UNDAMPED FREE VIBRATION OF A GABLE FRAME by

CHEN I WANG
B. S., Taiwan Provincial Cheng Kung University, 1963

MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

Approved by:

List of Symbols iii
Introduction 1
Differential Equations of Undamped Free Vibration 3
Consistent Mass Matrix and the Stiffness Matrix for a Uniform Beam Element
in Local Coordinates. 6
Transformation of Matrices for a Uniform Beam Element from Local Coordinates
into System Coordinates 18
Lumped Mass Matrix for a Uniform Beam Element 23
Assembly of the Eigenvalue Problem for a Frame with Rigid Connections 26
Numerical Example 42
Matrix Iteration 46
Numerical Results 51
Appendix 56
Acknowledgement 65
References 66

LIST OF SYMBOLS

T	Kinetic energy of a structural system
q_{i}	Generalized coordinates
Q_{i}	Generalized forces
$Q_{A_{i}}$	External forces applied to the system
$Q_{E_{i}}$	Internal elastic forces due to a change of strain energy
Q_{i}	Internal or external damping forces due to energy dissipation in the system
U	Strain energy of the structural system
$\mathrm{k}_{\mathrm{i} j}$	Elastic force coefficient
$K^{\prime}=\left[k_{i j}\right]$	A square matrix of elastic force coefficients of order n associated with local coordinates
$K=\left[k_{i j}\right]$	A square matrix of elastic force coefficients of order n associated with system coordinates
m_{ij}	Mass inertial coefficient
$M^{\prime}=\left[m_{i j}\right]$	A square matrix of mass inertial coefficients of order n associated with local coordinates
$M=\left[m_{i j}\right]$	A square matrix of mass inertial coefficients of order n associated with system coordinates
\{ \}	Column matrix
ᄂ」	Row matrix
Ta	Coordinate transformation matrix
$\mathrm{T}_{\mathrm{a}}^{\mathrm{T}}$	Transpose of matrix T_{a}
$w(x, t)$	Total deflection function
$\Gamma_{i}(x)$	Deflection function due to unit displacement along the direction of the ith generalized coordinate

m

E
I

A
ℓ
$\left\{q_{j}\right\}$
$\left\{Q_{j}\right\}$
$\left\{q_{j}^{\prime}\right\}$
$\hat{i} \quad$ Unit vector components along x-axis
$\hat{\mathbf{j}}$
α
$\beta_{i}=\left(q_{i}^{!}\right)_{s} /\left(q_{i}^{!}\right)_{b}$ Where subscripts s and b denote shear and bending, respectively

G
ω
α_{i}
λ
[I] Identity matrix
t
$x^{\prime} \quad$ Local coordinate measured along the beam element $y^{\prime} \quad$ Local coordinate measured normal to the beam element
x
y
Mass per unit length
Young's modulus of elasticity of the beam element
Moment of inertia of beam cross-section
Area of beam cross-section
Length of beam element
Structural displacements measured in system coordinates
Externally applied forces measured in system coordinates
Structural displacements measured in local coordinates
Externally applied forces measured in local coordinates

Unit vector components along y-axis
A dimensionless number dependent on the shape of the cross-section

Modulus of elasticity in sheer
The Pth arbitrary trial column vector
Natural frequency of the structural system
Arbitrary constants
Eigenvalue of the undamped free vibration

Time variable

System coordinate measured along the beam element
System coordinate measured normal to the beam element

INTRODUCTION

The vibration of structures has played an increasingly inportant role in structural analysis and design in recent years. Exact solutions of the natural frequencies of beams and of rectangular rigid frames have been obtained in numerous papers and books; however, the exact solutions for the natural frequencies of gable frames are difficult to determine. An approximate method proposed by J. S. Archer ${ }^{[3]}$ will be used in this report. Using the 1410 digital computer, the lowest four natural frequencies and modes of a symmetrical gable frame have been obtained. This was accomplished by using the consistent mass and the lumped mass methods.

The stiffness matrix, the consistent mass matrix and the lumped mass matrix of a simple uniform beam element are derived first. Since a gable frame is a solid continuous medium, it has an infinite number of degrees of freedom. Consequently, this structural system has an infinite number of natural frequencies and natural modes of vibration. But this structural system, as shown in Fig. Il, is considered as four elastic beams joined rigidly. Each individual beam is considered as comprising two beam elements of equal length. By expanding to the structural system with its boundary conditions, the equations of undamped free vibration of a symmetrical gable frame are obtained. These eigenvalue problems were solved with the aid of the 1410 digital computer. The computer programs are shown in the Appendix of this report.

The superiority of the consistent mass matrix over the lumped mass matrix for certain structures has been demonstrated by some authors [3], [4]. For the symmetrical gable frame, however, the percent deviations of these two
approaches are insignificant for the first anti-symmetric mode and the first symetric mode. The percent deviations, however, increase for higher modes.
dIFFERENTIAL EQUATIONS OF UNDAMPED FREE VIBRATION
For a structural system with n degrees of freedom, the generalized fozm of Lagrange's equations are:
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\left(\frac{\partial T}{\partial q_{i}}\right)=Q_{i} \quad ; \quad(i=1,2, \cdots, n)$
These equations express the generalized forces Q_{i} as a function of the kinetic energy T of the system. Since it is considered that the given system has n finite degrees of freedom, there are n equations corresponding to generalized coordinates $q_{i}(i=1,2, \cdots, n)$. The generalized forces Q_{i} are usually considered to be composed of three distinct forces:
$Q_{i}=Q A_{i}+Q E_{i}+Q D_{i}$
where

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{A}_{i}}= & \text { external forces applied to the system, } \\
\mathrm{Q}_{\mathrm{E}_{\mathrm{i}}}= & \text { internal elastic forces due to a change of strain energy, and } \\
\mathrm{Q}_{\mathrm{D}_{\mathrm{i}}}= & \text { internal or external danping forces due to the energy dissipation } \\
& \text { in the system. }
\end{aligned}
$$

According to Castigliano's theorem, when considering the elastic forces Q_{E} which have strain energy U, then,
$Q_{E_{i}}=-\frac{\partial U}{\partial q_{i}}$
The minus sign in Eqs. (3) is introduced because in this theorem, the force is considered as applying to the elastic element as in the spring of the simple spring-mass system shown in Fig. 1, and the generalized force $Q_{E_{i}}$ acting on the element has the opposite direction of q_{i} 's.

Fig. 1.

Substituting Eqs. (2) and (3) into Eqs. (1), the general form of Lagrange's equations may be reduced to
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial U}{\partial q_{i}}=Q_{D_{i}}+Q_{A_{i}} \quad$.
In considering the free vibration of an undamped system, the force terms $Q_{A_{i}}$ and $Q_{D_{i}}$ are zero, and Eqs. (4) now have the form
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial U}{\partial q_{i}}=0 \quad$.
Since the strain energy of the system is only a function of the coordinates, it can be expanded by Maclaurin's series for n variables about its stable equilibrium position as
$U\left(q_{1}, q_{2}, \cdots, q_{n}\right)=U_{0}+\sum_{i=1}^{n}\left(\frac{\partial U}{\partial q_{i}}\right) o_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2}\left(\frac{\partial^{2} U}{\partial q_{i} \partial q_{j}}\right)_{0} \cdot q_{i} q_{j}$

+ high order terms,
where subscript 0 denctes the values at the equilibrium position. In general, the value U_{0} measured from the equilibrium position may be set at zero. The value of the strain energy in a stable equilibrium position is a relative minimum. This implies its first derivative must vanish; that is
$\left(\frac{\partial U}{\partial q_{i}}\right)_{0}=0$.
Then, assuming small displacements and neglecting all high order terms, the strain energy of the structural system can be expressed as,
$U=\frac{1}{2} \sum_{j=1 i=1}^{n} \sum_{i=1}^{n}\left(\frac{\partial^{2} U}{\partial q_{j} \partial q_{i}}\right) q_{i} q_{j} \quad$,
or
$U=\frac{1}{2} \sum_{j=1 i=1}^{n} k_{i j} q_{i} q_{j}$
where $\mathrm{k}_{\mathrm{ij}}=\mathrm{k}_{\mathrm{ji}} \quad$;
thus the stiffness matrix
$K=\left[k_{i j}\right]$
is a symmetrical matrix. The strain energy of a stable system is always positive. In addition, Eq. (9) is a homogeneous second-degree function of n variables. This implies that U is a positive definite quadratic form of the coordinates q_{i}. Similarly, since the structural system is assumed to undergo small displacements, kinetic energy T can be considered as a function of velociries \dot{q}_{i} only,
or $\quad T=\frac{1}{2} \sum_{j=1 i}^{n} \sum_{i=1}^{n} m_{i j} \dot{q}_{i j} \dot{q}_{j}$
where $m_{i j}=m_{j i} ;$ thus the mass matrix
$M=\left[m_{i j}\right]$
is a symmetrical matrix. The kinetic energy is always positive; therefore T in Eq. (11) is a positive definite quadratic form of the velocities \dot{q}_{i}. Substituting Eqs. (9) and (11) into Eqs. (5) gives the equations of undamped free vibration as
$\left[m_{i j}\right]\left\{\ddot{q}_{j}\right\}+\left[k_{i j}\right]\left\{q_{j}\right\}=0$
or $M\left\{\ddot{q}_{j}\right\}+K\left\{q_{j}\right\}=0$
Since U and T are quadratic forms of coordinates and velocities, respectively, if high order terms are neglected, then Eqs. (13) are second-order linear ordinary differential equations. The physical meaning of coefficients m_{ij} and $k_{i j}$ is the mass inertial force and the elastic force, respectively, acting at coordinate i due to unit acceleration and displacement, respectively, of coordinate j, with all other coordinates remaining stationary.

CONSISTENT MASS MATRIX AND THE STIFFNESS MATRIX FGR A UNIFORM BEAM ELEMENT IN LOCAL COORDINATES
(1) Consistent Mass Matrix $\left[M_{i j}\right]$
A. uniform beam element of length ℓ of constant berding stiffness $E I$, with all generalized coordinates specified as in Fig. 2. is considered. A unit displacement along the direction of the generalized coordinate q_{i}^{\prime} of beam element will cause the corresponding deflection function $\Gamma_{i}(x)$ as shown in Figs. 3. through 8. The results are:
$\Gamma_{1}(x)=\left(1-\frac{x}{\ell}\right) \hat{i}$
$\Gamma_{2}(x)=\left(1-\frac{x}{\ell}\right)^{2}\left(1 \div 2 \frac{x}{\ell}\right) \hat{j}$
$\Gamma_{3}(x)=x\left(1-\frac{x}{\ell}\right)^{2} \hat{j}$
$\Gamma_{4}(x)=\frac{x}{\ell} \hat{i}$
$\Gamma_{5}(x)=\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j}$
and
$\Gamma_{6}(x)=\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j}$
where \hat{i} and \hat{j} denote the unit vectors along x-axis and y-axis, respectively, as shown in Fig. 2.

Fig. 2. Local coordinates for a uniform beam element

(a)

(b)

Fig. 3. (a) Generalized deformation curve due to a unit axial displacement along q_{1}^{\prime}
(b) Effective distributed mass

(a)

(b)

Fig. 4. (a) Generalized deformation curve due to a unit displacement along q_{2}^{\prime}
(b) Effective distributed mass

(a)

(b)

Fig. 5. (a) Generalized deformation curve due to a unit
displacement along q_{3}^{\prime}
(b) Effective distributed mass

(a)

(b)

Fig. 6. (a) Generalized deformation curve due to a unit axial displacement along q_{4}^{\prime}
(b) Effective distributed mass

(a)

(b)

Fig. 7. (a) Generalized deformation curve due to a unit displacement along 95
(b) Effective distributed mass

(a)

(b)

Fi.g. 8. (a) Generalized deformation curve due to a unit displacement along q_{6}^{1}
(b) Effective distributed mass

By using superposition, the actual deflection at any point x of the beam element can be expressed as
$w(x, t)=\sum_{i=1}^{n} \Gamma_{i}(x) q_{i}^{\prime}(t)$, at time t
where the coordinates $q_{1}^{1}(t)(i=1,2, \cdots, 6)$ determine the amplitudes of the respective functions $\Gamma_{i}(x)$ which contribute to the total deflection $w(x, t)$. Differentiating with respect to time t, Eq. (20) becomes
$\dot{w}(x, t)=\sum_{i=1}^{n} \Gamma_{i}(x) \dot{q}_{i}^{\prime}(t)$,
Or, in matrix form, it is
$\dot{w}(x, t)=\perp \Gamma\lrcorner\left\{\dot{q}^{\prime}\right\}=\left\llcorner\dot{q}^{\prime}\right\rfloor\{\Gamma\} \quad$.

The kinetic energy of the beam element with distributed mass can be written as
$T=\frac{1}{2} \int_{0}^{\ell} \operatorname{mix}^{2}(x, t) d x$
Substituting Eq. (22) into Eq. (23), the kinetic energy yields

$$
\begin{align*}
T & \left.\left.=\frac{1}{2} \int_{0}^{\ell} m_{L} \dot{q}^{\prime}\right\rfloor\{\Gamma\} \cdot L \Gamma\right\lrcorner\left\{\dot{q}^{\prime}\right\} d x \\
& \left.\left.=\frac{1}{2} L \dot{q}^{\prime}\right\lrcorner \int_{0}^{\ell} m_{L} \Gamma\right\rfloor \cdot\{\Gamma\} d x \cdot\left\{\dot{q}^{\prime}\right\} \\
& \left.=\frac{1}{2} \dot{L}^{\prime}\right\lrcorner\left[m_{i j}\right]\left\{\dot{q}^{\prime}\right\} \\
& \left.=\frac{1}{2} \dot{L}^{\prime}\right\lrcorner M^{\prime}\left\{\dot{q}^{\prime}\right\}, \tag{24}
\end{align*}
$$

where
$M^{\prime}=\left[m_{i j}\right]=\int_{0}^{\ell} m_{L \Gamma\lrcorner} \cdot\{\Gamma\} d t$
and
$m_{i j}=\int_{0}^{l} m \cdot \Gamma_{i}(x) \Gamma_{j}(x) d t$
The component of the mass inertial coefficient $m_{i j}$ is defined as a line integral over the beam element of the product of mass per unit length m and the deflection functions $\Gamma_{i}(x)$ and $\Gamma_{j}(x)$.

Thus the mass inertial coefficients can be evaluated by substituting Eqs.(14) through (19) into Eq. (26); thus they yield,
$m_{11}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right) \hat{i} \cdot\left(1-\frac{x}{\ell}\right) \hat{i} d x=\frac{m \ell}{3}$
$m_{21}=m_{12}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right) \hat{i} \cdot\left(1-\frac{x}{\ell}\right)^{2}\left(1+\frac{2 x}{\ell}\right) \hat{j} d x=0$
$m_{31}=m_{13}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right) \hat{i} \cdot x\left(1-\frac{x}{\ell}\right)^{2} \hat{j} d x=0$
$m_{41}=m_{14}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right) \hat{i} \cdot \frac{x \hat{i}}{\ell} d x=\frac{m \ell}{6}$
$m_{51}=m_{15}=\int_{0}^{\ell} m\left(1-\frac{x}{l}\right) \hat{i} \cdot\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} d x=0$
$m_{61}=m_{16}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right) i \cdot\left(\frac{x}{\ell}\right)^{2}(x-l) \hat{j} d x=0$
$m_{22}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right)^{2}\left(1+2 \frac{x}{\ell}\right) j \cdot\left(1-\frac{x}{\ell}\right) 2\left(1+2 \frac{x}{\ell}\right) \hat{j} d x=\frac{13}{35} m$
$m_{32}=m_{23}=\int_{0}^{\ell} m\left(1-\frac{x}{l}\right)^{2}\left(1+2 \frac{x}{l}\right) \hat{j} \cdot x\left(1-\frac{x}{l}\right)^{2} \hat{j} d x=\frac{11_{m}}{210} l^{2}$
$m_{42}=m_{24}=\int_{0}^{\ell} m\left(1-\frac{x}{l}\right)^{2}\left(1+2 \frac{x}{\ell}\right) \hat{j} \cdot \frac{x}{\ell} \hat{i} d x=0$
$m_{52}=m_{25}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right)^{2}\left(1+2 \frac{x}{\ell}\right) \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} d x=\frac{9}{70} m \ell$
$m_{62}=m_{26}=\int_{0}^{\ell} m\left(1-\frac{x}{\ell}\right)^{2}\left(1+2 \frac{x}{\ell}\right) \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} d x=-\frac{13}{420} m \ell^{2}$
$m_{33} \equiv \int_{0}^{\ell} \operatorname{mx}\left(1-\frac{x}{\ell}\right)^{2} \hat{j} \cdot x\left(1-\frac{x}{\ell}\right)^{2} \hat{j} d x=\frac{m \ell^{3}}{105}$

$$
\begin{aligned}
& m_{43}=m_{34}=\int_{0}^{\ell} m x\left(1-\frac{x}{\ell}\right)^{2} \hat{j} \cdot \frac{x}{\ell} \hat{i} d x=0 \\
& m_{53}=m_{35}=\int_{0}^{\ell} m x\left(1-\frac{x}{\ell}\right)^{2} \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} d x=\frac{13}{420} m \ell^{2} \\
& m_{63}=m_{36}=\int_{0}^{l} m x\left(1-\frac{x}{\ell}\right)^{2} \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} d x=-\frac{m \ell^{3}}{140} \\
& m_{44}=\int_{0}^{\ell} m \frac{x}{\ell} \hat{i} \cdot \frac{x}{\ell} \hat{i} d x=\frac{m \ell}{3} \\
& m_{54}=m_{45}=\int_{0}^{\ell} m \frac{x}{\ell} \hat{i} \cdot\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} d x=0 \\
& m_{64}=m_{46}=\int_{0}^{\ell} m \frac{x}{\ell} \hat{i} \cdot\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} d x=0 \\
& m_{55}=\int_{0}^{\ell} m\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right) \hat{j} d x=\frac{13}{35} m \ell \\
& m_{65}=m_{56}=\int_{0}^{\ell} m\left(\frac{x}{\ell}\right)^{2}\left(3-2 \frac{x}{\ell}\right)^{2} \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} d x=-\frac{11}{210} m \ell^{2} \\
& m_{66}=\int_{0}^{\ell} m\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} \cdot\left(\frac{x}{\ell}\right)^{2}(x-\ell) \hat{j} d x=\frac{m \ell^{3}}{105}
\end{aligned}
$$

Finally, the results thus obtained can be written as:

(2) Stiffness Matrix $\left[k_{i j}\right]$

Axial stiffness and bending stiffness including shear deformation are considered for a uniform beam element as shown in Fig. 2, in the following paragraph.

First, the components of the axial stiffness are derived by calculating the external forces required in the direction of the coordinates $q_{i}^{\prime}(i=1,2, \cdots, 6)$ to sustain a unit axial displacement of the coordinates q_{1}^{\prime} and q_{4}^{\prime}, respectively, with all other coordinates constrained rigidly. The results are:
$k_{11}=k_{44}=\frac{A E}{\ell}$
$k_{41}=k_{14}=-\frac{A E}{\ell}$
$k_{i l}=k_{1 i}=0 \quad$ for $i=2,3,5,6$

$k_{i 4}=k_{4 i}=0 \quad$ for $\left.i=2,3,5,6,.\right]$
$U=\frac{1}{2} E I \int_{0}^{\ell}\left(\frac{\partial^{2} W(x, t)}{\partial x^{2}}\right)^{2} d x$
From Eq. (20)
$w(x, t)=\sum_{i=1}^{n} \Gamma_{i}(x) q_{i}^{\prime}(t)$
Taking second derivatives with respect to x
$\frac{\partial^{2} w}{\partial x^{2}}=\sum_{i=1}^{n} \frac{d^{2} \Gamma_{i}(x)}{d x^{2}} q_{i}^{\prime}(t)$
or, in matrix form,
$\left.\left.\left.\frac{\partial^{2} w}{\partial x^{2}}=L \frac{d^{2} \Gamma}{d x^{2}}\right\rfloor^{\prime} q^{\prime}\right\}=L^{\prime}\right\rfloor\left\{\frac{d^{2} \Gamma}{d x^{2}}\right\}$

Substituting Eq. (31) into Eq. (29) yields

$$
\begin{align*}
U & \left.\left.=\frac{1}{2} E I \int_{0}^{2} L \frac{d^{2} \Gamma}{d x^{2}}\right\rfloor\left\{q^{\prime}\right\} \cdot L q^{1}\right\}\left\{\frac{d^{2} \Gamma}{d x^{2}}\right\} d x \\
& \left.\left.=\frac{1}{2} L q^{\prime}\right\rfloor \int_{0}^{2} E I \frac{d^{2} \Gamma}{d x^{2}}\right] \cdot\left\{\frac{d^{2} I^{\prime}}{d x^{2}}\right\} d x \cdot\left\{q^{\prime}\right\} \tag{32}
\end{align*}
$$

The matrix form of Eq. (9) is
$U=\frac{1}{2} L^{\prime} \mathcal{J}^{\prime}\left[k_{i j}\right]\left\{q^{\prime}\right\}$
where
$\left.K^{\prime}=\left[k_{i j}\right]=E I \int_{0}^{\ell} \frac{d^{2} \Gamma}{d x^{2}}\right\rfloor \cdot\left\{\frac{d^{2} \Gamma}{d x^{2}}\right\} \quad d x$
and
$k_{i j}=E I \int_{0}^{\ell} \frac{d^{2} \Gamma_{i}}{d x^{2}} \cdot \frac{d^{2} \Gamma_{j}}{d x^{2}} d x$
Substituting the deflection functions $\Gamma_{2}(x), \Gamma_{3}(x), \Gamma_{5}(x)$ and $\Gamma_{6}(x)$ into Eqs. (35), the coefficients of bending stiffness are:
$k_{22}=E I \int_{0}^{\ell}\left(-\frac{6}{\ell^{2}}+\frac{12 x}{\ell^{3}}\right) \hat{j} \cdot\left(-\frac{6}{\ell^{2}}+\frac{12 x}{\ell^{3}}\right) \cdot \hat{j} d x=\frac{12}{\ell^{3}} E I$
$k_{32}=k_{23}=E I \int_{0}^{\ell}\left(-\frac{4}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \cdot\left(-\frac{6}{\ell^{2}}+\frac{6 x}{\ell^{3}}\right) \hat{j} d x=\frac{6}{\ell^{2}} E I$
$k_{52}=k_{25}=E I \int_{0}^{\ell}\left(-\frac{6}{\ell^{2}}+\frac{12 x}{\ell^{3}}\right) \hat{j} \cdot\left(\frac{6}{\ell^{2}}-\frac{12 x}{\ell^{3}}\right) \hat{j} d x=-\frac{12}{\ell^{3}} E I$
$k_{62}=k_{26}=E I \int_{0}^{\ell}\left(-\frac{6}{\ell^{2}}+\frac{12 x}{\ell^{3}}\right) \hat{j} \cdot\left(-\frac{2}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} d x=\frac{6 E I}{\ell^{2}}$
$k_{33}=E I \int_{0}^{\ell}\left(-\frac{4}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \cdot\left(-\frac{4}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} d x=\frac{4 E I}{\ell}$
$k_{53}=k_{35}=E I \int_{0}^{\ell}\left(-\frac{4}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \cdot\left(\frac{6}{\ell^{2}}-\frac{12 x}{\ell^{3}}\right) \hat{j} d x=-\frac{6 E I}{\ell^{2}}$
$k_{63}=k_{36}=E I \int_{0}^{\ell}\left(-\frac{2}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \cdot\left(-\frac{4}{\ell}+\frac{6 x}{\ell 2}\right) \hat{j} d x=\frac{2 E I}{\ell}$

$$
\begin{aligned}
& \mathrm{k}_{55}=E I \int_{0}^{\ell}\left(\frac{6}{\ell^{2}}-\frac{12 x}{\ell^{3}}\right) \hat{j} \cdot\left(\frac{6}{\ell^{2}}-\frac{12 x}{\ell^{3}}\right) \hat{j} \mathrm{dx}=\frac{12 \mathrm{EI}}{\ell^{3}} \\
& \mathrm{k}_{65}=\mathrm{k}_{56}=E I \int_{0}^{\ell}\left(\frac{6}{\ell^{2}}-\frac{12 x}{\ell^{3}}\right) \hat{j} \cdot\left(-\frac{2}{\ell}+\frac{6 x}{\ell^{2}}\right) j \mathrm{j} x=-\frac{6 \mathrm{FI}}{\ell^{2}} \\
& \mathrm{k}_{66}=E I \int_{0}^{\ell}\left(-\frac{2}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \cdot\left(-\frac{2}{\ell}+\frac{6 x}{\ell^{2}}\right) \hat{j} \mathrm{dx}=\frac{4 E I}{\ell}
\end{aligned}
$$

From the above results and Eqs. (28), the stiffness matrix can be expressed as:

$$
K^{\prime}=\left[k_{i j}\right]=\left[\begin{array}{cccccc}
\frac{A E}{l} & 0 & 0 & -\frac{A E}{l} & 0 & 0 \tag{36}\\
& \frac{12 E I}{\ell^{3}} & \frac{6 E I}{\ell^{2}} & 0 & -\frac{12 E I}{\ell^{3}} & \frac{6 E I}{\ell^{2}} \\
& & \frac{4 E I}{l} & 0 & -\frac{6 E I}{\ell^{2}} & \frac{2 E I}{\ell} \\
& & & \frac{A E}{l} & 0 & 0 \\
& & & & \frac{12 E I}{\ell^{3}} & -\frac{6 E I}{\ell^{2}} \\
\text { Symmetric } & & & & \frac{4 E I}{\ell}
\end{array}\right]
$$

For the bending stiffness with the shear deformation included, Eqs. (35) becomes
$k_{i j}=\frac{E I}{\left(1+\beta_{i}\right)\left(1+\beta_{j}\right)}\left\{\int_{0}^{\ell} \frac{d^{2} \Gamma_{i}}{d x^{2}} \frac{d^{2} \Gamma_{i}}{d x^{2}} d x+\frac{\alpha G A}{E I} \beta_{i} \beta_{j} \int_{0}^{\ell} \frac{d \Gamma i}{d x} \frac{d \Gamma j}{d x} d x\right\}$
where
$\alpha=$ a dimensionless number dependent on the shape of the cross section,
$\beta_{i}=\left(q_{i}^{1}\right) s /\left(q_{i}^{\prime}\right) b$ where the subscripts \leq and b denote shear and bending, respectively, and
$G=$ modulus of elasticity in shear.
The correction factor $1 /\left(1+\beta_{i}\right)$ is less than 1 , because the stiffness decreases when the shear deformation is included. Timoshenko ${ }^{[5]}$ has shown that the correction factor to the fundamental frequency is about 99% for a simply supported uniform I-beam with a thin web, but the shear effect is relatively significant in higher modes. Here it is neglected.

TRANSFORMATION OF MATRICES FOR A UNIFORM BEAM ELEMENT FROM LOCAL COORDINATES INTO SYSTEM COORDINATES

Let (x^{\prime}, y^{\prime}) and (x, y) be locai and system coordinates, respectively, with a common origin as shown in Fig. 9. The table of direction cosines of the axes becomes

	x^{\prime}	y^{\prime}	z^{\prime}
x	$\operatorname{Cos} \theta$	$-\operatorname{Sin} \theta$	0
y.	$\operatorname{Sin} \theta$	$\operatorname{Cos} \theta$	0
z	0	0	1

Table 1. Direction cosines

Fig. 9. Transformation of rectangular coordinates

In matrix form, the transformation is

$$
\begin{equation*}
\{q\}=T_{a}\left\{q^{\prime}\right\} \tag{38}
\end{equation*}
$$

where the transform matrix is
$\mathrm{T}_{\mathbf{a}}=\left[\begin{array}{cccccc}\operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 & 0 & 0 & 0 \\ \operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 \\ 0 & 0 & 0 & \operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
for order 6×6 of a uniform beam element in system coordinates as shown in Fig. 10.

Fig. 10. System coordinates for a uniform beam element

Equation (39) is an orthogonal matrix; thus inversion of Eq. (38) yields
$\left\{q^{\prime}\right\}=T_{a}^{-1}\{q\}=T_{a}^{T}\{q\}$, or
$\left.L^{\prime}\right\lrcorner^{\prime}=\llcorner \lrcorner_{a}^{T}$

The derivatives with respect to time become
$\left\{\dot{q}^{1}\right\}=\mathrm{T}_{\mathrm{a}}^{\mathrm{T}}\{\dot{\mathrm{q}}\}$
or
$\left.\left.L \dot{q}^{\prime}\right\lrcorner=L \dot{q}\right\lrcorner_{a}^{T}$
Substituting Eqs. (42) and (43) into Eq. (24) gives
$T=\frac{1}{2} L \dot{q}_{\perp} T_{a} M^{\prime} T_{a}^{T}\{\dot{q}\}$

Comparing Eqs. (24) and (44), the consistent mass matrix M for system coordinates can be written
$M=T_{a} M^{\prime} T_{a}^{T}$

Similarly, from Eqs. (33), (38) and (39), the stiffness matrix K for system coordinates can be written
$K=T_{a} K^{\prime} T_{a}^{T}$

Expansions of Eqs. (45) and (46) yield:
$M=\left[{ }^{i j}{ }_{i j}\right]=m \ell \Phi$

Where

$$
K=\left[{ }_{i j}\right]=\frac{E I}{l} \Psi
$$

Where

$$
\frac{12}{\ell^{2}} \sin ^{2} \theta+\frac{A}{I} \cos ^{2} \theta,\left(\frac{A}{I}-\frac{12}{\ell^{2}}\right) \sin \theta \operatorname{Cos} \theta, \frac{6}{\ell} \sin \theta
$$

Symmetric

$$
\frac{12}{\ell^{2}} \operatorname{Cos}^{2} \theta+\frac{\mathrm{A}}{\mathrm{I}} \operatorname{Sin}^{2} \theta,-\frac{6}{\ell} \operatorname{Cos} \theta
$$

LUMPED MASS MATRIX FOR A UNIFORM BEAM ELEMENT

In Fig. 2. let one-half of the mass of the beam element be concentrated at each of the two ends of the element. From Eq. (24), the kinetic energy in matrix form can be written as:
$T=\frac{1}{2} L^{q^{\prime}} \perp^{M^{\prime}}\left\{\dot{q}^{\prime}\right\}$
Then the lumped mass matrix for the uniform beam element in local coordinates is

$$
\mathrm{M}^{\prime}=\frac{1}{2} \mathrm{~m} \mathrm{\ell}\left[\begin{array}{cccccc}
1 & & & & & \tag{49}\\
& & 1 & & & \\
& & & 0 & & \\
& & & & & \\
\text { Symmetric } & & & \\
& & & 1 & & \\
& & & & \\
& & & & 0
\end{array}\right]
$$

Form Eq. (45),
$M=T M_{a} T_{a}^{T}$
This is the lumped mass matrix M for system coordinates. Substituting
Eqs. (39) and (49) into Eq. (45) results in

$$
\begin{aligned}
& M=\frac{1}{2} m \ell\left[\begin{array}{cccccc}
\operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 & 0 & 0 & 0 \\
\operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 \\
0 & 0 & 0 & \operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & & & & \\
& & 0 & & \\
& & 1 & & \\
& & & 1 &
\end{array}\right] \\
& \mathrm{x}\left[\begin{array}{cccccc}
\operatorname{Cos} \theta & \operatorname{Sin} \theta & 0 & 0 & 0 & 0 \\
-\operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \operatorname{Cos} \theta & \operatorname{Sin} \theta & 0 \\
0 & 0 & 0 & -\operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The resuit shows that the lumped mass matrix, which is a diagonal matrix, is independent of its coordinates.

ASSEMBLY OF THE EIGENVALUE PROBLEM FOR A FRAME WITH RIGID CONNECTIONS

A symmetrical gable frame as shown in Fig. 11 can be considered as four elastic beams joined rigidly. Each individual beam of the frame is considered to be composed of two beam elements of equal length. Let A, B, C, D, E, F, G and H denote each beam element.

Fig. 11. A symmetrical gable frame with clamped ends and rigid connected joints

From elementary mechanics for each beam element; it follows that

$$
\begin{equation*}
\{Q\}=K\{q\} \tag{51}
\end{equation*}
$$

where
K denotes the stiffness matrix (6×6).
$\{Q\}^{T}=\left[Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right]$
is a row matrix of externally applied forces measured in system coordinates.
$\left.\{q\}^{T}=q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right]$
is a row matrix of structural displacements measured in system coordinates. Equation (51) can be expressed as

$$
\left\{\begin{array}{l}
Q_{1} \tag{52}\\
Q_{2}
\end{array}\right\}=\left[\begin{array}{ll}
K_{11}^{A} & K_{12}^{A} \\
K_{21}^{A} & K_{22}^{A}
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\} \quad \text { for beam element } A
$$

Similarly, the following equations are developed:

$$
\left\{\begin{array}{l}
Q_{2} \tag{53}\\
Q_{3}
\end{array}\right\}=\left[\begin{array}{cc}
K_{11}^{B} & K_{12}^{B} \\
K_{21}^{B} & K_{22}^{B}
\end{array}\right]\left\{\begin{array}{c}
q_{2} \\
q_{3}
\end{array}\right\} \quad \text { for beam element } B
$$

$$
\left\{\begin{array}{l}
Q_{3} \tag{54}\\
Q_{4}
\end{array}\right\}=\left[\begin{array}{ll}
K_{11}^{C} & K_{12}^{C} \\
K_{21}^{C} & K_{22}^{C}
\end{array}\right]\left\{\begin{array}{l}
q_{3} \\
q_{4}
\end{array}\right\} \quad \text { for beam element } C
$$

$$
\left\{\begin{array}{l}
Q_{4} \tag{55}\\
Q_{5}
\end{array}\right\}=\left[\begin{array}{cc}
K_{11}^{D} & K_{12}^{D} \\
K_{21}^{D} & K_{22}^{D}
\end{array}\right]\left\{\begin{array}{l}
q_{4} \\
q_{5}
\end{array}\right\} \quad \text { for beam element } D
$$

$$
\left\{\begin{array}{l}
Q_{5} \tag{56}\\
Q_{6}
\end{array}\right\}=\left[\begin{array}{cc}
K_{11}^{E} & K_{12}^{E} \\
K_{21}^{E} & K_{22}^{E}
\end{array}\right]\left\{\begin{array}{l}
q_{5} \\
q_{6}
\end{array}\right\} \quad \text { for beam element } E
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
Q_{6} \\
Q_{7}
\end{array}\right\}=\left[\begin{array}{ll}
K_{11}^{F} & K_{12}^{F} \\
K_{21}^{F} & K_{22}^{F}
\end{array}\right]\left\{\begin{array}{l}
q_{6} \\
q_{7}
\end{array}\right\} \quad \text { for beam element } F, \tag{57}\\
& \left\{\begin{array}{l}
Q_{7} \\
Q_{8}
\end{array}\right\}=\left[\begin{array}{ll}
K_{11}^{G} & K_{12}^{G} \\
K_{21}^{G} & K_{22}^{G}
\end{array}\right]\left\{\begin{array}{l}
q_{7} \\
q_{8}
\end{array}\right\} \quad \text { for beam element } G, \tag{58}
\end{align*}
$$

$\left\{\begin{array}{l}Q_{8} \\ Q_{9}\end{array}\right\}=\left[\begin{array}{rr}K_{11}^{H} & K_{12}^{H} \\ K_{21}^{H} & K_{22}^{H}\end{array}\right]\left\{\begin{array}{l}q_{8} \\ q_{9}\end{array}\right\} \quad$ for beam element H,
where
$Q_{i}(i=1,2, \cdots, 9)$ is a three-element vector of the generalized external forces applied at node i;
$q_{i}(i=1,2, \cdots, 9)$ is a three-element vector of the generalized displacements at node i; and
$K_{i, j}^{P}(P=A, B, \cdots, H)$ is a matrix (3×3) obtained by partitioning the stiffness matrix (6×6) for the Pth beam element in system coordinates. Since the beam elements are joined rigidly, Eqs. (53) through (59) may be expanded thus:

$$
\begin{aligned}
& Q_{1}=K_{11}^{A} q_{1}+K_{12}^{A} q_{2} \\
& Q_{2}=K_{21}^{A} q_{1}+\left(K_{22}^{A}+K_{11}^{B}\right) q_{2}+K_{12}^{B} q_{3} \\
& Q_{3}=\quad K_{21}^{B} q_{2}+\left(K_{22}^{B}+K_{11}^{C}\right) q_{3}+K_{12}^{C} q_{4} \\
& Q_{4}={ }_{K}^{C}{ }_{21} q_{3}+\left(K_{22}^{C}+K_{11}^{D}\right) q_{4}+K_{12}^{D} q_{5} \\
& Q_{5}= \\
& Q_{6}= \\
& Q_{7}= \\
& Q_{8}= \\
& Q_{9}=
\end{aligned}
$$

In matrix form

Since
$\{Q\}=M\{\ddot{q}\}$
where M denotes the mass matrix (6×6).
$\left.\{Q\}^{T}=L Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\rfloor^{\text {is a row matrix of externally applied forces }}$
measured in system coordinates, and
$\{\ddot{q}\}^{T}=L \ddot{q}_{1}, \ddot{q}_{2}, \ddot{q}_{3}, \ddot{q}_{4}, \ddot{q}_{5}, \ddot{q}_{6} ل^{\text {is a row matrix of structural accelerations }}$ measured in system coordinates.

Equation (61) can be rewritten as:

$$
\left\{\begin{array}{l}
Q_{1} \tag{62}\\
Q_{2}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{A} & M_{12}^{A} \\
M_{21}^{A} & M_{22}^{A}
\end{array}\right]\left\{\begin{array}{c}
\ddot{a}_{1} \\
\ddot{a}_{2}
\end{array}\right\} \quad \text { for beam element } A
$$

Similarly, the following equations are developed:

$$
\begin{align*}
& \left\{\begin{array}{l}
Q_{2} \\
Q_{3}
\end{array}\right\}=\left[\begin{array}{cc}
M_{11}^{B} & M_{12}^{B} \\
M_{21}^{B} & M_{22}^{B}
\end{array}\right]\left\{\begin{array}{l}
\ddot{q}_{2} \\
\ddot{q}_{3}
\end{array}\right\} \quad \text { for beam element } B, \tag{63}\\
& \left\{\begin{array}{l}
Q_{3} \\
Q_{4}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{C} & M_{12}^{C} \\
M_{21}^{C} & M_{22}^{C}
\end{array}\right]\left\{\begin{array}{l}
\ddot{q}_{3} \\
\ddot{q}_{4}
\end{array}\right\} \quad \text { for beam element } C, \tag{64}\\
& \left\{\begin{array}{l}
Q_{4} \\
Q_{5}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{D} & M_{12}^{D} \\
M_{21}^{D} & M_{22}^{D}
\end{array}\right]\left\{\begin{array}{c}
\ddot{q}_{4} \\
\ddot{q}_{5}
\end{array}\right\} \quad \text { for beam element } D, \tag{65}\\
& \left\{\begin{array}{l}
Q_{5} \\
Q_{6}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{E} & M_{12}^{E} \\
M_{21}^{E} & M_{22}^{E}
\end{array}\right]\left\{\begin{array}{c}
\ddot{q}_{5} \\
\ddot{q}_{6}
\end{array}\right\} \quad \text { for beam element } E, \tag{66}\\
& \left\{\begin{array}{l}
Q_{6} \\
Q_{7}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{F} & M_{12}^{F} \\
M_{21}^{F} & M_{22}^{F}
\end{array}\right]\left\{\begin{array}{l}
\ddot{q}_{6} \\
\ddot{q}_{7}
\end{array}\right\} \quad \text { for beam element } F, \tag{67}\\
& \left\{\begin{array}{l}
Q_{7} \\
Q_{8}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{G} & M_{12}^{G} \\
M_{21}^{G} & M_{22}^{G}
\end{array}\right]\left\{\begin{array}{l}
\ddot{q}_{7} \\
\ddot{q}_{8}
\end{array}\right\} \quad \text { for beam element } G, \tag{68}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
Q_{8} \tag{69}\\
Q_{9}
\end{array}\right\}=\left[\begin{array}{ll}
M_{11}^{H} & M_{12}^{H} \\
M_{21}^{H} & M_{22}^{H}
\end{array}\right]\left\{\begin{array}{c}
\ddot{q}_{8} \\
\ddot{q}_{9}
\end{array}\right\} \quad \text { for beam element } H,
$$

where
$Q_{i}(i=1,2, \cdots, 9)$ is a three-element vector of the generalized external forces applied at node i;
$\ddot{q}_{i}(i=1,2, \ldots, 9)$ is a three-element vector of the generalized accelerations at node i; and
$M_{i j}^{P}(P=A, B, \cdots, H)$ is a matrix (3×3) obtained by partitioning the mass matrix (6 x 6) for the pth beam element in system coordinates. Since the beam elements are joined rigidly, Eqs. (62) through (60) can be expanded and written in matrix form

The equations of motion of the gable frame may be written as

In Fig. 11 the gable frame is clamped at the feet, thus $q_{1}=q_{9}=0$. Also, there are no external forces applied at nodes $2,3,4,5,6,7$ and 8 . These conditions may be acknowledged in Eqs. (71) and the equation partitioned as

Equation (72) may be rewritten into three separate equations, as:

$$
\left[\begin{array}{lllllll}
M_{12}^{A} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\ddot{q}_{2} \tag{73}\\
\ddot{q}_{3} \\
\ddot{q}_{4} \\
\ddot{q}_{5} \\
\ddot{q}_{6} \\
\ddot{q}_{7} \\
\ddot{a}_{8}
\end{array}\right]+\left[\begin{array}{lllllll}
K_{12}^{A} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
q_{6} \\
q_{7} \\
q_{8}
\end{array}\right]=Q_{1}
$$

and
$\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & M_{21}^{H}\end{array}\right]\left\{\begin{array}{c}\ddot{q}_{2} \\ \ddot{q}_{3} \\ \ddot{q}_{4} \\ \ddot{q}_{5} \\ \ddot{q}_{6} \\ \ddot{q}_{7} \\ \ddot{q}_{8}\end{array}\right\}+\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & K_{21}^{H}\end{array}\right]\left\{\begin{array}{l}q_{2} \\ q_{3} \\ q_{4} \\ q_{5} \\ q_{6} \\ q_{7} \\ q_{8}\end{array}\right\}=Q_{9}$

Equations (73) and (75) yield the reaction at the clamped ends of the frame due to motions of the structure and may be ignored for the purpose of this paper. Equations (74) are again simplified as
$M\left\{\ddot{q}_{j}\right\}+K\left\{q_{j}\right\}=0 \quad, \quad(j=2,3,4, \cdots, 8)$
where

$$
\begin{align*}
& M_{22}^{A}+M_{11}^{B} \quad M_{12}^{B} \\
& M_{21}^{B} \quad M_{22}^{B}+M_{11}^{C} M_{12}^{C} \\
& M_{21}^{C} \quad M_{22}^{C}+M_{11}^{D} \quad M_{12}^{D} \\
& M_{21}^{D} \quad M_{22}^{D}+M_{11}^{E} \quad M_{12}^{E} \tag{77}\\
& M_{21}^{E} \quad M_{22}^{E}+M_{11}^{F} \quad M_{12}^{F} \\
& M_{21}^{F} \quad M_{22}^{F}+M_{11}^{G} \quad M_{12}^{G} \\
& \text { Symmetric } \\
& M_{21}^{G} \quad M_{22}^{G}+M_{11}^{H}
\end{align*}
$$

and

$$
\begin{aligned}
& {\left[K_{22}^{A}+K_{11}^{B} K_{12}^{B}\right.} \\
& K_{21}^{B} K_{22}^{B}+K_{11}^{C} K_{12}^{C} \\
& K_{21}^{C} K_{22}^{C}+K_{11}^{D} \quad K_{12}^{D} \\
& K_{21}^{D} \quad K_{22}^{D}+K_{11}^{E} \quad K_{12}^{E} \\
& K_{21}^{\mathrm{E}} \mathrm{~K}_{22}^{\mathrm{E}}+\mathrm{K}_{11}^{\mathrm{F}} \mathrm{~K}_{12}^{\mathrm{F}} \\
& \mathrm{~K}_{21}^{\mathrm{F}} \quad \mathrm{~K}_{22}^{\mathrm{F}}+\mathrm{K}_{11}^{\mathrm{G}} \mathrm{~K}_{12}^{\mathrm{G}} \\
& \text { Symmetric } \\
& \left.\mathrm{K}_{21}^{\mathrm{G}} \mathrm{~K}_{22}^{\mathrm{G}}+\mathrm{K}_{11}^{\mathrm{H}}\right]
\end{aligned}
$$

The displacements $\tau_{j}(j=2,3, \cdots, 8)$ in Eqs. (76) are assumed to be sinusoidal functions of time t with constant frequency ω as shown in Fig. 12 . That is:

Fig. 12.
$q_{j}=\left.\left|q_{j}\right|\right|^{i \omega i}$
where $i=\sqrt{-1}$ and the $\left|q_{j}\right|$ are the moduli of displacements q_{j}. Then Eqs. (79) form a set of linear second-order differential equations, which can be simplified as follows:
$\ddot{q}_{j}=-\omega^{2} q_{j} \quad,(j=2,3, \cdots, 8) \quad$ or
$\left\{\ddot{q}_{j}\right\}=-\omega^{2}\left\{q_{j}\right\}$
Substituting Eqs. (80) into Eqs. (76) yields
$K\left\{q_{j}\right\}=\omega^{2} M\left\{q_{j}\right\}$
Since Eqs. (76) are linearly independent, this implies that the nonsingular square matrix M or K has an inverse, M^{-1} or K^{-1}, respectively. Thus,
$K^{-1} M\left\{q_{j}\right\}=\frac{1}{\omega^{2}}\left\{q_{j}\right\}$
Letting the dynamical matrix $\left[c_{i j}\right]=K^{-1} M$, Eqs. (82) are simplified as

$$
\begin{equation*}
\left(\left[c_{i j}\right]-\frac{1}{w^{2}}[I]\right)\left\{q_{j}\right\}=\{0\} \tag{83}
\end{equation*}
$$

where [I] is an identity matrix. For convenience, the matrix [$c_{i j}$] is designated as C and $\frac{1}{\omega^{2}}$ as λ. That is
$(C-\lambda I)\left\{q_{j}\right\}=\{0\}$
This yields an eigenvalue problem.

NUMERICAL EXAMPLE

A symmetrical gable frame with clamped ends and rigid joints is now considered and is illustrated in Fig. 13.

Fig. 13, A symmetrical gable frame with clamped ends and rigid connected joints.

If Eqs. (47) and (48) are expressed as the matrices (2×2) shown in Eqs. (52) and (62), then by substituting into Eqs. (77) and (78), the consistent mass matrix and the stiffness matrix are obtained as follows:

The consistent mass matrix is,

The stiffness matrix is,

The lumped mass matrix is,

MATRIX ITERATION

Matrix iteration is a convenient and useful method for solving the matrix equation as derived in Eqs. (84). Let the eigenvalues of the matrix C with order $n \times n$ be
$\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \quad\left(\lambda_{i}\right.$ real positive value $)$
with
$\lambda_{1}>\lambda_{2}>\lambda_{3}>\cdots \gg \lambda_{n}$
and the corresponding eigenvectors
$\left\{q_{j}\right\}_{1},\left\{q_{j}\right\}_{2}, \cdots \cdots \cdots,\left\{q_{j}\right\}_{n}$
Then let the first arbjtrary trial column vector \bar{V}_{1} be a linear superposition of the n eigenvectors. This is possible since the eigenvectors are linearly independent in n space.
$\bar{v}_{1}=\alpha_{1}\left\{q_{j}\right\}_{1}+\alpha_{2}\left\{q_{j}\right\}_{2}+\cdots \cdots \cdots+\alpha_{n}\left\{q_{j}\right\}_{n}$
Multiplying by the dynamical matrix gives
$C \bar{V}_{1}=\alpha_{1} C\left\{q_{j}\right\}_{1}+\alpha_{2} C\left\{q_{j}\right\}_{2}+\cdots \cdots+\alpha_{n} C\left\{q_{j}\right\}_{n}$

From Eqs. (84), the following holds
$C\left\{q_{j}\right\}_{1}=\lambda_{1}\left\{q_{j}\right\}_{1}$
$C\left\{q_{j}\right\}_{2}=\lambda_{2}\left\{q_{j}\right\}_{2}$

Herce Eq. (90) yields

$$
\begin{align*}
C \bar{V}_{1} & =\bar{V}_{2} \\
& =\alpha_{1} \lambda_{1}\left\{q_{j}\right\}_{1}+\alpha_{2} \lambda_{2}\left\{q_{j}\right\}_{2}+\cdots+\alpha_{n} \lambda_{n}\left\{q_{j}\right\}_{n} \tag{92}
\end{align*}
$$

By repeating the process, the following results:

$$
\begin{align*}
C \bar{V}_{2} & =C^{2} \bar{V}_{1} \\
& =\alpha_{1} \lambda_{1}^{2}\left\{q_{j}\right\}_{1}+\alpha_{2} \lambda_{2}^{2}\left\{q_{j}\right\}_{2}+\cdots+\alpha_{n} \lambda_{n}^{2}\left\{q_{j}\right\}_{n} \tag{93}
\end{align*}
$$

If the process is repeated, the Pth iteration will yield

$$
\begin{align*}
\overline{C V}_{P} & =C^{P} \bar{V}_{1} \\
& =\alpha_{1} \lambda_{1}^{P}\left\{q_{j}\right\}_{1}+\alpha_{2} \lambda_{2}^{P}\left\{q_{j}\right\}_{2}+\cdots \cdots+\alpha_{n} \lambda_{n}^{P}\left\{q_{j}\right\}_{n} \tag{94}
\end{align*}
$$

where $\overline{\mathrm{V}}_{\mathrm{P}}$ is the Pth trial column vector. The constants $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots$, α_{n} are arbitrary.

According to Eq. (88), as P becomes sufficiently large and if the arbitrary constant α_{1} is iarger than the rest of the $a^{\prime} s$, the first term on the righthand side of Eq. (94) is the only significant one; that is:
$\bar{V}_{P+1}=C^{P} \bar{V}_{1}=\alpha_{1} \lambda_{1}^{P}\left\{q_{j}\right\}_{1}$
This means the $(P+1)$ th trial column vector is same as the first eigenvector multiplied by a constant. One more iteration yields

$$
\begin{align*}
& \bar{V}_{P+2}=C^{P+1} \bar{V}_{1}=\alpha_{1} \lambda_{1}^{P+1}\left\{q_{j}\right\}_{1} \quad \text { or } \\
& C\left(C^{P} \bar{V}_{1}\right)=\lambda_{1}\left(\alpha_{1} \lambda_{1}^{P}\left\{q_{j}\right\}_{1}\right) \\
& =\lambda_{1}\left(C^{P} \bar{V}_{1}\right) \tag{96}
\end{align*}
$$

This implies that the first eigenvector with the largest eigenvalue λ_{1} corresponding to the lowest natural frequency ω_{1} is obtained.

To determine the intermediate modes and their corresponding frequencies, let a new matrix D have the same set of eigenvectors as the matrix C, and let its corresponding eigenvalues be
$\mathrm{U}_{1}, \mathrm{U}_{2}, \cdots \cdots, \mathrm{U}_{\mathrm{n}}$

The product matrix P becomes
$P=C D$

Since

$$
P\left\{q_{j}\right\}_{i}=C\left(D\left\{q_{j}\right\}_{i}\right)=C U_{i}\left\{q_{j}\right\}_{i}=\lambda_{i} U_{i}\left\{q_{j}\right\}_{i}
$$

This means the matrix P has the same set of eigenvectors as the matrix C with eigenvalues
$\lambda_{1} U_{1}, \lambda_{2} U_{2}, \cdots \cdots, \lambda_{n} U_{n}$

An alternate form of Eq. (97) is
$P=C\left(\lambda_{1} I-C\right)$
which has the same set of eigenvectors as the matrix C. That is
$\left\{q_{j}\right\}_{1} ;\left\{q_{j}\right\}_{2},\left\{q_{j}\right\}_{3}, \cdots \cdots \cdots,\left\{q_{j}\right\}_{n}$
Its corresponding eigenvalues become

0

$$
\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right), \lambda_{3}\left(\lambda_{1}-\lambda_{3}\right), \ldots \ldots, \lambda_{n}\left(\lambda_{1}-\lambda_{n}\right)
$$

This result gives us a way of evaluating intermediate modes and their corresponding frequencies.

Determining λ_{1} and $\left\{q_{j}\right\}_{1}$ from the matrix C, then iterating the matrix p yields the eigenvector with its largest eigenvalue λ_{p}. This eigenvector cannot be $\left\{q_{j}\right\}_{1}$ again, since the eigenvalue of the matrix P in $E q$. (38) corresponding to $\left\{q_{j}\right\}_{1}$ is zero and thus cannot be the largest one. This implies the iteration of the matrix P will yield its largest eigenvalueeigenvector pair
λ_{p} and $\left\{q_{j}\right\}_{2}$
Comparing with Eq. (98) which has the eigenvalue-eigenvector pair
$\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right)$ and $\left\{q_{j}\right\}_{2}$

Thus
$\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right)=\lambda_{p}$

Two roots can be evaluated from the quadratic equation, but only one root λ_{2} has meaning for the matrix C. Consequently, the second natural frequency ω_{2} and its corresponding mode $\left\{q_{j}\right\}_{2}$ of the matrix C are obtained.
By the same iteration process, the mth eigenvalue-eigenvector pair is
$\lambda_{Q} \quad$ and $\quad\left\{q_{j}\right\}_{m}, \quad(1<m<n)$
where λ_{Q} is similar to λ_{P} except the mth iteration.

The mth eigenvalue of the matrix C can be solved from the polynomial equation

$$
\begin{equation*}
\underset{i=1}{n-1} \lambda_{m}\left(\lambda_{i}-\lambda_{m}\right)=\lambda_{Q} \tag{99}
\end{equation*}
$$

which has only one meaningful root λ_{m}. Finally, the mth natural
frequency ω_{m} and its corresponding mode $\left\{q_{j}\right\}_{m}$ of the matrix C are obtained.

NUMERICAL RESULTS

Using the 1410 digital computer, the results are tabulated as follows:

Modes	(1) CM	(2) LM	$\frac{\mathrm{CM}-\mathrm{LM}}{\mathrm{CM}} \%$
1	11.3382	11.2994	0.3423
Anti-Symmetric	26.9528	26.9266	0.0972
2	61.9981	60.5726	2.2992
Symmetric			
3	91.4203		
4			
Symmetric Symmetric			

Table 2. Natural frequencies of a symmetric gable frame

Note:
(1) Solutions obtained using the consistent mass matrix.
(2) Solutions obtained using the lumped mass matrix.

	First mode	Second mode	Third mode	Fourth mode
${ }^{q} 12$.10000000E 01	. 10000000 E 01	.10000000E 01	. 10000000 E 01
q_{22}	. $22232225 \mathrm{E}-02$. $89382952 \mathrm{E}-02$. $15584609 \mathrm{E}-01$. $25317256 \mathrm{E}-01$
9_{32}	-. 48727065E 00	-. 39433232E 00	-. 24121173E 00	-. 79708314E-01
q_{13}	.25336057E 01	.14646409E 01	. 31083212 E 00	-.53979782E 00
9_{23}	. $44444047 \mathrm{E}-02$.17845461E-01	. $30907082 \mathrm{E}-01$. $49722162 \mathrm{E}-01$
q_{33}	-. 33575858E 00	.23974195E 00	.63110308E 00	. 78407162 E 00
9_{14}	.27679103E 01	.59999050E 00	-. 54143045E 00	-.99286493E 00
q_{24}	-. 39524185E 00	.15241593E OI	.15052583E 01	.85552963E 00
934	. $34596705 \mathrm{E}-01$.60889297E 00	. $50662781 \mathrm{E}-01$	-. 48418942 E 00
q_{15}	.25418625E 01	-.11074083E-08	. 32118814 E 00	. $15576803 \mathrm{E}-06$
q_{25}	-. $26361131 \mathrm{E}-08$. 25641219 E 01	.14422763E-06	-.81242459E 00
9_{35}	. 19042079 E 00	. $19854212 \mathrm{E}-08$	-.85238418E 00	. $11804428 \mathrm{E}-06$
q_{16}	.27679103E 01	-. 59999051E 00	-. 54143065E 00	.99286455E 00
9_{26}	. 39524184 E 00	. 15241593E 01	-. 15052584E 01	. 85553018E 00
9_{36}	. $34596708 \mathrm{E}-01$	-.60889298E 00	. $50662736 \mathrm{E}-01$.48418923E 00
q_{17}	.25336057E 01	-. 14646409E 01	. 31083219 E 00	. 53979768 E 00
927	-. 44444047E-02	.17845460E-01	-. 30907081E-01	. $49722202 \mathrm{E}-01$
937	-. 33575858E 00	-. 23974196E 00	.63110309E 00	-. 78407142E 00
q_{18}^{-}	.10000000E 01	-. 10000000E 01	.10000000E 01	-.99999914E 00
q_{28}	-. 22232225E-02	. $89382962 \mathrm{E}-02$	-. 15584614E-01	. 25317280E-01
9_{38}	$-.48727065 \mathrm{E} 00$. $39433233 E 00$	-. 24121168E 00	. $79708366 \mathrm{E}-01$

Table 3. Natural modes of vibration of a symmetrical gable frame by using the consistent mass method

Note: $q_{i j}$ The component of displacement along the direction i at node j.

	First mode	Second mode	Third mode	Fourth mode
q_{12}	. 10000000 E 01	. 10000000E 01	.10000000E 01	. 10000000 E 01
9_{22}	.23135929E-02	. $88866956 \mathrm{E}-02$. 13977959E-01	. $15684829 \mathrm{E}-01$
9_{32}	-. 48648042 E 00	-. 38920274E 00	-. 21499177E-00	-. 51066741E-01
q_{13}	.25363075E 01	.14730662E 01	. $30170499 \mathrm{E}-00$	-. $4.9424806 \mathrm{E}-00$
q_{23}	. $462.50711 \mathrm{E}-02$.17742479E-01	.27730637E-01	.30876185E-01
9_{33}	-. 33676435E 00	.23109395E 00	. $58850205 \mathrm{E}-\mathrm{CO}$.64915742E-00
q_{14}	.27694991E 01	.60581610E 00	-. 56491566E-00	-.94563788E-00
9_{24}	-. 39313532E 00	.15286707E 01	.15309259E 01	. $83455128 \mathrm{E}-00$
9_{34}	. $35882201 \mathrm{E}-01$.60695759E 00	. $50972961 \mathrm{E}-01$	-. 37130487E-00
q_{15}	.25446744E 01	. $30423797 \mathrm{E}-09$. $31518175 \mathrm{E}-00$	-. 15718941E-05
q_{25}	. $3047519 \mathrm{CE}-09$.25787531E 01	-. $25847694 \mathrm{E}-08$	-. 75656698E-00
9_{35}	.18584876E 00	-. 79162357E-09	-.82009746E-00	. 16016191E-05
q_{16}	.27694991E 01	-.60581610E 00	-. 56491565E-00	. 94563775E-00
9_{26}	. 39313532 E 00	. 15286706 E 01	-. 15309259E 01	. $83455639 \mathrm{E}-00$
936	.35882201E-01	-.60695759E 00	. $50972963 \mathrm{E}-01$.37130380E-00
q_{17}	.25363075E 01	-. 14730662E 01	. 30170499E-00	. $49424542 \mathrm{E}-00$
9_{27}	-. $46250711 \mathrm{E}-02$. 17742479E-01	-. $27730637 \mathrm{E}-01$. $30876640 \mathrm{E}-01$
q_{37}	-.33676435E 00	-. 23109395E 00	. $58850204 \mathrm{E}-00$	-. 64915575E-00
q_{18}	.99999999E 00	-.99999999E 00	. 99999999E-00	-. 99999094E-00
q_{28}	-. 23135929E-02	. $88866955 \mathrm{E}-02$	-. 13977959E-01	. 15685062E-01
q_{38}	-.48648042E 00	. 38920274 E 00	-. $21499175 \mathrm{E}-00$. $51066918 \mathrm{E}-01$

Table 4. Natural modes of vibration of a symmetrical gable frame by using the lumped mass method

Note: $q_{i j}$ The component of displacement along the direction i at rode j

Using the data in Tables 3. and 4., the natural modes of vibration are drawn as follows:

(a) First mode

(b) Second mode

(d) Fourth mode

Fig. 14. Natural modes of vibration of a symmetrical gable frame

```
        EIGENVALUE PROBLEM OF FIRST MSDE CHEN-I WANG
        COMMONA121:421
    1 FOPMAT(4E16.8)
    2 FCRMAT(/)
    3 FGRMAT(1H1)
    N=21
    REAO(i,I) (|A(I,J),J=1,N),I=1,N)
    CALL INVRSIN?
    WRITE(3,1){(A(I,J),J=1,N):I=1,N)
    WRITE(2,1){{A(1,J), J=1,N),I=1,N)
    STOP
    END
    FONSS EXEQ FERTRAN:,:18
    SUBROUTINE INVRS (N)
    COMMONA(2.1:42)
    2 FORMAT(4OX;1GHNS INVERSE)
    NN=N+N
    DC.13O I=1,N
    INI=I+N
    DN i20`J=1,N
    JNI=J+N
120 A(I,JN2)=C.
130 A(I,INI)=1.
    DO 100 M=I,N
    5 DIV=A(M,M)
    IF(DIV.EQ.O.O) GO TO 40
    DC 10 J=1;NN
    10A(M;J)=A(M;J)/DIV
    DO 30 I=1;N
    IF(I:EQ.M) GO TO 30
    AMUL=A(i,M)
    OO 2O J=1,NN
    20 A(I;J)=A.(I,J)-AMUL*A(M,J)
    30 CONTINUE
    GO TO 100
    40 DC 60 1=M,N
    IF(AII,M).EQ.O.O) GC TO6O
    DC 50, J=1,NN
    C\cupMY=A(I;J)
    A(I,J)=A(M,J)
    50 A(M*J)= DUMY.
    GこTO 5
    60 CONTINUE
    WRITE (3,2)
    GO TO 110
100 CONTINUE
    DO 140 I=1,N
    DC 140 J=1,N
    JN=J+N
140 A(I,J)=A(I,JN)
110 RETURN
    END
```

DIMENSIONE (21,21)
1 FERMAT(4E16.8)
$\mathrm{N}=21$
READ(1,1) ($B(I, J), J=1, N), I=1, N)$ D2?CJ=1,N
WRITE(3,1)(B(I,J),I=1,N)
20 WRITE $(2,1)(B(I, J), I=1, N)$
STOP
END

DIMENSION. A(21,21),B(21),C(21,21)
1 FERMAT(4E16.8)
$\mathrm{N}=21$
$\operatorname{READ}(1,1)((A(I, J), J=1, N), I=1, N)$
DC $20 \mathrm{M}=1, \mathrm{~N}$
$\operatorname{READ}(1,1): B(K), K=1, N)$.
DC2OI=I,N
$C(I ; M)=0$
DC20J=1, N
$2 C C(I, M)=C(I, M)+A(I, J) * B(J)$
ESUM $=0$
DC $30 \mathrm{M}=1, \mathrm{~N}$
30 ESUM $=$ ESUM $+C(M, M)$
WRITE(3,1)ESUM
WRITE(2,1)ESUM
WRITE(3,1)((C(I,J), J=1,N), I=1, iv)
WRITE(2,I)((C(I,J), $J=1, N), I=1, N)$
STOP
END

```
        COMMON (121,21),R(21),S(21)
    1 FORNAT(4E16.8)
        N=21
        READ(1,1) ((C(I,J),J=I,N),I=1,N!)
        CALL ITER(N,WSQ)
        EI=WSQ
        WSC =1./WSO
        W=SORT (WSQ)
        WRITE(3,1)WSQSW
        WRITE(2:1)WSQ,W
        WRITE(3,1)EI
        WRITE(2,1)EI
        WRITE(3,1)(R(I),I=I,N)
        WRITE(2,1)(R(I),I=1,N)
        STOP
        END
    MONSS EXEQ FORTRAN,,,18
    SURRCUTINE ITER (NSWSQ)
    COMMON C(21,21!,R(21),S(21)
    1 F.CRMAT(4E16.8)
    EPSI=0.000000001
    OC 20 1=1,N
20 R(I)=1,
30 DO 40 I=1,N
    S(I)=0.
    DO40J=1,N
40S(I)=S(I)+C(I,J)*R(j)
    ON 45 I=1,N
    IF (S(I).NE.O.0)GO TO48
45 CONTINUE
    Gこ TO 120
48WSQ=S(1)
    ERROR=U゙.
    DC50 1=1,N
    RI=F(I)
    R(I)=S(I)/WSQ
    IF (ABS(R(I)-RI).GT.ERROR) ERROR=ABS(R(I)-RI)
50 CONTINUE
    WRITE(3,1) WSQ
    WRITE(3,1)(R(I),I=1,N)
    IF(ERROR.GT.EPSI) GO TO 30
    Gこ Tこ100
120 DC 130 I=1,N
    V=I
    V=V+1./V
13U R(I)=R(1)+V
    Gこ TO 30
100 RETURN
    END
```

```
    EIGENVALUE PROBLEM OF INTERMEDIATE MODES
    DIMENSI SNC(21,21)
    1 FORMAT(4E16.8)
        N=21
        READ(1;1) ((C(I,J),J=I,N),I=1,N)
        READ(1,I) EI
        DC4OI=1,N
        DO20J=1,N
20(1),J)=-C(I,J)
40 (II,I)=EI+C(I,I)
    DC60J=1,N
    WRITE(3,1)(C(I,J),I=1,N)
60 WRITE(2,1)(C(I,J),I=1,N)
    STCP
    END
```

 DIMENSICNC(21,21),D(21),E(21,21)
 1 FORMAT(4E16.8)
 \(N=21\)
 \(\operatorname{READ}(1,1)((C I I, J), J=1, N), I=1, N)\)
 Dこ2OM=1,N
 REfD \((1,1)(D(K), K=1, N)\)
 DOZOI =1,N
 \(E(I, M)=0\)
 \(0020 J=1, N\)
 $20 E(i, M)=E(I, M)+C(I, J) * D(J)$
WRITE(3,1)($(E(I, J), J=1, N), I=1, N)$
WRITE(2,I)($E(I, J), J=I, N), I=I, N)$
STCP
END

```
    COMMCN ((21,21),R(21),S(21)
    1 FORNAT(4E16.8)
        N=21
        READ(1,1) ((C(I,N),J=1,N),I=1,N)
        CALL ITER(N,WSQ)
        EI=WSQ
        WSQ=1./WSQ
        W=SQRT(WSQ)
        WRITE(3,1)WSQ,W
        WRITE(2,1)WSQ,W
        WRITE(3,1)EI
        HRITE(2,1)EI
        WRITE(3,1)(R(I),I=I,N)
        WRITE(2,1)(R(I),I=1,N)
        STOP
        END
    MENS: EXEQ FORTRAN,,,18
    SUBF.SUTINE ITER (N,wSQ)
    COMMON C(21,21),R(21),S(21)
    1 FORMAT(4E16.8)
    EPSI=0.00000001
    DC 20 1=1,N
20 R(I)=1.
30 DC 40 I=1,N
    S(I)=0.
    DO40J=1,N
40 S.(1)=5(1)+C(1,J)*R(J)
    00 45 I=2,N
    IF (S(1).NE.0.0)GO TO48
45 CENIINUE
    GO 1% 120
48WSQ=S(1)
    ERRこR=0.
    DC 50 I=1,N
    RI=R(1)
    R(I)=S(I)/WSQ
    IF (ABS(\dot{R}(I)-RI).GT.ERROR) ERROR=ASS(R(I)-RI)
so CONTINUE
    WRITE(3.1) WSQ
    WRITE(3,1)(R(1),I=1,N)
    IF(ERKOK.GT.EHSI) GO TO 30
    Gこ Tこ 100
120 DC 130 I=1,N
    V=I
    V=V+1./V
130 R(I)=R(1)+V
    GC TC 30
100 RETURN
    END
```

C REAL ROOTS－NIH DEGREE EQUATION
C C（J）IS THE COEFFICIENT OF XE＊＊（N＋i－J）
DIMENSION C（20），D（20：，Y（20）
1 FERMAT（4E16．8）
2 FORI 4 T（15，E16．8）
3 FORNAT（／／／／）
DO 60 MOこN＝1，1
WRITE（3，3）
READ（1，2）N，EPSI
$N I=N+1$
$\operatorname{REAC}(1,1)(C(I), I=1, N 1)$
$N N=N$
$I K=1$
$X E=0$ 。
$I T=0$
$4 z=C(N 1)$
OC $10 \mathrm{j}=1$ ， N
$Y(J)=(1 J)$
$\mathrm{N} 2=\mathrm{N}-\mathrm{J}+1$
DC $5 K=1, N 2$
$5 Y(J)=Y(J) * X E$
$10 Z=Z+Y(J)$
c
TEST：FOR ACCURACY
IF（ABS（Z）－EPSI）45，45，20
$20 \mathrm{DZ}=(\mathrm{CN})$
IF $(N-1) 70,7 \cup, 71$
71 N3＝N－1
DO301：1，N3
$\mathrm{N}_{2}=\mathrm{N}-\mathrm{J}$
$\mathrm{P}=\mathrm{N} 2+1$
$Y(j)=P *(j)$
DC $25 \mathrm{~K}=1, \mathrm{~N} 2$
$25 Y(J)=Y(J) * X E$
$30 \mathrm{DZ}=\mathrm{DZ}+\mathrm{Y}(\mathrm{J})$
Gこ Tこ 36
$70 \mathrm{DZ}=\mathrm{C}(1)$
$36 \mathrm{IF}(\mathrm{DZ}) 35,40,35$
$35 \times E=X E-Z / D Z$
EこTO 4
c test to skip the extremum value of Z
$40 \times E=X E+Z * 5$ 。
$I T=I T+1$
IFIIT．GT．5）GOTO 60
GOT： 4
45 WRIIE $(3,2)$ IK，XE
WRITEIZ，ZIIK，XE
IF（IK－NN）49，60，60
$49 I K=I K+1$
$I T=0$
c reducing the degree of equation ey 1
$D(1)=C(1)$
Dこ50 I $=2, \mathrm{~N}$
$\mathrm{J}=\mathrm{I}-1$
$50 D(1)=C(I)+X E * D(J)$
DC $55 \quad I=1, N$
$55 C(1)=D(I)$
$\mathrm{N}=\mathrm{N}-1$
$N 1=N+1$
G T T 4
60 CONTINUE
STEP
END

```
        COMMCN DET, N, A(21,21), ठ(21,21)
    j FORMAT(4E16. %)
    N=21
    READ(I,I) ({E(I,J):J=1,N),I=I,N'
    OO 100.IT=1,2
    READ(1,1) E:
    DO 20 I=1.N
    0^ 10 J=1, M
10 A(i,J)=E(I,J)
20A(I,I)=E(I,I)-E!
    CALL UETER
100 WRITE(3.1) DET
    STCP
    ENU
        MCNSG EXEG FERTRAN,,,18
    SUBROUTINE DETER
    COMMON DET, N, A(21,21), B(21,21)
    1 FORMAT(4E16.8)
        DET=1.
        DO200 M=1,N
    5 OIV=A(M,M)
        IF:OIV.EG.O.O) GO TS 150
        DET=OET*DIV
        IF(N.EQ.N) EO TS 250
    0N 2-J=M,N
    2OA(M,J)=A(M,J)/DIV
    M1=M+1
    DO 6-I =M1,N
    AIJ=-A(I,M)
    DO 50 J=M,N
    EOA(I,J)=A(I,J)+AIJ*A(M,J)
    6O CONTINUE
    GO TO 200
150 DO IE- I=N1,N
    IF(A(I,M).EQ.O.O) GO TO 180
    DC 160 J=M,N
    DUMY=A(N,N)
    A(M,J)=A(I,J)
160 A(I,J)=CUMY
    GOTO5
180 CONTINUE
    HRITE(3)M, A(M,M), DET
    DET=*=
    GこTに 250
2OO CONTINUE
    WRITE(3) OET
250 RETURN
    ENO
```

```
            COMMON N, A(21,21),B(21),C(21)
    1 FORMAT(4E16.8)
        N=21
        OO 100 IT=1,2
        READ(1,1) ((A(I,J),j=1,N),I=1,N)
        READ(1:I) (B(I), I=1sN)
        READ(1,1) EI
        DO 20 I=1,N
    20 A(I,I)=A(I,I)-EI
100 CALL MATMUL
        STOP
        ENO
        MCN&$ EXEQ FORTRAN,,,18
            SUBRCUTINE MATMUL
            COMMON N, A(21,21),B(21),C(21)
    I FSRMAT(4E16.8)
        DO 100 I=1,N
        C1I)=0
        DE 100 J=?,N
10C C(I)=C(1)+A(I,J)*B(J)
    WRITE(3,1) (C(I),I=1,N)
    RETURN
    ENO
```


ACKNOWLEDGMENT

The writer wishes to express his sincere appreciation to all who helped in making this report possible:

To Dr. Chi-lung Huang of the Department of Applied Mechanics, Kansas State University, for his valuable guidance in the completion of this report and also for many other efforts which he has made in the writer's behalf;

To Prof. Philip G. Kirmser (Department Head) and Prof. Frank J. McCormick of the Department of Applied Mechanics, Kansas State University, for their suggestions and criticism of this report;

To his wife, Molly, for encouragement, for typing help, and for unending patience.

REFERENCES

I. Henry L. Langhaar, Energy Methods in Applied Mechanics, John Wiley ¢ Sons, Inc., New York, 1962
2. Walter C. Hurty \mathcal{G} Moshe F. Rubinstein, Dynamics of Structures, Prentice-Hall, Inc., N. J., 1964
3. John S. Archer, "Consistent Mass Matrix for Distributed Mass Systems", Jour. of the Structural Div., Proceedings of the ASCE, ST4, Aug., 1963
4. Bert L. Smith and Thomas L. Alley, "Natural Frequency Estimates of Beams and Frames Obtained by Use of the Consistent Mass Matrix and the Lumped Mass Matrix in Conjunction with the Direct Stiffness Method", Aerospace Corporation, San Bernadino, Calif., Oct., 1965
5. S. Timoshenko and D. H. Young, Vibration Problems in Engineering, D. Van Nostrand Co., Princeton, N. J., 1955
6. Kin N. Tong, Theory of Mechanical Vibration, John Wiley \& Sons, Inc., New York, 1963
7. Enrico Volterra and E. C. Zachmanoglou, Dynamics of Vibrations, Charles E. Merrill Books, Inc., Columbus, Ohio, 1965
8. W. Flügge, Handbook of Engineering Mechanics, McGraw-Hill, Inc., New York, 1962
9. Raymond Jefferson Roark, Formulas for Stress and Strain, McGraw-Hill, Inc., New York, 1965
10. J. H. Argyris \& S. Kelsey, Energy Theorems and Structural Analysis, Butterworth \& Co. Ltd., London, 1960
11. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, New York, 1964
12. D. D. McCracken, A Guide to Fortran Programming, John Wiley \& Sons, Incorporated, New York, 1961
13. Lothar Collatz, The Numerical Treatment of Differential Equations, Bexlin, Springer, 1960
14. Stephen H. Crandall, Engineering Analysis, McGraw-Hill, Inc., New York, 1956
15. Angus E. Taylor, Advanced Calculus, Blaisdell Publishing Company, New York, 1955
16. Harry Hochstadt, Differential Equations, Holt, Rinehart, and Winston, Inc., New York, 1964

by

CHEN I WANG

B. S., Taiwan Provincial Cheng Kung University, 1963

AN ABSTRACT OF MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

Abstract

The exact solutions of the natural frequencies and modes for certain structures have been obtained in numerous papers and books. However, for gable frames, the exact solutions of the natural frequencies and modes are difficult to determine. Using the 1410 digital computer, attempts have been made to solve such difficult problems by using the consistent mass method.

In this report, undamped free vibration of a symmetrical gable frame clamped at ends and joined rigidly is considered. Since the frame is considered as four elastic beams joined rigidly and each individual beam is composed of two beam elements of equal length, this structural system has twenty-one degrees of freedom. Only the lowest four natural frequencies and natural modes are presented. Another approximate method, lumped mass, is employed to check the results obtained from previous method. The percent deviations of these two approaches for the first anti-symmetric mode and first symmetric mode are insignificant, but they tend to increase for higher modes.

