CONCEPTS AND CAPABILITIES OF DATABASE MACHINES

by

NASSRIN TAVAKOLI

B.S., Southeast Missouri State University, 1978

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER CF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1981

Approved by;

Y

L5
e
o0

-
Tl

o 5
w—

0 =
A g
b

ALL200 3954a0 | i

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor, Dr. Paul
5. Fisher, for his valuable help, guidance, and suggestions.
Thanks are also given to the other members of my committee,
Dr. Elizabeth A, Unger and Dr. Rodney M. Bates.

1.0

2.0

3.0

IARLE OF CONTENTS

Introduction « w = = = = = © & & & o & & & & &

Limitations of Conventional Computers for
database applications . « « & ¢ ¢ o o « &+ o & o

2.1 Mismatch of Conventional Computers for
Database Applications . . ¢« ¢« v ¢ ¢ & « &
2.2 Use of Physical Addressing . « o« o « o o &
2.3 Many Levels of Mapping « « « &« s « & o« &
2.4 Performance BottleneckS . « o« « o o o o &

2.5 VUser's Incresing Demand for
DBMS CapabilitiesS + o« o o« o o o s o s s

Database Machines
{Architecture, Cbjectives, and Characteristics

3.1 Cellular_Logic Systems « 4 e & o 8 8 e
3.1,1 Some Capabilities of

Cellular Logic Systems . ¢« « « .

3.1.2 Some Limitations of
Cellular Logic Systems es o e e a

3.1.3 CASSM _ Context Addressed
Segment Sequential Memory . w oo

3.1.4 RAP _ Relational Associative
Processor [] » L] L] . - - » L] L] * L 3

3.1.5 RARES _ Rotating Associative
Relational Store R EEER

3.2 High Speed Assiciative Memory Systems . . .

3.2.,1 Some Capabilities of

ii

12

14

16

27

34

37

3.2.2 Some Advantages of
Assiciative Devices .
3.2.3 Some Disadvantages of
Associative Devices .
3.2 .4 STARAN L] L] L] L] L] . L]
3.3 Backend Computers e 0 4 e e
3.3.1 Advantages . .« ¢ o o
3.3.2 Disadvantages e W W W
3.3.3 XDMS _ Experimental Data
Management System i &
3.3.4 DC _ Data Computer . .
3.3.5 IDM Intelligent Database Machine

Associative Devices

3.4 Integrated Database Machines

3.4.1
3.4.2
3.4.3
3.4.4

4,0 The Future

Advantages . « ¢ o o

Disadvantages y w

DBC _ Data Base Computer

DIRECT » L] . . L] L]

of Database Machines

List of References N B RN

Additional readings P e ow o oW

ita

41

41

42
43

52

54
57

58

63

68

71

12

e

73

78

84

87

90

LIST OF FIGURES

The Architecture of a Cellular_Logic device
Overall Architecture of CASSM v e s e e e
General view of a CASSM cell
CASSM word typesS o« o o o o o o + o s o s
Overview of RAP Architecture . . . « « o &
Overview of RAP Cell Architecture o« o o s
Track Format . o « o o o =« o o o o o & s

RARES data organization e "

A typical Assiciative Memory System Configuration

The Architecture of an Associative Memory
STARAN System Configuration . « « « « « &
Associative Module N I

Control System s s e s s e e 8 & = s e« s

-

A Configuration of a Backend Computer System

Mudole Host Configuration
Multiple Backend Configuration ¢ e e s e
XDMS Hardware Configuration &
Logical View of Data Computer ., . . « . &
Hardware Overview of system . . « « « « &
IDM Configuration .« o 2 « ¢ o ¢ o o s o
The Architecture of DBC .+ o 4+ o ¢ o o o+

DIRECT System Architecture N ERE R

iv

18
21
24
28
30
32
36
37
39
45
47
49
53
55
56
60
64
66
69
74
80

CHAPTER 1
INTRODUCTION

The majority of DBMS's in use today are implemented on
conventional von Neumann computers. However, conventional
computers are not well-suited and efficient for performing
DBMS functions, mainly because they are not highly capable
of storing and retrieving information. 1In addition the
processing and storage areas of these systems are
inefficient. This raises the need for a specialized
hardware device capable of handling DBMS primitives (e.g.
storage, retrieval, update, etc.) more efficiently and
cost-effectively; namely, a data base machine.

In the past few years there has been increased emphasis
and research in the area of data base machines, and there
are several reasons behind these increased research
activities:

1, There is an increase in non-numeric

applications such as database management.

2. The change of data-processing-oriented
information management to
database-management-oriented information

management, and the multiple wusers accessing
the shared database. This requires

considerable software development and hardware

support.

The increasing need for 1larger databases.
Very large databases complicate the problem of
retrieval, update, data recovery, transaction
processing, integrity and security. The
software solutions to these problems become
very complex and costly. Therefore, an
alternative hardware solution to these
problems becomes essential.

The inprovement of user/programmer
productivity, and the need for protection of
applications from changes in the user
environment suggests more powerful database
management systems which support the
high-level data model and language. However,
supporting these interfaces by means of
software becomes inefficient and complex
because of mapping the high-level data
representation and languages to low=1level
storage representation and machine codes,

The availability and variety of memory and
processor technology such as charge-coupled
devices, electron-beam laser memories,
magnetic bubble memories, modifiable moving
head disks, associative devices, etc., coupled
with the fact that the «cost of electronic

hardware devices are drastically dropping.

This paper begins by characterizing the major

Increases in cost of software and personnel,
Vigorous drive toward DBMS Standards led by
National Bureau of Standards (NBS) aiming to
[25] "1) ©protect the federal investment in
existing data, programs, and personnel skills,
2) improve the productivity and effectiveness
of database systems available to federal
agencies, 3) assist federal agencies with
selection, procurement, use, and availability
of database systems, 4) perform the research
necessary to identify future federal needs and
to foster the development of necessary
database tools." 1

The impact of standards must be considered
when contemplating development of a data base

machine,

problems

and limitations of conventional systems. This is followed by

a

review of the existing database machines,

objectives, and their characteristics, In the last se

a few thoughts are presented on future trends.

1 Page 191 REF [25]

their

ction

CHAPTER 2

LIMITATIONS OF CONVENTIONAL COMPUTERS FOR
DATABASE APPLICATICNS

2.1 Mismatch of Conventional Computers
for Database Applications

Conventional computers were originally designed for
numeric applications such as add, shift, etc.; whereas most
applications today are non-numeric. This mismatch of the
conventional computer design to non-numeric applications is
the main cause of the complexity and inefficiencies of these
systems. Most primitive operations required by database
systems must be performed by software routines, which not
only execute slower than hardware, but are less reliable,

more expensive to maintain, and harder to test (or prove).

2.2 Use of Physical Addressing

The use of physical addressing by conventional systems
generate significant overhead in a DBMS, where the retrieval
of information is the primary £function. As a result,
searching and manipulating data in large databases

is too slow to meet the response time requirement of many
applications. Although software techniques such as hashing
functions, directories, pointers, inverted files, and

indexes alleviate the speed problem to a certain extent,

8
they introduce understandable side effects such as excess
storage requirements and overloading of the CPU -- due to
the many software routines needed to support these

techiques.
2.3 Many Levels of Mapping

The recent effort toward more powerful database
management systems requires the wuse of high-level data
models and high-level languages, which increase data
independence and improve human productivity. However, the
implementation of these high-level data models and data
languages require many levels of complex software. These
levels reults in inefficiencies in system utilization and
response. The software complexity and system inefficiencies
are due to the mapping of high-level commands and data views

into low—=level machine codes and structures.
2.4 Performance Bottlenecks

One of the problems with con&entional systems is the
"staging" problem. A conventional computer can only
manipulate data which are stored in main memory. Since the
amount of main memory is typically smaller than the size of
the database , 1large amounts of data must be stored on
secondary storage and then moved into main memory for

processing. This transformation of data between different

6
storage hierarchies is called "staging". The process of
staging, however, 1is time <consuming and degrades the
performance of the entire system; for example, using the IBM
3300 disc pack, which has a transmission rate of 806
character/msec [24], would take several seconds just to
transfer a large file into main memory.

Staging also causes data communications over long
distances to be expensive and limited in speed. As a result,
database systems have to physically distribute data where
usage is highest. A great amount of redundancy, therefore,
is often purposefully introduced to avoid excess amounts of
data transfer and to improve performance and reliability.
This distribution of data also causes problems in updating
the data, in recovering from system failures, and in the
integrity and security of the data. To "stage" the data in
the main memory £requently ties up the communication lines
and channels and the database as well. This is the primery
reason why the conventional DBMS is often CPU~bound and
short of main memory cycles.

Ideally, data should be processed at the place where it
is stored to avoid spending time in moving excess data

between the various levels of memory.
2,5 User's Increasing Demands for DBMS Capabilities

The user's demand for more sophisticated DBMS

capabilities are continuously increasing. Capabilities such

7
as automatic database restructuring and system tuning,
automatic data distribution and redistribution, integrity
and security controls, back up and recovery, etc., are
handled by software in conventional systems. The result is a
tremendous overhead and complexity in implementing these

capablities.

CHAPTER 3

DATABASE MACHINES

(Architecture, Objectives, & Characteristics)

The existing database machines £fall into different
categories based on their architectural taxonomy and their
differences in objectives and characteristics. 1In this
section each category and the relevant database machines are

introduced.

3.1 Cellular-logic Systems

The basic idea of cellular-logic systems is to move
some of the frequently used database management functions to
"intelligent"” secondary storage devices so that these
functions can be carried out by the storage devices without
the attention of the main processor [24,25].

This is done by building more processing capabilities
into secondary storage devices (disks, drums, CCD's or
magnetic bubble) so that data can be searched and partly
processed at the secondary storage site., Irrelevant data
can, therefore, be filtered out before moving to main
storage. Processing efficiency is also increased by parallel
processing of the data in the memory elemeﬁts and by doing
content and context addressing of the data. The general

architecture of a cellular-logic system 1is illustrated in

Figure 1. -
I/0 MECANISM
! [] [)
CONTROLER het——e————pe » .
] []
CELLn-1
CELLn

Figure 1, The Architecture of a Cellular-logic Device

10
A cellular-logic system consists of four major components:
memory blocks, processing elements (these two are included

in one cell), a controller, and an I/0 mechanism.

Memory Blocks

Memory blocks (MB) are storage facilities such as disk
tracks, magnetic bubble memories, or charge-coupled
devices. They are used to store three types of information:
data, contrel information (e.g. tag <fields, status fields,
etc.), and executable instructions, This information is
serially accessible within each block.

Memory blocks are generally cheaper per bit than
memories that allow random addressing at the character
level. Memory blocks will generally be classified as slow
access, however, they are slow only when used toc emulate a
random access memory. When used for the exhaustive
associative search, they are as efficient as a random
access memory. In addition to searching efficiency, these
devices offer éfficient storage management for update. Also,
supportive data structures such as indexes, pointers, hash
tables, etc., are eliminated and the effective storage cost
per bit is further reduced. In summary, the block serial
nature of these devices can be fully exploited to improve

simplicity, efficiency, and data independence [24,25].

Processing Elements

Processing elements (PE's) are small processors which

11
are capable of performing primitive non-numeric functions.
there is a one-to-one relationship between processors and
memories which allows an efficient utilization of both.

Each of the processors contains a small buffer which is
used to hold search arguments and data from the memory
blocks. They are capable of performing most or all of the
following types of functions [24]:

1. Comparisons

2., Logical operations (AND, OR, NOT)

3. Arithmetic operations (=, >, 2, &, etc.)

4, Primitive statistical operations (AVERAGE, SUM,

MAX, MIN, COUNT, etc.)
5. Primitive database operations (search,

retrieve, insert, delete, modify, sort)

The Controller

The major function of the controller is to broadcast
instructions to the processing elements, Instructions may
either be stored within memory blocks, or they may be fed to
the controller by the host computer (or front end). The
instruction is broadcast simultaneously to all the PE's for
execution., It operates on different data streams stored in
the MB's, Thus, celluar-logic systems can be classified as
having the SIMD (Single Instruction stream, Multiple Data

stream) architecture,

12

Ibe 1/Q Mechanism
The 1I/0 mechanism is wused to transfer information in
and out of the memory blocks. The transfer of information
from multiple MBs can be done serially, or in parallel,

depending upon the capability of the I/0 channel.

3.1.1 Some Capabilities of Cellular-logic Systems

Parallel Processing

The multiple processing elements of a cellular-logic
device (CLD) operate concurrently, thereby providing a
parallel processing capability. A database operation such as
search, retrieve, update, delete, or insert is broadcast
simultaneocusly to all processors which carry out the
cperation against the data residing in their associated
memory elements. Thus, in one rotation of the memory, the
entire database is reached in 1/n(th) of the time needed for

a sequential search over n segments of data [5,16].

Content and Context Addressing

Since the entire database is searched in each
circulation of the memory, data can either be searched
associatively by content or context addressing, rather than
the physical addressing used by conventional systems,

The content addressing scheme addresses memory by the
value of the stored data items. In order to access a

particular record, the wvalue of one of the fields 1is

13
specified (part of the field can also be use as a search
argument). Then, by searching through each of the records in
the file, the record(s) which contain the specified
information are located.

The context addressing scheme also addresses memory by
content, but in addition, the search is controlled by the
results of one or more previous searches. As an example,
consider the retrieval of a set of employee records which
satisfy the following two conditions: Name = "JONES" and
Salary < 25,000. A content search can be used to locate all
of the records which satisfy the first condition. Then, with
the context of this result, the set of records which satisfy
both conditions is obtained by checking these records
against the second condition. In order to evaluate more
complex expressions, it may be necessary to store the
results of several previous content or context searches.
Therefore, several bits of additional storage are required
for each record in the database. But this is offset by the
elimination of the special supportive structures such as
indexes, hash tables, pointers, etc. used in the
conventional systems. The content and context search
techniques in the CLD's, therefore, offer uniformity and

fast response time for search and update operations.

In addition to the content and context searching

capability, CLDs provide hardware support £for a variety of

14
other primitive statistical and DBMS functions such as
update, parity checking, garbage collection, evaluation of
boolean expressions, and arithmetic functions such as: MIN,

MAX, SUM, COUNT, etc. [7].

3.1.2 Some Limitations of Cellular-logic Devices

Capacity

CLDs are currently too expensive to support large

databases.

Data Iypes

CLD hardware will only recognize two types of data:

character strings and integers [24],

N ical P ; capabiliti

CLDs have very limited numerical processing
capabilities. CASSM, faf example, does not support
multiplication or division [7], and CLDs in general are

limited to fixed point arithmetic [24].

QOther functions
CLD's do not have facilities that will support other
functions, such as system recovery, integrity, security

control, etc.

E UEilizati

15

Most of the proposed CLD designs (including CASSM and

RAP) [19] are single instruction multiple data stream (SIMD)
architectures, That is, a single instruction is
simul taneocusly executed by all of the processing elements.
This approach is simple to implement, but it does not allow
an efficient utilization of the processing elements, since
it is 1likely that only a few o©of the memory blocks will
contain information that is relevent to any given gquery. An
alternative to the SIMD architecture, <called multiple
instruction multiple data stream (MIMD), is designed to
improve the utilization of the processing elements by
allowing the simultaneous execution of multiple
instructions by disjoint sets of processing elements. An
example of MIMD architecture is DIRECT, which is currently

being implemented at the University of Wisconsin [12].

intercell Communication

Communication between the cells of a CLD is required in
order to keep a file in sequential order, and to allow a
single record to be split over two or more cells [12,24].
However, an intercell communications network is difficult
and expensive to implement, and should, therefore, be kept
simple [1].

In summary, the distinguishing features of the
celluar-logic approach are: 1) increased processing
capabilities in secondary storage devices, 2) search time is

independent of the database size, 3) elimination of the need

16
for building, updating, and protecting auxiliary structures,
4) the use of identical «cells to increase reliability,
flexibility in adding or reducing the number of cells and to
reduce the cost of production, 5} the potential for
extremely high speeds as cell sizes decréase and meméry
density and speed increase (i.e. increase in the ratio of
processing power to memory).

Several systems have been designed based on the
cellular-logic approach and some have gone through prototype

implementation. Some of these systems are discussed here.

3.1.,3 CASSM - Context Addressed Segment Sequential Memory

The CASSM [23,26] project began at the University of
Florida in 1972. The hardware primitives were designed to
carry out the basic operations required for supporting the
retrieval and manipulation of hierarchically structured data
files, However, since relations in the relational model can
be considered as two-level trees with the relation name as
the root and the tuples as 1leaves, and the network
represented by a family of trees, the CASSM hardware can
also be wused to support relational and network database
management. Due to its head-per-track architecture, CASSM is
practical only for databases smaller than 10**8 bytes in

size.

17
Qverall Architecture
The overall architecture of CASSM system is illustrated

in Figure 2.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

18

Data and program

LEILES MEMORY PROCESSING
ELEMENTS ELEMENTS
3
processging
elementl
logic
4.___[A A
v
serial
tree
adder
¥
| segment processing
B 1 element2
B R logic
— 114
user-CASSM
interfacej
computer

|
|
I
I
|
!
|
|
[
t
j
!

e

e k. - ——— e —— -

o e e —— e
e L BB M e —m— —— — o — o —

L

processing
elementn

logic
]

Figure 2. Owerall architecture of CASSM

19
Data as well as the compiled programs are stored in the
memory elements and are manipulated by the associated
processing elements. One particular feature of CASSM
hardware is that the processing elements can directly
communicate with their adjacent neighbors, this intercell
communication provides the necessary support to allow
sequential files to be segmented and stored sequentially in
the memory elements starting from the first one to the nth.
Logically, a file is a collection of records which contain
hierarchically structured data and/or instructions of
CASSM's machine language program. Physically, files are
partitioned into segments each of which resides in a memory
element. The segments are simultaneously processed by the
processing elements. Data or instructions are read by a read
head from the circular memory element, processed by the
processing element (a special purpose micrprocessor), and
written back to the memory element by a separate write head.
Data 1s passed among the processing elements and the
interface computer through a data bus. A serial tree adder
is used for various purposes, A global bit-time clock
synchronizes the CASSM «cells. A CASSM cycle is defined as
one revolution of the memory elements or the sum of a scan
time and a gap time. The scan time is the amount of time it
takes to scan the data on a memory element. The gap time is
the amount of time it takes to synchronize with the timing
marks that start the memory elements, During the gap time, a

certain number of operations such as the aggregate functions

20

may be performed.

Cell QOrganization

A processing element in CASSM consists of a number of
parallel operating modules, Data and/or program instructions
stored on each cell's rotating memory elements flow through

a pipeline of modules as shown in FigUfe 3.

21

READ
\\
\
|
Rotating |
Memory !
Element

Y

Post

Collection

l

GC

MAIN

Figure 3. General view of a CASSM cell

SEL

22
The function of the READ head 1is to pick up each word from
the memory, adjust timing (through FIF0), perform parity
checking on it, and then pass it on to the PCST processor.
The previously active instruction and immediate operand
which were fetched in this cycle are deactivated in this
module, The POST module also finishes the execution of the
instruction started during the last c¢ycle. Next the GC
(garbage collection) module, which shares part of the PCST
module's hardware, tries to absorb any words with a tag
which says "garbage word". MAIN executes the search part of
the instruction which was fetched during the last cycle.
WRITE updates words or status bits which are in the proper
trees and/or records., Words coming out of WRITE are then
written back out on the memory. However, the instruction for
the next cycle has to be fetched along with its operands.
The context for the searches has to be set up for the next
cycle. All this is done in the SEL (selection) module which
does not change the data in the pipeline. The same data and

instruction words flow into both the SEL and WRITE modules,

Data Organization

The data organization of CASSM is in bit-serial and
word-serial fashion. A hierarchically structured file is
linearized in top-down 1left-right order. The data 1is
physically stored in a sequence of 40-bit words in the
memory. A 32-bit field is used for data or an instruction,

a 3-bit field for status, a 3-bit field for tags, a l-bit

23
field for parity, and a 1l-bit field for internal use (See
figure 4.). The tags are used to mark different data types
such as instruction word, name-value pair, delimiter and
character string, pointer word, operand, and garbage word.
Status bits are used to mark the word for output, to
indicate that the word satisfied a match, and for other
purposes. The formats of the 32-bit field are different,
depending upon the type of word. A special word called a
delimiter is wused to delimit the files, records, and
subrecords in a hierarchy. It contains a level number, a
name, a 6 Dbit stack, a qualification bit Q and a
specification bit S. The level number and name are used to
name a node of a tree., The Q bit is used to indicate whether
the data associated with the node (tree or subtree)
qualifies for the next search or not. Thus, selective nodes
in the database can be operated upon by the search
operation. The S bit is used to specify whether the node is
the place for accumulating the result of a search (i.e.

whether the node satisfies a search or not).

Some Capabilities of CASSM
1. A known limitation of implementing a system
based on a hierarchical model is that access
to the sons has to go first through the
father nodes in the hierarchy. However, this
limitation does not exist in this system.

CASSM's processing el ements process an

24

MNEM NAME T P TAG STATUS DATA / INSTRUCTION

D DELIMITER [Tl o o[MBIC] NAME | LEVEL | B-STACK 3 g
DATA N NAME/VALUE [0 0 L{M[H]C] | NAME T VALUE
WORDS P POINTER [TI6 T OIM]E]C | [VAME OR L~POINTER | R~POINTER

S STRING [B¥Te | BYTE | BYTE | _ BYTE

I INSTROCTION [Tl 0 O] &JTF | [

ST STACK/QUEUE [L 0 IJSN F] |

E ERAsE/TEMP ([0 1 1lisTarus |
IDENTIFIER Meaning IDENTIFIER Meaning

: NAME Code word STATUS | Erase status
VALUE Code word or binary number - 100.- END OF PILE
L-POINTER|Code word or record number - 110 - HOLD
R-POINTER|Record number - 111 - GARBAGE
LEVEL Binary number (all other are TEMP)
B=STACK Bit stack for search results s Specification (enables bit stack)
BYTE ASCII character Q Qualification (enables search)
TP Type M Match (loaded by QSR search result
=030 to 10 first word
H Hold (controls some I/0)
=ll- immediate operand c Collect (collect far output)
5N Stack/queue number A Active instruction
F Flag (marks end of stack segment

Figure 4. CASSHM word types

3.

instruction simultaneously against every
single word stored in the memory elements in
every revolution of the memory. In a memory

cycle it is as easy to access a son as to

access a father in a hierarchy. Nodes in any

level can be directly accessed by using their
level numbers and names which are explicitly
stored,

In CASSM architecture, even though many
segments may be used to store and
concurrently search the database, the
different size records are automatically
packed together by the hardware. Intersegment
communication is provided so that the user
need not be aware of where the records are or
how many segments are used for each record.
This 1layout has the advantage that the
mapping between the information structure as
seen by the user and physical structure is
greatly simplified. Futhermore, the
restrictions (such as one tuple cannot span
two memory elements and different relations
cannot be in the same memory element) on the
physical placement of records and files do
not exist in this system.

The CASSM hardware is capable of supporting a

high-level language for the user.

25

CASSM hardware is capable of supporting the
following primitives: searching, insertion,
deletion, garbage collection, evaluation of
boclean expressions, forward and backward
pointer transfer, and the statistical
primitives such as MIN, MAX, SUM, COUNT,

An important and unigue feature of CASSM is
that CASSM memory is used for storing
programs as well as data. The instruction and
operand fetching techniques and the hardware
implementation of conventional programming
techniques such as 1loop control, subroutine
calls, parameter passing, etc., allow complex
programs to be executed directly on the
associative memory. This makes an
associative system a stand~alone system
rather than an adjunct to a conventional

processor.

Some Limitations of CASSM

1,

The arithmetic computation capability is very
restricted. The hardware cannot perform
multiplication and division operations.

The data type recognized by hardware is very
limited. Only character string, pointer, and
binary representation of integers are

allowed.

26

27
3. The speed of output in this system is
generally slow since a single channel is used
to output data from multiple cells.

These limitations need to be removed and more database
management software needs to be developed to make CASSM an
efficient database management system. The problem of data
integrity, data security, and recovery are presently undef

investigation.,

3.1.4 RAP - Relational Asscociative Processor

The RAP [19,21] project began in 1975 in the Computer
Systems Research Group at the University of Toronto. The
system was designed for the relaticnal structured data
files, with restrictions on the length of tuples however,
the most recent version (RAP,2) [21] reduces some of the
restrictions. RAP is an autonomous processor which
communicates with an outside general purpose computer (GPC)
only to receive its data contents, to receive its compiled
programs, and to send back the results of an user's
request. - RAP can only handle databases smaller than 10*%*g

bytes in size,

Overall Design
An overall configuration of a operational RAP

environment is given in Figure 5.

28

user General
— | Purpose
Computer

Controller

RAP
|
| cell-l |
3
] cell=-2
Set l
Function
Unit '

[

cell=-n

Figure 5. Overview of RAP Architecture

29
The design is composed of a contrcller, an arithmetic set
function unit, and a parallel organization of cells. A cell
consists of a memory component and a 1logic component
(processors). The set function unit is used to combine cell
results to obtain a value computed over the total memory
contents. The controller is responsible for overall
coordination and sends control sequences to the «cells,
controls the set function unit, and executes decision
commands and other RAP primitives that can be accomplished

directly in itself.

Cell QOrganization

Each cell consists of a rotating memory, a buffer, an
information search and manipulation unit (ISMU), and an
arithmetic logic unit (ALD). The basic logic blocks are

displayed in Figure 6.

30

data to I/0 bus
CELLi-1 and cel}s

CELLi l
R
' * D M
E
B
i g +
er A
Controll 5 p M
k Q
SFU M F
U
U E
R
f .
* o ||.w>
_/-I'v\
CELLi+l

Figure 6. Overview of RAP Cell Architecture

31
A rotating bulk memory with high track capacity should be
selected to achieve 1low <c¢ost per bit of storage. Data is
read or written via fixzed heads -- cne set for each cell ~-
while the memory rotates under these heads. The associated
memory with each cell is called a track. RAP memory space is

the sum of the individual cell tracks.

Buffer. As the memory rotates under the heads, it is read,
circulated through 1logic, and written back after a time
delay. This delay is proportional to the length of a shift
register buffer placed between read and write heads. This
buffer has been designed to have a length of 1024 bits which
holds a sufficient amount of data exposed to the cell 1logic

to support the logical data structure.

Information search and manipulation unit. This unit is
responsible for inter-cell communication, decoding of the
commands sent from the controller, evaluation of data search
criteria, I/O data transfers, and control of the ALU for

data modifications.

Aritbmetic logic unit. This unit contains a serial adder,
multiplier, control counters, and 1logic for arithmetic
computations and modifications. Logic for intermediate set
function calculations ({(e.g. summation, maximum, etc.) are

also present.

32

Data QOrganization
The memory associated with each cell is called a track,
and due to the 1linear nature of a memory track, a direct
mapping of data structure would reguire it to be linearized.
This is done easily with a relational structure. The tuples
of the relation, which are linear representations of domain
values, can be stored one after the other on a track (see

Figure 7).

domain tuplel

names

TKE relation

name

tuple2

W Wb
Wi WG
W DO

e ot

=g W Q

wrg Qg

Figure 7. Track Format

The first two data blocks contain relation and domain names
respectively and act as "header" blocks. If a relation has
too many tuples to be stored on one track, then several cell
tracks are used, The relation and domain names, however,
should be repeated on each track. A specified length gap is
requirgd between every two blocks. The lengths of these gaps
are proportional to the amount and speed of logic required
between block operations. The beginning of a track is
indicated by a marker which is detected electronically. This

marker alsc implies the physical end of a track. The logical

33
end of a track is indicated by a tuple block which carries a

delimiting "track end" (TKE) item.

Instruction Sef

The RAp instruction set is designed to construct the
bagic operations necessary to support databases and, at the
same time to be feasible for hardware implementaion. These
basic functions are:

1, Selection

2, Implicit join

3. projection

4, Free variables

5., Arithmetic set functions

6. Simple arithmetic update.
Selection is applied by applying a boolean search predicate
to each tuple of a relation and "marking" or reading the
tuples satisfying the predicate. The implicit join operation
allows values retrieved from one relation to be used as the
retrieval criterion on another relation. The association is
made through domains common to both relations. The set
operations of union, intersection, complement, and
difference can be done on the selected subsets of a
relation. Projection is the act of selecting a subset of
domains to be retrieved and eliminating duplicate values
after a possible selection has occurred. A "free variable"
is the term given to an implementation of the following

capability. It involves the selection of tuples based upon

34
the values of domains which occur in another tuples of the
same relation

A newer version of RAP <called RAP,2 [21] has been
designed which is faster, and has a more flexible
architecture. There wer three important changes in the
organization of RAP which resulted in the design and
implementation of RAP.2, First, the controller was
implemented by a mini/micro computer. Second, the data
track was designed around the capabilities of emerging block
addressable memories, instead of a disk. Third, a more
uniform and flexible instruction set was designed. However,
the RAP.2 implementaion 1is still far from perfect and its
performance can be greatly improved. For example in RAP.1
and RAP.2, a) each record is limited to 255 items whose
length could only be 1,2, or 4 bytes of encoded data, b)
each cell <c¢an only store data from one relation, if a
relation is large it should be allocated to several cells,
c) the execution time 1is slow when a very large volume of
data is to be inserted or retrieved. These limitations can
be eliminated by adding more features to the system. The new

system which is currently under research is called RAP.3.

3.1.5. RARES - Rotating Associative Relational Store

The RARES [22] project began at the University of Utah

in 197e6. The aim was providing high performance

35
content-addressable memory for the realization of a
relational database. The RARES hardware operates 1in
conjunction with a gquery optimizer such as SQUIRAL to
support a relational query language. Due to its
head-per-track architecture, RARES 1is also practical conly

for databases smaller than 10**8 bytes in size.

Qverall Design

Physically, RARES 1is connected to a CPU and buffer
memory by a high speed channel. RARES uses a head-per-track
rotating disk in which relational tuples (i.e. records) are
stored orthogonally across tracks in "bands". A search
module is associated with each band to perform access
operations on the tuples in the band. The band organization
greatly reduces the complexity of sending relational tuples
to the CPU for processing.IOne capability of RARES, which is
absent from CASSM and RAP, 1is its hardware support to
produce sorted relations. It can maintain tuples in sorted
order or to rapidly sort tuples on domain (i.e. on a record
attribute) to facilitate certain kinds of search

operations.

DRata organization

RARES uses a very different organization from CASSM and
RAP., It lays out relation rows across tracks (along the
radius of a disk) in byte parallel fashion: the first byte

of a value 1is placed on a track; the second byte of the

36
value is placed in the same position on the adjacent track
and so on. The decision to use a byte-parallel rather than a
bit parallel organization was based on the speed of the
logic available to process a row laid out along a radius,
given the rotation time of the disk. Each set of tracks used
to store a relation in this fashion is called a band. The
number of tracks in the band may vary; the size of the band
is determined by the width of a row. Relations with wide
rows may use more than one radius to store a row. This
format, called orthogonal layout, is illustrated in Figure

B.

Tagqg
Track

3and 2
Detail of

<::::) _gggg_L____dZZ::>{ s2| xy |uy y | byte-uide
i Radius

Figure 8. RARES data organization

37
The ortogonal layout means that fewer rows can come into
contention for output. However, some contention is still
possible, so RARES also needs an output arbiter. It uses a
fast memory, called response store,associated with each band
to mark rows to the output on subsequent device

revolutions,

3.2, High speed associative memory systems

In these systems (6,7,25,27,28], a high speed
associative memory is used together with conventional memory
devices such as core memories, rotating memories or shift
registers to form a hierarchy of memories for data
processing., Databases are stored on conventional secondary
storage devices. Data are moved from slower secondary
storage to the associative memory for high speed searches by
content or context. Figure 9 shows a typical configuration

of this type of system.

GENERAL ASSOCIATIVE MASS
.‘._.............——_.—b- S e o SR
PROCESSOR MEMORY MEMORY

Figure 9., A typical Assiciative Memory System Configuration

38

The architecture of asso;iative memory, which is shown

in Figure 10, contains four major components: a comparand
register, a mask register, an associative array and a set of

response registers.

39

COMPARAND
REGISTER

MASK
REGISTER

ARRAY

AVE 4

- I |, PN, PR s,

REPONSE

STORE
ARMON ALVIN 128 APPLE LN 472-5509
DREW PAMELA 715 LANCASTER AVE hquWNow Q
COLDFARB SAM 53120 FOURTH ST 536-7112
LEE ROBERT 2 PEACHTREE AVE 321-5122
ORLOWSKY JULIUS 26 ELM ST 798-6453
ZWING ALVIN 92372 ROSECROFT DR 211-6675

Figure10. The Architecture of an Associative Memory

40
In searching a database these four components perform the

following functions:

The Comparand Register

The comparand register is used to hold search
arguments.
The Mask Register

The mask register is used to indicate which fields (or
portion of fields) are to be searched.
The Associative Array

The associative array contains the data to be
searched.
Ihe Regsponse Store

The response store record search results and aid in the

evaluation of Boolean expression.

Associative processors provide a bit parallel search of
the Associative Array. That 1is, the 1i(th) bit of each
element in the associative array is compared to the i(th)
bit of the Comparand Register in parallel. For example,
suppose the database is loaded in memory as shown in Figure
10, and we would 1like to search for the records of those
persons who live on AVENUES and have a 4 as the first digit
of their telephone number. The Comparand Register is first
loaded with AVE and 4 in the proper positions. The Mask
Register is then loaded with one in the position of interest

and zero otherwise. This has the effect of masking out

41
unwanted positions in memory. An exact match search is then
performed which results in a mark in the Response Store
indicating that Pamela Drew's record satisfies the query.
The record can then be removed for further processing if

required.

3.2.1. Some capabilities of associative devices

The associative processors provide hardware support for
the following primitives: addition, subtraction,
multiplication, division, c¢ontent and context searching,
evaluation of Boolean operations and statistical primitives

such as MIN and MAX,

3.2.2. Scme advantages of associative devices

a., A great advantage of these systems 1is the
rapid search of the associative array since
the data can be searched by content and in
parallel. -

b. In terms of updating, associative memories
also have advantages. Consider a deletion.
Once the record to be deleted has been
located, the word-masking capability can be
used to prevent that record from participating
in further operation. Addition can be made to

the bottom of any relation since order is not

Ce

prerequisite. Changes to a value are easily
accomplished using the content addressability
property to locate the value to be changed and
then writing the new value in its place.

The fact that each bit or any combination of
bits of a word can be used as a key for
searching indicates that flexibility is

increased for associatve devices,

3J.2.3. Some disadvantages of associative devices

s

b.

A major disadvantage of the associative
devices is the <fact that the data to be
searched must be moved from secondary storage
to the associative array. The time to load
data into the array is much greater than the
time to search the array. This reduces the
performance in a great degree.

The capacity of associative array is currently
small (about 250,000 bits) [7]. This requires
the frequent staging of data which will result
in the above disadvantage.

With the problem of fixed field formatting, as
can be seen in Figure 9, the data must be left
or right Jjustified in order to exploit the
parallel search capability of the memory. This

means that the same number o¢f bits must be

42

43
allocated to the same data items in each
record. This is a waste of storage but must be
done in order to allow rapid search.

d. Associative devices are relatively expensive,
However, their capabilities may justify the

added expense for certain DBMS applications.

A good example of the high-speed associative memory
approach is the STARAN computer system which is discussed in

the following section.

3.2.4, STARAN

STARAN [11,20,27,28] computer system was first
introduced by the Goodyear Aerospace corporation in May of
1972, Since then it has been installed and is operational at
several locations. In 1973, an operational associative
processor facility, called RADCAP, was installed at Rome Air
Development Center, which consists of a STARAN and various
peripheral devices. In 1974 a STARAN was installed by the
Defence Mapping Agency (DMA) and the U.S. Army Engineer
Topographic Laboratories (USAETL) in Virginia. 1In 1975 a
STARAN was installed at the WNASA Johnson Space Center in
Houston, Texas.

Goodyear Aerospace Corporation later introduced a new

model, STARAN Model E, which is an enhanced version of

44
STARAN. The following section introduces the system
configuration of STARAN and then a few comment are given

about STARAN Model E,

System configuration
The basic structure of STARAN is shown in Figure 1ll. It

consists of a number of (up to 32) associative array

modules, a control system and a custom interface unit.

45

T T] Parallel
; I Input/ Associative
| I'pI0 Output Array
| Typical . Custom o ™ Module O
| User | Interface
:Equipment ¢ Unit
! .
: e Up to 31
| “Computers ! Additional
| 1 @ Modules ’
| +Peripherals |
! v "
| -Displays I
' [Parallel
:-Sensors : Input/ Associative Control
PIO Output Array Signals
| [- —' Module n
' [
; |
)]
} |
l |
| |
! |
} I
: | External
| ! Function
| | EXF Commands
i " .- — Control
I | Buffered
| : Input/ System
i
' BIO | -y Output P
; : Direct
| ! Memory
ll : DMA - Access -
} 1
b o e e — S

Figure 11, STARAN System Configuration

46

Associative array module
Each associative array module contains a 256 word by
256 bit multidimensional access memory (MDA). The access can
be in parallel in either the word or bit direction.
Associated with each word of a processor array is a
processing element which examines the content of the word
and manipulates the word bit by bit serially. This array of
processing elements is often called Response Store (see
Figure 12). The unigque PIO (Parallel Input/Output)
capability is provided by the response store, where every PE
has an independent external device I/0 path. Control signals
generated by the control 1logic unit are fed to the
processing elements in parallel and all processing elements
execute the instruction simultaneously. As additional arrays
are added to the system these are also ccnnected in parallel
to the central logic wunit, thus application programs need

not be modified as the capacity of the system increases.

47

To/From Control

. 14
¢ Bits 255
0 % S
% .
Words g Bit Slice ‘
é "l prO
V///»ﬁ//%)f%//////?/////W—-—,
g \
% Word Slice '
Y "
g
% | A e

256 Words x 256 Bits 255 PE's

Figure 12, Associative Module

48
Control system
The major elements of STARAN control system shown in

Figure 13 are discussed below:

Associative Procegsor Control Memory

The Ap control memory is used to store assembled AP
application programs and data. Control memory is devided
into three fast "page" memories and a slower core memory.
The page memories are volatile semiconductor elements, and
each contains 512 words (32 bits/word). The core memory uses
nonvolatile core storage and it contains 16,384 words. It is

used for storing complete AP application programs.

[Control
Signals
e e ;|
| |
| I
EXF } External Function Logic :
| s
' l
: [
1 Sequential Program Associative :
| Control Pager Control '
| Logic Logic Logic I
[
| |
| i
' f
; 1
BIO | Memory Port :
i LOgiC I
§ |
DMA | Associative Processor :
} Control Memory ’
I |
! |
N 1

Figure 13.

Control System -

49

50

AP processor logic executes the instructions from
control memory and directly manipulates data within
associative arrays. It is the data communication path

between control memory and the arrays.

Erogram pager logic

The program pager loads the fast page memories with the
data from the slow core memory. While the AP control is
executing a program segment out of one page, the pager can

be loading the other page with a future program segment.

External function 1logic enables the AP control,
sequential control or an external device to control the
STARAN operation. By issuing external function codes to EXF
a STARAN element can interrogate and control the status of

the other elements.

Sequential control processor

The sequential control (SC) consists of a seguential
processor, a keyboard-printer, a perforated type
reader/punch unit and logic capability ¢to interface the
sequential processor with other STARAN elements. SC is used
for system software programs such as assembler, operating
system, diagnostic programs, debugging and housekeeping

routines.,

51

Custom interface unit
The interface unit provides communication to sensors,
conventional computers, signal processors, interactive
display and mass storage devices., A variety of I/0 options
are implemented in the custom interface unit, including the
direct memory access (DMA), buffered I/0 (BIO) channels,
external function (EXF) channels and parallel 1I/0 (PIO).
Each associative array module can have up to 256 inputs and
256 outputs into the custom interface unit. They can be used
to increase speed of inter-array data communication to allow
STARAN to communicate with a high-bandwidth I/0 device, and
to allow any device to communicate directly with the

associative array modules.

Softvare

STARAN software system consists cof an assembler
language called APPLE [1ll] (for Associative Processor
Programming Language E), and a set of supervisor, utility,
debug, diagnostic and subroutine 1library program packages
and a disk operating system (DOS) wich has a batch
processing capability.

APPLE stands at a higher level than sequential machine
assembly languages because of the capability of parallel

search and parallel arithmetic operation.

STARAN Model E

Although the original STARAN had satisfied system

52

performance predictions for a variety of applications, for

large applications it becane slow and

Therefore the enhancement of the original

insufficient.

system became

necessary and the new technology and improvement in the

industry made this enhancement easier.
architecture was therefore enhanced as follows

l. Faster multidimensional access (MDA)

The STARAN
[4]:

arrays

that provided a minimum of 36 times the

storage capacity of the original

arrays.

STARAN

2. New hardware that allowed inter-array data

transfers from 8 to 64 times faster.

3. New page memories that provided 8 times the

storage and allowed up to 65% faster array

instruction execution times,

4., A set of floating point arithmetic modules

that allowed the STARAN programmer to

arbitrarily specify the mantissa and

lengths.

3.3. Backend computers

The basic idea behind the back-end concept

is shown in the Figure 14,

exponent

[9,10,18,25]

Figure 14.

33

HOST
(APPLICATION FUNCTION)

N

INTERPROCESSOR LINK
\/
BACKEND

(DATABASE FUNCTION)

DATA
BASE

& Confiquration of a Backend Computer System

54

The back-end computer is used to carry out database
management functions separately and off-load these functions
from the host computer. The back-end computer may be a
general purpose computer or it can be a specialized hardware
device capable of handling DBMS functions. In either case,
it will interface with the host computer. This interface
will be responsible for collecting the database management
requests from the application programs and transmitting them
to the back-end. In turn, it will accept results and status
from the back-end and distribute them to the application

programs.

There are several advantages and some disadvantages to
this approach which we will discuss in the following

section.
3.3.1. Advantages

l. Release of the host computer from tedious and
time-consuming operations involved in database
manipulation, maintenance , and control.

2. Increase of the system performance through
functional specialization and through parallel
processing among the host and the backend(s).

3. An enhanced ability to share data between
computer systems., As shown in Figure 15, a

single backend can handle the processing of

55
the database and present data in forms

suitable to dissimilar host.

HOST BHOsT?T HOS T

BACEKEND

DATA

BASE

Pigure 15. Multiple Host Configuration

4, Changes to

devices and DBMS will

the host.

5. Multiple numbers of backends
process large
These databases
distributed manner
devices to facilitate parallel processing ,

in a manner

database,

not

across

databases, (see

be stored

processed by one backend.

the mass

can

secondary

BACKEND
1

HOST

DATA
BASE

Figure 16. Multiple Backend Configuration

BACKEND
2

0

DATA
BASE

56

storage

require changes to

be used to

16) .

a

memory

or

that one database can be

BACKEND
M

DATA
BASE

Storage devices including special purpose
cellular-logic devices or bubble devices can
be made available through backends to
mainframes that do not otherwise support these
devices because of I/0 or operating system
constraints.

The reliability of a DBMS is enhanced, because
the inter-machine communication permits the
machines to <check the information passed
between them and verify each other's
operation. The machine errors can therefore be
detected more quickly and reduce the length of
time in which the =system operates with an
undetected error.

A higher level of security is achieved,
simply because an application program can not
access directly any file, the access can
occur only through the DBMS. The unauthorized
user therefore will have more difficulties in
accessing data.

A back-end computer is economical because its
agquisition cost is an order of magnitude
cheaper than replacing the mainframe with a

larger machine,.

3.3.2, Disadvantages

57

58
l. Since there are more components in a backend

DBMS composed of iy, pachines than there are

in a single machine system, the incidence of
failure of either software or hardware, is
higher,

2. The response time decreases because of the
transmission time required for command to
communicate between the back-end and the
host.

3. The problems associated with contracts,
maintenance procedures, operator training,
systems programming support, etc. may become
duplicated if the backend and host are

manufactured by two different vendors.

An analysis of the potential advantages and
disadvantages of the back-end concept led to the <c¢onclusion
that the apprcach held promise. In November 1970 therefore,
development of a prototype back-end system started. This
prototype backend system which is called the Experimental
Data Management System (XDMS) will be discussed in the

following section along with some other systems.

3.3.3. XDMS - Experimental Data Management System

The XDAaMS [9,18] project started at the Bell

59
Laboratories in 1970. The primary purpose behind the
implementation of XDMS was to demonstrate the feasibility of
the back-end concept. From this point of view, XDMS was a
success. The Data Base Task Group (DBTG) language was
selected for this project which not only provided the
back-end system with an advanced data management language
but also provided the DBTG effort with valuable

implementation feedback.

Systenm configuration

The overall system configuration is shown in Figure 17.
In this system a UNIVAC 1108 is used as the host computer.
This is because the DBMS-1100 database management system,
which is a CODASYL-based package, already existed on the
UNIVAC 1108, The META-4 machine was used as a backend
machine. A key factor in the selection of META-4 was that
META-4 is microprogrammable ,and the designers initially
felt that several primitive database functions would have to
be implemented in microcode to achieve adequate

performance,

Univac
1108

Meta-4

Figure 17. XDMS Hardware Configuration

User
Terminal

Aplication Program

XDMS Interface

2

XDMS
Backend
System

[
Data
Base

60

Augmented
Schema
Table

Augmented
Schema
Table

61

There has been several other factors which 1led to
selection of this machine, such as inexpensive cost of this
machine, the availibility of IBM 1130 software through
emulation on META-4 and the £fact that it has interleaved
memory with I/0 <cycle-stealing, which allows the rapid
transfers of large amount of data to and from the core
Memory.

As shown in figure 7, The schema tables are augmented
to both host and the back-end to include some additicnal
DBTG features not get handled by the UNIVAC DDL compiler.
The UNIVAC execution time system has been replaced by the
XDMS interface, which controls the communication between the
UNIVAC 1108 and META-4,

A request typed at a user terminal is first passed to
the application program for syntactic and semantic analysis,
having interpreted the request, the application program
would then issue the necessary DML command(s) to the XDMS
interface program. The command would then be encoded and
transmitted to the back-end system over the data link. The
XDMS system in the back-end would interpret the DML command
and would access the database using schema table
information. Baving executed the command, the back-end would
transmit the results back to the interface program in the
host, the result is then passed to the application program
for display at the user terminal., A request by a batch run
is essentially the same. Any number of user request

languages could be developed for the system by design of the

suitable

interactive database management language,

application programs. In particular,

which allows on-line manipulation of a database,

developed as a part of XDMS.

S biliti

1.

Multi-user system. XDMS was designed to handle
many users simultaneously. In the host
computer, this was accomplished by designing
the XDMS interface so that commands can be
collectéd from, and result distributed to, a

number of application programs.

Locking mechanism. XDMS system provides a
locking mechanism to controel concurrent
updates. The locking can be done on a physical
record within a page or on fields within a
record. Actually in XDMS a logical DBTG record
is separated into two physical records
(pointers and data) so locking an entities
within a logical record is provided.
Associated with the locking problem is the
deadlock problem. The XDMS system provides the
capability for one user to back off once

deadlock is detected,

Rollback and recovery. XDMS provides rollback

62

an

called DATABASIC,

was

63
and recovery features. Actually rollback
exists at two levels: command and
transaction. Command rollback allows the
effects of a given DML command to be erased if
a problem is encountered in the back-end.
Status is then returned to the host indicating
that the command was not executed.
Transaction rollback allows the effects of a
series of DML commands (a transaction) to be

erased.

In conclusion the modular system organization and
offloading of host resources to the backend are significant
achievements of the XDMS project. The XDMS project is a
landmark in the database management area, since it
introduced an alternative database architecture and spawned

an enormous amount of follow-on research.

3.3.4. DC = Data Computer

The Data Computer [15,17] 4is another example of the
back-end processor approach. It is a large-scale database
management system running on a PDP-10 and has been
implemented for use in ARPANET in 1973 by Computer
Corporation of America., The Data Computer essentially

provides facilities for data sharing of a single database

64

~ among dissimilar host computers in a network environment.

Logical design

Logically, the Data Computer system can be viewed as a
box which is shared by a variety of external processors.
The communication between the Data Computer and processors

are done by a so called "datalanguage". See Figure 18,

DATACOMPUTER

Processor
3

Processor
1

2

Figure 18, Logical View of Data Computer

65

A database stored on the Data Computer is sharable by

all computers having access to the system. Character codes,
floating point number representations, and word sizes vary
from user to user; so do the representations of variable
length and variable structure, as well as high level data
structure attributes. The Data Computer system is required
to perform translations between various hardware
representations and data structuring concepts. Characters,
bytes, and numbers are stored under the <controcl of the
machine storing the data. The machine reading the data
specifies the format it requires. As data is output, the

indicated data conversions are performed.

Datalanguage

Data langquage is the language in which all requests to
the Data Computer are stated. Datalanguage includes
facilities for data description, for database creation and
maintenance, for selective retrieval of data, and for access

to a variety of auxiliary facilities and services.

Physical design

The architecture of the system is shown in Figure 19.
The system processor is a DEC System 10 (PDP-10), Memory is
present at three levels: primary (core), secondary (disc)
and tertiary {(mass storage). Peripherals are used for
software development and for input of data from tape. The

system is interfaced to the Arpanet IMP (Interfaced Message

Processor).

Primary
storage
Memory bus
Secondary System Tertiary
storage processor storage
I/0 bus
IMP
interface Peripherals
IMP
ARPANET

Figure 19.

Hardware Overview of system

66

67

Data organization
The data is physically organized into pages which move
among the three 1levels of storage: primary, secondary and
tertiary. The movement of pages 1is dictated by various
staging strategies. The particular strategy used is selected
by the system to optimize the reqgests currently being
executed. Some examples of staging strategies are as

follows:

a. move the whole file to disk and work from
disk. This strategy is suitable for small
files which can easily fit into the secondary
storage buffer area.

b. Move pages from tertiary store to primary,
process the pages, and output directly from
primary. This is used when, for example, only
a small portion of the data read from tertiary
storage to be sent to the user.

c. Break the request down so as to operate on a
segment of the file, and stage to disk one
segment at a time., This is useful when
particular information is available (e.g. from
inversion tables) that indicates those
segments which are not needed and can be
skipped.

We should also indicate here, that the file system is

designed to provide inversion tables for calculating the

68

location of data in storage.-

3.3.5. IDM _ Intelligent Database Machine

IDM [13,14] was developed by the Britton-Lee, Inc., 1in
September of 1980, The system is used to handle relational
database management tasks. The system c¢an operate as a
back-end machine or, together with intelligent terminals, as
a standalone data management system. It is specially
designed to support very high transaction rates and process
complex transactions that span an entire database. IDM
features parallel and pipeline processors and it can handle
multiple databases containing up to 32 billion bytes, using
moving head disks.

The application program running on host computer
communicates with the IDM wusing a high level nonprocedural
command language. The command language allows for defining a
database, specifying indices on relations and doing

retrieval, update and aggregation.

System configuration

The overall configuration of IDM is shown in Figure 20,
It consists of up to eight input/output channels, up to 4
disk controllers, up to 12 random access nmemories, a

database accelerator, and a database processor.

69

LL
=
P
i
Database Database Memory
Processor Accelerator 256k /Bytes
{optional)
Lk P
e P
/
/- y4n
/ /1
4 Disk
1/0 Controler
Channel
3 Optional
7 Optional
Async
Parallel

Figure 20.

To your hosts

IDM Configuration

11 Optional

70

Input/output channels
IDM has eight input/outputs that can accomodate up to
eight programmable terminals using asynchronous
communications. The communication with the host can either

be bit serial or byte parallel.

Risk controllers

The disk controllers can support up to 4 disk drives.
The disk scheduling is done by the controller. By disk
scheduling the controller can allow multiple transactions at
a time. When an operation 1is complete the controller will

respond to the host that that operation was completed.

Bandom access memories

Up to 12 random access memories (256 Kbytes each) can
be used to increase the access time. The data is moved from
the disks (secondary storage) to these memories for faster

execution.

Database accelerator

The database accelerator increases the speed of the
machine up to ten times faster, achieving operating speeds
of up to 10 million instructions per second. The
accelerator takes care of searching, comparing data,
matching, and responding to the mainframe CPU or intelligent
terminals. When only a small transaction rate is required,

the database accelerator can be removed, reducing the cost

71

of the machine.

Databage processor

The database processor is a microprocessor for

processing all the database management functions

ot} biliti
Other capabilities of IDM included:

l, System integrity, including protection from
power failure, disk failure and other common
system problems,

2. An integrated data dictionary.

3. Constraints to 1limit access to relations,
portions of relations, specific records.

4. A view mechanism to allow alternate
definitions of relations or collections of
relations.,

5. Use of indexing/hashing techniques for

searching.

3.4. Integrated database machines

This category of systems [25] wuses a number of
functionally specialized processors, which can be general
purpose and/or special purpose processors, For example,

systems of this type may use, specialized associative

72
processors for the processing of directories and mapping
data, 1intelligently <controlled disks and mass storage
devices for the storage and processing of the major portions
of the database, a system processor for general

coordination, and dedicated hardware for security control.

3.4.1. Advantages

l. A greater efficiency is achieved by the use of
functionally specialized hardware,

2. The modular family of machines allow users to
exploit parallel processing and pipelining
techniques.

3. These system are more complete and capable of

handling large-scale databases.

3.4.2, Disadvantages

Since the system uses dissimilar hardware, the hardware
interconnection, the data and program communication and the
operating system support is rather complex.

In the following section two systems, the Data Base
Computer (DBC) and DIRECT which fall into this category, are

introduced.

73

3.4.3. DBC - Data Base Computer

The Data Base Computer (DBC) [2,3,8,16] was designed at
Ohio State University. It was designed to act as a back-end
machine to one or more front-end general purpose computers,
and support large scale databases (10**10 bytes in size).
However, it differs from back-end systems in such a way that
it does not require staging of data between levels of
memories of various speeds. Further advantages of the DBC
accure from high-level query languages for interface with
the front-end computers, and from a content-based security
mechanism for access control. The system can support
relational, network, hierarchical, and attribute based

models,

Overall architecture

The DBC contains seven functionally specialized
components. The database c¢ommand and control processor
(DBCCP), the security filter processor (SFP), the mass
memory (MM), the structure memory (SM), the structure memory
information processor (SMIP), the index translation unit
(IXU), and the keyword transformation unit (KXU). These
components are organized into two loops, the structure loop,
and the data 1loop (see Figure 21). All the front—-end
computer systems which communicate with the DBC are calléd
"program execution system" (PES) in this figure. User

programs reside in the PES, and are executed by the PES

74

using the DBC as one of its various resources.

_________ SM DBCCP: Data Base
< Command &
4r* Control

Processor

SMIP

Structure /

/
Heg / KXU: Keyword

Transformation
Unit

SM: Structure
Memory
Information
Processor

IXO0: Index
Translation
Unit
“% MM: Mass
N Memory
N
N
\
b
“
“
A S
\
“\

From PES
e

To PES

SFP: Security
Filter
Processor

A PES: Program
Execution
MM System

—_— Information Path
- Control Path

Figure 21, The Architecture of DBC

15
Datz Base Command and Control Processor (DBCCP)

The DBCCP synchronizes and controls all the DBC
components. It regulates the operation of both structure
and data loops and interfaces with the front-end computer
systems, consequently the components can work concurrently
on one or more commands. The DBCCP processes all DBC
commands retrieved from the front-end computer system,
schedules the execution of the commands on the basis of the
command type and priority, enforces security on a selective
basis, clusters records to be stored in the DBC, and routes
the response data to the front-end computer systems. The
variable length commands are sent to the DBCCP by the
front-end program execution system (PES); appropriate
responses, such as set of records, diagnostic messages, etc.
are then sent back to the PES by DBCCP. Other functions of
the DBCCP include coordinating the task of security checking
during database accesses, instructing the SFP to post-check
the response set for the field-level control and performing

certain essential bookkeeping.

Security File Processor (SFP)

The SFP is used to enforce the field level security of
the database., After the records have been retrieved from
the query, they are individually checked for security
clearance by the SFP,. The input to the SFP consists of
records retrieved from the MM, and commands and security

specification from the DBCCP.

76

SFP also provides a sorting mechanism, This mechanism

enables the response data to be ordered by values of certain

attributes. This is usually the way that the user

application programs would 1like to receive the records in
the front-end computer system.

Input to the SFP consists of records retrieved from the

MM and commands and security specifications from the DBCCP.

Structure Memory Information Processor (SMIP)
SMIP converts the 1logical identifier from SM into

physical disk address.

Mass Memory (MM)

The on-line mass memory (MM) consists of moving-head
disks. The disks are modified to allow parallel read-out of
an entire cylinder in one revolution time, instead of cne
track a time, The design of MM is based on the PCAM
(Partitioned Content Addressed Medium) [2] concept. Each
cylinder of the disk represents one PCAM partition.

The cylinder is made content addressable by incorporating
track information processors (TIPs) (one for each track of
a cylinder) for concurrent processing of the tracks of a
cylinder. Furthermore, the disk read/write mechanism is
modified to allow parallel read/write of all the track of a
cylinder, By far the most powerful operation of the MM is
the search and retrieving records which satisfy queries made

up of keyword predicates,

77
Structure Memory (SM)

The SM is the repository of the directories of the
files. The information defining the directories of the
files are stored as a set of tuples called index terms. The
use of charge coupled devices or magnetic bubble memory
devices provide good access speed. The primary function of
the SM is to retrieve and update structural information of
the database. This information likely to be large (10**7 -

10**9 bytes).

Index Trapslation Unit (IXU)

The index terms stored in the structure memory (SM) and
manipulated by the structure memory information processor
(SMIP) are actually represented in an intermediate form,., The
purpose of the IXU is to translate them into an usable form
for the mass memory (MM). The other function of the IXU is
the assignment and release of cluster identifiers and

security atom names, on demand.

Keyword Transformation Unit (KXU)

KXU allows the structure memory first to readily
identify the modules which contain the index terms of the
keywords, and then to process index terms and keywords
rapidly since KXU transform all information to be stored in
the structure memory into fixed length fields (KXU converts
the keywords into their internal representations). Keywords

are sent to the KXU by the DBC's Command and Control

78
Processor (DBCCP). The output of the KXU is sent to the SM
which retrieves index terms for the transformed keyword
predicates and sends them to the SMIP. The SMIP output is
interpreted by the IXU and sent to the DBCCP. This pipeline
of processors results in maximum utilization of the

hardware,

Structure Loop
The structure loop identifies the disk cylinders
containing the actual data records. The four components of

the structure loop are designed to operate concurrently.

Data Loop

The data loop 1is wused for storing and accessing the
database, for post-processing of retrieved records, and for
enforcing field-level security.

The DBC design allows for a number of functionally
specialized modules which can all work concurrently. A large
degree of parallelism is provided within each module
(including the mass memory) by employing a set of processors
to simultaneously perform a content-search operation and by

providing track-in-parallel read-out.

3.4.4. DIRECT

DIRECT [12] is another multiprocessor system, and it is

79
designed for supporting relational database management
systems. This system has a multiple-instruction
mul tiple-data stream (MIMD) architecture. IE can
simultaneously support both intra-query and inter-query
concurrency. Microprocessors are dynamically assigned to a
guery depending on their priority, the type and number of
relational algebra operations they contain, and the size of
the relations referenced., Since DIRECT is a virtual memory
machine, the maximum relation size is not limited to that of

the associative memory as in some other database machines.

System architecture

The DIRECT system consists of six main components, as
seen in Figure 22, These components are: a host processor,
the back-end controller, a set of query processors, a set of
charge coupled device (CCD) memory modules, an
interconnection matrix, and one or more mass storage

devices.

Host

Usern

FPigure 22.

Backend
controller

CCD
memory

module

Mass

CCD
memory
module
2

¢ 280

80

CCD
memory

module

storage

Mass
storage

Query
processorl

Query
processor?2

Query
processorm

Interconnection

matrix

DIRECT System Architecture

81

Host processor
The host processor is a PDP 11/45 running the UNIX
operating system, It handles all communications with the
users, When executing a query, INGRES (a relational database
system) will first compile the user guery into a sequence of
relational algebra operations called a "query packet" and

then sends it to the back=-end controller.

Back-end contreoller

The back-end controller is a microprogrammable PDP
11/40 which is responsible for interacting with the host
processor and controlling the query processors. Once the
back-end controller receives the query packet from the host,
it will determine the number of query processors that should
be assigned to execute the packet., If the relations which
are referenced by the query packet are not currently in
associative memory, the back-end controller will page
portions of them in before distributing the query packet to
each gquery processor selected for its execution. The
back-end controller also handles the conflicts which can
arise when two or more query processors attempt to write

onto the same page simultaneously.

Query processors
Each query processor is a PDP 11/03 with 28K words

memory. The function of each query processor is to execute

guery packets assigned by the back-end controller and

82
transmitted from the <controller over a parallel word
interface to the query processor. To faciliate the support
of intra=-query concurrency, relations are divided into fixed
size pages. Each query processor, assigned by the controller
to execute a query packet, will associatively search a
subset of each relation referenced in the packet. When it
finishes examining one page of a relation, it will make a
request to the back-end controller for the address of the
next page it should examine. To facilitate support of
inter-query concurrency, the assiciative memory and
interconnection matrix must permit two query processors,
each executing different queries, to search the same page of

a common relation simultaneously.

Memory modules

Memory modules are associative memories which each of
them is divided into fixed size page of 16K bytes. Each page
frame is constructed from eight CCD chips. The page sizes
are chosen to be small for several reasons. First, more
page frames will have a higher potential for concurrency. If
the page size was too large, then each relation might fit on
just one page and this would limit the potential concurrency
to just inter-query concurrency instead of a mix of
intra—-and inter-query concurrency. Another reason 1is to
minimize the amount of internal £fragmentation which occurs

when a relation does not £ill all of the pages it occupies.

83
Interconnection matrix
The interconnection matrix supports the inter-and
intra-query concurrency. To do so, it permits:
l. A query processor to rapidly switch between
page frames containing pages of the same or
different relations;
2. Two or more query processors to simultaneously
search the same page of a relation;
3. All query processors to simultaneously access

the same page frame.

In summary the features of DIRECT are as follows:

1, Simultaneous execution of relationnal gqueries

from different users in addition to parallel
processing of a single query.

2. Dynamic determination of the number of
processors assigned to a query based on the
priority of the query, the size of the
relations it references, and the type and
number of relaticnal algebra operations
included in the query.

3, Relation size is not 1limited by the size of
the associative memory.

4. Control of concurrent updates through the use

of locks on relations.

84

CHAPTER 4

THE FUTURE OF DATABASE MACHINES

The future of database machines is highly dependent on
the new hardware technologies being introduced. We can 1look
at the new hardware technologies in the areas of memory and
secondary storage devices, processors and the entire system
configuration. These areas, however, are related to each
other. For example, the design of the entire system can be
influenced by the available processor technolegy, and the
design of the processors could be influenced by the
available memory technology. The freedom of the system
designer can alsoc be increased by the availibility of
advanced components. Therfore the database computer
designer must be familiar with the new hardware
technologies.

In the area of storage and main memory the trend is
towards hardware devices which can speed up the computerized
processes (information retrieval, processing, updating,
etc.), such as laser memories, semiconductor memories,
bubble memories, electron beam memories, and charge coupled
devices. Moving head disks will continue to be a choice as a
secondary storage because of their 1large storage capacity

and relatively low price. The bubble memories, semiconducto

85
memories, electron-beam memories and CCDs could also be used
as a secondary storage. The fixed head disks will be used
as little as possible and more likely they will be replaced
by other storage devices.

In the area of processors it is quite feasible that they
will be dedicated to specific database functions and their
processing and speed capabilities will increase while their
cost decreases., These systems will be more hardware
oriented. By the use of the up-to-date semiconductor
technologies it is also feasible to support a wide variety
of database software - implemented - by hardware devices
(often called firmware). The concurrent use of these of
these processors is also important in the future database
machines.

Certain important problems such as recovery from
failure, concurrency control, integrity and security
constraints are currently being implemented by software. The
future research is anticipated in designing special
processors with hardware capabilities for implementing these
functions.

As an overall design the integrated system with
independent functionally specialized components and
concurrent capabilities of these components are feasible,
The system can be very flexible 1in a way that it could be
used as a back-end machine with a few functionally
specialized processes and by adding more processors. The

capability of the system would be increased. The system,

86
however, should be transparent to the user and be able to
accept current application programs and data files while

increasing performance and capability.

9.

B7

LIST OF REFERENCES

Babb, E., "Implementing a Relational Database by Means

of Specialized Hardware", ACM [TIransactions of Database
Systems, Vol. 4, No. 1, March 1979, pp. 1-29.

Bannerjee, Jayanta and David K. Hsaio and Richard I.
Baum, "Concepts and Capabilities of a Database

Computer", ACM Transactions on Database Systems, Vol. 3,
No. 4, December 1978, pp. 347-384,

Bannerjee, Jayanta and David K. Hsaio and Krishnamurthi
Kannan, "DBC - A Database Computer for Very Large

Databases", IEEE [Transaction on Computers, Vol. C-28,
No. 6, June 1979, pp. 414-429,. :

Batcher, K.E., "STARN Series E." Proeedings 1977

Inernational Conference on ZParallel Progcessing, Aug
1977, pp.140-143,

Baum, R.I. and D.K. Hsiao, "Database Computers - A Step
Towards Data Utilities", IEEE Iransactions On Computers,
Vol. C-25, No. 12, December 1976, pp. 1254-1259.

Berra, Bruce P., "Some Problems in Associative Processor
Applications to Database Management",

Proceedings 1974
AEIPS National Computer Conference, Vol. 43, 1974, pp.
1-5,

Berra, Bruce P, and Ellen Oliver, "The Role of
Associative Array Processors in Database Machine
Architecture", Computer, March 1979, pp. 53-61.

Bray,0lin and Kenneth J. Thurber, "What's happening
with database processors?", Datamation ,Jan 1979, pp.
146-156.,

Canaday, R.D., Harison, E.L. Ivie, J.L. Ryder, and L.A.,
wehr, "A Backend compu for Data Base Management",

Communications of the ACM, Vol. 17, No. 10, October
1974, pp.575-582.

10.

11.

12.

13,

14.

15,

lé6.

17.

18.

19.

20'

88

Champine, G.A., "Four approches to a Data Base
Computer", Datamation, December 1978, pp. 101-106.

Davis, E.W., "STARAN parallel processor system

software", AFPIPS <Conference Rroceedings, Vol. 43, May
6-10, 1974, pp. 17-22.

Dewitt, David Jey "DIRECT - A Multiprocessor
Organization for Supporting Relational Database

Management Sytems", IEEE Iransactions on Computer, Vol.
¢-28, No, 6, June 1979, pp. 395-406.

Epstein, Robert, and P, Hawthorn, "AID in the '80s",
Datamation. February 1980, pp. 154-158,

Epstein, Robert, and P, Hawthorn, "Design decisions for
the intelligent databases machine", AFIPS Conference

Proceedings, Vol. 49, May 1980, pp. 237 241,

Beart,F.E. ,R.E. Kahn, 8S.M. Ornestein, W.R., Crowther,
and D.C. Walden, "The Interface Message Processor for
the ARPA Computer Network," Proceedings AFIPS Spring
Jdoint Computer Conference, 1970, pp. 551-567.

Kerr, Douglass S., "Database Machines With Large Content
Addressable Blocks and Structural Information
Processors", Computer, March 1879, pp. 64-79.

Marill, T., and Stern, D. , " The data computer - a

network data wutility", AFIPS Conference Proceedings,
Vol. 44, May 1975, pp. 389-395,

Maryanski, F. J., "Backend Database Systems", Computing
Suryveys, Vol. 12, No. 1, March 1880.

Ozkarahan, E.A. and S.A, Schuster and K.C, Smith, "RAP -
An Associative Processor £for Database Management",

National Computer Conference, 1975, pp. 379-387.

Rudolph; J.A., "A Production Implementation of an
Associative Array Processo - STARAN", AFIPS Conference

Proceedings, Vol. 41, 1972, pp. 229—241.

21,

22,

23,

24,

25,

26,

27.

28,

89

Schuster, S.A, and H.B. Nguyen and E.A. Ozarahan and
R.C. Smith, "RAP.2 - An Associative Processor for
Databases and Its Applications", IEEE Transactions on
Computers, Vol. C-28, No. 6, June 1979, pp. 446-458,

Smith, Diane C.P. and John M., &Smith, "Relational
Database Machines", Computer, March 1979, pp. 28-38.

Su, S.Y.W. and G.J. Lipouski, "CASSM: A Cellular Sgstem

for Very Large Data Bases", Proceedings Interpnational
Conference on Very Large Data Bases, September 1975, pp.
456-472,

Su, S.Y.W., "Celluar Logic Devices: Concepts and
Applications", Computer, March 1979, pp. 11-25,

Su, S.Y.W. and H. Chang and P. Fisher and E. Lowenthal
and S. Schuster, "Database machines and some issues on

DBMS standards", AFIPS Conference Proceedings, 1980, pp.
191-207.

Su, S.Y.W, and Le Huu Nguyen and Ahmed Emam and G.J.
Lipovski, "The Architectural Features and Implementation
Technigues of the Multicell CASSM", IEEE

Computers, Vol. C-28, No., 6, June 1979, pp. 430-445,

Thurber, K.J, and L.D, Wald, "Associative and Parallel

Processors", Computing Surveys, Vol. 7, No. 4, 1975, pp.
215-255,

Yau, S.S. and H.S. Fung, "Associative Processor

Architecture _ A survey", ACM Computing Surveys, Vol.9,
No. 1, March 1977, pp. 3-28

4.

7.

10.

80
ADDITIONAL READINGS

Chang, H., "On bubble memories and relational data
base", 4tb Interpational Conference Proceedings on
Large Data Basesg, September 13-15, 1978, pp. 207-229,

Chyuan S. L. and D, ¢, P. Smith, and J. M, Smith, "The
design of a rotating associative memory for relational

database applications™, ACM Transaction On Database
Systems, Vol., 1, No. 1, March 1976, pp 53-65.

Coulouris, G.F., "Towards Content-addressing in Data

Bases", Computer Jourpal, Vol. 15, February 1972, pp.
95-98,

DeFiore, C.R. and N.J,. Stillman and P.B. Berra,
"Associative Techniques in | the Solution of Data
Management Problems", Proceedings 1971 ACM National
Conference.

DeFiore, L.R., P.B. Berra, "A Data Management System
Utilizing an Associative Memory", AFIPS Conference
Proceedings, Vol. 41, 1972,

Holland, Robert H. and Ann Mich, "Improve Information

Access With the Database Machine", Data Communications,
March 1980, pp. 95-101.

- Hsiao, David K., "Database Machines Are Coming, Database

Machines Are Coming!", Computer, March 1979, pp. 7-9.

Langon, Glen G., "Database Machines: An Introduction",

IEEE Transactions on Computers, Vol. C-28, No. 6, June
1979, pp. 381-382,

Love, H.H, "An Efficient Associative Processor Using
Bulk Storage", PEroceedings 1973 Sagamore
Conference on Parallel Processing, 1973, pp. 103-112,

Maryanski, F.J., "A survey of developments in
distributed data base management systems", Computer,

11.

12,

13,

14,

15,

91
February 1978, pp. 28-37.

Maryanski, F.J., V.E. Wallentine, "A simulation Model of
a Back_end Data Base Management System”, Technical
Report, Computer Science Dept., Kansas State University,
Manhattan, Kansas, April 1976.

Minsky, WN., "Rotating Storage Devices as Partially

Associative Memories", AFIPS Conference Proceedings,
Vol,., 41, 1972.

Moulder, R., "An Implementation of a Data Management
System On an Associative Processor", AFIPS Conference
Proceedings, Vol. 42, June 13973, pp. 171-176.

Parhami, B., "A Highly Parallel Computing System for
Information Retrieval", AFIPS Conference Proceedings,
Vol. 41, December 1972, pp. 681-690,

Roberts, L.G. and B.D., Wessler, "Computer Network
Development to Achieve Resoure Sharing," Proceedings
§E§R§49ﬁnzing Joint Computer Conference, 1970, PpP.

CONCEPTS AND CAPABILITIES OF DATABASE MACHINES

by

NASSRIN TAVAKOLI

B.S., Southeast Missouri State University, 1978

—— T T e . ——

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1981

ABSTRACT

A number of major problems have been faced by the
database designers for a long time. These problems are due
to the limitation and the nature of conventional computers,
and can only be solved by introducing new architectural
concepts., Database machine definitely seems to have a place
in solving these problems. The £field is developing because
of the increased throughput in processing database requests
at a competetive cost and the parallelism and content
addressing capabilities.

This report begins with the description of the
limitations of conventional computers for database
applications,

A larger portion of this report deals with the concepts
and capabilities of database machines in a categorized
manner. The categories are based on the architecture,
objectives and characteristics of the different database
machines.

In the last part some ideas are given about the future

trends.

