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Abstract 

Reservoirs and associated river-fragments are novel ecosystems now common across the 

globe. Riverine habitats have been transformed and fragmented by dams creating mixed lotic-

lentic habitats used as introduction points for non-native species. This has resulted in altered 

habitats and fish assemblages consisting of species that do not share an evolutionary history. The 

Colorado River basin is fragmented by dams that create a complex of river fragments and 

reservoir habitats used by native fishes, such as razorback sucker (Xyrauchen texanus). Low 

survival of early life stage (ELS) razorback sucker in the Colorado River Basin, USA is thought 

to cause a recruitment bottleneck, but conservation efforts are limited by a complete mechanistic 

understanding of causal factors. I used a combination of lab and field studies to examine 

potential limiting factors contributing to the lack of recruitment by razorback sucker, assessed 

distribution patterns of the fish assemblage along the San Juan River inflow to Lake Powell, and 

evaluated movement potential across the entire upper Colorado River basin including between 

reservoir and riverine habitats. To explore discrepancies in survival of razorback sucker 

compared to other co-occurring sucker species, I used museum-cataloged fish specimens 

collected from the San Juan River, Utah to quantify trophic resource use of co-occurring ELS 

suckers. I evaluated diet diversity and composition using gut content and stable isotope analysis, 

expecting high overlap in diets among sucker species. Razorback sucker had the lowest diet 

richness. Although they were smaller and less developed than the other two species, differences 

in diet item occurrence across sizes and species reflect differences in resource acquisition among 

ELS suckers that might be related to recruitment bottlenecks. In the next chapter, I assessed 

species distributions along a 20 km reach of the San Juan River-Lake Powell inflow with the 

prediction that fish abundance would increase upstream with increasing energy inputs. I 



 

  

identified strong patterns in total number of species and individuals captured with both 

increasing towards the river inflow by systematically sampling shoreline habitats with trammel 

nets. Changes in assemblage structure were driven mainly by increases in relative abundance of 

benthic omnivores, including razorback sucker, towards more transitionary and riverine habitats, 

but also by increases in predatory species, such as striped bass (Morone saxatilis). River-

reservoir inflow areas might provide high-quality feeding areas for both benthic omnivores and 

piscivores. Lastly, I assessed movement potential of adult razorback sucker across reservoir and 

river habitats in the upper Colorado River basin using a multi-agency tagging database. Given 

unimpeded access to upstream riverine habitats, I expected fish to move long distances and 

readily exchange between riverine and lacustrine habitats. Of 722 fish captured in the Colorado 

River inflow, 261 were re-encountered and 107 of those were subsequently encountered 

upstream in the Colorado and Green river systems, or in the San Juan River inflow, with 11 

individuals moving at least 586 km. The proportion of fish moving between lacustrine and 

riverine habitats was estimated in the San Juan River inflow. Within a year of being captured in 

the reservoir, 29% and 20% of fish in 2017 and 2018, respectively, were detected 30 km 

upstream in the San Juan River. In 2016-2017, we translocated a total of 303 fish upstream of a 6 

m tall waterfall into the San Juan River. Generally, fish did not reside long in the river as 80% 

were re-encountered downstream of the waterfall within a year. These data show long-distance 

movements are not limited to a few individuals and illustrate how large river fish can maintain 

population connectivity in highly altered ecosystems. Managing for the maintenance of diverse 

movement syndromes (e.g., river-resident versus transient fish) will likely increase population 

resilience to environmental change. Collectively, this work contributes to an increased 



 

  

knowledge of the ecology and life history of a highly imperiled species and sheds light on fish 

assemblage use of novel riverine and reservoir habitats that are widespread across the globe.  
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Abstract 

Reservoirs and associated river-fragments are novel ecosystems now common across the 

globe. Riverine habitats have been transformed and fragmented by dams creating mixed lotic-

lentic habitats used as introduction points for non-native species. This has resulted in altered 

habitats and fish assemblages consisting of species that do not share an evolutionary history. The 

Colorado River basin is fragmented by dams that create a complex of river fragments and 

reservoir habitats used by native fishes, such as razorback sucker (Xyrauchen texanus). Low 

survival of early life stage (ELS) razorback sucker in the Colorado River Basin, USA is thought 

to cause a recruitment bottleneck, but conservation efforts are limited by a complete mechanistic 

understanding of causal factors. I used a combination of lab and field studies to examine 

potential limiting factors contributing to the lack of recruitment by razorback sucker, assessed 

distribution patterns of the fish assemblage along the San Juan River inflow to Lake Powell, and 

evaluated movement potential across the entire upper Colorado River basin including between 

reservoir and riverine habitats. To explore discrepancies in survival of razorback sucker 

compared to other co-occurring sucker species, I used museum-cataloged fish specimens 

collected from the San Juan River, Utah to quantify trophic resource use of co-occurring ELS 

suckers. I evaluated diet diversity and composition using gut content and stable isotope analysis, 

expecting high overlap in diets among sucker species. Razorback sucker had the lowest diet 

richness. Although they were smaller and less developed than the other two species, differences 

in diet item occurrence across sizes and species reflect differences in resource acquisition among 

ELS suckers that might be related to recruitment bottlenecks. In the next chapter, I assessed 

species distributions along a 20 km reach of the San Juan River-Lake Powell inflow with the 

prediction that fish abundance would increase upstream with increasing energy inputs. I 



 

  

identified strong patterns in total number of species and individuals captured with both 

increasing towards the river inflow by systematically sampling shoreline habitats with trammel 

nets. Changes in assemblage structure were driven mainly by increases in relative abundance of 

benthic omnivores, including razorback sucker, towards more transitionary and riverine habitats, 

but also by increases in predatory species, such as striped bass (Morone saxatilis). River-

reservoir inflow areas might provide high-quality feeding areas for both benthic omnivores and 

piscivores. Lastly, I assessed movement potential of adult razorback sucker across reservoir and 

river habitats in the upper Colorado River basin using a multi-agency tagging database. Given 

unimpeded access to upstream riverine habitats, I expected fish to move long distances and 

readily exchange between riverine and lacustrine habitats. Of 722 fish captured in the Colorado 

River inflow, 261 were re-encountered and 107 of those were subsequently encountered 

upstream in the Colorado and Green river systems, or in the San Juan River inflow, with 11 

individuals moving at least 586 km. The proportion of fish moving between lacustrine and 

riverine habitats was estimated in the San Juan River inflow. Within a year of being captured in 

the reservoir, 29% and 20% of fish in 2017 and 2018, respectively, were detected 30 km 

upstream in the San Juan River. In 2016-2017, we translocated a total of 303 fish upstream of a 6 

m tall waterfall into the San Juan River. Generally, fish did not reside long in the river as 80% 

were re-encountered downstream of the waterfall within a year. These data show long-distance 

movements are not limited to a few individuals and illustrate how large river fish can maintain 

population connectivity in highly altered ecosystems. Managing for the maintenance of diverse 

movement syndromes (e.g., river-resident versus transient fish) will likely increase population 

resilience to environmental change. Collectively, this work contributes to an increased 



 

  

knowledge of the ecology and life history of a highly imperiled species and sheds light on fish 

assemblage use of novel riverine and reservoir habitats that are widespread across the globe.
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1 

Chapter 1 - Fish conservation in novel ecosystems 

Lentification of flowing waters has occurred across the globe (Sabater 2008). Humans 

have fragmented river networks through dam construction causing a loss of lotic habitat and 

increased lentic habitat (Grill et al. 2019). Damming rivers creates novel ecosystems (sensu 

Hobbs et al. 2006) through coupled human-driven processes of habitat alteration and species 

introductions that lead to new assemblages of species that have not shared an evolutionary 

history. Along with altering lotic habitat and providing impetus for non-native fish introductions 

(Havel et al. 2005), destruction of riverine habitat through dam construction has caused declines 

in water quality and aquatic biodiversity (Moyle and Leidy 1992; Minckley et al. 2003; Dudgeon 

et al. 2006; Olden 2016), altered downstream flow and temperature regimes (Poff et al. 1997), 

isolated populations (Winston et al. 1991; Perkin et al. 2015), and reduced dispersal ability 

(Rolls et al. 2013). Fish conservation in novel ecosystems has been limited by a lack of 

information on basic ecology and life history information due to rapidly declining populations 

(Minckley and Deacon 1991; Cooke et al. 2012), the continued proliferation of water 

development and use by an increasing human population, and the synergistic effects of a 

changing climate without a full mechanistic understanding of the factors causing fish species 

declines (Closs et al. 2016). 

 Declines in populations of big-river fishes of the Colorado River basin 

The Colorado River, and associated tributaries, in the southwestern United States is one 

of the most heavily managed river systems in the world (Christensen et al. 2004; Castle et al. 

2014), that provides municipal water to approximately 40 million people and irrigation water for 

almost 5.5 million acres of land (United States Bureau of Reclamation 2012). As a result of 

water development, populations of endemic fishes have declined to the point that all four 
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endemic “big-river” species have been listed under the Endangered Species Act. Additionally, 

other endemic species have also experienced declines such as flannelmouth sucker (Catostomus 

latipinnis), which has been extirpated from 50% of its historical range but maintain self-

sustaining populations (Bezzerdies and Bestgen 2002; Budy et al. 2015). In the upper Colorado 

River basin, intense conservation efforts are implemented by two federal recovery programs that 

include habitat and flow management, non-native fish removal, and supplemental stocking of 

endangered fishes (Frannsen et al. 2014; Pennock et al. 2018). Razorback sucker (Xyrauchen 

texanus), one of the species of intense management, is thought to experience a recruitment 

bottleneck in early life stages, and populations are maintained exclusively through supplemental 

stocking despite the yearly production of wild-spawned larval fish (Barkstedt et al. 2018; 

Farrington et al. 2018). Recovery efforts for razorback sucker continue to be limited by an 

incomplete mechanistic understanding of the recruitment bottleneck, but hypothesized factors 

include habitat loss, non-native fish predation or competition, habitat and flow alteration, and 

starvation. For the second Chapter of this dissertation, I investigated differences in diet among 

early life stage suckers to potentially explain differential survival among co-occurring sucker 

species including flannelmouth and bluehead sucker (Catostomus discobolus), which maintain 

self-sustaining populations in the San Juan River, Utah. I found differences in diet among species 

using gut content and stable isotope analysis that suggest differences in feeding ecology and 

could potentially explain differences in survival among species. These differences included a 

complete lack of certain diet items from the guts of razorback sucker and large intraspecific 

variation in frequency of occurrence of diet items among individuals of this species. 
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 Fish use of river-reservoir inflows 

Reservoirs can be thought of as “river-lake hybrids” because they experience a 

longitudinal gradient of physicochemical and biological properties along three generally defined, 

but spatially and temporally dynamic zones: riverine, transitional, and lacustrine (Thornton et al. 

1990). Several general patterns can be observed in river-reservoir inflow areas due to this spatial 

transition among zones. Typically, there is a transition from shallow, higher velocity waters in 

the riverine zone to deeper, low-velocity waters in the lacustrine zone. Sediment and nutrient 

availability are high in the riverine zone, and sedimentation and nutrient availability peak in the 

transition zone as water velocity slows and sediment and associated nutrients are deposited. 

Nutrient availability declines into the lacustrine zone because a lack of new inputs, increased 

reliance on within-zone nutrient recycling, biological consumption, as well as deposition and 

denitrificaiton. The transition zone of a reservoir can experience high levels of volumetric 

primary production and oxygen demand due to inflow of available nutrients and increases in 

light penetration, which typically limits productivity in the riverine zone (Thornton et al. 1990). 

River-reservoir inflow areas (e.g., deltas; Volke et al. 2015) can support diverse communities 

because they represent heterogeneous edge habitats (i.e., an ecotone; Kaemingk et al. 2007; 

Spindler et al. 2009; Buckmeier et al. 2014; Volke et al. 2015, 2019). Seasonal inflow dynamics 

that form delta areas and flooded off-channel habitats in the riverine and transitional zones of 

reservoirs could be serving as important (supplementary or complementary; Tilman 1982; 

Dunning et al. 1992) habitats for riverine species currently limited in highly developed river 

systems (e.g., Colorado River basin; Bestgen et al. 2011; Volke et al. 2015, 2019). 

Non-native fish are hypothesized to negatively impact populations of native fishes in the 

Colorado River basin (Tyus and Saunders 2000; Franssen et al. 2014; Pennock et al. 2018), and 
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reservoir systems often are comprised of a suite of native and non-native species (Cowx and 

Gerdeaux 2004; Miranda et al. 2008). Currently, razorback sucker only recruit to adulthood in 

detectable numbers in one place in the entire Colorado River basin, Lake Mead, which is home 

to a fish assemblage dominated by non-native species (Albrecht et al. 2010, 2018). This presents 

a conundrum for managers of this endangered species (Albrecht et al. 2010).  

For my third Chapter, I sampled the fish assemblage along the longitudinal axis of the 

San Juan River-Lake Powell inflow area to identify changes in assemblage structure and assess 

overlap in species distributions. I found strong increases in species richness and total number of 

individuals captured closer to the river inflow that are consistent with previously published 

studies (Buckmeier et al. 2014; Nobile et al. In press). I also found interannual variation in 

species-specific patterns. Increased relative abundance of benthic omnivores including razorback 

sucker towards the river inflow contributed most to changes observed at the level of the entire 

assemblage. Some predatory species also showed significant increases in relative abundance 

towards the riverine zone. Increased fish abundance towards the reservoir inflow suggest these 

areas could be providing ample food resources for both benthic omnivores and piscivores, 

despite differences in habitat use by these two disparate groups. Because samples were collected 

in spring, it is also possible fish move into those areas to spawn. Coexistence in river-reservoir 

inflow areas by native and non-native species presents opportunities to manage these areas more 

holistically for the conservation of native fish species. 

Prior to construction of the Laguna Dam on the lower Colorado River in 1903, fish 

species in the Colorado River basin had access to the Colorado River Delta, which covered 

780,000 ha and supported hundreds of plant species in vast areas of floodplain habitat (Sykes 

1937; Glenn et al. 1996). Access to floodplain habitat might have been important to the 
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successful completion of Colorado River fishes’ life histories (i.e., provided complimentary 

habitat). Construction of large water storage reservoirs has further fragmented the Colorado 

River basin and restricted access to potentially important habitat types for native imperiled 

fishes. Restricted access to and loss of the Colorado River Delta and other floodplain habitats 

across the Colorado River basin hinders the recovery of endangered fish, including razorback 

sucker. In Chapter 4 of this dissertation, I assess the movement ability of razorback sucker across 

the entire upper Colorado River basin, including Lake Powell, quantify proportions of fish 

moving between reservoir and riverine habitats, and assess the post-translocation behavior of fish 

moved upstream of a 6 m tall waterfall barrier on the San Juan River. This study shows 

razorback sucker move vast distances (>600 km) across the entire river basin, including through 

Lake Powell, and these movements are not just made by a few individuals as was previously 

thought. Moreover, about a third of sampled individuals made movements between reservoir and 

riverine habitat over the course of a year, and although most translocated individuals returned 

back downstream within a year some first moved upstream at least 100 km. These results suggest 

that maintaining and improving connectivity will ensure fish are able to freely move throughout 

upper basin rivers which can increase the long-term viability of populations. 
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Chapter 2 - Feeding ecology of early life stage Razorback Sucker 

relative to other sucker species in the San Juan River, Utah 

Casey A. Pennock*1, Michael A. Farrington2, and Keith B. Gido1 
1Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan KS 66502 
2American Southwest Ichthyological Researchers, L.L.C., 800 Encino Place, NE, Albuquerque, 

NM 87102-2606 

 Introduction 

Recruitment of freshwater fishes can be greatly influenced by trophic interactions of 

juveniles (Houde 1994). These early life stage (ELS) fish experience drastic ontogenetic shifts 

with size and trait development (e.g., gut development, fins, mobility) over relatively short time 

periods, creating a “critical period” when newly hatched larval fish must acquire resources after 

yolk absorption to support rapid growth and escape predation (Hjort 1914; Miller et al. 1988; 

Holzman et al. 2015). Failure to do so can diminish fish survival and potentially cause a 

recruitment bottleneck (Werner and Gilliam 1984). Interspecific differences in ELS fish 

responses to abiotic and biotic factors can also influence recruitment success (Miller et al. 1988). 

For instance, some species might be more susceptible to starvation due to lower energy reserves 

in their yolks (Hunter 1981), while other species might be more susceptible to predation due to 

smaller size or delayed mobility (Bailey and Houde 1989). Despite the importance of ELS fish 

survival to population stability (Starrett 1951; Schlosser 1985; Freeman et al. 2001), studies of 

the trophic ecology of fishes during this life stage are limited (Ross 1986; Childs et al. 1998; 

Pease et al. 2006; Starks et al. 2016). Increasing our understanding about trophic ecology of co-

occurring fishes could help predict why some species, might not be able to successfully 

transition through this critical period of early life in altered ecosystems. 

Colorado River Basin fishes in the American southwest are highly imperiled due to 

intense water development that has caused range-wide population declines. Consequently, many 
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species were listed under the Endangered Species Act following the construction of large 

hydropower dams (Minckley and Deacon 1991; Minckley et al. 2003). Native fishes must now 

contend with highly altered habitats and heavily managed flow regimes that include changes in 

geomorphology following non-native plant establishment and artificially restricted movements 

and habitat loss from river fragmentation (Tyus and Karp 1990; Franssen et al. 2014; Cathcart et 

al. 2018). Additionally, a suite of nonnative species have been introduced throughout the basin 

and are hypothesized to prey on and compete with native fishes, increasing their imperilment in 

altered habitats (Minckley et al. 2003). These altered conditions have led to some species 

experiencing a recruitment bottleneck despite intensive recovery efforts (Schooley and Marsh 

2007). 

Razorback Sucker Xyrauchen texanus is an endangered “big-river” species that is 

maintained in the wild through intense stocking efforts throughout the Colorado River Basin. 

Evidence of successful recruitment (i.e., survival to adulthood) of wild-spawned Razorback 

Sucker in remnant river fragments is almost nonexistent (except for Lake Mead; Albrecht et al. 

2010). Conversely, two native sucker species that co-occur with Razorback Sucker, Bluehead 

Sucker Catostomus discobolus and Flannelmouth Sucker C. latipinnis, have relatively stable, 

self-sustaining populations, despite also being extirpated from most of their historical range 

(Bezzerides and Bestgen 2002; Budy et al. 2015). Currently, there is no confirmed mechanism 

explaining the recruitment bottleneck experienced by Razorback Sucker, but investigations into 

why other native suckers are recruiting could further our understanding of species’ resistance to 

habitat degradation. Several competing hypotheses have been proposed to explain a lack of 

recruitment to maturity by Razorback Sucker, including reduced habitat availability (Tyus and 

Saunders 2000; Clarkson et al. 2005; Bestgen 2008), altered flow and temperature regimes 
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(Bestgen 2008), introduction of non-native species (Minckley et al. 2003; Marsh and Pacey 

2005), habitat degradation (Horn 1996; Franssen et al 2014), and food limitation (Papoulias and 

Minckley 1990; Papoulias and Minckley 1992; Horn 1996). The presence of multiple and 

potentially compounding mechanisms affecting recruitment of imperiled fishes makes it difficult 

for researchers and managers to mitigate, any single factor. 

In the San Juan River of New Mexico, Colorado, and Utah, wild-spawned ELS 

Razorback Sucker have been collected during annual monitoring efforts in every year since 1998 

(Barkstedt et al. 2018); yet, survival of these fish past their first winter is extremely rare. Early 

life stages of Bluehead Sucker and Flannelmouth Sucker are also collected during these surveys, 

but age 1+ fish of these species are commonly collected (Farrington et al. 2018). The limited 

detection of juvenile and sub-adult Razorback Sucker suggests high mortality is occurring in 

early life (Guttermuth et al. 1994; Modde 1996; Bestgen et al. 2017). Other studies have been 

conducted on trophic resource use of ELS Bluehead, Flannelmouth, and Razorback Suckers, but 

these studies have either been conducted in lentic habitats (i.e., for Razorback Sucker in 

reservoirs; Marsh and Langhorst 1988) or did not include some species because of a lack of 

occurrence (Muth and Snyder 1995; Childs et al. 1998; Seegert et al. 2014). To our knowledge, 

this is the first study to assess trophic resource use of ELS Razorback Sucker from riverine 

habitats. As adults and juveniles, Bluehead, Flannelmouth, and Razorback Suckers generally 

overlap in diet, but also have differences in morphology that allow specialization on particular 

food items. For instance, Bluehead Sucker have been described as feeding mainly on attached 

algae using specialized mouth parts adapted for scraping (Taba et al. 1965; Muth and Snyder 

1995; Snyder and Muth 2004), but also consume macroinvertebrates, detritus, and terrestrial 

vegetation (Seegert et al. 2014). Flannelmouth Sucker are considered the most general feeder of 
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the three species and their diets include macroinvertebrates, algae, organic matter, zooplankton, 

terrestrial vegetation, and bottom ooze (Taba et al. 1965; Muth and Snyder 1995; Seegert et al. 

2014). Razorback Sucker feed on a variety of items including algae, bottom ooze, zooplankton, 

macroinvertebrates, and detritus (Marsh 1987; Horn 1996), and are thought to be more 

planktivorous, relative to the other two species, aided by a larger number of gill rakers and a 

slightly less terminal mouth (Snyder and Muth 2004). Given these differences in morphologies 

as juveniles and adults, it is possible that varying morphologies exist in ELS fishes allowing 

species to specialize on particular food items. 

Co-occurring sucker species (family Catostomidae) are common throughout North 

America and their continued persistence is challenged by a multitude of threats (Cooke et al. 

2005). Increasing knowledge on the natural history and ecology of members of this diverse and 

imperiled family may help conservation efforts (Cooke et al. 2012; Matthews 2015; Courchamp 

et al. 2015). Our objective was to compare trophic resource use among co-occurring ELS 

Bluehead, Flannelmouth, and Razorback Suckers using museum-vouchered specimens collected 

from the San Juan River, Utah. Using gut content and stable isotope analysis, we tested for 

differences in diet richness and composition among these three species. Based on previous 

studies that found high diet overlap among Bluehead and Flannelmouth Suckers (Childs et al. 

1998; Seegert et al. 2014), we predicted to find minimal differences in trophic resource use 

among species. We expected to find a higher proportion of empty stomachs in Razorback Sucker 

because overwinter survival (i.e., survival to age-1) has been extremely limited in the wild for 

this species. However, they also hatch at smaller sizes compared to Bluehead and Flannelmouth 

Suckers (Snyder and Muth 2004), which might also limit foraging success due to gape limitation. 

Size-dependent effects on ELS fish can be very important for survival, likely differ among 



 

16 

species, and are not well understood for many species (Werner and Gilliam 1984; Graeb et al. 

2004; Bestgen et al. 2006). Furthermore, early life-stage fish are typically limited in the size of 

prey items available to them (Graeb et al. 2004). 

 Methods 

 Study area and larval fish collections 

The San Juan River begins in the southern Rocky Mountains of Colorado and flows south 

and west before its eventual confluence with the Colorado River in southern Utah. Along its 

course, the San Juan River is fragmented by a major dam (forming Navajo Reservoir) and 

several smaller low-head weirs designed to divert water for agricultural and industrial use 

(Figure 2.1). The historical confluence of the San Juan River and the Colorado River is now 

inundated by Lake Powell, the second largest reservoir in the United States (volume at full 

capacity > 32 km3; USBR 2018, https://www.usbr.gov/uc/rm/crsp/gc/). The San Juan River is a 

snowmelt driven system; however, contemporary flows in the San Juan River are highly 

managed by dam operations at Navajo Reservoir (Propst and Gido 2004; Franssen et al. 2007; 

Gido et al. 2013). Undammed tributaries still provide natural flow regime cues (e.g. Animas 

River) and spawning habitat (e.g., McElmo Creek) for some of the native fishes (e.g., Cathcart et 

al. 2015). Recovery efforts for endangered fishes in the San Juan River include non-native 

predator removal (Franssen et al. 2014; Pennock et al. 2018), flow management (Propst and Gido 

2004; Gido and Propst 2012), and stocking of hatchery reared fish (Furr 2016). 

As part of an effort to document spawning and recruitment by native fishes occurring in 

the San Juan River, larval fish monitoring has been conducted every year from 1991-2018 

(Farrington et al. 2018). These collections consist of seining all available low-velocity habitats 

along the course of the river to document the occurrence and relative abundance of ELS fish in 
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the San Juan River. Collections are generally made from April to August from 220 km of river 

(see Barkstedt et al. 2018 for more details). The first collection of Razorback Sucker larvae 

during these monitoring efforts occurred in 1998. All collections are catalogued in the Division 

of Fishes, Museum of Southwestern Biology, University of New Mexico in the research 

collection and made available for use. Throughout, we use the term early life stage to describe 

fish at various stages of larval development and recently transformed juveniles (Snyder and 

Muth 2004). 

 Gut content analysis 

To assess differences in diets among the three sucker species, we first identified 

collections listed in the FishNet2 online database housed at the Museum of Southwestern 

Biology where all three species were captured from the same locality (e.g., backwater) on the 

same date. We further limited collections to those that contained at least 10 individuals of each 

species (Table 1). In hopes of reducing variation in observed diets due to spatial or temporal 

differences in available trophic resources, we chose collections that occurred close together in 

both space and time. The specimens we chose were collected in May (n = 1) and June (n = 4) 

2007 from five sites. From these five collections, we chose 10 individuals of each species that 

represented the range of standard lengths (SL) of captured fish if more than 10 fish were 

collected. Individuals were classified by stage of development following Snyder and Muth 

(2004) and measured to the nearest mm SL prior to gut content analysis (n = 50 per species; 

Figure 2.2). The entire digestive tract was removed from each fish and contents were placed on a 

microscope slide. Gut contents were viewed under a compound microscope at 40x-200x 

magnification. Because of subjective limitations with quantifying diets (Baker et al. 2014), we 

chose to describe diet composition using frequency of occurrence. This involved recording the 
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presence of various diet items for each individual fish. Diet items were classified into 12 

categories and items occurring in < 5% of all individuals were grouped into the “rare” category 

(Table 2). The “detritus” category included all unidentifiable organic material. 

 Stable isotopes 

Stable isotopes are commonly used to assess energy flow in aquatic systems relative to 

trophic resource use (Finlay 2001; Gido et al. 2006; Pease et al. 2006). Unlike gut content 

analysis, which provides a snapshot in time of an individual’s diet, stable isotopes typically 

reflect resource use over longer time periods. Relative amounts of 15N in fish tissue can provide 

an estimate of trophic level (Vander Zanden et al. 1997). While 13C varies little across trophic 

levels, it allows for differentiation among organic matter sources (e.g., benthic algae versus 

detritus). After dietary tracts were removed, whole bodies of fish (minus the heads) were retained 

for isotope analysis. Fish were dried (60° C ~8 h), either ground whole after freezing with liquid 

nitrogen or broken up into small pieces, packed into tin capsules, and weighed. Samples were 

analyzed for carbon and nitrogen stable isotope ratios at the Stable Isotope Mass Spectrometry 

Laboratory, Kansas State University, using an Elementar vario Pyro cube Elemental Analyzer 

coupled to an Elementar Vision mass spectrometer with continuous flow capabilities (Elementar 

Americas, Mt. Laurel, NJ). Data are reported on a per mil basis (‰) in delta (δ) notation. Delta 

values were calculated using the following equation: 

δ13C or δ15N = (Rsample/Rstandard)-1 x 1000 

 

where R is equal to 13C/12C and 15N/14N. We used laboratory standards calibrated against 

international standards, Pee Dee Belemnite as the standard for carbon and atmospheric molecular 

nitrogen for nitrogen. Measurement error on routine analysis of laboratory standards was less 
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than 0.1‰ for both δ13C and δ15N. Because formalin fixation and ethanol preservation 

predictably affects carbon and nitrogen isotopic signatures in fish tissue, we corrected isotopic 

ratios of our samples by adding 1.1‰ to observed δ13C and by subtracting 0.5‰ from δ15N 

(Edwards et al. 2002). 

 Statistical analysis 

All analyses were conducted in Program R version 3.5.1 (R Core Team 2018). Fish 

length data did not meet parametric assumptions, so differences in SL among species were tested 

with a Kruskal-Wallis one-way ANOVA on ranks and pairwise comparisons assessed with 

Tukey’s HSD. Using individual fish as replicates, we tested for differences in mean diet richness 

(number of diet item categories in gut contents) among species using  generalized linear mixed 

effects models with a Poisson distribution and log-link function, including site as a random 

effect. Although we were mainly interested in assessing differences among species, fish size can 

be a strong determinant of diet and ELS fish in our study exhibited a wide range of SL and 

minimal overlap among species; therefore, we compared models including only the fixed effect 

of species against models with fixed effects of both species and SL and their interactive effects 

using likelihood ratio tests. We used the glmer function in the lme4 package (Bates et al. 2015) 

to build and run generalized mixed effects models. We used the lrtest function in the lmtest 

package to compare nested models and an intercept-only model with likelihood ratio tests 

(Zeileis and Hothorn 2002). We assessed model fit using the rsquared function in the 

piecewiseSEM package (Lefcheck 2016) which calculates the proportion of variance explained 

by only fixed factors (marginal R2) and by both fixed and random factors combined (conditional 

R2). We report least squares means and 95% confidence intervals for species calculated using the 

effect function from the effects package (Fox and Weisberg 2018; Fox and Weisberg 2019). We 
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also assessed the relationship between diet richness and SL for each species independently using 

general linear models with a Poisson distribution and log-link function. 

To assess differences in diet composition among species, we used discriminant function analysis 

(DFA) in the flipMultivariates package (accessed from URL: 

https://github.com/Displayr/flipMultivariates/). To assess model accuracy, we first split our 

dataset into a testing and training portion by randomly selecting 70% (n=105) of observations 

with replacement to train the model, and we used the remaining “out-of-sample data” (n=45) to 

test the model. Significance of individual predictor variables (i.e., diet item categories) was 

assessed with MANOVA and corrected P-values for multiple tests with a false discovery rate 

correction (Benjamini and Hochberg 1995). 

We also assessed differences in diet composition based on isotope samples. Differences 

in sample size existed among species, because some samples were either too small or were lost 

during processing, but at least 47 individuals of each species were analyzed. We analyzed δ13C 

and δ15N with linear mixed effects models with site as a random effect. We used the lme function 

in the nlme package (Pinheiro et al. 2018) to build and run mixed effects models. As with diet 

richness, we used likelihood ratio tests to compare models with species as a fixed effect to 

models including the effects of SL. Visual inspection of residual plots revealed heterogeneity of 

residuals and slight deviations from normality for δ13C. No obvious deviations from 

homoscedasticity or normality were apparent for δ15N. We log10 transformed the absolute value 

of δ13C (because all values were negative) which improved normality, but did not improve 

heterogeneity. To account for heterogeneity, we modeled variance by including the varIdent 

statement in the model, using site as the stratum. Again, we calculated marginal and conditional 

R2 values to assess the approximate variance explained by the models. We report least squares 
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means and 95% confidence intervals for estimates. Estimates for δ13C were back-transformed for 

ease of interpretation. To assess the relationship between δ13C and SL, we used separate 

generalized least squares models for each species which allowed us to again account for 

heterogeneous variance as above. We again analyzed transformed δ13C, but report back-

transformed estimates. We used simple linear regression to analyze patterns of δ15N and SL. 

 Results 

 Collection composition, fish lengths, and diet richness 

Relative abundance of Bluehead, Flannelmouth, and Razorback Suckers was variable 

across the five collection sites, ranging from 75-95%, and suckers made up 87% of total 

individuals collected (Table 1). All fish examined had identifiable material in their guts. Lengths 

of ELS fishes were significantly different among species (ANOVA on ranks: H = 115.8, df = 2, 

P < 0.001). Lengths of Bluehead (12.0 mm, 11.3-13.0; median, IQR), Flannelmouth (19.5, 15.0–

22.0), and Razorback Sucker (9.0, 9.0–10.0) were all significantly different (Tukey HSD: P < 

0.05; Figure 2.2). Species differed significantly in mean diet richness (Figure 2.3). The model 

with only the fixed effect of species was significantly different from the intercept-only model 

(likelihood ratio = 39.65, df = 2, P < 0.001), and models including the additive or additive and 

interactive effects of SL were not significantly different from the species-only model (P > 0.05; 

Table 3). Bluehead (5.7, 5.2–6.2; least squares mean, 95% CI) and Flannelmouth Sucker (5.8, 

5.3–6.3) had 1.7x higher mean diet richness compared to Razorback Sucker (3.4, 2.9–3.9). The 

marginal R2 of the species-only model was 0.22 and conditional R2 was 0.22, suggesting the 

proportion of variance explained by the fixed effect of species accounted for nearly all of the 

variance (>99%) explained by the model. Adding the effect of SL only increased the marginal 

and conditional R2 to 0.23-0.24, suggesting the effect of SL explained very little additional 
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variation. Diet richness for Bluehead Sucker (df = 48, P = 0.029) showed a significant positive 

relationship with SL, but there was no significant relationship for Flannelmouth Sucker (df = 48, 

P = 0.158) or Razorback Sucker (df = 48, P = 0.460; Figure 2.3). 

 Diet composition 

The trained DFA model had an overall classification accuracy of 57% on out-of-sample 

data. The first discriminant function explained 76% of the variation among species, and 

somewhat separated Razorback Sucker from Bluehead and Flannelmouth Suckers. No diet item 

categories loaded positively on the first discriminant function axis, and were opposite of the 

centroid for Razorback Sucker (Figure 2.4). The second discriminant function explained the 

remaining 24% of the variation and was driven by separation between Bluehead and 

Flannelmouth Suckers. On the second discriminant function axis, diatoms, pollen, and rare items 

loaded heavily on the positive end, associated more with Bluehead Sucker, and diptera (i), 

diptera (a), and sand loaded heavily on the negative end, more aligned with Flannelmouth 

Sucker. Overall, nine of the twelve diet item categories differed significantly (P < 0.05; Table 2) 

in mean frequency of occurrence among species. This was mostly driven by relatively low 

frequency of occurrence of all diet items in Razorback Sucker. With the exception of one 

category (i.e., Ephmeroptera, Plecoptera, Trichoptera; EPT), Razorback Sucker had the lowest 

frequency of occurrence of all diet item categories. 

 Stable isotopes 

Isotopic signatures also indicated diet differences among species, despite overlap in 

isotopic space (Figure 2.5). Flannelmouth Sucker had the highest isotopic niche breadth, which 

was evident from high variation in isotopic space (Figure 2.5, left). Flannelmouth Sucker had the 

largest standard ellipse area, corrected for sample size. Ellipses for Bluehead and Razorback 
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Suckers were 33% and 51% that of Flannelmouth Sucker, respectively. Bluehead and Razorback 

Suckers overlapped most in isotopic space, while differences in Flannelmouth Sucker δ13C 

across sites varied substanitally. Species differed significantly in mean δ13C (likelihood ratio = 

57.88, df = 2, P < 0.001), and again, models with the effects of SL did not differ significantly (P 

> 0.05) from the species-only model (Table 3). Bluehead Sucker (-21.7, -21.2–-22.1; least 

squares mean, 95% CI) and Razorback Sucker (-20.9, -20.4–-21.3) both had higher δ13C than 

Flannelmouth Sucker (-22.2, -21.8–-22.7). The fixed effect of species accounted for 63% of the 

variation explained by the model (marginal R2 = 0.45), and the random effect of site accounted 

for approximately 37% of the variation (conditional R2 = 0.71). δ13C decreased significantly with 

SL for Bluehead Sucker (df = 48, P = 0.014), and no significant relationship was found for 

Flannelmouth (df = 45, P = 0.928) or Razorback (df = 46, P = 0.723) Suckers. Species differed 

significantly in mean δ15N (likelihood ratio = 30.06, df = 2, P < 0.001), and as with diet richness 

and δ13C, models including the effects of SL were not significantly different (P > 0.05) from the 

species-only model (Table 3). Bluehead Sucker (12.4, 11.9-12.9) and Razorback Sucker (12.2, 

11.7-12.7) had higher δ15N compared to Flannelmouth Sucker (10.9, 10.4-11.4). The conditional 

R2 for the species-only δ15N model was 0.24, and the fixed effect of species accounted for 75% 

of the variation explained by the model (marginal R2 = 0.18). Similar to δ13C, δ15N of Bluehead 

Sucker decreased significantly with SL (slope = -0.375, df = 48, P < 0.001), and did not differ 

for Flannelmouth (slope = 0.002, df = 45, P = 0.964) or Razorback (slope = -0.315, df = 46, P = 

0.077) Suckers. 

 Discussion 

Rather than finding high overlap in diets of ELS suckers, we found differences in diet 

richness and composition among the three species. Specifically, intraspecific variation in diet 
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item composition across individual Razorback Sucker drove the majority of variation among 

species. Although diet differences among species was confounded by differences in SL (see 

below), the complete lack of certain diet item categories from Razorback Sucker gut contents, 

while being present in the other two species, is particularly interesting to us. For example, adult 

dipterans (e.g., chironomids) were not present in Razorback Sucker diets, but were present in 

20% of Bluehead Sucker and 32% of Flannelmouth Sucker, suggesting these individuals foraged 

at the water surface. Conversely, sand was also absent from Razorback Sucker but present in 

22% and 24% of Bluehead and Flannelmouth Suckers, respectively, suggesting benthic feeding. 

These results suggest differences in feeding ecology of ELS suckers might include differential 

habitat use and potentially resource partitioning (Markle and Clauson 2006), whereby Bluehead 

and Flannelmouth Suckers feed at both the water surface and in the benthos, but Razorback 

Sucker might be more limited in their foraging behavior. Markle and Clauson (2006) found 

ontogenetic diet shifts in ELS Shortnose Sucker Chasmistes brevirostris and Lost River Sucker 

Deltistes luxatus that suggested a shift from surface to more benthic feeding as fish grew larger. 

Thus, diet items suggestive of both surface and benthic feeding could be related to a wider range 

of individuals from different developmental stages and sizes rather than species partitioning 

resources. 

The differences in size and developmental stage exhibited by fishes in our study could 

explain potential differences in resource use, rather than innate differences in feeding ecology 

across species. It has been hypothesized that ELS fish increase trophic niche breadth as they 

grow, which leads to higher chances of survival (Fuiman 2002). Werner and Gilliam (1984) 

referred to this as the ontogenetic niche, which describes changes in resource use patterns across 

developmental stages. One potential change in the ontogenetic niche occurs when the range of 
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prey types (i.e., diet richness) increases with body size, but the niche of larger individuals 

includes that of smaller individuals (Wilson 1975; Werner and Gilliam 1984; Gill 2003). This 

idea might apply to results from this study where Razorback Sucker were the shortest, least 

developed, and had the lowest diet richness. Conversely, Bluehead and Flannelmouth Suckers 

had the highest diet richness and also had a wider range of SL and developmental stages relative 

to Razorback Sucker. However, Flannelmouth Sucker were larger on average than Bluehead 

Sucker, but we did not observe differences in diet richness between these species. Thus, the 

ontogenetic niche of Bluehead Sucker and Flannelmouth Sucker was larger, but included that of 

Razorback Sucker. Based on ontogenetic niche shifts, differences in species life history such as 

egg size, size at hatching, and developmental rate could play an important role in determining 

resource use in early life which could ultimately affect recruitment. 

In addition to differences in diet composition based on gut content analysis, we also 

found substantial overlap, but still significant differences among species based on stable isotope 

analysis. Flannelmouth Sucker displayed the most variation in trophic resource use, and this 

appeared to be driven by variation in δ13C across sites. Flannelmouth Sucker at S2 and S4 had 

lower δ13C compared to individuals of all three species across other sites. However, individuals 

with the lowest δ13C of Bluehead and Razorback Suckers also occurred at S4. Gido et al. (2006) 

found δ13C of primary consumers (e.g., EPT) decreased from upstream to downstream in the San 

Juan River possibly due to differences in current velocity among habitats (Finlay et al. 1999). 

Because all five sites in the current study occurred in a canyon-bound, high gradient reach of 

river we might expect minimal variation in δ13C, but differences in local site characteristics (e.g., 

connection to the main-channel) could have contributed to observed variation in δ13C. Another 

possibility is the contribution of riparian plant resources to the food web could differ spatially 
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along the river and across sites. Based on δ15N of fish in this study, it appears ELS fish are not 

feeding directly on primary producers and variation in δ13C could be driven by variation in diets 

of lower trophic level groups such as aquatic insects or zooplankton. Pease et al. (2006) 

hypothesized δ13C variation in larval fish could be due to diet switching by invertebrate grazers 

between benthic algae and other carbon sources such as emergent macrophytes. Benthic algae is 

thought to be the major carbon source for fish in arid-land rivers (Bunn et al. 2003; King 2004; 

Pease et al. 2006), but in the San Juan River, Gido et al. (2006) concluded detritus from 

terrestrial sources were the major source for juvenile and adult fishes. δ13C of ELS fish measured 

in this study suggest carbon sources might vary substantially even within river reaches having 

similar habitat characteristics, and might be driven by variation in diets of lower trophic level 

consumers. 

Differences in δ15N among species was consistent across sites, but seems related to 

ontogenetic stage rather than diet. Specifically, larger Flannelmouth Sucker had significantly 

lower δ15N relative to Bluehead and Razorback Suckers. Although we lack data on baseline 

trophic resources, higher δ15N in Bluehead and Razorback Suckers suggest these species might 

be feeding at a higher trophic level, which was not supported by gut content data. Alternatively, 

smaller and less developed ELS fish might be more susceptible to starvation (i.e., in the “critical 

period”), such that, higher mean δ15N in Bluehead and Razorback Suckers could be a result of 

catabolism of body tissues (Gannes et al. 1997; Gaye-Siessegger et al. 2007). Gaye-Siessegger et 

al. (2007) found starved Nile Tilapia Oreochromis niloticus and those fed a maintenance-only 

ration had higher δ15N compared to fish fed above maintenance. Another and more likely 

alternative is, ELS fishes have high δ15N and experience rapid depletion of the heavy nitrogen 

isotope as they transition to juveniles (Vander Zanden et al. 1998). Vander Zanden et al. (1998) 
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found a strong pattern in ELS Smallmouth Bass Micropterus dolomieu where embryos had high 

δ15N, but δ15N declined rapidly until larvae made the transition to the juvenile stage. Parental 

contributions of δ15N were predicted to be the cause of this pattern. A similar phenomenon was 

observed in penguins, where chicks have higher δ15N relative to juveniles and adults (Forero et 

al. 2002). Although we only found a significant relationship between δ15N and fish size for 

Bluehead Sucker, lower mean δ15N of Flannelmouth Sucker might be caused by individuals 

being farther along in development relative to the other two species. Flannelmouth Sucker spawn 

earlier, have larger eggs, and are typically larger per developmental stage compared to other 

catostomids in the Colorado River Basin (Weiss et al. 1998; Snyder and Muth 2004). Assessing 

the relative trophic level of ELS fish might be problematic because δ15N can be biased by lag 

effects from maternal signatures and can change rapidly across developmental stages (Vander 

Zanden et al. 1998). 

During annual monitoring efforts in the San Juan River, few if any juvenile Razorback 

Sucker have been collected while all stages of Bluehead and Flannelmouth Suckers, including 

age 1+ fish, are common. This lack of more developed Razorback Sucker in ELS fish collections 

has been consistent over the entirety (1998-present) of larval fish monitoring in the San Juan 

River (Barkstedt et al. 2018). In 2007, when fish in this study were assessed, only 200 Razorback 

Sucker were collected compared to 16,535 Flannelmouth Sucker and 7,996 Bluehead Sucker. 

Whether this low relative abundance of Razorback Sucker is due to differences among species in 

their propensity to drift, use of different spawning habitats (i.e., main-channel vs. tributaries; 

Tyus 1987; Cathcart et al. 2015), a lack of spawning adults (Diver and Wilson 2018), or other 

factors is unknown. Few data exist on resource availability and potential limitation in rivers of 

the Colorado River Basin, but the timing and amount of trophic resources are critically important 
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to the success of ELS fishes (Cushing 1990; Humphries et al. 2013). Future studies might 

consider linking dynamics of resource availability and ELS fish success in rivers of the Colorado 

River Basin. 

Currently in the San Juan River (and elsewhere in the Colorado River Basin), nursery 

habitats for ELS fishes (e.g., backwaters) are rare as a result of flow regime modification and 

establishment of non-native riparian vegetation. The closing of Navajo Dam brought on 

decreased spring discharge and increased summer flows, in addition to lowered water 

temperatures from hypolimnetic water releases (Franssen et al. 2007). In the San Juan River, 

invasive saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) have displaced 

native tree species such as cottonwood (Populus fremontii) and black willow (Salix gooddingii). 

A change in bank vegetation coupled with reduced annual flow peaks has contributed to 

armoring of river banks and the loss of backwater habitats (Nagler et al. 2011; Franssen et al. 

2014). This loss of rearing habitat has reduced available space and likely concentrated ELS fish 

into remaining habitats where competition or predation could be intense. Alterations to mainstem 

rivers elsewhere have been linked directly to recruitment bottlenecks experienced by imperiled 

species (Humphries et al. 2002; Guy et al. 2015), but our understanding of how river regulation 

has impacted ELS fish is lacking for many species.  

In this study, diet differences among seemingly similar ELS fishes suggest differences in 

feeding ecology. How fish respond to the critical period of early life, whether they succumb to it 

or survive it, can influence population and community dynamics (Houde 1994; Freeman et al. 

2001). Early life stage fishes are largely presumed to rely on similar resources, but differences 

among species during these delicate life stages could explain differential responses at the 

population level to habitat alteration and repatriation efforts (e.g., Mueller and Wydoski 2004). 
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Negative interactions with nonnative fishes are the most commonly hypothesized factor 

contributing to imperilment of native fishes in the Colorado River Basin (Minckley et al. 2003). 

If predation by nonnative fishes is the primary cause for the complete lack of recruitment by 

Razorback Sucker, then why have Bluehead Sucker and Flannelmouth Sucker not suffered 

similar fates? Habitat alteration and loss have also been hypothesized as contributing to the 

decline of “big-river” species in the Colorado River Basin, but thus far mechanistic 

understanding of specific factors limiting recruitment of species such as Razorback Sucker 

remains elusive. Along with altering habitats for fishes, river regulation has impacted prey 

communities of ELS fishes (e.g., Kennedy et al. 2016), potentially leading to mismatches in ELS 

fish occurrence and prey availability. Other studies have assessed trophic resource use of ELS 

Razorback Sucker in artificial habitats (e.g., reservoirs; Marsh and Langhorst 1988; Papoulias 

and Minckley 1992), but this is the first study to quantify trophic resource use in riverine habitats 

and compare it to other native species. Comparative studies that include similar species 

showcasing differential responses to habitat alteration can help place results in context that 

would otherwise be lacking from single-species investigations. 
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 Figures 

 

Figure 2.1–The San Juan River basin is located in the four corners region of the American 

Southwest (top left). The San Juan River is fragmented by a hydropower dam and associated 

water storage reservoir (i.e., Navajo Reservoir) and several smaller weirs located between the 

Animas and Mancos river confluences (top right, identified with arrows). Sites of larval fish 

collections occurred in a downstream, canyon-bound portion of the river (bottom 



 

42 

 

Figure 2.2–Standard length (mm) was significantly different (ANOVA on ranks: P < 0.001) 

among all species (top). Razorback Sucker always had the shortest standard length per 

developmental stage (bottom). Solid lines represent medians  
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Figure 2.3–Top panel) Diet richness (number of diet item categories in gut) differed significantly 

among species (likelihood ratio: 39.7, P < 0.001) with Razorback Sucker being lower than both 

Bluehead and Flannelmouth Suckers. Solid lines represent medians and dashed lines represent 
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means. The 95th, 75th, 25th, and 5th percentiles are represented respectively by the upper whisker, 

upper box edge, lower box edge, and lower whisker. Top panel) Diet richness increased 

significantly with length for Bluehead Sucker (P = 0.029), but not Flannelmouth (P = 0.158) or 

Razorback (P = 0.460) Suckers. A small amount of jitter was added to individual points in both 

panels to reduce overlap and show sample sizes  
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Figure 2.4–Discriminant function analysis biplot of early life-stage diet compositions among 

Bluehead (CATDIS), Flannelmouth (CATLAT), and Razorback Suckers (XYRTEX). The first 

discriminant function explained 76.22% in variation among groups and largely separated 

Razorback from both Bluehead and Flannelmouth Suckers. The second discriminant function 

separated Bluehead Sucker from Flannelmouth Sucker, and explained the remaining 23.78% of 

variation. See Table 2 for significance of individual diet item categories. Ellipses are 95% 

confidence ellipses calculated from a multivariate normal distribution  
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Figure 2.5–Bivariate plot of δ13C and δ15N (left) of co-occurring early life stage Bluehead 

(CATDIS), Flannelmouth (CATLAT), and Razorback (XYRTEX) Suckers from five sites in the 

San Juan River, Utah. Sites are represented by different symbols and standard ellipses were 

corrected for sample size (SEAc) and calculated using the SIAR package (Parnell and Jackson 

2013) in Program R. Flannelmouth Sucker had the largest isotopic niche breadth (SEAc = 9.15) 

compared to Bluehead Sucker (3.06) and Razorback Sucker (4.65). δ13C (top right) differed 

among species. Bluehead and Razorback Suckers had higher δ15N (bottom right) compared to 

Flannelmouth Sucker. Values represent least squares means ± 95% CI
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 Tables 

Table 2.1–Abundance (relative abundance, %) of early life-stage Bluehead, Flannelmouth, and Razorback Suckers collected in five 

backwaters from the San Juan River, Utah. River kilometers were calculated using the Piute Farms Waterfall (Cathcart et al. 2018) as 

zero to match river maps used by biologists with the San Juan River Basin Recovery Implementation Program. The total abundance of 

all fish and the percent sucker abundance is also presented. Specimens were catalogued in the Division of Fishes, Museum of 

Southwestern Biology (MSB) research collection. 

    Sucker abundance  Assemblage abundance 

MSB catalogue 

numbers  
Site 

River 

km Bluehead Sucker Flannelmouth Sucker Razorback Sucker   
Total 

abundance 

Percent 

sucker 

63698, 63699, 

63700 1 109.0 331 (73) 22 (5) 17 (4)  454 81% 

63712, 63713, 

63714 2 100.3 602 (89) 29 (4) 13 (2)  680 95% 

63496, 63497, 

63498 3 39.4 45 (49) 11 (12) 13 (14)  92 75% 

63530, 63531, 

63532 4 18.5 58 (52) 10 (9) 19 (17)  112 78% 

63460, 63461, 

63462 5 16.1 36 (18) 109 (56) 17 (9)   196 83% 
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Table 2.2–Mean frequency of occurrence of diet item categories for Bluehead, Flannelmouth, 

and Razorback Suckers collected from five backwaters in the San Juan River, Utah. Diet item 

categories were used as predictor variables in a discriminant function analysis (DFA) to classify 

sucker species. Overall, the DFA model classified sucker species correctly 65% of the time. 

Multiple comparisons were corrected using a false discovery rate correction (Benjamini and 

Hochberg 1995). 

  Species   

 Coefficients of 

linear 

discriminants 

Diet 

item 

category 

Bluehead 

Sucker 

n=50 

Flannelmouth 

Sucker 

n=50 

Razorback 

Sucker 

n=50 

P-value 

Total 

frequency 

of 

occurrence 

LD1 LD2 

algae 0.80 0.78 0.58 0.019 0.72 -0.15 0.22 

detritus 0.90 0.94 0.68 < 0.001 0.84 -0.78 0.08 

diatom 0.80 0.58 0.46 0.002 0.61 -0.81 1.17 

diptera (a)a 0.20 0.32 0.00 < 0.001 0.17 -1.46 -0.16 

diptera (i)b 0.62 0.84 0.42 < 0.001 0.63 -0.63 -0.99 

EPTc 0.02 0.12 0.12 0.114 0.09 -0.25 -0.49 

Nematode 0.14 0.24 0.06 0.061 0.15 -0.39 -1.61 

pollen 0.60 0.44 0.20 < 0.001 0.41 -0.77 0.92 

protist 0.42 0.28 0.20 0.065 0.30 -0.24 0.73 

sand 0.22 0.24 0.00 < 0.001 0.15 -0.81 -0.51 

zooplankton 0.72 0.84 0.62 0.076 0.73 -0.87 -0.78 

rared 0.24 0.20 0.06 0.037 0.17 -0.39 0.76 



 

49 

Table 2.3–Model comparison results using likelihood ratio tests to sequentially compare nested mixed models for diet richness, δ13C, 

and δ15N. Marginal R2 values represent the proportion of variation explained by only fixed factors and conditional R2 values are the 

proportion of variation explained by fixed and random effects. 

Models marginal R2 conditional R2 χ2 df Likelihood ratio P-value 

Diet richness ~ 1 + (1|Site)      

Diet richness ~ Species + (1|Site) 0.22 0.22 2 39.65 <0.001 

Diet richness ~ Species + SL + (1|Site) 0.23 0.23 1 3.32 0.068 

Diet richness ~ Species + SL + Species*SL + (1|Site) 0.24 0.24 2 3.77 0.152 

      

δ13C~1 + (1|Site)      

δ13C~Species + (1|Site) 0.45 0.71 2 57.88 <0.001 

δ13C~Species + SL + (1|Site) 0.45 0.71 1 0.02 0.876 

δ13C ~ Species + SL + Species*SL + (1|Site) 0.44 0.73 2 2.72 0.256 

      

δ15N~1 + (1|Site)      

δ15N~Species + (1|Site) 0.18 0.24 2 30.06 <0.001 

δ15N~Species + SL + (1|Site) 0.18 0.25 1 1.13 0.289 

δ15N ~ Species + SL + Species*SL + (1|Site) 0.20 0.29 2 5.44 0.066 
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 Introduction 

Reservoir and river fragments are now common in lotic systems (Sabater 2008; Poff 

2014; Grill et al. 2019). Despite calls to embrace a more holistic approach that acknowledges the 

structural and functional connections between rivers and reservoirs, these systems continue to be 

managed independently (Cowx and Gerdeaux 2004; Miranda et al. 2008; Buckmeier et al. 2014; 

Wurtsbaugh et al. 2015). Formation of delta areas where rivers flow into reservoirs mimics 

historically available habitats in unregulated river reaches (Buckmeier et al. 2014; Volke et al. 

2015, 2019). Reservoir inflow areas might not be conducive to some species life histories such as 

drifting early life stages of pallid sturgeon (Scaphirhynchus albus) (Guy et al. 2015) or pelagic 

broadcast spawning minnows (Dudley and Platania 2007; Perkin and Gido 2011; Hoagstrom et 

al. 2015). However, recent discoveries of recruitment of wild-spawned fish in reservoir inflow 

areas suggest these habitats could play a role in conservation for some native species in 

contemporary riverscapes (Albrecht et al. 2010, 2018; Gilbert and Pease 2019). It is not clear 

what limits species distributions in river-reservoir inflows, but evaluating fish species 
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distributions along gradients of biotic and abiotic variables where rivers transition to reservoirs 

might help identify those physical or biological factors that determine species’ success.  

Reservoirs blend characteristics of lentic and lotic habitats that vary along a gradient of 

ecosystem novelty from river inflows to the dam (Thornton et al. 1990; Falke and Gido 2006; 

Gandy and Rehage 2017). This leads to turnover in species distributions as lotic-adapted species 

are commonly found in upstream riverine and transitionary habitats, while more lentic-adapted 

species are found in downstream lacustrine habitats (Matthews et al. 2004; Yang et al. 2012; 

Nobile et al. In press). Some species adapted to use both lentic and lotic habitats can occur 

throughout reservoirs but still might use resources available at the lotic-lentic interface that are 

now limiting in upstream river fragments (Bestgen et al. 2011; Volke et al. 2015, 2019). There is 

a need to understand mechanisms governing species distributions and potential interactions in 

river-reservoir systems where native and non-native species co-occur (Gido et al. 2002; Clarkson 

et al. 2005; Oliveira et al. 2005). One potential mechanism of coexistence is resource partitioning 

(Werner et al. 1977; Edds et al. 2002), but a first step in understanding how species partition 

resources is to measure spatial overlap by quantifying species distributions across environmental 

gradients (Prchalova´ et al. 2008). 

Reservoirs are traditionally managed for the production of sport fishes, such as 

largemouth bass (Micropterus salmoides), that are successful in lentic habitats (Hall and Van 

Den Avyle 1986; Cowx and Gerdeaux 2004; Fischer and Quist 2019). However, successful 

species in reservoirs also include non-game fishes that possess traits allowing them to use both 

lentic and lotic habitats, such as benthic omnivores (Gido 2001; Miranda et al. 2008). These 

traits include the ability to feed in both clear and turbid conditions on pelagic and benthic food 

resources, and many species move into lotic habitats to spawn (Matthews et al. 2004; Gido et al. 
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2009; Da Silva et al. 2015). In reservoirs, this group includes rheophilic species (e.g., suckers, 

carp, catfish, gar) that evolved in large river systems with high habitat complexity and 

spatiotemporal heterogeneity (Cooke et al. 2005; Miranda et al. 2008). Because of their 

evolutionary history in complex riverine environments, some species possess traits that allow 

them to be successful in river-reservoir inflow areas (Edds et al. 2002).  

One instance of native fish successfully using river-reservoir inflows occurs in the 

Colorado River basin in the American Southwest (Albrecht et al. 2018). In reservoirs of the 

Colorado River basin, razorback sucker (Xyrauchen texanus), an endemic, “big-river” species is 

able to use a variety of habitats including mainstem rivers, smaller tributaries, volcanically 

impounded waters, and reservoirs (Dalrymple and Hamblin 1998; Albrecht et al. 2018; Cathcart 

et al. In press) and is the focus of intense conservation and recovery efforts (Schooley and Marsh 

2007; Franssen et al. 2014; Marsh et al. 2015). This species now occurs in most major reservoirs 

in the Colorado River basin, including Lake Havasu, Lake Mohave, Lake Mead (where spawning 

and recruitment occurs), and Lake Powell (Albrecht et al. 2010; 2018). Although impacts of non-

native species and habitat alteration are the leading hypothesized reasons for the decline and 

continued imperilment of Colorado River basin fishes (Tyus and Saunders 2000; Minckley et al. 

2003; Pennock et al. 2018), turbid river-reservoir inflow areas might provide adequate habitat to 

promote co-existence of multiple life stages of non-native and native species (Johnson and Hines 

1999; Albrecht et al. 2018).  

There is a need to further understand factors governing the use of river-reservoir inflows 

by native species and potential negative interactions with non-native predators or competitors 

that requires assessing the use of these areas by entire fish assemblages. In this study, we asked 

two overarching questions: 1. How does fish assemblage structure change along the inflow 
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gradient of the San Juan River and Lake Powell?, and 2. Is there synchrony in distributions of 

different feeding groups, such as benthic omnivores? We expected to find higher numbers of 

species and individuals upstream towards the river inflow based on well-documented transitions 

in habitat, turbidity, and trophic resources that occur along river-reservoir inflows (Thornton et 

al. 1990; Gido et al. 2002; Buckmeier et al. 2014). We also expected to find overlap in the 

distribution of species, based on similar habitat and trophic resource use. We predicted that 

relative abundances of benthic omnivores would be highest towards more riverine portions of the 

inflow while site-feeding predators would increase moving away from the inflow area. 

 Methods 

 Study area 

Lake Powell, located in southern Utah and northern Arizona, is the second-largest 

reservoir in the United States (volume: over 32 billion m3; surface area: over 65,300 ha). The 

reservoir formed after Glen Canyon Dam on the Colorado River closed in 1963, and first filled to 

full pool in June 1980. Lake Powell is primarily managed for water storage and hydropower 

production (https://www.usbr.gov/uc/water/crsp/cs/gcd.html). There are two major tributaries 

that form the main arms of Lake Powell, the Colorado and San Juan rivers (Figure 1). Water 

levels in the reservoir are seasonally dynamic as natural river flows in the basin are primarily 

driven by snowmelt run-off. Lowest water levels during the year typically occur in April 

immediately prior to run-off and peak in July after run-off is complete. There is also considerable 

variation in water levels among years. For instance, the water level at the start of sampling 

efforts during this study differed by 11.9 m between 2018 and 2019 (Figure 2). Since filling to 

capacity, the water level has generally declined (inset Figure 2) as a result of regional drought 

across the upper Colorado River basin as well as increasing water consumption downstream of 
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Glen Canyon Dam. Dynamic water levels from variable river inflows have created unique 

geomorphic structures at the San Juan River inflow including a 6 m tall waterfall that block all 

upstream movement of fish approximately 30 km upstream of our study area (Cathcart et al. 

2018), and multiple decadal droughts have increased riverine habitat upstream of Lake Powell. 

We used the lower end of Neskahi Bay (0 river kilometers; rkm; Figure 1) as a fixed landmark 

within the reservoir as a reference point to characterize changes in fish assemblages upstream 

towards the river inflow along the historic river channel (rkm). Because we ended our sampling 

in the riverine zone of the reservoir where it was too shallow to access by boat, the distance 

sampled upstream of that reference point was 8 km farther upstream in 2018 than 2019. 

During this study, we sampled fishes along the longitudinal axis of the San Juan River 

inflow area including two major habitats, the Great Bend of the San Juan River (hereafter Great 

Bend) and Neskahi Bay (Figure 1). These two areas differed in habitat complexity and in 

proximity to the riverine, transition, and lacustrine zones of the reservoir (sensu Thornton et al. 

1990). The riverine zone generally consists of lotic habitat with slowing water velocities and 

well-mixed water with limited light penetration from inorganic sediments. Sedimentation 

happens rapidly in the transition zone as water velocities continually slow and light penetration 

increases such that trophic resources (i.e., phytoplankton and zooplankton) reach their highest 

levels. This zone is also the most dynamic in spatial location and extent as river inflows and 

reservoir water level change within and among years. The lacustrine zone occurs farther down-

reservoir and is characterized by an increase in light penetration, lower concentrations of 

available nutrients, and longer water residence time. The Great Bend was more representative of 

the riverine and transition zones with habitat becoming more lacustrine downstream towards the 

lower end of Neskahi Bay. The Great Bend is canyon-bound, shorelines are relatively 
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homogenous, and substrates mainly consist of sand and silt deposited by river-inflows. Neskahi 

Bay has more complex shorelines that differ between the north and south sides. The north 

shoreline has coarser boulder-sized substrates with steeper slopes, while the south shoreline has 

many coves and inlets with relatively fine gravel-sized substrates and shallower slopes (Figure 

1). The main environmental gradients from the upstream end of the Great Bend to the lower end 

of Neskahi Bay were turbidity from sediment deposition and primary production and water 

depth. Distance along the historic river channel from the lower end of Neskahi Bay served as a 

latent variable representative of well-established environmental gradients (e.g., turbidity, 

phytoplankton biomass), which were present in our study area (Figure 2). 

 Fish sampling 

Fish sampling took place bi-weekly starting in late April and ending in early June in 2018 

and 2019 (n = 3 weeks per year). The fish assemblage in the San Juan River inflow area was 

sampled using stationary trammel nets (45.2 m long x 1.2 m tall with 2.5 cm internal and 30.5 

cm external panels) set systematically along the shoreline. Using ArcMap (Esri, Redlands, CA), 

we delineated the shoreline into 500 m segments (Figure 1). Each 500 m segment was sampled 

weekly, but the number of segments sampled differed among years because of water level 

fluctuations in the reservoir (Figure 2). Because shoreline habitat was relatively homogenous in 

the Great Bend, we alternated which shoreline nets were set at for a given 500 m segment, unlike 

in Neskahi Bay where every 500 m segment was sampled along both shorelines. Trammel nets 

could be set at any point within a 500 m segment to allow for flexibility in net placement due to 

wind and local habitat conditions unconducive to setting nets (e.g., boulder fields). Both daytime 

and overnight sets were used in Neskahi Bay, and with few exceptions in the first two weeks in 

2018. Only daytime sets were used in the Great Bend because of high fish densities. Nets were 
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generally set in the morning and retrieved in late-afternoon (i.e., 0900 – 1500 hours) for daytime 

sets, and set in early-evening and retrieved in early-morning (i.e., 1800 – 0900 hours) for 

overnight sets. To ensure individual shoreline segments were not sampled only during the 

daytime or nighttime, we offset our starting point each week. We generally began sampling each 

week towards the downstream end of our study area and worked upstream; exceptions being 

when wind conditions were not conducive to starting in the same area. A subset of individuals of 

each species was measured to the nearest mm for total length (TL). Trammel nets can be 

selective for larger size classes of fish (Hubert et al. 2012), so we consider our results to be 

mainly reflective of larger-bodied individuals. Although we did collect individuals < 200 mm TL 

of most species, 90% of all individuals were > 200 mm TL. 

 Statistical analysis 

Spatial variation in number of species and total individuals captured-All analyses were 

performed in R version 3.5.1 (R Core Team 2018). We excluded species that occurred in < 3 net 

sets from all analyses (n = 3 species and 1 hybrid sunfish; Table 3.1), retaining 15 species for 

analyses. To assess assemblage structure along the river-reservoir inflow, we calculated species 

richness and total individuals captured as the total number of species captured per net and total 

number of individuals captured per net, respectively. Because fish activity could differ over the 

diel period, potentially changing susceptibility to capture, we tested for differences (α = 0.05) in 

total individuals captured between daytime and overnight net sets and sites using ANOVA. We 

analyzed years separately because overnight net sets were not used in the Great Bend in 2019. 

We included the effects of netting period (day or night), site, and their interactive effects for 

2018. We were only able to test the effect of netting period for 2019. We accounted for variable 

effort among net sets by dividing the number of individuals captured by the number of hours nets 
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were deployed to obtain the number of individuals captured per hour. We log-transformed (base 

2) data to improve normality. To assess changes in assemblage structure along the longitudinal 

axis of the inflow area, we used distance (rkm) as a continuous predictor variable in least-squares 

regressions and multivariate GLMs. Years were analyzed separately because of differences in 

water level. We used linear regression to assess changes in number of species captured per hour 

and total number of individuals captured per hour along the longitudinal axis of the river inflow. 

Again, data were log-transformed (base 2) to improve normality. 

Fish assemblage composition-We took a modeling-based approach to assess how 

assemblage structure changed along the longitudinal axis of the reservoir and to quantitatively 

assess species-specific distributions. The manyGLM function in the mvabund package fits 

individual GLMs to each species using the same set of predictor variables (Wang et al. 2019). 

The likelihood ratios (LR) of each model are summed together (i.e., Sum of LR), and this is used 

to test for an assemblage-level effect with a P-value estimated via resampling (Wang et al. 

2012). The significance of individual species GLMs can be determined using permutation-based 

ANOVA with P-values corrected for multiple testing. The contribution of each species to the 

overall assemblage response can be calculated by dividing the LR of species-specific models by 

the Sum of LR, which is similar to a SIMPER procedure (Clarke 1993). We used counts of each 

species in each net set as response variables and river distance along the longitudinal axis of the 

inflow as a predictor variable in manyGLMs. We modeled raw count data assuming a negative 

binomial distribution with a log link function, accounting for variable effort by including effort 

as a covariate. This allowed us to correct for effort within the model rather than prior to by 

transforming data to catch per unit effort, but still resulted in a measure of species abundance 

corrected for effort (i.e., relative abundance). 
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 Results 

In both years, turbidity from sedimentation (brown) was visible upstream, transitioning to 

turbidity from presumed phytoplankton production (green), and finally to lowered turbidity 

(clear water, black in color) downstream, which is suggested by decreased light availability 

towards the river inflow and can be seen in satellite photos (Figure 1 & 2). In 403 net 

deployments, we captured a total of 7,218 individuals representing 18 species and one hybrid 

(Table 1). Only four species were native to the Colorado River basin. Fifteen species made up 

>99 % of all individuals. Of those 15 species, threadfin shad (Dorosoma petenense) were only 

caught in 2018. On average, we captured 64 % more fish per hour in the Great Bend compared to 

Neskahi Bay in 2018, and 57 % more in 2019 (Figure 3.3). In 2018, there was a statistically 

significant interaction between netting period and site (ANOVA: F1,215 = 8.1, P = 0.005), and 

there were more fish captured per hour in overnight net sets in Neskahi Bay. There was also a 

significant main effect of site (F1,215 = 90.6, P < 0.001). In 2019, the main effect of site was 

significant (F1,181 = 36.3, P < 0.001), but day and overnight sets appeared to catch similar 

numbers of fish in Neskahi Bay. Species captured per hour increased as we sampled closer to the 

river inflow in both 2018 (Least-squares regression: F1,217 = 60.7, P < 0.001) and 2019 (F1,217 = 

72.9, P < 0.001; Figure 3.4). Similarly for both 2018 and 2019, total number of individuals 

captured per hour increased with distance from lower Neskahi Bay (2018: F1,217 = 144.9, P < 

0.001; 2019: F1,182 = 49.8, P < 0.001; Figure 3.5). 

Fish assemblage composition changed along the longitudinal axis of the San Juan River 

inflow to Lake Powell. ManyGLMs suggested there were clear differences (2018: Sum-of-LR = 

529.4, df = 217, P = 0.001; 2019: Sum-of-LR = 129.2, df = 182, P = 0.001) in assemblage 

structure along the longitudinal gradient of the San Juan River inflow, but there were variable 
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species-specific patterns among years (Table 2). In 2018, individual GLMs were significant for 

eight species that contributed to 97.7% of the explained variation in assemblage structure. These 

included a mix of non-native species and razorback sucker, which increased in relative 

abundance towards the river inflow (Figure 6). Responses of three species, channel catfish 

(Ictalurus punctatus), gizzard shad (Dorosoma cepedianum), and common carp (Cyprinus 

carpio), explained 60.2% of the variation in assemblage structure, and these species also showed 

clear increases in relative abundance as we sampled closer to the river inflow that mimic the 

pattern observed for total number of individuals captured (Figure 5 & 6). Only one species, 

smallmouth bass (Micropterus dolomieu), had a statistically significant decrease in relative 

abundance moving closer to the river inflow and explained 12.1% of the variation in assemblage 

structure. Many species with relatively high counts in the Great Bend in 2018 exhibited 

decreased relative abundance in 2019. In 2019, only four individual species GLMs were 

significant and contributed to 89.7% of the variation in assemblage structure (Table 2). Three 

species increased moving towards the river inflow, and similar to 2018, included channel catfish 

and common carp, but also yellow bullhead (Ameiurus natalis) (Figure 6). Again, smallmouth 

bass showed a significant decline in relative abundance moving towards the river inflow. 

 Discussion 

Our study identified clear changes in fish assemblage structure along the longitudinal axis 

of the San Juan River inflow to Lake Powell with the most striking patterns being predictable 

increases in number of species and total catch in upstream reaches towards the river inflow. This 

pattern is consistent with other studies that found increasing reservoir fish density with proximity 

to tributary inflows (Matthews et al. 2004; Mueller and Horn 2004; Vašek et al. 2004). An 

increase in species richness towards river inflows is also a pattern commonly found in river-
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reservoir inflows and further supports the characterization of these areas as aquatic ecotones 

(Buckmeier et al. 2014; Da Silva et al. 2019; Nobile et al. In press). 

Species-specific distributions differed among years, and this might be explained by lower 

water level in 2019. Specifically, the transition zone might have extended farther into Neskahi 

Bay, but the lower end of our study area remained fixed leading to fewer samples from the 

lacustrine zone in 2019 compared to 2018. This shift in the transition zone is supported by 

assessing aerial imagery and light intensity data that matches changes in water color associated 

with a transition of turbidity. Perhaps the resource gradient between the lacustrine and riverine-

transition zones was more pronounced in 2018 than 2019. For instance, gizzard shad showed a 

strong increase in relative abundance in 2018, but in 2019 did not display a statistically 

significant pattern. If resources associated with the transition zone encompassed more of Neskahi 

Bay in 2019, and species were tracking resources or water conditions, they would be more likely 

to be more dispersed throughout our study area in 2019. Consequently, interannual variation in 

reservoir water level likely influences the spatial distribution of fishes in river-reservoir inflows. 

Sampling for this study was only conducted during spring, but seasonal variability in 

physicochemical variables and local habitat conditions also exist in river-reservoir systems. 

Indeed, some studies have found high intra-annual variation in fish community structure as a 

result of highly variable habitat conditions, including water level and connection among habitats 

in river-reservoir deltas (Buckmeier et al. 2014; Gilbert and Pease 2019; Nobile et al. In press). 

Because Lake Powell is part of a network of dams across the Colorado River basin primarily 

managed for hydropower production and downstream water use, water level fluctuates 

drastically within years, which impacts local habitat conditions and causes shifts in 

environmental gradients in large reservoirs (Matthews et al. 2004). Annual maximum and annual 
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minimum water levels in Lake Powell have differed by 7 to 16 m from 2014-2019. Additionally, 

species distributions in river-reservoir systems shift throughout the year as species complete their 

life history, moving between reservoirs and inflowing rivers. Some species dwelling in reservoirs 

or natural lakes undertake spawning migrations into inflowing rivers (Hladík and Kubečka 2003; 

Childress et al. 2014), and inflow areas can be highly productive nursery habitats and recruitment 

dynamics can influence fish assemblage structure (Acre 2015; Gilbert and Pease 2019), which 

we did not assess in this study. 

Benthic omnivores drove most of the variation in community structure along the 

longitudinal gradient of the inflow area. These included species such as common carp, channel 

catfish, gizzard shad, and yellow bullhead (Ameiurus melas), but also razorback sucker. 

Abundant phytoplankton, zooplankton, and benthic invertebrates that exist in river-reservoir 

inflows (Thornton et al. 1990; Nogueria et al. 2008; Slavevska-Stamenković et al. 2012) might 

attract species that can feed in highly turbid waters (Drenner et al. 1982; Thornton et al. 1990; 

Miranda and Lucas 2004). Benthic omnivores are often the most common trophic guild in large 

reservoirs (Matthews et al. 2004) and are represented by species that typically feed at low trophic 

levels and are habitat generalists (Gido and Franssen 2007; Gido et al. 2009). The species of 

benthic omnivores found in our study are able to forage successfully in reservoir environments 

high in plankton resources such as the transition zone, but also garner energy from detritus and 

associated bacteria found in sediment biofilms that are also abundant in this zone (Šimek et al. 

2001; Gido 2002; Mašín et al. 2003). Thus, river-reservoir inflow areas might provide feeding 

areas for species able to use low-quality, but highly abundant resources (Gido 2001; Herbert and 

Gelwick 2003). 
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Patterns in site-feeding predator distribution matched our predictions for some species, 

but not others. As expected, we found higher relative abundance of smallmouth bass in more 

lacustrine-type habitat, downstream from the river inflow, in both years. However, we also found 

significant increases towards the river inflow for some predators such as striped bass and black 

crappie (Pomoxis nigromaculatus); species that are more typical of lacustrine habitats, which 

might be responding to areas of higher prey availability, rather than habitat, upstream in the 

transition-riverine zones. For example, striped bass feed primarily on other fish species, 

including threadfin shad and gizzard shad, in large reservoirs (Matthews et al. 1988). Although 

our sampling mainly targeted larger-bodied fishes, river-reservoir inflows provide habitat for 

smaller-bodied species and early life stages that would be susceptible to predation by piscivorous 

species (Buckmeier et al. 2014; Gilbert and Pease 2019). Additionally, some predatory species 

might be using river inflow areas as spawning habitat (Gustaveson et al. 1984; Graeb et al. 2009; 

Gilbert and Pease 2019). Because of high temporal variability in water levels that affects local 

habitats in reservoirs (Matthews et al. 2004; Klobucar and Budy 2016), use of river-reservoir 

inflows by predators might differ substantially among years and be influenced by spawning 

success of other species and potential spawning migrations. 

 Habitat heterogeneity created at the upstream end of aging reservoirs by inflowing rivers 

mimics that of historical river conditions (Volke et al. 2015; 2019) and might provide adequate, 

albeit somewhat artificial, habitat for the completion of species life histories. This appears to be 

the case for razorback sucker in nearby Lake Mead (e.g., Albrecht et al. 2010; 2018). Although 

reservoirs might hinder species with obligate riverine life stages (Guy et al. 2015; Pelicice et al. 

2015), there are some species that appear well adapted to the mix of lotic and lentic habitats 

present in river-reservoir systems (Miranda et al. 2017). For example, species in the family 
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Catostomidae (suckers) commonly occur in mixed lotic-lentic environments such as reservoirs 

and floodplain lakes (Miranda and Lucas 2004; Cooke et al. 2005; Miranda et al. 2008). Some 

species in this family have incurred vast range losses, and many remain unprotected and 

understudied (Cooke et al. 2005; Budy et al. 2015; Lackmann et al. 2019). Even for those that 

are protected, such as razorback sucker, understanding of mechanisms allowing their successful 

use of river-reservoir habitats is limited (Keggeries et al. 2017; Albrecht et al. 2018). River-

reservoir inflows might provide refuge habitat where fish can utilize turbid water for cover and 

also for abundant food resources. Fish also might use these areas if they provide optimal seasonal 

temperatures. For instance, average monthly water temperature in Lake Powell is generally 

warmer than the San Juan River inflow from September-February, by as much as 9°C in 

December (W. Gustaveson, Utah Division of Wildlife Resources, unpublished data; USGS gage 

data). Finally, river-reservoir inflows can have high vegetation production, which could provide 

cover and rearing habitat for early life stages (Volke et al. 2015; Strakosh et al. 2009). One 

potential management strategy in river-reservoir inflows could be to adjust water level to 

promote growth of vegetation by wetting and subsequently drying river deltas (e.g., Volke et al. 

2015). Once vegetation was established water levels could be adjusted to inundate vegetated 

areas to provide cover and rearing habitat for fish (Strakosh et al. 2009). Habitat loss and 

degradation caused by dam construction obviously impact native fish populations and 

assemblages (Guy et al. 2015; Pelicice et al. 2015; Agostinho et al. 2016), but river-reservoir 

inflows might still provide useful habitats to some native species, such as suckers, and play a role 

in the conservation of imperiled fishes in modern riverscapes (Miranda and Dembkowski 2016; 

Miranda et al. 2017).  
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 Reservoirs are common in riverscapes of the Anthropocene epoch and understanding 

factors governing species-specific distributions along environmental gradients is fundamental to 

the success of implementing meaningful conservation and management actions in these novel 

ecosystems (Irz et al. 2006; Miranda et al. 2010; Fischer and Quist 2019). Upstream effects of 

dams have been understudied relative to downstream effects (Franssen and Tobler 2013; Guy et 

al. 2015), but upper riverine portions of reservoirs offer complex habitats that can attract fish 

with diverse habitat and trophic requirements (Miranda et al. 2017; Da Silva et al. 2019; this 

study). Although dams and reservoirs present challenges for obligate riverine species, some 

fishes are able to complete their life cycle within these novel habitats. The success of future 

conservation and management efforts requires identification of specific factors allowing species 

to be successful in river-reservoir systems. Strategies for conservation and management of native 

fishes is continually evolving, and by incorporating river-reservoir inflows into management 

actions, such as management of riverine habitat upstream of reservoirs or stocking of extirpated 

species in reservoirs (Miranda et al. 2017), it might be possible to assist the recovery of some 

species.  
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Figure 3.1: Study area map showing: A) the location of Lake Powell in southern Utah and 

northern Arizona, USA and its major tributaries, and B) the San Juan River inflow where 

systematic shoreline trammel netting took place in 2018 and 2019 (inset in panel A). There are 

two major habitats, the Great Bend of the San Juan River and Neskahi Bay, where sampling took 

place. The white line and associated numbers in panel B represent the historical river channel 

and were used to calculate river kilometers from the lower end of Neskahi Bay (rkm 0) from a 

standardized stream layer available from the STReaMS database (available at 

https://streamsystem.org/). Stars represent the upstream extent of sampling in each year.  

https://streamsystem.org/
https://streamsystem.org/
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Figure 3.2: A) Daily water elevation (meters above sea level) at Glen Canyon Dam on Lake 

Powell from April 2018-June 2019. Grey bars represent when sampling occurred in the San Juan 

River inflow. The inset is water elevation from June 1980, when Lake Powell first reached full 

pool, to May 31, 2019. B) Light intensity (lx) measured at 1 m depth using HOBO pendants 

(Onset Computer Corporation, Bourne, MA) during daytime trammel net deployments of the San 
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Juan River inflow in 2018 and 2019. Measurements were all taken between 1200-1400 h. Lines 

are 95th additive quantile regressions calculated using the quantreg package in R (Koenker 2019). 

A small amount of jitter was added to each point to reduce overlap.  
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Figure 3.3: A) Number of fish captured per hour during daytime (unfilled) and overnight (filled) 

trammel net deployments at two major habitats, the Great Bend (circles) and Neskahi Bay 

(triangles), in the San Juan River inflow to Lake Powell in 2018 and 2019. Y-axis is on a log-

scale. In 2018, there was a significant interaction between site and netting period (ANOVA: 

F1,215 = 8.1, P = 0.005), where we captured more fish per hour in the Great Bend regardless of 

netting period but captured more fish in overnight sets in Neskahi Bay. Overnight net sets were 

not used in the Great Bend in 2019 so we could not test for an interaction, but we captured more 

fish per hour in the Great Bend (F1,182 = 36.3, P < 0.001). Statistics were ran on log-transformed 

data.  
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Figure 3.4: Scatter plots of number of species captured per hour as a function of distance from 

lower Neskahi Bay in 2018 (top) and 2019 (bottom). Y-axes are on a log-scale. Lines and shaded 
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regions are model estimates and 95% CI from least squares regressions. There was a statistically 

significant increase in species per hour with distance in 2018 (F1,217 = 60.7, P < 0.001) and 2019 

(F1,182 = 72.9, P < 0.001). Shapes represent nets deployed in the two major sampling areas, 

Neskahi Bay (triangles) and the Great Bend (circles). Statistics were run on log-transformed 

data. A small amount of jitter was added to each point to reduce overlap.  
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Figure 3.5: Scatterplots of total number of individuals captured per hour as a function of distance 

from lower Neskahi Bay. Y-axes are on a log-scale. In both 2018 (top; F1,217 = 144.9, P < 0.001) 

and 2019 (bottom; F1,182 = 49.8, P < 0.001) there was an increase in number of individuals 

captured per hour as we sampled closer to the river inflow after correcting for effort. Lines and 

shaded regions are model estimates and 95% CI from least squares regressions of log-

transformed data. Shapes represent nets deployed in the two major sampling areas, Neskahi Bay 
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(triangles) and the Great Bend (circles). A small amount of jitter was added to each point to 

reduce overlap. 
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Figure 3.6: Coefficient plots from manyGLM models assessing the effect of distance towards the 

river inflow on species relative abundance in 2018 (top) and 2019 (bottom). Points are 

coefficient estimates and error bars represent one SE. Species with a significant (P < 0.05) 

relationship after correcting for multiple testing are shown in black. Threadfin shad were not 

captured in 2019. The order of Y-axes differs among panels.
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 Tables 

Table 3.1: Total number of individuals, occurrence in nets (n = 403), and sub-sampled total lengths (mm) of species captured during 

trammel netting in the San Juan River inflow area, Lake Powell, Utah during 2018 and 2019.  

Species 

Total 

count 

Occurrence 

in 

Nets (%) 

Total length 

(mean ± SD) 

Total length 

(range) 

Number in 

sub-sample  

(%) 

common carp (Cyprinus carpio)I 1644 310 (77) 471 ± 61 146 - 680 989 (60) 

channel catfish (Ictalurus punctatus)I 1537 297 (74) 299 ± 74 173 - 750 1067 (69) 

gizzard shad (Dorosoma cepedianum)I 1454 204 (51) 391 ± 111 147 - 570 949 (65) 

smallmouth bass (Micropterus dolomieu)I 615 252 (63) 258 ± 48 176 - 415 225 (37) 

bluegill (Lepomis macrochirus)I 432 174 (43) 197 ± 26 122 - 293 190 (44) 

yellow bullhead (Ameiurus natalis)I 349 132 (33) 252 ± 32 154 - 321 263 (75) 

striped bass (Morone saxatilis)I 344 154 (38) 488 ± 80 200 - 612 253 (74) 

green sunfish (Lepomis cyanellus)I 286 129 (32) 185 ± 29 130 - 295 111 (39) 

largemouth bass (Micropterus salmoides)I 171 114 (28) 327 ± 76 202 - 495 61 (36) 

black bullhead (Ameiurus melas)I 118 51 (13) 221 ± 34 148 - 310 89 (74) 

black crappie (Pomoxis nigromaculatus)I 95 61 (15) 191 ± 52 140 - 370 71 (74) 

walleye (Sander vitreus)I 80 60 (15) 462 ± 71 244 - 644 48 (60) 

razorback sucker (Xyrauchen texanus)N 62 45 (11) 494 ± 54 345 - 584 58 (94) 

flannelmouth sucker (Catostomus latipinnis)N 17 17 (4) 410 ± 54 340 - 493 15 (88) 

threadfin shad (Dorosoma petenense)I 9 8 (2) 108 ± 23 94 - 143 4 (44) 
IIntroduced species, NNative species 
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Note: Other species captured, but not included in analyses because they occurred in < 3 nets and had total counts < 2: Hybrid bluegill-

green sunfish (Lepomis macrochirus x cyanellus)I, rainbow trout (Oncorhynchus mykiss)I, Colorado pikeminnow (Ptychocheilus 

lucius)N, bluehead sucker (Catostomus discobolus)N.
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Table 3.2: Model output from manyGLMs ran separately for each year assessing species relative 

abundance as a function of increasing distance from lower Neskahi Bay, Lake Powell. Positive 

coefficients indicate decreasing abundance downstream. P-values were corrected for multiple 

testing and an effect of effort was included in models as a covariate. Percent of Sum-of-LR is 

displayed for species with significant relationships (P < 0.05) and was calculated by dividing the 

LR of each species model by the LR summed across species (Wang et al. 2012). Threadfin shad 

were not captured in 2019. 

Year Species 

Coefficient 

(SE) LR P-value 

Percent of 

Sum-of-LR 

2018 channel catfish (Ictalurus punctatus)I 0.14 (0.01) 134.87 0.001 25.5% 

 gizzard shad (Dorosoma cepedianum)I 0.23 (0.02) 114.96 0.001 21.7% 

 common carp (Cyprinus carpio)I 0.11 (0.01) 68.30 0.001 13.0% 

 smallmouth bass (Micropterus dolomieu)I -0.13 (0.02) 64.05 0.001 12.1% 

 black bullhead (Ameiurus melas)I 0.19 (0.03) 40.92  0.001 7.7% 

 striped bass (Morone saxatilis)I 0.14 (0.02) 38.46 0.001 7.3% 

 black crappie (Pomoxis nigromaculatus)I 0.16 (0.02) 38.27 0.001 7.2% 

 razorback sucker (Xyrauchen texanus)N 0.15 (0.04) 17.02 0.002 3.2% 

 flannelmouth sucker (Catostomus latipinnis) N 0.13 (0.06) 4.60 0.234  

 yellow bullhead (Ameiurus natalis)I 0.05 (0.02) 3.33 0.395  

 largemouth bass (Micropterus salmoides)I -0.03 (0.02) 2.17 0.551  

 threadfin shad (Dorosoma petenense)I 0.07 (0.06) 1.44 0.686  

 bluegill (Lepomis macrochirus)I -0.02 (0.02) 0.86 0.768  

 green sunfish (Lepomis cyanellus)I -0.01 (0.02) 0.20 0.880  

 walleye (Sander vitreus)I -0.002 (0.04) <0.01 0.948  

      

2019 common carp (Cyprinus carpio) 0.13 (0.02) 41.07 0.001 31.8% 

 channel catfish (Ictalurus punctatus) 0.13 (0.02) 40.47 0.001 31.3% 

 smallmouth bass (Micropterus dolomieu) -0.17 (0.04) 24.87 0.001 19.2% 

 yellow bullhead (Ameiurus natalis) 0.13 (0.04) 9.59 0.03 7.4% 

 largemouth bass (Micropterus salmoides) 0.13 (0.06) 4.39 0.352  

 black crappie (Pomoxis nigromaculatus) 0.11 (0.07) 2.33 0.735  

 striped bass (Morone saxatilis) 0.05 (0.03) 2.22 0.735  
  razorback sucker (Xyrauchen texanus) -0.09 (0.08) 1.30 0.884   

 black bullhead (Ameiurus melas) 0.09 (0.09) 1.27 0.884  

 bluegill (Lepomis macrochirus) -0.04 (0.04) 0.63 0.941  
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 green sunfish (Lepomis cyanellus) 0.05 (0.06) 0.62 0.941  

 gizzard shad (Dorosoma cepedianum) -0.02 (0.04) 0.16 0.968  

 walleye (Sander vitreus) 0.03 (0.07) 0.14 0.968  

 flannelmouth sucker (Catostomus latipinnis) 0.03 (0.10) 0.10 0.968  
IIntroduced species, NNative species 
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translocations to aid conservation 
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 Introduction 

Many freshwater fishes occupy novel ecosystems (sensu Hobbs et al., 2006) that blend 

vestiges of natural landscapes with anthropogenic additions. The creation of novel aquatic 

ecosystems through damming and lentification of rivers is ubiquitous across the globe (Grill et 

al., 2019; Sabater, 2008), resulting in altered flow and temperature regimes, decreased floodplain 

connectivity, and restricted movement of aquatic organisms (Pelicice, Pompeu, & Agostinho, 

2015; Reidy Liermann, Nilsson, Robertson, & Ng, 2012). Dams cause reductions in biodiversity 

(Reidy Liermann et al. 2012), population abundance (Junge, Museth, Hindar, Kraabol, & 

Vollestad, 2014), dispersal ability (Rolls, Ellison, Faggotter, & Roberts, 2013), and the capacity 

of populations to buffer themselves against environmental stochasticity (Dunham, Young, 

Gresswell, & Rieman, 2004; Perkin, Gido, Costigan, Daniels, & Johnson, 2015; Perkin et al., 

2019). Reservoirs and river-fragments between reservoirs are novel ecosystems consisting of 
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altered abiotic conditions and combinations of species that may not have shared an evolutionary 

history (Havel, Lee, & Vander Zanden, 2005; Hobbs et al. 2006). Given the prevalence (and 

perhaps permanence) of novel ecosystems, understanding how native species use these systems 

can improve management of their populations in contemporary riverscapes (Buckmeier, Smith, 

Fleming, & Bodine, 2014). 

 The relevance of novel river-reservoir systems to population dynamics of native fishes is 

unclear but might be clarified within a movement ecology framework (Nathan et al., 2008). 

Movement is a necessity for freshwater fish to complete their life history, is generally 

understudied for many species, and the scale at which it is important is unclear and difficult to 

ascertain (Cooke et al., 2016; Cooke, Paukert, &, Hogan, 2012; Fausch, Torgersen, Baxter, & Li, 

2002; Schlosser, 1991). Freshwater fish make movements to access patchily distributed 

resources, critical habitats (e.g., spawning habitat), and capitalize on favorable environmental 

conditions (Lucas & Baras, 2001). Fish movements influence demographic processes such as 

immigration and emigration, possible genetic exchange, and functionally connect habitats 

through transfer of materials and subsidies (Childress, Allan, & McIntyre, 2014; Cooke et al., 

2016; Flecker et al., 2010). Conservation of mobile fish species is challenged by continued 

habitat degradation and blocked migration routes (McIntyre et al., 2016), and a lack of data on 

species’ spatial ecology in river-reservoir systems hinders management efforts (Clarke, Telmer, 

& Shrimpton, 2007; Cooke et al., 2016). 

The Colorado River basin, USA, epitomizes the novel ecosystem. Water storage 

reservoirs have transformed and fragmented rivers, causing habitat loss and restricting access to 

potentially important habitat types for native fishes (Minckley & Deacon, 1991). Colorado River 

basin fishes may have evolved to use spatially and temporally disjunct habitats including the 
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Colorado River Delta (Glenn, Lee, Felger, & Zengel, 1996; Sykes, 1937), volcanically 

impounded reaches (Dalrymple & Hamblin, 1998), and other lentic environments created by 

high water events (i.e., Salton Sea; Minckley 1983), but now must cope with an abundance of 

lacustrine environments created by anthropogenic barriers that also are habitat for introduced 

fishes (Clarkson, Marsh, Stefferud, & Stefferud, 2005). Because native fishes no longer have 

access to a large, diverse network of connected habitats, but are now restricted to fragmented 

populations in highly altered habitats, there is a need to understand how fish are using and 

moving throughout these novel ecosystems. 

Razorback sucker (Xyrauchen texanus) is one of the Colorado River basin’s imperiled, 

endemic species and understanding its movement ecology has been complicated by these above-

mentioned habitat alterations. Razorback sucker make movements for spawning, rearing, and 

refuge, and they use a variety of habitats including mainstem rivers, smaller tributaries, 

floodplain wetlands, and reservoirs (Albrecht et al., 2018; Bottcher, Walsworth, Thiede, Budy, & 

Speas, 2013; Cathcart, McKinstry, MacKinnon, & Ruffing, 2019). In the upper Colorado River 

basin, early studies suggested razorback sucker were sedentary outside of the spawning season, 

but could move long-distances (> 100 km) to spawn (Modde & Irving, 1998; Tyus & Karp, 

1990). The presumed sedentary nature of razorback suckers is cited in recovery documents (e.g., 

USFWS 1998) and recent studies (e.g., Durst & Francis, 2016). Studies of stocked fish over 

broader spatial (>1000 km) extents have focused mainly on post-stocking dispersals using 

physical recapture data, and indicate some individuals move long distances (514-684 km; Durst 

& Francis, 2016; Zelasko, Bestgen, & White, 2010). For example, Zelasko et al. (2010) 

determined the longest movements made were those initially following stocking events and 

movements were mostly in downstream directions. Despite knowledge of how fragmentation and 
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study design influence interpretations of fish movement (Gowan, Young, Fausch, & Riley, 

1994), razorback sucker movement studies are typically limited in spatial extent because of 

remoteness of study areas and resources needed to tag and recapture enough fish to adequately 

describe movement patterns. However, by combining passive integrated transponder (PIT) 

tagging technology across the basin and development of data-sharing programs by multiple 

agencies, we can begin to synthesize data across a broader geographic extent to discern the scales 

at which individuals in the upper Colorado River basin are moving among novel reservoir and 

river habitats, which may lead to a better understanding of population connectivity and furthering 

conservation of the species. 

Assessing movement is critical to evaluate connectivity within a novel ecosystem 

featuring large river corridors connected to a large reservoir and given tagging and stocking 

efforts across the entire upper Colorado River basin we can begin to better understand the spatial 

ecology of razorback sucker. We characterized movements of razorback sucker collected in Lake 

Powell, into its two main tributary inflows that have contrasting access to upstream riverine 

habitats. Specifically, Lake Powell is fed by the Colorado River that offers fish unimpeded 

access to the upper Colorado River and associated tributaries and by the San Juan River that is 

blocked by a 6 m tall waterfall approximately 30 km upstream of the current river-reservoir 

transition zone (Cathcart et al., 2018). By linking PIT-tags to encounter records compiled in a 

multi-agency database and tracking acoustic-tagged fish, we assessed broad dispersal capability, 

the proportion of fish exchanging between the reservoir and rivers, and responses of razorback 

sucker translocated upstream of the waterfall barrier. We specifically addressed three questions: 

1. Where do razorback sucker captured in the Colorado River arm of the reservoir redistribute?, 

2. What is the proportion of fish moving upstream from the San Juan River arm of Lake Powell 
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to the waterfall?, and 3. What is the post-translocation movement, residence time, and proportion 

of fish returning below the waterfall? Given unimpeded access, we expected fish to move 

throughout rivers upstream of Lake Powell, and although movement is impeded by the waterfall, 

we still expected to find frequent annual movements between the reservoir and river below the 

waterfall. For translocated fish, we expected individuals to move relatively long distances into 

upstream riverine habitat deemed suitable for spawning and most fish would remain resident in 

the San Juan River (Cathcart et al., 2018). 

 Methods 

 Study area 

 The upper Colorado River basin drains parts of Colorado, New Mexico, Utah, and 

Wyoming before entering Lake Powell, an impoundment that has inundated the historical 

confluence of the Colorado and San Juan rivers since Glen Canyon Dam was closed in 1963 

(Figure 3.1). At full pool, Lake Powell inundates the Colorado River to approximately 30 km 

downstream of its confluence with the Green River whereas the San Juan River is inundated for 

approximately 110 km upstream of its historical confluence with the Colorado River. 

Management for imperiled fishes consistently occurs in three major river systems (Green, 

Colorado, and San Juan rivers) of the upper Colorado River basin. These rivers differ in size 

(i.e., mean annual discharge) and the degree to which small diversion structures impede 

movement in upstream reaches (Figure 3.1). For instance, mean annual discharge has averaged 

144 m3 s-1 in the Green River at Green River, Utah compared to 37 m3 s-1in the San Juan River at 

Bluff, Utah from 2014-2018. Fishes in Lake Powell have unimpeded access to upstream riverine 

habitat on the Colorado River arm of the reservoir. On the San Juan River arm, upstream access 

is limited by the Piute Farms Waterfall (hereafter referred to as the “waterfall”). The waterfall 
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recently emerged in the inflow area after reservoir elevations dropped following the reservoir 

initially filling to capacity in the 1980s and the river cutting a new channel through deposited 

sediments (see Cathcart et al., 2018 for more details). With the exception of a two-week 

inundation event in late-July and early August of 2011, the waterfall has presented a complete 

barrier to upstream fish movement since 2001 and periodically formed in two different places 

between 1992 and 2001 (Durst & Francis, 2016; Ryden & Ahlm, 1996). In addition to variable 

access to riverine habitat directly upstream of Lake Powell inflow areas, fishes must also contend 

with fragmentation issues further upstream, where eight relatively large diversion structures 

occur on the Green, Colorado, Gunnison, and San Juan rivers with varying degrees of fish 

passage capability, including no passage structure, non-selective passages, or selective passages 

(Figure 3.1). Although fish passages can increase functional connectivity of fish populations 

(McLaughlin et al., 2013; Pennock, Bender, et al., 2018), no quantitative evaluation (e.g., 

passage efficiency; Noonan, Grant, & Jackson, 2012; Roscoe & Hinch, 2010) of passage 

structures has been completed in the upper Colorado River basin aside from documenting the 

presence and relative abundance of fish species captured or detected within, upstream, or 

downstream of passages.   

Recovery and maintenance of razorback sucker is reliant on intense management efforts 

administered through the Upper Colorado Endangered Fish Recovery Program 

(http://www.coloradoriverrecovery.org/) and the San Juan River Basin Recovery Implementation 

Program (https://www.fws.gov/southwest/sjrip/). These programs include a multidisciplinary 

group of researchers representing state, federal, tribal and private stakeholders. Coordination 

between these two programs is crucial to meet basin-wide recovery goals. Accordingly, joint 

activities include education and outreach, operating hatchery facilities, and the formation of a 

http://www.coloradoriverrecovery.org/
https://www.fws.gov/southwest/sjrip/
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centralized tagging database. As part of coordinated stocking efforts, most razorback sucker have 

been PIT-tagged prior to being stocked into upper Colorado and San Juan rivers (Cathcart et al., 

2018), and all research and monitoring efforts working with the programs scan captured fishes 

for PIT-tags and tag previously untagged individuals. The programs maintain a centralized 

database, in which all fish stocking, capture, tagging, and tag detection records are compiled 

from efforts across the entire upper Colorado River basin, including the San Juan River and Lake 

Powell (STReaMS, 2018). 

 Where do razorback sucker captured in the Colorado River arm of the reservoir 

redistribute? 

Essentially all razorback sucker occurring in Lake Powell were stocked in upstream 

rivers, and so, have moved downstream into the reservoir since being stocked. Although 

untagged fish are captured in the inflow areas, the proportion of untagged fish either matches that 

from upstream rivers (e.g., tag loss in fishes from the Green, Colorado, and Gunnison rivers; 

Zelasko et al., 2010), or age estimates of untagged fish overlap with year classes of hatchery fish 

being stocked without PIT-tags in 2006 and 2007 (e.g., San Juan River arm; Furr, 2016). The 

lacustrine-transition zones (Thornton, Kimmel, & Payne, 1990) of the Colorado River arm of 

Lake Powell (CRA in Figure 3.1 & 3.2) were sampled in April, May, and June from 2014-2016 

to assess the occurrence and number of razorback sucker in the inflow area (Albrecht et al., 

2018). Reservoir-captured fish were sampled with a combination of trammel nets and boat 

electrofishing. Any captured but previously untagged razorback sucker were PIT-tagged 

(Biomark, Boise, Idaho, 12-mm full-duplex, 134.2 kHz) before release. Concomitant with 

sampling events, a total of 44 razorback sucker were tagged with acoustic telemetry tags 

(Sonotronics, Inc., Tuscon, AZ, CT-05-48). Acoustic-tagged fish were either stocked from a 
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hatchery (n = 13) or captured in the reservoir (n = 31) and released. To assess the redistribution 

of fish tagged in the Colorado River arm, records were identified in the STReaMS database of 

razorback sucker physically captured in 2014-2016 in the Colorado River arm of Lake Powell. 

Then, we queried the STReaMS database for all post-capture re-encounters (physical captures, 

PIT- tag detections, telemetry detections) of these fish across the entire upper Colorado River 

basin. We calculated the distance between where fish were captured in Lake Powell and their 

most upstream encounter location. For this objective, re-encounters could have taken place 

anytime between when a fish was captured in Lake Powell and December 13, 2018, when we 

queried the database. We used a standard set of river kilometers provided with the STReaMS 

database to calculate movement distances for all objectives. 

Fish sampling efforts occurred throughout the upper Colorado River basin but varied in 

spatial and temporal distribution and sampling methods depending on goals of individual 

projects, including sampling for non-native fish removal, Colorado pikeminnow (Ptychocheilus 

lucius) and humpback chub (Gila cypha) population estimates, adult native fish monitoring, and 

various other research projects across >1,800 km of river (Figure 3.1; Cathcart et al., 2018; 

Franssen et al., 2014; Zelasko et al., 2010). In addition to efforts that physically capture fish, the 

use of PIT-tag antennas to re-encounter PIT-tagged fishes has increased throughout the basin at 

mainstem and tributary stream locations (Bottcher et al., 2013; STReaMS, 2018). Thus, our 

analysis was limited to quantifying the broad dispersal capability of razorback sucker outside of 

the  Colorado River arm of the reservoir because we did not have standardized sampling or 

representative PIT-tag antenna locations systematically placed throughout the basin.  
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 What is the proportion of fish moving upstream from the San Juan River arm of 

Lake Powell to the waterfall? 

To quantify the proportion of razorback sucker moving between reservoir and river 

habitats, we used capture data from 2017 and 2018 in the San Juan River arm of Lake Powell 

(SJRA in Figure 3.1) and PIT-tag detection data from 2017 and 2018 at the waterfall ~30 km 

upstream on the San Juan River. Fish sampling was conducted in the lacustrine-transition zones 

of the San Juan River arm of Lake Powell with trammel netting and electrofishing, as previously 

described for the Colorado River arm. PIT-tag detections were compiled by a submersible 

antenna (Biomark, Inc., Boise, Idaho) located directly downstream of the waterfall. We felt 

estimates of exchange between reservoir and riverine habitat would be more robust in the San 

Juan River arm, because migrating fish aggregate below the waterfall, creating high tag detection 

probabilities for PIT-tag antennas there (0.6-0.9; Cathcart et al., 2018). We counted fish captured 

in the reservoir prior to moving upstream to the river below the waterfall and then detected at the 

PIT-tag antenna within a calendar year (365 days post-capture). We calculated non-parametric 

confidence intervals for the proportion of fish moving in each year using 10,000 bootstrap 

iterations. 

 What is the post-translocation movement, residence time, and proportion of fish 

returning below the waterfall? 

 To mimic historical access to riverine habitats in the San Juan River upstream of 

the waterfall, we translocated razorback sucker upstream of the waterfall in late winter-early 

spring of 2016 and 2017. We translocated fish during this period because detections and captures 

indicated abundant sexually mature, ripe fish directly below the waterfall during periods when 

temperatures and flows were approaching or at observed spawning conditions (Cathcart et al., 
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2018). Razorback sucker were captured below the waterfall with raft-mounted electrofishing, 

scanned for the presence of a PIT-tag, injected with one if one was not present, and translocated 

by motorized raft up to 3.5 km upstream depending on flow conditions. Although fallback of 

translocated fish is possible (Hagelin, Calles, Greenberg, Nyqvist, & Bergman, 2016), we 

assumed fish were motivated to move upstream based on the number of fish in spawning 

condition (Cathcart et al., 2018). Fish could not be transported further upstream because of a 

rapid and cobble bar (~1 km long) that were not passible by boat. A subset of fish were also 

tagged with either acoustic tags in 2016 (n = 10) or dual acoustic-radio telemetry tags in 2017 (n 

= 32; ART-01-80). Fish could be re-encountered via a combination of physical re-captures, 

passive detections (PIT), and active detections in 2017 only (telemetry). We used the term 

“minimum distance moved” to describe the river distance between the waterfall and the most 

upstream encounter location. This term is described as a “minimum”, because we only used data 

on the first and last encounter locations, not any movement between or outside these two points. 

Similarly, we calculated the “minimum river residence time” as the number of days between 

when a fish was translocated and when it was last encountered in the river. Because we do not 

know if a fish left the river after re-encounter, this metric is a conservative estimate. Finally, we 

assessed whether any of these fish returned downstream of the waterfall via physical re-captures, 

passive detections (PIT and telemetry), and active detections (telemetry). 

 Results 

 Where do razorback sucker captured in the Colorado River arm of the reservoir 

redistribute? 

Between 2014 and 2016, 722 individual razorback suckers (mean ± SD; 485 ± 57 mm 

TL) were captured in the Colorado River arm of Lake Powell. Most (87%) of these fish had 
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stocking records in upper basin rivers (Table 1). The majority, 461 fish (64%), were never re-

encountered and so are not reported on further. A total of 261 fish were re-encountered after 

capture. Fifty-nine percent (n = 154) were only re-encountered within the original capture area, 

and 108 of those individuals were recaptured in multiple years. Forty-one percent (n = 107) were 

either recaptured (n = 11), detected (n = 100), or both (n = 3) outside of the reservoir capture area 

including in the Green and Colorado river systems as well as across the reservoir in the San Juan 

River arm of Lake Powell (Figure 3.2). Passive detections on PIT-tag antennas comprised the 

majority of re-encounters. Sixty-seven fish were encountered in the Green River at a permanent 

PIT-tag antenna array near the Tusher Diversion weir, approximately 300 km upstream of the 

Lake Powell capture area (Figure 3.3). After this antenna system was installed in May 2016, 

cumulative tag detections sharply increased (Figure 3.4). Opportunistically placed PIT-tag 

antennas in the upper Green River, detected 11 individuals 586-614 km upstream of the Lake 

Powell capture area. All re-encounters of fish in the San Juan River arm of Lake Powell were 

passive detections of either PIT-tags (n =2) or acoustic telemetry tags (n =17). Of these 17 

acoustically tagged fish, 16 were fish captured from the reservoir and 1 was stocked into the 

reservoir in 2015. 

 What is the proportion of fish moving upstream from the San Juan River arm of 

Lake Powell and the waterfall? 

Fish moved annually among reservoir and riverine habitats in the San Juan River arm of 

Lake Powell, and proportions were relatively consistent across years. In 2017, 147 razorback 

sucker (496 ± 39 mm TL) were captured in the lacustrine-transition zones of the San Juan River 

arm of Lake Powell, ~30 km downstream of the waterfall. After being captured in the reservoir, 

(mean, [95% CI]) 29%, [21-36%] moved upstream towards riverine habitat and were later 
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detected at the waterfall within a year of being captured in the reservoir. In 2018, 20%, [12-30%] 

of reservoir-captured fish were detected at the waterfall within a year. Thus, we suggest as many 

as a third of reservoir-dwelling individuals attempt to move upstream each year, and fish are 

moving between reservoir and riverine habitats at relatively fine temporal scales. 

 What is the post-translocation movement, residence time, and proportion of fish 

returning below the waterfall? 

 We captured and translocated 152 razorback sucker in 2016 and 151 in 2017 (492 

± 39 mm TL; Table 2). In 2016, 9 of 152 fish were re-encountered in the river (Figure 3.5). Six 

of those nine fish were physically recaptured, and 3 fish were detected on PIT-tag antennas. 

These fish all moved at least 99 km upstream, including one fish that moved upstream 307 km to 

the Public Service Company of New Mexico (PNM) diversion, which has a selective fish 

passage structure. Minimum distance moved upstream averaged 218 km, and minimum 

residence time ranged from 17-536 days. In 2017, 20 of 151 fish were re-encountered in the river 

by physical recapture (n = 2), PIT-tag antenna detection (n = 4), or telemetry detection (n = 14) 

with a range of minimum distances traveled between 17-186 km and a minimum residence time 

between 13-132 days. However, fish generally were not detected as far upstream in 2017 

(average 90 km) compared to 2016 (Figure 3.5). By July, active telemetry trips covering 290 km 

of river detected no fish upstream of the waterfall. The same number of fish (n = 27) in both 

years were not re-encountered after translocation. Eighty percent and 79% of translocated fish 

from 2016 and 2017, respectively, were re-encountered back downstream of the waterfall within 

a year (Table 2). 
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 Discussion 

Razorback sucker movement was quantified across an entire river basin relative to novel 

habitat types including movements through a large reservoir and upstream into river networks. 

By quantifying exchanges and movement potential across a broad spatial extent, we built on 

previous evidence of trans-basin movements (Durst & Francis 2016) and suggest there is 

connectivity between populations of razorback sucker in major tributary arms of the upper 

Colorado River basin that is maintained by movement of more than a few individuals. Notably, 

17 of 44 acoustic-tagged razorback sucker moved from the Colorado River arm through 

lacustrine habitat to the San Juan River arm, a distance of at least 170 km. These results suggest 

razorback sucker have high dispersal capability through both lacustrine and riverine habitats and 

can move upstream distances of over 600 km where unimpeded in the current riverscape. Results 

also suggest that about a third of individuals dwelling in the reservoir are moving upstream to 

riverine habitat and this was consistent among years. This is the minimum proportion of 

individuals making annual movements from the reservoir to rivers upstream given our 

assumption that all fish migrating to the waterfall would be detected. Although reservoirs have 

been considered movement barriers for riverine species (Hudman and Gido, 2013; Pelicice et al., 

2015), our data suggest razorback sucker in Lake Powell and its adjoining tributary networks 

function as metapopulations where there is notable exchange of individuals among major 

habitats.  

Movement among spatiotemporally dynamic habitats is likely important for long-lived, 

periodic strategists such as razorback sucker, which are thought to have evolved bet-hedging 

strategies to capitalize on environmental variation (e.g., water temperatures, flows) that plays out 

over broad spatial and temporal extents (Schindler, Armstrong, & Reed, 2015; Winemiller & 
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Rose, 1992). Razorback sucker are hypothesized to experience a recruitment bottleneck in early 

life stages (Pennock, Farrington, & Gido, 2019; Schooley & Marsh, 2007) and this obviously 

must be remedied to establish genetic flow from migrating individuals. However, if recruitment 

conditions vary across large spatial and temporal scales, it is important that spawning adults can 

access as many places as possible to increase chances of successful recruitment (Cathcart, Gido, 

& Brandenburg, 2019; Lopes et al., 2019). Where fish have the most access to riverine habitat in 

the upper Colorado River basin, recruitment to adulthood by razorback sucker is still rarely 

documented (Bestgen et al., 2017), suggesting that connectivity is not the only management 

action required to recover this fish. While increasing or maintaining connectivity may not 

override other limiting factors, such as temperature or rearing habitat necessary for successful 

recruitment of early life stages (Bestgen 2008; Bestgen, Beyers, Haines, & Rice, 2006), it might 

increase long-term viability of the entire metapopulation by ensuring immigration-emigration 

pathways are maintained and by allowing access to favorable habitats (Fagan, 2002; Fullerton et 

al., 2010; Gido, Whitney, Perkin, & Turner, 2016). 

Although our study focused on movement of razorback sucker, the occurrence of riverine 

species in reservoirs, and movement between reservoir arms and their associated river tributaries, 

is by no means unique to the Colorado River basin. Substantial exchanges of migrant fishes have 

been documented in other river-reservoir systems (Hladík & Kubečka, 2003; Říha et al., 2014), 

illustrating that mobile fish functionally connect rivers and reservoirs. For instance, Hladík & 

Kubečka (2003) found that 26 species and over 11% of all fish biomass in Římov Reservoir, 

Czech Republic, migrated between the reservoir and the Malše River inflow. These movements 

were mainly associated with spawning runs into the river by cyprinids such as bleak (Alburnus 

alburnus), roach (Rutilus rutilus), and bream (Abramis brama) (among others), but also included 
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Eurasian perch (Perca fluviatilis). Thus, reservoir dwelling fishes will readily move between 

lacustrine and riverine habitats, particularly rheophilic species that might be searching for 

spawning or feeding habitat. Along with movements for spawning (e.g., Graeb, Willis, & 

Spindler, 2009), fishes might move among rivers and reservoirs to exploit spatiotemporally 

dynamic habitats near inflow areas offering abundant food, such as phyto- and zooplankton 

(Thornton et al., 1990), cover in turbid water from high sedimentation rates (Miranda et al., 

2010), and complex habitat structure (deltas, submerged vegetation, higher water temperatures) 

no longer found or limited in upstream portions of regulated rivers (Bestgen, Haines, & Hill, 

2011; Buckmeier et al., 2014; Volke, Scott, Johnson, & Dixon, 2015). Fisheries managers in 

reservoirs and rivers often have varying objectives (i.e., maximizing sport fish production versus 

conservation of native species), and these habitats have traditionally been managed as 

independent systems (Buckmeier et al., 2014). Identifying mechanistic drivers of fish movements 

within and among river and reservoir habitats could inform managers of ecological costs and 

benefits (e.g., growth, diet, survival, and spawning productivity) experienced by individuals 

exhibiting these movements, which would ultimately help manage these systems more 

holistically (Buckmeier et al., 2014). 

The majority of fish translocated upstream of the waterfall barrier on the San Juan River 

returned to the reservoir within a year. It is not immediately clear why so many fish returned 

back downstream of the waterfall. One possibility is that translocated fish were searching for 

suitable habitat (e.g., Carpenter-Bundhoo et al. 2019) but happened to move too far downstream, 

similar to how fish might have ended up in the reservoir after being stocked in the river. 

Alternatively, fish might have encountered spawning habitat, contributed to spawning, and 

purposefully moved back downstream to the inflow area where low-velocity habitat and trophic 
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resources are presumed to be high. In the San Juan River upstream of the waterfall, spawning 

habitat might occur only 30-40 km upstream where translocated fish were found to aggregate 

immediately downstream of rapids and cobble bars in spawning condition (i.e., expressing eggs 

or milt; B. Hines and C. Pennock, pers. obs.). Translocation of fish is a means to mitigate river 

fragmentation for native species at places such as the waterfall, where preventing access to 

upstream riverine habitat by non-native fishes (e.g., striped bass Morone saxatilis) is an objective 

for managers (McLaughlin et al., 2013; Pennock, Durst, et al., 2018; Rahel & McLaughlin, 

2018). Downstream movements by most fish in this study suggest annual pre-spawn 

translocations of razorback sucker would be necessary for fish to access spawning habitat 

upstream of the waterfall. 

We acknowledge the variable efforts used to re-encounter fish across the basin might 

limit the interpretation of razorback sucker dispersal patterns. For instance, although more 

translocated fish were encountered in the San Juan River in 2017 than in 2016, efforts to re-

encounter fish were greater because of active telemetry tracking. Additionally, the different 

detection probabilities among various methods used to re-encounter fish in this study (e.g., 

acoustic telemetry versus PIT-tag antennas) prevented us from more rigorously quantifying the 

relative proportion of razorback sucker that moved among habitats. Even differences in detection 

probability using the same method but at different locations (e.g., PIT-tag antennas at Tusher 

Diversion versus the waterfall) likely exist and complicate quantitative efforts to assess fish 

movements at the population level. For these reasons, we did not analyze relative differences in 

the number of encounters among specific locations, such as the number of fish detected at Tusher 

Diversion versus the waterfall, but instead focused on broad dispersal capabilities of razorback 

sucker throughout the upper Colorado River basin. 
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Conservation practitioners must acknowledge the effect of novel ecosystems on 

population dynamics of imperiled species. Novel aquatic ecosystems are now ubiquitous across 

the globe (Havel et al., 2005; Reidy Lierrman et al., 2012), and many freshwater fishes contend 

with altered habitats and species assemblages. Although conservation efforts are challenged by 

increasing imperilment of species without a full understanding of mechanisms driving their 

declines (Closs et al., 2016), management might be more effective if efforts account for diverse 

life history strategies (e.g., movements) that increase population resilience to environmental 

change (Allen & Singh, 2016; Hilborn, Quinn, Schindler, & Rogers, 2003; Schindler et al., 

2015). A more complete understanding of how species employ variable movement syndromes 

(Comte & Olden, 2018) among habitats in contemporary riverscapes such as between rivers and 

reservoirs could allow for these habitats being managed more completely for the benefit of 

imperiled species – especially if management promotes and maintains connectivity. 
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 Figures 

 

Figure 4.1: Major rivers and reservoirs of the upper Colorado River basin. Sampling for the 

occurrence of razorback sucker in Lake Powell reservoir inflow areas occurred in 2014-2016 

(Colorado River arm, CRA) and in 2017 (San Juan River arm, SJRA). Sampling efforts occur 
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throughout the basin for various projects (grey shading), and various permanent PIT-tag antenna 

arrays have been installed (filled dots). Opportunistically placed submersible PIT-tag antennas 

(not depicted) are also used to detect fish throughout the study area (e.g., Waterfall barrier, upper 

Green River). Four diversion structures with fish passages and PIT-tag antennas are labeled with 

letters (a, Tusher Wash; b, Price Stubb; c, Hogback; and d, Public Service Company of New 

Mexico). Three other diversion structures on the Gunnison (Redlands) and Colorado rivers 

(Grand Valley Irrigation Company and Grand Valley Project) have fish passages but lack PIT-

tag antennas, and one diversion on the San Juan River (APS) lacks both fish passage and 

antennas (X’s). The Piute Farms Waterfall (Waterfall barrier) is located at the upper end of the 

San Juan River arm of Lake Powell.  
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Figure 4.2: Encounter locations (physical captures, PIT-tag detections, and telemetry detections) 

of individual razorback sucker (n = 107) throughout the upper Colorado River basin following 

physical capture in the Colorado River Arm (CRA) of Lake Powell reservoir in 2014-2016. 

Upstream movement into the San Juan River is blocked by an impassable waterfall. The size of 

dots corresponds to the number of individuals encountered at that location (legend). Records 

accessed from the STReaMS database included any encounters after the date of capture through 

December, 13 2018.  
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Figure 4.3: Absolute distances moved by razorback sucker (n = 261) that were initially captured 

in the Colorado River arm of Lake Powell and encountered throughout the upper Colorado River 

basin. Fifty-nine percent were only re-encountered within the original capture area, and forty-one 

percent were re-encountered outside the original capture area. The distribution did not show 

significant leptokurtosis.  
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Figure 4.4: Cumulative number of re-encounters (n = 107; solid line) outside of the Colorado 

River Arm (CRA) of Lake Powell. Razorback sucker were captured in the CRA from April 

through June in 2014-2016 (arrows). A PIT-tag antenna system was constructed at Tusher 

Diversion weir on the Green River, Utah in May 2016 (dashed line) increasing re-encounters of 

tagged fish. Records accessed from the STReaMS database included any encounters after the 

date of translocation through December 13, 2018.  
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Figure 4.5: Encounter locations (physical captures, PIT-tag detections, or telemetry detections) 

of razorback sucker that were translocated upstream of the Piute Farms Waterfall and into the 

San Juan River in 2016-2017. The most upstream encounter occurred at Public Service Company 

of New Mexico (PNM) Diversion (2016). Records accessed from the STReaMS database 

included any encounters after the date of translocation through December 13, 2018.
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 Tables 

Table 4.1: Number of razorback sucker originally stocked into rivers of the upper Colorado River system that were subsequently 

captured in the Colorado River arm of Lake Powell in 2014-2016. 

  Year 

Stocking river 

(rkm; range) 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Colorado River 

(244-385) 
3 1 4 4 3 7 3 2 3 2 2 2 1  

Green River 

(192-511) 
 5 18 13 14 42 35 82 106 113 91 46 9 1 

Gunnison River 

(91) 
          2       1   7 5   

Total 3 6 22 17 17 51 38 84 109 116 93 55 15 1 
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Table 4.2: Summary of encounters (physical captures, PIT-tag detections, telemetry detections) of razorback sucker captured 

immediately downstream of the Piute Farms Waterfall in 2016-2017 and subsequently translocated 0.2-3.5 km upstream into the San 

Juan River. Encounters were assessed via records in the STReaMS database from the date of translocation through December 2018. 

Year 
Number 

translocated 

Number 

encountered 

in river 

Minimum 

distance moved 

(km; mean, range) 

Minimum 

residence time 

(days; mean, range) 

Number never 

re-encountered 

Number 

encountered 

back in Lake 

Powell 

2016 152 9 (6%) 218, 99-307 182, 17-536 27 (18%) 123 (81%) 

2017 151 20 (13%) 90, 17-186 39, 13-132 27 (18%) 119 (79%) 
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Chapter 5 - Conclusions 

Conservation efforts have been limited by a complete understanding of multiplicative 

factors causing the decline of freshwater fishes. I provide new insights and present existing 

challenges into factors influencing populations of razorback sucker in Chapters 2, 3, and 4 of this 

dissertation using field studies and assessment of museum-vouchered specimens. Collectively, 

these studies contribute to an increased understanding of razorback sucker ecology and use of 

novel ecosystems that can aid conservation efforts. Differences in diets of early life stage fishes 

might help explain differences in recruitment dynamics observed in co-occurring species and 

assessing how similar species respond to environmental change. All three species I assessed co-

occur with a suite of non-native species, which are hypothesized to cause declines in native fish 

populations. However, differences in survival of early life stages among species in the face of 

non-native species occurrence suggests the effects of non-native species might not be 

generalizable across native fishes (Chapter 2). Knowledge on species distributions along 

environmental gradients might help assess potential species interactions and habitat requirements 

(Chapter 3). Connectivity between and movement among habitats is vitally important for fish to 

complete their life history, and this occurs at multiple spatial and temporal scales. To fully 

understand a species’ spatial ecology, movements need to be assessed over broad-spatial extents 

(Chapter 4), taking into account the potential for both short- and long-distance movements, 

which are both important for different ecological reasons (e.g., feeding, spawning, biotic 

interactions). These studies contribute to the conservation of aquatic biodiversity in novel 

ecosystems by elucidating potential reasons for differential species responses to environmental 

change and informing conservation efforts on habitat use and movement that has potential to 

influence population dynamics of imperiled species. 
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For currently unknown reasons, seemingly similar species (i.e., within the same family) 

showcase differential survival in response to water development and non-native species. All 

three sucker species assessed in my study co-occur with a suite of non-native fishes, yet exhibit 

widely different levels of recruitment. All have experienced range-wide declines in distribution, 

but two species have maintained self-sustaining populations while razorback sucker have not 

(Budy et al. 2015). Thus, there appears to be other factors limiting the success of native 

populations other than non-native species alone, or potentially differential responses among 

species to the presence of non-native species. Water development has altered riverine habitats 

such that flow regimes in mainstem rivers have been decoupled from conditions in which many 

fishes evolved (Poff et al. 1997). Habitat alteration in the form of altered flow and thermal 

regimes and fragmentation by dams has occurred on mainstem rivers in the Colorado River 

basin, while some tributary systems still function under somewhat natural conditions (Laub et al. 

2018; Hooley-Underwood et al. 2019). Perhaps this has allowed species such as bluehead sucker 

and flannelmouth sucker, which are able to use tributary systems for spawning migrations 

(Fraser et al. 2017; Cathcart 2018), to maintain self-sustaining populations while more 

mainstem-adapted species such as razorback sucker have declined. Additionally, fragmentation 

by dams directly impacts freshwater fishes by blocking dispersal corridors, but interactions 

between species-specific life histories (e.g., dispersal, drifting life stages, tributary spawning) 

and river fragmentation means species are not impacted equally (Perkin and Gido 2011; Perkin et 

al. 2015; Troia et al. 2019). Being larger-bodied, razorback sucker might require longer intact 

river fragments either to find suitable habitat or to allow for mobility of various life stages (e.g., 

drifting larvae) compared to bluehead or flannelmouth sucker. It is not clear why razorback 

sucker recruitment to adulthood has not been documented in Lake Powell given it occurs in Lake 
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Mead (Albrecht et al. 2010; 2018). Vegetative cover and turbidity are both hypothesized to 

increase survival of early life stages in inflow areas to Lake Mead (Albrecht et al. 2010), but 

there has not been a direct comparison of these two factors between Lake Mead and Lake 

Powell. Future efforts quantifying differences in inflow areas in Lake Mead versus Lake Powell 

could prove fruitful for furthering mechanistic understanding of factors limiting razorback sucker 

recruitment. 

Rivers flowing into reservoirs are now common features across riverscapes around the 

globe. Fisheries management in reservoirs is typically focused on production of coveted sport 

fishes, which have been widely introduced (Havel et al. 2005). Conversely, management in 

rivers commonly occurs to conserve populations of native fish that have suffered declines 

following habitat alteration and introduction of non-native species (Franssen et al. 2014). Rivers 

and reservoirs are structurally connected through water flows, but also functionally connected by 

the movement of aquatic organisms, similar to naturally occurring river-lake systems. Native 

riverine species are commonly found in reservoir habitats, yet the use of reservoirs by native 

species and their effects on population dynamics are not well understood. Guy et al. (2015) 

argued for broadening the regulated-river paradigm by looking upstream when assessing the 

impacts of dams on riverine fishes. Most research on dam effects on aquatic systems have 

focused on mitigating or managing downstream impacts through flow prescriptions (Poff et al. 

1997; Guy et al. 2015; Poff 2018), and relatively little management occurs at the transition of 

rivers and reservoirs despite these areas harboring high biodiversity (Buckmeirer et al. 2014; Da 

Silva 2019).  

What can be done to manage fish in river-reservoir inflows? Large reservoirs present 

management challenges because of their size and multi-purpose uses (Matthews et al. 2004). 
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However, current management practices used independently in riverine and reservoir habitats 

including water level management (or flow management), habitat management, predator control, 

and stocking could also be used to manage fish populations in river-reservoir inflow areas. 

Species able to utilize lotic and lentic habitats might do well in reservoirs especially near river 

inflows because of abundant food resources, relatively warm water temperatures during certain 

times of the year, and a mix of flowing and low-velocity habitats (i.e., habitat complexity). 

Reservoirs present challenges for some rheophilic species and life stages not conducive to lentic 

habitats or if habitats have poor water quality (e.g., anoxic sediments; Guy et al. 2015). 

Reservoirs are commonly stocked with non-native predator species that consume native fishes 

(e.g., Ehlo et al. 2017). But, that razorback sucker recruit in the inflows to Lake Mead and other 

native rheophilic species commonly occur in reservoir systems suggests river-reservoir inflows 

could be directly managed for native species or included in current river and reservoir 

management schemes. For example, submerged vegetation can be beneficial to recruitment of 

fishes by providing cover and increased food resources (Strakosh et al. 2009). The cycle of 

drying and re-wetting that occurs in river-reservoir delta areas as water level fluctuates promotes 

high levels of native vegetation production (Volke et al. 2015) and inundated low-velocity 

habitats provide nursery areas for early life stage fishes in river-reservoir inflows (Gilbert and 

Pease 2019). Consequently, reservoir water level could be managed to provide off-channel 

habitat at inflow areas during spawning seasons of targeted species to encourage increased 

production of young-of-the-year fish. Additionally, for species requiring lotic habitats, water 

level could be reduced at certain times to provide more riverine habitat upstream of reservoirs 

(Guy et al. 2015; Coulter et al. 2019). Removal of non-native fishes or fish predators is another 

management strategy that could take place in river-reservoir systems. This would obviously be a 
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more effective option in water bodies strictly managed for native fish conservation and not sport 

fishing to avoid conflicts between native species conservation and sport fish production 

(Clarkson et al. 2005) and also to ensure a greater chance of success of removal efforts from 

repeated introductions or stocking. Finally, stocking of fishes into turbid river inflows might be a 

successful strategy to increase local densities of fish where predation by non-native predators is a 

concern (Albrecht et al. 2010).  

Conservation of species in novel ecosystems such as river-reservoir complexes will 

require creative solutions to balance the complexities of these human-made habitats. More 

research that includes an upstream perspective to river-reservoir management is needed to fully 

assess the potential for these systems to be used as places of native fish conservation (Buckmeier 

et al. 2014; Guy et al. 2015). Since Guy et al. (2015) called for broadening of the regulated river 

paradigm there has been an increase in studies on fish assemblages in river reservoir inflows, but 

these have mainly focused on quantifying fish assemblage diversity and structure. Any 

conservation potential these areas might provide will not be realized until more research is 

conducted assessing factors promoting success of native fishes, including potential interactions 

with fish predators, and applying and evaluating management actions directly to river-reservoir 

inflows. Sport fish managers have traditionally focused management efforts on down-reservoir 

habitats and native fish managers have largely dismissed reservoirs as native fish habitat. Both 

have largely ignored the transition zones between rivers and reservoirs. Given the cosmopolitan 

occurrence of reservoirs, we need to consider using them for conservation and fish production 

where adequate habitats exist. 
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