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Chapter 1
INTRODUCTION
1. What is the problem?

Let us denote the characteristic polynomial of an xn matrix A by

- n b1l - n—l _ n-2 _ _
(-1 [x PIA PZA Pn]-O.

Then it can be easily verified that the characteristic polynomial of the

matrix
Pl Pz . e Pn__l Pn
1 0 ll.. O 0
0 1 « e 0 0
Ll =
0 0 .. 1 0
'01'.'
0 0 LI ] 0 P :
n
l 0 L} 0 Pn-l
LZ = 0] 1 s 0 Pn_2
0 0 1 P1

is identical to the characteristic polynomial of A, The matrix L1 (or LZ)

is called the companion matrix of the characteristic polynomial of A,



It is very natural to ask whether Ll(or LZ) is similar to A. Sup-
pose the matrix A has distinct eigenvalues ll,..., An’ then we know
that A is similar to diag (Ai) and it can be shown that in this case
diag (Ai) is similar to the companiqn matrix. (The préof is omitted).
Suppose there are some multiple eigenvalues and that A has more than

one independent eigenvector corresponding to A., then it can not be

i?
similar to Ll' For a matrix to be similar to the companion matrix of its
characteristic polynomial, it is necessary that its Jordan canonical

form should have only one Jordan submatrix associatéd with each distinct
eigenvalue.

A matrix is called "derogatory'" if there is more than one Jordan sub-
matrix (and therefore more than one eigenﬁector) associated with A, for
some i. Such a derogatory matrix cannot be similar to the companion
matrix of its characteristic polynomial, and we now investigate the
canonical form analogous to the companion form for a derogatory matrix.

In other words, our problem is to identify the canonical form analogous
to the companion form for a general matrix (derogatory or not derogatory),
and to develop the similarity transformation between A and its "analogous"

companion matrix. Such a similarity transformation can be derived from

the Gauss elimination operator.

2. Review of Literature.
By defining a Frobenius matrix Br of order r to be a matrix of the

form



B B omie By By

1 0 .. 0 0
Br= 0 1 *he 0 0 ]

o 0 10

the fundamental theorem for general matrices may be expressed in the fol-

lowing form:
Every matrix A may be reduced by a similarity transformation to the
direct sum of a number S of Frobenius matrices which may be denoted by

B, » B s ... B where the characteristic polynomial of each Br divides
1 2 S . i

the characteristic polynomial of all the preceding B, . In the case of
a non-derogatory matrix S = 1 and r, = n. ’

The proof for the existence of the Frobenius canonical form is omitted.
The important thing we wish to discﬁss is how we can reduce the matrix A
to the Frobenius canonical form" and what kind of similarity transformation
is most convenient for computing. -

A two-stage reduction of a general matrix A to Frobenius form has
been described by J.H. Wilkinson [Ref, 1].
Stage 1. A is reduced to upper Hessenberg form H.by stabilized

elementary transformations.

Stage 2. H is reduced to Frobenius form by non-stabilized elementary

transformations.

*
The direct sum of the Frobenius matrices is called the Frobenius canonical
form.



Danilewski [Ref. 2] combined these two stages to form a method

consisting of n-1 steps.

3. What is the new approach?

In this thesis, a different approach is being developed., We propose
a canonical form analogous td the companion form for a general matrix tﬁat
consists not only of a direct sﬁm of a number S of Frobenius matrices but
also some hadditional" coefficients in some corresponding rows. That is

L*, as follows

rl 12 13 14 e 1s
Br2 Cog €4 +»+ Gy
Dr3 F34 ot F3S
L* _ ) Br4 40 Ct‘s )
4} Sae :
* Cs—l s
B_
T
. 8

where Br is a Frobenius matrix with order s

is the zero matrix except for the first row which may
contain nonzero entries,

D_ is an upper tridiagonal matrix,

F,., is an arbitrary matrix.



It is a more generalized case than the Frobenius canonical form in
the previous fundamental theorem which may be a special case when all
the Cij;Dr and Fij are all zeroc and the characteristic polynomial of

ik '

each Br divides the characteristic polynomial of all the preceding Br
i j j

We claim the fundamental theorem for géneral matrices may be exXpres-
sed in the following form. |

Theorem 1.1: Every matrix A may be reduced by a similarity trans-
formation to the matrix L¥* (L* is the matrix étated above). In addition,
such a similarity transformation can be derived from "modified" Gauss

elimination operétor.

The proof for the existence of the fundamental theorem and the de-
velopment of such a similarity transformation will be described in the

next chapter.



Chapter 2
ALGORITHMS

1. Development of a special similarity transformation.
It has been mentioned in Chapter 1 that a similarity transformation
can be derived from the "modified" Gauss elimination operator.
Let us review some interesting properties of Gauss elimination. Definé

(1)- A E.(aij) to be a given matrix and

Xy . , X)
{(2) A = (aij Vs

For K = 1 we have A(l) = A, and the elements in (2) for K = 2,3, ...,n
are computed recu -‘'vely by

r

gib-1) . for i < K-1,
ij . -
(3 aiﬁ) = <0 .- fori>K, j <K-1,
(K-1)
(R-1) _ “i,R-1 (K-1)
aij -?E:Ty—m aK—i,j fori > K, j 2K
-1,K-1

\

The resulting coefficient matrix has the form:



(1) (1) (1) (1) (1) L
Mi 42 a8y e By e ain)
(2) (2) (23 . (2) (2)
O @y @3 e By A v Ay
®D* ®1D (k1)
A% - a-1,K-1 3K-1,K s
(). (K)
0 0y e g
(K) (K)
0 20K PER P

In terms of an operator to reduce ACK"l) to A(K), it is

K-1th column
1 0

1 0
1

_ (K”l)/ (K_l>

k-1 3k-1,K-1
(4) AE-1) (X)

M|
>

L&D, (R-D)
A1 k-1 %-1,K-1

(K-1) ,_(K-1)
"8 k-172 k-1 ,Kk-1 1

Usually the matrix on the left side of equation (4) is called
the Gauss elimination operator, (Note: Because the coefficients of

: ; . K-1 ; ;
this matrix depend on the matrix A( ), we call it an "operator" instead

of a "transformation").

* {K-1 . . ' K- K .
aiKl 3 1 8 the pivot element when we reduce A( D to A( ); this element
~1,K- :

can not be zero.



Along the elimination idea, the Gaﬁss.elimination operator can be
extended in three ways:

1. The (K-1)th column can be defined to eliminate above the diagonal
element as well as below,

2. The pivot element is not necessarily restricted to the diagonal
element which is aéf;f;_l
the (K-1)th column of A(K_l).

in the above matrix, but can be any element in

3. The modified (K-1)th column can replace any column in the identity
matrix.
Let us call.the modified matrix a modified Gauss elimination oper-

ator on an arbitrary matrix A which is given by

i - Ay /a.K:.|

Lo eyyleg

I - ' :
EK,A . prqv1ded aKj # 0.

K~th column

Note: The nonzero column is derived from thé j-th column of A,
but is put in the K-th column of the elimination operator.

Note: Subscript A in E% A will be omitted if no confusion occurs.
3 E

Fi can also be defined as



i 1 T T
Ed =1 + = (e, e, —A) e, e
K- o7 “k &4 i %k

where T dencotes transpose,
T
g = [l 05 G5 ¢os 05 Ly Oy sun 0 J[, omd

K-th
l1<j,K=<n.

Several properties of the operator Ei will be examined in the fol-
lowing discussion.

Theorem 2.1: The inverse of Eg, denoted by (E%)ﬁl, exists and is

equal to -
T T ,
In + (A - ey ej) ej ey s 1% 4y B < m.
; I ~dandy o - T T L T _ I
Proof: (EK) (EK) (In + (A ey ej) e; EK)(In + o (eK e; A)ej eK)
T T 1 T T
=1 +(A-e,e,)e, e, +— (e,e, - A) e, e
by K K . K K
N 24 3 J
1 T T T T
+ ;;; (A - e ej) ej ex (eK ej - A) ej ex
T 1 T
=1 +a, e, —e, e +—e¢g - ——— 3, 8
n %%k T % s s K
aKJ g 3
1 T T
+ ;Eg (aj ey = ey e + a,j(eK aj) ex

Note: a; means the ith column of matrix A and

a, . means the element in the (K,j) position of matrix A.
]



Prop. 1: E}i ei = ei when i # K
1
=e +— (e, - a,) ‘when i = K,
K . K
3K J
s j = ._._].'_ -— T
Proof: EK e (In + aKj_(eK e A) ej eK} e,
=1 ey +-—l— (eK e, — A) ej GK.
23 i 1
In e; = e for i # K
I e +-—l— (e, - a )- for i = K
n K aKj K j :
P . 23 3 =
rop E aJ ey
i 1 T T
P f: E = [I + —— e, - A e, e a,
roo R 2 [1, e (eK 3 ) ;i K] 5

L o B
aj + aKj (eK ej A) éj aKj

T
+ eK(ej ej) - aj

a

3

= eK'

Note: Prop.2 shows that E% will reduce the j-th column of A to ey

Prop.3: A(Eé)-l

Proof: A(Eg)-l = AT+ (& - e e?) ey eE)'

, ,
= (al, B3y vers Ap_ps (A) ej, Bpagr tev anl

10
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T T T
A +-A(Aej) ex AeK (ej ej) ey

' 2 T T
A+ (AT ej e ~ a ey

- 2 '
= (al, 82, .'.:, aK_l: (A) ej, B.K_I_l, teay an).

Note: Prop. 3 shows that if A is multiplied by (Eg)"l on the
right, it replaces the K-th column of A by the j-th column

of A2 and does not change the other columns.

Theorem 2.2: If K # j and aKj # 0 then

Eg,A* xA<E§’A>‘1J-= zﬂg,A A <Eg,A¢>*1
heFe AW A(Eg A)”l gad a7 = Ei LA

E% A% and Ej + are modified Gauss elimination oper-
9’ . K,A

ator defined on A* and A* respectively.

Before proving Theorem 2.2, we prove the following Lemma 2.1.

Lemma 2.1: If K # j and aKj # 0 then

J - ] (pd .|.._l'___ J -1
Eg ax = Fi 5 and (B, 4 (Bg.a)

-1 and A* = Ej A it follows that

. % = j
Proof: Since A A (EK,A) K, A

(A*)j = (A)j = a, by Prop. 3.
v o (pd -
W5 = Ga ¥y 7%

Then by the definition of E% and (Eé)"l we have



J e j j + -1 = Ej .
By ax = By p and (B 4+ (B, o)

Proof of Theorem 2.2: Lemma 2.1 immediately shows us that

-1

J
Ey X, Ak {A(EK R

-}, [acd ) - [Ej L Al cEj R

X,A [E A](E

_ Note: It follows that Eﬂ (subscript A is omitted) can be de-

fined as a similarity transformation with inverse matrix

(E%)"1 when K # j and a5 ¢ 0.

12

+)'l

Corollary 2.2: (E] gK)(E%)_l =&l A2 e
Proof:
'Ei,A* [ACEY A)_l]
[5) - & aeh™
) Rty s e ey S ey (Aﬁz,ej, Beyqs vees 8)
B (EK 1%t E% j i’ O B K Bip1r t E% A’ €50 aK+1 i
[Eg,A A](Ei,A+)_l
[6] - 5] , a7
= (E] 4y ives Ej a1 éK’ 5 Bi4pr v

] 3 Jy=Ll ]
By agops (Bpad (BR) 7, Ep apygs «oes By 30
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It follows that

i -1 3 jo-1,.
(Bg ap) (EIJ{) = Eplap (B) ™)
i 2

= EK (A) ej

since Theorem 2.2 implies that (6) is identical to (5)

Note: The proof of Corollary 2.2 also shows us that the j-th
' " -1 z
column of A is replaced b and J = (&) e,.
P Y e a, (Eg) CONS
Until now it was natural to consider E% as a transformation instead of
an operator. We now use Eg to define a similarity transformation which
we will use to prove our fundamental theorem and to get a method for

solving pratical problems.

2, "Analogous" companion matrix reducing process.

Some more properties are necessary before the reducing process is
j )
K
that K # j and aKj # 0 hold.

"introduced. Whenever we use E; in the following discussion, we assume

Lemma 2.2: If the j~th column of matrix A is ey» then the j-th

column of matrix
s s.~1
Er A(Er)
is also ex whenever r # K and r # s.

s s,-1
Proof: Er A(Er)

_ B : ' 8, ~1
=E (aj, a5, .oy ai1s €g» aj+l’ T3 an)(Er)
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_ B ‘ 2
__Er (al, Byy eues aj_l, ey aj+l’ sees B g5 (A™) e s B s 1y an)

- s s s
B (Er Ags By Bos wwig By Bi-10 %o B Si+1 "t

s
a e
r s-1* 1’

s s A% e , E £ a).

S s, _
8 r “r+l* """ Tr Tn

B r %s+1°?

Note: Lemma 2.2 shows us that if we define such a similarity trans-
formation twice with r # K, r # s and K # j, then A will be
reduced to a matrix with two unit vectors, ex in the j-th

columm and es in the r-th column.

Theorem 2.3: For any square matrix A, there exists a sequence of
successive similarity transformations which are defined using the modified

Gauss elimination operator and reduce A to L** where L#%% has the following

form:
rl . .
B Bp By Ry m M
L2 B m H
g FPag Hyy ree Hyg
D Hy ... Hy
3
r
L** = 4
L o H,
0 * 89
s
Ly

r
where in is a L2 matrix with order ri,
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Hij is a zero matrix except for the last column which may
contain nonzero entries,

D is an upper tridiagonal matrix,

F is an arbitrary matrix.

Note: L** and L* have the same characteristic polynomial., When

L** just has the first block that means L** = L,

Proof: The sequence order of pivots is (2,1), (3,2), ...,

(K+i,K) e.. (n,n-1) where we define EE+1 Ag—l on AK_l. Here A° denotes
3

the original A.

Case 1: 1If (AK'1> # 0 for K=1, 2, 3, +v.e, n-1

K+1,K

then El A° (El )_l = (e,, al, al o u al) = Al at the first step, and
) o 2 2 3 “n
ek 2,A
K K-1 K -1 K K
E B A (E _) =(e sy » 3 sty a)
e g1, 2571 2 ®R+1° ¥R+l n

AK at the K-th step. For

K=n -1, the last step, we have

-1

n-1 n=2 ,.m-1 )
2

E A (E o
n,AP

n—l)
n’Ap~2

= (ez, s srey €5 8

That is, we reach L*¥* with L*% = L,

Case 2: If there exists some zero pivot element which occurs after

the K-th reduction operation, that is

K-1

(A 0.

Yet1 Kk "

Then we check the rest of the coefficients in the K-th column to see if

= 0, p 5 2,3, "0 ey n_kn



Case 2.1: If there exists some p' such that

K-1

(a # 0

)K+p',K
then we move this nonzero element to the (K+1,K) position by applying
an elementary transformation which consists of a permutation matrix.
The rest of the proof is the s;me as in Case 1.

Case 2,2: But if

K-1

(A ) = 0: P’ = 2,33 reey I'l"'K,

K+p', K
then we skip to search the next column, i.e. replace K by K' = K+1 and

see if the elements of the matrix

(k'

K'4p, X' # 0 for somep = 1,2, ..., n-K,

If so, go to Case 2.1; else, repeat Case 2.2 and terminate searching

n-2

at (A° 7) Finally we will get L#*%¥,

n,n-1" |
There is another way to define a modified Gauss elimination oper-

ator by the rows of any square matrix A, Let us call this method the

second modified Gauss elimination operator given by

jth column
1 0 0
0 1
1
%j- - . -
LA
“%1 T2 1 “%n
%y %Ki % i
0 1

16



Then, the inverse of R% A is
3

1 0
0 1 0
J -1 . :
( ) o=
R T R
1l
0 . 1

and we can define a similarity transformation by the same approach as

before, that is |
(R%)-l ARi, if K# 3 and a4 #0
J

and get a result like Theorem 2.2.

"‘Theorem 2.3': For any square matrix A, there exists a sequence of
successive similarity transformations which is defined using the second

modified Gauss elimination operator and will reduce A to L%,

Proof: The pfoof is quite similar except it considers the sequence
of pivots in the order (n, n-1), (n-1, n-2), ..., (2,1), for defining

RK*l

K,A

(K=2)" We skip the detailed proof.

Note: Theorem 1.1 will follow from Theorem 2.3.

3. Computing the eigenvector

We have now shown that for any matrix A.and its "analogous companion
matrix'", there exists a similarity transformation which can be developed
using the modified Gauss elimination operator or the second modified

Gauss elimination operator.

17
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Let us define the following notation:

K K
= = but (SA 0
E Egel,sa 1 (A)K+1’K 0 ( )K+1,K7‘ ,
(S is an elementary similarity transformation
which satisfies Case 2.1 in Theorem 2.2).
=T if (A)K+p,K =0 for all p 4
= EK th 1
x+1,a Otherwise.

Then our process can be written
as [E"7 .. B2 [N aDH™ @Y L) @ HTh
= L&%,

Let 7E = (E"1 ... E°E') then

it follows that

(7) (nE) AGE) ! = Lk, (3.1)
> i i £
Theorem 2.4: Let XL**,R and XL**,L‘be a right eigenvector and a left
eigenvector of L**. Let X and X be a right eigenvector and a left
A,R A,L

eigenvector of A corresponding to the eigenvalues X and p, respectively.

. -1
= and
Then i) XA,R (7E) XL**,R

ii) XA,L =XL**,L(HE),
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Proof: From (7),

(8) (TE)A = L** (qE) and it follows that
(9) AGE) L = (rE) 7L Lax,

By (8), (wE) AXA,R = L** (7E) XA,R which implies

A = T&%

(rE) XA,R L (nE) XA,

Hence (TE) XA R is a right elgenvector of L#*#* corresponding to
: ‘ ’ ) .

the eigenvalue X . Also, since

Xpan,p = (TE) Xy ps
we have

- =1 ; =
XA,R {TE) Xi**,R which can be used in computing the eigen

vectors of A from those of L¥%,

-1 T . . .
By (9)’XA,L A(TE) XA’L(wE) L## wblch implies

il

-1 -1 _
(10) pr,L (7E) xA’L (TE) — L¥*,

Hence XA L(HE)-I is a left eigenvector of L*¥% corresponding to the
s ) . . '

eigenvalue p. From (10),

-1
XL**,L = XA,L (mE) and therefpre

XA;L = XL**’L(ﬂE) which concludes the proof of the theorem.

If we define RK, in the same way as EK, then we will get similar results,

such as

v = (D™ L. (@ H e H ™ a7 72 L. R

Let 7R = (&% &"2 ... ®%;ly and

it follows that ('.rrR)—1 A(mR) = L*
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and we still get a theorem analogous to Theorem 2.4,

Theorem 2.5: Let XL*,R and XL*,L be a right eigenvector and a left

eigenvector of L#*, Let X and X be a right eigenvector and a left
AR AL

eigenvector of A corresponding to eigenvalues A and pﬁ

1) Xy g = (™R) X, p and
i1) X, . =X (rr) "L
e R :

Proof: Omitted.

Since XL*,R; XL*,L’ XL**,L’ and Xi**,R can be easily calculated,

and TR, (nR)_l, 7E and (wE)_l have been calculated while reducing A into

L* or L¥*%, we can then calculate X and X by Theorem 2.4 and
. AR AL

Theorem 2,5,

Let us investigate the eigenvectors (right or left) of L* and L** ¥
corresponding to any given eigenvalue. We restrict L** to the following

form, but the more general case can be considered by only minor modifications

in the following discussion:

+
From now on, L* and L** are restricted to those which are derived from

applying non-trivial reducing process to A, ie, nE # I or nE # S, "R # I or
mR # S. See Chapter 4.



0 0 -ap —Bm+p g . Xl
1 0 -ap_l . . .
0 1 ~ap_2 .
1 -ui _Bm+1 Xp
0 0 -By s T Yl
1 0 ~Ba-1 =A
o 1 -8 ) :
. -Bl “Yntl Ym
0 0 Y Zl
1 0 .
0o 1
.—72 zn
1 Y

The preceding equations lead directly to the following set of

formula for calculating X

L**,R'
Method a: Set Zl =1, Zﬁ = -A/Yns and
= i - "
o G

Next, calculate Yi'

Set ¥, =1, Ym = - (A + ey

1 Zn)fsm,




Next, calculate Xi'

Set Xl = 1, Xp = (X + Bm+p Yﬁ * Ym+n+p Zn)/up’
Xp-K = GKX + AX K41 + Bm—H{ Ym
+ Yn+m+Kzn’
K=1, 2, s P=2

The general case is treated in a similar manner.

There is an easy way to calculate XL** L just by knowing A, Ac-
3

cording to the definition of the eigenvalue %, we have

| |x coe s XY Y ,Z Y

l,-lo,m,l

1°* :"‘:ZnH L**r-AIIXl,...,Xp,Y

which gives the following systems of equations:

X, = AX;

(12) Xy = AX,

(12.1) —ale % Xy = o v v Ty Xp—l -0 Xp = AX
T = Ay

(13) ¥, =AY,
Y, = XY

1 8t # Eady

22
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(13.1) (B, Xy = Bl ) Komeen =By Xy = By X))
* (HBm Yl - Bnrl YZu"' _82 Ym--l - Bl Ym) = >\Ym
Z, = A2y
(14) Zy = AZ,
2 =z,
(] K= Yotmip 1~ Vobmipel 2"~ Yok Bpe1 ™ Yobwl %)

+ (- Yatm Yl T Yotm-1 YZ_"“ T Ynt2 Ym—l T Y+l Ym)

+ (- Yn Z1 - ¥ -1 ZZ—... =Y, Zn—l - Y Zn) = AZH.

n

From the system of equations (12), it follows that

}i{,2 = AXl
1 X, = AX, = AZ X
= = ,P-1
XP Axp—l A Xl
From (12.1),
- ap 1 ap—l X2 . - uz xp—l - o Xp - XX =0,
_ o p-2 _ p-1 = 3P -
- ap X1 ap-l le-- azk Xl %y A 31 A X1 o,
p-2 p-1 p "
- - + + X, =0,
(up + up_ll + + o, A oy A A 1

and since Xl is arbitrary it follows that



| p-1 P_nqo.
(15.1) ap+ap_ll+... +a, A +2 =0

Applying the same technique to (13), we get

2 1
e .ottt
T = lYmrl = A Yl
From (13.1),
= - - - p-1
(16.1) ( Bm+p Bm+p—l A=eus Bm+l A ) Xl
_ m-1 m _
+(-Bm-8m_1)\--o._81k "".)\)Yl"'O-

Since X,, Y., are arbitrary real numbers it follows from (16.1) that

1’ "1
(17.1) = Bty = Bype1 e~ By P 1o o
and
“_(17.2) | ~ By = B g Ameen- sla“‘"l - " = 0.
Equation (17.2) tells us that AT 4 Bllm—;+"' + Bm = 0 is another

polynomial of A which can be used to calculate ).
Equations (15.1) and (17.1) along with the well known result relating the

coefficients of the characteristic polynomial with the eigenvalues, give

A +A+oon+;\p=(-l) D'.l,

af .
B
Al+-oc+k_l=(-l)€-m—t%,
P 1
Pork2
(18.1) Therefore, A_ = (-1) (al + E—*fg’
d mtl
Also since, Allz iR lp = (-1)P ap and
pril Bm+
)\l " )L —lz(ml) —p-——«R
4 “m+l

we obtain
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(18.2) A = __E___E_k‘tl

We can apply the same technique to (14.1).

To summarize the previous discussion, We can state the following:

Theorem 2.6: If Ais given then the left eigenvector for L** is

p-1

X AY

- -1
[1X)5 A%, oo 5 2 cewn WE oy LA i A

1° 12 Yy My, 10 %35 A%y

where Xl, Y Zl are arbitrary nonzero constants.

li

From (18.1) or (18.2), it follows that

Theorem 2.7: If A has been reduced to L** (but not L)
B

then one of its eigenvalue is (-1) (o, - _Hﬂ@)
1 B8
“mt1
% Butl
or is - -%}———-— and its corresponding left eigenvector is
mp

the same as the form described in Theorem 2.6.

Now, we can use Method o to calculate the right eigenvector and use
Theorem 2.6 to calculate the left eigenvector for L** when } is given.
Theorem 2.6 tells us the easiest way to get XL**,L’ which is the left
eigenvector for L#*%*, By Theorem 2.4, the left eigenvector for A is just
XL**,L (TE), where 7E has been calculatgd while reducing A to L#*, The

above discussion presents a very easy way to get the left eigenvector for

A, but are there some easy ways to get the right eigenvector for A?



The answeY 1s yes since we can use an analogous procedure as in de-
riving Method o, Theorem 2.6 and Theorem 2.7 to get Method B, Theorem 2.8

and 2.9 as shown below. First we restrict L* to the following form:

B L TBs  TBg41 | mes T8+t Tlgr4l U "as+t+j
1 0 0
0 l .
1 0
_b1 —b2 - --bt _bt+l o _bt+j
1 0 0
0 1 0
1 0
—Cl -"'C2 era "'Cj
1 0 0
0 1
1 0
then we will get results analogous to Theorem 2.5 and Theorem 2.7.
Theorem 2.8: TIf A is given, the right eigenvector for L* is
s-1 s=-2 t-1 t-2 j=-1
[{x Xoo A 7K X, Xos A Yoo A0 Y, e, Y, 00 zj, cees

where XS, Y Zj are arbitrary nonzero constants.

t’




2

Theorem 2.9: If A has been reduced to L*, then one of its eigenvalues

a b a
s+2 ; t +

is (—-l)(bl - Y} or is - —?F—E—;-and its corresponding right eigen-’
s+1 s+t

vector is the form described in Theorem 2.8,

Method B, analogous to method a, is to calculate the left-eigenvector of

L*,
First, set XS =1,
e =My 1 v 8, %
K = 2, sevy S"li
Next, set Yt = Ay
Ty = ¥ g, %Y.
Tg = Mgy * by Y+ agwa %10
K = 2, 00y t-lo
Then set Z. =1,
|
B == Qe by, ¥5 % 8 0 By,
Zg =AMy v eg g 23+ b Ny
+

as+t+K—l Xl’

K=2, “ ey j—lu

Extension to the more general case is obvious.
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We omit the proof for Theorem 2,8 and 2.9, since the same approach to
prove Theorem 2.6 and 2.7 is used. But we should point out that
Theorem 2.8 is the easiest way to get the right eigenvector of L*, and
then to get the right eigenvector of A.

Theorem 2.6 and Theorem 2.9 show an easy way to calculate an eigen-
value directly from L* or L*#, But unfortunately; we still do not have
any advanced methods that will guarantee that A can always be reduced
to L* or L** instead of L. This may be a very good topic for further

study.
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Chapter 3
Numerical Examples

(1) Numerical example for reducing A to L with non-zero pivot elements

in the whole reducing process

1 3 2
a=1la s 9
3 8 4
1 -1/4 0 1 1 0
et = [lo 14 o0 aht=1lo 4 o
2 2
0 -3/4 1 0o 3 1
0 7.75 0.25
E; A(E%)—l = |1 11.25 1.75||= A
0 13.25 -1.25
2 2.-1
k2= [fo 1 -nes/sas|] @)HTh- o 1o
0o 0 1/13.25 0 0 13.25
o o 13
2 (1) ,.2.-1 )
Hy AV ) 1 0 45 L,

s 1 10



We can easily write down the characteristic polynomial of A from LA:

<13 3 - 1002 - 450 - 13)

(2) Numerical example for reducing A to L, with zero pivot element sub-

stituted by other nonzero element.

A= a5y = 0 but as) £ 0

I
t
n
=

_SA

El A(El)_l - - A(1)

1 0 -6 1
52 21 52,71 o @
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g3 A2 (g3 NG

2

the characteristic polynomial of A is (-1)4 (A4 - 3A3 + 617 - 7A + 4).

(3) Numerical example for reducing A to L#** (i,e, The final matrix with
zero element in pivot position and the rest of lower column element

are all zero.)

A=
8 -4 3 -4
15 =10 11 -11
1 1/3 0 0 1 1 0 0
N I VA I L1 o -3 o o
E2 = (Ez) =
0 8/3 1 0 0 8 1 0
0 15/3 0 1 ¢ 15 0 1

o 1/3 =-2/3 1/3

1 -8/3 5/3 -4/3
E%A(E%)“l = = A

0 16/3 =-31/3 20/3

0 8 ~14 9



The characteristic polynomial of A is (-—-l)4 (k3 + 31

1

1/16
1/2
3/16

-3/2

(E

3/4

5/4

and get L#*%

2,-1 _

(2)

{4) Numerical example for reducing A to L*.

N

-1

1/2

-2

(R

L0
2 2
0 0

~-1/3
-8/3

16/3

+ 32+ 1)+ 1),

= (0 We terminate searching at (AK—

(2)

o
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n,n-1



3 -1/2 0
571 % = ||10 1 4| = a®
3 3
0 1 0
0.1 -~0.1 =-0.4 10 1 4
1 1,-1 _
R, = 0 1 0 (R~ = 0 1 0
0 0 1 0 0 1
4 ~4 -12
1.-1 .1 _
(Rz) AR = 1 0 0
0 1 0

The characteristic polynomial of A is (-1)3 (A3 - 4?\2 + 4) + 12),

33



Chapter 4

Additional Discussion

There exists an interesting example which shows us some unproven

properties that may be true in general or just a special case.

2.6 -0.2 0.2
If A= 0.2 2.1 0.4 s then
0.4 0.2 0.8
6 -7.5 -5
1 R
EZ,A A(EZ,A) = 1 5.5 2 .

o
o
(oe]

Note: A is reduced to L** (not L).

By interchanging the rows gnd the columns of matrix A, but still
gimilar to A, we get the elements of the set K = {Al ! A; = SAS} where

§ is an elementary permutation matrix.

-1
Applying our reducing method to set K, the results of (WE)Al(ﬂE} .

where AlsK,will eventually result in one of these three forms of L#*%:

0 -5 2.5
l 4.5 —1 3

0 0 3

34
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(o

oY

'_l

This tells us that we can find all the eigenvalues of A simultaneously.

But the result of (wR)-l al (TR) gives only one case AlsK:

7.5

The above results may suggest us that if A can be reduced into

L** (or L*) but not L then Al also can be reduced to one of the forms of

-6 -1
5 0.5,
0 2.5
-7.5  =1.5
5.5 0.5
0 2

-18.5 15
0 0
L 0

L**(or L*) but not L.

More gen¢-alized results are

i)

ii)

-1 *%
(KE> A(KE) LA
if and only if (m
-] _ *
(3R) A(KR) = LA but not L1
if and only if (w

where Al

but not L

s * %
Al p o= L)
1 Al A

rank n, and

35

is the set of all permutation matriceus of
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A (or Al) under 7 indicates 7E, 7R is derived from

A (or AYy.

If the above statements are not always true, then we can conclude

that
Lk = (g5) (rg)~1 L(ﬂE)(KE)_l.
Al Al

This means that L is similar to L** which seems like it contradicts the
fact that a "derogatory" matrix will not be similar to a non-derogatory
matrix.

Furthermore, it telils us that the roots (i.e, eigeﬁvalues) of a
polynomial (characteristic polynomial) can be sqlved by a set of
similarity transformations, since A is almost explicitly shown in some
coefficients in L** (or L*). But this seems like it is impossible, unless
we can prove i) or ii) is wrong.

If it worthwhile to mention here that another two kinds of companion
matrix, L3 or L4, and their_assqc%ate "analogous" companion matrices
L*¥%% and L**** can be derived from the same discussion.

Let us show it briefly

2 I 8 e B 0o 1 0 .. O
Z, 0 1 ... O 0 o0 1 ... ©
L3 = . . . e . LA = . . . e .
Bog 0 0 w1 0 0 B wee 1
P 0 0 ... 0 B, Bog Bogee B
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x
3
r
T 2
0
Cla I
T T T
C13 G5 D
L*** = 3
T T T 4
C1o. Gy F3p Iy
T T T T Ts
Cls CZS F3s C4S L
and
!
4
Y
T 2
0
Hio Iy
T T T
F13 Fog Dr3
Lk
= r
T T T 4
By, Hyy  Hy o L
T T T T s
By Hop By My ¢ Iy

Now, if we consider the sequence of plvots in the order (1,2), (2,3), ...,
(n-1,n) for defining E§+l in Theorem 2.3, then A will be reduced to L##*%*,
If we consider the sequence of pivots in the order (n-1l,n) (n-2,n-1), ...,

+1 ;
(1,2) for defining RE 1 in Theorem 2.3', then A will be reduced to L#&¥*¥,



Let us look back at Chapter 2 to determine why it is necessary to require
a non-trivial reducing process when we determine the eigenvector of L#*
(or L*)., The reason is that (17.1) may not be true unless L*%* i3 de-
termined froﬁ a nontrivial reducing process, that is, 7E # I or S and

TE A(ﬂE)Fl # A, This follows since in the matrix A is originally in the

form L*% then the elements 8

B

— Bm+p are arbitrary and

mtl® o2’

need not satisfy (17.1). However, a nontrivial reducing process will
guarantee that (17.1) is satisfied. A similar argument holds if A is
originally in the form L*, Hence, (17.1), (18.1), (18.2), Theorem 2.7,
and Theorem 2.9 may not be true if L#** (or L*) is derived by a trivial
reducing process. For example. Consider the example in this chapter

and another matrix B given by

0 -7.5 18

B=||1 5.5 3],

0 0 1
Then 7E = 1
and ﬂEB(nE)_l = B
and Theorem 2.7
tell us that
B
& don =¥ m 4 But - (-5.5 - 1)
1 82 3

= 11.5 # 2, 3 or 2.5,
thus contradicting Theorem 2.7.

But Three forms for L** for A given in this chapter show that



1
—~
=2

1
1

1l

i

- (- 4.5 - =2

I

_(_5 st

and hence Theorem 2,7 holds.

To summarize, the fundamental
expressed as the following:

Every matrix A may be reduced

the matrix L#*, L*%, L#¥%k apnd L¥*#%,

- (= 5.5--=3) =

]
(a3

|
w

theorem for general matrices may be

by a similarity transformation to

39



REFERENCE

[1] Wilkinson, J. H.

Oxford, 1969.

[2] Hammarling, S. J.

of Toronto Press,

The Algebraic Eigenvalue Problem, Clarendon Press.

Latent Roots and Latent Vector, The University

1970.

40



APPENDIX

/% THIS PROGRAM IS TO CALCULATE THE CHARACTERISTIC */
/* POLYNOMIAL OF ANY SQUARE MATRIX */
MAXTRS : PROC OPTIONS (MAIN);
DCL (A,B) (20,20) FLOAT BIN INIT((400) 0),
(X,Y,Z) BIN FIXED,
(C,TEMP) (20) FLOAT BIN INIT((20) 0),
(TEMPROW,TEMPCOL) (20) FLOAT BIN,
TITLE CHAR(29) EXTERNAL;
READIN : GET LIST (N,((A(I,J) DO J=1 TO N)
DO I=1 TO N));
IF N=0 THEN GOTO ENDFIL;
PUT PAGE EDIT (' MATRIX BEFORE TRANSFORMATION' )
(X(10) ,A);
/* ECHO CHECK FOR INPUT */
DO I=1 TO N;
PUT SKIP(2) EDIT ((A(IL,J) DO J=1 TO N))
END;
./ TITLE="TIME BEFORE TRANSFORMATION : ';CALL TIMER;
LOOP1: DO I=1 TO N-1;
J=I+1;
/* SET AN IDENTITY MATRIX */
DO X=1 TO N;
DO Y=1 TO N ; B(X,Y)=0 ; END ;
B(X,X)=1;
END ;
{* CHECK AND AVOID ZERO PIVOT ELEMENT */
IF A(J,I) > -1.2-05
& A(J,I) < 1.E~05 THEN GOTO ZERO ;
MULTIP: DO K=1 TO N;
/% SET MATRIX B TO BE MODIFIED GAUSS ELIMINATION OPERATOR E
IF K=J THEN
B(K,J)=1/A(J,1) ;
ELSE B(K,J)=-A(K,I)/A(J,I);
C(K)=A(K,I); /#* C(K) IS LOADED WITH K-TH COLUMN OF A */
END MULTIP:
LOOP2; DO Z=1 TO N;
LOOP3: DO Y=1 TO N; 4
LOOP4 DO X=1 TO N; /% CALCULATE EK A %/

TEMP (Y)=TEMP (¥)+B(Y ,X) *A(X,2) ;
END LOOP4;

END LOOP3;

DO X=1 TO N;

A(X,Z)=TEMP(X) ;

END ; TEMP=0;

END LOOP2;
DO K=1 TO N;
B, A0 =00 5
END;
LOOP22: bo Z=1 TO N;
LOOP33: DO Y=1 TO N ;

LOOP44 : DO X=1 TO N;

Y

41



42

SOURCE STATEMENT

ZERO:

NEXROW:
. ECHPUT:

NEXCOL:

TIMER:

/% CALGULATE (E] A(E%)—l) %/
TEMP (Y)=TEMP (Y)+A(Z,X) *B(X,Y);
END LOOP44; END LOOP33;
DO X=1 TO N;
A(Z ,X)=TEMP (X) ;
END ; TEMP=0 ;
END LOOP22;
GOTO ECHPUT;
DO;
J=J+1;
IF J>N THEN GOTC NEXCOL ;
/* CHECK THE REST ELEMENT IN THE I-TH COLUMN IS NONZERO */
IF A(J,I) > 1.E-05 :
& A(J,I) < 1.E-05 THEN GOTO NEXROW:
/* IF NONZERO ELEMENT OCCURS, A BE INTERCHANGED ITS COLUMNS
AND ROWS #/
DO L=1 TO N;
TEMPROW(L)=A(J,L) ;
A(J,L)=A(I+1,L);
A(I+1,1L)=TEMPROW(L) ;
END;
DO L=1 TO N;
TEMPCOL(L)=A(L,J);
A(L,J)=A(L,I+1);
A(L,T+1) =TEMPOOL(L) ;
END;
J=I+1 ;
GOTO MULTIP;
END ZERO;
PUT SKIP(2) ;
IF I=N-1 THEN GOTO NEXCOL :
/* PRINT THE INTERMEDIATE RESULT */
DO X=1 TO N ;
PUT SKIP(2) EDIT ((A(X,Y) DO Y=1 TO N))
(FLLS 360 20230 3
END;
END LOOPL;

« TITLE='TIME AFTER TRANSFORMATION : ';

CALL TIMER;

/% PRINT THE FINAL RESULTS */

PUT SKIP(3) EDIT ('MATRIX AFTER TRANSFORMATION'})

(X(10) ,4) ;
DO I=1 TO N;
PUT SKIP(2) EDIT ((A(I,J) DO J=1 TO N))
(F(15,6),X(2));

END;

/* PROCEDURE FOR INFORMATIONS ABOUT TIME #*/

PROC ;

DOL T CHAR(Q) .SECT(AY CIAR(?) ,TSTRING CHAR(12),
TIME BULLTIN, TLILE CHAR(29) EXTLERNAL,
(I,K) FIXED;



T=TIME;

K=-1;

DO I=1 TO 3 ;

K=K+2;

SECT(I)=SUBSTR(T,K,2) || "."

END;

SECT (4)=SUBSTR(T,7,3);

TSTRING=SECT (1) f] SECT(2) || SECT(3) || SECT(4);

PUT SKIP(2) EDIT (TITLE,TSTRING)
(X(30) ,A,X(3),A);

PUT SKIP; END; GOTO READIN;
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ABSTRACT

An approach which uses a modified Gauss elimination operator as
a successive similarity transformation, transforms any square matrix into
its companion matrix in n-1 steps and gets its characteristic polynomial.

An algorithm for finding for eigenvectors is developed when the
eigenvalues are given.

Numerical examples and a computer program written in PLC are pro-

vided to illustrate the method.





