan Song, Belle L. Tseng, Hongyuan Zha,

and C. Lee Giles. Learning multiple graphs for document recommendations. In Proc.

of WWW ’08, 2008.

[3] Cornelia Caragea, Adrian Silvescu, Prasenjit Mitra, and C. Lee Giles. Can’t see the

forest for the trees?: a citation recommendation system. In 13th ACM/IEEE-CS Joint

Conference on Digital Libraries, JCDL ’13, Indianapolis, IN, USA, July 22 - 26, 2013,

pages 111–114, 2013.

[4] Krisztian Balog and Maarten De Rijke. Determining expert profiles (with an applica-

tion to expert finding). In IJCAI, 2007.

[5] Sujatha Das Gollapalli, Prasenjit Mitra, and C. Lee Giles. Similar researcher search in

academic environments. In Proceedings of the 12th ACM/IEEE-CS Joint Conference

on Digital Libraries, JCDL ’12, Washington, DC, USA, June 10-14, 2012, pages 167–

170, 2012.

[6] Cornelia Caragea, Florin Adrian Bulgarov, and Rada Mihalcea. Co-training for topic

classification of scholarly data. In Proceedings of the 2015 Conference on Empirical

135

https://www.aclweb.org/anthology/N18-1022

Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September

17-21, 2015, pages 2357–2366, 2015.

[7] Qing Lu and Lise Getoor. Link-based classification. In ICML, 2003.

[8] Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and Yu Chi.

Deep keyphrase generation. In Proceedings of the 55th Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1: Long Papers), pages 582–592.

Association for Computational Linguistics, 2017.

[9] Wang Chen, Hou Pong Chan, Piji Li, and Irwin King. Exclusive hierarchical decod-

ing for deep keyphrase generation. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 1095–1105, Online, July 2020. As-

sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.103. URL

https://www.aclweb.org/anthology/2020.acl-main.103.

[10] Krutarth Patel and Cornelia Caragea. Exploring word embeddings in crf-based

keyphrase extraction from research papers. In Proceedings of the 10th International

Conference on Knowledge Capture, pages 37–44, 2019.

[11] Cornelia Caragea, Florin Adrian Bulgarov, Andreea Godea, and Sujatha Das Gol-

lapalli. Citation-enhanced keyphrase extraction from research papers: A supervised

approach. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meet-

ing of SIGDAT, a Special Interest Group of the ACL, pages 1435–1446, 2014. URL

http://aclweb.org/anthology/D/D14/D14-1150.pdf.

[12] Kazi Saidul Hasan and Vincent Ng. Conundrums in unsupervised keyphrase extraction:

making sense of the state-of-the-art. In COLING, pages 365–373, 2010.

[13] Kazi Saidul Hasan and Vincent Ng. Automatic keyphrase extraction: A survey of the

state of the art. In ACL, pages 1262–1273, June 2014.

136

https://www.aclweb.org/anthology/2020.acl-main.103
http://aclweb.org/anthology/D/D14/D14-1150.pdf

[14] Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew

McCallum. Semeval 2017 task 10: Scienceie - extracting keyphrases and relations from

scientific publications. In SemEval@ACL, pages 546–555, 2017.

[15] Amjad Abu-Jbara and Dragomir Radev. Coherent citation-based summarization of

scientific papers. In ACL: HLT, pages 500–509, 2011. ISBN 978-1-932432-87-9.

[16] Vahed Qazvinian, Dragomir R. Radev, and Arzucan Özgür. Citation summarization

through keyphrase extraction. In Proceedings of the 23rd International Conference on

Computational Linguistics, COLING ’10, pages 895–903, 2010.

[17] Peter D Turney. Coherent keyphrase extraction via web mining. arXiv preprint

cs/0308033, 2003.

[18] Wen-tau Yih, Joshua Goodman, and Vitor R. Carvalho. Finding advertising keywords

on web pages. In WWW’06, pages 213–222, 2006. ISBN 1-59593-323-9.

[19] Gábor Berend. Opinion expression mining by exploiting keyphrase extraction. In

Proceedings of 5th International Joint Conference on Natural Language Processing,

pages 1162–1170, 2011.

[20] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. Automatic

keyphrase extraction from scientific articles. Language resources and evaluation, 47

(3):723–742, 2013.

[21] Anette Hulth. Improved automatic keyword extraction given more linguistic knowl-

edge. In EMNLP, pages 216–223, 2003.

[22] Xiaojun Wan and Jianguo Xiao. Single document keyphrase extraction using neigh-

borhood knowledge. In AAAI, pages 855–860, 2008.

[23] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In EMNLP, pages

404–411, 2004.

137

[24] Eibe Frank, Gordon W Paynter, Ian H Witten, Carl Gutwin, and Craig G Nevill-

Manning. Domain-specific keyphrase extraction. In IJCAI, pages 668–673, 1999.

[25] Jefferson Bailey. https://twitter.com/jefferson_bail/status/

867808876917178368, May 2017.

[26] HathiTrust. Hathitrust statistics information. https://www.hathitrust.org/

statistics_info, 2017.

[27] Andrei Broder. A taxonomy of web search. SIGIR Forum, 36(2), September 2002.

[28] Sujatha Das Gollapalli, Cornelia Caragea, Prasenjit Mitra, and C. Lee Giles. Re-

searcher homepage classification using unlabeled data. In WWW, 2013.

[29] Sujatha Das Gollapalli, Xiao-Li Li, and Peng Yang. Incorporating expert knowledge

into keyphrase extraction. In AAAI, pages 3180–3187, 2017.

[30] Pinaki Bhaskar, Kishorjit Nongmeikapam, and Sivaji Bandyopadhyay. Keyphrase ex-

traction in scientific articles: A supervised approach. In COLING, pages 17–24, Mum-

bai, India, December 2012.

[31] Chengzhi Zhang, Huilin Wang, Yao Liu, Dan Wu, Yi Liao, and Bo Wang. Automatic

keyword extraction from documents using conditional random fields. JCIS, 4(3):1169–

1180, 2008.

[32] Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, and Roger Zimmermann.

Key2vec: Automatic ranked keyphrase extraction from scientific articles using phrase

embeddings. In NAACL, pages 634–639, 2018.

[33] Corina Florescu and Cornelia Caragea. Positionrank: An unsupervised approach to

keyphrase extraction from scholarly documents. In ACL, pages 1105–1115, Vancouver,

Canada, July 2017.

138

https://twitter.com/jefferson_bail/status/867808876917178368
https://twitter.com/jefferson_bail/status/867808876917178368
https://www.hathitrust.org/statistics_info
https://www.hathitrust.org/statistics_info

[34] Krutarth Patel, Cornelia Caragea, Jian Wu, and C Lee Giles. Keyphrase extraction in

scholarly digital library search engines. In International Conference on Web Services,

pages 179–196. Springer, 2020.

[35] Krutarth Patel, Cornelia Caragea, and Sujatha Das Gollapalli. On the use of web search

to improve scientific collections. In Proceedings of the First Workshop on Scholarly

Document Processing, pages 174–183, 2020.

[36] Krutarth Patel, Cornelia Caragea, Doina Caragea, and C Lee Giles. Author homepage

discovery in citeseerx. In Proceedings of the AAAI Conference on Artificial Intelligence,

2021.

[37] Krutarth Patel, Cornelia Caragea, Mark E Phillips, and Nathaniel T Fox. Identifying

documents in-scope of a collection from web archives. In Proceedings of the ACM/IEEE

Joint Conference on Digital Libraries in 2020, pages 167–176, 2020.

[38] Krutarth Patel, Cornelia Caragea, and Mark Phillips. Dynamic classification in web

archiving collections. In Proceedings of The 12th Language Resources and Evaluation

Conference, pages 1459–1468, 2020.

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In NIPS, pages 3111–

3119, 2013.

[40] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple and

general method for semi-supervised learning. In ACL, pages 384–394, 2010.

[41] Luis Marujo, Wang Ling, Isabel Trancoso, Chris Dyer, Alan W Black, Anatole Gersh-

man, David Martins de Matos, João Neto, and Jaime Carbonell. Automatic keyword

extraction on twitter. In ACL and IJCNLP, 2015.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008, 2017.

139

[43] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand

Joulin. Advances in pre-training distributed word representations. In Proceedings of

the International Conference on Language Resources and Evaluation (LREC 2018),

2018.

[44] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for

scientific text. arXiv preprint arXiv:1903.10676, 2019.

[45] Hung-Hsuan Chen, Pucktada Treeratpituk, Prasenjit Mitra, and C Lee Giles. Csseer:

an expert recommendation system based on citeseerx. In JCDL, pages 381–382, 2013.

[46] Thuy Dung Nguyen and Min-Yen Kan. Keyphrase extraction in scientific publications.

In Asian Digital Libraries, pages 317–326, 2007.

[47] Lucas Sterckx, Cornelia Caragea, Thomas Demeester, and Chris Develder. Supervised

keyphrase extraction as positive unlabeled learning. In EMNLP, pages 1924–1929,

2016.

[48] Olena Medelyan, Eibe Frank, and Ian H Witten. Human-competitive tagging using

automatic keyphrase extraction. In EMNLP, pages 1318–1327, 2009.

[49] Patrice Lopez and Laurent Romary. Humb: Automatic key term extraction from

scientific articles in grobid. In SemEval, pages 248–251, 2010.

[50] Florin Bulgarov and Cornelia Caragea. A comparison of supervised keyphrase extrac-

tion models. In WWW, pages 13–14, 2015.

[51] Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun. Clustering to find exemplar

terms for keyphrase extraction. In EMNLP, pages 257–266, 2009.

[52] Ken Barker and Nadia Cornacchia. Using noun phrase heads to extract document

keyphrases. In Advances in Artificial Intelligence, pages 40–52. Springer, 2000.

140

[53] Yongzheng Zhang, Evangelos Milios, and Nur Zincir-Heywood. A comparative study

on key phrase extraction methods in automatic web site summarization. JDIM, 5(5):

323, 2007.

[54] Maria Grineva, Maxim Grinev, and Dmitry Lizorkin. Extracting key terms from noisy

and multitheme documents. In WWW, pages 661–670, 2009.

[55] Shibamouli Lahiri, Sagnik Ray Choudhury, and Cornelia Caragea. Keyword and

keyphrase extraction using centrality measures on collocation networks. CoRR,

abs/1401.6571, 2014. URL http://arxiv.org/abs/1401.6571.

[56] Feifan Liu, Deana Pennell, Fei Liu, and Yang Liu. Unsupervised approaches for auto-

matic keyword extraction using meeting transcripts. In ACL, pages 620–628, 2009.

[57] Nedelina Teneva and Weiwei Cheng. Salience rank: Efficient keyphrase extraction with

topic modeling. In ACL, volume 2, pages 530–535, 2017.

[58] Ido Blank, Lior Rokach, and Guy Shani. Leveraging the citation graph to recommend

keywords. In RecSys, pages 359–362, 2013.

[59] Sujatha Das Gollapalli and Cornelia Caragea. Extracting keyphrases from research

papers using citation networks. In AAAI, pages 1629–1635, 2014.

[60] Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and Maosong Sun. Automatic keyphrase

extraction via topic decomposition. In EMNLP, pages 366–376, 2010.

[61] Juan Martinez-Romo, Lourdes Araujo, and Andres Duque Fernandez. Semgraph: Ex-

tracting keyphrases following a novel semantic graph-based approach. JASIST, 67(1):

71–82, 2016.

[62] Samhaa R El-Beltagy and Ahmed Rafea. Kp-miner: Participation in semeval-2. In

SemEval, pages 190–193, 2010.

141

http://arxiv.org/abs/1401.6571

[63] Soheil Danesh, Tamara Sumner, and James H Martin. Sgrank: Combining statistical

and graphical methods to improve the state of the art in unsupervised keyphrase

extraction. Lexical and Computational Semantics, page 117, 2015.

[64] Eytan Adar and Srayan Datta. Building a scientific concept hierarchy database

(schbase). In ACL, pages 606–615, 2015.

[65] Wei Fan, Huan Liu, Suge Wang, Yuxiang Zhang, and Yaocheng Chang. Extracting

keyphrases from research papers using word embeddings. In Advances in Knowledge

Discovery and Data Mining, pages 54–67, 2019. ISBN 978-3-030-16142-2.

[66] Rui Wang, Wei Liu, and Chris McDonald. Corpus-independent generic keyphrase ex-

traction using word embedding vectors. In Software Engineering Research Conference,

page 39, 2014.

[67] Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and

Martin Jaggi. Simple unsupervised keyphrase extraction using sentence embeddings.

In CoNLL, pages 221–229, 2018.

[68] Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing Huang. Keyphrase extraction using

deep recurrent neural networks on twitter. In EMNLP, pages 836–845, 2016.

[69] Jishnu Ray Chowdhury, Cornelia Caragea, and Doina Caragea. Keyphrase extraction

from disaster-related tweets. In The World Wide Web Conference, WWW ’19, pages

1555–1566, 2019. ISBN 978-1-4503-6674-8.

[70] Isabelle Augenstein and Anders Søgaard. Multi-task learning of keyphrase boundary

classification. In ACL, volume 2, pages 341–346, 2017.

[71] Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and Yu Chi.

Deep keyphrase generation. In ACL, pages 582–592, 2017.

[72] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

142

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014.

[73] Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and Zhoujun Li. Keyphrase generation

with correlation constraints. In EMNLP, pages 4057–4066, 2018.

[74] Hai Ye and Lu Wang. Semi-supervised learning for neural keyphrase generation. In

EMNLP, pages 4142–4153, 2018.

[75] Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and Michael R. Lyu. Title-guided

encoding for keyphrase generation. CoRR, abs/1808.08575, 2018.

[76] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional lstm-

cnns-crf. In ACL, pages 1064–1074, Berlin, Germany, August 2016. URL http:

//www.aclweb.org/anthology/P16-1101.

[77] Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan Gui, Jian Peng, and Jiawei

Han. Empower Sequence Labeling with Task-Aware Neural Language Model. In AAAI,

2018.

[78] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence

tagging. arXiv preprint arXiv:1508.01991, 2015.

[79] Rabah Alzaidy, Cornelia Caragea, and C Lee Giles. Bi-lstm-crf sequence labeling for

keyphrase extraction from scholarly documents. In WWW, pages 2551–2557. ACM,

2019.

[80] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages

282–289, 2001.

[81] Marina Litvak and Mark Last. Graph-based keyword extraction for single-document

summarization. In Proceedings of the workshop on Multi-source Multilingual Informa-

tion Extraction and Summarization, pages 17–24, 2008.

143

http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101

[82] Xin Jiang, Yunhua Hu, and Hang Li. A ranking approach to keyphrase extraction. In

SIGIR, pages 756–757, 2009.

[83] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: bringing order to the web. Technical report, Standford Digital Library

Technologies Project, 1998.

[84] Taher H Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm

for web search. IEEE transactions on knowledge and data engineering, pages 784–796,

2003.

[85] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[86] Yi-fang Brook Wu, Quanzhi Li, Razvan Stefan Bot, and Xin Chen. Domain-specific

keyphrase extraction. In CIKM, pages 283–284, 2005.

[87] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and Craig G. Nevill-

Manning. Domain-specific keyphrase extraction. In IJCAI, pages 668–673, 1999.

[88] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. SemEval-2010

Task 5: Automatic Keyphrase Extraction from Scientific Articles. In SemEval, pages

21–26, 2010.

[89] Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio Marchese. Large dataset for

keyphrases extraction. Technical report, University of Trento, 2009.

[90] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large

Corpora. In LREC, pages 45–50, May 2010.

[91] Adrien Bougouin, Florian Boudin, and Béatrice Daille. Topicrank: Graph-based topic

ranking for keyphrase extraction. In IJCNLP, pages 543–551, 2013.

144

[92] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An automatic citation

indexing system. In Proceedings of the 3rd ACM International Conference on Digital

Libraries, June 23-26, 1998, Pittsburgh, PA, USA, pages 89–98, 1998.

[93] Jian Wu, Kyle Williams, Hung-Hsuan Chen, Madian Khabsa, Cornelia Caragea,

Alexander Ororbia, Douglas Jordan, and C. Lee Giles. CiteSeerX: AI in a digital

library search engine. In AAAI, pages 2930–2937, 2014.

[94] P. Teregowda, B. Urgaonkar, and C. L. Giles. Cloud 2010. In 2010 IEEE 3rd Interna-

tional Conference on Cloud Computing, pages 115–122, 2010.

[95] Kyle Williams, Jian Wu, Sagnik Ray Choudhury, Madian Khabsa, and C. Lee Giles.

Scholarly big data information extraction and integration in the citeseerx digital li-

brary. IIWeb, pages 68–73, 2014.

[96] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and

Kuansan Wang. An overview of microsoft academic service (mas) and applications.

In Proceedings of the 24th international conference on world wide web, pages 243–246.

ACM, 2015.

[97] Jian Wu, Bharath Kandimalla, Shaurya Rohatgi, Athar Sefid, Jianyu Mao, and C. Lee

Giles. Citeseerx-2018: A cleansed multidisciplinary scholarly big dataset. In IEEE Big

Data, pages 5465–5467, 2018.

[98] Hui Han, C. Lee Giles, Eren Manavoglu, Hongyuan Zha, Zhenyue Zhang, and Ed-

ward A. Fox. Automatic document metadata extraction using support vector machines.

In JCDL, pages 37–48. IEEE, 2003.

[99] Isaac Councill, C Lee Giles, and Min-Yen Kan. ParsCit: an open-source CRF reference

string parsing package. In LREC, volume 8, pages 661–667, 2008.

[100] Cornelia Caragea, Jian Wu, Sujatha Das Gollapalli, and C. Lee Giles. Document type

classification in online digital libraries. Innovative Applications of Artificial Intelligence

(IAAI), 2016.

145

[101] Pucktada Treeratpituk and C. Lee Giles. Disambiguating authors in academic publi-

cations using random forests. In JCDL, pages 39–48. ACM, 2009.

[102] Athar Sefid, Jian Wu, Allen C. Ge, Jing Zhao, Lu Liu, Cornelia Caragea, Prasenjit

Mitra, and C. Lee Giles. Cleaning noisy and heterogeneous metadata for record link-

ing across scholarly big datasets. In The Thirty-Third AAAI Conference on Artificial

Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelli-

gence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February

1, 2019, pages 9601–9606, 2019.

[103] Grobid. https://github.com/kermitt2/grobid, 2008–2020.

[104] Jian Wu, Jason Killian, Huaiyu Yang, Kyle Williams, Sagnik Ray Choudhury, Suppa-

wong Tuarob, Cornelia Caragea, and C. Lee Giles. Pdfmef: A multi-entity knowledge

extraction framework for scholarly documents and semantic search. In K-CAP, pages

13:1–13:8. ACM, 2015.

[105] Huajing Li, Isaac G. Councill, Levent Bolelli, Ding Zhou, Yang Song, Wang-Chien

Lee, Anand Sivasubramaniam, and C. Lee Giles. Citeseerx: a scalable autonomous

scientific digital library. InfoScale, 2006.

[106] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:

extraction and mining of academic social networks. KDD, 2008.

[107] Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and Michael R. Lyu. Title-guided

encoding for keyphrase generation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 6268–6275, 2019.

[108] Marina Litvak and Mark Last. Graph-Based Keyword Extraction for Single-Document

Summarization. In Proceedings of the Workshop on Multi-source Multilingual Infor-

mation Extraction and Summarization, MMIES ’08, pages 17–24, Manchester, United

Kingdom, 2008. ISBN 978-1-905593-51-4.

146

https://github.com/kermitt2/grobid

[109] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for

parsing. In Proceedings of the Human Language Technology Conference of the NAACL,

Main Conference, pages 152–159, 2006.

[110] Gautam Pant, Kostas Tsioutsiouliklis, Judy Johnson, and C Lee Giles. Panorama:

extending digital libraries with topical crawlers. In Proceedings of the 4th ACM/IEEE-

CS joint conference on Digital libraries, pages 142–150. ACM, 2004.

[111] Ziming Zhuang, Rohit Wagle, and C Lee Giles. What’s there and what’s not?: focused

crawling for missing documents in digital libraries. In Digital Libraries, 2005. JCDL’05.

Proceedings of the 5th ACM/IEEE-CS Joint Conference on, pages 301–310. IEEE,

2005.

[112] David Carmel, Elad Yom-Tov, and Haggai Roitman. Enhancing digital libraries using

missing content analysis. In Proceedings of the 8th ACM/IEEE-CS Joint Conference

on Digital Libraries, JCDL ’08, pages 1–10, 2008.

[113] Sven E Hug and Martin P Brändle. The coverage of microsoft academic: Analyzing

the publication output of a university. arXiv preprint arXiv:1703.05539, 2017.

[114] Anne-Wil Harzing and Satu Alakangas. Microsoft academic: is the phoenix getting

wings? Scientometrics, 110(1):371–383, 2017.

[115] Wensi Xi, Edward Fox, Roy Tan, and Jiang Shu. Machine learning approach for

homepage finding task. In String Processing and Information Retrieval, pages 169–

174. Springer, 2002.

[116] Trystan Upstill, Nick Craswell, and David Hawking. Query-independent evidence in

home page finding. ACM Trans. Inf. Syst., 2003.

[117] Yuxin Wang and Keizo Oyama. Web page classification exploiting contents of sur-

rounding pages for building a high-quality homepage collection. ICADL, 4312:515–518,

2006.

147

[118] Jie Tang, Duo Zhang, and Limin Yao. Social network extraction of academic re-

searchers. In ICDM, 2007.

[119] Sujatha Das Gollapalli, Prasenjit Mitra, and C. Lee Giles. Learning to rank homepages

for researcher name queries. In EOS Workshop at SIGIR, 2011.

[120] Xiaoguang Qi and Brian D. Davison. Web page classification: Features and algorithms.

ACM Comput. Surv., 41(2), February 2009.

[121] Junting Ye, Yanan Qian, and Qinghua Zheng. Plidminer: A quality based approach

for researcher’s homepage discovery. In Asia Information Retrieval Symposium, pages

199–210. Springer, 2012.

[122] In-Su Kang, Pyung Kim, Seungwoo Lee, Hanmin Jung, and Beom-Jong You. Con-

struction of a large-scale test set for author disambiguation. Information Processing

& Management, 47(3):452–465, 2011.

[123] Bo Long, Philip S Yu, and Zhongfei Zhang. A general model for multiple view unsu-

pervised learning. In SIAM, pages 822–833, 2008.

[124] Peter Christen. Data matching: concepts and techniques for record linkage, entity

resolution, and duplicate detection. Springer Science & Business Media, 2012.

[125] Xiao-Yuan Jing, Fei Wu, Xiwei Dong, Shiguang Shan, and Songcan Chen. Semi-

supervised multi-view correlation feature learning with application to webpage classi-

fication. In AAAI, 2017.

[126] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,

2016. ISBN 0262035618, 9780262035613.

[127] Sujatha Das Gollapalli, Cornelia Caragea, Prasenjit Mitra, and C. Lee Giles. Using

unlabeled data to improve researcher homepage classification. In Transactions on the

Web, 2015.

148

[128] Yoon Kim. Convolutional neural networks for sentence classification. In Alessandro

Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing, EMNLP 2014, October

25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the

ACL, pages 1746–1751. ACL, 2014. URL http://aclweb.org/anthology/D/D14/

D14-1181.pdf.

[129] Jiapeng Zhao, Tingwen Liu, and Jinqiao Shi. Improving academic homepage identifi-

cation from the web using neural networks. In ICCS, pages 551–558. Springer, 2019.

[130] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: a new

approach to topic-specific web resource discovery. In WWW, 1999.

[131] Cristiano Mesquita Garcia, Armando Honorio Pereira, and Denilson Alves Pereira. A

framework to collect and extract publication lists of a given researcher from the web.

JWET, 12(3):234–252, 2017.

[132] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr.,

2009.

[133] Thorsten Joachims. Optimizing search engines using clickthrough data. In SIGKDD,

2002.

[134] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag New York, Inc., 2006.

[135] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[136] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural language processing (almost) from scratch. JMLR, 12(Aug):

2493–2537, 2011.

149

http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf

[137] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):

39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL http:

//doi.acm.org/10.1145/219717.219748.

[138] Amanda Spink and Bernard J Jansen. Web search: Public searching of the Web,

volume 6. Springer Science & Business Media, 2004. ISBN 9781402022692.

[139] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA., 2008.

[140] Steve Lawrence. Free online availability substantially increases a paper’s impact. In

Nature, 411 (6837), pages 521–521, 2001.

[141] José-Luis Ortega-Priego, Isidro F. Aguillo, and José Antonio Prieto-Valverde. Longi-

tudinal study of contents and elements in the scientific web environment. Journal of

Information Science, 32(4), 2006.

[142] International Internet Preservation Consortium. Members. http://netpreserve.

org/about-us/members, 2017.

[143] Archive-It. Archive-it homepage. https://archive-it.org/, 2017.

[144] Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebastiani. A learner-

independent evaluation of the usefulness of statistical phrases for automated text cat-

egorization. Text databases and document management: Theory and practice, 5478:

78–102, 2001.

[145] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput.

Surv., 34(1), 2002.

[146] Yoav Goldberg. A primer on neural network models for natural language processing.

Journal of Artificial Intelligence Research, 57:345–420, 2016.

[147] Rie Johnson and Tong Zhang. Effective use of word order for text categorization with

convolutional neural networks. arXiv preprint arXiv:1412.1058, 2014.

150

http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://netpreserve.org/about-us/members
http://netpreserve.org/about-us/members
https://archive-it.org/

[148] Mark Phillips and Kathleen Murray. Improving access to web archives through inno-

vative analysis of pdf content. In Archiving Conference, pages 186–192. Society for

Imaging Science and Technology, 2013.

[149] James A Jacobs. Born-digital us federal government information: Preservation and

access. Leviathan: Libraries and Government Information in the Age of Big Data,

2014.

[150] Alexander C Nwala, Michele C Weigle, and Michael L Nelson. Bootstrapping web

archive collections from social media. In Proceedings of the 29th on Hypertext and

Social Media, pages 64–72. ACM, 2018.

[151] Sawood Alam, Fateh ud din B Mehmood, and Michael L Nelson. Improving accessi-

bility of archived raster dictionaries of complex script languages. In Proceedings of the

JCDL, pages 47–56, 2015.

[152] Sawood Alam, Michael L Nelson, Herbert Van de Sompel, Lyudmila L Balakireva,

Harihar Shankar, and David SH Rosenthal. Web archive profiling through cdx sum-

marization. International Journal on Digital Libraries, 17(3):223–238, 2016.

[153] Yasmin AlNoamany, Michele C Weigle, and Michael L Nelson. Generating stories from

archived collections. In Proceedings of the 2017 ACM on Web Science Conference,

pages 309–318. ACM, 2017.

[154] Mohamed Aturban, Sawood Alam, Michael Nelson, and Michele Weigle. Archive as-

sisted archival fixity verification framework. In JCDL, pages 162–171. IEEE, 2019.

[155] Chase Dooley and Grace Thomas. The library of congress web archives: Dip-

ping a toe in a lake of data. https://blogs.loc.gov/thesignal/2019/01/

the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/,

2019.

[156] Marina Skurichina and Robert PW Duin. Bagging for linear classifiers. Pattern Recog-

nition, 31(7):909–930, 1998.

151

https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/
https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/

[157] Micha l Woźniak, Manuel Graña, and Emilio Corchado. A survey of multiple classifier

systems as hybrid systems. Information Fusion, 16:3–17, 2014.

[158] Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996.

[159] Rafael Cruz, Robert Sabourin, and George Cavalcanti. Dynamic classifier selection:

Recent advances and perspectives. Information Fusion, 41, 05 2018.

[160] Rafael Cruz, Robert Sabourin, George Cavalcanti, and Tsang Ing Ren. Meta-des: A

dynamic ensemble selection framework using meta-learning. Pattern Recognition, 48,

05 2015.

[161] Paulo Rodrigo Cavalin, Robert Sabourin, and Ching Y. Suen. Dynamic selection

approaches for multiple classifier systems. Neural Computing and Applications, 22:

673–688, 2011.

[162] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multimodal semi-

supervised learning for image classification. In 2010 IEEE Computer society conference

on computer vision and pattern recognition, pages 902–909. IEEE, 2010.

[163] Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang, and Amir Hussain.

Fusing audio, visual and textual clues for sentiment analysis from multimodal content.

Neurocomput., 174(PA):50–59, January 2016. ISSN 0925-2312.

[164] Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel. Multimodal neural language

models. In Proceedings of the 31st International Conf. on ML, volume 32, 22–24 Jun

2014.

[165] Tom Zahavy, Abhinandan Krishnan, Alessandro Magnani, and Shie Mannor. Is a

picture worth a thousand words? A deep multi-modal architecture for product classi-

fication in e-commerce. In AAAI. AAAI Press, 2018.

[166] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. In COLT, 1998.

152

[167] Thorsten Joachims. Text categorization with suport vector machines: Learning with

many relevant features. In Proc. of the 10th ECML, pages 137–142, 1998.

[168] Andrew McCallum and Kamal Nigam. A comparison of event models for naive bayes

text classification. In AAAI, 1999.

[169] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive learning

algorithms and representations for text categorization. In CIKM, CIKM ’98, pages

148–155, 1998.

[170] George Forman. An extensive empirical study of feature selection metrics for text

classification. Journal of Machine Learning Research, 3:1289–1305, 2003.

[171] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to

information retrieval. Cambridge university press, 2008.

[172] Mark Craven, Johan Kumlien, et al. Constructing biological knowledge bases by ex-

tracting information from text sources. In ISMB, volume 1999, pages 77–86, 1999.

[173] Ajith Kodakateri Pudhiyaveetil, Susan Gauch, Hiep Luong, and Josh Eno. Conceptual

recommender system for citeseerx. In RecSys, pages 241–244. ACM, 2009.

[174] Tong Zhou, Yi Zhang, and Jianguo Lu. Classifying computer science papers. In

Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016.

[175] Yaakov HaCohen-Kerner, Avi Rosenfeld, Maor Tzidkani, and Daniel Nisim Cohen.

Classifying papers from different computer science conferences. In Hiroshi Motoda,

Zhaohui Wu, Longbing Cao, Osmar R. Zäıane, Min Yao, and Wei Wang, editors,

Advanced Data Mining and Applications, 9th International Conference, ADMA 2013,

Hangzhou, China, December 14-16, 2013, Proceedings, Part I, volume 8346 of Lec-

ture Notes in Computer Science, pages 529–541. Springer, 2013. doi: 10.1007/

978-3-642-53914-5 45. URL https://doi.org/10.1007/978-3-642-53914-5_45.

153

https://doi.org/10.1007/978-3-642-53914-5_45

[176] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.

In International Conference on Machine Learning, pages 1188–1196, 2014.

[177] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,

2003.

[178] Ronan Collobert and Jason Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning, pages 160–167. ACM, 2008.

[179] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[180] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks

for text classification. In Advances in neural information processing systems, pages

649–657, 2015.

[181] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[182] Wenpeng Yin and Hinrich Schütze. Multichannel variable-size convolution for sentence

classification. arXiv preprint arXiv:1603.04513, 2016.

154

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Motivation and Contributions
	Keyphrase Extraction from Scientific Documents
	Applications of Keyphrases/Keywords
	Document Classification in Web Archiving Collections

	Dissertation Outline and Published Work

	Keyphrase Extraction from Scientific Documents
	Introduction
	Related Work
	Proposed Approaches and Methods Used in CiteSeerX Case Study
	CRF-Based Supervised Keyphrase Extraction
	KPRank: An Unsupervised Keyphrase Extraction Algorithm
	Methods Used in CiteSeerX Case Study

	Datasets
	Experimental Design and Results
	Word Embeddings as Features in CRFs for Keyphrase Extraction
	CRF vs. Bi-LSTM-CRF for Keyphrase Extaction
	Baseline Comparisons for Our CRF-Based Supervised Keyphrase Extraction Model
	Anecdotal Evidence for Our CRF-Based Model
	KPRank: The Effect of Position, Contextual Embeddings, and the Comparison With Previous Works
	Anecdotal Evidence for KPRank

	Keyphrase Extraction in CiteSeerX
	Click-log Analysis
	Experiments and Results
	Crowd-sourcing
	Development and Deployment
	Maintenance

	Summary and Future Directions

	Applications of Keyphrases/Keywords
	Introduction
	Related Work
	Proposed Frameworks and Approaches
	Scientific Documents Discovery
	Researchers' Homapages Discovery

	Datasets
	Scientific Documents Discovery
	Researchers' Homepages Discovery

	Experiments and Results
	Scientific Documents Discovery
	Researchers' Homepages Discovery

	Development and Deployment of Researchers' Homepages Discovery Framework in CiteSeerX
	Maintenance of Researchers' Homepages Discovery Framework in CiteSeerX
	Summary and Future Directions

	Document Classification in Web Archiving Collections
	Introduction
	Related Work
	Datasets
	UNT.edu Dataset
	Texas.gov Dataset
	USDA.gov Dataset

	Base Classifiers
	Bag of Words (BoWs)
	Structural Features
	Convolutional Neural Networks (CNNs)

	Proposed Model: Dynamic Classifier Selection
	Proposed Model: Dynamic Decision Level Fusion
	Step-1: Finding Neighborhood Documents
	Step-2: Competence Estimation
	Step-3: Dynamic Decision-Level Fusion

	Experiments and Results
	Baselines
	Experimental Setup
	Experiments with Base Classifiers
	Exploratory Analysis
	Proposed Model DCSDC vs. Individual Models and Baselines
	Proposed Model DDFC vs. Individual Models and Baselines

	Conclusions and Future Directions

	Summary and Discussion
	Dissertation Summary
	Summary of Contributions
	Future Directions

	Bibliography

