
CONDENSING HEAT TRANSFER IN A HORIZONTAL TUBE 

by 

CHING-JEN CHEN 

Diploma, Taipei Institute of Technology 
Taiwan, Formosa, 1957 

A MASTER'S REPORT 

submitted in partial fulfillment of the 

requirements for the degree 

MASTER OF SCIENCE 

Department of Mechanical Engineering 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

1962 



TABLE OF CONTENTS 

INTRODUCTION 1 

ANALYSIS OF FLOW PATTERNS . 1 

Definition and Classification . . . . . . . 1 

Condensing Flow patterns . . . . . . . . 2 

ANALYSIS OF HEAT TRANSFER 8 

Literature Survey . . . . . . . 8 

Derivation . . . . . . . . . . . . . . 12 

EXPERIMENTAL APPARATUS AND EQUIPMENT 21 

System . . . . . . . . . . . . . . . . . . . . 21 

Operation of Equipment 25 

EXPERIMENTAL RESULTS 26 

VERIFICATION OF ANALYSIS 29 

CONCLUSIONS 38 

SUGGESTIONS . . . . . . 41 

ACKNOWLEDGMENT ' 43 

REFERENCES 44 

APPENDIX 46 

Appendix A, Properties of Freon 12 . . . . . 47 

Appendix 3, Summary of Data 53 

Appendix C, Copper-Bismuth Heatmeter 54 

Appendix D, Sample Calculations . . . . . . 63 

Appendix E, Nomenclature 65 

Chart for Appendix C 68 



INTRODUCTION 

Ia 1916 Nusselt first formulated the mathematics involved in condensing 

pure_yapors. Since then great progress has been made in both theoretical 

analysis and empirical correlation of condensing heat transfer data. 

However, the analysis of condensing phenomena inside a horizontal tube 

has not been completely formulated. 

L:any investigators in their analysis of this problem neglect the shear 

force which exists at the vapor-liquid interface inasmuch as this factor 

increases the complexity of the analysis. In this report, an effort is 

made to determine a consistent equation for correlation and determination 

of condensing heat transfer coefficients by considering the effect of 

shear force at vapor-liquid interface. 

Experimental data for Freon 12 and Methanol were taken from KSU- 

ASNIIAE cooperative research project and other workers to verify the 

study. 

ANALYSIS OF FLOW PATTERNS 

Definition and Classification 

_Two-phase flow patterns can be characterized by the gas-liquid ratio 

and the rate of mass flow. At a constant gas-liquid ratio with a fixed 

mass flow rate, the flow pattern is constant. This is defined as- fixed 

two-phase flow. Air-water flow is a typical case of fixed two-phase 

flow except when large pressure drops occur. On the other hand, at a 

fixed mass flow rate but with variable gas-liquid ratio, the flow pattern 
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is variable. This is defined as variable two-phase flow. Condensing flow is 

a typical case of variable two-phase flow. 

Two-phase flow patterns have been investigated by Martinelli (3), 

Eoogendoorn (1), Borgelin and Gazley (25) and many other workers. In general 

these patterns may be classified in the following categories: (Plate I and 

II) 

A. Stratified Flow 
The liquid flows in the lower part of the pipe and the vapor over 

it with a smooth interface between the two-phases. 

B. Wave Flow 
Similar to stratified flow, except for a wavy interface due to 
the velocity difference between the two phases. 

C. Wave-mist Flow 
Wave flow will turn to wave-mist flow when the total flow rate is 

so increased that a certain amount of atomization takes place. 

D. Plug Flow 
The vapor moves in bubbles or plugs along the upper side of the 
pipe. 

E. Slug Flow 
Splashes or slugs of liquid move at higher velocity than the bulk 
of the liquid. Pressure fluctuations are typical for this type of 

flow. 

F. Mis-annular Flow 
When the total flow rate is so increased that the vapor velocity is 

higher than that of wave-mist flow, the liquid is partly atomized in 

the vapor phase and partly flowing in an annular film along the 
pipe wall. 

G. Froth Flow 
The gas is dispersed in fine bubbles through the liquid phase. 

Condensing Flow Patterns 

From Plate I and II it is seen that without heat transfer between the 

tae wall and the fluid, and with constant mass flow, the flow pattern is 

fixed. That is, at any fixed mass flow and vapor-liquid ratio, the flow 

pattern is represented by a fixed point on the diagram. 



EXPLANATION OF PLATE I 

Schematic diagram_af two-phase flow patterns 

Cg: 
gas percentages , 

G : gas flow rate by volume, m3/sec 

G 
1 

: liquid. flow rate by volume, m3/sec 

Va: 
mixture velocity, m/sec 

D : diameter of tube, m 

: constant mass flow line 

transition line 
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EXPLANATION OF PLATE II 

The picture of air-water flow patterns 

1: stratified flow 

2: trPnsition of stratified to wave flow 

3: wave flow 

41 mist-wave flow 

5: annular flow 

6: slow plug flow thigh liquid percentage) 

7: plug flow 

8: slug flow 

9: slug flaw 

10: froth flow 

11: froth flow 
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:hen there is heat transfer between the tube wall and the fluid so as 

to condense the vapor as the flow travels downstream, the flow pattern is 

not represented by a fixed point on the diagram, but by a line of constant mass 

flow rate. Consequently, the flow pattern depends upon the rate of heat 

transfer. At low rates of heat transfer, the flow pattern tends to converge 

fixed point, i.e., fixed two-phase flow. On the other hand, at very 

high rates of heat transfer, the flow pattern tends to, change rapidly. 

The pressure drop,in condensing flow is partly due to condensation and 

partly due to friction. At low rates of condensation, the pressure drop may 

approximated by the pressure drop in fixed two-phase flow which the 

6) 
inelli and Nelsorismethod applies, To predict the pressure drop at high 
_ 

' (6) 
rtes of heat transfer, Martinelli and Nelson's method should be modified by 

considering the pressu e,drop due to condensation. 

:n condensing flow there is always a thin condensate film formed on the 

.tube wall. As a result of condensate in circumferential flow, transition of 

floe patterns will take place earlier in condensing flow than in the fixed 

two-p,ase flow; that is from mist-annular to mist-wave, or mist wave to 

wave, etc. 

A phenomena which is not reported in the literature was observed in 

these experiments. In the region of wave, mist-wave and annular flow, the 

vapor-liquid interface was observed to become concave upward along the tube 

wall as vapor velocity was increased. It is assumed that the down flow of 

condensate due to gravitational force may be a factor. Nevertheless, even 

with air-water flow, the interface' still exhibited a trend to become con- 

cave upward but-to a less degree. 
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ANALYSIS OF HEAT TRANSFER 

Literature Survey 

,.any equations for heat transfer coefficients have been either semi- 

:theoretically derived or empiPically correlated. For the purpose of comparison 

several possible assumptions which have been used are listed below. The 

assumptions which apply specifically to the correlation equations which follow 

are listed with the equation. 

I. Laminar flow 

2. A film of condensate covered the cooling surface 

3. 047 latent heat was transferred through the film 

4. Negligible surface curvature 

5. Negligible vapor shear on the vapor-liquid interface 

6. Physical properties of the condensate taken at the mean film 
temperature 

7. Uniform wall temperature 

8. Negligible accumulation of condensate on the bottom of tube 

Y. Turbulent flow 

10. Vertical tube 

Any other assumptions used in specific equations will be described 

separately. 

General Equations for Two-Phase Flow 

1. Nusselt's Equation 

Nusselt first presented an equation for condensation on a horizontal 

tube. 

3 
,1/4 

hm = 0.728 K1 e 
pp 

1/4 

hfct 

D T id11 
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The equation may apply to condensation inside a horizontal tube. 

Assumptions: 1 through 8. 

2. Carpenter and Corburn's equation (12). 

c p f. 1/2 
1 0 

P. 
= 0.065 , G 

(..4?1 ev 

;:here G is the mean valUe of vapor mass flow rate, lb 
m 
/hr ft 

2 

m 

Assumptions: 9, 10. 

Tice equation studies the effect of vapor velocity on condensation 

inside a vertical tube. 

transfer takes place in 

by use of the universal 

3. Crosser's Equation 

1/3 -7- = 3 

..;ere n varies from 

a Reynolds number of 105 

it is also assumed 

a liquid laminar sublayer 

velocity profile. 

(13) 

DG 
m 1 

that all resistance to heat 

which is characterized 

n 

number to a constant value of 0.8 

(C 

/iA 

0.2 at low Reynolds 

B is a constant. 

Assumptions: 

4. Chaddock's 

3 

2 

Equation 

.(2,)3 

M036 

through 

)o 

9. 

(26) 

4,3 

d8 

r g 
1/3 

r 4 r 
A41 J 

QJ 
S 
1/4 

Assumptions: 1, 2, 5, 7. 

The equation assumed that a film which formed over an angle inside the 

tube would be identical with a film formed over an angle outside of the tube. 

y= 27 the equation becomes 



y 
_ 

I 

K3 2 
g 

)1/4 DAT 

1/4 

which is Nusselt's Equation. 

0. ChLo's Equation (Stratified Flow only) (7) 

For slope Q- < 0.0O2 

1/4 

= 0,468K, 
1 

g 1( el- ev)hfol( 
1 +o.681 )K1 

/tAiroilT 

Assumptions: 1, 2, 3, 5, 6, 7. 

where = (C:1=22) n 
1g 

For slope j > 0.002 

h = 0.3 X' 
j el( 

1- 
)h 
fa(1+0.687 

A4,1r0.4 T 

cosy /4 (sin 
-lc- 

) 

1/3 3/4 

o 
sin 9 ot 

10 

The equation employs the same method as used by Chaddock by using an 

angle factor which applies only to laminar flow (stratified). However, an 

impo;:tant_result obtained by Chato is that when the tube is inclined ten to 

twenty degrees from the horizontal line, maximum heat transfer may be resulted. 

IL the equation K' is a correction factor for low Prandtl number. 

For heat transfer coefficients for Freon 12, the following equations have 

been obtained. 

o. Khite's Equation (i4-) 
1/4 

3 2 

h = 0.630 
c 

, 
1 \ g h 

K P 

i 

fq 

At elevated pressure the equation gives values 13 per cent below those 

predicted by Nusselt's equation. 

Assumpi,lons: 1, 2, 3, 4, 5, 6, 7. 



7. Rosson's Equation (Stratified and Wave Flow) (a) 

2 1/6 

N 
u 

= 0.388 CP ) 
r 

1 
)) 

1. 

4 e 
1/3 4a( e Fl r ) 

D Gv, 
1/2 

11 

1/4 

Assumptions: 1, 2, 3, 4, 5. 

Also the equation assumed no acceleration and no radial velocity in the 

liquid. The equation shows a maximum deviation of + 20 per cent. 

8. Patel's Equation ( IS) 

D G 
0.4913 

Nut = 10.17 (7712 

9. Sun's Equation (11) 

hnD D G 
0.29366 

= 27.8 ( m 
1 /M.1 

This equation was correlated by Sun (11) in 1959. Data were taken from 

the experiments performed at Kansas State University. The equation allows a 

D G 

illaxixel-70-rof3Opercentandthedataplotted= 
m 
againstNuishows con- 

r-1 

siderable scattering particularly when the inlet condition was wet. That is 

when condensate had accumulated on the bottom of the tube. Comparison will 

be made later with a new equation presented in this report by using the same 

data. 

10. Akers and Rosson's Equation (9) 

1/3 
h 
fa 

1/6 ,D G e, 1/2 \ n 

N 
ul 

- C(P 
rl 

(E -7T) L7TI (7) 
p - 1 v 

where v 1 ( 

e 
) 

1/2 

ev 

1,000 

100,000 

n 

0.2 13.8 

0.67 0.1 
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A chart of_data_correlated by this equation is also reproduced in Plate 

VII to compare with the equation presented in this report. 

Assumptions: 2, 3, 4, 7, 8, 9. 

Derivation 

For the purpose of analysis an equation for the heat transfer co- 

effizient_for a horizontal plate was first attempted. Following some modifi- 

cation, these equations may be used for condensing heat transfer in a 

horizontal tube._ Equation for laminar and turbulent flow are also obtained 

in a form suggested for experimental correlation. 

_Consider the vapor boundary formed at the vapor liquid interface when 

the vapor is flowing along the plate and while the vapor is condensing on 

the plate. The following assumptions are made: 

1. Constant plate temperature 

2. Constant vapor velocity in X direction at Y greater than the 
thickness of vapor boundary layer, i.e., uo,.= constant 

3. Vapor boundary layer is independent of liquid film 

4. Velocity at vapor-liquid interface is constant 

No slip at vapor condensate interface 

Saturated temperature exists at vapor-liquid interface. 

y 

..m=6 



Assume that the velocity profile for the vapor boundary layer takes 

the form 

V = u - uo = Cl Y' C 
2 
Y' 

3 

13 

( 1) 

".:here up is the velocity of the interface and u is absolute velocity. Then 

boundary conditions are 

Y° = 0 V =0 u =uo 

= 

Y9 = 

V = 

O.V -0 

From the boundary conditions Equation (1) becomes 

-4 Y° y° Yv 3 
v 
.E-- = 11 

-u 
- 1.5 - 27(1T) 

,,, u 
o 

Applying Von Kaman's integral method, the thickness of boundary 

layer is obtained 

S = 4.64 X (R 
ev 

)1/2 

( 2) 

( 3) 

When no slip at vapor-liquid interface is assUmed, the shear force in 

the vapor at the interface must be equal to that in the liquid, or 

1.5V0, 

ilit2 
IA U' 1 

v V= 0 . A a If I y=4i ) ( 4) 

O 

Where U is the velocity profile of condensate, it may be approximated 

by 

U = B1Y B 
2 
Y2 

Boundary conditions for the velocity profile in the condensate are 

( 5) 
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I. 

9 

3. 

y 

Y 

= u U= 0 

U = u 
o 

2"0" v 1,5 5 I 

= V = A 

Thus equation (5) with these boundary conditions becomes 

2U 1.5V 
Q) y ( 14.L.91- _11 ) 2 

mess rate of flow of condensate per unit breadth of the plate, r-, 

is obtained by integrating the local mass flow rate at the distance X between 

the limits Y- 0 and Y- 11, or 

U 1.5V, 4 1 . 

P Y + ( 

I 0 
84 , 9 

P''''''T3jo."' - zi- AA c' 

\ <5,.. 

- --2)Y 
2 

dY A2 

Since eat is transferred through the condensate film solely by con- 

&action in laminar flow, the rate of heat flow through dX to the plate is 

) 

( 8) 

Dut between the distance X+dX and X the film thickness increased by an 

amount d7 as a result of condensation. The liquid condensed in this distance 

increase the liquid flow rate by the amount 

0 2 4 
V ,A 

. 

= 'Jo- 2)A ) d4 ( 9) 

At the same time there must be maintained a rate of heat flow to the cold 

twee ha. '_ equal to the rate at which latent heat of condensation is released 

between and dX. Therefore, the energy balance between the rate of heat 

liberation as a result of condensation at the vapor liquid interface and the 



rate of heat conduction through the film is 

or. 

X CT.-Tv) dX 
hfgd 

-2 1 4 
Vv0A 

2 

7 
0 

3 o 
+ 

2 s - N -T )dX = U AA 

15 

(10) 

quation (10) turns out to be a nonlinear differential equation and is 

difficult to integrate. Assuming for an approximation 

= cx (11) 

where cis constant for certain conditions of condensation, then, with Equation 

(3), Equation (10) may be reduced to an ordinary differential equation and 1S 

is obtained. 

64x4(--2) 
1/2 

1/3 

h, Q u c 3/2 

VA 
i (T -T ) + 2IS2X 

1 v ,,,,, 

2.____1____ - 
hfg )LA4 

(12) 

Equttion (12) has the same form as Equation (11). When the heat transfer 

Ki 

27 coefficient is defined as h = then 

/ 3 u 1/3 

i= ( 

hfa K1 uo,,(1 - 7) e,,LA Al 

i 
( T - 

w 
T ) 

( L h ,..fa 
cu 
22 ) 

4. I (13) 
4 x K, 

3 1(1417 

Thus, local Nusseit number takes a form of 

where 

N ( 1 1/3 (11 )1/2(1)v )2/3 (2a)1/3 
ul 18.56 ev 1)1 C 

1 / 2 

3= (1 - ) 

2 h, u 
La o 

K1n T 

/ B1 3 

(14) 
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In_the term B, c is a constant from the film profile approximation given 

in Equation (11). That is under certain conditions.of condensation the pro- 

file of, the film thickness is a parabolic function of X. When X is held 

fixed, p_is found to be proportional toil 
2 

. But A 2 is proportional to the 

, temperature difference across the condensate film, 4, T, and thermal con- 

ductivity, Kt On the other hand,2 is also inversely proportional to 

the_latent_heat.of the vapor, hfu, density, e and the velocity at the 

vapor liquid interface, u 
o 

. Therefore 

LT K 
2 04 1 

c 
h u 
ig 1 o. 

Let E be a constant such that 

c = E, 

4T K1 

Then, B becomes_ 

- 
uoo 

-110 
) 

1 +2/3 E 

Furthermore, when u,.3 increases, uo also increases. If uo /u,. is assumed to be 

a constant for a certain range of ur. , B is always less than one and also 

can be treated as a constant. Accordingly, an equation useful for correlation 

is obtained and the value of undetermined constant is less than one. The 

average value of the heat transfer coefficient expressed in Nusselt number 

N 
ul 

is then 

N 
ul 

= 3/2 N 
ul (15) 

In the case of turbulent flow, a suggested form may be obtained by 

modifying the term which contains the eddy viscosity. From Equation (14) 



h 
fa 1;)v 

Nu; F (rev Prl Cps T 
v 

17 

(16) 

ere 1)._, 
LI 

and 1./f) v are fluid properties, E7n is thermal potential, 
p 

cv 
and ."'?v/-1) 1 are the dimensionless group related to the flow condi- 

tion. To examine more carefully on R 
ev 

and -..tr/ 1Y1, R 
ev 

depends upon a 

chracteristic length L or D while i7v/ 1)1 is independent of geometric 

factor, in -condensing flow when the vapor flows in the continuous phase, 

the main difference between laminar and turbulent flow is that the shear force 

at the interface is no more governed by kinematic viscosity of fluid but by 

eddy viscosity. The eddy viscosity is greater than the kinematic viscosity 

whicl- is negligible in turbulent flow. From this analysis it is concluded 

therm, 17.v/17 L, in Equation (14) should be modified for turbulent flow 

using the eddy viscosity. 

mv + 1) v Cmv 

1 G ml 

owever, from Fra41's mixing-length theory eddy viscosity may be 

2 du 
expressed by L Where L is mixing length, In other words, the eddy 

viscosity is independent of the fluid properties. Therefore, two assumptions 

may be made: 

1. The term "iv/ 1> 1 transforms to 6mv/45.- ml and maybe considered 
as a constant in turbulent flow. 

2. In turbulent flow with 6-mv/(r. ml constant, the exponent of 
Reynolds number may be affected. 

The equation for condensing ,flow in turbulent is then suggested in the 

following forms: 

1/3 __fa_ 1/3 el 1/3 N 
ui 

_ = Constant (Rev)N A 
T 

) (f ) 

v 

re N is 1/3 or an undetermined constant. 

(17) 
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For heat transfer inside a horizontal tube, an analogue to the horizontal 

may be employed if mean film thickness dm and a characteristic velocity 

ore assumed for .a and us, in Equation (10). Mean film thickness is 

as the film thickness which would form in a horizontal tube when the 

totional ferce is neglected. The characteristic velocity here is 

de fined as the mean velocity of vapor in the tube as it flows in single 

prase. In another word, it is the vapor mass flow rate divided by the cross 

section area of the tube. 

Gn,the other hand, however, the vapor boundary layer in a tube is no 

longer the vapor boundary layer on the flat plate when the velocity profile 

in the tube is fully developed. The vapor boundary layer in the tube may be 

taken as 

-4.m 

for an approximation. Therefore, Equation (10) may be transformed to 

T(R 4m)dX 1 )1 um 21 

g z 
2 

- 2/390(R - m)2S, m] d 
/4,4 

1 
m (19) 

Integrating as in Equation (12) from X = 0 to X = X and 2im = 0 to 

M 
= 4 

m' 
film thickness 

4 m 
is then 

K T ra 2) cR} 
3 

X 
1/3 

'for el 

1Av u U 
2 - 3 o 

JUl 

he heat transfer coefficient is then 

2 u 
/ 3 cil"lv um 

' 2 ,A41 T ' 

n. 

3'41 ' 
K 
1 
LIT 

(R 2 + c 
h 
f g 

3 

(20) 

(21) 



The Nusselt number is then 

l ul 
L4 

1/3 hfd 1/3 v 1/3 l/3 1/3 4 r- 1/3 
N = (Pr) ( (777) B' 

/1 C T 

Where 

B' 
a.) 

1+ 

4 A uo 
3 V um 

2 \Fa 
TBR 3 K 

and 
4 A Um e w. 

r- = D = 

19 

(22) 

To treat B' as a constant is rather complicated. Nevertheless, c in the term 

B' may be treated in a manner similar to that in Equation (14). 

Let E 
c 

' be a constant and equal to -----2- and note that the relation 
3 K 

du 

4 
au 

o 
of shear force at the vapor-liquid interface is /4177nd = 

ay 
At a 

wr 

small distance from the interface the velocity in the liquid side is approxi- 

mately uo while on the vapor side, the velocity increases approximately to 

, 

Aik u 
e- o 

= u, 
m 

or 1 
u© Aum 

Hence the numerator of B' in Equation (22) is a constant. The remainder in 

the denominator of term B' is 

D - 
(1 2 

3R 
icX E') 

Although the distance X cannot be considered as a constant, in many practical 

cases there is no way to predict the distance at which the flow condition 

at the inlet to a condenser is wet. That is the point at which some con- 

deosate has accumulated on the bottom of the tube. Moreover, when 

increases, (1 -I- E' - 
2177 

3R 
decreases. Some degree of stability is, 

therefore, provided. If B' is assumed to be constant, an equation for 

laminar condensation inside a horizontal tube is: 
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1/1/N/ = 
4 

constant (.77--) 
ul . (23) 

r- t _11_1 v 
) 

1/3 1/3 h 1/3 1) 1/3 

/-1 
rl 'C A T' 9 1 

. ._ . . P .. 

In the case of turbulent condensation, the same assumption in Equation 

maybe employed. That is to transform4Ni to emv/emt which 

according to Dessieler and Von Karman's assumption for a duct flow is 

E 1; 

2 
uy when 5;4' is less than 26 and n is 0.109 

Nif. 
where y 

+ 
- , of the universal velocity profile in a tube 

......_ 

dt o 

, . dv 
- 1",. when y 

4 
is greater than 26 and K is 0.36. 

m du 2 
(-1) 
dy 

Fiance by analog:to equation (17) the equation for the Nusselt number in 

a horizontal tube is as follows: 

or 

1/3 1/3 h 1/3 
4r- 

N constant (71--) (P 
ul C 44T 

1/3 h 1/3 
N = constant (="-- 
ul /A 1 C T) 

From this analysis it may be concluded that for a single phase flow 

N = .F(R , ') 

e r 

for fixed two-phase flow such as air-water flow 

N = F(R P "P - 

u . e' ri 
for variable two-phase flow such as condensation 

til p 21 fg T ) 

(24) 

Furthermore, it is proposed that for two-phase flow the Stanton number 

be defined as follows. 
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For fixed two-phase flow such as air-water flow 

N 
u 

e 2r1 

17'or va .ble two-phase flow such as condensation 

St = 
tv - 4T- "L hfl p Y 

rl -111 Cp2 T 

These relationships may prove to be helpful in the correlation of 

pressure drop or skin drag data, 

EXPERIMENTAL APPARATUS AND EQUIPMENT 

System 

The apparatus used in this investigation was originally constructed by 

Patel (15), Hwang (16), and Sun (11) in 1956, 1957, and 1958 respectively. 

It was successively modified in order to obtain better data and results. The 

major components are: 

1. Vapor generator 

2. Pre-condenser 

3. Test section 

4. Pre-accumulating tank 

5, Condensate tank 

6. After-condenser 

7, Condensed exit vapor tank 

The major components are supplemented by the necessary cooling-water 

metering devices, temperature measuring instruments, thermocouple elements, 

and electrical power measuring instruments, 



22 

All sections of the equipment containing vapor were insulated. A 

schematic diagram of the equipment is shown in Plate III and details of 

components and their construction are given in (15), (16), and (11). 

Modifications are given in Appendix C. 

The vapor from_the vapor generator rose vertically approximately fiye 

feet'before entering a horizontal condensing section. In this condensing 

section, the fluid first passed through a three foot double-pipe pre- 

condenser where the liquid loading was controlled by partial condensation. 

The amount of partial condensation was measured by the pre-accumulating 

tank, In order to make sure that all condensate was measured by the tank a 

trap and a by-pass pipe were used at the end of the pre-condenser. The 

flow then passed through a six-inch test section where all condensing 

coefficients were measured by a Copper-Bismuth heatmeter. Two sight glasses 

before and after the test section provide an observation of the flow pattern. 

The exit flow from the test section was separated into vapor and,con- 

densate so that all the condensate was accumulated in the condensate tank, 

The vapor then passed through the after-condenser and accumulated in the 

condensed vapor tank. After measurement, the condensate in the three tanks 

Was returned to the vapor generator. All valves on the three tanks were 

open except when the measurement was taken. Heat input to the system was 

measured by a wattmeter. 

Three water tanks were divided so that the cooling water rate to the 

pre-condenser, the test section, and the after-condenser could be measured 

simultaneously. A Copper-Bismuth heatmeter was used for the test section. 

Details of the construction and method of measurement are given in Appendix 

C. The heatmeter was divided into four segments so that the circumferential 

temperature profile could be obtained. However, the axial temperature profile 

along the test section could not be determined. 



EIPLANATION OF PLATE III 

Schematic diagram of experimental apparatus and System 

Legend: 

A: generator 

B: superheater 

C: precondenser 

D: preaccumulating tank 

E: sight glass 

F: test section 

G: condensate tank 

H: after-condenser 

J: condensed vapor tank 

1111h 

: thermocouple 

: valve 

0 : pressure gauge 

pressure control gauge 

cooling water flow direction 



1\ild 
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Temperatures throughout the system were measured with a potentiometer 

and included: 

1. Superheater temperature 

2. Superheater exit temperature 

3. Inlet vapor and condensate temperature 

4. Outlet vapor and condensate temperature 

5. Condensate vapor temperature in each tank 

6. Inlet and outlet cooling water temperatures for the pre- and after- 

condenser and test section 

7. Individual reference temperature and temperature difference of the 

middle four and two end segments of the heat-meter 

The pressure of the system was measured by three pressure gauges at the 

generator, the test section, and the condensate tank. The pressure gauge line 

at the test section was heated by electric heater to keep the vapor in the 

line from condensing. 

Operation of Equipment 

Charging Procedure. The system was evacuated with a vacuum pump. Freon 

12 was then sucked into the system. A torch was used to heat the outside of 

the Freon 12 tank to aid in charging the system. Since the density of air is 

less than that of Freon 12, a valve at the top of the system was then opened 

to allow some Freon 12 to flow out thereby removing any air which had not 

been evacuated by the pump. 

Running Procedure, Before each run, the cooling water rate was adjusted 

to the desired rate. The heat input was then adjusted to generate the de- 

sired vapor flow rate. All measurements were taken after an hour's operation 

to reach a steady state. However, after-th-e initial run, only forty -five 

minutes would be required to reach a steady state. Room temperature, heat 
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input, boiler_ pressure, and cooling water rate were first recorded. In order 

to obtain a steady state, the level of each Freon tank was read one at a 

time, so that the pressure throughout the system would not be affected by 

closing the valves of the Freon tank. After the liquid level had been read, 

the valve was then opened to let the condensate return to the generator. A 

level should be maintained in the generator such that the heater is not in 

contact with the Freon vapor. It was found that when the heater in the 

generator was exposed to the Freon vapor, a white film would be formed on 

the sight glasses. The flow pattern observed in the sight glass was re- 

corded after all thermocouples and heat meter readings had been taken. 

A typical sample calculation is given in the Appendix D. 

EXPERIMENTAL RESULTS 

Nine runs of data were taken using the present system. These data are 

all in the region of high flow rate. That is, wave flow, mist-wave, in- 

complete annular, and mist-annular flow. The data with the data of Sun (11) 

and Rosson (8) provide a wide range of Reynolds number and various vapor-liquid 

ratios for comparison. The data and results are summarized in the Appendix B. 

The resulting circumferential temperature profiles in the test section 

for typical flow patterns are plotted in Plate V. The temperature difference 

between top and bottom of the tube may be as high as six degrees Fahrenheit 

in wave, stratified, and incomplete annular flow patterns. However, in the 

mist-annular flow pattern, as may be expected, the temperature difference 

may be as low as one or two degrees Fahrenheit. 

The pressure ranged from 65 psig to 144 psig. The temperature across 

the film from 3.39 to 27.25 degree in Fahrenheit. -flow rates of 

Freon 12 vapor are from 14,820 to 197.200 pound mass per hour per foot square. 



EXPLANATION OF PLATE IV 

Relation of the average film coefficient of heat transfer hm, 

to the Freon vapor mass flow rate, G 

Legend: 

Present data 

CD : Sun's data (11) 
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The resulting heat transfer coefficients are plotted against mass flow rate 

in plate IV. The pressure drop in the test section was not observed since 

the length of heat meter was only six inches. 

VERIFICATION OF ANALYSIS 

From Equation (24) it is suggested that the correlation of Nusselt's 

number may take the form for turbulent flow, 

- 1/3 1/3 47, , 

C 

to , 

N 
ul 

= constant ("77) (P 
rl 

) k ) 

r A T 

Uhere N is 1/3 or an undetermined constant. Since the exponent of 

-1/3 
Reynolds number is unknown, the data were first plotted as N 

ulPrl 

h.. -1/3 
(1 

C T) 
against Reynolds number in Plate V10 Fairly good agreement with 

--P 

the data is shown. For the purpose of comparison, Akers and Rossongs equation 

and data were replotted in Plate VII, Sun's equation was plotted in Plate VIII. 

Considerable scattering occurs in Plate VIII, Sun's equation has an 

error deviation of 30 per cent. This deviation is apparently caused by neglecting 
h 

__ fa_ the factor of thermal potential, . The same data plotted in Plate VI 

p 

using the present analysis shows much better correlation. On the other hand, 

Akers and Rosson's equation exhibits a better correlation having only 20 

per cent of deviation. Nevertheless, Akers and Rosson used two equations 

with different constants and different exponents and defined Reynolds number 

D G el 1/2 
as N 

re 
= (--=) . That is with N 

re 
in the range 1,000 to 20,000, 

rA 1 

Nusselt's number is given by 

= 13.3 (P 
1/3 h 

fq 
1/6 0.2 

Nut 
rl 

) 

C 4.T 
) (N 

re 
) 



EXPLANATION OF PLATE V 

Circumferentin1 temperature profile of 

the tube surface in the test section 

Fig. 10 stratified_flow (RutiNo. 8) 

Fig. 2. wave flow (Run No. 2) 

Fig. 3. incomplete annular flow (Run_No. 5) 

Fig. 4. mist-annular flow (Run No.. 4) 
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EXPLANATION OF PLATE VI 

h -1/3 

Nul 
P 
rl 

-1/3 
1C 
--r-g--N VS, correlation of ' 

/A1 

Freon 12 and Methanol by theoretical derivation in this 

report. 

Legend: 0 Freon 12 

0 Freon 12 (11) 

0 Methanol (8) 
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EXPLANATION OF PLATE VIII 

D 
Gm 

N -AT- correlation of Freon 12 by Sun (11) 
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rg 20,000 to 100,000, Nusselt number is given by 

1/3 1-14. 1/6 0.67 

N 
ul 

= 0 
' 

1 (P 
rl 

) ( --=2 -) (N 
re 

) 

p 
C 

The theoretically derived exponent for the Reynolds number in Equation 

C24) was used to plot the data shown in date IX, When the constant of the 

Equation (24) was calculated by least square method the equation becomes 

1/3 
41- 

1/3 1/3 h 

N 
ul 

= 5,8718 (77-i- (Pr 
1) 

(C 8 T ) 

/41 

This equation has a deviation of 11 per cent, This Is normally con- 

sidered as a satisfactory correlation. The equation may also apply a range 

of Reynolds numbers from 80 to 20,000 which is equal to the range of the defined 

Reynolds number Nre by Akers ,And Rosson of approximately 800 to 200,000, since 

1/2 

( e 1/e v) is of the order of ten. 

In the derivation of the equation it was shown that letting B' of 

Equation (22) be a constant was rather complicated, The most unstable 
0 

factor in the term B' is the distance factor L and D. The plotted data in 

?late IX were taken from Sun (11) and Rosson (8) in addition to the data taken 

from the present system, Sun used 2,5 feet of test section and Rosson used 

one foot while the present system employed six inch of heat meter, Therefore 

the equation is not affected by the different length at least in the range 

of six inches to 2.5 feet, 

CONCLUSIONS 

A semi-theoretical equation for the heat transfer coefficient for 

Freon 12 and Methanol condensing inside a horizontal tube was found to correlate 

experimental data with a maximum deviation of 11 per cent. The equation is: 



EXPLANATION OF PLATE IX 

h -1/3 

Nui rl 
-1/3 

Cp 

' VS. 4..a,_)1/3 correlation 

of Freon 12 and Methanol by theoretically derived exponent to the 

Reynolds number. 

Legend: C) : Freon 12 

CD : Freon 12 (11) 

0 : Methanol (8) 

maximum deviation of line of 11% 
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t7 1/3 1/3 h, 1/3 

N 
ul 

= 5.8718 (1 -) (P 
rl 

) ( 
C 

-) 

P1 

The equation was found to be independent of tube length in the range of 

six inches to 2.5 feet; for pressures in the range from 12 psig to 151 psig; 

for two fluids, Freon 12 and Methanol; and for temperature drops through 

the condensate film of from 4.29 deg. F to 52.7 deg. 

The flow patterns used in the experimental verification included 

stratified, wave, mist-wave, incomplete annular, and mist-annular flow. In 

other words, as long as the vapor phase was continuous, the equation was 

4r 
applicable for Reynolds numbers (77-) from 80 to 20,000. 

/-1 

SUGGESTIONS 

1. The conventional method of determining the transition from laminar 

to turbulent flow by Reynolds number alone should be reconsidered for two - 

phase condensing flow. From the diagrams of two-phase flow patterns it is 

shown that the range of stratified flow is not only a function of velocity but 

also a function of vapor-liquid volume ratio. Therefore, for two-phase con- 

densing flow it seems that in addition to Reynolds number, the vapor-liquid 

ratio should be introduced to determine the transition of laminar flow to 

turbulent flow. 

2. Replotting Sun's data for Freon 12 using equation shows that these 

data can be better correlated. Since 60 data of Hwang (16) and Patel (15) 

are available, it is suggested that these data be recalculated with the 

present equation. 

3. To study the pressure drop of two-phase condensing flow, the use 

of a two-phase Stanton number is proposed. The Stanton number to be defined 

as follows: 
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for fixed two-phase flow 
_'_... 

N 
u 2 1 

St - 

-V 

(..1 ) 

tf R 
e 

P 
rl v 

for variable two-phase flow such as condensation 

St - 
tv 4 T- 

11 A Prl C-C 12- 
4'T ) 

p 

Nu 
li; 

4. A study of the vapor-liquid interface being concave upward when the 

velocity of vapor is increased is proposed. An effort to derive a function 

which would relate the vapor velocity with the shape of the interface was 

attempted. Although not successful the relation appears to be a combination 

of trigonometric and elliptic functions. 
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APPENDIX A 

Properties of Freon 12 

(Dichlorodifluoromethane) 

Fig. A-1 Heat Capacity Btu/lbm F 

vs. Temperature F. 

Fig. A-2 Thermal Conductivity Btu/hr ft F 

vs. Temperature F. 

Fig. A-3 Latent Heat of Vaporization Btu/lbm 

vs. Temperature F. 

Fig. A-4 Density of Saturation lbm/ft3 

vs. Temperature F. 

Fig. A-5 Viscosity lbm/hr ft 

vs. Temperature F. 
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Appendix B. Summary nf Freon data 

a : Vapor : Temp drop : 

: Boiler : Vapor : Condensate : (condensed) : across the: Total mass : Film : transfer 
Run : Pressure : Temp. : flow rate : flow rate : film : flow rate : Temp. : coeffiient; Note 
No. psig ; Deg. f Ft5Ar FO/hr : Deg. F : lb /hr Deg. f : Btu/ft hrF * 

1. 65 72,66 0 0.2605 7.36 23.75 68.77 372 

2. 69 70 1.03 0.775 4.29 233 67.85 680 

3. 90.3 83.7 0.788 1.72 9,4 202.3 79 600 

4. 109 93.9 1.28 2.382 13.37 289,9 87.22 568 

5. 144 113.5 1.26 2.245 25.57 269.5 100.68 423 

6. 132 106,6 0.912 1.88 19.77 218 96.79 516 

7, 138 116.06 0.7 0.217 27.25 71 99.3 259 

8. 104 90.7 0.88 0.463 17.6 107.2 86.71 486 

9, 97 96 0.557 0.543 15.56 88.9 88.22 509.2 

W Wave flow 

A Annular flow 

IA Incomplete annular flow 

S Stratified 

M Mist wave flow 

* All observed flow patterns were taken from the 
outlet sight glass. 

A 

A 

IA 

IA 

S 

MJ 
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APPENDIX C 

Copper-Bismuth Heatmeter 

A copper-bismuth heatmeter was employed as a test section in this 

investigation. The main advantages of the heatmeter are as follows: 

1. The heatmeter measures heat flux directly. 

2. It is not necessary to insert thermocouples into the test 

section. The pattern of the condensing flow is therefore not disturbed.. 

3. The heatmeter is able to measure more precisely the surface 

temperature of the tube. 

4. The heatmeter may be cut into many segments along an axial line 

to provide a means for determining the circumferential temperature profile. 

The copper-bismuth heatmeter is based upon the same principle as the 

conventional thermocouple. It is a composite cylinder consisting of three 

metallic layers (copper-bismuth-copper) which form an infinite number of 

thermocouples connected in parallel. When heat flows through these layers 

as a result of a temperature difference existing at the interfaces, a 

thermoelectric potential (the Seebeck Emf) is developed. The relation be- 

tween the interface temperature and the developed Emf is represented by the 

equation: (10) 

Emf = (T-32) t 1/2 B 
2 
(T-32) 

2 
- Bi (T9-32) - 1/2 B 

2 
(T9-32) 

2 
(C-1) 

where T = Hotside interface temperature, in F 

T' = Cold-side interface temperature, in F 

and B and B 
2 

are constants dependent upon the metals used. For copper-bismuth 

is 0,0258 my /F, and B2 is 0.0001488mv/F. The Emf output has been computed 

for a wide range of temperatures by using an IBM 650 digital computer and the 

results are shown in the accompanying chart, SOAP II program are also 
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included in the Appendix. These theoretical values were found to be within 

5 per cent by actual calibration of the 
heat meter. 

When the temperature difference between the interfaces and conductivity 

of the intervening metal (Km) are known, the heat flux can be evaluated by 

the equation: 

2 L K 
m 
(TT) 

Q in (D /D.) 

wheropoisoutsidediameterandD.is inside diameter. 

The inner tube surface temperature (T 
141' 

) may be obtained by using the same 

equation above since the heat flux through the inner copper tube will be the 

same as that through the bismuth. 

The heatmeter used in this investigation is six inches in length with an 

inner diameter of 5/8 inches and outer diameter of one inch. The copper 

tubes are of hard (L) type copper tubing manufactured by Lewin Mathe Company 

with a purity of 99,9 per cent. The intermediate layer, bismuth was purchased 

from the Fisher Scientific Company of St. Louis, Missouri, with a purity of 

99,98 per cent. 

The procedure followed in constructing the heatmeter was to make an alu- 

minum base on which the two copper tubes may be held in a concentric position. 

The base and tubes were then set in a vertical position in a sand filled 

container. Before the liquid bismuth poured into the annular space between 

the two tubes, solder flux was applied and the sand was heated up to 350 

degrees F. After the liquid bismuth was poured, the base and the tubes and 

the base were held for 24 hours to let free cooling to prevent bubble formation 

in the bismuth. Also after it had been removed from the aluminum base, an 

x-ray photograph of the heatmeter was made. The heatmeter was then cut into 
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desired shape as shown in Plate X. The final assembly is shown in 

plate XI. The meter was calibrated by running hot water inside the heatmeter 

nnd cooling water outside. The heat flux measured by the meter checked 

the heat flux calculated from the cooling water flow rate and temperature 

difference within 5 per cent. 

To calculate the heat transfer coefficient, the amount of heat 

transferred through the heatmeter is equal to the heat transfer across the 

condensate film or 

h A4AT, 
I In D /D. 

1 

21r L T, 

where A is the inner surface area of the test section, 4iTf is the tempera- 

ture difference between vapor and tube walleaTb is the temperature difference 

between hot side and cold side interface of the copper-bismuth heatmeter, and 

D 
o 

and D. are outside and inside diameter of the bismuth layer of the heatmeter. 

Since the heatmeter employs water as the coolant, the temperature of 

the bismuth layer is always in the range of 60 to 150 degrees Fahrenheit. 

As reported by Hsu (10), the thermal conductivity of the bismuth layer may 

be considered as a constant equal to 4.7 ETU/hr ft F. Therefore, the final 

equation for the heat transfer coefficient is: 

h = 

2 x 3.1416 x 4,7x Lx 

1 1 1 

T, 
z lz 1n5/6 I 

re, z1Tb 

- 480 - BTU/HE FT 
2F 

z1T, 



A SOAP II program for Eq(C-1) is as follows: 

I START I 

1877 

(T'-32)4. f7"(T'-32)2 P3 

Dumas 

TM 1927A 

(TM-32)04-1 
2 

2 
(TM-32) 

2 
- P3 1928A 

yes 

PCH 1977 

TM= 0 TM 

T' 
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13 
48 51 5 

Location OP, D, Address In Address 

BLR 1800 1999 

SYN START 1999 

START RAU TR 
STU 1830 
PCH 1830 
PCH 1977 
FS3 T32 
STU P1 

FMP S1 
STU P2 
RAU P1 
FMP 8003 
FMP S2 
FDV TWO 
FAD P2 
STU P3 
RSB 0200 HT4 

HT4 RSA 0008 HT1 
HT1 RAU 

FSB TR 
STU 1935 A 
RAU TM 
FSB T32 
STU P4 
FMP Si 
STU P5 
RAU P4 
FMP 8003 
FMP S2 
FDV TWO 
FAD P5 
FSB P3 
STU 1936 A 
AXA 0002 
NZA OUT 
RAU TM 
FAD ONE 
STU TM HTI 

OUT PCH 1927 
AXB 0004 
NZB HT9 HT3 

r,T3 PCH 1977 
RAU TR 

FAD TWO 
STU TR 
STU TM START 

HT2 RAU TM 
FAD ONE 
STU TM HT4 

T32 32 0000 0052 
S1 25 8000 0049 
S2 14 8800 0047 
TWO 20 0000 0051 
ONE 10 0000 0051 



EXPLANATION OF PLATE X 

Circuits of Copper-Bismuth Heatmeter 
and its segments 

Legend: 
o : Junction 

T1 Reference temperature 

: Potentiometer 



PLATE 



EXPLANATION OF PLATE XI 

Schematic diagram of Copper Bismuth heatmeter 

Legend: W: Cooling water 

Bi: Bismuth layer 

R: Rubber gasket 

V: Vapor 
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APPENDIX D 

SAMPLE CALCULATION 

2.'n No. 5 

The-average temperature of vapor in the test section 

T in 4. T 
v 

out 
114,17 -4- 112,784 

- 113.477 deg. F 
2 2 

The average temperature of the inner surface is Ts = 87.95 deg. F. 

The average temperature drop of the heatmeter is Ts - = 22.47 deg. F. 

The average temperature drop across the condensate film is Tv - Ts = 

113.477-87.95 = 25.527 deg. F. 

Heat transfer coefficient is then 

h = 480 x 22.47/25.527 = 423 BTU/HR FT2F 

To evaluate the properties of the condensate, the film temperature should 

be used. The average film temperature is 

Tv + Ts 
113477-1-87.95 

Tf - - 
2 

100.763 deg. F. 

Then Viscosity/Ai = 0.586 ibm /ft hr 

Specific volume vl = 0.013 Ft3 /ibm 

Specific heat C = 0.2665 BTU/lb F 

Latent heat h 
fg 

= 55.08 BTU/lb 
m 

Prandti number P 
rl 

= 3.5 

Thermal conductivity K1 = 0.0463 BTU/hr Ft F 

the pressure in the system = 144 prig, total flow rate = 3.506 Ft 
3 
/hr. Tube 

diameter is one half inch. 

mass flow rate W 
t 

3.506/0.013 = 269.5 ibm /hr. 
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4 r 4 Wt 
= 1.4x10 4 

itA1 n DiAt 

hf 
Thermal potential is c---"27, = 5508/0.2665 0 25.577 = 8.05 

p f 

Nusselt number NO. 
h - 

K 

D 
= 423 0.0417/0.0463 = 380 

1 
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APPENDIX E 

Nomenclature 

area, ft 
2 

constant 

constant or gas percentage 

c constant defined in Equation (11) 

diameter ft 

constant 

fanning factor 

Gg gas flow rate by volume /hr 

G 
1 

h 
fg 

liquid flow rate by volume ft 
3 Ar 

latent heat BTU/lbm 

h heat transfer coefficient BTU/hr ft2F 

K 
I 

thermal conductivity of condensate BTU/hr ft F 

K' correction factor for low Prantl number 

k constant defined in eddy viscosity 

tube or plate length, ft.. 

n constant or exponential constant 

Q heat flux BTU per hr, 

R radius, ft, or inch. 

temperature deg. in Fahrenheit 

vapor velocity in the boundary layer; u free stream velocity 

up vapor liquid,interface velocity; um mean vapor velocity in a tube 

condensate velocity 

V relative velocity of vapor to the interface velocity 110 



mass flow rate of vapor or condensate lbm/hr. 

X distance from the edge of plate or tube,ft. 

y vertical distance from the tube wall or plate, ft. 

vertical distance from the condensate to the vapor boundary layer, ft. 

specific heat, BTU per lb. per deg. F. 

N 
u 

Nusselt number 

N_ Reynolds number defined by Akers and Rosson 

R 
e 

Reynolds number 

Pr Prantl number 

Greek Letters 

41- 
mass flow rate W/DTT defined in Reynolds number --- 

I'll 

thickness of vapor boundary layer, ft. 

difference, or thickness of condensate film, ft. 

Gy4 eddy viscosity, ft 
2 
/hr. 

dynamic viscosity, lb. per ft 
2 

per hr. 

kinematic viscosity, ft 
2 

per hr. 

density, lb per iii. 
- 

9 
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In this report an effort was made to determine a consistent equation for 

correlation and determination of condensing heat transfer coefficients in a 

horizontal tube by considering the effect of shear force at vapor-liquid 

interface. In order to understand the condensing flow in a horizontal tube, 

an analysis of general two-phase flow patterns was included. A semi-

theoretical equation for the heat transfer coefficient was found to 

correlate experimental data with a maximum deviation of 11 per cent. The 

equation is: 

The equation was found to be independent of tube length in the range of 

six inches to 2.5 feet; for pressures in the range from 12 psig to 151 psig; 

for two fluids, Freon 12 and Methanol, and for temperature drops through the 

condensate film of from 4.29 deg. F to 52.7 deg. F. 

The flow, patterns used in the experimental verification included stratified, 

wave, mist-wave, incomplete-annular, and mist-annular flow. Also the equation 

was applicable for Reynolds numbers, , from 80 to 20,000. 


