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Abstract—Pulse oximeters are central to the move toward 

wearable health monitoring devices and medical electronics 
either hosted by, e.g., smart phones or physically embedded in 
their design. This paper presents a small, low-cost pulse oximeter 
design appropriate for wearable and surface-based applications 
that also produces quality, unfiltered photo-plethysmograms 
(PPGs) ideal for emerging diagnostic algorithms. The design’s 
“filter-free” embodiment, which employs only digital baseline 
subtraction as a signal compensation mechanism, distinguishes it 
from conventional pulse oximeters that incorporate filters for 
signal extraction and noise reduction. This results in high-fidelity 
PPGs with thousands of peak-to-peak digitization levels that are 
sampled at 240 Hz to avoid noise aliasing. Electronic feedback 
controls make these PPGs more resilient in the face of 
environmental changes (e.g., the device can operate in full room 
light), and data stream in real-time across either a ZigBee 
wireless link or a wired USB connection to a host. On-board flash 
memory is available for store-and-forward applications. This 
sensor has demonstrated an ability to gather high-integrity data 
at fingertip, wrist, earlobe, palm, and temple locations from a 
group of 48 subjects (20 to 64 years old). 
 

Index Terms—filter-free, high-fidelity photoplethysmogram, 
low cost, pulse oximeter, reflectance sensor, surface biosensor, 
wearable, wireless.  
 

I. INTRODUCTION 
EALTH problems such as cardiovascular disease, 
hypertension, diabetes, and congestive heart failure 

continue to plague society [1].  These conditions are primary 
drivers for the development of wearable and mobile health 
monitoring technologies that offer the potential to (a) increase 
the quality of life for individuals that already suffer from these 
health conditions and (b) prevent or mitigate the onset of 
disease in those that are at risk to acquire these health issues 
[2].  Of the array of medical devices that can be brought to 
bear for wearable/mobile applications that address these 
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diseases, pulse oximeters offer significant relative promise 
because they provide two clinically relevant health parameters 
(heart rate (HR) and blood oxygen saturation (SpO2)), they do 
not require electrical contact to tissue, and they can operate at 
very low power [3], [4]. Additionally, the pulsatile 
plethysmographic data offered by this light-based sensing 
technique (which are usually discarded by commercial pulse 
oximeters after being used to calculate the parameters for the 
front panel display) can help to ascertain hemodynamic 
information that is well-suited for the assessment of the 
disease states listed above [5-8]. This information includes 
blood pressure [9], [10], arterial compliance [6], [11], [12], 
pulse wave velocity (PWV) [2], [13], stroke volume (and 
therefore cardiac output) [14], and other vascular parameters 
[7], [8], [15], [16].  Other relevant quantities include 
respiration rate [17], [18], patient motion [16], and even 
patient authentication [19-21].  

However, low-cost pulse oximeter designs are unavailable 
that provide (a) quality, unfiltered PPGs ideally suitable for 
research and education toward the realization of new PPG 
diagnostics and (b) positional flexibility suitable for mobile 
and surface-based applications.  While PPGs are often 
accessible from commercial desktop units via serial ports, 
these data have been filtered in proprietary ways to stabilize 
HR and SpO2 calculations.  Further, due to their clinical 
prevalence, pulse oximetry and PPG analysis deserve 
coverage in biomedical instrumentation laboratories offered in 
secondary education curricula, yet low-cost pulse oximeters 
that provide reasonable-quality PPGs are not a staple in off-
the-shelf educational kits.   

Regarding ambulatory pulse oximeters, several types of 
wearable designs exist.  Some of these use ring form factors, 
and others use finger clips. These designs use predominantly 
transmission-mode sensors. For broader use with wrist 
watches, head bands, socks, sensor ‘Band Aids’, and other 
wearable platforms that are unobtrusive and well suited for 
mobility, it makes sense to consider reflectance-mode layouts.  
This is especially true when one contemplates the immense 
potential of ‘surface biosensors’ (SBs):  medical sensors 
embedded in the surface of everyday consumer electronics 
such as hand-held personal device assistants (PDAs), cell 
phones, smart phones, tablet PCs, head-mounted displays, etc. 
In this paradigm, physiological sensors will be accessible and 
signals will be easy to obtain, as human factors considerations 
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for the overall product design will drive ease of use for the 
integrated biosensors.  Additionally, each SB will utilize its 
host device’s processor, memory, display, and wireless 
communication resources to provide user services typically 
unavailable in wearable platforms [22].  E.g., consider a 
reflectance pulse oximeter embedded on the back side of a cell 
phone alongside a built-in camera.  As the user holds their 
finger against the reflectance sensor, the data will be 
processed by the microprocessor in the cell phone, and the 
LCD screen will display the signals and parameters.   

In this domain, a reflectance sensor can employ a single 
small photodiode [23] as in most transmittance sensors. 
However, tissue is highly forward scattering, so the relative 
number of remitted photons detected in reflectance mode is 
low, yielding lower quality PPGs [5]. Improved sensor 
configurations are therefore often adopted to better acquire the 
radial reflectance profile, including a ring-shaped photodiode 
design [24], [25], a photodiode array around the central LEDs 
[26], and conversely an LED array around a central 
photodiode [27]. These designs generally employ cascaded 
high pass and low pass filters to extract the PPGs [28]. Such 
analog filters inevitably alter and even distort the signals of 
interest.  These alterations are visibly obvious in some papers, 
and cycle-to-cycle inconsistencies can be significant.  For this 
reason, a filter-free design is desirable. Finally, in a low-cost 
wearable sensor with a limited voltage range (e.g., [0, 3.3] V if 
battery powered) and a low-precision analog-to-digital 
converter (e.g., 8 to 12 bits), maintaining a sensible vertical 
resolution, number of digitization levels, and sampling 
frequency for a PPG can be difficult without flexible baseline 
subtraction and PPG amplification strategies.    

In summary, the desire to extract additional physiological 
information from PPGs acquired with reflectance-mode 
sensors imposes design constraints with respect to signal 
quality.  This paper presents the design of a low-cost, wireless, 
reflectance–mode pulse oximeter suitable for these needs. It is 
initially housed on the surface of a printed circuit board but 
can be easily migrated to other surface-based applications.  
Here, a unique filter-free circuit (that digitally extracts the 
PPG waveform) and a two-stage, feedback-loop-driven control 
system enable the acquisition of unfiltered PPGs with 212 
levels of precision from varied body locations. An optimized 
LED/detector configuration promotes surface use, and the 
device signal quality and cost enhance its potential for 
integration into SB-based consumer devices.  

II. METHODS  
This section presents a design for a filter-free, reflectance 

pulse oximeter that combines many desirable features into a 
single platform. Implementation hardware is unspecified here; 
board-level components are detailed in Section III. DEVICE 
PROTOTYPE. 

A. Requirements and Device Layout 
The design requirements are outlined in Table I.  Signal 

requirements include quality, unfiltered PPGs whose baselines 
are digitally removed, consistent with the discussion in 

Section I.  INTRODUCTION. The high sampling rate ensures that 
(a) primary signal and noise components are adequately 
sampled without aliasing and (b) secondary noise harmonics, 
e.g., 120 Hz up to several kHz from fluorescent lighting, are 
not aliased on top of the signal components of interest. 

 
TABLE I 

WIRELESS REFLECTANCE PULSE OXIMETER DESIGN REQUIREMENTS 
Category Requirements 
Signal 
Integrity Unfiltered data with an optimal SNR 
Precision Thousands of peak-to-peak digitization levels 
Sampling frequency ≥ 240 Hz to minimize PPG/noise aliasing 
Baseline subtraction Digital and filter-free 
Data availability  Full access to all pulsatile/baseline data  
Sensor 
LED/detector geometry Radial arrangement, large area, and 3-5 mm 

source/detector separation 
Ambient light operation Adjustable gain and reference baseline 
Functionality 
Communication  Wireless (10 m range) and USB 
Local storage Onboard flash memory 
Battery   USB-rechargeable; Multi-day lifetime 
Client Software  Visualization and control panel 
Application 
Measurement sites Multiple body locations; Various vascular 

profiles and perfusion levels 
Wearability Low-profile reflectance layout adaptable for 

wearable and SB applications 
Cost Low (~$100)  

 

Regarding sensor requirements, the photodetectors are 
ideally distributed radially around the central excitation LEDs 
to maximize the number of photons collected.  Further, an 
LED/detector separation of 3 to 5 mm is appropriate at these 
wavelengths, as it maximizes the AC/DC ratio for each sensor 
channel, as verified experimentally [26], [29] and with Monte 
Carlo simulations [21].  In other words, reflectance photons 
that contain DC information from shallow, poorly perfused 
epidermal layers reflect near the central excitation LEDs and 
are undetected.  Photons collected at greater radial distances 
are more likely to have traveled deeper into blood-perfused 
tissue and contain a greater percentage of AC data. Given the 
increased sensing area in a large-area detector, the control 
circuitry must easily compensate for baseline changes due to 
ambient light, tissue perfusion, respiration depth, etc. 

Fig. 1 shows the block diagram for the pulse oximeter 
circuitry; a brief description was also included in [30]. The 
LED, sensor array, and operational amplifier (OPA) circuitry 
are coordinated by a Jennic JN5139 microcontroller. The 
intensity and timing of the bi-color LED are controlled by a 
digital-to-analog converter (DAC) and digital input/output 
ports (DIOs), respectively. A signal from the sensor array 
(four photodiodes surrounding the central bi-color LED) is 
first buffered and then fed to a differential OPA circuit. The 
buffered signal, designated here as the first-stage PPG signal 
(entire AC + DC contribution), is sampled by an analog-to-
digital converter (ADC). Another ADC collects the second-
stage PPG signal (the AC portion only) from the output of the 
differential OPA circuit that has a positive input from another 
microcontroller DAC.     
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 No filters are used in the signal acquisition process, whose 
elements will be introduced in Part C. Closed-Loop System. 
The battery (unstable power source) is isolated from the PPG 
excitation and collection circuitry, since it is powered by the 
microcontroller’s analog peripheral regulator (APR). 
Normally, the pulse oximeter uses a wireless link to 
communicate with a receiver on a PC, and data are stored on 
the PC through a MATLAB graphical user interface (GUI). A 
mini-USB connection can provide a wired interface to the PC 
while the battery is recharged. If neither the wireless link nor 
the USB connection is available, sampled data will be 
temporarily stored on the flash memory module (e.g., for 
store-and-forward applications).  

B. AC Extraction and Drift Resistance 
The first-stage PPG is characterized by a large DC portion 

and a small AC portion, as in Fig. 2. The goal is to extract the 
second-stage AC signal by eliminating the DC component. (In 
many systems, a high pass filter extracts the AC signal.) If the 
DC portion instead remains, then obtaining hundreds to 
thousands of digitization levels in the AC portion over its 
small voltage range requires an ADC of very high precision 
(e.g., 16-bit), which is inappropriate for a low-cost, low-
power-consumption device. This extraction, or DC removal, 
process is executed by the OPA unit. Its role is expressed as  

)( 12 SVGS ref −×=  (1) 

where S1 and S2 are the first-stage and second-stage signals, 
respectively, G is the gain of the OPA, and Vref is a user-
defined reference voltage that functionally equates to the DC 
signal level. To show an upward-oriented PPG peak during 
systole as with a blood pressure curve, Vref is connected to the 
positive pin of the OPA, effectively inverting the AC signal 
amplitude prior to digitization. 

S1 is naturally unstable, as both its AC and DC levels are 
influenced by changes in intrinsic blood flow, extrinsic 
motion, respiration, background light, etc. These factors cause 
drifting in S2. The input voltage range, or digitization range, of 
the 12-bit ADC is set to [0, 2.4] V, so one digitization level is 
2.4 V / 4095 levels = 0.586 mV. For example, given a gain G 

= 30 and a constant Vref, one digitization-level increment in the 
DC signal results in a decrement of 30 digitization levels in S2 
according to (1). As in Fig. 2, S2 may drift 0.3 V (512 digital 
levels) in 10 seconds, which is unacceptable because the 
signal will eventually clip at the lower bound of the sampling 
range, and clipped data mean signal corruption. To address 
this issue, (1) implies that one can adjust one or more elements 
on the right side to adjust the value of S2 on the left. In this 
effort, a Vref adjustment is employed to resist S2 drifting, since 
Vref is an output of the DAC and can be easily updated. Vref is 
defined as 

++= VtMAVref )(  (2) 

where MA(t), the estimator of the DC component, VDC, is a W-
point (e.g., W = 256) moving average of the first-stage signal 
over the time interval that ends at t. V+ (the adjustable term) is 
added to MA(t) to ensure that Vref makes S2 in (1) positive.  

 
Fig. 2.  A differential amplifier with gain G compares the first-stage PPG (S1) 
to a DC reference voltage to obtain the second-stage PPG (S2). 
 

Vref usually varies slowly (several seconds per digitization 
level change, in an environment with minimal motion and 
ambient noise), and the Vref adjustment leads to a discontinuity 
in S2. Hence, the Vref data must also be transmitted or stored 
along with the digitized second-stage data in order to restore 

 
Fig. 1.  Circuit-level system layout. Coordinated by the microcontroller, signal baselines are digitally extracted as an alternative to conventional filtering. 
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the original PPGs, a process called “compensation.”   
Fig. 3 shows a data set from the palm. Collected data are 

compensated to remove discontinuities caused by Vref jumps, 
or immediate value changes, in the pulsatile waveform using 
the following method. Inserting Vref from (2) into (1) and then 
rearranging the result isolates the first-stage signal, S1:    

 

G
SVtMAS 2

1 )( −+= +
 (3) 

 
Fig. 3.  Palm PPG data before (blue) and after (red) compensation. 
 

The compensated second-stage signal, Ŝ2, can be 
represented as  

)(ˆ
12 SVVGS DC −+×= +

 (4) 

where V+ is added to VDC to ensure a positive Ŝ2. Substituting 
(3) into (4) yields  

))((ˆ
22 DCVtMAGSS −×−=  (5) 

Typically, VDC is an unknown constant, but it is sensible to 
initially set VDC = MA(t0) at time t0 and define Vjump = MA(t) – 
MA(t0) at time t (t > t0) so that (5) becomes 

jumpVGSS ×−= 22
ˆ  (6) 

With this method, each PPG can be restored as long as the 
second-stage signal is unsaturated. The Vref adjustment 
effectively resists first-stage-signal drifting. For example, in 
Fig. 3, the compensated signal drifts below 0 V after 6 
seconds. If no Vref adjustment occurs, the subsequent signal is 
sampled as 0 V.  To calculate blood oxygen saturation, Vref is 
usually considered equal to VDC.  

C. Closed-Loop System  
The Vref adjustment mechanism not only helps to realize the 

AC extraction task; it also results in resilience in the PPG 
signal. In the control system, as illustrated in Fig. 4, two 
closed loops provide stability for the whole data acquisition 
process. The closed loop in the lower left maintains the S1 
value in a predetermined range, which is set by the Intensity 
Regulator that controls the led intensity via a DAC. The 

physical function of this control loop is to maintain the 
number of reflected photons at an optimal level within the 
active range of the photodiode, independent of a subject’s 
vascular and perfusion profiles [30]. The closed loop in the 
upper right prevents S2 from saturation, since the 
compensation method described in (6) requires an unsaturated 
second-stage signal. Upon detecting saturation onset, the 
Saturation Inhibitor adjusts the V+ component of Vref, which 
leads to a corresponding change in S2 according to (1).  

 
Fig. 4.  Pulse oximeter control flow that illustrates how the first-stage PPG 
(S1) can be used to create the second-stage PPG (S2), where both signals 
provide feedback to stabilize the acquisition process.  
 

To maintain signal quality, the Intensity Regulator 
sensitivity should be minimized. When the regulator affects 
changes in LED excitation level, the influence on the first-
stage signal converted by the photodiode sensor array will be 
hard to predict because the blood-perfused tissue between the 
LED and the sensor is an unknown system. Conversely, the 
sensitivity of the Saturation Inhibitor should be set high to 
ensure a rapid response to signal drift. Since this adjustment 
only influences Vref, the native PPG is uncontaminated, and the 
second-stage signal can be compensated using (6).  

In a controlled scenario, ambient noise variations can be 
ignored. If the desired signal intensity increases as the LED 
intensity increases, the signal-to-noise ratio (SNR) will 
improve.  However, this implies a saturation risk due to a 
second-stage signal with too large of a magnitude within a 
fixed digitization range, in spite of the aforementioned drift-
resistant method. Additionally, a more intense LED consumes 
more power. So, an optimized intensity level should be 
empirically predetermined as the Intensity Regulator 
reference.  

D. Removable Noise  
In the U.S.A, ambient light often includes a 60 Hz 

component and the associated harmonic noise, e.g., 120 Hz 
flicker from full-wave-rectified fluorescent room lights plus 
higher-frequency harmonics. Most physiological information 
in a PPG resides in the range of 0-20 Hz. From the Nyquist-
Shannon sampling theorem, the lowest sampling frequency, fs, 
should then be 40 Hz, but to prevent ambient noise aliasing, 
sampling frequencies of at least 240 Hz are needed.  

Fig. 5 depicts the magnitude spectrum of a PPG containing 
ambient noise. The heart rate component is 1.329 Hz, and its 
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harmonics dominate in the frequency band below 20 Hz. At 
greater frequencies, noise is apparent at 60.02 Hz, 84.43 Hz 
(unclear source), and 119.9 Hz. Most of this noise is 
removable by post-processing as long as the sampling 
frequency is high enough that these noise components do not 
alias into the frequency range of the signal components of 
interest. Note that the raw signal exhibits a low SNR 
compared to PPGs from pulse oximeters that employ filters, 
but all signal components are intact and many can be removed 
to create a high SNR (see Fig. 12). 

 
Fig. 5.  An example of removable noise: (a) compensated PPG corrupted by 
ambient noise and (b) frequency spectrum of these data sampled at 240 Hz.  

E. Motion Artifact 
Motion artifact is an issue for a pulse oximeter, especially in 

reflectance mode [5]. Existing literature focuses on signal 
processing to reduce motion artifact and restore PPGs [31]. 
Most methods assume that enough information exists in the 
corrupted signal for PPG recovery. However, if motion is 
severe, saturation occurs frequently and lasts for some time, 
leading to data loss. With this in mind, this development 
considered motion artifact to be a type of signal drift that can 
be partially addressed with a drift-resistant method (Vref 
adjustment); the design does not address motion extraction.  

Motion artifact can be classified into two categories: slight 
and severe. Fig. 6 demonstrates the severe condition 
characterized by three axes of hand motion, where the sensor 
is taped to the finger.  Movements are within a 10 cm range 
and occur at a rate of ~1 Hz. The PPG is severely corrupted 
(the fundamental frequency is 1.028 Hz), and it is clipped at 
the upper and lower bounds of the digitization range; many 
AC segments are lost and unrecoverable. 

 
Fig. 6.  (a) PPG severely corrupted by hand motion along three axes. (b) 
Frequency spectrum of the 28 seconds of data sampled at 100 Hz. 
 

The slight condition refers to, e.g., slow body movements, 
where a PPG retains its general shape but contains spurious 
components relative to a still condition. To counteract this 
type of artifact, the shift-resistant method is promising and 
relies on the setting of an optimal assignment rate and window 
width for Vref adjustment. The DAC assigns the Vref value to 
the positive amplifier pin, and that voltage remains constant 
until the next Vref assignment to the DAC. The window size of 
the moving average filter (the DC estimation time delay, or 
count) and the rate of assigning Vref to the DAC (not the rate of 
Vref variation) influence the second-stage signal. An extreme 
case occurs when the window size W = 1 data point and the 
rate of assigning Vref to the DAC is A = fs:  motion will never 
influence the signal since MA(t) ≡ S1 and consequently S2 = 
G×V+ according to (1) and (2).  

As an illustration of slight motion response, Fig. 7 shows 
three experimental records acquired under similar conditions 
(exaggerated deep respiration activity), where a different 
moving-average window width, W, and Vref assignment rate, 
A, is employed in each case. Only subplot (a) offers a 
reasonable representation of the PPG. A lower assignment rate 
(b) or wider window (c) causes the signal to drift severely, and 
some segments are nearly saturated. The empirical parameter 
pair (W = 256, A = fs) was adopted for Vref adjustment.  
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Fig. 7.  Three uncompensated PPGs acquired at fs = 240 Hz under similar 
slight-motion conditions but with different parameter pairs (W, A).  

F. MATLAB Interface  
A MATLAB GUI allows a user to set/view communication 

parameters, visualize PPGs, process these data in real-time 
(e.g., digitally filter a signal with a linear-phase filter), and 
store raw data to files, making it a helpful development tool 
(see [16] for a full description). Fig. 8 illustrates an example 
data set obtained by this GUI, where acquisition options (e.g., 
Serial Port, Sampling Rate, Signal Channel, and Signal 
Processing Type) are specified on the left control panel. The 
upper axes display the raw PPG and baseline for the near-
infrared channel, whereas the lower axes show the real-time 
calibration coefficient, R, calculated from the magnitudes of 
the fundamental red/infrared frequency components using a 
Fourier transform method [21]. R is updated every 0.5 seconds 
using the previous 4 seconds of PPG data. An overall SpO2 
value is achieved by calculating the median or mean of 40 
consecutive R values (in a 20-second segment) and inserting 
the result into a pre-determined linear calibration equation. 
 

 
Fig. 8.  Pulse oximeter MATLAB GUI. In this example, a series of calibration 
coefficients (lower right) is extracted from the current data (upper right). 

III. DEVICE PROTOTYPE  
 Figs. 9 and 10 contain top and bottom views of the pulse 

oximeter prototype, which consists of four main modules: 
microcontroller module, excitation LED module, signal 
sampling module, and power management module. The main 
printed circuit board is 41 mm by 36 mm, excluding the 
antenna board. This hardware combines functionality from the 
Jennic JN5139-EK020 development kit with lessons learned 
from an earlier reflectance pulse oximeter design [29]. 
 

 
Fig. 9.  Top view of the wireless reflectance pulse oximeter. 
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Fig. 10.  Bottom view of the wireless reflectance pulse oximeter. 

A microcontroller module is the prototype kernel. The 
JN5139 wireless module, designed for robust and secure low-
power wireless applications, integrates a 32-bit RISC 
processor with a 2.4 GHz IEEE 802.15.4 (ZigBee) transceiver, 
192 kB of ROM, 96 kB of RAM, a mix of analog and digital 
peripherals (including four 12-bit ADCs and two 11-bit 
DACs), and up to 21 DIO ports. The wireless link requires the 
most current, with a TX (transmitter) current draw of 38 mA 
and an RX (receiver) current draw of 37 mA. The CPU 
consumes 7.75 mA at full speed, and the current required by 
the peripherals (ADC, DAC, UART, Timer, etc.) is less than 1 
mA in aggregate. The JN5139 sleep current (with an active 
sleep timer) is only 2.6 µA.   

The excitation LED module uses a low-cost Marubeni 
SMT660/910 bi-color LED with a typical forward current of 
20 mA and forward voltages of 1.9 V and 1.3 V for the 660 
nm and 910 nm sources, respectively. The 11-bit DAC output 
(0-2.4 V) provides excitation signal modulation by managing 
the power supply for the excitation LED module.  

The signal sampling module consists of OPA circuitry 
connected to the sensor array. Four API PDV-C173SM high-
speed photodiodes are connected in parallel; their responsivity 
to wavelengths above 650 nm is more than 0.3 A/W. The 
photodiodes are arranged radially around the central LEDs and 
maintain a source/detector separation of 3-5 mm. The OPA 
chip contains two amplifier units. The sensor array signal is 
buffered at the first unit and amplified by the second unit.  

The power management module includes two chips: (a) a 
Silicon Labs CP2102 USB-to-UART bridge that powers the 
pulse oximeter when the USB connection is detected and 
bridges data communication to the host and (b) an 
STMicroelectronics L6924D battery charger system with an 
integrated power switch for lithium-ion batteries which 
charges the battery when the USB connection is detected. An 
LIR2477 3.6 V lithium-ion rechargeable button cell with a 
capacity of 180-200 mAh serves as the power source when the 
USB connection is absent.   

Memory chips, indicators, and buttons are also housed on 
the board. Two Numonyx M25PX64 64-Mbit flash memory 
chips with SPI bus interfaces provide storage space when the 

pulse oximeter works in offline mode; each consumes 20 mA 
of current while being accessed.  

IV. RESULTS AND DISCUSSION  
The pulse oximeter prototypes were used to acquire 

hundreds of PPG records from 48 different subjects that are 20 
to 64 years old. Experimental results in this section were 
acquired in an indoor environment utilizing the prototype 
pulse oximeter. The results are categorized according to 
conventional location (fingertip) versus other locations (wrist, 
earlobe, temple, etc.).  

A. Fingertip Data  
 Fig. 11 illustrates 25 seconds of representative fingertip 

data from a 24-year-old subject.  Both channels of PPG data, 
red and near-infrared, are uncompensated. The AC values of 
the near-infrared channel (Fig. 11 (a)) offer 1.2 V peak-to-
peak (i.e., 2048 digitization levels), and the AC values of the 
red channel (Fig. 11 (b)) offer fewer digitization levels: about 
half compared to the near-infrared channel. Even without the 
use of analog or digital filters, the signal demonstrates 
distinguishable period and amplitude information useful for 
HR and SpO2 determination. The SNRs of the raw near-
infrared and red PPGs are 8.0, and 3.0, respectively.  As 
shown in Fig. 11 (c) and (d), up to seven harmonics reside in 
the spectrum of the near-infrared data (the inset shows 
frequency components above 5 Hz), and six distinguishable 
harmonics reside in the spectrum of the red data. Additionally, 
the PPG information and noise components (e.g., 60 Hz and 
120 Hz grid noise) are clearly separated in the frequency 
domain. To further refine the signal, a properly designed 
digital band pass filter can be applied.  
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Fig. 12 displays another short segment of an experimental 
fingertip data set, where the raw near-infrared PPG is 
accompanied by its real-time filtered form within a MATLAB 
GUI. The filter is a 200th–order low pass filter with a 10 Hz 
cut-off frequency realized by the MATLAB function 
firls():  a linear-phase FIR filter that uses least-squares 
error minimization. This high order filter causes a time delay 
of td = (n–1)/(2fs) = 0.414 seconds, where n = 200 and fs = 240 
Hz, where the time delay helps to visually separate the original 
and filtered waveforms. Since the peak-to-peak noise of the 
filtered signal is too small to be recognizable (< 1 digitization 
level) the SNR is assumed to be > 2048/1 if the signal 
amplitude is 1.2 V.  

 
Fig. 11.  Fingertip results: 25 seconds of (a) near-infrared and (b) red PPG data, accompanied by the (c) near-infrared and (d) red magnitude spectra. 
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Fig. 12.  Fingertip signal processing and digital volume pulse (DVP) analysis. 
 

Digital Volume Pulse (DVP) Analysis.  Cardiovascular 
parameters other than HR and SpO2 can be accurately 
extracted [2], [13], [15] given the quality of this DVP 
waveform. For example, the peak-to-peak time (PPT), as 
marked in Fig. 12, can be used to calculate pulse wave 
velocity, which correlates to arterial stiffness, and “a” and “b” 
are used to calculate the reflectance index, which correlates to 
endothelial function.  Additionally, as noted in the 
Introduction, these unfiltered PPG waveforms could 
potentially lead to improved assessments of blood pressure 
and stroke volume via light. 

B. Multi-Location Data   
Fig. 13 displays experimental data from the wrist at the 

three placement locations depicted in Fig. 14. The signal 
quality in location 2 is obviously lower relative to the SNR in 
locations 1 and 3, but all three are suitable PPGs. At present, it 
is difficult to consistently obtain high quality PPG data from 
the wrist; that often requires the application of pressure to 
bring the optical sensor closer to the major arteries [21]. An 
operation to achieve the same effect (i.e., bending the wrist at 
about a 45° angle), was usually employed if the PPG had a 
low SNR. Since subjects demonstrate a variety of different 
arterial locations and depths at the wrist, sensor placement 
flexibility is essential to acquire commendable data sets at this 
body location, which was also noted in [32]. 

 
Fig. 13.  Wrist PPGs corresponding to the placement locations in Fig. 14. 
 

 
Fig. 14.  Pulse oximeter measurement locations on the left wrist.   
 

New Pulse Wave Velocity (PWV) Estimation Approach.  
Given the capability to acquire quality PPG data from the 
wrist (where the SNR dramatically improves with post-
filtering), a new approach to estimate PWV has been 
evaluated by the authors [33]. This approach compares near-
infrared PPGs from two synchronized pulse oximeters placed 
at the fingertip and wrist of the same hand. PWVs can be 
estimated from several time differences/delays extracted from 
corresponding features on the two PPGs.   

Fig. 15 displays two channels of data acquired from the 
earlobe. The near-infrared channel has an SNR of 5.7 and a 
peak-to-peak range of 1.0 V (1706 digital levels); the red 
channel has a much lower SNR of 1.8 and a peak-to-peak 
range of 0.6 V (1024 digital levels). 
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Fig. 15.  Earlobe results: (a) near-infrared channel and (b) red channel. 
 

Respiration Activity Analysis.  Fig. 16 (a) displays 120 
seconds of experimental data from the temple that include 
respiration activity and a swallowing motion. There are 33 
respiration cycles present during the 120-second recording 
time (i.e., the respiration rate is 0.275 Hz). An FFT was 
applied to ascertain the visibility of these events in the 
magnitude spectrum, as noted in Fig. 16 (b). The peak at 1.679 
Hz corresponds to the subject’s heart rate (100.7 bpm) and the 
0.266 Hz frequency component is likely the respiration rate.  

 
Fig. 16.  Temple results: (a) time-domain PPG with respiration and 
swallowing motion and (b) the corresponding frequency-domain spectrum.  

V. CONCLUSION  
A high-performance wireless reflectance pulse oximeter 

was designed, which included functional features desired for 
research and education that are either unavailable or hard to 
find on commercial units and design optimizations based on 
lessons learned from previous work or published in the pulse 
oximetry literature.  These primary features include (a) a 
unique filter-free circuit design, (b) full access to unfiltered 
PPG data, (c) many digitization levels in the pulsatile PPG 
signals that demonstrate a sampling frequency up to 240 Hz, 
(c) a feedback mechanism to allow sensor operation in normal 
ambient room light, and (d) a large-area reflectance sensor that 

speaks to the promise of surface-infused biosensors and 
enables sensor placement at many body locations while 
optimizing the resistance of the sensor to stray photons and 
motion artifact.  Onboard flash memory, ZigBee wireless 
support, and mini-USB connectivity for data transfers and 
battery recharging are additional highlights.  The associated 
MATLAB GUI makes signal acquisition, visualization, 
restoration, and post-processing convenient.  

High-integrity PPGs acquired from 48 human subjects over 
a wide range of ages (20 to 64 years old) indicate the device’s 
potential as a research and teaching platform in support of the 
extraction of new physiological parameters from time-domain 
PPGs.  Finally, the size, cost, layout, and design of the sensing 
platform speak to its suitability for wearable applications and 
scenarios where medical sensors are connected to or 
embedded in consumer electronics such as smart phones and 
tablet PCs. 
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