PREDICTING SOIL MOISTURE AND WHEAT VEGETATIVE GROWTH FROM ERTS-1 IMAGERY

1050 710

Ьу

JOHN WAYNE KRUPP

B.S., Kansas State University, 1972

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1974

Approved by:

Major Professor

LD 2668 T4 1974 K78 C.2 Document

ACKNOWLEDGEMENTS

The National Aeronautics and Space Administration provided much appreciated financial support for this research project. The author is also grateful to Dr. E. T. Kanemasu and Dr. D. H. Lenhert, committee members, for their advice and cooperation, and a special thanks goes to Dr. Harry L. Manges, my major professor, for his patience, advice and encouragement in coursework as well as research.

TABLE OF CONTENTS

P.	age
INTRODUCTION	1
REVIEW OF LITERATURE	2
Remote Sensing Physical Properties Soil Factors Vegetative Factors Estimating Soil Moisture	2 2 2 4 8
INVESTIGATION	10
Equipment	10 10 12 13 14
RESULTS	18
Prediction of Soil Moisture	18 21 28
DISCUSSION	40
CONCLUSIONS	42
SUMMARY	43
SUGGESTIONS FOR FUTURE RESEARCH	46
REFERENCES	47
APPENDIX	51

LIST OF TABLES

			Page
Table	1.	ERTS-1 Data for Field A	15
Table	2.	ERTS-1 Data for Field B	16
Table	3.	Weather Conditions at Flight Time over Test Fields	19
Table	4.	Leaf Area Index Data for Fields A and B	20
Table	5.	Soil Moisture Percentages for Field A	23
Table	6.	Soil Moisture Percentages for Field B	24
Table	7.	Predicted Soil Moisture Percentages at 0 to 15 cm from ERTS-1 Data	26
Table	8.	Climatic Data	29
Table	9.	Soil Moisture Information	32
Table	10.	Soil Moisture Depletion Using the Model Developed by Jensen, et al	33
Table	11.	Computer Model of Evapotranspiration by Jensen, et al	52

LIST OF FIGURES

			Page
Figure	1.	Reflectance from Newtonia Silty Clay Loam at Different Soil Moisture Percentages	3
Figure	2.	Characteristic Spectral Reflectance Curve of a Green Leaf	6
Figure	3.	Energy Emitted in the Solar and Thermal Spectrum	11
Figure	4.	Prediction of Leaf Area Index	22
Figure	5.	Actual and Predicted Soil Moisture Percentage at 0 to 15 cm	27
Figure	6.	Measured Leaf Area Index from Field A	34
Figure	7.	Winter Wheat Crop Coefficient	35
Figure	8.	Soil Moisture Depletion Measured and Predicted for Field A	36
Figure	9.	Soil Moisture Depletion Measured and Predicted for Field B	38
Figure	10.	Measured Leaf Area Index from Field B	39

INTRODUCTION

An expanding population has brought about an awareness that there are only limited resources on the Earth. This realization comes at a time when resource use is greater than ever before. Adequate informational techniques are necessary for improved resource development. These techniques can aid in wise resource management.

The magnitude of the data required for improved resource management has led to the development of automatic recognition techniques for agriculture. These systems utilize remote sensing from aircraft and spacecraft. Earth Resources Technology Satellite program is a major step in combining space and remote sensing technologies into a system for developing and demonstrating the techniques for efficient management of the Earth's resources (NASA Earth Resources Technology Satellite Data Users Handbook, 1972).

over 400 million acres of land are irrigated in the world (Israelsen and Hansen, 1967). Some of the water applied is needlessly lost by excess applications. Irrigation scheduling can help to better conserve this valuable resource. One method of scheduling irrigation requires the determination of crop water use (evapotranspiration). Actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient. One possible approach to predicting the crop coefficient is the use of a plant's actual growth which may be determined by its reflection of solar radiation from the plant canopy (Myers et al., 1966). If this method is to be used, the relationship between reflectance, soil moisture and vegetative growth must be established.

The purpose of this research is to evaluate reflectance for prediction of soil moisture and vegetative growth, and to determine the feasibility of using vegetative growth to evaluate the winter wheat crop coefficient.

REVIEW OF LITERATURE

Remote Sensing

Remote sensing refers to the acquiring of data at a distance by detecting the radiant energy which the object either reflects or emits. Detection devices can be field spectrometers and cameras or instruments designed for installation in aircraft and space vehicles.

Albedo is the ratio of the entire solar radiation spectrum reflected from a body to the total incident radiation (Ashburn and Weldon, 1956), while reflectance is the ratio of reflected radiation to the total incident radiation at a specific wavelength. At any specified wavelength, Reflectance + Absorptance + Transmittance = 1. Transmittance of any opaque material is zero; thus a decrease in reflectance will cause an equal increase in absorption.

Physical Properties that Affect Reflectance

Soil Factors

The albedo of various soil surfaces was compiled by Kondrat'yev (1965). The soils had extremely variable albedos. The variability was attributed to the different soil color, soil moisture content, organic matter and particle size. The soil moisture content was considered the most important factor. He pointed out that a decrease in albedo with an increase in moisture was due to water's low albedo. Bowers (1971) indicated that the relationship between soil moisture and reflectance is precise enough to utilize reflectance techniques to measure surface moisture (Fig. 1). However, due to the soil color, a calibration is necessary for each soil type.

Fig. 1. Reflectance from Newtonia Silty Clay Loam at Different Soil Moisture Percentages (Figure reproduced from Bowers, 1971).

Allen and Sewell (1973) concluded that the use of infrared films and electronic scanner detectors could detect fallow soil moisture over a range of 1 to 24 percent dry weight. Their prediction equations for both the surface soil moisture and soil moisture at the 4 inch depth had regression coefficients (\mathbb{R}^2) of at least 0.94.

Organic matter also influences reflectance. A study by Bowers (1971) shows that an oxidized soil sample compared to the check or control sample has a greater reflectance. He also states that some of the change could have been due to oxidation of the carbonates, although in one soil no carbonate was detected.

Bowers (1971) and Myers and Allen (1968) also reported that particle size has an effect on reflectance. In most cases an increase in particle size decreased the reflectance. This was due to the fine particles filling the volume more completely, thus a more even surface. Coarse aggregates, having an irregular shape, formed a large number of pores and cracks in the surface. When the soil surface was wet and pulverized there was very little difference in reflectance from soils, instead the real contrast was at a low moisture content.

Vegetative Factors

The main factor that causes variation in reflectance from crop canopies is leaf density or leaf area index. Leaf area index is defined as the ratio of the leaf area to soil area. Stanhill et al. (1968) reported that leaf area index is linearly correlated to albedo or shortwave reflection. The plant albedo increases with increasing plant development to a maximum at full plant canopy. The suggested model indicates internal trapping of radiation, which decreases albedo. Internal trapping is almost complete

value. In the near infrared region, reflectance increased 17 percent with two leaf layers and only slightly more for each additional leaf layer. When the crop cover is incomplete all of the soil factors mentioned previously, including soil color, soil moisture, particle size and organic matter, caused variation in reflectance. In addition, leaf reflectance also is affected by stand geometry and leaf morphology, most significantly in the near infrared region (Gates, 1965), as well as the variety and relative maturity of the crop (Remote Multispectral Sensing in Agriculture, 1970).

A comparison of different varieties of a crop by Interpretation of Remote Multispectral Imagery of Agricultural Crops (1967) and Remote Multispectral Sensing in Agriculture (1967) indicated that the spectral responses were statistically different. These differences could also have been attributed to variations in crop canopy or leaf area index and crop maturity. In mid-season it could have been due to weed infestations, diseases or farming practices.

Variations of reflectance were found with spectral bands. In the visible region, the striking feature of the leaf spectrum was the high absorptance from 0.4 to 0.5 µ, the reduced absorptance from 0.5 to 0.6 µ, the high absorptance from 0.6 to 0.7 µ and the low transmittance in the entire region (Fig. 2). This was mainly due to the chlorophyll and carotene absorption that predominates in this region (Remote Sensing, 1970). Sinclair, et al. (1973) reported that cell walls scatter the light diffusively, but the chlorophyll or other pigments are present to absorb the light. The absorbing process is a dominate factor in influencing the spectral response in the visible region. If water deficits occur, the metabolic

Characteristic Spectral Reflectance Curve of a Green Leaf (Figure reproduced from Remote Multispectral Sensing in Agriculture, 1970). 2 Fig.

processes slow down resulting in the breakdown of carbohydrates and protein within the plant cell. As the stress becomes more severe, accelerated migration of soluble leaf phosphorous and nitrogen compounds to the stem occurs. The loss of chlorophyll accompanying the breakdown and migration results in higher reflectance (David, 1969). Therefore, reflectance is related to the amount of plant pigments. Other factors may result in the loss of chlorophyll such as leaf maturity, salinity, disease or mineral deficiencies. Severe nitrogen deficiences increase reflection (Remote Sensing, 1970), but differences in available nitrogen produce differences in vegetative growth (Bhangoo, 1956, Bolaria, 1956, and Monteith, 1959). In the near infrared region $(0.7 \text{ to } 1.3 \mu)$ reflectance is caused by the lack of pigment absorption and by the lack of absorption by liquid water (Remote Sensing, 1970). Sinclair, et al. (1973) suggested that reflectance had to occur at interfaces within the leaf where total or critical reflectance was possible. The requirements for total or critical reflectance are that the radiation pass from a material with a high index of refraction to a material with a low index of refraction and that the angle of incidence must be sufficiently large. The increase in reflectance as the leaves become more nitrogen deficient suggests that the leaves are thicker since reflectance increases exponentially as leaf thickness increases. Moisture stress causes physiological changes in the leaf that cause the infrared reflectance to decrease with an increase in moisture stress. The low absorption or high reflectance in this region is a distinctive feature of vegetative. Remote Sensing (1970) reports that of the total incident radiation which strikes a leaf, about 50 percent is reflected, 45 percent is transmitted and the remaining is absorbed. Sinclair et al. (1973) provide a more detailed explanation of the reflectance of an individual leaf in both the visible and near infrared regions.

Sun angle and attenuation are two factors that affect reflection from an object. At low sun angles the reflectance of an object increases compared to a large sun angle. Attenuation is defined by Remote Sensing (1970) as including losses from a beam of radiation by either atmospheric absorption or scattering. In the visible region absorption plays only a minor role compared to scattering. Scattering is caused by interaction between radiation and small particles (dust or water droplets usually in the form of a cloud or haze).

Estimating Soil Moisture

A large amount of time and effort has been expended in the research of transpiration and evaporation with only recent applications in the modeling of evapotranspiration for management of irrigated land. This comes at a time when studies indicate that the timing of irrigations and the amount of water applied have changed very little (Jensen et al., 1971). If a model is to be used on a practical basis for irrigation scheduling, necessary information must be relatively simple to obtain.

Jensen et al. (1971) have developed a computerized model to estimate soil moisture depletion. One of the model's primary objectives is the orientation for the user instead of the researcher. To calculate the potential evaporative flux, the Penman combination equation is used (Penman, 1963). The meteorological data necessary to evaluate the equation include minimum and maximum daily air temperatures, daily solar radiation, dew point temperature at 8 AM and daily wind run.

The crop coefficient used in the computer model represents the effects of the resistance of water movement from the soil to the evaporating surfaces, the resistance to the diffusion of water vapor from the surfaces to the

atmosphere and the amount of available energy compared to the reference crop (Jensen, 1968). Thus the crop coefficient is limited by the available soil moisture as well as the daily meteorological conditions and stage of plant growth. For each separate crop a coefficient must be developed for the model. A more detailed explanation can be obtained from Jensen et al. (1971).

Ritchie and Burnett (1971) and Ritchie (1972) determined a nonlinear relationship between the leaf area index of a crop and the ratio of the plant's evapotranspiration to the potential evapotranspiration. They reported that while an adequate supply of water is available in the soil, plant factors influence evapotranspiration rates.

INVESTIGATION

Objectives

This work was concerned with problems dealing with utilizing remote sensing data. The objectives of the study were: (1) to evaluate reflectance for prediction of soil moisture and vegetative growth, (2) to determine the feasibility of using vegetative growth to evaluate the winter wheat crop coefficient, and (3) to evaluate the winter wheat crop coefficient in the mathematical model by Jensen et al. (1971) for irrigation scheduling.

Equipment

ERTS-1 satellite revolves in a circular orbit around the Earth every 103 minutes at 914 km above sea level. The satellite travels over the research area in midmorning in a north to south direction. It passes over any location on the Earth's surface once every 18 days at the same time of day.

The Multispectral Scanner (MSS) is a line-scanning device that operates in two bands of the visible spectrum and two in the near infrared. Band 4 included the spectrum between 0.5 and 0.6 μ , band 5 between 0.6 and 0.7 μ , band 6 between 0.7 and 0.8 μ and band 7 between 0.8 and 1.1 μ . Fig. 3 shows the 4 bands with the energy emitted in the solar and thermal spectrum. An oscillating mirror in the MSS causes light energy from a 185 km swath to be swept across the focus of a small telescope. At the focus is a four-by-six array of 24 optical fibers (6 for each band). The fibers carry the energy from the light through spectral filters to detectors that convert it to an electrical signal. An area of 79 meters square is contained in each

Fig. 3. Energy Emitted in the Solar and Thermal Spectrum.

fiber. The MSS image covers 185 km square with 4 images per area. The imagery is relayed to ground stations and then is processed into photographs at Goddard Space Flight Center in Greenbelt, Maryland. The resolution capability reveals surface features at a scale of 1:250,000 and information at a scale of 1:30000. Further details of the equipment aboard the ERTS-1 satellite are given by NASA Earth Resources Technology Satellite Data Users Handbook (1972).

Methods of Procedure

The research was conducted on winter wheat fields approximately 30 kilometers northwest of Garden City, Kansas. Two soil moisture treatments, one dryland wheat field (A) located 38° 9.6' North latitude and 101° 5.9' West longitude and one irrigated field (B) 38° 8.5' North latitude and 101° 4.9' West longitude, were used with approximately 60 hectares in each. Field B was irrigated by a center pivot sprinkler system. The two fields were located within 3 km of each other. The area's normal annual precipitation is 43.6 cm with about 70 percent of the precipitation during September through June.

The two fields were located on Ulyssess-Richfield silt loam with an average organic matter of 1.5 percent and soil pH of 6.9. The exchangeable potassium was in excess of 560 kg per hectare. Available phosphorus in field A was 117 kg per hectare and in field B was 64 kg per hectare. Particle size analyses revealed that both field's soils contained an average of 50 percent silt and 20 percent clay.

Field A had been in fallow the previous year. Scout wheat was planted at a seeding rate of 29 kg per hectare on September 15, 1972. The grain drill used had a 25.4 cm spacing between rows. By May 24, 1973, the wheat was completely headed and was harvested on July 5.

Since field B had been in wheat the previous season, the field was preirrigated. Anhydrous ammonia at a rate of 90 kg of nitrogen per hectare was applied to the field. On September 22, 1972, Eagle wheat was seeded at a rate of 50 kg per hectare with a row spacing of 30.48 cm. According to Variety Tests with Fall-Planted Small Grains (1971), Eagle wheat was a selection of Scout with nearly identical vegetative characteristics. Water was applied with the center pivot irrigation system on May 23 (3.05 cm) and June 2 (3.05 cm). Harvest of the wheat was completed on July 5.

Data Collection

Both fields A and B were divided into four square equally sized plots with a sampling area in the center of each plot. An additional sampling area was also set up in two of the plots in field A where the corners had been double drilled. This gave a total of six sampling areas in field A and four in field B. By the use of random sampling techniques, the areas were broken down into one meter squares, where the leaf area index and soil moisture were measured.

The soil samples were gathered at the surface and at intervals of 0 to 15, 15 to 30, 30 to 60, 60 to 91, 91 to 121, 121 to 152 and 152 to 182 cm with a soil sampling tube. The samples were later dried in an oven at 105°C until they reached a constant weight. Then the soil moistures were calculated.

The leaf area was determined by measuring the length and breadth of each leaf from randomly selected plants in the one square meter and using the following equation (Teare and Peterson, 1971):

$$LA = -0.64 + 0.813 X$$
 (1)

where:

 $L\Lambda = 1eaf area (cm²)$

X =product of length times breadth of leaf (cm²).

The leaf area index is the total leaf area divided by the land surface area. Both soil moisture and leaf area index data were obtained within one day of the flights over.

The meteorological data were from the Garden City Experiment Station. These data included maximum and minimum temperatures, dew point temperatures and wind run. Also the field capacity, permanent wilting point and bulk density for Ulyssess-Richfield silt loam were obtained from the experiment station. This information was determined by laboratory measurements and may not describe the test fields accurately. Solar radiation was obtained from the Dodge City Weather Service while rainfall readings were taken near the research area.

Data Analysis

Using a negative transparency from ERTS-1, the general area of fields (A and B) was located. Then the specific fields were found by the use of computer printed gray scales. From the gray scales the coordinates were located and the numerical values were stripped off the magnetic tapes. To prevent any overlapping outside of the research area, one row of data points around the edge of the fields was eliminated. The mean and standard deviation of the remaining data of the four bands were calculated (Tables 1 and 2). Also the mean and standard deviation of point by point ratios were determined (Tables 1 and 2). Stepwise Deletion Multiple Regression (1973) was used to evaluate the relationship between reflectance, soil moisture and leaf area index.

The meteorological data, as well as the soil moistures on March 22, were used in the computer model of evapotranspiration (Appendix, Table 11) developed by Jensen et al. (1971). The original wheat crop coefficient

Table 1. ERTS-1 Data for Field A.

Date		MSS4	MSS5	MSS6	MSS7	MSS4/5	MSS4/7	MSS5/7
9/22/72	Mean	34.75	37.89	38.64	19,55	0.918	1.779	1.939
	S.D.*	1.41	1.90	2.18	0.86	0.040	0.068	0.080
3/22/73	Mean	33.26	32,29	45.87	25.25	1.031	1.318	1,280
5	S.D.*	1.28	1.58	1.74	69*0	0,040	0.055	690.0
5/14/73	Mean	29.74	24.50	48.11	28.08	1,218	1.064	0.877
	S.D.*	1.69	2.12	1.79	1.66	990.0	0.101	0.104
6/1/73	Mean	33.43	29.48	52.32	29.87	1.138	1,121	0.990
	S.D.*	1.72	2.42	1.84	1.04	0.062	0.083	0.104
6/19/73	Mean	41.14	49,33	55.26	28.70	0.835	1,436	1.722
	S.D.	1.62	2.07	1.49	0.92	0.033	0.074	060.0
51/1/7	Mean	59.46	78.53	77.68	36.36	0.758	1.636	2,161
	S.D.*	2.14	4.25	2.72	1.49	0.030	0.061	0.115

*Standard deviation.

Table 2. ERTS-1 Data for Field B.

Date		MSS4	MSS5	MSS6	MSS7	MSS4/5	MSS4/7	MSS5/7
9/22/72	Mean	37.05	40.41	96.04	20.78	0.919	1.786	1.947
	S.D.*	1,62	2.54	2.37	1.02	0.038	0.094	0.128
3/22/73	Mean	33,54	32,99	41.47	22.57	1,019	1.488	1,463
	S.D.*	1.09	1.91	2.15	96.0	0.049	0.073	0.088
5/14/73	Mean	27.63	19.22	99.99	36.78	1.454	092.0	0.532
	S.D.*	1.60	2.68	3.56	3.18	0.132	0.109	0.129
6/1/73	Mean	26.93	20.03	48.66	31.61	1,355	0.858	0.638
	S.D.*	1,32	2.23	3,43	2.54	0.111	0.083	0.094
6/19/73	Mean	36.68	37.94	52,00	29.97	0.971	1.227	1.270
	S.D.*	1.21	3.11	2.05	1.56	090.0	0.079	0.131
51/1/7	Mean	54.46	73.87	77.48	38.24	0.739	1.425	1.932
	S.D.*	2.30	4.37	3,39	1.31	0.033	090.0	0.100

*Standard deviation.

curves were evaluated first. Then curves developed by regression analysis from the leaf area index data were used as the crop coefficient curves. From the computer model, soil moisture depletions were predicted.

RESULTS

Prediction of Vegetative Growth

ERTS-1 passes over any location on the Earth's surface once every 18 days at the same time of day, but some dates had high percentages of cloud cover. Neither aerial nor ground data were collected on those days (Table 3). These data (Table 4) were used as a means for determining vegetative growth with Stepwise Deletion Multiple Regression (1973). The July 7 data were not used because of the alteration of the natural vegetative growth by harvesting the wheat. The wheat threshed straw provided a stubble mulch compared to the uncut wheat. The equations that best describe vegetative growth were:

LAI =
$$2.92MSS4/5 - 2.63$$
 , $R^2 = 0.95$ (2)

LAI =
$$-0.065MSS5 + 2.66$$
 , $R^2 = 0.86$ (3)

LAI =
$$-1.22MSS5/7 + 2.08$$
, $R^2 = 0.85$ (4)

where

LAI = Leaf area index

MSS4/5 = Ratio of band 4 to band 5

MSS5 = Band 5

MSS5/7 = Ratio of band 5 to band 7

 R^2 = Regression coefficient.

For the predicted values of leaf area index to have meaning, it is necessary that a minimum or maximum value of MSS4/5, MSS5 and MSS5/7 be set so that the predicted leaf area index is never negative.

The general trend from equation 2 indicates that as the ratio of band 4 to band 5 increases the leaf area index increases linearly. This

Table 3. Weather Conditions at Flight Time Over Test Fields.

Date		Weather Condition	Data Acquired*
September	4, 1972	Cloudy	
September	22, 1972	Clear	x
October 6	10, 1972	Partly Cloudy	
October	28, 1972	Cloudy	er
November	15, 1972	Cloudy	
December	3, 1972	Partly Cloudy	
December	21, 1972	Partly Cloudy	
January	8, 1973	Cloudy	
January	26, 1973	Cloudy	
February	13, 1973	Rain	
March	3, 1973	Foggy	
March	21, 1973	Clear	X
April	8, 1973	Heavy Snow	
April -	26, 1973	Rain	
May	14, 1973	Clear	X
June	1, 1973	Clear	X
June	19, 1973	Clear	X
July	7, 1973	Clear	X

^{*}Indicates both ERTS-1 and field data taken.

Table 4. Leaf Area Index Data for Fields A and B.

W6252412-2-12-12-12-12-12-12-12-12-12-12-12-12	a mean or	Process series of the series	e energy desperse	
	Fi	eld A	F:	ield B
Date	Mean	Standard Deviation	Mean	Standard Deviation
9/22/72	0.00	0.00	0.00	0.00
12/21/72	0.33	0.00	0.12	0.07
3/22/73	0.37	0.10	0.44	0.07
5/14/73	0.97	0.26	1.53	0.39
6/1/73	0.89	0.25	1.23	0.36
6/18/73	0.00	0.00	0.00	0.00
7/7/73	0.00	0.00	0.00	0.00

means that reflectance due to plant growth in band 4 increases faster than band 5 since the vegetation reflects less radiation in band 5. Equation 2 (Fig. 4) best describes leaf area index because of its high regression coefficient. The ratio appears to have cancelled any soil moisture variations.

Equation 3 shows a linear relationship between leaf area index and band 5. From the equation it appears soil moisture is not significant in band 5. Of the three equations presented, an error in band data would have the least effect on leaf area index as represented by the low coefficient of the band in equation 3. Equation 4 uses the ratio of band 5 and band 7 to evaluate leaf area index with no significant variation from soil moisture. The reflectance due to vegetation of band 7 increases at a much faster rate than band 5 as plant growth continues, causing a decrease in the ratio.

Prediction of Soil Moisture

The Stepwise Deletion Multiple Regression (1973) was used to help interpret the aerial and ground truth data available (Tables 5 and 6). The information for field B on March 22 was eliminated since rain fell before the soil moisture could be measured. Again the July 7 data were not used due to the stubble mulch caused by harvesting the wheat crop. The equations determined were:

$$SM2 = 164.44 - 4.00MSS4 - 24.08LAI$$
, $R^2 = 0.93$ (5)

$$SM2 = 80.70 - 1.41MSS6 + 10.00LAI$$
, $R^2 = 0.80$ (6)

$$SM2 = 77.92 - 2.56MSS7 + 20.36LAI$$
 , $R^2 = 0.79$ (7)

Fig. 4. Prediction of Leaf Area Index.

Table 5. Soil Moisture Percentages tor Field A.

					1 1				
Date		Surface	0-15	Soil Moisture 15-30 30-6	30-61	- 4 - 3	Increments (cm) 61-91 91-122	122-152	152-183
9/22/72	Mean	10,43	22.97	23.70	21,35	17.65	14.35	12,85	13,55
	S.D.*	2.18	66.0	2.58	0.93	3,10	1.87	0.75	16.0
12/21/72	Mean	34.30	30.40	27.70	26,50	24,30	21,10	15,70	13.80
	S.D.*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/22/73	Mean	8.13	22.98	25.42	23.82	20,70	16,63	14.62	14.98
41	S.D.*	2,59	1.27	1.81	1.26	2.02	2.70	2.61	2.61
5/14/73	Mean	3.82	16.92	17.20	19,12	20.35	20.03	18,52	16.45
	S.D.*	0.75	1.87	1,61	1,15	1.61	1,52	1,99	2.40
6/1/73	Mean	2.87	11,12	13,45	15,22	15.72	15,95	16.38	15.97
	S.D.*	0.84	1,50	0.63	1.22	2.04	2,19	2.00	2.28
6/19/73	Mean	0.85	6,35	9.80	11,12	10,13	11,08	12.47	13,32
	S.D.*	0.44	0.73	1.55	1.31	1.68	1,41	2.06	2.01
7/7/73	Mean	1.77	15,65	11,45	12.92	14.15	15.20	16.33	17.33
	S.D.*	0.21	1.73	0.89	0.39	1,00	2,30	2,65	2.51

†Soll moisture percentages on dry weight basis

*Standard deviation

Table 6. Soil Moisture Percentages T for Field B.

Date		Surface	0-15	Soil Moi 15-30	Moisture at 30 30-61	Increments 61-91 91	91-122	122-152	152-183
9/22/72	Mean	8,35	22.40	20.75	16.93	13,43	13.00	14.70	16.05
×.	S.D.*	1.81	1,30	0.34	2,99	2,81	4.13	3.62	2.40
12/21/72	Mean	16.28	30,10	26.27	24.90	19,25	14.83	15.70	16.70
	S.D.*	3.71	5.60	2,11	3,19	2,83	3,41	2.75	2.88
3/22/73	Mean	19.00	27.05	23.97	24,15	20.02	14.78	15.00	15,97
	S.D.*	6.44	4.11	1,68	4.16	3,49	4.56	3,43	3,18
5/14/73	Mean	5.58	21.20	16,33	18,15	18,38	17.73	16.70	16.90
	S.D.*	0.93	3.27	2.06	3,53	3,85	3.75	3.85	2.58
6/1/73	Mean	25.10	25.47	18,93	15,48	13,88	13,68	15.55	16.62
	S.D.*	12,43	4.10	5.16	3,70	2,85	2,40	4.12	2.81
6/19/73	Mean	2.28	9.63	9.23	11,98	10.78	11,18	11.48	13.50
	S.D.*	1.13	2,19	1.73	3,88	3.02	1.72	1.68	1.91
7/7/73	Mean	2.60	17.20	9.40	11.43	11,10	10.50	10.38	13,15
	S.D.*	1.25	1.81	2.23	1.53	0.67	1,39	1.27	1.64

Soil moisture percentages on dry weight basis.

*Standard deviation.

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%)

LAI = Leaf area index

MSS4 = Band 4

MSS6 = Band 6

MSS7 = Band 7

MSS4/5 = Ratio of band 4 to band 5

 R^2 = Regression coefficient.

The soil moisture equation 5 indicates that an increase in leaf area index, with soil moisture remaining constant, decreases the reflectance in band 4. This could be caused by the reflectance of the soil being greater than the plant reflectance. Thus as the leaf area increased, more surface was covered by the plant canopy causing a decrease in reflectance monitored. The fact that soil moisture increases absorption is reaffirmed by equations 5, 6 and 7. Equation 5 is the best equation due to its high regression coefficient.

Equations 6 and 7 indicate that the reflectance of the plant is greater than the reflectance of the soil. An error in band reading or leaf area index would cause the least change in soil moisture in equation 6 due to the small coefficients.

Upon substituting equation 2 into equation 5, soil moisture at 0 to 15 cm depth became:

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$
 (8)

Table 7 and Fig. 5 show a comparison of soil moisture predicted by equation 8 with the measured soil moisture. Equation 8 was developed for soil factors pretaining to the fields. Different soil factors would require a new equation to be developed for soil moisture. These factors include soil type, organic matter, particle size and cultural practices.

Table 7. Predicted Soil Moisture Percentages at 0 to 15 cm from ERTS-1 Data.

		E	ield A			E4	Field B	
Date	MSS4	MSS4/5	Predicted ^a SM2	Actual SM2	MSS4	MSS4/5	Predicted ^a SM2	Actual SM2
9/22/72	34.75	0.918	24.24	22.97	37.05	0,919	14.80	22.40
3/22/73	33.26	1.031	22,25	22.98	33,54	1.019	21.85	27.05 ^b
5/14/73	29.74	1,218	23.09	16.92	27.63	1.454	14.91	21.20
6/1/73	33.43	1.138	13.86	11.12	26.93	1,355	24.69	25.47
6/19/73	41,14	0.835	ပ 	6,35	36.68	0.971	12,66	9.63
				P-18 - 19-1-19-19-19-19-19-19-19-19-19-19-19-19				

a Calculated by SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5.

brecipitation fell after ERTS-1 flight but before measurement.

cA negative value is predicted which has no meaning.

Fig. 5. Actual and Predicted Soil Moisture Percentages at 0 to 15 cm.

Soil Moisture Model

The original wheat crop coefficient curve developed by Jensen et al. (1971) was:

$$Y = 0.233 - 0.0114X + 0.000484X^2 - 0.00000289X^3$$
 (9)

$$Y = 1.022 + 0.00853D - 0.000726D^{2} + 0.00000444D^{3}$$
 (10)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Equations 9 and 10 in conjunction with climatic data (Table 8) and soil moisture information (Tables 5, 6 and 9), were used in the computer model developed by Jensen et al. (1971). The soil moisture depletion for both fields in most cases was overestimated (Table 10).

Regression analysis of leaf area index data for field A (Fig. 6) was used as the new winter wheat crop coefficient curve (Fig. 7). The equations of the curve were:

$$Y = 0.005 + 0.0165X - 0.000467X^{2} + 0.00000402X^{3}$$
 (11)

$$Y = 0.998 - 0.00297D - 0.000747D^{2}$$
 (12)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Fig. 8 and Table 10 represent the results from the computer model with equations 11 and 12 on dryland (Field A) compared to the actual measured values. The actual soil moisture values compared very closely with predicted values of the model until near maturity of the wheat crop on June 19. At

Table 8. Climatic Data.

	Day	Temp.	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfall (inches)
larch	20	28	52	561.5	28	144	
	21	31	53	492.6	36	113	
	22	39	56	505.9	36	327	
	23	39	63	33.8	39	157	1.10
	24	36 -	49	108.2	36	167	
	25	35	40	90.2	35	415	
	26	35	42	468.6	35	284	
	27	35	55	205.5	35	127	.70
	28	42	51	163.4	42	200	
	29	32	50	91.1	32	160	
	30	32	39	47.7	32	166	1.00
	31	32	37	214.9	32	325	
pril	1	30	45	588.5	30	239	
÷	2	30	58	428.7	34	79	
	3	31	54	429.0	32	187	
	4	31	48	642.3	31	274	
	5	22	54	634.0	30	163	
	6	31	63	627.3	28	154	
	7	37	70	44.7	35	124	0.25
	8	24	37	381.6	24	378	
	9	17	33	596.2	17	262	
	10	19	35	664.7	19	192	
	11	26	53	625.2	37	123	
	12	31	64	400.6	38	68	
	13	37	62	595.8	40	102	
	14	46	66	470.8	57	273	
	15	58	78	216.5	58	387	ųš
	16	25	61	642.3	31	220	3 5
	17	35	60	652.1	39	158	
	18	46	76	643.9	48	209	
	19	45	77	596.8	42	336	
	20	36	60	693.4	23	219	
	21	38	72	672.7	37	259	
	22	36	65		38	98	
				612.9			
	23 24	33 46	67 73	655.0 162.5	42 50	78	0.00
	25	44		107.9	50 45	117	0.80
	26		57			115	
	26 27	34	48	221.9	36 36	181	
		31	48	200.5	36	122	2:
	28	38	66	666.9	43	153	-
	29 30	45 49	82 78	635.9 368.8	. 45 49	167 134	

Table 8. Continued.

Month	Day	Minimum Temp. (°F)	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfall (inches)
Мау	1	44	73	156.6	45	176	
	2	35	46	633.8	37	178	
	3	32	58	704.2	36	90	
	4	40	71	688.0	41	165	
	5	50	79	503.6	45	319	
	6	47	79	702.9	47	207	
	7	48	77	520.8	50	185	1.25
	8	42	68	682.7	44	160	
	9	48	79	706.0	45	109	
	10	44	77	698.4	45	106	
	11	50	77	681.7	48	140	
	12	46	70	674.5	40	144	
it.	13	42	68	672.1	37	67	
	14	38	65	728.4	42	59	
	15	38	66	727.4	38	84	
	16	45	78	718.4	39	123	
	17	42	71	568.8	42	127	
	18	48	88	708.2	46	77	
	19	54	87	705.3	49	102	
	20	54	84	633.4	52	109	
	21	57	86	689.5	61	201	
	22	51	85	611.9	50	148	
	23	51	68	672.9	53	79	
	24	54	80	738.7	50	79	
	25	47	72	641.0	47	143	
	26	55	80	488.7	56	249	
	27	46	68	107.2	37	266	
	28	50	53	624.3	48	490	
	29	40	73	674.8	42	208	
	30	46	70	406.9	44	125	
	31	42	62	751.1	44	43	
une	1	48	77	623.8	60	133	
	2	57	82	659.7	56	247	
	3	53	86	645.8	53	192	
	4	53	80	599.6	54	94	
	5	47	68	667.5	48	133	
	6	50	79	736.5	46	70	
	7	51.	88	729.0	49	78	
	8	56	94	719.4	53	87	
	9	57	97	739.9	56	98	
	10	60	92	734.1	58	182	
	11	62	90	707.2	59	277	

Table 8. Continued.

mental	transfer and the second		AND THE PROPERTY OF THE PARTY O			W	- 20
Month	Day	Minimum Temp. (°F)	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfall (inches)
June	12	64	91	498.0	60	210	
	13	64	82	627.2	66	102	
	15	59	89	737.1	52	216	
	16	57	94	743.0	46	215	
	17	53	84	740.3	49	121	
	18	48	95	757.4	32	239	
	19	54	78	695.6	35	170	
	20	45	79	738.7	41	113	
	21	52	85	683.0	54	85	
	22	55	86	725.5	51	62	
	23	57	91	723.3	51	84	
	24	64	98	729.4	46	126	
	25	61	98	663.5	49	186	
	26	63	101	701.2	51	130	
	27	62	102	690.7	50	156	
	28	63	93	594.5	61	106	0.90
	29	64	87	646.0	66	97	
	30	65	88	647.8	68	82	
July	1	66	94	668.4	68	146	
	2	70	102	613.5	63	197	
	3	67	92	639.6	63	75	
	4	66	102	661.3	65	160	
	5	62	95	702.4	62	94	
	6	65	97	715.1	62	102	
	7	68	101	714.1	64	170	

Table 9. Soil Moisture Information.*

Depth (cm)	Field Capacity (%)	Permanent Wilting Point (%)	Bulk Density (gm/cm ³)
0-30	28.5	14.5	1.29
30-61	28.0	14.0	1.37
61-91	27.5	13.5	1.39
91-122	27.0	13.0	1.16
122-152	26.5	12.5	1.16
152-183	26.0	12.0	1.16

 $[\]star 0$ btained from the Garden City Experiment Station.

Table 10. Soil Moisture Depletion Using the Model Developed by Jensen et al.

		Field A (cm)	(m		Fie	Field B (cm)	
Date	Actual ^a		Revised 1 ^c	Actual ^a	Jensen	Revised 1 ^C	Revised 2 ^d
3/21/73	17.65			19.28			
5/14/73	19.84	25.07	19.35	23,44	26.14	20.80	26.52
6/1/73	27.74	31.24	27.86	27.15	29.24	26.56	32.66
6/19/73	37.52	32,16	34.65	37.77	27.61	31,52	37,90
51/1/13	28,68	31,29	34.51	34.21	26.75	31,70	38.07

 $^{
m a}$ Actual field measurements of soil moisture depletion.

boriginal wheat crop coefficient suggested by Jensen et al.

Wheat crop coefficient using leaf area index of Field A.

dwheat crop coefficient using leaf area index of Field B.

Fig. 6. Measured Leaf Area Index from Field A.

Fig. 7. Winter Wheat Crop Coefficient.

Fig. 8. Soil Moisture Depletion Measured and Predicted for Field A.

this date soil moisture depletion was underestimated, but still the difference in values were insignificant compared to the available moisture. After the June 19 date, comparison became difficult due to the discrepancy of actual soil moisture increasing 8.84 cm while rainfall only totaled 2.29 cm.

Fig. 9 and Table 10 show the results of the irrigated Field (B) using equations 11 and 12. The computer model consistently underestimates the evapotranspiration. For the time period up to June 1, the differences were not significant in relation to the available soil moisture, which included an irrigation on May 23 of 3.05 cm. By June 19 the two had considerably different values with another unexplained increase of 3.56 cm in soil moisture and only 2.29 cm of rainfall.

Regression analysis was used to develop a third wheat crop coefficient curve from the leaf area index of Field B (Fig. 10). The equations for the curve were:

$$Y = 0.0109X - 0.000288X^2 + 0.00000333X^3$$
 (13)

$$Y = 1.52 - 0.000834D^2$$
 (14)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

The computer model's results using equations 13 and 14 indicate that the soil moisture depletion was overestimated meaning the crop coefficient used was too large.

Soil Moisture Depletion Measured and Predicted for Field B. Fig. 9.

Fig. 10. Measured Leaf Area Index from Field B.

DISCUSSION

The computer model of irrigation scheduling developed by Jensen et al., (1971) uses a crop coefficient which represents the effects of the resistance of the water movement from the soil to the evaporating surfaces, the resistance of the diffusion of water vapor from the surfaces to the atmosphere and the amount of available energy compared to the reference crop. The model predicts percent effective cover by assuming that it is equal to days after planting divided by the days from planting to heading for small grains. This proves to be a poor assumption for winter wheat.

An alternative to this method of crop coefficient determination would be the direct use of wheat vegetative growth or more specifically leaf area index. If a leaf area index versus the crop coefficient curve was developed, vegetative growth would then indicate a specific value for the crop coefficient at a certain point in time. This would eliminate problems due to seasonal variation of weather conditions such as an early fall or late spring.

From this study it appears that a further step can be taken to utilize remote sensing. The winter wheat leaf area index has been described, with high correlation, by reflectance readings. These readings could be used as a direct input into a computer model instead of the original percent of effective cover.

If remote sensing data were available within hours after flight over an area, the following procedure might occur. Data direct from the remote sensing device would be fed into the computer containing an irrigation scheduling model. Meteorological data and a weather forecast for the prediction period would be the other inputs. From a leaf area index curve averaged over many years and the value from the remote sensor, the growth of the crop could be estimated for the prediction period. Knowing the

growth or water use, the computer model would then be able to predict the irrigation requirement necessary. This process could be handled by one manager for large areas of irrigated wheat land.

CONCLUSIONS

Results from this study indicate:

- Vegetative growth was best predicted by a linear relationship between leaf area index and the ratio of band 4 to band 5. All significant soil moisture effects were cancelled by the ratio.
- 2. Soil moisture at a depth of 0 to 15 cm, with specific soil factors, was predicted by band 4 and leaf area index with a high regression coefficient.
- 3. Vegetative growth, measured by leaf area index, was one of the necessary inputs in evaluating the winter wheat crop coefficient from March to maturity.

SUMMARY

A realization that wise resource management is necessary comes at a time when resource use is greater than ever before and the population is still increasing. With the use of remote sensing large quantities of data are available for resource management. These large quantities of data have led to the development of automatic recognition techniques in agriculture. Earth Resources Technology Satellite program provides a system for developing and demonstrating the techniques for efficient resource management.

With the large amount of irrigated land in the world, excess irrigation applications means large quantities of water needlessly lost. This valuable resource could be better utilized through the use of irrigation scheduling. Irrigation scheduling predicts the consumptive use (evapotranspiration). The actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient which may be predicted by the plant's actual growth. The plant's growth can be determined by reflection of solar radiation from the plant canopy.

The objectives of this study were to evaluate reflectance for prediction of soil moisture and vegetative growth; and to determine the feasibility of using the plant's actual growth for use in determining the winter wheat crop coefficient curve and using it in a computer model developed by Jensen et al. (1971).

The study was conducted on winter wheat fields located northwest of Garden City, Kansas. Two soil moisture treatments were used, one dryland wheat field and one irrigated wheat field. Both fields were on Ulyssess-Richfield silt loam.

ERTS-1 satellite passes over any location on the Earth's surface once every 18 days at the same time of day. The satellite contains a line scanning device (Multispectral Scanner) that operates in two bands of the visible region and two in the near infrared region. Band 4 includes the spectrum between 0.5 and 0.6 μ , band 5 between 0.6 and 0.7 μ , band 6 between 0.7 and 0.8 μ and band 7 between 0.8 and 1.1 μ .

The ground truth data were gathered within one day of the aerial flights by ERTS-1. The ground truth data included soil moisture at various depths, leaf area index measurements and rainfall readings. The meteorological data were from the Garden City Experiment Station with the exception of solar radiation which was obtained from the Dodge City Weather Service.

Stepwise Deletion Multiple Regression (1973) was used to formulate equations with the use of reflectance data for vegetative growth and soil moisture. The equation that best described the relationship between reflectance and vegetative growth was:

LAI =
$$2.92MSS4/5 - 2.63$$
 , $R^2 = 0.95$ (2)

where:

LAI = Leaf area index

MSS4/5 = Ratio of band 4 to band 5

 R^2 = Regression coefficient

Soil moisture at a depth of 0 to 15 cm was best predicted by;

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$
 (8)

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%)

MSS4 = Band 4

MSS4/5 = Ratio of band 4 to band 5.

The best winter wheat crop coefficient curve was developed by regression analysis on the leaf area index data of the dryland field (A). The crop coefficient curve was:

$$Y = 0.005 + 0.0165X - 0.000467X^{2} - 0.00000402X^{3}$$
 (11)

$$Y = 0.998 - 0.00297D - 0.000747D^2$$
 (12)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Meteorological data, starting soil moistures and crop coefficient curve were used in the computer model by Jensen et al. (1971). From results obtained, vegetative growth provides a feasible method for evaluating the winter wheat crop coefficient from at least March through maturity. Within the limits specified by Jensen et al. (1971), the model and modified coefficient proved to be a good estimator of soil moisture.

SUGGESTIONS FOR FUTURE RESEARCH

The research on evapotranspiration modeling and determining the crop coefficient by leaf area index should be expanded to include other crops and the whole growing season as well as increasing the number of test fields. More frequent sampling of soil moisture and leaf area index may be helpful. The neutron probe method for determining soil moisture measurement would provide a more representative indication due to the increased area of sampling. Continued research in using remote sensing for predicting vegetative growth with an emphasis on its use as an input in evaluating the crop coefficient in an evapotranspiration model may prove beneficial.

Additional research in the area of detecting soil moistures at depths greater than 15 cm with thermal energy could prove productive.

REFERENCES

- Allen, W. H. and J. I. Sewell. 1973. Remote sensing of fallow soil moisture by photography and infrared line scanner. Transactions ASAE. 16(4): 700-706.
- Angstrom, A. 1925. The albedo of various surfaces of the ground. Geografiska Annaler. (7):323.
- Ashburn, E. V. and R. G. Weldon. 1956. Reflectance of Spectral Diffuse Desert Surfaces. Optical Society of America Journal. (46):583.
- Bauer, Kenneth G. and John A. Dutton. 1962. Albedo variations measured from an airplane over several types of surfaces. Journal of Geophysical Research. 67(6):2367-2376.
- Bhangoo, M. S. 1956. Fractionation of total supplies of nitrogen, phosphorus and potassium in certain Kansas surface soils and subsoils and their effect on the yield and composition of wheat. Kansas State University Library. Manhattan, Kansas.
- Bolaria, T. S. 1956. Cold hardiness, growth and yield of winter wheat as influenced by mineral nutrients. Kansas State University Library. Manhattan, Kansas.
- Bowers, S. A. 1971. Reflection of radiant energy from soils. Kansas State University Library. Manhattan, Kansas.
- Carlson, Richard E. 1971. Remote detection of moisture stress: Field and laboratory experiments. Iowa State University Library. Ames, Iowa.
- Cole, F. W. 1970. Introduction to meteorology. New York. John Wiley and Sons, Inc.
- Coulson, L. 1966. Effects of reflection properties of natural surfaces in aerial reconnaissance. Applied Optics. (5):905-917.
- David, W. P. 1969. Remote sensing of crop water deficits and its potential applications. Texas A&M University Remote Sensing Center Technical Report RSC-06.
- Earing, Dianne L. and I. William Ginsberg. 1969. A spectral discrimination technique for agricultural applications. Sixth International Symposium on Remote Sensing of Environment Proceedings.
- Economic Research Service. 1965. Agricultural application of remote sensing— The potential from space platforms. U.S. Dept. of Agri. Bulletin 328.
- Fritschen, L. J. 1967. Net and solar radiation relations over irrigated field crops. Agri. Meteorology. (4):55-62.

- Frits, Sigmund. 1948. The albedo of the ground and atmosphere. Meteorological Society Bulletin. (29):303.
- Fry, A. W. and Alfred S. Gray. 1970. Sprinkler irrigation handbook. Glendora, California. Rain Bird Sprinkler Mfg. Corporation.
- Gates, David M. 1965. Characteristics of soil and vegetated surfaces to reflected and emitted radiation. Third Symposium on Remote Sensing of Environment Proceedings.
- Gates, David M. and R. J. Hanks. 1967. Plant factors affecting evapotranspiration. Irrigation of Agricultural Lands. American Society of Agronomy Monograph No. 11.
- Geiger, Rudolf. 1965. The climate near the ground. Cambridge, Massachusetts. Harvard University Press.
- George, Theodore A. 1970. Unmanned spacecraft for surveying earth's resources. Princeton University Conference on Aerospace Methods for Revealing and Evaluating Earth's Resources.
- Heermann, D. F. and H. R. Gardner. 1970. Evapotranspiration model for dryland crops for the Great Plains. Evapotranspiration in the Great Plains Seminar.
- Hoffer, Roger M., Roger A. Holmes and J. Ralph Shay. 1966. Vegetative, soil and photographic factors affecting tone in agricultural remote multispectral sensing. Fourth Symposium on Remote Sensing of Environment Proceedings.
- Interpretation of remote multispectral imagery of agricultural crops.
 1967. Purdue University Agri. Exp. Sta. Bulletin 831.
- Isralsen, Orson W. and Vaughn E. Hansen. 1967. Irrigation principles and practices. New York. John Wiley and Sons, Inc.
- Jensen, M. E. 1968. Water consumption by agricultural plants. Water Deficits and Plant Growth. (2):1-22.
- and J. L. Wright. 1970. Irrigation-oriented et models for the Great Plains. Evapotranspiration in the Great Plains Seminar.
- depletion from climate, crop and soil data. Transactions of ASAE. 14(5):954-959.
- Kanemasu, E. T. 1973. Energy from solar and thermal radiation. (Private Communication).
- Kohnke, Helmut. 1968. Soil physics. New York. McGraw-Hill Book Company.
- Kondrat'yev, K. Y. 1965. Actinomentry NASATT F9712. National Aeronautics and Space Administration, Washington, D.C.

- Lowry, W. P. 1969. Weather and life. New York. Academic Press.
- Luxmoore, R. J., R. J. Millington and H. Marcellos. 1971. Soybean canopy structure and some radiant energy relations. Agronomy Journal. (63):111-114.
- Monteith, J. L. 1959. The reflection of short-wave radiation by vegetation. Quarterly Journal of the Royal Meteorological Society. (85):386-392.
- and G. Szeicz. 1961. The radiation balance of bare soil and vegetation. Royal Meteorological Society of London (87):159-170.
- Myers, Victor I. and William A. Allen. 1968. Electrical sensing as nondestructive testing and measuring techniques in agriculture. Applied Optics. (7):1819.
- Myers, V. I., C. L. Wiegand, M. D. Heilman and J. R. Thomas. 1966. Remote sensing in soil and water conservation research. Southern Plains Branch Soil and Water Conservation Research Div. Agri. Research Service U.S. Dept. of Agri.
- NASA Earth Resources Technology Satellite Data Users Handbook. 1972. Goddard Space Flight Center Document 71SD4249.
- Nicodemus, F. E. 1965. Directional reflectance and emissivity of an opaque surface. Applied Optics. (4):767-773.
- Penman, H. L. 1963. Vegetation and hydrology. Commonwealth Bureau of Soils Technical Communication No. 53.
- factors affecting evaporation and transpiration. Irrigation of Agricultural Lands. American Society of Agronomy Monograph No. 11.
- Remote multispectral sensing in agriculture. 1967. Purdue University Agri. Exp. Sta. Bulletin 844.
- Remote multispectral sensing in agriculture. 1970. Purdue University Agri. Expt. Sta. and Purdue University Bulletin 873.
- Remote Sensing. 1970. Washington, D.C. National Academy of Sciences.
- Rijks, D. A. 1967. Water use by irrigated cotton in Sudan. I. Reflection of short-wave radiation. Journal of Applied Ecology. (4):561-568.
- Ritchie, J. T. 1971. Dryland evaporative flux in a subhumid climate: I. Micrometeorological influences. Agronomy Journal. (63):51-55.
- . 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research. 8(5):1204-1213.

- and Earl Burnett. 1971. Dry land evaporative flux in a sub humid climate: II. Plant influences. Agronomy Journal (63):56-62.
- Savage, R. G. 1949. Moisture determinations in hay yield. Sci. Agri. (29):305-329.
- Sewell, John I., William H. Allen and Robert S. Pile. 1971. Visible and near infrared remote-sensing of soil moisture levels. Transactions ASAE. 14(6):1163-1166.
- Sinclair, T. R., R. M. Hoffer and M. M. Schreiber. 1971. Reflectance and internal structure of leaves from several crops during a growing season. Agronomy Journal. (63):863-868.
- , M. M. Schreiber and R. M. Hoffer. 1973. Diffuse reflectance hypothesis for the pathway of solar radiation through leaves. Agronomy Journal 65(2):276-283.
- Stanhill, G., G. J. Hofstede and J. D. Kalma. 1966. Radiation balance of natural and agricutlrual vegetation. Quarterly Journal of the Royal Meteorological Society. (92):128-140.
- J. H. Cox and S. Moreshet. 1968. The effect of crop and climate factors on the radiation balance of an irrigated maize crop. Journal of Applied Ecology. (5):707-720.
- Stepwise deletion multiple regression (STEPDEL) description 4. 1973. Kansas State University Statistical Laboratory. Manhattan, Kansas.
- Teare, I. D. and C. J. Peterson. 1971. Surface area of chlorophyllcontaining tissue of the inflorescence of triticum aestivum 1. Crop Science. 2(5):627-628.
- Variety tests with fall-planted small grains. 1971. Kansas State University Agri. Exp. Sta. Report 180.
- Werner, Hal D., Fred A. Schmer, Maurice L. Horton and Fred A. Waltz. 1971.

 Application of remote sensing techniques to monitoring soil moisture.

 Seventh International Symposium on Remote Sensing of Environment

 Proceedings.
- Winkler, Erhard M. 1966. Moisture measurements in glacial soils from airphotos. Ecology. 47(1):156-158.

APPENDIX

Table 11. Computer Model of Evapotranspiration by Jensen et al.

```
JK, TIME = (5), PAGES = 20
            DEAL METHINIER
            "TRAIGNTEM MITH 1971 FIVISIONS BY PRATT, JENSEN & HEFRMANN ...
      [ 本本本本本本本
                  PLUS KSU MODIFICATIONS FOR IRM 360/50
      C## MAIN PREGRAM
  2
            COMMON A14,5), CTR(4),TXR(4),MO(4,30).
           1x(16,4,30), DESC(5), DATE(4), CROS(5), AIRA(2), FORC(15),
           29(4), NOS(4), RSU(4), RSU(4), RSV(4), R1(5, 100), C(5, 8), KEES(4, 20), P(30)
  3
            COMMON / MEN/ M(4), MUN(13), 10, NOP, NOP, NOP, P(4, 6), ETAF(4), TP(4),
           10T1(4), OT2(4), FCT(4), ETP5
  4
            DIMENSION CREAT
  5
            DATA METHI /'REEG!/
            READ MUYBER OF REGIONS
     C** STAD CHOP CHEFFICIENTS BEFORE EFFECTIVE COVER, C(1,1) TO C(8,4)
      C## II=CFOP NO. JJ=NO. OF TERM IN POLYHOMIAL EQUATION
 6
         16 FORMAT (5X,F15.3,3F20.3)
 7
         17 FORMAT(1H ,4F15.8)
 8
           00 18 11=1,8
 9
         15 PEAD(5,16)(C(II,JJ),JJ=1,4)
10
         18 WRITE(6,17)(C(II,JJ),JJ=1,4)
     C** READ CECE COEFFICIENTS AFTER EFFECTIVE COVER, C(1.5) TO C(8.8)
11
            00 21 11=1.8
12
         20 FEAD (5,16) (C(II,JJ),JJ=5,8)
13
         21 WRITE(6,17)(C(II,JJ),JJ=5,8)
           READ (5,1) NREG, RNRD
14
         1 SORMAT (5X, 15, 1X, A4).
15
     C
           PEAR PEGIONAL DATA
16
           DO 2 J=1, NREG
17
           READ (5,3) (4(1,J), J=1,5), CTR(1),TXF(1),CH(1)
         3 FORMAT(5X,5A4,3F7.31
18
19
           FEAD (5,103): STAP(1), TP(1), DT1(1), DT2(1)
20
       103 FORMAT (5X,F5.2.3F5.0)
21
         2 SEAD (5,104) (B(I,J),J=1,6)
       104 FURMAT (5X,6810.2)
22
           PE40 CLIMATIC DATA - NUM. OF DAYS PLUS THESE PREVIOUS DAYS
23
           DO 7 J=1,NREG
24
           READ(5,11)H(I),NDB(I), FCT (I),RSO(I)
25
        11 FORMAT (5X,215,F5.2 ,F5.0)
26
           K = N(1) + 3
     C** IF RARD=METHI THEN RAIN IS READ BY REGION RATHER THAN BY FARM
     C## I=PEGION. K=NO UF DAY. K=4 IS FIRST DAY OF ANALYSIS PERIOD.
     C** K=1 IS FIRST DAY OF THREE PREVIOUS DAYS.
27
           IF (HNRO.ED.METHI) GO TO 12
28
           77 4 J=1,K
29
         4 FEAD( 5,5) ND(I,J),X (1,I,J),X (2,I,J),X(3,I,J),X(4,I,J),X(5,I,J)
30
           60 TO 7
31
        12 00 9 J=1,K
32
         8 PTAD (5,25) ND(1,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),X(5,I,J)
          1,9956([,J]
         7 CONTINUE
33
        25 FORMAT (5x,15,6F5.0)
34
35
           WRITE (6, 9)
36
         2 FORMAT(1H1)
37
         5 FORMAT(5x.15,545.0)
           DO 6 I=1, WREE
38
39
           K=W111+3
40
      2889 F 1944T(1H ,4F15.8)
41
           ARITE (6,2949) C(1,1), C(1,2), C(1,3), C(1,4)
           CALL FVAP (I,K)
42
43
           WRITE(6,2339)C(1,1),C(1,2),C(1,3),C(1,4)
```

```
44
           CALL VAPOR (I, K, CA)
           MPITE(6,2397)C(1,1),C(1,2),C(1,3),C(1,4)
45
46
         6 CALL PRINTA(I,K)
47
           WPITE (6,2849)C(1,1),C(1,2),C(1,3),C(1,4)
           CALL FARMS(NREG, METHI, PMPT)
43
           WRITE(6,2340)C(1,1),C(1,2),C(1,3),C(1,4)
49
50
           CALL PRINTS(NREG, METHI, PMRD)
51
           WRITE(6,2989)C(1,1),C(1,2),C(1,3),C(1,4)
       999 STOP
52
           END
53
54
           SURRUUTINE FARMS (NREG, METH1, RNRD)
     C
         SUBROUTINE TO CALCULATE IRRIGATION DATES
55
           REAL METHI, IRP
56
           COMMON A(4,5), CTR(4), TXP(4), ND(4,30),
          1X(16,4,30), DESC(5), DATE(4), CPOP(3), / IRR(2), FCPC(15),
          2N(4),NOB(4),RSD(4),MUCAY(4),N1(5,100),C(6,8),PREG(4,30),R(30)
           COMMON /NEW/ W(4),MON(13),10,NCR,NDE,NDP,B(4,6),ETAP(4),TP(4),
57
          1DT1(4),DT2(4),FCT(4),ETP5
58
           DIMENSION DPAKSU(6), AIRKSU(6), NXDKSU(6)
59
           DIMENSION D(8),
                                 SUMP (30), ET (30), DPL (30), D1(8)
           DIMENSION ETRSET(8,50), CTSET(8,30), AKC11(8,30), AKCSET(6,30),
60
          1RSET(4,8,30), AETFLD(8), CROPST (8,3 ), DPLSET(8,30)
         D ARRAY -LOWER LIMIT FOR CRUP COFFES.
         DIARRAY-UPPER LIMIT FOR COOP COEFFS.
61
           DATA C1/1.1,1.1,1.1,1.1,1.1,1.1,1.0,0.87/
62
           DATA MCROPS/8/, D/7*0.1,.87/
63
           DATA
                   SUMR, ET, DPL/30*0.0,30*0.0,30*0.0/
     C
         PEAD DATE
64
           READ( 5,14) (DATE(K),K=1,4)
65
           N4 = 1
           F=0.9
66
           DO 100 I=1,NREG
57
08
           WBITF(6 ,13)(A(T,J),J=1,5)
        13 FORMAT(191, PEGION: 1,5A4,//)
69
70
        14 FORMAT(5X,15A4)
           PEAD( 5,10) LL
71
72
        10 FORMAT(25X,15)
73
           4=4(I) +3
74
           NN=N(I)
75
           DO 100 L=1,LL
75
           READ(5 ,10)NEN
77
           READ(5 ,14)(DESC(K),K=1,5)
           WRITE(6 ,15)(DESC(K),K=1,5),(DATE(K),K=1.4)
73
        15 FORMAT("IFAR": ",544,3X, "DATE OF COMPUTATION: ",444,/)
79
80
           WRITE (6,16)
        16 FORMAT (*0*,T11,*|**,T18,*|***** COIL MOISTUPE SEPLETION ******|--
31
          1--- IRRIGATIONS ----- INCHES [1,/, ",T11, "[",T18, "[",T28, "]",
                   T37, 11 , T48, 11 , T55, 11 , T64,
                                                               , 1
                                                                   IF
                                                                         HITH WITH
                     11,/,
          4 * CROP-FLO | CORF | TO DATE | TYPE-D | OPTIMUM | RATE | LAST*,*
          5 | RAIN=O | FAIN | APPLY | REG EM FLOT)
32
        24 DO 110 NF=1,NEY
33
           IF (RVRD.EQ.METHE) GO TO 1
34
           GO TO 2
85
         1 00 26 J=1.1
        26 R(J)=PR#G(I,J)
35
       2 READ(5,1714CB, CROP(1), CP IP(2), CROP(3), MBP, NOF, NOH, Z, AVM
87
        17 FORMAT(5X,12,2A4,A2,315,2F5.2)
88
39
           IF (PARD. FO. METHI) GO TO 23
```

```
54
Table 11. Continued.
            READ(5,13)(AICR(J),J=1,2),OPA,"5,(R(J),J=4,M)
 40
 91
         19 FORMAT (5X,243,F4.1,14,1)F+.2/2054.2)
            RTAD(5,19) DPL(NF), SUMB(NF), (R(J), J=1,3)
 92
 93
         19 FGRMAT(5#10.2)
 94
            GUTO 22
 95
         23 READ (5,20)(AIRR(J), J=1,2), DPA, N5, IPR
 96
         20 FORMAT (5X,2A3,F4.1,14,F4.1)
 97
            RE40 (5,19) DPL(NE), SUMR (NE)
 93
            IF (N5.GE.1) R(N5+3)=P(N5+3)+IRR
 99
         22 CONTINUE
100
            4KC=0.0
101
            4KC1=0.0
102
            PCT=0.0
103
            DT = 0.0
      C
           J=4 REPRESENTS FIRST DAY OF THE PEFIOD FOR WHICH ANALYSIS IS BEING
      C **
      C**
           RUN
104
            00 98 J=4, M
105
            ET(J)=0.0
106
            ETR=0.0
107
            RX= R(J)
            SUMR (NF) = SUMR (NF)+R(J)
108
109
            IF(J-N5-3)76,75,76
      C** DPL AND SUMR ARE SET TO ZERO ON THE DAY OF IRRIGATION
110
         75 DPL(NF)=0.0
            SUMR(NF)=0.0
111
           · 60 TO 99
112
         76 IF(NDB(I)-NDP)109,176,176
113
114
        176 IF(NOB(I)-NOH)29,29,109
115
         29 IF(NCR(I)+J-4-NDE) 30,30,31
116
         30 PCT=100.0*(NDB([)+J-4-RDP)/(NDE-NDP)
117
            AKC1=C(NCR,1)+C(NCR,2)*PCT+C(NCR,3)*PCT**2+C(NCR,4)*PCT**3
118
            IF(AKC1-01(NCR))231,232,232
119
        232 AKC1=D1(NCR)
120
        231 AV=(1.0-OPL(NF)/AVM)*100.0
            IF(AV)130,131,131
121
122
        130 AV=0.0
123
        131 AV3=1.0+AV
124
            AKC=AKC1#ALOG(AV3)/ALOG(101.0)
125
            GO TO 32
         31 DT=NDB(I)+J-4-NDE
126
127
            PCT=100.
128
            AV=(1.0-DPL(NF)/AVM)*100.0
            AKC1=C(NCR,5)+C(NCP,6)*OT+C(NCR,7)*DT**2+C(NCR,8)*OT**3
129
130
            IF(AKC1-0(NCR))88,235,235
131
        235 IF(AKC1-D1(NCF))242,241,241
132
        241 AKCI=DI(NCR)
133
            GO TO 242
         83 AKC1=D(NCP)
134
135
        242 IF(AV)233,234,234
136
        233 AV=0.0
137
        234 AV3=1.0+4V
            AKC=AKC1#ALOG(AV3)/ALCG(101.0)
138
         32 FT(J)=4KC*X(15,1,J)
139
140
            IF(AKC-F) 38,121,121
141
         33 IF(F(J-1))42,42,43
```

142

143

144

145

43 FTR=0.8#(F-AKC)#X(16,I,J)

IF (P(J-1))49,121,121

K(J-1)=P(J-1)-FTF

49 P(J-2)=R(J-2)+R(J-1)

```
140
             R(J-1)=0.0
          45 IF(%(J-2))46,121,121
147
148
          45 F(J-3)=K(J-3)+K(J-2)
149
            # (J-2)=1.0
150
          40 IF(r(J-3))53,121,121
151
          53 FTR=FTR+R(J-3)
152
            F(J-3)=0.0
153
            GD TO 121
154
          42 IF(R(J-2))44,44,47
          47 ETP=0.5* (F-1KC) #X(16,1,J)
155
155
             0 (J-2)=R (J-2)-ETR
157
             GO TO 45
          44 IF(R(J-3))121,121,48
158
          43 FTR=0.3*(F-AKC) #X(15,1,J)
159
160
            R(J-3)=R(J-3)-ETR
161
             GO TO 40
162
         121 IF(ETR)50,51,51
163
          50 ETK=0.0
164
          51 ET(J)=FT(J)+ETR
165
          91 OPL(NF)=OPL(NF)+ET(J)-RX
166
             IF(DPL(NF))115,99,99
167
         115 DPL(NF)=0.0
         99 CONTINUE
168
169
            ETRSET(MF, J) = ETR
170
            FTSET(MF,J)=ET(J)
171
           AKC11(NF,J)=AKC1
172
            AKCSET(MF, J) = AKC
173
            DO 890 NM=1,4
174
        890 RSET(NY, NF, J) =R(J-NY+1)
175
            DPLSET(NF, J)=UPL(NF)
176
         98 CONTINUE
177
            SUMET=0.0
178
            D7 57 J=4+M
         57 SUMET=SUMET + ET(J)
179
180
            RDIF=M-3
131
            AET=SUMET/RDIF
182
            AETFLD(NF)=AET
183
            nn 890 J=1.3
184
        880 CROPST(NF,J)=CRUP(J)
185
            MRD=NDB(I)+N(I)
            IF (NDB(I)+N(I)+3-NDE) 250,250,255
186
        250 PCT=100.0*(NOB(I)+N(I)+2-NOP)/(NOE-NOP)
187
188
            AKC5 = C(MCF,1)+C(NCR,2)*PCT+C(NCF,3)*PCT**2+C(NCR,4)*PCT**3
189
            GD TO 260
190
        255 DT=NDB(I)+N(I)+3-NDE
191
            PCT=100.0
            AKC5 = C(NCR, 5)+C(NCR, 6)+DT+C(NCR, 7)+DT++2+C(NCR, 8)+DT++3
192
193
        260 IF (AKC5 .LT. D(NCP)) 4KC5=0(NCR)
194
            IF (AKC5 .GT. DI(NCF)) AKC5=DI(NCF)
195
            AJJ5=NDB(I)+N(I)+3
196
            IF (AJJ5 .GT. TP(I)) GE TO 7034
197
            DLT=511(1)
198
            GU TO 7341
199
       7034 DLT=DT2(1)
200
       7341 ETP5= (ETAP(I)/(EXP(((AJJ5-TP(I))/DLT)**2)))*FCT(I)
201
            ETAS = AKCSALTPS.
202
            DPLA = DPL(MF)
      C**
             SUBSCRIPT J=1 IS 20% -- J=2 IS 30% -- J=3 IS 40%
      C * *
                J=4 IS 50*0 -- J=5 IS 60*D
203
            NPCT=100.04(NDH(1)+N(1)+24MPP)/(NP5+33.-MDP)
```

```
204
             IF(NPCT-100)249,245,249
         249 MPCT=100.0
205
206
         248 CONTINUE
207
                                  DO 108 J=1.5
208
                                  FJJ=J+1
209
             DPAKSU(J)=NPCT+AVM#RJJ#.001
210
                                  IP(=(J+1)+10
211
             AVW=EPAKSU(J)-DPL(NF)
212
             CALL SCHED (MED, AVW, NEH, NXC, NXDP, I, DPLA, AVM, P, D1)
             CALL DATEE (NXD. IX. IY. WOH).
213
214
             CALL DATES (NXDP.JX.JY, NOH)
          59 IF (OPAKSU(J) - DPL(NF)) 60,61,61
215
216
          60 ATR = DPL(NF)/E
217
             GO TO 63
218
          61 \text{ AIR} = DPAKSU(J)/E
219
          63 IF (J .GT. 1) GO TO 65
220
             WRITE (6,64) CROP, AKC5, DPL(NF), DPAKSU(J), ETA5, AIRR, MON(IX), IY, MON
               (JX), JY, AIR, I, L, MF
          64 FORMAT ('0',244,42,F5.2,F9.2,5%,'20% D',2F9.2,' | ',243,2(2%,44,1
221
            23), 1 1, F4.1, I7, 214)
222
            GD TO 108
         65 WRITE (6,68) IPC+DPAKSU(J)+ETA5,AIRR,MOM(IX),IY,MON(JX),JY,AIR
223
          68 FORMAT ( 1, T31, 12, 1% D', 2F9.2, 1 1, 2A3, 2(2X, A4, 13),
224
            1 1 1 .F4.1.17.214)
225
        103 CONTINUE
226
        109 CONTINUE
227
            W1(1,N4)=DPL(NF)
228
            W1(2,N4)=SUMR(NF)
229
            W1(3,N4)=R(M-2)
230
            W1(4,N4)=R(M-1)
231
            41(5, N4) = R(M)
232
            N4=N4+1
233
        110 CONTINUE
234
            WK = (NDR(I) + N(I) - 53)/7
            PP = 14.\pm(8(1,1)+8(1,2)\pm0K+8(1,3)\pm0K\pm\pm2+8(1,4)\pm0K\pm\pm3+
235
                9(1,5)*WK**4 + 9(1,6)*WK**5)
            IF (PP .LT. 0.0) PP=0.0
236
237
            WRITE (6,163) PP.I.L
238
        163 FORMAT ("OPPORABLE RAIN NEXT TWO WEEKS=",F5.2,2X, "INCHES", 30X,212
           1 )
239
            WPITE (6,801)
240
        801 FORMAT ("-##*TABLE OF DAILY VALUES###")
            DO 830 NF=1.NEY
241
242
            WRITE (6,803)(CROPST(NF,K),K=1,3)
        803 FORMAT (101,244,42,/,
243
         . 1
                     YAG C.
                                 FTF
                                                    20
                                            ET
                                                            AKC1
                                                                     AKC'.
                 FX
                       R(J-1) = R(J-2) = R(J-3)
           2
                                                   DPL*./)
244
            00 920 J=4,4
245
            WRITE (6,802) ND(I,J), ETSET(NE,J), ETSET(NE,J), X(16,I,J),
           IAKCII(MF,J),AKCSET(MF,J),(ESET(MM,JF,J),FM=1,4),DPLSET(MF,J)
246
        802 FORMAT (1 *,15,2X,F8.4,F8.3,8F8.2)
247
        820 CHATINUE
243
            WRITE (6,821) AFTFLD(MF)
        821 FORMAT (13X, 'AFT=', F7.3)
244
        R30 CONTINUE
250
251
        100 CONTINUE
      C
          NOR(1)= NO. OF FIELDS FOR WHICH AMALYSIS WAS FUN
252
            MOR(1) = M4 - 1
         81 PETURN
253
```

```
254
                         END
 255
                          SUBBOUTINE EVAP(I.K)
                      SUBROUTINE TO CALCULATE EVAPOTRANSPIRATION POTENTIAL
 256
                         REAL METHI
 257
                         COMMUNI A(4,5), CTR(4),TXF(4),NO(4,30),
                        1X(16,4,30), DESC(5), DATF(4), ChSP(3), AIFR(2), FCRC(15),
                        2N(4),NOB(4),FSO(4),MCDAY(4),M1(5,100),C(3,8),RREG(4,30),P(30)
 258
                         07 10 J=4.K
 259
                         X(o,I,J) = (X(1,I,J) + X(2,I,J))/2.0
 260
                   15 X(7,I,J) = CTR(I)*(X(6,I,J)-TXR(I)) *X(3,I,J)* 0.000673
 261
                   10 CONTINUE
 262
                         RETURN
 263
                         END
 264
                         SUBROUTINE VAPOR (I.K.CW)
             C
                       SUBPOSITING TO CALCULATE HEAT FLUX, ED POTENTIAL, NET RADIATION
 265
                         REAL METHI
 266
                         COMMON 4(4,5), CTR(4), TXP(4), ND(4,30),
                       1X(16,4,30),DESC(5),PATE(4),CROP(3),AIRR(2),FORC(15),
                       2N(4), NO?(4), RSO(4), MODAY(4), W1(5, 100), C(8, 8), RREG(4, 30), R(30)
                         COMMON /NEW/ W(4), MON(13), ID, NCR, NDE, NDP, B(4, 6), ETAP(4), TP(4),
 267
                       10T1(4),DT2(4),FCT(4),ETP5
 268
                         DIMENSION CW(4)
 269
                         70 30 J=4,K
 270
                      * IF(X(4,I+J).5Q.0)GOTO 35
 271
                         X(8,I,J) = X(5,I,J)/24.0
272
                         VPS1= -0.6959+0.2946*X(2,1,1)-0.005195*X(2,1,1)**2+0.000089*
                       1x(2,1,J)**3
273
                         VPS2= -0.6959+0.2946*X(1,I,J)-0.005195*X(1,I,J)**2+0.000089*
                       1X(1,1,J) **3
 274
                         X(9, 1, J) = (VPS1+VPS2)/2.0
275
                         X(10, I, J)=-0.6959+ 0.2946*X(4, I, J)-0.005195*X(4, I, J)**2 +'
                       10.000099* X(4,1,J)**3
276
                        X(11,I,J) = (X(6,I,J) - (X(1,I,J-1) + X(2,I,J-1) + X(1,I,J-2) + X(2,I,J-1) + X(1,I,J-2) + X(2,I,J-1) + X(1,I,J-1) + X(1,I-1) + X(1,I
                       1-2)+X(1,I,J-3)+X(2,I,J-3))/6.01*5
277
                         T1 = 0.041 + 0.0125 \times X(6,I,J) - 4.534 \times X(6,I,J) \times 2/10 \times 5
273
                         T2= 0.959 -0.0125*X(6,1,J)+4.534*X(6,1,J)**2/10**5
279
                         X(12,I,J) = ((X(1,I,J)-32)/1.8 + 273)/100.0
280
                         X(13,I,J) = ((X(2,I,J)-32)/1.8 + 273)/100.0
281
                      Y = X(10,1,J)
282
                         JJ=NDB(I) + J - 4
283
                         EMT=0.325+0.045*SIM(30*(JJ/30.-1.5)*3.1416/180.)
284
                         X(14,1,J) = (EMT -0.044*SORT(Y))*11.71*(X(13,1,J)**4+X(12,1,J)*
                       1 * * 4 ) * 0 . 5
285
                         X(15,I,J) = 0.77 * X(3,I,J) - (1.22 * X(3,I,J) / FSC(I) - 0.18) * X(14,I,J)
286
                   30 X(16, I, J)=(T1*(X(15, I, J)-X(11, I, J))+T2+15.36*(.75+CW(1)*
                       1X(5,1,J))*(X(9,1,J)-X(10,1,J)))*0.000673
287
                        AJJ5=NDB(I)+N(I)+3
289
                         IF (AJJ5 .GT. TP(I)) GO TO 34
289
                        OLT=OTI(I)
290
                        GO TO 341
291
                  34 DLT=0T2(1)
292
                 341 ETP5= (STAP(1)/(EXP(((AJU5-TP(1))/CLT)+*21))+FCT(1)
292
                  35 FETURN
294
                        END
295
                        SUPRIUTINE PEINTRII, KI
                      SUBROUTING TO PRINT REGIONAL DATA.
            C
296
                        REAL METEL
```

```
COMMON /(4,5), CTR(4),TXR(4),Mp(4,30),
1X(16,4,30),DESC(5),DATE(4),CFOP(3),AIRP(2),FERC(15),
247
            2M(4), MTP(4), PSM(4), MARKY(4), W1(5,10d), U(8,8), TREG(4,20), P(30)
             C 3MMON /MEA/ W(4), MM (13), ID, OCA, MHE, MOP, M(4,6), ETAP(4), TP(4),
298
            19T1(4),9T2(4),FCT(4),ETP5
299
             JJ=NDR(I)
300
             CALL DATEE (JJ, MI, NID, 335)
301
             WRITE(6,10) (A(I,J),J=1,5),MON(MN),NID
302
          10 FORMAT(1H-,5X, *REGIOM: *,5A4,5X, *REGINNING DATE=*,A4,13)
303
             WRITE(6,15)
304
          15 FORMAT(1H-,*
                              DAY TAVG
                                            PS
                                                         VPS
                                                  114
                                                                 VPD
                                                                         PN
                                                                                  G
                          FO! )
                 FTP
            1
305
             WRITE(6,27)
306
          27 FORMAT(1H )
307
             DO 20 J=4,K
308
             WRITE(6,25)ND(I,J),X(6,I,J),X(3,I,J),X(8,I,J),X(9,I,J),X(10,I,J)
            1, X(15, I, J), X(11, I, J), X(7, I, J), X(16, I, J)
309
          20 CONTINUE
310
          35 WRITE(6,40)
                            FTP5
311
          40 FORMAT(1H . FORECAST : POTENTIAL ET NEXT 5 PAYS= 1.F5.2)
312
          25 FORMAT(1H , I5, F7.1, F6.0, F6.1, F7.1, F8.1, F7.0, F8.1, 2F7.2)
313
             RETURN
314
             END
315
             SUBPOUTINE ETAVG(II, ETA, MBD, I, D, D1, AVM, DPL)
316
            - COMMON A(4,5), CTR(4),TXR(4),ND(4,30),
            1X(16,4,30),DESC(5),DATE(4),CROP(3),AIRR(2),FORC(15).
            2N(4),NDB(4),RSD(4),MDDAY(4),W1(5,100),C(8,8),RREG(4,30),R(30)
317
             COMMON /NEW/ W(4), MON(13), ID, MCR, NDE, NDP, B(4,6), ETAP(4), TP(4),
            1DT1(4),0Y2(4),FCT(4),ETP5
318
             DIMENSION D(8), D1(8)
319
             \Delta I = I I
320
             AV=(1.0-DPL/AVM) *100.
321
             IF (AV .GT. 0.0) GO TO 300
             AV=0.C
322
323
         300 AV3=1+4V
324
           5 IF (II .GT. NOE) GO TO 2
325
             AP=NDP
326
             AE=NDE
327
             PCT=100. # (AI-AP) / (AE-AP)
328
             AKC1=C(NCR,1)+C(NCR,2)*PCT+C(NCR,3)*PCT**2+C(NCR,4)*PCT**3
329
             60 TO 1
330
           2 DT=II-NDE
331
             AKC1=C(NCR,5)+C(NCF,6)+DT+C(NCR,7)+DT++2+C(NCR,8)+DT++3
332
           1 IF (AKC1 .LT. D(MCP)) AKC1=D(MCR)
333
             IF (AKC1 .GT. D1(MCR)) AKC1=D1(NCR)
334
             IF(II .GT. TP(I)) GC TO 7
335
             DLT=DT1(I)
336
             GO TO 8
337
           7 DLT=DT2(I)
338
           8 AKC=/KC1*ALSG(AV3)/ALCG(101.0)
339
             ETA=AKC # (ETAP(1)/(FXP(((AI-TP(1))/DLT)*#2)))
340
             IF (II-MNO .LT. 5) ETA=LTA#FCT(I)
             RETURN
341
342
             E.AD
343
             STARGUTINE DATES (11, MO, 110, MOH)
             CALCULATES MONTH AND DAY FROM JULIAN GAY
      C
244
             DIMENSION AND (12)
345
             MATA NUD/0,31,60,91,121,152,182,213,244,274,805,335/
```

```
DO 10 J=2.12
345
             IF (II .LE. NAD(J)) SC TO 12
347
348
          10 CONTINUE
349
             J=13
          12 MN=J-1
351)
             IID = II-NUD(J-1)
351
352
             IF (II .LT. NDH) GO TO 14
353
             MJ=13
354
             II0 = 0
355
          14 FETURN
356
             END
357
             BLOCK DATA
             COMMON /NEW/ W(4), MOW(13), IC+NCR, NDE, NDP, B(4+6)+ETAP(4), TP(4),
359
            10T1(4), DT2(4), FCT(4), ETP5
             DATA MON / JULY, "FEB!, "MAR!, "APR!, "MAY!, "JUN!, "JULY, "AUG!, "SEP!;
359
            1 'OCT', 'NOV', 'DEC', 'NEME'/
             END
360
             SUBPOUTINE SCHED(MBD,AVW,NDH,NXD,NXDP,I,DPL,AVM,D,D1)
361
             COMMON A(4,5), CTR(4),TXR(4),ND(4,30),
.362
            1X(16,4,30), DESC(5), DATE(4), CPGP(3), AIRR(2), FORC(15),
            2N(4),ND3(4),RSO(4),MODAY(4),W1(5,100),C(8,3),REG(4,30),F(30)
363
             COMMON /NEW/ W(4), 40M(13), ID, NCR, NDE, NDP, B(4,6), ETAP(4), TP(4),
            10T1(4), DT2(4), FCT(4), ETP5

    DIMENSION D(8), D1(8)

364
             CHECK TO SEE IF THE FIFLD NEEDS IRRIGATING AT BEGINNING OF DAY
      C
365
             IF (AVW.LE.0.0) GO TO 10
             80="ARD
366
             CALCULATING ESTIMATED DATE OF IRRIGATION WITHOUT PROB PRECIP
367
             DO 1 II=MAD, NOH
363
             CALL ETAVG (II. FTA. MBD. I. D. DI. AVM. DPL)
369
             AVW=AVW-ETA
370
             IF (AVV.LE.0.0) GC TO 2
371
           1 CONTINUE
       C
             IF AN IPRIGATION IS NOT REQUIRED BEFORE HARVEST
372
             60 TO 12
373
           2 NXD=II
374
             NXDP=NXD
             CHECK IF RAINFALL PROPABILITY IS TO BE USED
       C
             B(1,1)=0 IF RAINFALL PROBABILITY IS NOT DESIRED
375
             IF (ABS(B(I,1)) .LT. 0.00001) GO TO 11
       C
             DETERMINE NUMBER OF DAYS FOR EXPECTED PRECIPITATION
             WK=[MBD-53]/7
376
          15 AI=II
377
373
             T=AT-BD
             BD=9D+T
379
             IF (T .LE. 14. ) GO TO 15
300
             89=89-T+14.
331
             T=14.
382
383
          15 AVW=AVM+PAMT(T,WK,I)
384
             L = II + 1
385
             DO 3 TIEL, NOH
             CALL ETAYG(II, FTA, MAC, I, D, D1, AYM, OPL)
386
387
             AVW=AVW-FTA
388
             IF (AVW .LE. 0.0 ) GC TO 4
380
           3 CONTINUE
       C
             IRRIGATION NOT REQUIRED BEFORE HARVEST
390
             $1 TT 13
              CHECKING IF EACH EXTENDED TARIGATION DATE USING PROBABILITIES
       C
```

```
345
            nn 10 J=2.12
            IF (II .LE. Nº0(JI) 50 TO 12
347
348
         10 CUTINUE
349
            J = 13
350
         12 MN=J-1
351
            110 = 11-NKD(J-1)
352
            IF (II .LT. NOH) GO TO 14
          WW=13
353
            110 = 0
354
         14 PETURN
355
            END
356
357
            BLOCK DATA
            CHMMHN /NEW/ W(4), MUN(13), ID, MCR, NDE, NDP, 5(4,6), ETAP(4), TP(4),
359
           10T1(4), DT2(4), FCT(4), ETP5
            DATA MON / JAN!, FEB!, MAR!, MAR!, MAY!, JUN!, JUL!, MUG!, SEP!,
359
              'OCT', 'NOV', 'DEC', 'NOME'/
            END
360
            SUBROUTINE SCHED (MBD.AVW, NDH, NXO, NXDP, I, DPL, AVM, D, D1)
361
            COMMON A(4,5), CTR(4), TXR(4), NO(4,30),
362
           1X(16,4,30),DESC(5),DATE(4),CPOP(3),ATRR(2),FORC(15),
           2N(4),NDB(4),RSO(4),MDDAY(4),W1(5,100),C(8,8),RKEG(4,30),F(30)
            COMMON / MEM/ W(4), 47M(13), ID, NCR, NDE, NDP, B(4,6), ETAP(4), TP(4),
363
            10T1(4),0T2(4),FCT(4),ETP5
            DIMENSION D(8), D1(8)
364
            CHECK TO SEE IF THE FIFLD NEEDS IRRIGATING AT BEGINNING OF DAY
      C
365
            IF (AVW.LE.O.O) GO TO 10
            80=MBD
366
            CALCULATING ESTIMATED DATE OF IRRIGATION WITHOUT PROB PRECIP
      C
            DO 1 II=MRO, NOH
367
            CALL ETAVG (II.FTA, MBD, I.D.DI, AVM, DPL)
368
            AVW=AVW-ETA
369
370
            IF (AVA.LE.O.O) SC TO 2
371
          1 CONTINUE
      C
            IF AN IPRIGATION IS NOT REQUIRED BEFORE HARVEST
372
            GO TO 12
          2 NXD=II
373
            NXDP=NXD
374
            CHECK IF RAINFALL PROBABILITY IS TO BE USED
      C
            B(I.1)=0 IF RAINFALL PROBABILITY IS NOT DESIRED
      C
            IF (ABS(8(I,1)) .LT. 0.00001) SU TO 11
375
            DETERMINE NUMBER OF DAYS FOR EXPECTED PRECIPITATION
      C
            WK=(460-53)/7
376
         15 AI=II
377
373
            T=AT-PD
379
            BD=BD+T
300
             IF (T .LE. 14. ) GO TO 15
381
            BD=3D-T+14.
332
            T=14.
         15 AVW=AVW+PAMT(T,WK,I)
383
384
            L = 1 I + 1
            D' 3 TI=L, NDH
385
            CALL ETAVG(II, FTA, "bC, I, D, D1, AVM, DPL)
386
            AVW=AVW-ETA
397
388
             IF (AVW .LE. 0.0 ) GC TO 4
          3 CONTINUE
380
            INRIGATION NOT REQUIRED BEFORE HARVEST
      C
390
            GO TO 13
             CHECKING IF EACH EXTENSED TRRIGATION DATE USING PROBABILITIES
      C
```

```
OF RAIN RESULTS IN FURTHER EXTENSION OF IPPIGATION PERIOD
             C
391
                       4 IF (II-1 .00. HXOP) GU TO 11
                           4K=4K+T/7
392
393
                           NXOP=II
394
                           61 TO 15
                           SITUATION WHERE FIELD APPOS IRPIGATION AT THE BEGINNING DATE
395
                    10 NXD=MRO
                           NXJP=NXD
396
397
                           GO TO 11
                           SITUATION WHERE AN IRRIGATION IS NOT REDUINED BEFORE HARVEST
             C
398
                    13 MXD=JCH
399
                    13 MYDP=NOH
400
                    11 RETURN
401
                           END
402
                          "FUNCTION PAMT(T.WK.I)
             C FUNCTION FOR PROBABLE PRECIPITATION
403
                          CUMMON /NEM/ W(4), MON(13), ID, NCR, NDE, NDP, 8(4,6), ETAP(4), TP(4),
                         10T1(4),0T2(4),FCT(4),ETP5
404
                                                =T*(B(I,1)+B(I,2)*WK+B(I,3)*WK*WK+B(I,4)*
                                     MK ##3+8(I, 5) #WK ##4+8(I, 6) #AK##5)
405
                          SETURN
406
                           END
407
                           SUBROUTINE PRINTS (NEEG, METHI, ANRD)
             C SUBROUTINE TO RETAIN INFORMATION IN "SAVE" FOR MEXT RUN
408
                          REAL METH1
409
                          COMMON A(4,5), CTR(4),TXF(4),NC(4,30),
                         1X(16,4,30),DESC(5),DATE(4),CROP(3),AIRR(2),FCAC(15),
                         2N(4),NOB(4),PSO(4),MOEAY(4),M1(5,100),C(8,8),RREG(4,30),F(20)
410
                          COMMEN /NEW/ W(4), MON(13), ID, NCR, NDE, NDP, 3(4,6), STAP(4), TP(4),
                         10T1(4),0T2(4),FCT(4),ETP5
411
                          WRITE(6,11) ND8(1)
                    11 FORMAT(1H1. NO. OF FIELDS =1.15)
412
413
                           00 40 I=1, NREG
414
                           K1 = N(I) + 3
415
                          K=K1-2
416 .
                           IF (RNRD.EO.METH1) GO TO 15
                           WRITE(7,10) = \{ND(I,J), X(I,I,J), X(2,I,J), X(3,I,J), X(4,I,J), 
417
                         1 \times (5, 1, J), J = K, K1)
                          \forall RIFF(6,10) \ (\forall D(I,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),
418
                        1X(5, T, J), J=K, K1)
419
                    10 FUR"AT (5x, 15,5F5.0)
420
                          GD TO 40
                    15 WRITE (7,20) (MD(I,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),X(5,I,J)
421
                        1,RREG(I,J),J=K,K1)
422
                          WRITE (6,20) (MD(I,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),X(5,I,J)
                        1, SPEG(1, J), J=K, K1)
423
                    40 CONTINUE
424
                    20 FORMAT (5X, 15, 5F5.0, F5.2)
425
                          K=MOR(1)
426
                          03 50 J=1.K
                          WPITE(7,55) W1(1,J), W1(2,J), W1(3,J), W1(4,J), W1(5,J)
427
428
                          MRITE(6,55) WI(1,J), WI(2,J), WI(3,J), WI(4,J), WI(5,J)
429
                  50 CONTINUE
430
                    55 FORMAT (5F10.2)
431
                          FE TUF "
432
                          END
```

SENTRY

PREDICTING SOIL MOISTURE AND WHEAT VEGETATIVE GROWTH FROM ERTS-1 IMAGERY

by

JOHN WAYNE KRUPP

B.S., Kansas State University, 1972

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1974

ABSTRACT

Wise resource management techniques are necessary if the population of the Earth is to continue to expand. The Earth Resources Technology Satellite program combines remote sensing in space with efficient resource management. Water is a valuable resource needlessly lost by excessive irrigation applications. If needless loss of water is to be lessened, determination of evapotranspiration will be necessary. Actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient. One method of predicting the crop coefficient is to use the plant's vegetative growth which may be determined by reflection from the plant canopy.

The relationship between soil moisture, vegetative growth and solar reflectance was studied. Vegetative growth was evaluated by leaf area index with the equation:

$$LAI = 2.92MSS4/5 - 2.63$$
 , $R^2 = 0.95$

where:

LAI = Leaf area index

MSS4/5 = Ratio of band 4 (0.5-0.6 μ) to band 5 (0.6-0.7 μ)

 R^2 = Regression coefficient.

It appears that the ratio eliminated soil moisture effects. At a depth of 0 to 15 cm soil moisture was predicted by:

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%)

 $MSS4 = Band 4 (0.5-0.6 \mu)$

MSS4/5 = Ratio of band 4 (0.5-0.6 μ) to band 5 (0.6-0.7 μ).

The equations of the wheat crop coefficient for the evapotranspiration model of Jensen and associates, developed by using leaf area index of dryland wheat, were:

$$Y = 0.005 + 0.0165X - 0.000467X^2 - 0.00000402X^3$$

 $Y = 0.998 - 0.00297D - 0.000747D^2$

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

This method of evaluating the crop coefficient provided reasonable estimates of soil moisture depletion.