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LIST OF SYMBOLS 

T Kinetic energy of a structural system 

qi Generalized coordinates 

Qi Generalized forces 

QAI External forces applied to the system 

QEi Internal elastic forces due to a change of strain energy 

QDI Internal or external damping forces due to energy dissipation 

in the system 

U Strain energy of the structural system 

kij Elastic force coefficient 

K' = [kij] A square matrix of elastic force coefficients of order n 

associated with local coordinates 

K = [kij] A square matrix of elastic force coefficients of order n 

associated with system coordinates 

m i j Mass inertial coefficient 

M1 = [mij] A square matrix of mass inertial coefficients of order n 

associated with local coordinates 

M = [mij] A square matrix of mass inertial coefficients of order n 

associated with system coordinates 

{ } Column matrix 

Row matrix 

T a Coordinate transformation matrix 
T 

T a Transpose of matrix T a 

w(x,t) Total deflection function 

i(x) Deflection function due to unit displacement along the 

direction of the ith generalized coordinate 
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m Mass per unit length 

E Young's modulus of elasticity of the beam element 

I Moment of inertia of beam cross-section 

A Area of beam cross -section 

Length of beam element 

fy Structural displacements measured in system coordinates 

[Qi} Externally applied forces measured in system coordinates 

{c0} Structural displacements measured in local coordinates 
3 

{Qt} Externally applied forces measured in local coordinates 
7 

Unit vector components along x-axis 

3 Unit vector components along y-axis 

a A dimensionless number dependent on the shape of the 

cross-section 

Si = (qps/(q1)13 Where subscripts s and b denote shear and bending, 

respectively 

G Modulus of elasticity in sheer 

VP The Pth arbitrary trial column vector 

Natural frequency of the structural system 

a. Arbitrary constants 

A Eigenvalue of the undamped free vibration 

[I] Identity matrix 

t Time variable 

x' Local coordinate measured along the beam element 

YI Local coordinate measured normal to the beam element 

x System coordinate measured along the beam element 

y System coordinate measured normal to the beam element 



INTRODUCTION 

The vibration of structures has played an increasingly important role in 

structural analysis and design in recent years. Exact solutions of the 

natural frequencies of beams and of rectangular rigid frames have been 

obtained in numerous papers and books; however, the exact solutions for the 

natural frequencies of gable frames are difficult to determine. An approxi- 

mate method proposed by J. S. Archer [3] will be used in this report. Using 

the 1410 digital computer, the lowest four natural frequencies and modes of 

a symmetrical gable frame have been obtained. This was accomplished by 

using the consistent mass and the lumped mass methods. 

The stiffness matrix, the consistent mass matrix and the lumped mass matrix 

of a simple uniform beam element are derived first. Since a gable frame is 

a solid continuous medium, it has an infinite number of degrees of freedom. 

Consequently, this structural system has an infinite number of natural fre- 

quencies and natural modes of vibration. But this structural system, as 

shown in Fig. 11, is considered as four elastic beams joined rigidly. Each 

individual beam is considered as comprising two beam elements of equal length. 

By expanding to the structural system with its boundary conditions, the equa- 

tions of undamped free vibration of a symmetrical gable frame are Obtained. 

These eigenvalue problems were solved with the aid of the 1410 digital com- 

puter. The computer programs are shown in the Appendix of this report. 

The superiority of the consistent mass matrix over the lumped mass matrix for 

certain structures has been demonstrated by some authors[3]' [43. For the 

symmetrical gable frame, however, the percent deviations of these two 
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approaches are insignificant for the first anti-symmetric mode and the first 

symmetric mode. The percent deviations, however, increase for higher modes. 



DIFFERENTIAL EQUATIONS OF UNDAMPED FREE VIBRATION 

For a structural system with n degrees of freedom, the generalized form of 

Lagrang&s equations are: 

df3T 
dt aqi (aqi )= Qi ; (i = 1,2,...,n) (1) 

These equations express the generalized forces Qi as a function of the kinetic 

energy T of the system. Since it is considered that the given system has n 

finite degrees of freedom, there are n equations corresponding to generalized 

coordinates qi(i = 1,2,---,n). The generalized forces Qi are usually con- 

sidered to be composed of three distinct forces: 

= QA i oti QDi 

where 

QA. = external forces applied to the system, 

(2) 

Q.E.H = internal elastic forces due to a change of strain energy, and 

QD. = internal or external damping forces due to the energy dissipation 
1 

in the system. 

According to Castigliano's theorem, when considering the elastic forces QE 

which have strain energy U, then, 

aU 

QEi oqi (3) 

The minus sign in Eqs. (3) is introduced because in this theorem, the force 

is considered as applying to the elastic element. as in the spring of the 

simple spring-mass system shown in Fig. 1. and the generalized force QE act- 

ing on the element has the opposite direction of qi's. 

Fig. 1. 



Substituting Eqs. (2) and (3) into Eqs. (l), the general form of Lagrange's 

equations may be reduced to 

di- (aqi di- aqi aqi 
QDi Ai (4) 

In considering the free vibration of an undamped system, the force terms QA. 
1 

and Q 
D. 

are zero, and Eqs. (4) now have the form 

d 
dt 

df " ) " DU (aqi) 

aqi 
(5) 

Since the strain energy of the system is only a function of the coordinates, 

it can be expanded by Maclaurin's series for n variables about its stable 

equilibrium position as 

n n 
U(q ,q , ---,q ) = U + E (au ) q. E E 1 

32U 
) q.q. 

1 2 n o i=1 aqi o 1 i=1j=1 z agiaqj 0 1 3 

+ high order terms, 

where subscript o denotes the valUes-at the equilibrium position. In 

general, the value U 
o 
measured from the equilibrium position may be set at 

zero. The value of the strain energy in a stable equilibrium position is a 

relative minimum. This implies its first derivative must vanish; that is 

au 

(1c)0 = 

Then, assuming small displacements and neglecting all high order terms, the 

strain energy of the structural system can be expressed as, 

n n 
U = E ( 2u 

1 
2 j=li=1 41.3q. 1 3 

or 

U = 1E1 1 k.. 
2 j=li.1 13cliqj 

where k.. = k.. 
3.1. 

(6) 

(7) 

(8) 

(9) 
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thus the stiffness matrix 

K = (10) 

is a symmetrical matrix. The strain energy of a stable system is always 

positive. In addition, Eq. (9) is a homogeneous second-degree function of n 

variables. This implies that U is a positive definite quadratic form of the 

coordinates qi. Similarly, since the structural system is assumed to undergo 

small displacements, kinetic energy T can be considered as a function of 

velocities qi only, 

or T= 1 n n m--C-4- 
j=1i=1 1J 11 

where ji mij -- = m-- ; thus the mass matrix 

M = [mij] (12) 

is a symmetrical matrix. The kinetic energy is always positive; therefore T 

in Eq. (11) is a positive definite quadratic form of the velocities 4i. 

Substituting Eqs. (9) and (11) into Eqs. (5) gives the equations of undamped 

free vibration as 

[m [k 
J 
-]{J q} = 0 

J 1 

or M K {qj} = 0 (13) 

Since U and T are quadratic forms of coordinates and velocities, respectively, 

if high order terms are neglected, then Eqs. (13) are second-order linear 

ordinary differential equations. The physical meaning of coefficients mij 

and kij is the mass inertial force and the elastic force, respectively, act- 

ing at coordinate i due to unit acceleration and displacement, respectively, 

of coordinate j, with all other coordinates remaining stationary. 
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CONSISTENT MASS MATRIX AND THE STIFFNESS MATRIX FOR A UNIFORM BEAM ELEMENT 
IN LOCAL COORDINATES 

(1) Consistent Mass Matrix [Mij] 

A uniform beam element of length t of constant bending stiffness EI, with all 

generalized coordinates specified as in Fig. 2. is considered. A unit dis- 

placement along the direction of the generalized coordinate q! of beam 

element will cause the corresponding deflection function ri(x) as shown in 

Figs. 3. through 8. The results are: 

r 
1 
(x) (1 - ?S'-) i (14) 

r2(x) (1 - 1)2(1 4. 2 1) j (15) 

r 
3 2, 

(x) = x(1 - 2-c)2i (16) 

r4 (x) (x) = (17) 

r5(x) *2(3 - 2 I) J (18) 

and 

r6(x) (X)2(x - j (19) 

where i and j denote the unit vectors along x-axis and y-axis, respectively, 

as shown in Fig. 2. 



qi 

7 

Y' 

q 
2 

const. m, const. EI 

x' 

qi 

Fig. Local coordinates for a uniform beam element 

(x) = (1 - xx) i 

qi 1 f 

1 x 

m = mk 
11 3 

(a) 

mri(x) 

(b) 

_ mk 
41 - 6 

Fig. 3. (a) Generalized deformation curve due to a unit axial 

displacement along (11 

(b) Effective distributed mass 
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= 1 

r 
2 
(x) = (1 - lc) 2 (1 2 ) 3 

2, - 

13m2, 

x' 

m 
22 3f-- 

_ 
m 210 

1110.2 

32 - 
( 1 

(a) 

mr 
2 
(x) 9m2, 

S2 70 

I ) m62 - 17!4T12 06 

(b) 

Fig. 4. (a) Generalized deformation curve due to a unit 

displacement along 

(b) Effective distributed mass 

q' = 1 

3 

(a) 

mr3 (x) 
...., 

13m2 l m - 
lmk2 

1 
'' 

'''' --- 

2, 

23 210 7 r ''''--- I ----T.-, 453 

420 

in- 
105 I ) m63 = - I41-636 

(b) 

Fig. 5. (a) Generalized deformation curve due to a unit 

displacement along q; 

(b) Effective distributed mass 
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m mt 
-14 - 

y 
x 

r4 (x) = 

- -r 
x' 

(a) 

mr4(x) 

_ 

14 g 14.1. 

m = nit 
44 

(b) 

Fig. 6. (a) Generalized deformation curve due to a unit axial 

displacement along ci,14 

(b) Effective distributed mass 

1 Yi 

x' 

(a) 

= 1 

mr 
5 
(x) 

m25 = 9Ig _-- 55 35 - 
13mk _ 

--r -r-1 
-- 

_ ---- ., 
20 

llmt2 
) m65 = 210 

b) 

Fig. 7. (a) Generalized deformation curve due to a unit displacement 

along q 

(b) Effective distributed mass 



13mt2 
2° 420 

_ mt3 
-36- - 140 

(a) 

(b) 

m36 

= 1 

_ _ llm92 _ 

210 

I j m66 = 

Fig. 8. (a) Generalized deformation curve due to a unit 

displacement along q 

(b) Effective distributed mass 

M2,3 

105 

10 



By using superposition, the actual deflection at any point x of the beam 

element can be expressed as 

n 
w(x,t) = E r.(x)q!(t). at time t 

i=1 1 1 
(20) 

where the coordinates qi(t)(i = 1,2,,6) determine the amplitudes of the 

respective functions ri(x) which contribute to the total deflection w(x,t). 

Differentiating with respect to time t, Eq. (20) becomes 

w(x,t) = 11 1 1 
r.(x)4!(t), 

= 

Or, in matrix form, it is 

w(x,t) = ri{Ce }= L41J{r} 

(21) 

(22) 

The kinetic energy of the beam element with distributed mass can be written 

as 

r 
T = 1 .1.)iiw.2(x,t)dx 

Substituting Eq. (22) into Eq. (23), the kinetic energy yields 

T = f {r} . 

r 
m LrJ 

0 

= 1_4_1' [m. . } 

2 

= 
2 

J L4M 14'1 , 

where 

Lrj{4t}dx 

{r}dx {4,} 

r 
= [mid] = I 

k 
° Mott 

(23) 

(24) 

(25) 

11 



and 

I m = j m. r. (x) r (x) dt ij j (26) 

The component of the mass inertial coefficient mij is defined as a line inte- 

gral over the beam element of the product of mass per unit length m and the 

deflection functions ri(x) and rj(x). 

Thus the mass inertial coefficients can be evaluated by substituting Eqs.(14) 

through (19) into Eq. (26); thus they yield, 

t 

mi = j m(1 - 2.c.) (1 - 2E) idx = mQ 

0 

. (1 _ )2(1 + 21)'-idx = 0 
o 

= = j r 
m21 m12 2: 

2," 

m 
31 

= m 
13 

= jr _ 1 x(1 2,E)25dx = 0 
O 2, 

m 
41 

= m 
14 = 

r 

m(1 - 2S) * Lidx = mk 
0 Q 6 

r 
x- x m51 = mi5 

= J ma - T) q)2(3 23-) 3dx = ° 
0 

m 
61 

= m 
16 

= jr m(1 (c..) 2(x 56) jdx = 0 
0 

ft M 
22 

= m(1 - 2E)2(1 + 22!) 5 * (1 - 2S)2(1 + 225.) idx = 1....mk 
0 2, 2, 2 2, 35 

'1- 

m32 = m73 . j ma - 2s)2(1 + 21) 3 . x(i - .2)23dx . 11m2 
O 2 2, 2, 1510 

M42 = 
m24 

= m(1 - 2-(-)2(1 4.21c) 5 '...s_ idx = 0 1.'m 2 2, 2, 

r k 
m52 = m25 = -10 m(1 - 1)2(1 + 2) 5 (X)2(3 - 21) 5 d x = 4 ink 

m62 = m26 = 
f. m(1 - 

X 
7)-9 (1 4-2i) J 

2 
(x 2,) 5 dx = 

m33 5 1, rax(1 -4)2 3 x(1 - ?-2-c,)23dx - in043 

13 
mk 

2 
420 

12 



X 
M 43 = ms4 

0 
= MX(i. 

x 2: idx = 0 

0 2 

k 
X X ^ 13 

m53 = m35 = mx(1 - X 
) j (-) 2 -(3 - 2-) 

3dx 420 
= m2,2 

m = m, 
6 

= jr 
63 0 inx(i - 1):25 (L)2(x - 2,) 3dx m - k3 

140 

2, 

O 

m44 = f m i i idx = m3 

0 

m54 = m45 = f,mii. (1)2(3 - 2 2i) jdx = 0 

2, 

m64 = m46 
(L)2(x 3dX = 0 

= f m 

r k 
x ^ 13 

m55 = m (25-) 2 (3 - 2 .2i-zc-,) 3 (21-) 2 (3 - 2i) j dx = -8-5- mk 
0. t 

r k dc, r 2 

M65 = M56 = Jo MUP - ?i,) 5 (1)2 cx - 5dx - 

k 

m66 = J ni(-))2cx - (Q)2(x - 3dx - m2.3 105 

Finally, the results thus obtained can be written as: 

M' = [mii] = mk 

0 0 
1 

6 

11 mt2 
210 

0 0 

13 11 9 13 
35 210 2, 0 

70 420 2, 

k2 13 k2 

105 0 420 i- 140 

Symmetric 

1 

3 
0 0 

13 11 
35 - 210 

R2 

105 

(27) 

13 
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(2) Stiffness Matrix [kid] 

Axial stiffness and bending stiffness including shear deformation are 

considered for a uniform beam element as shown in Fig. 2. in the following 

paragraph. 

First, the components of the axial stiffness are derived by calculating the 

external forces required in the direction of the coordinates ql (i = 1,2,-,6) 

to sustain a unit axial displacement of the coordinates q' and q', respec- 
1 4 

tively, with all other coordinates constrained rigidly. The results are: 

k = k = AE 
11 44 -r 

k41= k14= AE 
.e. 

kn.= kli= 0 

ki4= k4i= 

for i = 2, 3, 5, 6 

for i = 2, 3, 5, 6 

Next, the strain energy in pure bending is 

ft 

U = 1-- EI 
12 /o( 9 ax2 

From Eq. (20) 

n 
w(x,t) = z r.(x)q!(t) 

i=1 1 1 

Taking second derivatives with respect to x 

a2w 
= E 

n d2r.(x) 

pc2 i=1 dx2 1 

or, in matrix form, 

a2w A2r 
- . 

x 2 L dx Intl Lq j 
rd22 

(28) 

(29) 

(30) 

(31) 



Substituting Eq. (31) into Eq. (29) yields 

rd2r 
u = 1 El d2r 

2 L -671 fq Lg.:1117} dx 

=1, qJ f EI 
L 2 dx2... dx4 

The matrix form of Eq. (9) is 

1 
U = (2.1.:j [kii](cC) 

where 

dx K' = [k d2r {d2r} ii] = Elf 
2 

and 

kd2r1. d2-. 
k.. = El ij dx2 dx12-1 dx 

Substituting the deflection functions r2(x), r3(x), r5(x) and r6(x) into 

Eqs. (35), the coefficients of bending stiffness are: 

dx = - 6 12x j 6 12x - 
2,6 0 

k32 = k23 = EI f t 72,2 j o 

k52 = k 25 = EI +12x) 
o 

f 6 12x 
k62 k26 = EI 

0 t2 k3 j 

6 6x 
( -) jdx = -6 EI 

( 6 12x 12 
2 R,3 k3 

2 6x 6E1 -+ 
.4 

) pax - - 
2,2 

k33 = El f 2' . ( - 4 6 4 6x - 4E1 
k k2 t 2.2 

2, 

k53 = k 35 = EI f 4 
_ _ + ) j 6x .:, i. 6 12x 

t - - - ) 6E1 

j 2,2 
k 

k63 = k36 = El f ( - + 
6-,-) 

J 
x, 2 ( 4 6x1 .1,cbc 2E1 

%. .1 2., 2/ -, k 

(32) 

(33). 

(34) 

(35) 

15 
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El 1. 

r 6 12x 12x , 12E1 
= V V t6 

k 
65 

= k 
56 

= EI in ( _ ) 3 ( ox ) jdx 6E1 

2 0 k k2 k2 

k 
66 

= El 
2 6x 

) 3 
2 

) )dx 
6x = 

0 t4 2.4 

From the above results and Eqs.(28), the stiffness matrix can be expressed 

as: 

K' = [kij] 

0 0 

12E1 6E1 

£3 £2 

Symmetric 

4E1 

2, 

0 

0 

0 0 

12E1 6E1 

2.2 

6E1 2E1 

£2 -7- 
- -7- 

AE 
0 0 

12E1 6E1 

4E1 

(36) 

For the bending stiffness with the shear deformation included, Eqs.(35) 

becomes 

EI 

(1 + + 

where 

d2ri d2ri dx 
aGA1343. 

f 
drj drj 

(37) 

dx2 dx2 EI 3 

0 
dx dx 

a = a dimensionless number dependent on the shape of the cross section, 
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oi =(qps/(qpb where the subscripts s and b denote shear and bending, 

respectively, and 

G = modulus of elasticity in shear. 

The correction factor 1/(1 .1. 0i) is less than 1, because the stiffness 

decreases when the shear deformation is included. Timoshenko[53 has shown 

that the correction factor to the fundamental frequpncy is about 99% for a 

simply supported uniform 1-beam with a thin web, but the shear effect is 

relatively significant in higher modes. Here it is neglected. 
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TRANSFORMATION OF MATRICES FOR A UNIFORM BEAM ELEMENT FROM LOCAL COORDINATES 
INTO SYSTEM COORDINATES 

Let (x',y() and(x, y) be local and system coordinates, respectively, with a 

common origin as shown in Fig. 9. The table of direction cosines of the 

axes becomes 

x' y' z' 

x Cos8 -Sine 0 

y Sine Cose 0 

z 0 0 1 

Table 1. Direction cosines Fig. 9. Transformation of 

rectangular coordinates 

In matrix form, the transformation is 

{q} = 

where the transform matrix is 

Cose 

Sine 

-Sine 

Cose 

0 0 

0 0 

0 0 

0 0 

(38) 

0 0 0 0 

0 0 0 0 

(39) 

1 0 0 

0 Cose -Sine 0 

0 Sine Cose 0 

0 0 0 1 

for order 6 x 6 of a uniform beam element in system coordinates as shown 

in Fig. 10. 



Fig. 10. System coordinates for a uniform 

beam element 

Equation (39) is an orthogonal matrix; thus inversion of Eq. (38) yields 

= 

13_1 = i_cuTa 

, or 

The derivatives with respect to time become 

{4'} = TT {4} 

1.1 = Lq.ira 

Or 

Substituting Eqs. (42) and (43) into Eq. (24) gives 

T L. .1TaMtTaT lcil 

Comparing Eqs. (24)and (44), the consistent mass matrix M for system 

coordinates can be written 

T 
M = TaM'T 

a 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

19 



Similarly, from Eqs. (33), (38) and (39), the stiffness matrix K for 

system coordinates can be written 

T 
K = T 

a 
K'T 

a 

Expansions of Eqs. (45) and (46) yield: 

(46) 

20 



(L b) 

SOT 

OTZ S£ 
Osoo TT -'0zsoo sT + GUTS 

T 

OUTS 
OTZ c3 

TT 
'OsoD OATS 

- 4n 55 
InufS a + Ozso3 

OVI 
T `osop 

OZt 
£1 ouTs 

sot 

SOT OZ17 _ ()L._ OTZ 
Ozsop + OzuTS 7.- 

£ 
9503 w -`A sod 

6 
+ 
OzuTS1 

Aso GUTS £T Osco W 
TT ST I 

OuTS.1 
OZV 
ST 

3p4amwAs 

`0500 outs 
SOT 

tag + 0 sonl'8uTs T 'Os00 OUTS -'0zuTs + 
erso4 t Z 6 z I 

9 

crui [17Tui] = 



Where 

= 

12 2 A 2 A 12 6 12 2 A 2 12 A . , 6 . S in -0 + - Cos 0, (- - S ine Cos O,- -S ine,- -S in - Cos 0, (- - -) S in0 Cose, - -S in0 t2 t2 t2 I 2,2 I 

12 2 A 2 6 12 A 

I -2 COS + -S in 0, - Cosa, (- - -) Sine Cos°, - Cos20 - -11S in20, -6- Cos° 
2,2 2,2 

Symmetric 

4 -Sine ine 
2, 

- -6 Cost) 2 

12 -- S in20 + 
A Cos20 --11) Sine Cos°, - 6 

S in@ 
R 

2 1 I t2 t 

Cos20 + S in20 - 
17_12 

Cosh 

(48) 



LUMPED MASS MATRIX FOR A UNIFORM BEAM ELEMENT 

In Fig. 2. let one-half of the mass of the beam element be concentrated at 

each of the two ends of the element. From Eq. (24), the kinetic energy in 

matrix form can be written as: 

T = 
2 

Then the lumped mass matrix for the uniform beam element in local coor- 

dinates is 

M' 

=21 

m2. 

0 

Symmetric 

Form Eq. (45), 

T 
M = T M'T 

a a 

1 

1 

0 

0 

This is the lumped mass matrix M for system coordinates. Substituting 

Eqs. (39) and (49) into Eq. (45) results in 

(49) 

23 



24 

1, 

Cose -Sine 0 0 0 0 1 

0 

Sine Cose 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 Cose -Sine 0 1 

0 0 0 Sine Cose 0 1 

S;rinmetric 

0 0 0 0 0 1 0 

Cose Sine 0 0 0 0 

-Sine Cosa 0 0 0 0 

0 0 1 0 0 0 

0 0 0 Cose Sine 0 

0 0 0 -Sine Cose 0 

o 0 0 0 0 1 I 



= 

1 

1 

Symmetric 

0 

1 

0 

0 

25 

(50) 

The result shows that the lumped mass matrix, which is a diagonal matrix, is 

independent of its coordinates. 



ASSEMBLY OF THE EIGENVALUE PROBLEM FOR A FRAME WITH RIGID CONNECTIONS 

A symmetrical gable frame as shown in Fig. 11 can be considered as four 

elastic beams joined rigidly. Each individual beam of the frame is con- 

sidered to be composed of two beam elements of equal length. Let A, B, 

C, D, E, F, G and H denote each beam element. 

Fig. 11. A symmetrical gable frame with 

clamped ends and rigid connected joints 

From elementary mechanics for each beam element, it follows that 

K 

where 

Y denotes the stiffness matrix (6 x 6). 

(51) 

26 
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{Q}T 
=LQ1' Q2' Q3' Q4 5 

Q6 Q 

is a row matrix of externally applied forces measured in system coordinates. 

{g}T 
=12'1' 

q2, q3, 
q4, q5' cl6j 

is a row matrix of structural displacements measured in system coordinates. 

Equation (51) can be expressed as 

K 
A A 

q 
2 21 22 

for beam element A, (52) 

Similarly, the following equations are developed: 

for beam element B, (53) 

for beam element C, (54) 

for beam element D, (55) 

for beam element E, (56) 



KG K 
11 12 

q7 

K 
21 

K 
22 q8 

and 

Q8 
H 

K 
H 

11 12 .81 

Q9 
21 22 fq9 

K 
H 

K 
H 

where 

for beam element F, (57) 

for beam element G, (58) 

for beam element H, (59) 

28 

Q2. 
.(i = 1, 2, 9) is a three-element vector of the generalized external 

forces applied at node i; 

qi(i = 1, 2, 9) is a three-element vector of the generalized dis- 

placements at node i; and 

K. . (P = A, B, H) is a matrix (3 x 3) obtained by partitioning the 

stiffness matrix (6 x 6) for the Pth beam element in system coordinates. 

Since the beam elements are joined rigidly, Eqs. (53) through (59) may be 

expanded thus: 



A 
Q 

1 
KAq +K 

12 
q 

11 1 2 

Q = KAq + (K 
A 

+ K 
B )q + K 

B 
q 

2 21 1 22 11 2 12 3 

Q4 

Q5 

Q8 
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K 
Bq + (K + K11 + K 

C 

21 2 22 11 3 12 
q 

4 

C C 

- 11 
D 

J 

D 

-21(13 + 22 c14 -12q5 

D D E E 

-21q4 "s22 -11c15 -12q6 

E F F 
K 

Eq 
+ (K + K )q + k q 

21 5 22 11 6 12 7 

F ) 
-21% + "s22 + -11- 

01 

'7 
+ K 

12G q8 

G H, H 

11 K 21 7 + (K22 + 112c19 

H 
K 

Hq 
q 

21 8 22 9 



In matrix form 

A A 
Q1 

K 
11 

K 
12 

Q2 

Q3 

Q4 

<Q5 

Q7 

Q8 

Q9 

a 

A A B B 
K 
21 

K 
22 

+ K 
11 

K 
12 

B B C C 
K 
21 

K 
22 

+ K 
11 

K 
12 

Symmetric 

Since 

{Q} = m{4} 

K 
C 

K 
C 

+ 
KD 

K 
D 

21 22 11 12 

0 

D D E E 
K 
21 

K 
22 

+ K 
11 

K 
12 

E E F F 
K 
21 K22 

+ K 
11 

K 
12 

where M denotes the mass matrix (6 x 6). 

F F G G 
K 
21 

K 
22 

+ K 
11 

K 
12 

K21 
KG + 

K11 

H 

21 22 11 12 
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rql 

q2 

q3 

q4 

q5 

q6 

q8 

K 

Ii Ii 

21 21 22 qgj 

(61) 

{Q }T Qi, Q2, Q3, Q4, 
Q5, 

Q6_lis a row matrix of externally applied forces 

measured in system coordinates, and 

=L41, C12, .43, qv 161 is a row matrix of structural accelerations 

measured in system coordinates. 

Equation (61) can be rewritten as: 



Q1 

rm A MA 
`(1 11 12 

Q 
MA MA 
21 22 

for beam element A, (62) 

Similarly, the following equations are developed: 

j--Q2 [-M11,31 

LQ3 [M281 
li 

1-1 

11 
M 
12 

C c 

Q3 
Q4_I M21 

M 22 

D 

1144 

M 
11 

1 
Q5 M21 "21 

FQ5 I-NIT]. ME -12 

1...Q6 L M21 M 72 
E E 

1-1 

Q7.1 M21 

"11 - "12 

F F 
M22 

F F 

Q6 
IA m 

..(1 

M 
11 

M 
12 

= Q8 
M 
21 

M 
22 

G G 

r 
G G 

1 F44 
D 

1 
M 
22 45i 

F46,1 

q7 

48j 

for beam element B, (63) 

for beam element C, (64) 

for beam element D, (65) 

for beam element E, (66) 

for beam element F, (67) 

for beam element G, (68) 

31 



and 

f 
;1[L Q9 

where 

q9 

for beam element H, (69) 
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(11 
.(i = 1, 2, 9) is a three-element vector of the generalized external 

forces applied at node i; 

-.(i = 1, 2, 9) is a three-element vector of the generalized accelera- 

tions at node i; and 

M.P (P = A, B, partitioning H) is a matrix (3 x 3) obtained by partitionir the mass -0 
ij 

matrix (6 x 6) for the Pth beam element in system coordinates. 

Since the beam elements are joined rigidly, Eqs. (62) through (69) can be 

expanded and written in matrix form 



A A 
M11 M12 

A A B B 0 

r 

Q2 '21 '22 + '11 '12 

B 1413 C C 
Q3 '21 "22 + "11 "12 

C C D D 

Q4 M21 M22 + Mil M12 

D D E E 
Qs M21 M22 + M11 M12 

E 

M21 

E F 
+ 

M22 Mll 
F 

M12 Q6 

F F G G 

Q7 M21 M22 + M 
11 

M12 

G G H 

Q8 M21 M22 + M 
11 

M12 

Symmetric 
H 

Q9 M21 21 22 M22 

qi 

*6,2 

q3 

q4 

'45 

q6 

q7 

33 

(70) 



The equations of motion of the gable frame may be written as 

M 
A A 
11 12 

A A B B M M + 101 M 
21 22 11 12 

B B 

M12 
C 

M21 M22 + 11 -12 

Symmetric 

C C 
+ 

D 
M21 M22 Mll M12 

0 

MD M + ME M 
E 

21 22 11 12 

E E F F 
M21 M22 + M 

11 
M12 

F F G G M21 M22 + Mil M12 

M 
G MG + MH MH 
21 M22 11 12 

M'll 
fi 

21 
M22I q 

9 
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A 
K 
11 

K A 
12 

A A B B 
K21 K22 + Kll K12 

B B C 
K21 K22 + Kll 

KC KC 
21 22 

Symmetric 

0 

C 
K12 

+ KD KD 
11 12 

D D E E 
k 
21 

K22 + 
K11 

K12 

E E F F 
K21 K22 + K 

11 
k.1 

2 

F F G G 
K21 K22 + K.11 K12 

G 
K 
G 

+ 
K11 K21 K22 11 

K 
H 

21 

12 K12 

K 
H 

22 

ql 

q3 

q4 

q5 

q6 

q7 

q8 

q9f 

j= 

35 

Q1 

Q2 

Q3 

Q4 

Q5 

Q6 

Q7 

Q8 

Q9 

In Fig. 11 the gable frame is clamped at the feet, thus q1 = q9 = 0. Also, 

there are no external forces applied at nodes 2, 3, 4, 5, 6, 7 and S. These 

conditions may be acknowledged in Eqs. (71) and the equation partitioned as 

(71) 



M 
A A 

11 M12 
0 0 

A A BB 
M21 M22 + M 

11 
M12 

0 0 

0 0 

M21 MB + M11 M12 
21 22 11 12 

C C D D 

M21 M22 M11 M12 

0 iO 

D D 
M21 M22 + M11 M12 

E E F F 
M21 M22 + M 

11 
M12 

F F G G 
M21 M22 + M11 M12 

MG MG + MH 1 
H 

21 22 11 1 

m 
H 

21 22 
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yk 

K 
12 

0 I K 
11 

0-1 

-- 

A1 A B B 
K 
210:22 

+ K 
11 

K12 0 I 0 

KB KB + KC K 
C 

21 22 11 12 

KC K 
C 

+ 
K11 

KD 
21 22 11 12 

K 
D 

K 
D 

+ KE K 
E 

21 22 11 12 

KE KE + KF KF 
21 22 11 12 

KF KF + K 
G 

K 
G 

21 22 11 12 

0 I 0 K 
G 

K 
G 

+ KH H 
K 

21 22 11 12 

2 

4 
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0 

0 

q5 = 0 

q6 

H 
0 I 0 

K21 I 22 

Equation (72) may be rewritten into three separate equations, as: 

[MA 0 0 0 0 
12 

A 

12 

(12 

q3 

C4 

0 0 0 01 q5 S= 

q6 

q7 

Lqs 

0 

(72) 

(73) 



A 
M22 + M11 

M12 
0 

B B C C 
M21 M22 + M11 M12 

C C D D 
M21 M22 + M 

11 
M12 

D D E E 
M21 M22 + M11 M12 

q2 

q3 

E E 
M21 M22 + 

M11 
M12 4.6 

F F G mG 
M11 

M 
21 M22 + -11 -12 

Symmetric 

A B B 
K22 + K 

11 
K12 

B B C C 
K21 K22 + K 

11 
K12 

M21 
+ 

G 
MH 

21 22 11 

0 

C C D D 
K21 K22 + K 

11 
K12 

E E 

K11 K21 K22 + "11 "12 

Symmetric 

E E F F 

K21 
+ K K 

21 22 11 12 

q7 

q8 

r 
q 2 

q 3 

F F 

K21 + 
K 

G 

21 22 K11 K12 

G G 
K21 K22 + K 

11 

0 

0 

0 

= 0 

q 6 
0 

q7 0 

q 8 
0 
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(74) 



q3 

q4 

.46 

q7 

q8 

+ [0 0 0 0 0 0 K 
21 

] 

q3 

q4 

q5 

q6 

(17 

39 

(75) 

Equations (73) and (75) yield the reaction at the clamped ends of the frame due 

to motions of the structure and may be ignored for the purpose of this paper. 

Equations (74) are again simplified as 

M {qj + . = 0 , (j = 2, 4, ....P 8) (76) ) K 

where 

M = 

A B B 
M 
22 

+ M 
11 

M 
12 

B B C C 
M 
21 

M 
22 

+ M 
11 

M 
12 

0 

C C D D 
M 
21 

M 
22 

+ M 
11 

M 
12 

Symmetric 

D D E E 
M 
21 

M 
22 

+ M 
11 

M 
12 

E E 

M21 M22 M11 M12 

F F G G 
M 
21 

M 
22 

+ M 
11 

M 
12 

M 
G 

21 

H 
+ M11 

(77) 



and 

K = 

A B B 
K22 + K11 K12 

!OW 

BBCC 
K 
21 

K 
22 

+ K 
11 

K 
12 

0 

C C D D 
K 
21 22 

+ K 
11 

K 
12 

Symmetric. 

D D E E 
K Y + K11 

K 21 '22 11 12 

E E F F 

K21 
+ K K 

21 42 11 12 

F F G G 
K 
21 

K 
22 

+ K 
11 

K 
12 

G liG 

'21 '22 '11 

40 

(78) 

The displacements qi(j = 2, 3, ..., 8) in Eqs.(76) are assumed to be sinu- 

soidal functions of time t with constant frequency w as shown in Fig. 12. 

That is: 

imaginary axis 

Fig. 12. 

= a+ ib 

real axis 



qj = lqiiei" 
(79) 

where i = V-1 and the lqil are the moduli of displacements qj. Then 

Eqs. (79) form a set of linear second-order differential equations, which 

can be simplified as follows: 

=_w2 
qJ 

= 2, 3, , 8) or 

{4j/ 
= w2fcli/ 

Substituting Eqs. (8C) into Eqs. (76) yields 

K {q.} = w2M 
{q3 

.} 

(80) 

(81) 

Since Eqs. (76) are linearly independent, this implies that the nonsingular 

square matrix M or K has an inverse, M 
-1 

or K 
-1 

, respectively. Thus, 

K-1 
1 

A M Lqjr 
1 1 

= iqy 
1 

(82) 

Letting the dynamical matrix [cij] = K-1 M, Eqs. (82) are simplified as 

1 
ac.1-,,[1]).(c13 .1.= {0} 

w- 

where [I] is an identity matrix. For convenience, the matrix [c..] is 
13 

designated as C and - 1 
as A . That is 

w2 

XI) - . 

c13 

1 = {0} 

This yields an eigenvalue problem. 

(83) 

(84) 
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NUMERICAL EXAMPLE 

A symmetrical gable frame with clamped ends and rigid joints is now 

considered and is illustrated in Fig. 13. 

= 10 ft. 

E = 29.5 x 106#/in.2 

I = 310.1 in.'* 

A = 11.77 in.2 

AR2 
- 546.55917 

I 

Fig. 13. A symmetrical gable frame with clamped 

ends and rigid connected joints. 

If Eqs. (47) and (48) are expressed as the matrices (2 x 2) shown in 

Eqs. (52) and (62), then by substituting into Eqs. (77) and (78), the con- 

sistent mass matrix and the stiffness matrix are obtained as follows: 



The consistent mass matrix it, 

M = 

Symmetric 

11 
70 10E 

132 
840 

if 37 132 
105 280 

132 13/52 2.2 
0S. 840 - 

24 2)/T 
35 - 105 

76 
0 105 

22.2 
105 

70 

S 
105 

13/_ 
840 

105 

37 

Lay, 
840 

133-2. 
280 

13 1/3 2 

840 

92 
840 -140 

24 
35 0 

76 

112 
210 

0 105 

3.1 17- 13 Z. 

70 - 105 
_ --- 

840 

/- 37 13 ig2 
105 280 - 840 

222 132 13/3-2 22 
105 840 840 - 14i. 

24 21:3 
35 105 

76 
105 

0 

0 

29, 

105 

11 I _ 132 
70 105 840 

lig 37 -1373i 
105 280 840 

132 13,13-2 _ 22 
840 840 140 

5 V3 112, 
7 105 420 

73 112 
105 420 

222 
105 

9 
70 

0 

0 

1 
6 

332 
0 4c0 

132 
420 

0 

£2 
140 

26 
35 0 0 

0 

22.2 
105 
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(85) 







MATRIX ITERATION 

Matrix iteration is a convenient and useful method for solving the matrix 

equation as derived in Eqs. (84). Let the eigenvalues of the matrix C 

with order n x n be 

A1, A2, 

with 

I An 
(A. real positive value) 

Al > X2 > A3 > > 
n 

and the corresponding eigenvectors 

1 fq3 -1, 2 I .11.1 
3 c13 

(88) 

Then let the first arbitrary trial column vector V 
1 
be a linear superposi- 

tion of the n eigenvectors. This is possible since the eigenvectors are 

linearly independent in n space. 

Iclj/1 a2 {qj}2 a n {q-}n 

Multiplying by the dynamical matrix gives 

= al C {qj}1 + u2 C {qp2 + 

From Eqs. (84), the following holds 

C {cyl = Al {cyl 

C 
{q7 

}2 = A2 {qj}2 

C {qpn = An {qpn 

+ en C fcrl n 

(89) 

(90) 

(91) 
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Hence Eq. (90) yields 

cV V 
2 

= 61.1] 
3 + an An fcliln 

By repeating the process, the following results: 

C72 = C2-71 

= a 
1 1 

A2 
3' 

a 
2 

X2 bq .12 +''°' + a 
n 

A2 ki .} 
n ; 

If the process is repeated, the Pth iteration will yield 

CVP = CP 
1 

= 
{c1 '11 4. (12 A2 1cl -4. an All 3 

where V is the Pth trial column vector. The constants al, a2, a 
1, 2' 3' 

a 
n 
are arbitrary. 

(92) 

(93) 

(94) 

According to Eq. (88), as P becomes sufficiently large and if the arbitrary 

constant a 
1 
is larger than the rest of the a's, the first term on the right- 

hand side of Eq. (94) is the only significant one; that is: 

V p+1 = C P = P r 

1 (95) 

This means the (P + 1)th trial column vector is same as the first eigen- 

vector multiplied by a constant. One more iteration yields 

P+2 
= CP+117 = a AP+1 

I 1 lc{ 
J 

1 

C (cP = 
1 1 

( AP } ) 

= 
1 

(c 
P 

) 

or 

(96) 
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This implies that the first eigenvector with the largest eigenvalue Al 

corresponding to the lowest natural frequency wi is obtained. 

To determine the intermediate modes and their corresponding frequencies, let 

a new matrix D have the same set of eigenvectors as the matrix C, and let 

its corresponding eigenvalues be 

U1, U2, , Un 

The product matrix P becomes 

P = CD 

Since 

13 

qJ 
Lj )i = CU. 

{q.}j. 
= A. U. 

3 

CID 

This means the matrix P has the same set of eigenvectors as the matrix C 

with eigenvalues 

Al Ul, A2 U2, , An Un 

An alternate form of Eq. (97) is 

P =C (Al I6 C) 

which has the same set of eigenvectors as the matrix C. That is 

{y1, Ici1 12, {qj }3, { j}n 

Its corresponding eigenvalues become 

0 A2( A1 
- X2) , X 3( X1 - X3), n 

( - 
1 n 

08) 
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This result gives us a way of evaluating intermediate modes and their 

corresponding frequencies. 

Determining Al and fyi from the matrix C, then iterating the matrix P 

yields the eigenvector with its largest eigenvalue A 
P. 

This eigenvector 

cannot be {q.)1 again, since the eigenvalue of the matrix P in Eq. (98) 

corresponding to fyi is zero and thus cannot be the largest one. This 

implies the iteration of the matrix P will yield its largest eigenvalue- 

eigenvector pair 

AP and {q.3 }2 

Comparing with Eq. (98) which has the eigenvalue-eigenvector pair 

A2 (Al - A2) and {q1}2 

Thus 

A2 ( Al - A2) =AP 

Two roots can be evaluated from the quadratic equation, but only one root A2 

has meaning for the matrix C. Consequently, the second natural frequency L02 

anditscorrespondingmode{. qj }2 of the matrix C are obtained. 

By the same iteration process, the mth eigenvalue-eigenvector pair is 

XQ and I 

c13 

( 1 < m < n ) 

where X, is similar to A except the mth iteration. 

The mth eigenvalue of the matrix C can be solved from the polynomial 

equation 
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m 
w 
-1 

Am ( A. - Am) 1 m m 
AQ P9) 

which has only one meaningful root Am. Finally, the mth natural 

frequency wm and its corresponding mode lymof the matrix C are obtained. 
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NUMERICAL RESULTS 

Using the 1410 digital computer, the results are tabulated as follows: 

Modes 
(1) CM (2) LM 

CM-LM 
CM 

1 

Anti-Symmetric 

11.3382 11.2994 0.3423 

2 

Symmetric 
26.9528 26.9266 0.0972 

3 

Anti-Symmetric 
61.9981 60.5726 2.2992 

4 

Symmetric 
91.4203 92.3770 -1.0464 

Note: 

Table 2. Natural frequencies of a symmetric gable frame 

(1) Solutions obtained using the consistent mass matrix. 

(2) Solutions obtained using the lumped mass matrix. 
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First mode Second mode Third mode Fourth mode 

q12 
.10000000E 01 .10000000E 01 .10000000E 01 .10000000E 01 

q22 
.22232225E-02 .89382952E-02 .15584609E-01 .25317256E-01 

q32 -.48727065E 00 -.39433232E 00 -.24121173E 00 -.79708314E-01 

q13 .25336057E 01 .14646409E 01 .31083212E 00 -.53979782E 00 

q23 .44444047E-02 .17845461E-01 .30907082E-01 .49722162E-01 

q33 
-.33575858E 00 .23974195E 00 .63110308E 00 .78407162E 00 

q14 .27679103E 01 .59999050E 00 -.54143045E 00 -.99286493E 00 

q24 -.39524185E 00 .15241593E 01 .15052583E 01 .85552963E 00 

q34 .34596705E-01 .60889297E 00 .50662781E-01 -.48418942E 00 

c1 15 
.25418625E 01 -.11074083E-08 .32118814E 00 .15576803E-06 

q25 
-.26361131E-08 .25641219E 01 .14422763E-06 -.81242459E 00 

q35 .19042079E 00 .19854212E48 -.85238418E 00 .11804428E-06 

q16 .27679103E 01 -.59999051E 00 -.54143065E 00 .99286455E 00 

q26 .39524184E 00 .15241593E 01 -.15052584E 01 .85553018E 00 

q36 .34596708E-01 -.60889298E 00 .50662736E-01 .48418923E 00 

q17 
.25336057E 01 -.14646409E 01 .31083219E 00 .53979768E 00 

q27 -.44444047E-02 .17845460E-01 -.30907081E-01 .49722202E-01 

q37 -.33575858E 00 -.23974196E 00 .63110309E 00 -.78407142E 00 

q18 
.10000000E 01 -.10000000E 01 .10000000E 01 -.99999914E 00 

q28 -.22232225E-02 .89382962E-02 -.15584614E-01 .25317280E-01 

q38 -.48727065E 00 .39433233E 00 -.24121168E 00 .79708366E-01 

Table 3. Natural modes of vibration of a symmetrical gable frame by using 

the consistent mass method 

Note: qij The component of displacement along the direction i at node j. 
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q12 

q22 

q32 

q13 

q23 

q33 

q14 

q24 

(134 

q15 

q25 

q35 

q16 

q26 

q36 

q17 

q27 

c137 

q18 

q28 

q38 

First mode 

.10000000E 01 

.23135929E-02 

-.48648042E 00 

.25363075E 01 

.46250711E-02 

-.33676435E 00 

.27694991E 01 

-.39313532E 00 

.35882201E-01 

.25446744E 01 

.30475190E-09 

.18584876E 00 

.27694991E 01 

.39313532E 00 

.35882201E-01 

.25363075E 01 

-.46250711E-02 

-.33676435E 00 

.99999999E 00 

-.23135929E-02 

-.48648042E 00 

Second mode 

.10000000E 01 

.88866956E-02 

-.38920274E 00 

.14730662E 01 

.17742479E-01 

.23109395E 00 

.60581610E 00 

.15286707E 01 

.60695759E 00 

.30423797E-09 

.25787531E 01 

-.79162357E-09 

-.60581610E 00 

.15286706E 01 

-.60695759E 00 

-.14730662E 01 

.17742479E-01 

-.23109395E 00 

-.99999999E 00 

.88866955E-02 

.38920274E 00 

Third mode 

.10000000E 01 

.13977959E-01 

-.21499177E-00 

.30170499E-00 

.27730637E-01 

.58850205E-00 

-.56491566E-00 

.15309259E 01 

.50972961E-01 

.31518175E-00 

-.25847694E-08 

-.82009746E-00 

-.56491565E-00 

-.15309259E 01 

.50972963E-01 

,30170499E-00 

-.27730637E-01 

.58850204E-00 

.99999999E-00 

-.13977959E-01 

-.21499176E-00 

Fourth mode 

.10000000E 01 

.15684829E-01 

-.51066741E-01 

-.49424806E-00 

.30876185E-01 

.64915742E-00 

-.94563788E-00 

.83455128E-00 

-.37130487E-00 

-.15718941E-05 

-.75656698E-00 

.16016191E-05 

.94563775E-00 

.83455639E-00 

.37130380E-00 

.49424542E-00 

.30876640E-01 

-.64915575E-00 

-:99999094E-00 

.15685062E-01 

.51066918E-01 

Table 4. Natural modes of vibration of a symmetrical gable frame by 

using the lumped mass method 

Note: qij The component of displacement along the direction i at node j 



Using the data in Tables 3. and 4., the natural modes of vibration are 

drawn as follows: 

(a) First mode 

(b) Second mode 
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(c) Third mode 

(d) Fourth mode 

Fig. 14, Natural modes of vibration of 

a symmetrical gable frame 



APPENDIX 

EIGENVALUE PROBLEM OF FIRST MODE 
COMMONAt21,42) 

1 FORMAT(4E16e8) 
2 FORMAT(/) 
3 FORMAT(1H1) 

N=21 
READ(191) ((A(19J),J=1,N),I=1,N) 
CALL INVRS(N) 
WRITE(391)((A(I,J),J=1,N),I=1,N) 
WRITE(2,1)((A(1,J),J=1,N),I=1,N) 
STOP 
END. 

MONSS EXEC) FORTRAN,I916 
SUBROUTINE INVRS (N) 

Cf.:MK:MA(21,42) 
2 FCRMAT(40X,1OHNC INVERSE) 
NN=N+N 
DD 130 I=1,N 
IN1=I+N 
DO 120"J=1,N 
JN1=J+N 

120 A(IlJN1)=Ce 
130 A(I,IN1)=1'. 

DO 100 M=19N 
5 DIV=A(M,M) 

IF(DIV.EQ.0.C) GO TO 40 
DC 10 J=1ON 

10 A(MiJ)=A(MiJ)/DIV 
DC 30 1=1iN 
IF(Ii.E04,M) GO TO 30 
AMUL=A(I,M)' 
DO 20 J=1,NN 

20 A(IiJ)17-Ai1e4)-AMUL*A(M,J) 
30 CONTINUE 

GO TO 100 
40 DC 60 1=MioN 

IF(A(I,M).EG.0.0) GO T060 
DO 50 J=1,NN 
DUMY=A(I,J) 
A(I,J)=A(M,J) 

50 A(M,J)=DUMY 
GC TO 5 

60 CONTINUE 
WRITE (3,2) 
GC TO 110 

100 CONTINUE 
DC) 140 I=1,N 
DC 140 J=19N 
jN=J+N 

140 A(I,j)=A(I,JN) 
110 RETURN 

END 

CHEN-I WANG 

5.6 
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PIMENSIONB(21921) 
1 FCRMAT(4E16.8) 

N=21 
READ(1,1) (C6(19J),J=1,N),I=1,N) 
DO2CJ=1,N 
WRITE(391)(B(I,J)9119N) 

,20 WRITE(2,1)(B(I,J):1=1,N) 
STOP 
END 

DIMENSION A(21,21),E3(21),C(21,21) 
1 FORMAT(4E16.8) 

N=21 
READ(1i1) ((ACI,J),J=1,N),1=1,N) 
DC 20 M=19N 
READ(1,1)CB(K),K=1,N). 
D020I=19N 
CII14)=0 
DC20j=liN 

2C C(itM)=C(I'M)+A(1,J)*6(J) 
ESUM=C 
DC 30 M=19N 

30 ESUM=ESUM+C(M,M) 
WRITE(3/1)E5UM 
WRITE(291)E5UM 
WRITE(391)((C(I,J),J=1,N),I=1,N) 
WRITE(291)((C(I,J),J=1,N),I=1,N) 
STOP 
END 
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COMM0N C(21,21),R(21),S(21) 
1 FCRMAT(4E16..8) 

N=21 
READ1191) l(C(I,J),J=1,N),I=1,N) 
CALL ITER(N,WSO) 
EI=VISO 
WSC =1. /WS0 
W=SORTNSO) 
WRITE(391)WS0s4 
WRITE(2.1)WSO,14 
WRITE(3,1)EI 
WRITE(2,1)EI 
WRITE(391)(R(I),I=1tN2 
WRITE(2,1)(R(I)1I=1,N) 
STOP 
END 

MON:SS EXEO F RTRAN,,,18 
SUBROUTINE ITER (N,VISO) 
CCMMCN C(21921).R(21)95(21) 

1 FORMAT(4E16.8) 
EPS1=0.0aU00001 
DC 20 1=1,N 

20 R(I)=1' 
30 DC ify I=1,N 

S(1)=0. 
D040J=101 

40 S(I)=S(I)+C(I,J)*R(J) 
DC 45 I=19N 
IF (5(I).NE.0.0)G0 T048 

45 CCNTINUE 
GC TO 120 

48 WSO=S(I) 
ERROR=. 
DC 50 I=1,N 
RI=F(I) 
R(1)=SIWWSO 
IF 4A8StR(I)-RI).GT.ERRCR) ERROR=ABS(RtIl-RI) 

50 CONTINUE 
WRITE(391) WSO 
WRITE(3t1)(R(I),I=1,N) 
IFCERROR.GT.EPSIY GC TO 30 
GC TO 100 

120 DC 130 I=1,N 
V=I 
V=V+1./V 

130 R(I)=RCI)+V 
GC TO 30 

100 RETURN 
END 
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EIGENVALLIE PROBLEM CF INTERMEDIATE MCDES 
DIMENSIONC(21421) 

1 FCRMAT(4E16.8) 
N=21 
READ(141) ((C(I4JA4J=24N)4I=1,N) 
READ(191) EI 
Dc40I=19N 
DC20J=14N 

20 C(I4J)=-C(I,J) 
40 C(1411)=EI+C(I,I) 

DC60...)=14N 

WRITE(391)(C(I4J),I=1,N) 
60 WRITE(241)(C(I4J)4I=14N) 

STOP 
END 

DIMENSIONC(21921),D(21)4E(21421) 
1 FCRMAT(4E16.8) 

N=21 
READ(141) ((C(I4J),J=14N)4I=1/N) 
DC20m=19N 
READ(141) (D(K),K=1,N) 
D020I=14N 
P(I,M)=0 
DC20J=1,N 

20 E(I,M)=E(I4M)+C(I4J)*D(J) 
wRITE(341)((E(I4J),J=1,N)41=14N) 
WRITE(291)((E(I4J)4J=14N)4I=1,N) 
STOP 
END 
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COMMON C(21921),R(21),S(21) 
1 FORMAT(4E16.8) 

N=21 
READ(191) ((C(I,J),J=1,N),I=1,N) 
CALL ITER(N,WSQ) 
EI =WSQ 
WS0=1./WSQ 
W= SQRT(WSQ) 
WRITE(3,1)WSQ,W 
WRITE(2,1)WS09W 
WRITE(3,1)EI 
YRITE(211)EI 
WRITE(391)(R(I),I=1,N) 
WRITE(2,1)(R(I),I=1,N) 
STEP 
END 
MOW' EXEQ FORTRAN,,s18 
SUBEOUTINE ITER (N,W5Q) 
CCMMCN C(21,21),R(21)95(21) 

1 FCRMAT(4E16.8) 
EPSI=000.000001 
DC 20 I=1,N 

20 R(I)=1 
30 DC 40 I=1,N 

S(I)=0. 
DC40J=1,N 

40 SI)=S(1)+C(1,J)*R(J) 
DC 45 Ilq,N 
IF (SII).NE.U.U)GO TC48 

45 CCNTINUE 
GC IU 120 

48 WSQ=SII) 
ERROR=0, 
DC 50 I=1,N 
RI=R(I) 
R(I)=S(I)/WS0 
IF tA8S(R(I)-RI).GT.ERROR) ERROR=ABS(R(I)-RI) 

50 CCNTINUE 
WRIEE(311) WSQ 
WRITE(3,1)(R(I),I=1,N) 
IF(LIOC;RaGT.LPSI) GC TO 30 
GC TC 100 

120 DC 130 I=1,N 
V=I 
V=V+1./V 

130 R(I) =R(I) +V 
GC TC 30 

100 RETURN 
END 
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C 

C 

REAL ROOTS-NTH DEGREE EQUATION 
C(J) IS THE COEFFICIENT CF XE*'4-(N+i-J) 

DIMENSION C(20).D(20).Y(20) 
1 FCRMAT(4E16.8) 
2 FORPAT(I5.E16.8) 
3 FCRIAT(////) 

DO 60 MOCN=1,1 
WRITE(3,3) 
READ(192)N,EPSI 
N1=N+1 
READ(1,1)(C(1)9I=1,N1) 
NN=N 
IK=1 
XE=0. 
17=0 

4 Z =C(N1) 
DC 10 j=1.N 
Y(J)=C(J) 
N2=N-J+1 

- DC 5K=1,N2 
5 Y(J)=Y(J)*XE 

10 Z=Z+Y(J) 
C TEST FOR ACCURACY 

IF(ABS(Z)-EPS1)45945,20 
20 DZ=C(N) 

IF(N-1)70970,71 
71 N3=N-1 

DO30J=1.N3 
N2=N-J 
P=N2+1 
Y(j)=P*C(J) 
DC 25K=1,N2 

25 Y(J)=Y(J)*XE 
30 DZ=DZ+Y(J) 

GC-TO 36 
7C DZ=C(1) 
36 IF(DZ)35,40,35 
35 XE=XE-Z/DZ 

GC TO 4 
C TEST TO SKIP THE EXTREMUM VALUE CF Z 

40 XE=XE+Z*5. 
IT=IT+1 
IF(IT.GT.5)GOTC 60 
GCT:: 4 

45 WRI1E(3,2) IK,XE 
WRITE(292)IK,XE 
IF(IK-NN) 49,60,60 

49 IK=IK+1 
11=0 

C REDUCING THE DEGREE CF EQUATION BY I 

D(1)=C(1) 
DC50 I=21N 
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50 Di )=Ct I )+XE*D(J) 
DC 55 I=19N 

55 C(I)=D(I) 
N=N-1 
N1=N+1 
GC TO 4 

60 CONTINUE 
STOP 
END 
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COMMON PET, N, A(21721), 6(21,21) 
I FCRMAT(4E16.6) 

N=21 
R=AD(1,1) (CE(I1J),J=1,N)sI=1,N) 
DO 100IT=1,2 
READ(1/1) EI 

DO 20 1=1,N 
DO 10 J=1,N 

10 A(f,J)=6(1.,J) 
20 A(I,I)=6(I,I)-EI 

CALL DETER 
100 WRITE(3,1) DET 

STOP 
END 

MCNc,5_, FXE0 FCRTRAN,s,18 
SUBROUTINE DETER 
COMMON DET, N, A(21,21), B(21,21) 

1 FOR'AT(4E16.8) 
DET=1. 
DO20C m=1,N 

5 DIV=A(N,M) 
IF(DIV.EC.0.0) GO TC 150 
DET=DET*DIV 
IF(M.EG.N) GO TO 250 
DO 2- J=M,N 

2C A(M,J)=A(M,J)/DIV 
M1=M+1 
DC 6- I=M1sN 
AIJ=-A(I,M) 
DC 50 J=M,N 

50 A(I,J) =A(I,J)+AIJ*A(M,J) 
60 CONTINUE 

GO TO 200 
150 DC 18- I-=VloN 

IF(A(I,M).E0.0.0) GO TO 180 
DO 160 J=M9N 
DUMY=A(M,J 
A(M,J)(I,J) 

160 AII,J)=DUMY 
GC TC 5 

180 CONTINUE 
WRITE(3)M, A(M,M), DET 
DET=*= 
GO TO 250 

200 
- 

CONTINUE 
WRITE(3) DET 

250 RETURN 
END 
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COMMON N, A(21,21),8 121),C(21) 
1 FORMAT(4E16.8) 
N=21 
DC 100 1T =1,2 
READ(191) NA(I,J)9j=1eN),I=1,N) 
READ(191) (B(1 , 1=15N) 
READ(1'1) EI 

DC 20 I=19N 
20 A(I,I)=A(1,I)-EI 

100 CALL MATMUL 
STOP 
END 

MC N$$ EXEC) FORTRAN:9,18 
SUBROUTINE MATMUL 
COMMON N, A(21921),B(21),C(21) 

1 FORMAT(4E16.8) 
DC 100 I=1,N 
C1I)=0 
DC 100 J=10 

10G C(I)=C111A-A(I,J)*B.(J) 
WRITE(3,1) (C(I),I=1,N) 
RETURN 
END 
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ABSTRACT 

The exact solutions of the natural frequencies and modes for certain 

structures have been obtained in numerous papers and books. However, for 

gable frames, the exact solutions of the natural frequencies and modes are 

difficult to determine. Using the 1410 digital computer, attempts have 

been made to solve such difficult problems by using the consistent mass 

method. 

In this report, undamped free vibration of a symmetrical gable frame clamped 

at ends and joined rigidly is considered. Since the frame is considered as 

four elastic beams joined rigidly and each individual beam is composed of two 

beam elements of equal length, this structural system has twenty-one degrees 

of freedom. Only the lowest four natural frequencies and natural modes are 

presented. Another approximate method, lumped mass, is employed to check the 

results obtained from previous method. The percent deviations of these two 

approaches for the first anti-symmetric mode and first symmetric mode are 

insignificant, but they tend to increase for higher modes. 


