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I. INTRODUCTION

The behavior of real-life systems are generally probabilistic in
nature, so it seems natural to study the motion of random systems such
as systems subjected to random loads, containing random material proper-
ties, etc. A special class of random systems can be defined as stochastic
systems which is the focus of the present investigation.

Since the linear system plays the fundamental role in the modeling
of a dynamical process, the attention of the research is directed to the
stability of the linear stochastic systems. It is assumed that the
stochastic processes are known. The problem then becomes that of deter-
mining the conditions for stability of the system in terms of its param-
eters and the properties of the stochastic process.

The study of stochastic systems has taken a long time in its devel-
opment. Originally, the theory of stochastic differential eguations was
developed by mathematicians as a tool for explicit construction of the
trajectories of diffusion processes for given coefficients of drift and
diffusion, Stochastic differential equations describing systems, such
as one in which "white noise" acts, occur quite naturally in physical
and engineering sciences.

The study of stochastic systems can be grouped into two branches:
stochastic differential equations with Gaussian white noise coefficients
(the I1td Differential Equations) and stochastic differential equations
with non-white noise coefficients. The greatest advances in the stabil-

ity of stochastic systems have been achieved with the use of the It8



differential equations. However, this branch requires the reader to

have oreat understanding of stochastic process theory which has slowed,
to a certain extent, its development as a practicai tool. The techniques
employed in the other branch are somewhat more direct, but the advances
are not as great. In both cases, most of the results, that have been
obtained, yield only sufficient conditions for stability which often

have been too conservative for practical use.

Applications of linear stochastic differential equations cover a
wide spectrum of problems. Such an application for a structural engineer
and an applied mechanist would be the linearized equations of beams sub=
jected to random forces at the boundaries. Studies of the dynamics of
satellites in orbit generate an application of linear stochastic differ-
ential equations for the control engineer. The electrical engineer has
applications in the studies of parametric amplifier dynamics., The sta-
bility of time varying channels described by the stochastic equations are
a concern for the communications engineer. Certain chemical and biologi-
cal problems also invclve stochastic differential equations,

The study of the stability of stochastic systems is relatively new.
The recent origins of this study commenced in the early 1950's by
Rosenbloom [1] and Stratenovich [2]. They were followed by Bertram and
Sarachik [3], Kats and Krasovskii [4], and Samuels [5] in the early
1660's, These researchers were concerned with the stability of the
moments of the solution process.

Later, it was realized that sample stability is the more meaningful
property to determine. This view is based on the fact that a sample
solution is observed when a real system subjected to random excitation

is tested, Since then most research has been directed to study the



almost sure stability properties. Caughey €], Caughey and Gray s
Kushner [8], Khas'minskii [9], Nevel'son and Khas'minskii [107], Infante
[11], kozin [12, 13], Kozin and Wu [14], Parthasarathy and Evan-Iwanow-
ski [15], Kozin and Milstead [16], as well as many others have made fine
contributions to the study of the almost sure asymptotic stability of
linear stochastic systems. Except for Parthasarathy and Evan-Iwanowski
ES] and Kozin and Milstead [16], the examples presented so far have all
apparently been confined to scalar second-order systems. In these stud-

jes, the system equaticns were written in the form
x= [A+ F(t)]x, (1-1)

where x is an n vector, A is an n x n constant stability matrix and F(t)
is an n x n matrix whose nonidentically zero elements are stationary
ergodic stochastic processes.

Kozin's results [12] were found to be too conservative when applied
to a second order scalar equation. Caughey and Gray [7] were able to
obtain better results through a Liapunov-type approach. Assuming that
A is a stability matrix, in reference Eﬂ, the symmetric, positive defi-

nite, Liapunov matrix P was generated from the matrix equation,

ATp + PA = -1 (1-2)

where I is an n x n identity matrix. Then using matrix P and two qua-

dratic norms of the forms

Xl = 3 1] | (1-3)

W13
Pt

i
and

T. % n L
[1x]]p = (x'Px)? = (] Pijxixj)a g (1-4)
15J



conditions for the almost sure stability were found for the system
given by equation (1-1). Later, Infante [11] extended these stability
theorems so that they could be applicable for any quadratic norm.

Assuming a Liapunov function of the form V = xTPx, Infante utilized
the properties of pencils of quadratic forms and obtained sufficient
conditions for the almost sure stability. He also used a brute force
approach to determine the optimum Liapunov matrix associated with the
norm. Because of the ad hoc nature of the optimization procedure, he
applied the procedure to a few second order scalar equations only. For
the two specific examples of second order scalar systems, Infante's
theorem provided the sharpest stability bounds. However, he also demon-
strated that in many cases an optimum matrix may not exist. The proce-
dure for finding an optimum matrix for relatively large systems still
remains an open problem. Infante himself writes in his paper: "This
technique is very time-consuming for high-order systems."

These studies suggested a definite need for the development of a sys-
tematic computational procedure which could be applied to relatively large
systems, Parthasarathy and Evan-Iwanowski Eﬁ] documented a study aimed
at meeting this need which does not yield stability bounds that are too
conservative, In their work, the stability bounds were obtained through
a generalization of the theorem presented in reference [?]. However, the
computation scheme is rather lengthy and very expensive in terms of com-
puter time., To be precise, first, one has to perform the modal analysis
to express the equations of motion in terms of the "quasi-normal" coordi-
nates which in turn can be written in the form of equation (1-1). The

Liapunov matrix is then generated from

ATp + pa = -q, {1-5)



where Q is an arbitrary, symmetric, positive definite matrix. Equation
(1-5)‘15 then solved in conjunction with the Fletcher-Powell-Davidson
optimization technique in order to achieve the optimum stability bounds
on the elements of F(t). A time-scale parameter is also selected in
reference [15] which may or may not have a tangible effect on the stabil-
ity bounds. If the matrix Q iS suitably optimized, the time-scale param-
eter has little influence on the bounds but does facilitate in locating
the optimal Q in the computer search. Although a systematic computational
procedure has been sketched in reference [15], it is definitely time con-
suming as expressed by the authors themselves: "Admittedly, there yet
remains much to be accomplished, The ultimate goal may well be the
establishment of a theorem that would render the search for the optimum
superfluous."

More recently, another optimization scheme has been suggested by
Kozin and Milstead [16] for higher-order systems. However, once again
the technigue is rather complicated and time consuming.

What seems to be needed is a criterion which can be applied directly
to the mass, damping, and stiffness matrices of the second order vectorial
differential equation because the application of finite elements or other
discretization techniques to continuous problems naturally yield such a
set of equations. This should also show the effects of gualitative and
quantitative changes in these matrices on the stability conditions., The
method should be simple and straightforward in terms of computation and
still obtain results that are not unduly conservative for large systems.
In this study, a theorem directly applicable to a set of second order
differential eguations is presented which may prove to be useful for

certain problems. A Liapunov matrix, in terms of the mass, damping, and



stiffness matrices constituting the constant part of the system equations,
is also proposed. Several examples are presented to show applications.

In chapter 11, a Liapunov function is selected for the study of the
almost sure asymptotic stability of linear discrete systems described by
a set of second order equations with stochastic parameters. Using this
function, a theorem and related corollaries are obtained through an
extension of the approach suggested by Infante [11].

Several examples are presented in chapter III to demonstrate the
procedure suggested in chapter II. This includes the application of the
proposed technique to continuous systems through the use of Galerkin
and finite element approximations, as well as to the discrete systems.

On the hasis of corollaries I and II, a general computer program is devel-
oped without placing any restrictions on the dimensions of the system
matrices.

In chapter IV, the theorem is extended to yield response and stabil-
ity bounds for systems for which there exist no equilibrium positions
due to the forcing terms appearing in the equations of motion., Some

examples are also included.



I1. EQUATION OF MOTION AND STABILITY THEOREMS

In this chapter, the stability theroem and related corollaries

guaranteeing the almost sure asymptotic stability are presented.

2.1 Preliminaries

Before dealing with the actual formulations, it is convenient to
introduce some definitions and important lemmas which will prove useful
throughout the analysis.

Definition 1. A stochastic process is a family of random variables

{X(t)} defined on a probability space, where t varies in a real interval
I (I is open, closed, or half-closed).

Definition 2. The ergodic property used in this investigation is

one insuring the equality of time averages and ensemble averages of a

stochastic process., The mathematical description is given by

t
EGGX(t)]} = E{6[X(0)]} = im = | G[X(r)]dr (2-1)
ta 0 +
0
exists with probability one for a measurable, integrable, function G
defined on the stochastic process X(t). This is often referred to as the
expected value of G[X(t)].

Definition 3. [7] The trivial solution, I1x]] = 0, is almost

surely asymptotically stable in the large, if for all solutions of the

system we have the property that

gim | x(ts %, t)|] =0 (2-2)
toco



holds with probability one for all Xo®

Lemma 1, [ga] The characteristic equation of the regular pencil

xTDx - xTBx has n real roots As' where D and B are nxn real symmetric

matrices, B is positive definite and x is an n vector. The matrix DB'1

has the same eigenbalues as the pencil and, if these eigenvalues are

ordered in magnitude as

min{:\s[oa'lj} = a8y <. L. <a 087 = m:x{ks[DB'lj}, (2-3)

then
-
-1 . X Dx
A[DB™"] = min ===
IED X XIBx '
T
An[DB']‘] = max 0% |
X x1Bx

Lemma 2. [17] (Schwarz inequality)
Q)XY [} < ey

for both random and deterministic functions X and Y,

Lemma 3. [17) (Minkowski inqua1ity)
o 7 o P o P
Efx+ Y™ < [EUXITY] + [E(YITY . p>1

for both random and deterministic functions X and Y.

2.2 Equation of Motion and Selection of Liapunov Function

Consider the system described by

Mx o+ [C) + C(t]Jx + [K, + K(t)]x = O,

(2-4a)

(2-4b)

(2-5a)

(2-5b)

(2-6a)



where x is an n vector; M, Cy, and K, are nonsinguiar nxn constant
matrices; C{t) and X(t) are n xn matrices whose nonzero elements cij(t)
and kij(t) are measurable, strictly stationary, stochastic processes
which satisfy an ergodic property guaranteeing the equality of time
a&erages and ensemble averages. The corresponding mathematical descrip-
tion is given by definition 2 recorded in section 2.1. For simplicity,
let E{C(t)}= E{K(t)} = 0.

Before inQestigating the almost sure stability of equation (2-6a),

consider the constant counterpart of equation (2-6a) given by
Mx + C.x + K. x = 0. (2-7a)

From previous studies, it is known that equation (2-7) must be asymptoti-
tally stable before the stability bounds for equation (2-6) can be found.
It is also evident from earlier studies that the sharpness of the sta-
bility bound for equation (2-6a) is heavily dependent on the choice of
the Liapuno& matrix associated with equatioq (2-7a).

For further considerations, equations (2-6a) and (2-7a) are rewrit-

ten as
.x‘.l-. — R P — 9. ------- l-_......-.....I. ....... ;.x..l..} 2=-6b
{*z} e e T o)
and
"‘1}_[ 0 i 1 ]{"1}
e B Lo (2-7b)
{xz el 1 -mele f| %2

where x; = x and x, = il. For equation (2-7), consider the Liapunov func-

tion given by

Vix) = xIplxl + xPyxy * x£P3x1, (2-8a)
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where Pl’ Pz, and P3 are nxn constant matrices such that Pl = Pf. and
Py = P;' and P1 and P2 are positive definite. (-)T means the transpose

of the matrix (*). It is observed that V can also be written as

.
P P
. T e d L3 g yF
Y [’%Pg";"va"‘}y : 5oy, (2-30)

where the 2n vector y is defined as yT = {xf-, x;-}.

Taking the time-
derivative of V and evaluating it along the trajectory of (2-7), one
obtains
. g -%_{P3TM"1K°+(M'1K )TP3} |
A T D o e deeeZannas P PPN PRI, S y
}
1
]

=1 el 3T
Py =P M7 - J5(M7C,) Py

= y'Ay. (2-9)

It is known [18, 19] that if the system represented by equation (2-7) is
asymptotically stable, then for a given negative definite Ao, a unique
positive definite P exists and can be found by solving the resulting
Liapunov equation,

Without any loss of generality, the off diagonal blocks of the par-
titioned matrix Ao can be set to zero. However,one must keep in mind
that P1 and P2 must both be symmetric and positive definite., Following

reference I}d], this can be achieved by selecting
- 1p Tyl =1, T
P1 = %PB M Co + (M Ko) Py
which in turn implies that
-1 Tu-1l
PZM Ko - %P3 M Co

should remain symmetric in addition to PZ' It is immediately observed
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that this would reguire construction of two matrices, P2 and P3, which
involves n2-+n unknowns. This idea has been pursued by Walker [?Qj

to find the necessary and sufficient conditions for asymptotic stability
of eguation (2-7). It is obvious that the use of such a Liapunov funce
tion P would still not be a simple choice from the viewpoint of compu-

tation. A simple and natural choice seems to be

Py = PZM‘lco. (2-10)

thereby implying,

Py = sz'lko + g(m'lco)TPZ(M‘lco), (2-11)

which is symmetric and positive definite if P2 is symmetric, symmetrizes
M"IKO and both P, and PZM'IKo are positive definite, For this selection
of P1 and P3, matrices Ao and P become

T

g Lute yTeutk y + qte )Te ity
Az-.z. .......................................

0 PR | P ¢
{PRHTIC, + (PHIC)

and

Pl + (Ml ) TPyl ) Hipaiivie )T
P 2 [ewmenessscmssaparsr e - haneccsnnaea . (2"13)

Thus, if the symmetric parts of {(M'ICO)TPZM'lKO} and PZM'IC0 remain
positive definite, then Aois obviously negative definite. Hence, if sys-
tem (2-7) is asymptotically stable, then P can be guaranteed to be posi-
tive definite [18, 19]. However, a priori knowledge of system (2-7)
being asymptotically stable is not needed because it can be shown that

the LiapunoQ matrix P given by equation (2-13) is always positive defi-
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nite as shown in the following.

Consider the guadratic form
T -1 1. 4\T -1
2 [PMTK + B(M Cy) Po(M co)]z (2-14)

which is positive definite because PEM'lko and P, are positive definite.

This can also be written as
2 P2k, + uuie ) Te,n7le ) - w(ute ) e, 7k )] (2-15)
From the form of Py, given by equation (2-10), (2-14) now takes the form
T Ty=1
z [Pl - %Py P3 Pé]z ‘ (2-16)

The above quadratic form can be easily written as

T
z Pl - %P;- z

e el BN S el I (2-17)

-%PZ PBZ %P3 ; P2 -%Pz P3Z

Since the quadratic form (2-14) is positive definite, it follows that the
partitioned matrix in (2-17), which is P, is positive definite. Note
that this is always true as long as both PZM'IK0 and P2 remain symmetric
and positive definite.

For the special case of Rayleigh damping, i.e., when
CO = oM + BKO ; a+ B3>0, 0 >0, (2-18a)

AO is clearly negative definite., The assumption of this form of damp-
ing 1is Gery common in the field of structural analysis since the actual
damping mechanism is generally not known [21].

Yet another practical way of introducing damping is to assume C0
proportional to the critical damping matrix associated with the system.

For this purpose, first the modal analysis is performed on the equation
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of motion (2-7a) with C0 = 0. This results in a set of decoupled equa-
tions in terms of the normal coordinates where the mass matrix simply
becomes the identity matrix I and the stiffness matrix takes the diagonal
form containing the n natural frequencies Wy e Since the equations are
decoupled, the critical damping in each mode is given by cp, = zuh
because m, = 1. Generally, the CO matrix is assumed to be proportional
to the diagonal matrix consisting of elements Cpe

Hence, it is seen that if x are the normal coordinates in equation

(2-7a), then M=I, K0 = f}wij and CO can be written as

= Kk %
CO = CKO s 520 (2-18b)

Substituting this form of damping in equation (2-12) and selecting P2 =
M= 1, it is easily seen that AO is negative definite. Notice that if
K0 is symmetric, P2 can always be selected as M. Howeﬁer, one need not
do so. The following important observations are also recorded.

Remarks

1. Consider the choice P3 = 0 and assume that M and KO are sym-
metric. For this case P2 =M and if the symmetric part of C0 is positive
definite, then system (2-7) is asymptotically stable [i8]. This essen-
tially implies that the approach reduces to the well-known Kelvin-Tait-
Chetaev theorem [22],

2. If 93 =0 and M, K0 and CO are not necessarily symmetric, the
Liapunov function V has the same form as the one suggested by Walker
[23]. It was shown by Walker that for C0 = 0, the application of the
method produced necessary and sufficient conditions for systems loaded

by follower forces.

3. In general, when I<0 is not symmetric, matrix P2 has to be con-
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structed through the symmetry and definiteness requirements on P2 and
P2M"1KO. This indicates that there are n independent matrices P2 which
satisfy such conditions, For systems with two or three degrees of free-
dom, P2 can be found analytically without much effort. However for
re1ati§e1y large systems, it may be desirable to use a suitable scheme
on a computer, Such a general approach is indicated in the following
23],

i) Define diag [Pzi] = e;, where e; = (1, 0, ...), e, = (0,1,0,...),

ete.
. . -1
ii) Determine P21 by the symmetry of P21 and PZiM Ko.
iii) Set
n
PZ =.£§ G,[Pzi . (2-19)
i=1
iv) Note that
41 R -1
P2M Ko =1i1 aip21M Ko (2-20)
pale =V ap,mle (2-21)
2 o & i 2i o °

v) Then apply the definiténess conditions on P, and PEM'IKO.

4, Since a Liapunov function yields only sufficient conditions
for stability; for certain asymptotically stable systems (2-7), matrix
Ac may not remain negative definite although P always remains positive
definite. In all such cases, the suggested form of the Liapunov matrix

P cannot be used to investigate the stability of equation (2-6).

2,3 Stability Theorem and Related Corollaries

Theorem, If there exists a symmetric positive definite matrix
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P, such that

2
i) PZM'lr(0 is symmetric and positive definite,
1) the symetric parts of P71, and (M7lc )P, (MK ) are posi-
tive definite, and

$11) £l (A * Cy k)P < o0, (2-22)

then the system described by equation (2-6) is almost surely asymptoti-
cally stable in the large, where Amax[;] represents the maximum eigen-

values of the matrix [*]. The 2n x 2n matrices Ct and Kt are given by

0 Vooeley e loe)y ]
. OS]

Lt nte )y Toleen T+ pile(e)y + topnle(en?

Lt ) Ttk (e st e ) oo k()3 L e Motk (e)) (2.28)
------------ , (2-24

~
1]
1

Pk (t)

and matrices P and AO have the forms given by equations (2-13) and
(2-12), respectively.

Proof. The proofs for the theorem and the related coroilaries are

obtained in a straightforward manner through the apolication of an
approach suggested by Infante [ll].
Consider the Liapunov function discussed in section 2.2, i.e.,

T T T
V(x) = X1PyXy ¥ XoPpXy + XoPaxy . (2-8a)

Evaluating the first time derivative along the trajectory of equation

(2-6a) yields
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V(x) = x [k, + K(t))JTP3x1 ;
- x, [P MH(C, + c(t)) + [(C, + C(t)]] TP, - Pylx, +

# 3y [Py - PR, + k(1)) - Bl(c, + c(6))] TP3)x

+ "11-5’1 -Ed'l(Ko * K(t))]TPasz . (2-25)

Since for quadratic forms,the skew symmetric parts of the XI[:]XI and
x;[isz terms are equal to zero, the quadratic, V(x), can be written in
the following form,

T - f
T 1 I e L R D I O D R I

2| | {py - P M'l(x + K(t)) - 5[ 1(c +C(t ))]TPB} !

, of T T,-1
. s [l KCEN] Py - WGy ¥ COEDY 1 (2-26)

'{Pz”'l(co + C(t)) + Ea-rl(co + z:(t))]TP2 - 4(Py + Pg)} X2

Substituting for Py and P3 from equations (2-11) and (2-10), respec-
tively, equations (2-26) and (2-13) yield

i T
Vy) Y A, + € * Kely TP (2-27)

where A , Cy, K, and P are given by equations (2-12), (2-23), (2-24),
and (2-13), respectively. Since Ao, Ct and K, are symmetric and P is
symmetric positi#e definite; from lemma 1, the following inequality

holds.

Min L8+ €+ kP <a(ey <a [ia + ¢+ ke, (2-20)
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A A,
where - and i

cil, are real. Using inequality {2-28) with(2-27) and solving for

the maximum and the minimum eigenvalues of a pen=-

v[y(t)], one obtains

t t
v{y(t)] = VEy(to)]exp{ jtk(T)d'r] - v[y(toy]exp[(t-to)(;-};.jt M1)dr)].
0 "o

Q
(2-29)

In the limit when t + =, by definition 2, the exponent in egquation
(2-29) exists with probability one. Thus if E{A(t}} is negati#e, it
follows that

Lim V(t) =0 (2-30)
t+cn

independent of V[y(to)]. But
v(t) = yPy = [yl > 0, (2-31)

therefore, equation (2-30) implies that

Lim (x & x) 0 (2-32)

too
with probability one, independent of the initial conditions., If all the

conditions of the theorem are satisfied, then conditions (2-30) and
(2-32) hold,which proées the theorem,

In the following, two corollaries are also recorded which are more
useful for computation purposes.

Let

R L
C(t) = § gg(t)C; and K(t) = T F(t)K; 5 R,L < n?, (2-33)

i=1 j=1
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where C. and Kj are constant matrices. Recalling that E{gi(t)} =
E{fj(t)} = 0, the following corollary can be obtained.
Corollary I, If the first two conditions stated in the thebrem

hold and if in addition

R
! %E{]gi(t”}()‘max[-ctip-lj B m1n[Ct1P-1]) *
i=1

L
" S50 0y Ky gP 7] = g ygP™D) < - 2, BT (2-34)

then (2-6) is almost surely asymptotically stable in the large. The

2n x 2n constant matrices Cti and Ktj are given by

H -1. T, -1
0 E L{{M Co) PZM Ci}
Cti R It i"';""i"';{ """" I """""" I"'; (2-35)
- - § - -
{(M7IC,) PMTIC) ; {PM™CL} + {PM7OC]
and
]
st Fe ) oM kst + m™le) ook T (o)
Ky = =|mmmmmmmdomnfannsion TR A e i . (2-36)
= 1
PZM KJ ' 0

Proof. In this case, equation (2-27) of the theorem takes the form

T T T
y A C..y L Y'K, .y
2 gt—te e T or i L )

A(t) =
TPy j=1 37 yTpy

yTPy
Since E{gi(t)} = E{fj{t)} = 0 by assumption, define the following four

functions:

(t) if g.(t) > 0 f.(t) if fi(t) > 0
a; () = GEE) 1T gyle) 2 ,  f.(t) = g Ir T 2 : (2-38a)
0 ifgltyco I 0 if f4(t) <0
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. g;(t) if g;(t) <0 £.7(4) = File) 1 f5(8) < 0 (2-38b)
% 0 ifggt) 20’ 0 if fy(1) 20

It then follows that

E{gy ()} = - E{;™(£)} = HE{|g;(t)|} (2-39)
and

ECF;T()) = - E4F,7(4)) = HEC|F5(2) ]} . (2-40)

Applying lemma 1 and condition (iii) of the theorem, one obtains from

equation (2-37)

R
E{A(t)}ilmaxwop-l ¥ -):1 %E{lgi(t)l}ﬂmax@tip-lj 'Amin[Ctip-ll} +
1:‘

L
- g HECF5(6) 1100, K P7T = A KeyP ™3 < 0 (2-41)
J:

as a stability condition which can be written in the form of inequality
(2=34), This prow)es corollary I.
The condition in inequality (2-34) is evidently satisfied if this

inequality is majorized further by noting that

#nax [Ctip-l-] B }‘min[ctip-lj} 2 45 Imax (2-42)
and

%{kmaxﬂ(tjp-:[ = Anin [Ktjp- it . lc‘jlmax ’ (2-43)
where I;JT.]max js the largest eigenvalue, in absolute value, of ]:Ch.P"IJ
and Ia;j'max is the largest eigenvaluesin absolute value, of ﬂ(tjP'J.

Therefore, the following corollary can be stated.
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Cor011arz 11. If the first two conditions stated in the theorem

are satisfied and if

=

L

L EHg (0 gy j;l ECF (801 oglnay < Anax[A?™ (2-44)

then (2-6) is almost surely asymptotically stable in the large.

Although the results obtained from the corollaries are not expected
to be as sharp as those obtained from the theorem, the corollaries are
more useful from the viewpoint of computation, specially for relatively
large systems,

It is observed that only matrix P, (which is only nxn) needs to be
determined in the case when Ko is not symmetric. For all cases where
the static part of the loading results in a symmetric Ko’ the Liapunov
matrix P is predetermined in terms of M, C0 and Ko by setting P2 =M,

The stability conditions of the theorem and the corollaries can be
expressed in terms of first and second moments of the random processes.
If the distributional properties of the coefficient processes are known,

the stability conditions can be represented in terms of the various

process parameters as long as the ergodicity property holds. For
example, if the coefficient process is known to be a Gaussian one, then

it can be shown that [17]

2
E{zz(t)} = E{zz(O)} = }?zzdF(z) = J“;(; )L exp[} Lgigli]dz (2-45)
. Lo d m)2 o
and
El2(t) [} = €C2(0) ) = [TIz]dF(2) = J’“’—J-"-I— expl:—%g—)— dz  (2-46)
-2 o

—en 0(217)%
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for - = <z < = where z(t) is the process, F(z) is its distribution
function, m is the mean, and ¢ is the standard deviation. The inte-
grals in equations (2-45) and (2-46) can be easily evaluated for m = O

to yield

E(z2(t)) = E(z%(0)} = o° (2-47)
and

E{)z(t) |} = £4]2(0) |} = ol2/m)? . (2-48)

Another example of a common coefficient process is what is called the

Rice noise, The simplified version can be represented by
z(t) = acos (wt + o), (2-49)

where a and w are real constants and ¢ is a random variable uniformly
distributed in the interval [0, 2m]. From equation (2-49) the follow-

ing quantities are easily obtained.

2 .on 2
E(Z2()} = E{22(0)) = -g; Io cosP(ut + ¢)do = > (2-50)
2n
e(]2(t)[) = £€]2(0) |} = L2 [ Jeos(ut + o) ]ds = 2L2l (2-51)

The coefficient processes do not necessarily need to be stochastic
in nature, they can be deterministic, as well. Take for example, the

function
z(t) = a sin{wt). (2-52)

where a and w are real positive constants, The E{zz(t)} and E{|z(t)|}

are obtained as follows
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2 r2nfw 2
E{z°(t)} = E{z%(0)} = 9251-; L sin?(yr)dr = 2 (2-53)
and -
_ wa (M 2
E{|z(t)]} = E{|z(0)]} = %F L |sin(wr)jdr = &2, (2-54)

Note that the means of the coefficient processes do not need to be

zero for the application of the theorem and corollaries., In this study,
the mean is taken equal Fo.zero for the matter of convenience.

In the next chapter, the stability theorem and corollaries are
applied to some well known problems to demonstrate the effectiveness of

the suggested method.



I1I. APPLICATIGNS

In this chapter, the theorem and corollaries are applied to several
examples in order to demonstrate the simplicity and usefulness of the
suggested technique. The examples are divided into two separate groups:
discrete systems and continuous systems,

The first three examples in the discrete section are scalar second-
order differential equations which can be used to model many systems
with single degree of freedom. The final example of this section is a
discrete mode] of an elastic column bearing a "follower" type stochastic
load.

In the continuous section, the stability theorem and corollaries
are first applied to a simply supported beam-column., In the second
example, a clamped-clamped column subjected to an axial stochastic Toad
is considered., For this problem, a finite element model is used to dem-
onstrate the application of the method to relatively large systems.
Following this example s the application of the suggested approach

to the viscoelastic "Beck's" column which involves follower forces.

3.1 Examples of Discrete Systems

First, the stability conditions for some well-known scalar equations
are presented. These equations have been considered by several authors

7, 11, 12].

Example 3.1.1. Cohsider the scalar differential equation
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x + 2cx + o+ £(t)]x = 0. (3-1)

With P2 = 1, simple computation yields

P = 4 (3-2)
Z 1

-2cw2 0
AO = ) (3'3)
0 -2z
and
-2rf(t) -f(t)
). -
-f(t) 0

It is seen immediately that P is positive definite and AO is negative

definite. With further computation, one obtains

-1
A+ ket = . (3-8
By + Ke) Ty | 2 - f(t) -4 2+ f(t) -

w tr

| [Fa@df + fe)y  Wf(et? - ()
- 20w

The two eigenvalues of the matrix (3-5) are
2 2,1 1"
] 27 2 .2 f(t) . fo(t)
11.2 R E m? + ;Z{Ew * e - Z ' 4z E] G

Taking the expected value of the maximum eigenvalue of equation (3-6),

setting it less than zero, and recalling that E{f{t)} =0, the theorem from

section 2.3 yields the following stability condition for equation (3-1).
ELF2(t)} < 4z%? | (3-7)

Inequality (3-7) is the best possible result as shown by Infante
[11]. Note that, unlike reference [11], no optimization procedure has
been used,

By setting f(t) = 0 in equation (3-6), the maximum eigenvalue of
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matrix AOP'l is obtained as
- 29 o
Anag BoP 1 = 20 + 22 ? + 1872 (3-8)

Next, evaluating the eigenvalues of matrix KtjP'1 where

~1 1 |°C -w 3.9
Ktjp = ;2—;-;-2— ’ ( -9)
2 A -
yield
- 2 B
W e S (3-10)

Then application of corollary I results in the following stability

condition for equation (3-1}.
ECF() ]} < 2c[0? + 227 - 262 (3-11a)

This is similar to the result obtained by Caughey and Gray [7]. The
result of inequality (3-1la) can also be expressed in terms of E{fz(t)}

through a direct application of lemma 2 as

2
E(F2(1)} < [ew? + 8% - 2t2] : (3-11b)

Corollary II yields the same stability conditions as corollary I. Fig-
ure 3.1 displays the results of the theorem and the corollaries given
by inequalities (3-7) and (3-11b), respectively. Whereas the theorem
yields the optimum result for the probliem, the results from the corol-
laries are not so sharp.

Example 3.1.2. Mow, consider the equation

i+ [r+ g(t))x + wix = 0 (3-12)

1
[ ]

with Elg(t)} =
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Following the same approach as in example 3.1.1 by selecting P2 =1,
the P and Ao matrices are the same as those given by equations (3-2)

and (3-3), respectively. Cy is giVen by

0 -zg(t)
Ct = . (3-13)
-zg{t) -2g(t)
Simple computation then yields
1 2wl glglt)  2z%w? - gg(t) (w? + 22?)

1
A +C]P e . (3-18)
LA w"+g &2+cﬂt) -9&JBC2+&3)-2aﬁ-45

The two eigenvalues of this matrix are

Moo = 2ot 2 W8+ D)+ acde(t) g (e) (2B WP)]F L (3-15)

Taking the expected value of the maximum eigenvalue of equation (3-15) and
setting it less than zero, the theorem yields the stability condition

22
E{q2(t)} < —EL (3-16)
R “’

for equation (3-12).

Inequality (3-16) does not provide the optimum stability bound
for equation {3-12), unlike the case in example 3.1.1. In the limit
when T + =, inequality (3-16) yields E{g®(t)} < 2 for w® =1, While
according to reference [}{], the optimum condition for m2 =1 is
E{gz(t)} < 4, The result of the present investigation is quite reason-
able since no optimization procedure has been used.

Setting g(t) = 0 in equation (3-15), the maximum eigenvalue of

matrix ADP'1 is once again given by equation (3-8). Matrix Ctip-l is

computed as
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c2 -c(w2 + Zr;zJ

Coi? ™ = 5 (3-17)
o+ -aw® - 3
The eigenvalues are
= L
M, 2 [P 1] = -1 t[(wz + 2.0/ (8 + ;2).]2 y (3-18)

Applying corollary I; from equations (3-8) and (3-18), the follow-

ing stability condition is obtained for equation (3-12),
E{]g(t) |} < Ra(o® + £2)% - 222 [W? + 22%]7® (3-19)

This result is slightly more restrictive than the optimized result
acquired using a corollary in reference [11] which is similar to corol-
lary I.

In this case, corollary II yields a different result than corollary
I. Using equation (3-8) and the eigenvalues given by equation (3-18),

the following stability condition is obtained from corollary II.
L
elg(t) 1} < [z - 26%(u? + 27/ 0 + (o + 26%)/(w® + 22))%] (3-20)

As expected, this condition is not as sharp as that obtained by corol-

lary I. The results are displayed in figure 3.2 along with the optimized

results of reference [JI].

Example 3.1.3. Consider a generalization of the two previous

examples represented by the differential equation,
% + [2z + g(t)]x + [0% + £(t)]x = 0. (3-21)

Using P2 = 1 as before; the P, AO, Ct, and Kt matrices are given by

equations (3-2), (3-3), (3-13), and (3-4), respectively. Further compu=-
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theorem and
reference [11]

— w — . corollaries I & II

m2 =1
P T )
] I ] | { ! | ’ f ]_ I
2 3 4 5 3
zetA ()
Figure 3.1: E{fz(t)} vs. Zeta (zg)
2 =1
refergice [11] oo
..—-""""—_--’_-._—-_”—-.
./'/
~
yd
4

theorem

—— = — = Corollary I

— i S . - corollary II

!_Lq_ j_ L | .

2 3 4 S B

Figure 3.2: E{gz(t)} vs. Zeta (g)
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tation yields

Bo * Cy * K™ =
o [-Zauz - of(t) + Palt)  2ruf - PRt - ra(t) (W + 2d) . (3-22)
Ll 2 -f () rrglt)  -ac -2aaf+ gR(t) - o(t) (2P + 32D

The eigenvalues of this expression are computed as
N o = =25-g(t) £ (o + ?)F [act + £2(t) - acPf(t) - 2zf(t)g(t) +
L ]
1.
+ g?(t) (o + 2t2) + ar’g(t)]" (3-23)

Taking the expected value of the maximum eigenvalue of equation (3-23) and

setting it less than zero, the following stability condition is obtained.
E{g(t) - F(t)12 + g2(t)(e? + 22)} < 4zl (3-24)

Mote, that if g(t) = 0, inequality (3-24) yields the almost sure asymp=-
totic condition given by inequality (3-7). In the event when f(t) = 0,
the stability condition for equation {3-12) is recovered from inequality
(3-24)., The stability condition of inequality (3-24) can be represented
in terms of E{gz(t)} and E{fz(t)} through an application of lemma 3 as

(w? + £2) Elg?(t)} + [ZELg2(t)Y? + ELF2()E]2 < acu?, (3-25)

Infante [11] pointed out that an optimum quadratic norm does not exist
for this problem, unless g(t) and f(t) are related.

Corollary I can be applied by using equations (3-8), (3-10), and
(3-18), Simple calculation yields

(w2 + 222)%E{|g(t)|} + EL|F(L)|} < 2z(w? + £2)% - 2% (3-26)
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Further majorization results in
L L
(o + 2V (2 22V HECalt) |3+ EQIF(L) |} <2g(l + D) F-280  (3-27)

as the stability condition from corollary II.

Example 3.1.4. As an example of a system with two degrees of free-

dom, consider the inverted double pendulum problem bearing a directional
stochastic load as shown in figure 3.3. In the figure, ¢1 and ¢ are
angular displacements, k is torsional spring constant, m is the mass,
and % is the length of each segment of the pendulum. For the propor-
tional constant, a <1, Py is a subtangential load., For a>1l, Py is a

supertangential load. And for a=0, Po is a conservative load. The

special case of this problem without damping and with Py 2P, has been

considered by Herrmann and Bungay [25] and Walker [23].

The equations of motion for the system can be written as

MG + Cod + K, + K(t)]e = 0 (3-28)

N
M= ml g (3-29)
1 1

2-70 a-yo-l
8 -1 1- (1-a)y,

where

(3-30)

2 > 0,

C, is taken to be proportional to the Ky OF ﬂﬂ+K0] matrix, me
k>0, and v, = Po/k. The matrix K(t) due to the stochastic part of

the load, p(t), is given as

-1
K(t) = E{}H[o ¢ } : (3-31)

~(1-2)
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Figure 3.3: Inverted Double Pendulum Subjected to a
Follower-Type Stochastic Load
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Let v(t) = 2p(t)/k. It is observed that for o # 0, the stiffness matrix
Ko is not symmetric and a symmetric positive definite matrix P2 must be
found in order to be able to apply the theorem or the corcllaries,

Choosing
P, = L (3-32)
results in

ol -“—’3&3 R L CACER S TR

2 0
-(5 = v )(2-7y) ¥ (2 - ) [8-(3-20)]

It can be shown that P2 is positive definite for ¥y < 2 and PzM'lKO is

positive definite provided
1+ (1-a)(y-3v)>0. (3-34)

For p{t) =0, this selection of P, provides a necessary and sufficient
asymptotic stability condition for Yy € 2 as shown in reference [?3].
For p(t) # 0, the stability is investigated in presence of proportional
damping.

Since the application of the theorem would be somewhat tedious for
this example, corollary I will be utilized instead, The bounds for the

almost sure asymptotic stability are found by using a computer program
based on corollary I, The details of the program are included in Appen-

dix A, The results are illustrated in figures 3.4 - 3,9 for various

values of Yb and o,
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Figures 3.4 and 3.5 show the stability bounds with Po = 0 under
symmetric loading condition, i.e., a = 0. Both figures show the effect
of the selection of PZ' Since for symmetric loading the stiffness ma-
trix is symmetric, the P2 matrix can be selected as M, For this case,
it was found that the selection, P2 = M, gave higher stability bounds
on E{|¥{t) |} than the selection of P, given by equation (3-22). Figure
3.4 shows this effect for CO proportional to the constant stiffness

matrix KO, while in figure 3.5, CO js assumed to be of the form CO =

t(M + K,). For P, =M, as ¢ becomes large, E{|y(t) |} approaches the
maximum constant load Ts allowed for the non-stochastic system with no
damping, This indicates that the present technique does not yield
unduly conservative results.

The next two figures, 3.6 and 3.7, show the stability bounds for
Py = 0 and p(t) being applied in the tangential direction, j.e., o =1,
As expected, E{|¥(t)|} is much higher for the tangential loading as com-
pared to the symmetric loading. Once again the selection of P2 = M
yields higher bounds when Co = CKO. However, if C0 = (M + Ko)' figure
3.7 shows that the choice of 92 has very little effect on the stability

bounds when the stochastic loading is non-symmetric. Also note, that

for P, = M, as ¢ becomes large, E{]v(t)|} approaches about 66% of the
maximum allowable constant load, B, © 2k/%, for the system [?3].

In figure 3.8, the stability bounds are shown for the case when the
stochastic loading is non-symmetric and the constant load Py = k7%,

(Yo = 1), Since ¥y =] makes the stiffness matrix non-symmetric, P2 can

not be taken as M and the form given by equation (3-32) must be used,
It is seen that for small ¢, the stability bounds for Gy = r(M+ Ko)

increases more rapidly to its peak value as compared to the case
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CO = cKO. The bounds for C0 = z(M + KO) are much higher for low ¢ than

for the case CO = gKO. As r gets large the reverse is true. For both

cases the stability bounds reach some asymptotic values as r becomes
large. This trend is also seen in the previous figures, Such a behavior
clearly indicates that the results of the corollaries are not very sharp
for large values of z.

Finally, figure 3.9 shows the relationship of the allowable values
of E{IY(t)[} and the constant load Y,. For this i11ustfatibn, a=1,

r =1, and Py is given by (3-32). The relationship is shown for both
cases of damping. Note, that at Yo = 0, there are two possible stability

bounds depending on which P2 is selected.
As seen from figure 3.9, E{|y(t)|} >0 as v, * 2 since P, no longer
remains positive definite at Yo = 2. A similar trend is expected for

alt ¢,

3.2 Examples of Continuous Systems

In this section, the application of the theorem and corollaries to

continuous systems is shown, Various approximation schemes are used to

discretize the continuous systems.

Example 3.2.1. First, consider a simply supported column subjected

to a stochastic axial load p(t). The nondimensional equation of motion

is given as [7]

W dw 34w 3w
¥y Iy ()0, 0<x <1, (3-35)

where p(t) is the axial load, T is the damping coefficient (2 > 0) and

w is the transverse displacement. The boundary conditions are
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2 2
w(0, t) = 23 (0,t) = w(l, t) =5 (1,t) =0 .  (3-36)
ax BX

Satisfying equation (3-36), the displacement w{x, t) can be assumed

of the form

oo

w(x, t) = E am(t)sin mmx . (3-37)
m=1 :

Upon substitution of eguation (3-37) in (3-35), the following set

of ordinary differential equations are obtained,

. * 4.4
a, + ZCam + Ep ™ - mzﬁzp(t)]am =0, m=1, 2,... (3-38)

This is of the same form as example 3.1.1 for each m. The terms m4n4

2 and f(t) in eguation (3-1), respec-

and (-mzﬂzp(t)) are equivalent to w
tively. Therefore, it follows that the almost sure asymptotic stability

condition for each m from ineguality (3-7) is
E{p(t)} < az? . (3-39)

For corollaries I and 11, the stability condition from inequality (3-1la)
becomes
E{lp(t)[} < —L—[Zc(m41r4 + ?;2)lé - 252] (3-40)
men2
for each m. This implies that as long as condition (3-39) or (3-40) is
satisfied, motion in all modes will be almost surely stable in the large,

Example 3,2.2. In this example, the stability of a clamped-clamped

uniform column subjected to an axial stochastic load Py * p(t), as
shown in figure 3.10,1is investigated. The presence of external viscous

damping is assumed, The equation of motion and boundary conditions are
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2 - 4 2
g+ &yl B+ p(e)]2 =0 (3-41)
at at ax4 3x2
with
vix, t) = vlx, t) . 0 at x =0, L, (3-42)

ax
where m, ¢ and EI are mass density, coefficient of viscous damping and
flexural rigidity, respectively.

Using Hamilton's principle and discretizing the spatial properties,

equation (3-41) can be replaced with a system of ordinary differential

equations
M&+C&+E<+KG(t)]q=o : (3-43)

The axial load is introduced through finite element method using the
concept of geometric stiffness matrix, KG(t), associated with uniform
elements of length & (figure 3.11). Mass, elastic and geometric stiff-
ness matrices for the element are given in Appendix B. The gleobal sys-
tem (3-43) is found from the element properties and the transformation
matrix discussed in reference [26].

For this example, the finite element matrix is obtained by dividing
the column into four elements of equal length., The transformation
matrix for this particular problem takes the form of an identity matrix
because all the elements are in alignment with each other, and the glo-
bal and element coordinate systems are all parallel to each other. The

global matrices, in general, are given by



p,+ plt)

7 7 T

Figure 3.10: Clamped-Clamped Uniform Column Subjected
to an Axial Stochastic Load

Figure 3.11: Element Geometry and Degrees-of-Freedom
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Applying the boundary conditions giﬁen by (3-42), the global matrices

K,KG(t), and M reduce to the following forms because the rows and col-

umns corresponding to the fixed ends (1,2,9,10) must be eliminated.

—

24

-12

o O oo O O

(3-47)
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12 § L 0

s 0 -z 15 ¢

a1 1

— g, wemm— L e— 0

O 1% -5 -3 ©¢
81 12 4 68 1
> sn(t) T "10 5 "5 10

G( )=__________0 1 L 0 i _1_ _]:_ (3-48)

ko 10 " 30 15 -10 ~30
o o -8 .1 12 4

5 10 5
11 4
0 0 & -3 O q

m 54 13 312 0 54 -13
M= — (3-49)
420 =13 <3 0 8 13 -3

0 0 54 13 312 0
0 0 -13 -3 0 8

As seen, with 4 elements and the given boundary conditions, a 6 x 6
order system for equation (3-43) is obtained. The damping matrix C is
taken proportional to either the mass matrix M, or the stiffness matrix
KO, for which the element matrix kO is defined in Appendix B.

If p(t) = ¢ = 0, the static criterion of stability can be used to
find the critical load p..» The static criterion of stability [27]

states that for a system of the form
MX + Kx = 0, {(3-50)

where M and K are both constant matrices, the critical value of the



44
parameter in matrix K can be determined from
det(M"XK) = 0 . (3-51)

Applying this criterion to the system at hand yields a critical load
of Bgs ™ 2.486(%%) which is 1n2errar of less than 1% when compared with
the exact critical value of (%t)(f% . This indicates that a four ele-
ment model is reasonably accurate for the study. ‘

The Liapunov matrix P, for this problem, has a dimension of 12 x 12
and hence the possibility of application of the theorem is virtually

ruled out. The stability conditions of the corollaries can be obtained

rather easily from the general computer program given in Appendix A.
Since the stiffness matrices K and KG are symmetric for all Po? matrix
P2 is taken as M. The results are shown in figures 3.12 and 3,13.

Figure 3,12 shows how the allowable expected value of the stochas-
tic load |p(t)| varies as the constant load Po increases to Per The
results of this figure are based on a damping matrix C proportional to
the mass matrix, i.e., C = M. Three different values of Z are selected
for illustration.

As seen from figure 3.13, an increase in T does not always increase
the bound on E{|p(t)]}. This figure also shows that E{|p(t)|} approaches
an asymptotic value as T becomes 1arge. The solid curve is for the case
when C = CKO, while the lower curve is for the case when C = ZM., Such
behavior of E{|p{t)|}for large ¢ is attributed to the inherent charac-
teristics of the corollaries. Note that corollaries I andII give the
same results.

Example 3.2.3. As the final example, a viscoelastic cantilever

column subjected to a stochastic follower load, as shown in figure
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Figure 3.12: E{|p(t)[} x (2%/EI) vs. (p e°/EI) for the Case C = oM
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Figure 3.13: E{|p(t)|} x (iz/EI) vs. Zeta (z) for the Case p, = 0
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(3.14), is considered. Presence of external viscous damping is assumed.

The nondimensional equation of motion and the boundary conditions are

28]

and
w(0,t) = Eﬂ(o,t) = 03 EE%(l,t) = ai!(l,t) = 0, (3-53)
X 3x ax3 '

where the follower force consists of a static and dynamic component, p
and k(t), respectively. k{(t) is a scalar stochastic process. The damp-

ing on the system is represented by an external damping factor G and a

Ke]#in-type material dissipation factor R. This problem has been con-
sidered by Parthasarathy and Evan-Iwanowsk i [is].

Following reference [28], a two term Galerkin solution is intro-
duced in order to reduce equations (3-52) and (3-53) to a system of two

ordinary temporal differential equations. For this purpose, let
w(x,t) = up(thwy (x) + uy(t)wy(x), (3-54)

where wl(x) and wz(x) are chosen to be the first two eigenfunctions of
the free vibration of a uniform elastic cantilever beam, These are

giVen by

wl(x) = 4,148(cos 1.875x - cosh1.875x) -
- 3.037(sin 1.875x - sinh 1.875x) {3-55)
and

wz(x) = 53.640(cos 4.694 x - cosh 4,694x) -

- 54,631(sin 4,694 x - sinh 4,694x) . (3-56)
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Figure 3.14: Viscoelastic Cantilever Column
Subjected to a Stochastic Follower Load
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Galerkin's method requires

1]

L}L(w)wj(x)dx 0; =1, 2, (3-57)

where L{ ) is the linear operator,

2 4 5 2

L()=3(l+99()+3”+R3(3+[§J+k(t)]——)-3( (3-58)
atl at ax4 atax 3x2

and w is given by equation (3-54), After the integrations in equation

(3-57) are carried out, the following system of two ordinary temporal

differential equations is obtained in terms of the vector uT = {ul, “2}'

1 . G+a,R 0 i a, *a,ptask(t) a,p+ask(t)
( }u+ [ 4 ]u+ [1 2 2 3 3 u=0,
0 1 0 G+b,R byp+bgk(t) by +bop+bok(t

(3=59)
where ay = 12.359%, a, = 0.8716, ay = -151,599, 3y = 31, b1 =485.4811,
bz = -13,2919, b3 = (0,145, and b4 = bl‘

It is observed that the constant part of the stiffness matrix is
not symmetric and a symmetric positi#e definite matrix PZ must be found

such that PEM"IK0 also remains symmetric and positive definite.

a g
Py= | 1 , (3-60)
g Qg

al(a1+a2p) +gb3p a1a3p+g(b1+b2p) (3-51)
g(al+azp) +0‘.2b3p ga3p+a2(bl+b2p)

Let

then

-1 _
P2M Ko =

From the symmetry requirement of (3-61), the condition on g is

(ozla3 - azba)p

(3-62)
(al - bl) + (.-12 - bz)p
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At this point, P2 is normalized such that Bylly = 1 and g and a,
satisfy

From the conditions of equations (3-62) and (3-63),

1 _ 9.377p ]
32,333 14.164p - 473.120
P, = ) (3-64)
- 9.377p 32,333
14.164p - 473.120

P2 can be shown to be positive definite for p < 20.095. The require-
ment of PZM"lK0 to be positi#e definite is satisfied as long as the fol-

lowing conditions hold:
al(al t agp) + gbsp > 0 (3-65)

and

(1 -92)[Za1 +a,p)(by + byp) - a3b3p?] >0 . (3-66)

It can be verified that these inequalities are satisfied for p < 20.095.
Recall that p = 20.095 is precisely the critical flutter load for an
elastic column without any external damping.

For this selection of Pz, the results from either of the corollar-
ies are shown in figures 3,15-3.20 for some typical values of system
parameters, The range of damping parameter G in figures 3.15 and 3.16
is purposefully kept re1atiﬁe1y small so that an effective comparison
can be made between the present results and those obtained in reference
[15:] through an iterative optimization scheme. It is seen that

E{|k(t)]} appears to be increasing linearly with increase in G. However,
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it is clear from figures 3.17 and 3.18 that such is not the case as G
becomes large. As seen, the trend is the same for both selections of
p. The araphical results presented in reference [15] are rather mis-
leading in this respect. Some sample results are also presented in the

following table along with results available in literature.

Sample Results for E{|k(t)]}

System Parameters E{]k(t)]}(lo'z)
G R p Corollaries | Optimized Results | Caughe &*
(10-3) I and II of [15] Gray (7]
0.1 0.0 6 6.38 8.565 0.01
0.1 0.0 8 6.21 7.95 0.02
0.1 1.5 2 7.63 11.39 0.01
0.1 1.8 6 6.29 9.85 0.04
0.1 1.5 14 0.80 | 3.99 0.04

*  As reported in reference [15].

Note that there is no Kelvin-type material dissipation (R=0) in the
systems represented in figures 3.15-3.18.

From figure 3.19, it is seen that E{|k(t)|} = 0 as the static load
p approaches the critical value of 20.095. Partial results available
from reference [}5] are also represented on the graph. Figure 3,20
shows a similar trend for R = 1.5 x 1073, In this case, E{|k(t}|} + O
before reaching the critical value. This is probably due to the desta-
bilizing nature of the internal damping coefficient [2§].

Figures 3,15 - 3.19 and the data presented in the table for R = Q

show that the present analysis yields values for E{|k(t)|} which are
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74% (or better) of the optimized values reported in reference [15]. In
addition, for R # 0, the results are not as sharp, which may be due to
the destabilizing nature of the internal damping coefficient R as men-
tioned before. The consistent lower values for E{|k(t)]|} are expected

since no optimization scheme was used.

In the following chapter, the present analysis is extended to pre-

dict the response bounds for forced motion of discrete linear systems.



IV, RESPONSE BOUNDS FOR FORCED MOTIONS

The determination of conditions for stable operation of engineering
systems in the presence of dynamic loads or perturbations is an important
problem in analysis and design. The mathematical model for such systems
generally possesses an equilibrium state when it is not dynamically per-
turbed, which is the steady-state point of operation.

The theorem derived in chapter Il yields sufficient conditions for
the almost sure asymptotic stability of linear systems with stochastic
coefficients and systems subjected to dynamic loads or perturbations which
do not eliminate the existence of the equilibrium state. In this chapter,
the theorem is extended to yield the bounds on the motion of systems in

which the perturbations lead to forcing terms in the equation of motion

and no equilibrium exists., A column under dynamic transverse load is such
an example. Related studies have been undertaken by Caughey and Gray [?J.
Plaut and Infante [29], Plaut [30], and Holzer [31, 32]. In the following,
the response bounds on forced motion for a class of systems, described

by a set of second order differential equations with time dependent param-
eters, are derived. The analysis is based on the development suggested

by Plaut and Infante [29]. However, unlike reference [29], the need for
optimization is completely eliminated. The perturbations are considered

to be of an arbitrary nature,
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4.1 Analysis of Response Bounds

Consider
ME+ g+ C(eldi+ R +k(tdx = Q(t); x(0) = xg, x(0) = X, (4-1)

where the right hand side Q(t) is now an n vector which describes the
effect of the dynamic loads or perturbations on the system which cannot

be represented in the stiffness and damping matrices, K(t) and C{t).

The nonzero elements of Q(t), K(t), and C(t) are assumed to be continu-

ous functions of an unspecified nature. All other system matrices are
assumed to be the same as given in chapter II.

For equation (4-1), the equilibrium configuration x = x = 0 of the
unperturbed system exists only when Q(t) = 0. Therefore, it is desired

to determine the appropriate bounds on the vector x(t).

Consider the Liapunov function
T
V(iy) =y Py (2-8b)

where the matrix P is given by equation (2-13) and the 2n vector y is
defined in chapter II.
Let

Uly) = (v(y)¥e = {yTpy¥® | (4-2)

The positive root of the scalar function represented by equation (4-2)
has all the properties of a norm. This root is used as the measure of
the magnitude of the vector y. Taking the time derivative of V(y) and
evaluating it along the trajectory of equation (4-1) yields (the calcu-

lations are similar to those giﬁen in sec. 2.3)
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Viy) = ¥y By + ¢ KDy + 2y"Pa(t), (6-3)
where
q(t) = ---9---, (4-4)
mla(e) |

and P, A, Cy, and K are defined by equations (2-13), (2-12), (2-23),
(2-24), respectively in chapter II. Next, let Amax(t) be the largest
eigenvalue of the matrix {E\o +C, o+ K;_IP"]‘} and define u(t) by

u(t) = {a'(t)Pq(t)}T> 0 . (4-5)
Due to Schwarz inequality, the last term of equation (4-3) satisfies

yTPq < {_yTP_y};E{qT(t)Pq(t)};E = p(t){v(y) e, (4-6)

Then, from the results of equation (2-27) and (2-28), obtained in chapter

11, and the above result, equation (4-3) yields the following inequality,

V() < A (DV(E) + 20(t) () 12 (4-7)

Using equation {4-2), inequality (4-7) becomes

U(t) <o __ (£)U(t) + w(t) . (8-8)

max

Integration yields

t
U(t) = U(U]expEIl (T)dﬂ +
(0]

max

t t
+ Iou(ﬁ)expﬁélmax(t)dﬂds (8-9)
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with U(0) = {y(0)Py(0)}2.
The inequality (4-9) gives the upper bound on the norm U(t) of the

system represented by eguation (4-1). This bound is in terms of the
time integrals of lmax(t) and u(t), which are functions of the dynamic
loads and/or perturbations, Using lemma 2 on inequality (4-9), the

effects of p and Amax can be separated as

t t Lit tA I
U(t) <U(0)exp% fo"max“)dﬂ + l[o p(8)ds joexp [jo .max('r)d't]dﬁ
(4-10)
For the special case of g(t) = 0, the bound becomes the same as

that derived in chapter II. If C(t) = K(t) = 0 instead, this leads to
t
U(t) < u(@exp[At/2] + | u(B)exp[h (t-8)/2] 8 (4-11)
0
from inequality (4-9), or

t 2 3
u(t) cexnd t/Z{u(o) + ”ou (B)dB(l-exp[-Aot-])/AJ } (4-12)

from inequality (4-10), where XU is the maximum eigenvalue of the con-
stant matrix AOP'I.
The results can also be established in terms of the maximum values

of Amax(t) and p{t). For this purpose, let

lmax(t) < Ay u(t) < wys for 0 <t < t (4-13)
and

Anax(t) = Xgs ult) = 0; for t>t; . (4-14)

max(

For deterministic Q(t), an estimate of My n inequality (4-13) can be

obtained by defining
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sgplqij(tll Sy for0<ct<ty

(4-15)
g{t) =0, fort> t1 "
Then it follows from equation (4-5) that
W, = oy Pg,T* . (4-16)
For stochastic Q(t), definition (4-15) should be modified as
a.s. sua(s:phﬁ(t)[) Sqy, foro2tsty (4-17)
q(t) =0, fort> t, . (4-18)
For stochastic C(t) and K(t), it suffices to require
ED k() 2 forostcst, . (4-19)

Application of inequality (4-13) and (4-14) to inequality (4-9) yields

the following bounds.
u(t) < [0(0) + 2uy A JexpByeral - 2m/A,, foro st sty (4-20)
and

U(t) <U(0)expfa(hyty + Ao (t-ty) )] + 2(exp Dyyty /2] = D/ Ay for t> 1y
(4-21)
If lo < 0, the bounds given by inequalities (4-20) and (4-21) reduce to

u(t) < 2(exp Dyt /Z) - Duy/r, (4-22)

when t = =, If instead, AM <0 and tl = o, that is the time dependent
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terms do not vanish, the bounds then reduce to

U(E) < ~Zuy/n, (4-23)

when t + o,

The bounds derived in terms of the norm U(t) depend on the matrix
P. This matrix is given by equation (2-13) in chapter II in terms of
the constant parameters of the system. An optimization scheme as used
in reference [11 or ZQ] is not needed to minimize the upper bound of the

desired form.

4.2 Applications

In the following, some typical examples are presented to illustrate
the method. Whenever possible, the results are compared with the bounds
available in the literature.

Example 4.2.1. Consider an inverted pendulum, which may be used to

model a chimney [3{] , shown in figure 4.1. The support has arbitrary
movements both in the vertical and in the horizontal directions. The

mathematical representation is given as
X + 2k + (2 + £(t))x = h(t), (4-24)

where 2z = ¢/(mL) represents the damping and wz = [Ik/(mm)) - g] is the
natural frequency of the constant undamped system. The other parameters

are defined as in the following.

the gravitational acceleration

the mass of the system

the torsional damping coefficient

the torsional stiffness coefficient

the length of the pendulum

the motion of the support in the vertical direction
the motion of the support in the horizontal direction
the angle of rotation measured from the vertical

T ~h
X ¢t

—— s RO = Rie]
w . uwn nnnu
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Notice that for h(t) = 0, equation (4-24) is the same as equation (3-1).
Vector q(t), defined by equation (4-4) in the previous section, takes
the form

0

q(t) = . (4-25)
h(t) .

Using the calculations done in example 3.1.1, A___(t) is given by equation

(3-6) as

max

2 , 2 A
2 f{t) . f7(t
m”“)=QC+E§%?$5E'A§y+4;ﬂ o

With P given by equation (2-13}, np(t) is easily computed as
u(t) = {qT(t)Pq(t)}: = [n(t)| . (4-27)

Substitution of equations (4-26) and (4-27) and the initial condi-

tions, x(0) = X, and x(0) = ,1nto inequality (4-9) yields the bound

2,020 2 L0 o .29k oot 22 T, (%)
U(t)if(w +2¢ )xo +2cx°x0+xo] exp[;fo[zc-}m2+cz)si Ll 2 +

, %&ﬂ];ﬂd‘] +L:|h(3)|exp%j: [-2;+ 2+;2)2E f(T f4(';)] Jd{‘dﬁ

T
(4-28)
Since
V(y) = V(%) = (ox + X)% + (0 + g2)s2 (4-29)
it follows that
(o + X% <v(t) = W(e)1? (4-30)

from which the bound on x(t) is determined as
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Ix(t)] < (w? + £2)~Ru(t) . (4-31)

To avoid complication, consicer the case where f{t) = 0 and the ini-

tial conditions are zero, x(0) = x(0) = 0. Then, from inequalities (4-28)

and (4-31), the response bound beccmes

t
X(0)] < (w® + 227 [n(8) Jexp [{-c + )(t-8)]ds . (4-32)
Q

(w2+‘:)2
For the special case where there is also no damping (z = 0), the

bound on x(t) reduces to
1 t
Ix(t)] <& [ In(x)far . (4-33)
0

If h(t) is stochastic, then inequality (4-33) can be written in terms of

the expected value of |h(t)| as

Ix(t)] < [§ Ecine) 3]t "

with probability one.

Instead, if h(t) is deterministic, the inequalities (4-32) and (4-33)
can be directly integrated to yield the response bounds. As an example,
let h(t) = A cosat, A > 0. Noting that |h(t)| <A for all t, inequality
(4-32) yields

t
Ix(t)] < (of + £2)"% j Aexp[(-z+ )(t-8)]d8 .  (4-35)
0

(f + c“‘);E

Upon integration,

2
Ix(t)] < [c(wh;?v [1-exp[( C*"—fzz—)g)ﬂ]- (z>0), (4-36)
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which as t = «, the bound becomes

[x(t)] < 2 s (z>0). (4-37)
E;(wZ + ‘:2);2 - CEJ

For the undamped system, the bound from inequality (4-33) becomes

Ix(t)| <&t . (4-38)

Next, consider the situation when h(t) is known to be a Gaussian

process with zero mean. The probability density function p is given by

B7]

p(h) =

L oo [ 22 @ <h<w (4-39)
of2n) o2 ’

20

where g is the standard deviation of h, Assuming the equality of time

averages and ensemble averages stated in definition 2 of chapter II, the

response bounds for equation (4-24) can be determined through the distri-
butional properties alone. To obtain the response bound in terms of the

second moment of the h-process, inequality (4-10) with (4-31) can be used
to yield
2, 2ot o g 5
x(t)] < (w®+&%)7%t[ h (B)dBY™{] exp[ 2c+—-§—2-1,-)(t-8)__]d3} ,
0 0 (w® + <)

(4-40)

which can be rewritten as

% b
|x(t) | <(w +z%) [E{h (t)1t] [I exp[ 2g+_..2..;§.;ﬁ)(t-g)]dsl
(4-41)

E{hz(t)} is easily calculated as

E{he(t)}= E{hZ(0)} = j“ h2p(h)dh = o2 . (4-42)
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With this result, upon integration, inequality (4-41) becomes

2 ]
Ix(t)] < o : (1 - exp(J-2g +—22r)t])
(W2 + 2y (2 - —2E5 ) (2 + 20
(w? + %)%

(4-43)
with probability one.
For 7 = 0, the response bound is determined from inequality (4-34)

as
x(t)| < (ofw)(2/m)% (4-44)

with probability one. Note that the following relationship has been

used.
ECIn(t) [} = E{|n(0)|} = [:lhlp(h)dh = o(2/m)% (4-45)

Example 4.2.2. As a second example, consider the nondimensional

equation for the displacement, w(x,t), of the simply supported beam-
column, as discussed in example 3.2.1, subjected to a distributed trans-
verse load. This is shown in figure 4.2. The equation of motion now

takes the form

2 4 2
g-t-g v 2t gf g+ alt) =5 3(ut) (4-46)
X X

for 0 < x <1, t >0, where p(t) is the axial load, d(x,t) is the distri-
buted transverse load, and ¢ is the damping coefficient. The boundary

conditions are

2 2
w(0,t) = ‘:“} (0,t) = w(1,t) = i{?—‘ (1,t) =0, t> 0, (3-36)
" |
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As in example 3.2.1, writing the displacement in the form
w(x,t) = 21 a (t)sin mmx, (3-37)
m=

leads to the set of ordinary differential equations
i +2za + [ntnt - wladp(t)] a = h(t), m=1,2,..., (4-47)
where the additional term h(t) is defined via the Fourier integral as
1-
h(t) = zj‘ g{x,t)sin mmx dx. (4-48)
0

Letting m4w4 = mz, mzwzp(t) = -f(t), and am(t) = x(t), equation

(4-47) reduces exactly to the same form of equation (4-24) for each m.
Therefore, it follows that the bound on the modal amplitude, am(t), can

be written directly from inequality (4-31) as
lag(t)] < (i + 222 uy) . (4-49)

For the special case of no axial load (p(t) = 0), zero damping

(z = 0), and zero initial conditions (am(O) = 5m(0) = 0), leads to the
bound

|am(t)| 5-__2?_2_ J'tljlﬁ(x,r)sin mrx dx|dt , (4-50)

m°n" ‘o %

which is of the form of inequality (4-33). As shown in example 4.2.1,
inequalities (4-49) and (4-50) can once again be specialized for particu-
lar forms of p(t) and g(x,t). Inequality (4-50) is the same as the opti-
mized results obtained in reference [29].

Example 4.2.3. Finally, consider a three-story frame modeled as a

three degree-of-freedom system (shear-beam idealization) represented as

Y
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MX + Kox = q(t) , (4-51)

where M = m[I], m is the mass coefficient, H} is the identity matrix,

2 -1 0
K=k | -1 2 -1, (4-52)
0 -1 1

with k as the stiffness coefficient. Following Holzer [31], the tran-

sient lateral load is assumed to be of the form

a(t) = &f(t) , (4-53)
where
ft) =f, 0<t<tys ;,-,“; ; (4-54a)
f(t) =0, t>¢t,, (4-54b)
0.328
o, =m™® | 0.501 (4-55)
0.737

which is the fundamental modal vector of vibration normalized with respect
to M, and 0, - 0.«1,45(%-);5 is the fundamental circular frequency. The ini-
tial conditions are taken as x(0) = 2(0) = 0. Because K0 is symmetric,

P2 is selected as M. Then, from equation (2-13), matrix P takes the form

" [KD; 0
2 | mecdeaa w
o E M] . (4-56)
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Since there is no damping in the system, it is seen, from equation (2-12),

that matrix Aos 0. Hence Ags the maximum eigenvalue of the AOP'1

matrix, is identically zero. For this example,equation (4-4) takes the

form
0
0]
1 0
g{t) = m*f(t) . (4-57)
0.328 ‘
0.591
0.737
Upon simple calculation, one obtains
= [ql .
u(t) = {q (t)Pq(t)}* = |[f(t)|/m . (4-58)

Substituting the results from equation (4-58), Ay = 0, and U(0) = 0 in

inequality (4-11), the following bound on U(t) is obtained.

t t
U(t) 3J p(B)ds = j (|1f(8)]/m)dB (4-59)
0 0
Or
fo
u(t) <=t for 0<t< td (4-60a)
foll
U{t) < =— for t> ty - (4-60b)
“mw
: §
But from the definition of V
_ - T, T o
V(y) = V(x,X) = x Kox + x'Mx, (4-61)

it then follows that

XK x < V(x) = W) . (4-62)
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Therefore the response bound on x can be represented in terms of the

strain energy norm

f

T 0\2,2

xKx < (=)t for 0<t<t, , (4-63a)
f o

T 0,2

X KOX i(ﬁ_u;l-J ) for t > td . (4-63[3)

Inequality (4-63b) is the same as that obtained by Holzer [31] for t > 0.
It is clearly seen that the bound given by the combination of inequali-
ties (4-63a) and (4-63b) is superior to that obtained by inequality
(4-63b) alone, Moreover, the result of reference [31] was obtained via
an optimization procedure employing the Lagrange multiplier technique
which can be time consuming in some cases. As pointed out earlier, no
optimization is needed in the present analysis. Observe that the method
de@e]oped in this study is not restricted to undamped systems while such
is the case for the method suggested in reference [3I].

In order to get an idea of the sharpness of the bound obtained by
the present method, the actual displacement vector x(t) of the system
(4-51) is computed by performing the modal analysis. For this purpose,

first the eigen§a1ue problem
Mful o =k o (4-64)

is solved. ® is the modal matrix and E‘mﬂ is the diagonal matrix con-

sisting of n eigenvalues, w?. Substituting

x(t) = ¢ n(t), (4-65)

where n is a vector consisting of a set of time-dependent generalized

coordinates, into equation (4-51) and premultiplying by ¢T yields a set
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reference [31]
L ™S

<— present analysis

e

actual response

g

/N /

/ \, /

Figure 4.3:

Response Bounds for Example 4.2.3
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of n uncoupled differential equations where ¢ is normalized with respect

to M. Solving the uncoupled differential equations, the following dis-

placement vector is obtained.
fo¢1
m wy’

x:

(1 - coswlt), (4-66)

where &. is the modal vector associated with the fundamental frequency

1
Wy . From this equation it is seen that the maximum displacement vector

is given by
0.74
2fo
 — T 1.33} . (4-67)
1]1.66
Further calculation yields
f
T _ ™o, 2
R Kc Rows ™ 0.41 (Eﬁi? . (4-68)

It is observed that the bound given by inequality (4-63b) is somewhat
larger than that of the maximum displacement of the system. Although

the bound is not close enough, it may prove useful in engineering analysis
for a number of problems, such as, to determine whether a dynamic analysis
is required, or to estimate the dynamic load for design purposes. The

results are shown graphically in figure 4.3.



V. DISCUSSION AND CONCLUSIONS

An attempt has been made to present a simple computational scheme
to guarantee sufficient conditions for the almost sure asymptotic sta-
bility of systems described by a set of second order differential equa-
tions with stochastic parameters. A theorem and related corollaries,
directly applicable to such systems, have been presented through an
extension of the approach suggested by Infante [1ﬂ . As Tong as the
moments of the time varying parameter (E{|f(t}|}, E{fz(t)}, etc.) exist,
the stability bounds can be easily determined from the theorem and/or
the corollaries. The technique is not only applicable to stochastic
systems but also to systems with deterministic parameters, as pointed out
in chapter II.

Unlike pre#ious investigations, a Liapunov function, in terms of
parameters constituting the constant part of the system, is proposed,
This results in a considerable reduction in computational effort since
one need not solve the resulting Liapunov matrix equation which can be
quite cumbersome for large systems. For systems where the stiffness
matrix Ko is symmetric, the Liapunov function is predetermined in terms
of constant matrices M, Co, and Ko‘ For systems with non-symmetric Ko’
one has to findasatisfactory matrix P, which involves only n(n+l)/2
unknowns. The suggested form of the Liapunov matrix is especially use-
ful when the damping is proportional to either the mass and/or the stiff-
ness matrix.

In chapter III, illustrative examples show that the method yields
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stability bounds of practical significance and are comparable to the
optimum results. Since the method does not require implementation of
any optimization procedure, it is much more economical in terms of com-
puter time. To illustrate this point, following reference [}5], it is
observed that the complete optimization process involves a total of 10
Qariab]es for the example problem 3.2.3 which has only two degrees of

freedom. For example 3.2.2, which has six degrees of freedom, a total

of 78 variables have to be optimized.

Perhaps, the most important feature of the suggested technique is
its ability of handling systems involving follower forces in a rather
simple fashion and still produce results which are quite sharp.

The theorem is extended in chapter IV to determine the response
bounds for systems with dynamic loads or perturbations which cannot be
represented in stiffness and/or damping matrices. It is found that if the
max imum eigenQaTue Y. (t) for the system is negative and in addition
if the norm of the forcing term is bounded, then the bounds reach a con-
stant value as t approaches =, The bounds are cbtained in terms of the
forcing function and system parameters. Unlike previous studies, no opti-
mization is required. The results compare Qery well with those obtained
via optimization procedures.

However, careful examination reveals that the method may not be applic-
able to all time-dependent systems. In order to apply the theorem success-
fully, it is observed that matrices Ao and P must remain negative and posi-
tive definite, respecti#ely. These conditions may not be satisfied for
certain systems although they can be proven asymptotically stable by other
technigues. Since a Liapunov function yields only sufficient conditions

for stability, this behavior is not unexpected. In all such cases, the
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suggested form of the Liapuno# matrix P cannot be used to determine the
stability criteria.

In conclusion, a Liapuno# technique is suggested for studying the
almost sure asymptotic stability and response bounds of a class of dis-
crete Tinear systems with stochastic parameters. The approach is simple
and #ery useful from the viewpoint of computation, specially for systems
with large number of degrees-of-freedom. The method can be applied to
systems involving forces of arbitrary nature and yields results of prac-
tical value.

Whereas this in@estigatiun has been primarily devoted to the study
of discrete or discretized systems, there exist studies which directly
deal with continuous systems 1333. While such studies have their merit,
any contribution in the study of large discrete systems is of much signifi-
cance from the practical viewpoint.

It is needless to say that there yet remains much to be accomplished.
The stability bounds may be 1mpro§ed significantly by taking into account
for more statistical properties of the processes. Some results of this
nature are already available for second order scalar equations DA, 35].
However, the problem of finding the necessary as well as the sufficient
conditions for stability still remains unsolved in most instances. Except
for systems driven by white noise, these conditions have not yet been
established. The subject of sample stability continues to pose a diffi-
cult challenge.

Some suggested areas for further investigation associated with the
present study seem to be the following:

-1

1. Introduce a scaling parameter a in P3 such that P3 = aPZM CO SO

as to possibly obtain the optimum Liapunov matrix associated with a par-



ticular system,
2. The distributional properties of the coefficient processes

may be exploited to yield improved sufficient conditions.
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Appendix A

A COMPUTER PROGRAM
BASED M COROLLARIES I AWD II

This program determines the almost sure aswvmptotic
ztability of lingar dizcrete systems described buw a =et
of second order differential squations with stochastic
paramsters wusing corallaries I and II. It finds the
stability canditions when only one of the matrices, Jdam-

(E i B VR I S VL 0 B
oS S D 0D S

25 ping or 3tiffress, is multiplied by a "scalar" stochastic
1@ process,

114 After defining all the necesszarwy matrices, ths pro-

128 gram calculates the sigenuvaluss of the P matrix to give a

check for positive definiteness of matrix F.  Then, it

—
03
=

148 finds the sigenvaluss for the RodiF_inverze) matrix and the
1548 CticP_inversel or Kt j(P_inwversed matrix of the particular
168 problem, WMzing theze =zigenvaluss in the corollaries, the
178 ztability conditions are found.

128 Thiszs particular program generates the stabilitw con-
198 ditions as a function of the damping coefficient Zeta. The
258 My, Ko, Ci, Kj, and F2 matrices are ¥fed into the computsr
218 from the kevboard., The Co matrix elements, as functions af
228 Zeta, must be manually insertsd into the program betwsen
238 lines 1838 and 11898, The output of the program is the sta-
244 Bility canditions of corollaries I and I1 for sither

254 Ei{|guty|r or EX|FCty|r at the walue Zeta.

254

278

2348

29 OPTIOM BASE 1

zee GCLEAR

318 FRINTER IS 1§

328 FIZED 2

[, T Y SRR A SO i I S R A R VX P SR TS OO

REAL M{1@,183,Cod1@, 182, Cilla, 180, Kadl8, 182 Kjo1@, 14)
REAL P1¢18,18),P2¢1@, 18> ,PB(iB, Yy ACRLEA, 200, KLpl2a, 28
REAL Itpl&@,aﬁ) M1nut1@,1a,,P 8,189 ,P1k¢18,185,2019, 18
REAL D<(18,183,0018, 183, A1018, 18, ﬁ11l1a 187, G118, 18)
RERL FPlcilad, 1@},511 c1@, 187, Mk](lu 18, nkf1a 189 Fke1e, 1@
REAL P9mkjk18 IBD'PEmkgttlw 1g) ,Ktbb« 18 183, P2mc1ffiw,13
REAL Ez(i@,t@),ﬁciilﬁ,lﬂh,Dcﬂlﬁ,IEJ,Dct' 19,185 F2meit1d,18)
REAL Ropp(12,12),Ktppil2, 122, Ctppil2, 127, Aeurcl2, Aevi(12)
REAL Avecrd12,125,Aindicil@), Kewrdl20,Kew1C120,Kindiz (12
REAL Cewrdl2r,Cevidl2y, Cindicil2) Minuvk(1@,1082,Pinvil&, 130
REAL A2{(12,12%,Ct412,120, K012, 12),F012,120,Ktb2101@,18)
REAL Ktb12¢10,18),Ktbl1cl@®, 1082, 00b12018,180,Crb21018,18)
REAL Aopabs(12,12),Ktpabscl2, 12>,Ctpaba(12,120,0tb22010, 16
REAL Puscidl2,12),C01¢10,185,P21(18,18),F13¢18,18,ChO18, 180
REAL Aweci<12,12),Kuecril2, 122, kveci (12,122, Cuecrol2, 12
REAL Cuvsci®12,12),Peurdl2),Pevicl2),Findici12d,Puecr{lZ, 122
! DIMENSIOM OF Zetal AMD F=E{|f{ty|» OR Ef|giti|:

REAL Zetal (9%, F(9%) ,F1¢99
519  IMPUT "ORDER OF MATRICES M(#>x,Ci#),Kixd, [# OF ROWS OR # OF
COLUMNEI?", N

5 i
=@

LA T T T M T T e T e O 5 T O )

O E0 —g Ty O B DX B3 o o 0~ O LR
o)

e
L B o R
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528  PRIHT LIMCZ),"ORDER OF MATRICES=";H

538 IF H<=8 THEN 515

S48 S=2%N

SS8  REDIM MCH, MY, CodM, MY, CidH, MY Ko H, HI  KJCH MY PLOH, MY P2CH, N
SEE  REDIM P3CH,M),Aop(S,S) KtpiS,50,C0tpcS, 80, MinulH, MY, P36 (M, MY
SFTE  REDIM P1KCH,HY ZCH, MY, PIcCH HI Do, Hy OCH Mo, AT, MY ATT N, N2
SE8  REDIM GICN, MY GTICH, NI, ZZC¢N,HI Mk jiN, Mo Dk CH MY, Flk (M, N2

5398  REDIM P2mkjiM,N3,P2mkit(M,H),KtbboHM H2,MeioM, M2, De M, N3

€088  REDIM Dot (M, MY, P2mci (N, NI, PEmeit (M, N, CBCH, NI Roppis, S0

€18  REDIM Ktpp(S,3),Ctpp(3,5),AsvriS), AeviiSy, AindiccS),Kenr(S)
28  REDIM Kewi(S),KindictS),Cewr(5),CeuitSa, Cindictas, Minwk (H,H)
£38  REDIM ColCN,N),Pinuis,5),Aois,$),0005,50,K8 05,5 ,P(3,5)

£48  REDIM XtB2LCH,HI,Ktbi2CH, Ny, Kthl1oH, N, Ctbl12CN, Y, Stb21 (H, MY
£58  REDIM Peur(S),Feui(S),Pindic(3),Puecr(5,3),Puecics, )

EEQ REDIM Ctb22C(M,MI,PELIN, N, PL2CN,N) Avecr 5,32 ,Aueciis, 3>

ETE REDIM ¥uecr(S5,35),Kuveci (5,8, Cugcr(S,5),0uecid3, 80, Aopabs (5,5

i FEDIM KtpabsdS,5),Ctpabsz (5,30

590 FLOAT &

Taa ! FEEDINMG IN OF MATRIX M FROM THE KEYBOARD AMD THE GEMERATION

Tia ! OF ITS IMVERSE.

7z CALL Mat _moN,Mc#2)

r3a MAT Minu=IHY (Mo

T48 IF DET=8 THEM 2748

fig-1:] 1 FEEDING IM OF MATRIY Ko FROM THE KEYBOARD AND THE GEMERATICH

TE8 ! OF THE MATRIX CM_inuerse#kol,

77 CALL Mat kodlH,Kaoi#)2

=1~} MAT Minuvk=Mirnv+Ko

To8 PRIHT "MAT Minu#ko",Minuvk(*en;

=3s ie) PRIMT "PRESS COMT AFTER Y0OU HAYE DETERMIMED WHAT FZ MATRIH® TO
Use"

sla PRAUSE

gz IMPUT "DOES F2 EQUAL M, C[summetric Ko?l 7 (YoH)',¥F
234 IF (Y$="H") OR <¥$="n")» THEM 280

248 IF CW$="%Y") QR CY$="u") THEN 858

858 G0TO 520

e MAT P2=M

B87B GATD 298

234 CALL Mat pIZdH,P20%)2

594 PRINT LINC2L, "MAT P2" P20+ LINCEY}"IF P2 IS 0K, FRESE
COMT."jLIHCZ)
88 FRUSE

318 MAT Plk=P2#Minuk

928 PRINT LINC2),"MAT PI#Minu#Ka",LIMCLY,Filki%)]

938  PRINT "CHECK TO SEE IF P2 SYMMETRIZES Minw#Kao. KEY W IF ¥oU
WAMT TO CHAMGE P2, KEY ¥ TO CONTIMUE FOR P2, OK."

948 INPUT “C¥oNIY, HE

358  IF (N$="N") DR (H$="n") THEH 329

968 IF {(N$="¥") 0OR (N$="y")> THEH 328

378 GOTO 938

388 | FEEDING IW OF MATRIGCES Ci and Kj FROM KEVBORRD. !

998 CALL Mat_ci(H,Cic#s

1888 CALL Mat_kjeH,Kjcsis

1816 | GEMERATION QF Co,Aop,Ktp,Ctp,and P.  ALS0, FIMDS Eigenwalues
igzg ! d<max. and min.? for Rop,Ktp,Ctp, and P. THI% IS DOME FOR Co
1838 | CHAMGINWG RS A FUHCTIOM OF ZETH.

184 H=6

1838 IHPUT "MAXKIMUM ZETA? STEP SIZE? CZetamax,Stepd",letamax, Step
lasg  FOR Zeta=0 TO Zetamax STEFP Step



1875
1836
1a%48
1168
1119
1128
113a
1148
115¢
1168
1178
1138
1194
12688
1219
1228
12726
124G
12598
12€0
1278
1228
12398
1384
13148
1329
1338
13248
1358
1368
1276
13¢e@
1396
1488@
1418
1428
1438
1440
1458
1458
1470
14506
1499
1588
1319
1528
1338
1544
1558
1568
1578
1528
1596
1568
1618
1620
1838
1548

{ MATRIX Co as a FUNCTION of Z=ta for the zystem MUST RE

I IHZERTED IM THE FROGRAM HERE!

MAT Co=(Zetal*Ko

PRIMT LINCZ),"ZETA="3Zata,LIMc2y

MAT Zz=Minw*Co

MAT P3=P2+#32z

MAT P3t=TRH(F3

MAT Z=P3t*Zz

MAT Plc=(,T2%2

HAT Pi=Fik+Pic

MAT D=P3t#Minuk

MAT Q=TRHCD:

MAT AT1=D0+0

MAT All=¢-.S2%HA]

MAT G1=P3t+FP3

MAT Gl11=(-,52%03]

MAT Mk j=Minu*k j

MAT Dk=P3t#Mkj

MAT Fk=TRM{Dk>

MAT P2mk j=P2*Mk j

MAT F2nk jt=TRHFP2mk j

MAT Ktbb=Dk+Fk

MAT Mci=Minuw=eli

MAT Do=P3t*Mci

MAT Dct=TRMN{Dc>

MAT P2Zmci=PZ%Mci

MAT P2mcit=TRMCPEmc i

MAT Cb=PZmcit+FZmci

MAT KtbZl={(=1)%P2mk j

MAT KtblZ={(-10#F2mkjt

MAT Ktbll=(=-.5)%kKthb

MAT Cibl2=(~-,.51%Dc

MAT Cth2l=¢-,51%0ct

MAT Ltp22=(-12*Ch

MAT P21=¢.52%P3

MAT P12=(.52%P31

FOR I=1 TO N

FOR J=1 TO N
RodI,Ja=A11CI, T2
Ktd¢l,Ji=Ktb1l1cI, T2

ctdl,Ji=8
PCI,Jo=PLcI, T2
MEXT J

MEXT 1

R=M+1

FOR K=R TO 3
FOR L=1 TO H
B=K=-H
AotK,L)=0
Aotl,K)=8
Kt K, LY=Ktb21a@,Ls
Kt (L, Ky=Kebl2¢l, @y
CtiK,LI=Ctb21¢@, Ly
CtiL,Ky=Ctb12cl, 0>
PCK,Ly=P21(Q,L:
P(L,Ki=P12(L,Q)
NEXT L

MEXT K

81
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1858 FOR M=R TO 5

1285l FOR T=rR TO S

16708 U=f-H

1eza Y=T-H

1598 RoiM, TA=GT 10, WD

174848 KtiM, To=8

1718 CecM, Ta=Cob220U,W0

1728 PiM, TO=F2IU, N2

1738 MEXT T

1748 HEXT ™

1738 MAT PinusIMNYOP:

1768 IF DET=8 THEH ZVzQ

1778 MAT Acp=Ao%Firnuy

1738 MAT Kip=Kr#Pinu

1798 MAT Ctp=Ct*Piny

1zo8 MAT Aopp=Aop

1818 MAT Krpp=Ktp

1gz8 MAT Ctpp=Ctp

1338 | CHECK FOR MATRICES Aop,Ktpyand Ctp EQUAL TO ZEROD

1848 MAT Ropabs=ARS<{Rop>

1858 MAT Ktpabs=ABI Ktpo

1268 MAT Ctpabs=ABS Ctp>

137a Aopz=SUM<Aopabs’

1830 Ktpz=SUM(Ktpabs)

1338 Ctpz=SUMCCtpabsl

1358 I CALCULATION OF Eigernvalues and maximnum and minimum

1318 L gigenvalues For fop, Ktp, and Ctp,

1928 CALL Eigend{{3:,Pi#},Peuri%),Peuii#),Pugcrier,Puecii®l,

Pindic{#22

19328 FPRINT LIMc2Y,"REAL COMPOMEMTS OF Eigerwalussz far PIY,

LIME1D

13448 MAT FRIHT Peur;

1359 PRINT LIMC20,"IMAGIMARY COMPOHENTS OF Eigenuvalussz fore

Pi",LIHCL?

1966 MAT FPRINT Peuwi;

1974 EEEP

1388 PRIMT "CHECK IF MAT P iz poszitive-definite (all sigenuvalues
are REAL & POSITIVE>.":

1398 FREIHT * IF MOT KEY STOP"ILINCZ

2898 WAIT t@waad

zZala IF Aopz=Zero THEH 2168

2028 CALL Eigen((3),Aoppi#l, Aeur(#), Revicsr Auecr sl , Rusciisy,

AindicC#i)

2838 FRIMT LIM:Z», "REAL COMPOHEMTS OF Eigenvaluss far AopiY,

LIHCL S

zZa49 MAT PRINT Aewur;

zZB5o PRINT LIMc2), "IMAGIMARY COMPOMENTS OF Eigernwvalues for

Aop: " LIMCLD

2858 MAT PRINT Aswij

20749 PRINT "MATRIX Aop",Aop(#): "MATRIY Ao",Aols);

2asg Aeur_min=RAewr(l

2834 Aeur_max=Aswr{l)

2188 FOR I=2 TO S

2118 IF AewrCl)¥Aewr_max THEH Asur_max=fAzwr (I

21z8 IF Aewrdli<Aeur_min THEMN Aevr_min=sAsur (Il

213a HEWKT 1

2148 FRINT "Revr_max="jRewr_max, "Azur_min="jAsur_min;

LIMC22
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2138 GOTO 2178

2168 FRIMNT "MAT Acp=ZERO",LIMCZD

z17@a IF Ktpz=Zero THEM 2348

2134 CALL Eigenci(Si,Ktppixd,kevri®l, Kewijdsl Kugor{xr, kuecics),
Kindico#dd

2198 FRINT LIMLZ2),"REAL COMFOHEMTS OF Eigenwvalusz for Etpr”,
LIMCLD

2289 MAT PRINT Keur;

zzln PRINT LIMCZy, "IMAGIMARY COMPOHEMTS OF Eigenvaluss for
ktpi "y LINCLD

2228 MAT PRINT Kewi;

2238 PRINT "MATRIX EKtp",Ktposi;

2248 Kewr_minskKeurol)

22358 Keur_max=keuroll

22g8 Kabzeur_max=ABISckeupr (D

2270 FOR I=2 TQ 2

22848 IF KewrClirkewr_max THEH Keur_mawskKeuwr (Il

22348 [F EewrdlydKewr_min THEM Keur_min=KeurcIs

2389 IF RESCKewr(li}ikabzeur_max THEMN Kabzeur _max=
AESCKewprd I

2318 MEXT I

2328 FRINT "Kewr_max="jkewr_max, "Keur_mins"jKewvr_mirn,
"Kabseur_max="{Kabsevr_maxjLIN{Z)

23138 GOTO 23548

2348 PRINT "MAT Ktp=ZERO",LIMIZ)

2358 IF Ctpz=Zeroc THEN 2524

2368 CALL Eigend(S,Ctpp(#), Cayris),Cauiisd, Cuecr(#, Cumci(sl,
Cindicosd)

2378 PRIMT LIMCZD,"REAL COMPONEMTS OF Eigenvalues far Chpit,
LIMCLS

23348 MAT PRIMT Ceur;

2334 PRIMT LIML22,"IMAGIHARY COMPOMENTS XF Eigenvalusszs for
Ctp:",LIMCL?

2488 MAT PRINT Ceui;

2418 PRINT "MATRIX Ctp",Ctpisi;

2424 Ceur_min=Ceuprdll

2438 Ceur_max=Cewupr (1l

2448 Cabsewr_max=RBScCeur(lil

2458 FOR I=2 TQ 5

2468 IF Cewr(liiCeur_max THEN Ceuwr mawx=Csor (I

2474 IF Ceurdld<Cevwr_min THEH Ceur_min=Ceur (I

2428 IF ABS(Cewr(Id)Cabseur_max THEM Cabseur_max=
ABS(Ceur(Ing

24909 HERT 1

27494 FRINT "Cewr_max="jCeur_max, "Crur_min=";Ceur_min,
"Cabzewr_max="j;Cabseur_maxjLINCE)

2518 GOTO 2536

23528 FRINT “MAT Ctp=ZERO",LIHCZ)

2538 I CALCULATION OF E{[agdt?]|) or E{|FfCtr]} as Zeta varies.
2548 H=H+1

2558 IF Ktpz<>d THEHWH &5938

2588 IF Crtpz<>8 THEN 2&58

257 PRIMT LIMCL?, "MO STOCHASTIC TERMS."

25388 GOTO 2798

259 FiHY==-2#Rgur_max- (Keur_max-Keur_min>

2Eaa FloHi=—Reur_max-Kabzswr_max

Ze14a ZetaliHi)=Z2eta

2628 FRINTER IZ ©
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2308
2E18
2128
2839
2248
2858
2358
2878
23368
2839
23848
2918
2928
2938
2348
2359
2968
2978
2338
2939
3098
zAa1g
3828
3838
3848
3859
3858
3878
3988
3898
3108
z1ie
31z8
2138
3148
3158
J1R8
3178
3128
2198
3280

PRINT "Corollary I

(4] r="3FLCHY, "Zeta=";2eta, LING

GOTD 2789

FiH)==-2%Acuwr max tCew

E{|fity|r="3FCH) , "Corallary

13

r_max=CDeur_

Fl':H:'=_HE"~.-'I“_fﬂ-:I..ﬁ Cabseur _nax

Zetal(Hi=Zeta
FRIMTER IS @
PRINT "Corollarwy I
(t)|}=“;F1<H),“Zet4=“;_-t=,LIH
PRINTER I35 18
GOTO 2788
FRINT "Pinw, DET i
SOTO 2758
FRIMT "Minmw, DET i
GOTO 27928
HEXST Zeta
STOP
SUB Mat moM,MC*0
OPTION BH%E 1

zera’

L

zera!

1

El|giny]r=

12

PRIMT LIMC22,"MATRIN Mi",LIHCL

FIXED &
FOR I=1 TO H
FOR J=1 TO N

DISP =HMUSELE " § I3y
INFUT M(T,JT0
MEXT J
MEXT 1
FLOAT &

MAT PRINT mj
LINPUT "CHAMGES (Y-M)?",C%
IF (C¥="Y") OR ¢C¥="y"1 THEM
IF (C$="N") OR <C$="n") THEH
GOTO 2328

IMFUT "COORDIMATES OF Mo+, CRAOW,

IF (I<=8) OR ¢IMNY QR <J<=@)
FIXED @

BISP Wpdh g ggh , iy e |

INFUT M{T,J0

FRIMNT USING 3B28;I,J,M{I, T3
IMAGE “Mu",DD,",",DI,"2=",4D.
GOTQ 2328

SUBEMD

SUB Mat_co(N,Cal#))
OPTION BASE 1

EHEB

&
4=
=

QR ©JxMl

&

PRIMT LIMCZ22, "MATRIX Coi*,LIMCLD

FIXKED @
FOR I=1 TO N
FOr J=1 TO H
DISP "ED‘:";I;”,";J;":‘";
INFUT CodI,J>
HEXT J
MEXT I
FLORT &
MAT FPRINT Coj
LINPUT “CHAMGES (Y<M3?",C$
IF CC="%"2 OR (C#="w" THEM
IF CC$="H"> OR <C#%="n") THEH
GOTO 3178

2214

2294

COLUMMIT",

THEH

mird

"IFCHY,

[,7
ZHEE

"Caraollarw



218
2228
3239
2248
2254
2288
3270
32249
3298
33789
3318
3320
2338
3349
33358
3368
3378
3388
3398
3436
34149
2428
2438
2448
2438
2458
2478
3438
2498
2588
351@
3528
3538
3548
2556
33550
2570
3538
2598
3689
2618
2628
2630
Je48
2e50
35668
2E70
2838
1698
ITB8
2719
27aa
3738
3748
arse
ITE@
3rra
Z7a8
3798

85

IMPUT “COORDIMATES OF Coc®lr, [ROW,COLUMMIT",I,T
IF cI<=@x OR <IxMy OR CJi<=@y OR CJixH) THEM 3218
FIKXED B
DISP "ColC™ils s "3ds" s
INFUT Codl,J2
FPRINT UWSIMG 3274, J,Caocl, )
IMAGE "Cot",DD,",",0D0,"s=",4D.50D
GOTO 3178
SUBENT
SUB Mat cidM,Cid#ad
OPTIOM BRSE 1
PRIMNT LINC2),"MATRIX Ci:i",LIMCLY
FIKED @
FOR I=1 TO H
FOR J=1 TO H
DISP "“Caico;Ig",";Ti"a";
INPUT CicI, T
MEXT J
MEWT I
FLOAT &
MAT FRIMWT Ci;
LINPUT "CHAMGES Cy¥eoH)?",C$
IF cC$="%¥"2 OR (CH="w") THEH 3458
IF (C$="H") OR <C¥="n"> THEMN 3548
GOTO 3426
INPUT "CQORDIMATES OF Cic®d, [ROM,COLUMHIZ",I,T
IF ¢I<{=@> OR ¢I:W» QR ¢J<=@2 0OR cJxH)» THEH Z4£Q
FIXED @
DISP "Cid"sls","sd3™"2";
IMNPUT CicI,J
PRINT USIMG 35&@;I1,J,Cicl, T
IMAGE "Cic¢",DD,",",D0D,"2=",40.8D
GOTO 2429
SUBEND
SUB Mat _kodH,kKadlsl)
OFTION BASE 1
PRIMT LIMWC22,"MATRI® Koi",LIHCL)
FIXED 3
FOR I=1 TO H
FOR TI=1 TO M
DISP "KG{H;I;",“;-J;"'}“;
IHNPUT KotI,J3
HEXKT J
HEKT I
FLOAT =5
MAT FRINT Koj
LIMPUT “"CHAMGES (Y~ Mu?",C¥
IF (C$="¥"3 OR CC¥F="y") THEH 3710
IF CC#="N"}» QR (C#$="n"3 THEM 3734
GOTO 3874@
IMPUT "COORDIWNATES OF kKoo#:, [ROW,COLUMHI?",I,J
IF ¢I<=@> 0OR ¢I>Hd» OR CJ<=4A) OR ¢JxH) THEHW 3710
FIXED 3
DISP IIKO(II;I;II,Il;lJ‘;II:Ill;
IHPUT KolI,J2
PRIMNT USING 3FFO;I1,J,Kadl, >
IMASE "Koc¢",DD,",",DD0,"r=",4D.6D
GOTCQ 3676
SUEBEHD



3388 SUB Mat kjoM,Kjosi

3819 OPTIOMW BRSE 1

3828 PRINT LINCZY,"MATRIM Kji",LIMCLD
2838 FIHXED @

3349 FOR I={ TO M

3850 FOR J=1 TO N
3860 DISP “KjCusIgn,"yd;mon;
3879 INPUT KjcI,J)

3858 NEXT J
3899 HEXT I

3998 FLOAT &

3918 MAT PRINT Kj;

3928  LIHPUT "CHAHGES Yo H)?",C$
3930 IF (C#="Y") OR ¢CH="y") THEM 2
3948  IF C(CHE="N") GR (C$="n") THEH 4¢
3953 GOTO 3924

3368 IMPUT "COORDIMATES OF Kjc#d, C[ROW,COLUMNIGF", T,
3978 IF (I<=@) OR (I»H) OR ¢J<=@) OF ¢J:H) THEM I9£a
3980 FIXED 3

'3998 DISP l'.K"J‘(Ii;I;iI “'Jll"""l

4888 INPUT KjcI,J)

4810 PRINT USING 482831,J,Ki0, 0

48288 IMAGE "Kj¢",DD,",",DD,"=%,4D,&D

4638 GOTO 3320

4848 SUBEND

4850 SUB Mat _p2C(N,P2(#))

4860 OFTION BRSE 1t

4878 FPRINT LINC2),"MATRIY P2:",LINCL)

4958 FIRXED @

4@%8 FOR I=1 TO M

4108 FOR J=t TO H

e
44

(AN ¥}

4118 DISE “P@O® § Iy %yt 50 0 595
4128 INPUT F2(I, 1)
4138 MEXT J

4148 HMEAXT I

4158 FLOAT &

4158 MAT PRINT P2;

4178 LIMFUT "CHANGES (YsMN3»?",C$

413@ IF CCH="vY") OR (C#="u") THEHW 4218

4138 IF (CH="H") OR <C¥="n"2» THEN 4294

4288 GOTO 417@

4218 IMWPUT "COORDIMATES OF P2+, [ROMW,COLUMHI?",I,
4228 IF (I<=8> 0OR <IxH» QR (J4=@) OR <J:xM» THEH 4218
4238 FIKED 8

4248 DISP "P2('; Iy, "3 I3tavy

4258  IHFUT P2¢I,J2

4268 PRIMT USING 4278;I,J,F20¢0, T

4278 IMAGE "P2(",DD,",",DD,"r=",4D.60

4288 GOTO 4176

4296 SUBEND

4388 SUB EigendH,AC#), Ewr %), Evi s, Yecr (£, Yeoi%), Indicosn
4318 Baddta={H<=@)

4328 IF Baddta=8 THEH 43&8

4338 PRINT LIH(;J,"EPHDP IM SUEFROGREAM Eigen."

4348 PRIMT “H="iN,LIHc2

4358 PAUSE

4358 OFTION BRSE 1

4378 IMTEGER LocaldM>

4228 DIM Prfact (M), SubdiatHy,WMark M

J

LAYy}

Lo Tt I



#3328 IF Hi>1 THEW 44£8@

4488 Evrdli=/01,10

4418 Ewisl)=8

3428 Yecril,10=1

4438 YWezidl, =89

4448 Indicota=2

4458 GOTO S557@

4458 CALL ScalelM,AC#:,YMeci (%), ,Prfacti%y, Enorm)
4478 Ex=EXKP(-33+L0OG423D

3453 CALL HesgrdH,RAt#) Mecided, Eup sl , Evit#d, Subdiacs),
Indict#),Eps, Ex)

4438 J=H

4588 I=1

4518 Localdla=1

4528 IF J=1 THEHW 4598

4538 IF ARBES(Subdiact-131:Eps THEHN 4568
4548 I=I+1

4538 Local(l =8

4588 JI=J-1

4578 Locald{ll=Localili+l

453248 IF J<x1 THEH 4538

4398 K=1

4588 Kon=8

4818 L=Laocalcly

4528 M=H

4628 FOR I=t TO H

4548 Iuec=N-1+1

45568 IF I<=L. THEH 4£98

4550 K=k+1

4570 M=N-L

4638 L=L+Local (k>

4590 IF Indiciluec:=8 THEH 4233
4700 IF Ewid(lweci<rxd THEH <4384
4710 FOR Ki=1 TO M

47z FOR L1=K1 TO M

47324 Ackl,L1>2=VMeci kK1l L1
4744 HEKT L1

47548 IF Ki=1 THEMW 4778%

4758 ACKL,Ki-1o=Subdiaikl-12
4778 MEXT K1

4788 CALL RealusdM,M,Ivec ,AC*), Yecri#) Evr i, Euilsl,
Worki#d, Indici%),Eps,Ex2

473 GOTO 45548

4380 IF Kon<>3 THEHN 4348

43148 Kaon=1

4528 CALL Compue(M,M, Tvec, AT#) ,Wecr(#l,Mecitsl ,Eurcsl,

Ewicsr, Indic{®>,S5ubdial*y, Mark 42, Epz,Exd
4238 GOTO 4250

45840 Kaon=4d

4858 HMEXKT 1

4358 MAT A=1DNM

4878 IF MN<=2 THEM 5B2z8

34888 M=N-Z

4898 FOR K=1 TO H

49680 L=k+1
4318 FOR JT=z2 TO M
43926 Di=8

4938 FOR I=L TO H



4948
43959
43981
4374H
4929
4930
SHae
S819
Sezae
5036
Se4a
S@a98
SBER
bt 5 g |
SE29
Se98
s1i8a
S51l@
5129
5138
5148
S15a8
S51&d
S1i7a
S138
=134
5209
SZ218
5226
52248
5249
5259
5258
5278
52249
5298
53088
5318
5328
5328
5340
5358
5361
5379
5328
539@
5450
S418
5428
5436
5440
5458
SdER
5470
5420
5490
5566
5518

D2=%eciCl, K
D1=D1+D2%ACT, 12
HERT I
FOF I=L TO M
ACT, Ia=ACT, I2-MecicI,Ka#D1
MEXT I
MERT T
HEART K
Kon=1
FOrR I=1 TQ H
L=4a
IF Exi¢Ir=0 THEW Sl1aa
L=1
IF Kon=8 THEHW Sigg
Kon=a
GRTO 55&8
FOR J=1 TO H
Di=Diz=0
FOR K=1 TO H
DI=ACT, KD
Di=D1+D3%Vecruk, I
IF L=8 THEMW SiTa
DZ=D2+D3%Vecr(K,I-12
HEWT K
WMork(J =Dl PrfactiJl
If L=8 THEH 5z18
SubdiacJi=02-Prfacti I
HEXT J
IF L=1 THEHW 53248
Di=©
FOR M=1 TO H
Di=D1i+Work mar~2
NE®T ™
DI=5arcDis
FOR M=1 TO H
VecidcM, [h=8
YecrdM, Id=Work(M)-D1
HEXT M
Eur(Ii=Eurili*Enorm
COTO 5568
Kon=1
EvrtIli=EurtId»+#Encrm
Evrtl-1i=Eur{ll
Ewvilli=Euivli*Enarm
EviCl=-1r==Euidlln
R=8
FOrR J=1 TO N
RisWork(J2~2+Subdialtr~2
IF R»=rl THEMN 5458
R=R1
L=J
HESXT T
D3=Workaln
Ri=SubdialL?
FOR J=1 TO H
Di=Waorkcts
D2=5Subdiacta
Yecr(J,Ly=C01xD3+N2xR11-R

88



55249 Wee i (J,10=(D2%D3-D1#RE1R
3338 VecroJ, I-10=Wecpr{J, 1
ST4e Wi, I-10==Yecidl, I

5558 HEXT J

5588 HNEWT I

5578 SUEBERKIT

5528 SUBEMD

3598 SUB ScaledM,AL#0,HOx),Prfacti+i,Enatmy
Jeed OFTIOH BRSE |

618 IMTEGER I,J,Iter,MNcount

629 FOR I=1 TO N

TE38 FOR J=1 TO H
S544 Hil, Joa=AdT, Io
T6548 HEWT J

SEEA FPrfacrtilir=1
SETA MEMT I

9688 RBoundl=.7%
S698 Bound2=1.33
3788 Iter=8

S718 Neoount =8
S7Y28 FOR I=1 TO H

5734 Column=98

53744 Row=d

57358 FOR J=1 TO N

57¢6 IF I=J THEHM 5798
A= Colump=Colunmn+AEBSCACT, Thd
bl =15] Row=Row+AREBSCACL, T2
ST HE®T J

3508 IF Column=@ THEHW 5338
3318 IF Row=8 THEM 5358

S820 F=Column-Row

5229 IF G<Boundl THEH S5FH
s34 IF @xBound2 THEM 5278
S554 Hoount=Hcount+1

Sesa GOTO 5944

5ev8 Factor=SGARCEA)

55288 FOR J=1 TO H

54998 IF I=J THEHM 2928
3o8e RC{I,Jd=ACI,Ji%#Factor
3314 AT, I2=ACT, I3 Factaor
S328 HERT .J

0938 Frfactils=Prfact Il #Factor
5948 HEWT 1

5930 Iter=Iltzr+l

2558 IF Iter>38 THEH &£1328
29768 IF Mcount<H THEHW 3714
2928 Frorm=8

5998 FOR I=1 TO M

el 1] FOR J=1 TO H

31 B=Rc¢I,.J
#8249 Fnorm=Frnorm+el
o pede] HEXT J

6348 MEXT I

&858 Frnorm=SRR<(Frorm?

e3e@ FOR I=1 TO H

S@ArFe FOorR J=1 TO H

£036 ACI, J)=ACI, J) Friarm
sk HEXT J



£5198
s1t4
£128
&1348
5148
2158
B158
5178
&138
&198
cZ2ea
E2iB
B2
E238
£248
5258
52540
E27E
E255
B270
E3883
6318
E3228
6339
E348
E356
E3E0
6370
532889
53919
540683
5418
5420
5438
E44D
£4509
£4£8
E479
£459
56499
65688
£518H
6520
£538
5548
55358
£3648
E370
55389
£538
Y]]
£6108
£6208
EE&38
EE4D
&6650A
EEEd

MEXT 1
Enarm=Frorm
GOTO &2494
FOR I=1 TO H

Frfactcla=1

FOR J=1 TO N
AT, Jo=sHOT, I

HEXT J

MEXT I
Enorm=1
SUBEWIT
SUBEND
SUE HesgriH,AC#3,Hi*#) Eupr i) Euici,Subdiacs2, Indico*),Eps,Ex
OPTIOH BASE 1

INTEGER I,J,¥,L,M,Max=t,Ml,HNs
IF H-2<8 THEH &338

IF N=2»3 THEHW 8298
Subdiadli=sAnz, 12

COTO &334

M=H-2

FOR k=1 TO M

L=K+l

S=0

FOR I=L TO H
HOTD,K3=ACT, KD
S=S+ABSCACT, K1)

MEXT I

IF S<:ABSCACK+L, K THEM &41ia

Subdiadk)=RCk+1, K]
H{K+1,K3=8
GOTO 780
Srz=4
FOR I=L TO H
Sr=ACI, K
Sr=8r~-5
ACI,KI)=8r
Sr2=Sr2+Srssr
NERT I
Sr=SERCSrZ)
IF RCL,K2<@ THEH 518
Sr=-5pr
Sr2=53r2-5r+A0L,K?
AiL,K>=R(L,K)=5r
HiL,Ki=HI{L,Kr=5r*3
Subdiatki=Sr+5
WESESAR(SF2D
FOR I=L TO H
HeI,Ko=HOT, Ko ¥
Subdiadli=AdI,K)~5r2
HEXT 1
FOR J=L TO N
Sr=8
FOR I=L TO H
Sr=Sr+ALCL,KI#ACT, T
NEXT 1
FOR I=L TO H

ACL, Jr=RCI, J0-Subdiadlsssr

90
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6738
63088
5219
5328
523320
5348
5556
B5E8
EBTH
£228
62348
5388
£310
5924
£938
£948
5358
5350
8978
£33
5998
Fags
vaLe
razg
FE38
re4s
vase
Taed
vare
ragg
Ta3g
T1a4
7118
rlzea
riza
7148
7158
ri58
L7
7134
7138
raag
v21g@
Tzza
rz3a8
T4
Tasa

MEWT I
HE®T J
FOrR J=1 TO M
Sr=9
FOR I=L TO H
Sr=Sr+ALJ, [2*ACI, KD
MEXT 1
FOR I=L TO H
AT, Io=AcT, I)=Subdialli*sr
NEXT I
MEHXT J
MEXT K
FOR K=1 TO M
AcK+l,Kr=3ubdialks
HERXT K
Subdiath-12=ACH,H-12
Epsz=
FOR k=1 TO HW
IndicikKl=8
IF K+«*M THEM Eps=Eps+Subdiadki~2
FOR I=K TO H
Hik, Ia=RACK, I
Eps=Epz+RACK, I 2
HEXT I
NEXT K
Eps=Ex*SHRCEps )
Shift=A{H,H=-12
IF M{=2 THEHM Shift=d
IF ACH,MX<>3 THEHM Shift=4
IF AtH=1,M)<>8 THEHW Shitft=4
IF ACH=1,H=-13<8 THEM Shifr=8
M=H
Ms=8
Maxst=Hela
FOR I=2 TO H
FOR k=I TO H
IF ACI=-1,K»<>B THEM V1z®
HEXT K
MEXT 1
FOR I=1 TO N
IndiciIr=1
Eurili=ACI, I
Eviclr=a
HEWT I
GOTO 2154
k=mM=-1
M1=k
I=k
IF K<8 THEHM 2158
IF K=8 THEW 7368
IF ARESCACM, K 1<=Epzs THEH T7T3I8R
IF M-2=8 THEMW 7958
=1-1
IF ABSCACk,I224=Eps THEM 722
k=1
IF K>»1 THEHW 7138
IF k=M1 THEH 7338
S=ACM, MI+ARCML ML +SRiIFE

Sr=ACM, M EACML ML -ACM, MLIDRACML  Mi+, 25%3hift 2
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v32

i)
7248
TI56
T3E48
73ara
73589
739a
raaa
rd18
7420
T438
T448
r454a
T458
7478
7438
Y438
7588
7ol
7528
7538
7549
7358
F=1-1:
F=)
hgat=1"
7398
7e08
r6l1d
TE28
TE30
TE48
FESH
vEEd
TETE
TEE8
vegg
7rae
7718
TrZe
rrae
Fr4a
Troa
FT5a
vrTa
F-1-
v7ee
reaa
rele
reZg
razae
TE48

i}
"3
&=

RikK+2, Kr=3
WERCK KR CHOK K =30+ 0K, K+ 10 #ACK+L (KO +5EP
YEROKE+1 K% (ACK, K)+AK+T JK+10-50
E=RESCHI+RABS Y
IF E=8 THEMW Shift=HRiM,M-12
IF R=a THEMW 7238
ZEAK+2,E+10%#ACK+1, K2
Shift=8
Mz=Mz+1
FOR 1=k TO M1
IF I=k THEHW 7429
w=ACI, I-13
Y=RCI+1,1-12
2=8
IF I+2>M THEM 74Z@
2=ACI+2,1-110
Sr2=ABSCXr+RABS Y 2+RES(E D
IF Sr2=8 THEHW 7478
HEus5r2
Y=Y 5r2
2=Z2/5r2
S=SHRCHSE+YV %Y +T#I0
IF X<8 THEN 7389

0
S5=-3

IF I=K THEN 7329

ACT,I-12=5%5r2

IF $r2<{>8 THEHM 7558

IF I+3>M THEHW 7a7@

GOTO 7848

Sr=l-XsS

=H=5

W5

Y=2/5

FOR J=I TO M
SsACI, JP+ACI+1, TJo#%K
IF I+2>M THEH 7E3Z8
S=S+ACI+2, Jo#Y
S=5#5r
ACLy Jo=ACl,J2-3
ACI+Ll, Jo=ACI+1,J0-S%x
IF I+2*M THEHW 7&28
ACI+2, JX=ACI+2, Ji-2%Y

HEXT J

L=l+2

IF I<M1 THEHW FF7Z8

L=H

FOR J=K TO L
S=ACT, I0+ACT, I+ %K
IF I+2xM THEM 7720
S=S+ACT, I+2 0wy
S=5#5r
ACT, I3=RALT, I12-5
ACT, I+13=ACT, I+l 3-8
IF I+2>M THEHW 7814
AoJ, I+20=R¢J, I+22-5#Y

HEXT J

IF I+3>M THEN 7378

S=-ACI+3, [+20% 5k

ACI+3, I0=5
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vE59 RoI+3,I+10=5%K

TEEH ALT+3, I+20 =52 +ACI+2, I+22

FE7H MNEXT I

7838 IF Hs»Maxst THEM 2136

YE¥@ GOTOD 7128

988 Ewr{MI=AdM,M>

7918 EwviiMi=8

720 IndicimMi=1

FREH M=K

948 G070 FPlza

A58 R=,I%x(ACK,KI+ACM, M)

TI8B S=.S5#CACM,MI-ACK, K>

TITH  S=SESHACK,MIEACM, KD

7988 Indicdkr=l

7398 IndiciMi=1

#Eea IF <@ THEHW 2834

S@31a T=SRRc3)

8928 Ewr(K)=R-T

8838 EwriMisE+T

2849 EvidK)»=8

2058 EwvitMr=8

2A88  M=M-2

3878 GOTO Fize

5688 T=SAR(-37

28989 EurdkKl=R

2198 Evick>»=T

2118 EwriMi=R

2128 EvitMI=-T

2138 M=M-2

3148 GOTOQ 71248

2158 SUBEXIT

8168 SUBEND

2178 SUR RealustH, M, luec,Ac#i ,Mecr sl  Eupiel, Evitsl  Warkisl,
Indici#),Eps,Ex)

8188 Baddtas<H<=8> IR (M<=@> 0OR <Iuvec<=8>

2198 IF Baddta=@ THEW 2234

BEEB  PRIWNT LINCZ),"ERROR IM SUEBFPROGRAM Fealuws.”

2218 PRIHT "H="jH,"M=";HM,"Juec=";Iusc, LIMLZD

2228 PAUSE

52380 OPTIOHW BRSE 1

2248 INTEGER IworkdH>

3258 INTEGER I,Iter,J,K,L,Hs

8268 Mecrdl,Iwecir=l

8278 IF M=1 THEHW 9229

3238 Ewvalus=sEurdluec)

3238 IF Ivec=M THEHN 32328

8308 kK=Iwec+l

3318 R=0

83328 FOR I=x TO M

5338 IF Evalue<>EwrCI) THEM 2358
5348 IF EviCIr<»8 THEH 3368

83380 R=R+3

8388 HMEKT I

2379 Evalue=Evalue+R#Ex
328 FOR K=1 TO N

23909 AiK kI=RIK, K -Evalue
2488 HERT K



2418
2428
=423
2448
2458
2458
5478
2439
S48
2580
2519
8529
2538
2548
255a
5560
2570
2588
2598
SE80
2619
BE29
28328
8648
2658
2EER@
FETH
Sege
SE38
a3va8
3718
a7vzn
3738
3748
2758
Sve8
377Q
3738
2790
3868
83218
5320
2830
8348
3358
5360
2879
228384
8879
89606
S918
2920
2938@
23948
2958
2968
2970
2950

ko=tt=1

FOR I=1 TQ K
L=I+1
Iworkcl =9
IF ACI+1,T2<8 THEH 2494
IF ACL, 1248 THEH 28514
ACI, Iy=Eps=
GOTO 5619

IF ABSCACI, I »=ARBSCACI+L, I THEM 2588

IworkcId=1
FOR J=I 7o ™
E=ACI,J)
AL, Jo=ACl+1,J2
ACI+L, JTi=R
HEXT J
R=-ACI+1,I2~ACI, I
AcI+1,I0=R
FOR J=L TOQO H
ACI+L, Jo=ACI+L, JI+R+#ACI, JD
HE®T J
NEWT I
IF ACMyM><>83 THEN 2&44
AiM,MI=Eps
FOR I=1 TO H
IF I>M THEWN 2538
Workdcl»=1
GOTO 2598
Work<I»=9
MERT 1
Bound=.81~-CEx#HM>
Hz=0
Iter=1
R=8
FOR I=1 TO M
J=M=-1+1
S=lorkcJd
IF J=M THENW 3338
L=J+1
FOR K=L TO M
Sr=lork(k?
S=5-Sr*ACJ, KD
MEXT K
Work{Ji=5-RACT,JD
T=RABES{Work i
IF R»=T THEHN 2374
=T
HEXT I
FOR I=1 TO H
Work(Ili=sWorkill R
MEWXT I
Ri=@
FOR I=1 TO M
T=8
FOR J=1 TO M
T=T+A+1, Jrslarkct)
HEXT J
T=AESCT2
IF Ri1>=T THEM =884
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95

2338 R1=T

2888 HEWT I

2816 IF Iter=1 THEH 983a
2628 IF Previsz<=R1 THEH 9Z2a
9838 FOR I=1 T3 M

2844 Vecr (D, IvecisWork oI
2858 HEXT I

f@eR Prewiszs=gl1

9B7H  IF HMs=1 THEH 9224

ggse IF Iter>& THEH 3238
9898 Iter=Iter+l

3188 IF R<Bound THEMW S12Z#

9118 HMz=1

9128 K=M-1

9138 FOR I=1 TO K

Fi48 R=lork I+12

31354 IF ITworkcl»=8 THEH 2134

[1e8 WMotk CI+li=Hark (Id+ark (I+10#/CI+1, 10
21va Workd(I»=r

9138 GOTO 9298

3150 WorkoI+li=Wark closACI+l, Io+borkiI+10

2288 HE=®T I

218 GOTO 37328

9228 Indicdluecs>=2

9228 IF M=M THEHW 9224

9248 T=f+1l

2258 FOR I=J TO H

22648 Vecrol, Ivec =8

SE27E MERT 1

2228 SUBEKXIT

2298 SUBEHND

SIER SUE CompuedtH, M, Iuvec,Auv®),Veor (e, Hi®) Euri#d Evid®l, Indicc#*l,
Subdiac#),Noerko*) Eps,Exn

2318 Paddta=dcH<=83 0OR <Md{=8)» 0OF C(Iwesc<s=9}

2328 IF Baddta=8 THEH 22&@

F338  PRINT LIMWC2y,"ERROR IN SUEBPROGRAM Campas, "

2248 PRINT “M="jH,"M=";M,"Iuwec="} Iwec,LINIZ]

9358 PRUSE

238 OPTIOWN BRSE 1

D370 IHMTEGER lwork (M2

29338 DIM WorkliMd,Work2oHn

3398 INTEGER I,I1,I2,Iter,J,k,L,HN=s

3488 FkzisEwrdluec?

2418 EtasEuvidlueca

9428 IF Iwecz=M THEM 7534

9438 K=Iwvec+l

448 R=6

94589 FOR I=kK TO M

454 IF Fesi<XEwriIl} THEM 94798

474 IF ABSYEta>< *ABS{(EwviIx> THEHM 9434
2430 R=R+3

Sd43d  HEXT I

25HE  R=R*Ex

3518 Fkzi=Fkzi+R

2528 Eta=Eta+k

QE3B R=Fkszi#Fksi+Eta*Eta
9548 S=2#Fkzi
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Saeva
SEZE
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9318
H3Z8
2936
93406
995
99548
3978
S928
2338
13aas
1aai@
laaze
ladze
108408
18856
18868
188ve
1aaga
1aa3a
19188
18114
19126

L=i-1
For I=1 TO M

FOR J=1 TO M
D=9
AT, 10=8
FOR K=I TO J
D=D+HE T, Ky #HIK, T)
MEXT K
ReT,Jo=D=S%HCT, T)
MEST J
RCL, ID=ACI, 17 +R

HEXT 1
FiR I=1 TO L

F=3uodiacl?
Ail+l,Io=-5%R
I1=1+¢
FRorR JI=1 TO 14

AT, Ia=ACT, I0+R*H T, I+13
MEXT J
IF I=1 THEM =7EBD .
ALI+1,I-13=R*Subdiaci-17
FOR J=I TO M

Rul+t, Jo=ACI+1, Ju+ReHCD, T
HEXT J

MEXT 1
K=m-1
FOR I=1 TO K

Il=1+1
I2=1+2
IworkcIs=a
IF I=E THEN 32370
IF ACI+2, 12458 THEM 9918
IF ACI+L, I3 THEH 3318
IF AREI,IN<»8 THEH 18149
R{I,I)=Eps
GOTD 18148
IF I=K THEH 2370
IF ABSCACI+1,I20»=AESCACI+2,100 THEH 23785
IF ABSCACI, I2»>=AB3CACI+Z, 22 THEM 1847A
L=1+2
Iworkclr=2
GOTO 16@98
IF RAB3CACI, I202=ABSCACI+1, I THEH 188358
L=I+1
luarwclnr=y
FOrR J=1 To M

R=A¢I, T

RCI,Jo=ACL,J)

AcL,Jo=R
MEXKT J
IF I<>K THEH 1887&
12=11
FOR L=I1 TO I2

R==ACL, Ia~sACI, I

AtL, )=k

FOR J=I1 TO M

Ael, Jo=AcCL, Jr+R*¥ACI, T2
HEXT J
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18138
18144
18158
18166
ielve
13138
l1al38
19289
lazlea
182249
18230
18248
18258
lazed
189274
lazge
laz2a
1a388
18318
183249
18338
183248
18350
18388
18378
18388
183948
18484
lad41a
la42a
184309
18448
184583
184&8
18478
la4ga
18458
1858a
18518
19528
la5z28
18548
183558
1a5¢8
18578
1e538
18594
i8caa
igsla
lg62a
18530
1ag48
16656
lacen
18578
18638
laes8
18788

HEXT L
HEWT 1
IF ARCM, M8 THEW 18178
AcH, My=Ep=
FOrR I=1 TQ H
IF I:M THEHW l@z22g
Vecr (I, lveca=ml
Mecpr (L, Tvec=12=1
GATO 18z4a
Vecrdl, Iuec =0
Yeor(l, Ivec-12=98
HERT 1
Bound=.81-CEx+H>
[ter=sl
FOR I=1 T M
WorkcId=H{I,[Y=Fks1
HEXT 1
FOR I=1 TO N
D=Warkclr»sVecr (I, Ivec:
IF I=1 THENH 18358
D=D0+SubdiatI-12*Vecril-1, Tuech
L=I+1
IF L>M THEN 18484
FOQrR K=L TO M
D=D+HC(I ,KrsVecr (K, [usc
HEXT K
Yeer(l,Ivgc~12=0-Eta*Vecr (I, luec-1
HEXT I
K=m=-1
FOR I=1 TO K
L=I+lwuorkcls
R=Wecr(L, Ivec-13
Vecril, lvec=1o=Yecr (], Twec=12
Veor (I, Tuec~-1i=
Yecp I+l Juvec-1o=Yecr(I+1, JTuec=12+ACI+1,10%R
IF I=K THEW 18518
Ve (I+2, Ivec~1lo=Veor i I+2, Iuec-10+ACI+2, I0%R
HE®WT I
FOR I=1 TO M
J=m-1+1

D=¥egcr(J,Tuec=-12
IF J=M THEHW 18818
L=J+1
FOR K=L TO M
Di=R¢T,K?
D=D-Di*Mecr (K, Iuec—-11
HEXKT K
VMecr¢J, Ivec-12=D-ALT, T2
NEWT I
FOR I=1 TO M

D=lorkdcldsVecr I, Twec—12
IF I=1 THEH 18&78
D=D+Zubdiadl-1s#Vecrol-1,Twec-113
L=I+1
IF L*M THEM 187z@
FOR K=L TO M

D=D+H(I, Ki#Vecr ik, Tuec=12
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14719 MEXT E
18728 Mecril, luecr=i¥ecril,Iuecd-027Eta
18738 HEKT I
18748 L=1
18759 5=4
1876@ FOR I=1 TO n
18778 R=Mecrtl, Ivec)~2+4%ecr i ], Inwec-10"2
I
S
L
-

167248 F R<=% THEM 18218
18794 =R

16289 =1

18319 HEXT I

19228 U=sVYecrdl, Ivec—-12

18838 Y=Mecrol, [wech

18848 FOR I=1 TO M

16358 B=Vecrcl, Iuec:

182888 R=Yecrol,Iwvec—-13

18878 Vecrdl, lueci=(ReU+EeVY -3
182320 Vecril, luec=-1=(B*L-R&Y¥ )5
18898 MEXT I

18988 B=49

18918 FOR I=1 TO M

183zH F=tlorkilrsveor (I, Ivec~-10-EtasVecr oI, Ivech
19938 U=Warkolis#Yecpr D, Tnec r+Etasiecr oI, ITvec-12
18948 IF 1I=1 THEW 18376

18958 E=R+3ubdiacl-1r¢Vecr(I-1,luec-12
13964 U=sU+Sybdiacl-torsYecrol-1, [uecy
19378 L=I+1

189349 IF L*M THEW 11438

18938 FOR JI=L TO M

llaeg R=R+HI I, JosMecr o, Tuec—-12
l1a1@ UsU+HCI, Jo#VecroJ, Tvecs
11828 MEXT J

114834 U=R*R+*lJ

118448 IF Bi=l) THEM 118648

118358 E=U

11888 HEKT I

11978 IF Iter=1 THEN 11898

11838 IF Previs<{=E THEHW 11288

11898 FOR I=1 TO H

11188 Worklcli=Vecril,luec>

11118 Mork2C(I)=Vecr(l,Iuec-12
11128 HEKT I

11138 Previs=B

11148 IF M==1 THEH 11Z48

1115@ IF Iters»& THEHW 11254

11168 Iter=Iter+l

11178 IF Bound>SQR¢E» THEM 18318
11188 Hs=1

11198 GOTO 18318

11268 FOR I=1 TO H

11214 Vecr (D, Ivecs=Wdork1dID

11229 Vecr (D, Iwec-1a=Horkad{l>
11238 HEKT I

11248 Indicilwec=-13=2

11258 Indic(lveci=2

11268 SUBEND

11278 END



APPENDIX 3

Element Properties [26]

element mass matrix
[ 156 Sym.
_m 22 4
420 | 54 13 156
=13 =3 22 4

element geometric stiffness matrix

[
5
'fb -
* p(t) p(t)
kg(t) = EG] . 6
5
1
0

element elastic stiffness matrix
12 Sym. ]
FI 6 4

k=.—_
g3 | -12 -6 12

element k_ matrix
° p
0
ko = k + 2= [kgl
element w)ector

q-= co1{vi, 8%, Vis ejz}

Sym.
(]
5
1 _2
0 °1%
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ABSTRACT

A Liapunov function specially suitable for the study of the almost

sure asymptotic stability of a class of linear discrete systems, described

by a set of second order differential equations with stochastic parameters,
is presented. A theorem and related corollaries, applicable to systems
1n§o1§1ng general types of forces, are obtained. The proposed technique is
shown to be useful in minimizing the computational efforts associated with
relati#ely large dynamical systems. Several examples, including systems
involving follower forces, are included to demonstrate the effectiveness of
the method.

In addition, the theorem is extended to study the response bounds of

systems for which the dynamic loads or perturbations lead to forcing terms

in the equations of motion eliminating the existence of an equilibrium state.
I1ustrative examples are also included. The results, in general, are

found to be of significant practical value.





