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Abstract 

A movement is occurring within the healthcare field towards evidence-based or 

preventative care-based medicine, which requires personalized monitoring solutions. For medical 

technologies to fit within this framework, they need to adapt. Reduced cost of operation, ease-of-

use, durability, and acceptance will be critical design considerations that will determine their 

success. Wearable technologies have shown the capability to monitor physiological signals at a 

reduced cost, but they require consistent effort from the user. Innovative unobtrusive and 

autonomous monitoring technologies will be needed to make personalized healthcare a reality. 

Ballistocardiography, a nearly forgotten field, has reemerged as a promising alternative 

for unobtrusive physiological monitoring. Heart rate, heart rate variability, respiration rate, 

movement, and additional hemodynamic features can be estimated from the ballistocardiogram 

(BCG). This dissertation presents a bed-based nighttime monitoring toolset designed to monitor 

BCG, respiration, and movement data motivated by the need to quantify the sleep of children 

with severe disabilities and autism – a capability currently unmet by commercial systems.  

A review of ballistocardiography instrumentation techniques (Chapter 2) is presented to 

1) build an understanding of how the forces generated by the heart are coupled to the 

measurement apparatus and 2) provide a background of the field. The choice of sensing 

modalities and acquisition hardware and software for developing the unobtrusive bed-based 

nighttime monitoring platform is outlined in Chapters 3 and 4. Preliminary results illustrating the 

system’s ability to track physiological signals are presented in Chapter 5. Analyses were 

conducted on overnight data acquired from three lower-functioning children with autism 

(Chapters 6 and 9) who reside at Heartspring, Wichita, KS, where results justified the platform’s 

multi-sensor architecture and demonstrated the system’s ability to track physiological signals 

from this sensitive population over many months. Further, this dissertation presents novel BCG 

signal processing techniques – a signal quality index (Chapter 7) and a preprocessing inverse 

filter (Chapter 8) that are applicable to any ballistocardiograph. The bed-based nighttime 

monitoring toolset outlined in this dissertation presents an unobtrusive, autonomous, robust 

physiological monitoring system that could be used in hospital-based or personalized, home-

based medical applications that consist of short or long-term monitoring scenarios.  
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A movement is occurring within the healthcare field towards evidence-based or 

preventative care-based medicine, which requires personalized monitoring solutions. For medical 

technologies to fit within this framework, they need to adapt. Reduced cost of operation, ease-of-

use, durability, and acceptance will be critical design considerations that will determine their 

success. Wearable technologies have shown the capability to monitor physiological signals at a 

reduced cost, but they require consistent effort from the user. Innovative unobtrusive and 

autonomous monitoring technologies will be needed to make personalized healthcare a reality. 

Ballistocardiography, a nearly forgotten field, has reemerged as a promising alternative 

for unobtrusive physiological monitoring. Heart rate, heart rate variability, respiration rate, 

movement, and additional hemodynamic features can be estimated from the ballistocardiogram 

(BCG). This dissertation presents a bed-based nighttime monitoring toolset designed to monitor 

BCG, respiration, and movement data motivated by the need to quantify the sleep of children 

with severe disabilities and autism – a capability currently unmet by commercial systems. 

A review of ballistocardiography instrumentation techniques (Chapter 2) is presented to 

1) build an understanding of how the forces generated by the heart are coupled to the 

measurement apparatus and 2) provide a background of the field. The choice of sensing 

modalities and acquisition hardware and software for developing the unobtrusive bed-based 

nighttime monitoring platform is outlined in Chapters 3 and 4. Preliminary results illustrating the 

system’s ability to track physiological signals are presented in Chapter 5. Analyses were 

conducted on overnight data acquired from three lower-functioning children with autism 

(Chapters 6 and 9) who reside at Heartspring, Wichita, KS, where results justified the platform’s 

multi-sensor architecture and demonstrated the system’s ability to track physiological signals 

from this sensitive population over many months. Further, this dissertation presents novel BCG 

signal processing techniques – a signal quality index (Chapter 7) and a preprocessing inverse 

filter (Chapter 8) that are applicable to any ballistocardiograph. The bed-based nighttime 

monitoring toolset outlined in this dissertation presents an unobtrusive, autonomous, robust 

physiological monitoring system that could be used in hospital-based or personalized, home-

based medical applications that consist of short or long-term monitoring scenarios.  
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Chapter 1 - Introduction 

There is a growing need for accurate, flexible, and robust physiological monitoring 

devices and platforms to meet the demands of numerous industries and services. For example, 

consider the improvements that are needed within home-based healthcare technologies to reduce 

the large percentage of preventable deaths that occur in the United States due to heart disease and 

other chronic diseases [1]. Further, many standard medical health monitoring technologies (e.g., 

electrocardiographs, pulse oximeters) are unsuitable for residential care facilities that house 

sensitive populations. E.g., children with severe disabilities and/or low-functioning autism who 

are always accompanied by care assistants (paraeducators), babies born prematurely that require 

constant monitoring in neonatal care facilities, and older adults who may suffer from an array of 

conditions like dementia. For such populations, at-home care can provide the best option for an 

improved quality of life. 

Other major obstacles faced by modern healthcare technologies are cost and acceptance. 

Wearable sensors can affordably monitor the health of someone in the comfort of their own 

home, but such sensors may be impractical for long-term use – especially for older adults who 

tend to be less enthusiastic about technology – and statistics reveal that our nation is getting 

older. In 2000, people 65 and older accounted for 12.4% of the population; in 2016, people 65 

and older accounted for 15.2% of the population [2]. As the population ages, a greater percentage 

of people will face medical conditions and chronic diseases [3]. As a result, medical costs will 

continue to rise in the United States. By 2050, inpatient care will need to grow by 18% to meet 

the demands of the growing, aging population [4]. These rising medical costs put tremendous 

financial burdens on families. In 2012, one in four families faced financial hardships due to 

medical care expenses [5]. There is a clear need for affordable, at-home based medical devices to 

reduce the financial burden that this aging population will have on care facilities and families [6]. 

Further, the healthcare industry realizes that the one-cure-for-all approach is an 

unsuitable framework for modern medicine [7], and the healthcare system is moving away from 

simply treating diseases (an illness-based perspective) to a more preventative-based approach 

[8]–[10]. Part of this newer approach involves personalized solutions designed to meet individual 

needs on a case-by-case basis [11]–[13]. Such solutions will not only improve overall quality of 

life but will also be cost effective, reducing the financial burden placed on care facilities and 

individuals. Such systems require near continuous, reliable, and accurate data streams of 
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personalized information (e.g., physiological metrics such as heart rate and respiration rate). 

Again, wearable medical technologies offer a solution but are not ideal, as specific populations 

that arguably have the greatest monitoring need would not tolerate wearing intrusive or even 

minimally intrusive devices. These populations include the elderly and hypersensitive 

individuals such as children with low-functioning autism – a population that will be discussed 

further later in the chapter. Unobtrusive sensing modalities are needed to make this movement a 

reality. 

Improvements in sensor technology along with advancements in digital signal processing 

have propelled medical technologies forward – making unobtrusive and ubiquitous platforms 

possible which offer a promising alternative to wearable technologies [14]–[16]. When it comes 

to unobtrusive nighttime monitoring technologies, some options are currently available on the 

market. The company EMFit [17] offers the EMFit QS+ACTIVETM, a contactless sleep tracker 

system [18]. Beddit sells its Beddit Sleep Monitor [19], which is also designed to track sleep 

unobtrusively. Each system employs a single flat sensor strip that is recommended to be placed 

under or on the mattress directly beneath the chest area. This sensor placement has been shown 

to acquire signals from individuals when they sleep in a supine or prone position, keeping their 

chest positioned above the sensor. However, such systems fall short when it comes to monitoring 

the sleep of autistic children with severe disabilities as these children tend to sleep in a wide 

variety of positions (see Chapter 6). Having only a single sensor strip reduces a system’s chances 

of capturing quality signals for every possible sleeping orientation. Even for neurotypical 

individuals who also may not sleep in standard positions, these systems available on the market 

might not always provide reliable signals.  

Further, depending on the mattress used by the individual, significant distortion can occur 

in a recorded ballistocardiogram (BCG). The basis for this distortion is discussed in Chapter 2, 

with a remedy discussed in Chapter 8. As mentioned earlier, children with low-functioning 

autism and severe disabilities are one of the populations that can benefit from a nighttime 

monitoring toolset. This dissertation details a bed-based system created to meet this need – a 

design that can (a) help to quantify the general nighttime wellbeing of children with severe 

disabilities and autism and (b) also be utilized for a variety of other sensitive populations (e.g., 

the elderly).  
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 Review of Ballistocardiography Instrumentation 

The body’s recoil forces due to each heartbeat (the ballistocardiogram) were investigated 

in the late 19th century (1877) by J.W. Gordon [20], but the field of ballistocardiography did not 

become popular until the late 1940s [21]–[23]. In 1967, Isaac Starr and Abraham Noordergraaf 

(pioneers in the field) published a book detailing the history, instrumentation techniques, and 

other aspects of ballistocardiography [24] – a must read for understanding the history and 

advancements made during the golden age of ballistocardiography.  However, due to a lack of 

reliability and accuracy needed for clinical applications, the wide variety of recording devices 

and variations in signal morphology reported in the literature, and the rise of new medical 

technologies (e.g., echocardiography), interest within the research community (mostly comprised 

of medical doctors) faded. Most people today have not heard of the BCG, as it was not cemented 

as a standard clinical waveform despite advances made in the field’s prime years [25]. 

In [26], the authors outline advances in the fields of ballistocardiography and 

seismocardiography that occurred in the early 2000s. This revival most likely occurred due to 

advances in sensor technology, the miniaturization and advancement of electronic 

instrumentation, and improved digital signal processing techniques – all of which were much 

more primitive in the early days of both fields. The revival was driven by the need for 

unobtrusive physiological monitoring technologies (e.g., noninvasive, continuous blood pressure 

monitoring and noncontact pulse rate estimation). 

Ballistocardiogram acquisition is a key function of the bed system detailed in this 

dissertation. Thus, an in-depth review of ballistocardiograph instrumentation is provided in 

Chapter 2, which also seeks to explain how the forces generated by each heartbeat are manifested 

in the signals acquired by the recording system. An overview of the original ballistocardiograph 

systems (the ultralow-, low-, high-frequency, and direct-body ballistocardiographs) is provided 

along with a model for explaining why the recorded waveforms differed for each of the popular 

techniques employed during the golden age of ballistocardiography. The same model is applied 

to the popular modern measurement techniques (standing, chair- and bed-based, wearable, and 

noncontact systems, plus systems deployed in low gravity), making it possible to 1) compare the 

newer systems and any future ballistocardiographs to the original devices and 2) understand how 

BCG morphology can be affected by the measurement device. 
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 Quantifying the Sleep of Children with Severe Disabilities and Autism 

 Heartspring 

Cerebral palsy, autism, and other severe developmental disabilities make it difficult for 

children to function, especially in learning environments. The traditional classroom is simply not 

suited for children faced with these disabilities. Thankfully, alternative facilities and institutions 

exist that can provide services for these children.  Heartspring, located in Wichita, Kansas, offers 

a collection of such facilities. Heartspring [27], founded in 1934 as a not-for-profit institution, 

began serving children with speech defects and has now grown into a therapeutic residential and 

day school program that provides services and therapies for children with a wide range of 

developmental disabilities. Heartspring currently provides year-round residential services for 

approximately 62 children plus outpatient services for hundreds of children each year. Nearly all 

of these residential children have an ASD (autism spectrum disorder), and a number of them 

experience seizures. These children often require specialized care to the point that their parents 

can no longer meet their needs. Heartspring offers residential group homes where each child gets 

their own room, and each on-campus group home houses up to eight children. 

Heartspring seeks innovative solutions that help to improve the quality of life for children 

that stay at their facilities. To this end, Heartspring collaborates with researchers at Kansas State 

University to create new technologies to address an array of needs. Specific areas of interest are 

1) detecting/predicting seizures, 2) detecting bed-wetting or enuresis events, and 3) 

understanding how the sleep quality of these children relates to their daytime behaviors. The 

bed-system platform outlined in this thesis was motivated by the need for an innovative solution 

to monitor the nighttime well-being of these children since, as detailed in the following sections, 

standard sleep quality metrics and measurement technologies are not an option. 

 Quantifying Sleep 

Nighttime Data Acquisition and Autistic Children. There is a known connection 

between poor sleep quality and reduced daytime cognitive ability in neurotypical individuals 

[28]. However, this relationship in children with autism and severe disabilities is not as clear 

[29], [30]. Sleep quality and daytime functionality metrics are typically measured objectively 

(e.g., through sleep studies [31]) or subjectively (e.g., via surveys [32], [33]). The issue is that 

neither of these approaches are suitably utilized with children with low-functioning autism. 
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Polysomnography is typically used to objectively quantify sleep quality, but a polysomnograph 

involves a multitude of sensing equipment that includes uncomfortable and distracting wires and 

electrodes. Such systems have been successfully utilized with higher-functioning autistic 

children [34], but lower-functioning autistic children tend to be hypersensitive and unable to 

tolerate such a disruptive monitoring environment [35], [36].  

Some less intrusive approaches have been developed (e.g., actigraphy [37]) that work 

well with higher functioning children with autism. Still, such a system requires the subject to 

wear the device, and a low-functioning, sensitive child can be too distracted by even a simple 

wristwatch [38]. Although wrist-based devices are capable of monitoring pulse rate and pulse 

rate variability, actigraphy devices only track movement and do not provide other physiological 

information (e.g., Actigraph’s CentrePoint Insight Watch [39] or the Phillips Actiwatch 2 [40]). 

Many of these children are also nonverbal, making it impossible to use subjective measures such 

as surveys to quantify their sleep or to determine how they feel the next day. Because of these 

difficulties, the relationship between sleep quality and daytime functionality for this population 

remains to be fully developed. Currently, the primary means to quantify the sleep of this 

population is periodic, manual bed checks [41]. Cleary, an unobtrusive and autonomous solution 

is needed. 

Ballistocardiography as a Response. Ballistocardiography has re-emerged as a means 

to unobtrusively monitor physiological signals that can be used to quantify sleep quality. The 

ballistocardiogram (BCG) can be viewed as the body’s recoil response due to each heart beat 

[26]. Several different unobtrusive sensing modalities have shown the capability to record a 

BCG: contact systems that measure force [42] and acceleration [43], plus noncontact systems 

that use camera images [44].  

Three cycles of a typical BCG are displayed in Figure 1-1. Each pair of vertical dashed 

lines represents the rise and fall of a time-aligned electrocardiogram R wave that indicates the 

initiation of the electrical heart activity for that heart cycle. The prominent peaks (H, I, J, and K) 

are labeled, where the H feature is generated by an isovolumetric contraction that occurs at the 

beginning of the heartbeat cycle, and the remaining features are generated by the blood 

flow/pressure waves moving through the aorta [45]. 
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Figure 1-1. Three ballistocardiogram cycles that demonstrate prominent waveform features. 
Each pair of dashed lines represents the rise and fall of the respective time-aligned 
electrocardiogram R wave – a visual reference for the beginning of each cycle of electrical 
heart activity. 

Heartbeat interval, respiratory rate, and movement information can be extracted with bed-based 

BCG systems [46]. Although these parameters are only a subset of the information typically 

recorded with a full polysomnograph, some investigators have used cardiorespiratory analysis 

[47]–[49] and movement to estimate sleep quality [50]–[52].  

 Ballistocardiogram Signal Processing 

In Chapter 2, a model is presented for how the body and the BCG instrumentation can 

cause distortion in the recorded waveform. Even without distortion, a BCG is challenging to 

analyze, and complex algorithms are needed to extract heartbeat interval information [53], [54]. 

Further, multi-sensor systems that record similar waveforms complicate parameter estimation. 

E.g., when eight sensors all record slightly different forms of a BCG generated by the same heart 

activity, which sensor’s data stream should be used for parameter estimation? Would a fusion 

approach provide results that are more accurate? Responses to such questions are investigated in 

Chapters 7 and 8. 

For example, in the context of instantaneous heart rate estimation and the identification of 

individual heartbeat intervals (HBIs), a signal quality index is useful to quantify the quality of 

the estimate. Typically, simultaneously acquired ECG R peaks are used to partition individual 

BCG cycles, and these cycles are then analyzed to determine the BCG signal quality [55]. 

However, in most cases, especially longer-term monitoring scenarios, ECG data will not be 
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available. Further, both the ballistocardiograph instrumentation and the subject’s posture affect a 

BCGs morphology. Thus, in real-world applications, BCG morphology will vary greatly from 

person to person and from instrument to instrument – meaning that non-ECG-based BCG signal 

quality metrics are needed that are applicable in a broad range of application scenarios. 

To that end, this dissertation presents a novel, BCG-specific signal quality index in 

Chapter 7. The relationships between the index and performance metrics (e.g., sum squared 

error, false alarm rate, and false negative rate) are investigated using a linear regression model.  

With the signal quality index defined, Chapter 8 outlines a novel digital signal processing 

technique to robustly estimate HBIs. The algorithm is robust in the sense that regardless of the 

mattress type (a firm and plush mattress were analyzed) or sleeping position (five positions were 

considered), the HBI estimates were consistently accurate with few false alarms (extra intervals) 

and few false negatives (missed intervals).   
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Chapter 2 - Review of Ballistocardiograph Instrumentation 

A ballistocardiogram (BCG) represents the body’s recoil response due to the ejection of 

blood from the heart [56]. This signal is similar to other cardiopulmonary signals (e.g., an 

electrocardiogram or photoplethysmogram) in that the waveform occurs at a pseudo-periodic rate 

driven by the cardiac cycle. Several BCG and electrocardiogram (ECG) cycles are depicted in 

Figure 2-1, where the prominent BCG features (H, I, J, and K) are labeled for one cycle and 

time-aligned with the corresponding ECG R peak. Ballistocardiography was investigated in the 

late 19th and early 20th centuries by J.W. Gordan and Y. Henderson [20], [57]. It became quite 

popular in the 1940s through the late 1960s after one of the pioneers in the field, Isaac Starr, 

created a scientific and reproducible recording system [22]. However, due to limited clinical 

acceptance, accuracy and repeatability concerns, and the invention of newer medical 

technologies (e.g., echocardiography), the research community’s BCG interests faded [25]. The 

BCG was not therefore established as a standard clinical waveform despite the advances made in 

the “golden age” of ballistocardiography. In the early 2000s, ballistocardiography experienced a 

revival as people were drawn back to study this now “outdated” technique. 

 

Figure 2-1. Several ECG and BCG cycles (top). One BCG cycle with labeled features (lower 
left). 

BCGs are currently being investigated in numerous research contexts: unobtrusive heart 

rate monitoring [42], sleep staging [49], blood pressure monitoring [58], biometric applications 
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including continuous authentication systems [59], and quantifying cardiovascular health (e.g., 

contractility, and cardiac output) [60], to name a few. Since a BCG can be measured 

unobtrusively and monitored continuously, it is also a promising modality for personalized 

healthcare systems [61]. 

Force [62], displacement [63], velocity, and acceleration sensors are all capable of 

recording BCGs [64]. Even a sensing modality that has no coupling to the body, such as a radar 

or camera-based system, can record a BCG as long as it has a direct line of sight [44], [65]. A 

coupling mechanism can be direct (e.g., an accelerometer attached to a subject) or indirect (e.g., 

coupling through a medium such as a mattress in a bed-based system [66], [67]). Modern 

measurement setups involve subjects that stand on weighing scales or force plates, signals 

recorded from bed-based systems, wearable devices that utilize accelerometers and gyroscopes, 

and chair-based systems with sensors integrated into seat cushions or backrests [62], [68]–[74].  

Regardless of how a BCG is recorded, it is important to understand the effects the system or 

setup might have on the recorded waveform.  

The high-frequency ballistocardiograph system used by Starr (abbreviated as HF-BCG) 

was just one of several measurement modalities that researchers used during the early days of 

ballistocardiography (the 1940s through the early 1980s) [25]. The very first systems used by 

Gordan and Henderson were based on modified scales that utilized spring systems to capture 

BCGs when the subjects stood on, or lied down on, the recording devices. Later BCG 

measurement systems required subjects to lie down, as investigators soon realized it was difficult 

for sick subjects to stand motionless for a prolonged period of time [24]. Four main acquisition 

systems became popular: the HF-BCG system used by Starr, the low-frequency 

ballistocardiograph (LF-BCG), the ultralow-frequency or aperiodic ballistocardiograph (ULF 

BCG), and the direct-body ballistocardiograph (DB-BCG) [75]. 

This chapter presents an overview of the instrumentation techniques first used in the field 

of ballistocardiography in comparison to modern techniques, plus how these systems relate to a 

model that describes the interactions between the heart, body, and measurement platform. The 

goal is to provide researchers with an understanding of how the old and new techniques are 

related to better understand the differences/similarities between the recorded waveforms. One 

truth that will become clear is that, although the waveforms recorded from different systems are 

presented as BCGs, the morphologies of these signals can vary drastically. 
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 Overview of Early Measurement Devices 

Some of the earliest BCG recordings can be found in J.W. Gordon’s article, “On Certain 

Molar Movements of the Human Body Produced by the Circulation of the Blood” in the Journal 

of Anatomy, 1877 [20]. Two figures from that article are shown below in Figure 2-2. The left 

figure contains a recording from a subject standing on the apparatus, while the right figure 

contains a recording from a subject lying supine on the apparatus. At the time of Mr. Gordon’s 

article, a naming convention for BCG waveforms had not been defined; hence, the waveform 

features identified in Figure 2-2 do not match the features in Figure 2-1. 

 

Figure 2-2. BCG waveforms recorded by J.W. Gordon: standing (left) and lying (right). 
Adapted from [20]. 

During the mid-20th century, several types of BCG acquisition systems became popular 

after Starr provided a detailed description of his team’s acquisition system [22]. Each recording 

setup was named based on its frequency characteristics in relation to the normal heart rate, 

typically 60 beats/min or 1 Hz. As mentioned previously, the instrumentation techniques that 

were becoming popular were grouped into four categories: HF-BCGs (resonant frequency  10 

Hz), LF-BCGs (resonant frequency  1.5 Hz), ULF-BCGs (resonant frequency  0.5 Hz), and 

DB-BCGs (resonant frequency  6 Hz) [26]. The researchers at the time soon discovered that the 

design of an instrumentation device greatly affected the shape of the commensurate BCG. In 

order to understand the differences between the instrumentation techniques and to create 

guidelines and conventions for the various acquisition systems, an American Heart Association 

Committee was formed, The Committee on Ballistocardiographic Terminology, which released 

two reports in the 1950s [75], [76]. The second, extended report, which was published in 1959, 

detailed a spatial axis and standard conventions for determining polarity. The three axial 

definitions, along with their relationship to the human body, which served as the frame of 

reference, were defined positive-to-negative as the longitudinal axis (head to foot), the transverse 
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axis (side to side, and right to left), and the dorsoventral axis (back to belly). Furthermore, a 

three-part series was published that addressed a dynamic comparison of the four popular BCG-

acquisition methods, or base systems [77]–[79]. 

To understand the different systems that were available (as well as modern systems), the 

following analysis considers the forces acting in the head-to-foot direction. The heart, body, and 

recording mechanism can be modeled as masses coupled by spring/dashpot interconnects (see 

Figure 2-3 and refer to the variable definitions in Table 2-1). The dynamic positioning of the 

heart mass (𝑚 ), the subject mass (𝑚 ), and the platform mass (𝑚 ) are tracked along an x axis, 

which represents the head-to-foot axis [80]. In order to simplify the problem, the body can be 

modeled as a single mass, which is pushed by the internal forces generated by the heart, see 

Figure 2-4. A similar model was discussed in [26], where a further simplification was made – the 

BCG recording system or platform was assumed to move freely (𝐷  and 𝛽  = 0), which is a 

good starting approximation to understand the differences between the original three popular 

techniques: the ULF-BCG, LF-BCG, and HF-BCG systems. However, the coupling between the 

supporting platform and the ground is important to understand the DB-BCG system and modern-

day techniques. Such an analysis (the summation of forces and the resulting ideal types of 

ballistocardiographs) helps to quantify the relationships between the recorded metrics and the 

center of mass’ displacement, velocity, and/or acceleration. For further insight into the modeling 

characteristics, the reader is directed towards the analysis provided in ‘Chapter 3: 

Instrumentation’ in Starr and Noordergraaf’s book, Ballistocardiography in cardiovascular 

research: Physical aspects of the circulation in health and disease, which was published in 1967, 

or the three-part series discussed earlier [24].  



12 

 

Figure 2-3. Model for the interconnections between the forces generated between the heart, 
the subject/body, the recording device/platform, and ‘ground’ during each cardiac cycle. 
Adapted from [80]. 

 

Figure 2-4. Simplified model, assuming the body moves as a single mass. Adapted from [24]. 
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Table 2-1. Variable Definitions. 

Variable Definition 

𝑚  Mass of the heart 

𝑚  Mass of the subject 

𝑚  Mass of the platform 

𝛽  Dashpot constant, heart to subject 

𝐷  Spring constant, heart to subject 

𝛽  Dashpot constant, subject to platform 

𝐷  Spring constant, subject to platform 

𝛽  Dashpot constant, platform to ground 

𝐷  Spring constant, platform to ground 

𝐹  Force generated by the heart 

𝐹  Internal force 

𝑥  Displacement of the subject 

𝑥  Displacement of the body’s center of mass due to internal forces 

Regarding the forces in the head-to-foot direction (x axis), the two equations of motion 

considering Figure 2-4 are 

 𝐹 𝑚 𝑥 𝛽 𝑥 𝑥 𝐷 𝑥 𝑥         (1) 

and 

 0 𝑚 𝑥 𝛽 𝑥 𝐷 𝑥 𝛽 𝑥 𝑥 𝐷 𝑥 𝑥      (2) 

Assuming the platform can move freely in its environment, i.e., 𝐷  and 𝛽  are zero, and that 

the platform is fixed to the reference frame, i.e., 𝑥 0, equation 1 can be written as 

 𝐹 𝑚 𝑥 𝛽 𝑥 𝐷 𝑥  (3) 

After substituting for 𝐹 𝑚 𝑥 , 

 𝑚 𝑥 𝛽 𝑥 𝐷 𝑥 𝑚 𝑥  (4) 
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From equation 4, three types of ballistocardiographic systems, which closely resemble three of 

the popular systems at the time (ULF-BCG, LF-BCG, and HF-BCG), can be addressed by 

considering which parameter dominates the left side of equation 4. 

 The Ultralow-Frequency Ballistocardiograph 

First, consider the situation in which the body and platform move together in unison (i.e., there 

is no damping or restoring force coupling the body to the platform, meaning 𝛽  and 𝐷  are zero). 

Equation 4 can then be simplified to 

 𝑚 𝑥 𝑚 𝑥   (5) 

Solving for 𝑥  yields 

 𝑥 𝑥 𝑘 𝑡 𝑘  (6) 

This scenario is straightforward and is simply a conservation of momentum problem. In 

this ideal scenario, the recorded quantity, whether it is displacement, velocity, or acceleration, 

will be equal to the corresponding quantity for the body’s center of mass given that the constants, 

𝑘  and 𝑘  due to integration, are zero. This special case (𝛽  = 𝐷  = zero) can be approximated 

when the body and platform move together, and the platform has a weak coupling to its 

environment. Of the three original ballistocardiograph devices, this approximation most closely 

resembles the ULF-BCG system, or aperiodic ballistocardiograph. 

A ULF-BCG system was created by suspending a platform from a ceiling using rope, 

floating a platform on mercury, or using pressurized air to create a floating platform (see Figure 

2-5) [20], [81], [82].  The ULF system was commonly seen as the gold standard at the time given 

its limited distortion of the “true” BCG at higher frequencies [83]. 
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Figure 2-5. Two examples of "new" ultralow-frequency ballistocardiographs: a chair-based 
system that can adjust for patients with different weights (left), and a pressurized air-based 
table (right) [82]. Reprinted with permission from S. Karger AG, Basel. 

 The Low-Frequency Ballistocardiograph 

For the second special case, consider 𝛽  to be the dominating term in equation 4, 

resulting in 

 𝛽 𝑥 𝑚 𝑥  (7) 

Again, solving for 𝑥  yields 

 𝑥  𝑥 𝑘  (8) 

 

Here, the recorded displacement will be proportional to the center of mass’ velocity. Thus, the 

recorded velocity will be proportional to the center of mass’ acceleration. The closest system to 

this approximation was the LF-BCG system used by Nickerson, where the external damping 

between the subject and the platform was high compared to the damping of the coupling springs 

between the system and ground. An LF-BCG system was typically critically damped by adding 

weight to the platform equivalent to the subject’s weight, resulting in a platform resonance 

around 1.5 Hz [75]. 
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Figure 2-6. Diagram of Nickerson's low-frequency ballistocardiograph (left) and damping 
device (right) [84]. Reprinted with permission from ©The American Physiological Society. 

 The High-Frequency Ballistocardiograph 

For the last case, the damping factor, 𝐷 ,  between the subject and the platform is 

considered the dominating term in equation 4. This leads to 

 𝑥 𝑥  (9) 

This case most closely relates to the HF-BCG system popularized by Starr. It is interesting to 

note that, for this system, recorded displacement is proportional to the center of mass’ 

acceleration, which should (in theory) be the closest measurement to the internal forces. HF-

BCG systems typically had a natural resonance of 8-14 Hz when occupied by a subject [75] – a 

much higher resonance frequency relative to the heart pulse frequency when compared to the 

previously mentioned systems. Figure 2-7 illustrates an example HF-BCG system used by Starr, 

which had vibration frequencies ranging from 9.5 to 12.5 Hz when the table was weighted down 

with iron bars weighing from 50 to 100 lbs [22].  
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Figure 2-7. High-frequency ballistocardiograph proposed by Starr [22]. Reprinted with 
permission from © The American Physiological Society. 

 The Direct-Body Ballistocardiograph 

The above analysis, which assumes the body and platform can both move, leaves out the 

other popular measurement framework – the direct-body ballistocardiograph system (DB-BCG). 

The DB-BCG system was based on the fact that the body will still move on the platform even 

when the platform is held stationary. In reality, a ULF-BCG, LF-BCG, or HF-BCG system 

would also have a similar coupling between the body and the platform, just to a much lesser 

degree. With the platform held stationary, the model can be viewed as in Figure 2-8. 

 

Figure 2-8. System model with the platform held stationary. 
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Summing the forces in the x direction results in 

 𝐹 𝛽 𝑥 𝐷 𝑥 0 (10) 

Again, substituting  𝐹 𝑚 𝑥 , gives 

 𝑚 𝑥 𝛽 𝑥 𝐷 𝑥 𝑚 𝑥  (11) 

Equation 11 and equation 4 are essentially identical, but there is an important difference. 

To move from equation 1 to 4, a frame of reference adjustment was made to simplify the 

problem, since the platform could move. For the DB-BCG, the platform is held stationary, so the 

coupling between the subject and platform will always be present. I.e., the damping and spring 

constant terms cannot be assumed to be zero for special cases. Both of these terms must be 

considered, and they are determined by how the body is coupled to the platform. Damping 

techniques were commonly used with the DB-BCG systems (e.g., footplates or shin-bars) in 

order to approximate the HF-BCGs, but the stronger damping led to greater BCG distortion – an 

aspect that was debated, as researchers did not fully understand what BCG frequency 

characteristics were the most important [85]. An example of a shin-bar ballistocardiograph 

system is pictured in Figure 2-9 [86]. 
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Figure 2-9. Example shin or crossbar ballistocardiograph [86]. Reprinted with permission 
from Elsevier. 

 Comparison of ULF, LF, HF, and DB Ballistocardiographs 

The ULF-BCG system was considered the gold standard, as the recorded metrics were 

closest to those belonging to the center of mass. When measuring displacement, the LF-BCG 

system captures the center of mass’ velocity, while the HF-BCG system records its acceleration. 

With DB-BCG systems, the relationship is not as clear. If significant external damping is applied 

(e.g., holding the subject firmly in place with either a footboard or a shin bar as depicted in 

Figure 2-9) then the DB-BCG system recordings approach those acquired by the HF system, but 

as was noted earlier, heavily damping the system can cause considerable distortion. Comparisons 

between the recorded quantities for the ideal BCGs are contained in Table 2-2. 
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Table 2-2. Recorded quantities for the ideal ballistocardiographs. 

Ideal Ballistocardiograph 
Recorded Quantity 

𝒙 𝒙 𝒙 

Case I – close to ULF-BCG 𝑥 𝑥  𝑥  

Case II – close to LF-BCG 𝑥 𝑥   

Case III – close to HF-BCG 𝑥   

 

With the special cases now defined, another view of equation 4 can be constructed by 

deciding which term to consider on the right side of the equation. For the HF-BCG, we can 

rewrite equation 4 in another familiar, frequency-dependent form: 

 𝑚 𝑥 2𝜁𝜔𝑥 𝜔 𝑥 𝑚 𝑥  (12) 

Using operational notion 

 𝑚 𝑠 2𝜁𝜔𝑠 𝜔 𝑌 𝑠 𝑚 𝑠 𝑋 𝑠  (13) 

Finally, the transfer function can be written as 

  (14) 

The takeaway is to recognize that this is a highpass transfer function, which approximately 

characterizes the ULF-BCG system. For the LF-BCG system, knowing that displacement will be 

proportional to velocity, a slight adjustment is made to equation 12: 

 𝑚 𝑥 2𝜁𝜔𝑥 𝜔 𝑥 𝑚 𝑣  (15) 

Again, following the same analysis above leads to the following transfer function: 

  (16) 

Therefore, the LF-BCG system has a bandpass filtering effect. Lastly, the transfer function for 

the HF-BCG system, where displacement is proportional to force, becomes 
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  (17) 

meaning that the HF-BCG system will have a lowpass filtering effect on the recorded signal. 

Ideal frequency responses using typical resonant frequencies and damping ratios for the three 

setups are depicted in Figure 2-10 [77]. 

 

Figure 2-10. Frequency response curves for the three ideal ballistocardiographs using the 
parameters specified in Table 2-3. 

 

Table 2-3. Functional parameters used to generate the curves in Figure 2-10. 

Ideal BCG 
Parameter 

𝒇𝒄
𝝎𝒄

𝟐𝝅 (Hz) ζ – damping ratio 

Type I, ULF-BCG 0.5 Hz 0.4 

Type II, LF-BCG 1.5 Hz 0.4 

Type III, HF-BCG 5 Hz 0.2 
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Overview of Modern Measurement Techniques 

Modern ballistocardiography came about due to advances in sensor technology (e.g., 

highly sensitive accelerometers, electromechanical films, polyvinylidenefluoride materials 

(PVDFs), and load cells), data acquisition hardware and software, and digital signal processing 

techniques. One of the most attractive aspects of the BCG is that it can be measured 

unobtrusively and continuously without any effort from the user. In fact, when working with 

sensitive populations such as the elderly or children with severe disabilities and autism, BCG 

systems can be integrated into their environments seamlessly without major modifications [70], 

[87]. With all the sensor advancements that have been made and the flexibility of modern sensors 

and acquisition systems, it is difficult to describe in detail every kind of ballistocardiograph that 

has been (or will be) created. Rather, the following sections address the common sensing 

modalities that have gained popularity and how they relate to the historical models in Figure 2-3 

and Figure 2-4.  

Standing Ballistocardiograph 

To understand the standing ballistocardiograph system (standing-BCG; see Figure 

2-11(left)), the frame of reference in Figure 2-4 still applies. The x direction corresponds to the 

head-to-foot BCG component, and the standing-BCG system offers the most straightforward 

means to collect this component in light of the effect of gravity (measurements made in low 

gravity environments are discussed in a later section). The force of gravity pushes down on the 

subject, strengthening the coupling between the person and the measurement device. The skeletal 

frame provides a rigid travel path for the forces generated by the heart. Note that the following 

analysis still assumes that the body and heart move together as a single mass. The coupling 

network between the platform and the ground, 𝛽  and 𝐷 , are determined by the 

characteristics of the scale/platform. For example, consider the weighing scale used by Inan et al. 

in [42]. The spring constant for the scale is reported to be 1.13 to 1.19 N μm . With this large of 

a spring constant, the system most closely resembles special case III, the HF-BCG system. For 

example, a spring constant of 0.8 N μm  was reported for an HF-BCG system [80]. A standing-

BCG system is only limited by the bandwidth of the scale or force plate, since the sensing 

mechanism can cause delays [88]. 
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 Chair Ballistocardiograph 

Like the standing-BCG systems, chair-based systems (see Figure 2-11(right)) appear to 

be a good fit for capturing the head-to-foot component of the BCG when the sensor is placed on 

the seat. However, while the pressure wave does partially travel along the skeletal system, it 

must also pass through fatty tissue before reaching the sensor. The amount of signal attenuation 

is dependent on the tissue characteristics. Typically, signal amplitudes tend to be lower for chair-

based systems compared to standing-BCG systems [26]. In addition, signal morphology has been 

found to be dependent on posture [89]. Considering the model in Figure 2-4, the sensor/platform 

will be strongly coupled to ground. The body is also strongly coupled to the sensor. Thus, to 

understand this system, modeling the body as a single mass falls short. Instead, the heart and the 

body must be treated as independent masses coupled by a spring-damper as depicted in Figure 

2-3. This model helps to understand the point made above that the tissue characteristics of the 

body between the heart and the sensor affect or distort the recorded signal morphology. 

Therefore, one must correct for this distortion before chair- and standing-BCGs can be 

compared. 

 

 

Figure 2-11. Standing-BCG system with force plate (left) ©2016 IEEE [68]. Chair-based 
BCG system (right) ©2005 IEEE [90]. 

 Bed-Based Ballistocardiograph 

A bed-based system (see Figure 2-12) can be difficult to analyze, since it records a 

combination of the dorsal-ventral and head-to-foot BCG components [26]. There is also the issue 
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of the body’s natural frequency [91], which causes considerable signal distortion because the 

system acts like a lowpass filter with a large resonance around 3 to 5 Hz [24]. This was apparent 

in early ballistocardiograph systems, so in response (a) non-slip pads were placed under the 

person, (b) footplates, head fixtures, and shin-bars were used to raise the resonant frequency of 

the system, and (c) electrical networks were investigated to “correct” for the distortion [85], [92], 

[93]. For a modern system designed to be integrated into a standard bed, a springy mattress adds 

to the distortion seen in the BCG waveforms, sometimes making it impossible to extract any 

useful information from the acquired signals. A modern bed-based system is most closely related 

to the original DB-BCG design, since the platform or recording system is held stationary. 

Further, the head-to-foot component of the BCG is weakly coupled to the sensing mechanism. 

Looking back at equation 11, both spring and damping factors influence the resultant waveform, 

making it difficult to interpret the resulting BCG when the sensor is placed beneath the subject’s 

chest. 

 

Figure 2-12. Two example bed-based BCG systems: multilayer system using EMFi sensors 
(left) [46], and four hydraulic sensors placed under the mattress (right) ©2015 IEEE [94].   

 Wearable Ballistocardiograph 

When the subject wears a sensor (e.g., an accelerometer; see Figure 2-13) it is important 

to consider the sensor’s location. If an accelerometer is placed on the sternum, the recorded 

waveform will be the seismocardiogram (SCG) – the vibration of the thorax due to a heartbeat, 

not the BCG, which has quite a different morphology [26]. However, when the sensor is placed 

at other body locations, it can record a “BCG”-like waveform. Digital signal processing 

techniques (i.e., integration) were demonstrated to map recorded acceleration signals to force 

waveforms that closely resembled BCGs recorded by a force plate for the same subject [43]. This 

seems reasonable, since the body was strongly coupled to the force plate, so whether the sensing 
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location was the feet or another spot on the body, the waveform morphology of the head-to-foot- 

component should be similar to the morphology of a signal acquired with a standing-BCG 

system. Note that the subject’s orientation and coupling to ground is critical to understanding the 

resulting recorded waveform. 

 

Figure 2-13. Accelerometer-based wearable BCG and ECG system ©2011 IEEE [95]. 

 Non-Contact Ballistocardiograph 

Radar and video-based systems have demonstrated the capability to record BCGs. These 

types of systems have more flexibility in that the person can be standing, sitting, or lying down – 

as long as the system has a line of sight to the person. The type of BCG recorded will depend on 

how the subject is situated, as with the wearable systems. Therefore, the analysis in the previous 

sections (III.A-III.C) can be applied. 

 

Figure 2-14. Camera-based BCG and PPG system ©2016 IEEE [44]. 
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 Reduced-Gravity Measurements  

Measurements made in zero- or reduced-gravity environments have been fundamental to 

understanding the factors that influence the BCG’s “true” morphology, i.e., when it is not 

influenced by gravity. A full history of results gathered from low-gravity measurements would 

merit its own review. A few anecdotal experiments are noted here. In the late 1960s, the U.S. 

Naval School of Aviation Medicine performed flight procedures to simulate zero-gravity 

environments, where tri-axial BCG data were recorded using accelerometers attached to the 

subject along with simultaneous ECG data [96]. In 1993 during the Spacelab D-2 mission, tri-

axial BCG data were gathered noise-free for 146 seconds [97], [98]. Each of these recordings 

most likely resembles the purest form of a BCG without the influence of gravity. Not 

surprisingly, the ULF-BCG system offered similar BCGs to those gathered in microgravity [83]. 

 

Figure 2-15. Triaxial accelerometer-based BCG measurements made in low gravity in 1964 
[96]. 

  



27 

Chapter 3 - A Bed-Based Monitoring System 

For personalized healthcare to become widely accepted, advances need to occur in 

medical monitoring technologies. Such systems must operate outside of a clinical setting, e.g., in 

an individual’s home [10], [99]. To that end, medical devices are getting smaller and more 

powerful, making it possible to monitor physiological signals in a variety of environments. 

Wireless protocols that are secure and efficient are being proposed to develop frameworks 

capable of keeping patient information private while achieving efficient network data transfers 

[100], [101]. However, medical technology designers face a number of challenges if they are to 

meet the demands of a personalized healthcare system.  

One such challenge is the acceptance of these devices for long-term use. Such systems 

must collect data reliably and accurately for weeks, months, or years, whereas current wearable 

medical technologies (e.g., blood pressure and heart rate monitors) require consistent, repeated 

effort from users. For example, in the case of cuff-based blood pressure monitors, periodic 

measurements need to be performed daily, and each takes several minutes to perform. Previous 

studies have documented that subjects have extremely low adherence to routine monitoring (e.g., 

checking their blood sugar level or receiving recommended care for hypertension) [102]. 

Limiting the effort required from a user is a vital design consideration for a personalized 

healthcare system. 

 One approach to address the acceptance of medical technologies is to use unobtrusive or 

noncontact technologies, which require little to no effort by the user. In [103], infrared motion 

sensors were placed throughout a subject’s home, and machine learning algorithms were devised 

to detect mild cognitive impairment. Capacitive electrograph systems have been demonstrated to 

be effective for longer-term monitoring of heart rate and other physiological metrics (e.g., 

respiration rate) [104]–[106]. A pressure-sensitive sheet placed on top of a mattress has been 

used for sleep-staging [16]. As stated in the Introduction, ballistocardiography systems can also 

be used to assess physiological signals unobtrusively. 

This chapter describes a new type of multi-sensor, bed-based system capable of robustly 

and unobtrusively recording ballistocardiogram, respiration, and movement data. The design was 

motivated by the need to monitor the sleep of children with severe disabilities and low-

functioning autism. The system is redundant in its ability to monitor physiological signals: 

multiple sensors with different sensing modalities are placed throughout the bed system – each 
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with the ability to capture BCGs. As will be discussed in more detail in Chapter 6, this bed-based 

system is both redundant and robust in its ability to track the physiological signals of such 

children – each sensor gathers data that are useful in their own right but can also be compared to 

slightly different signals gathered from sensors at other locations in the bed system. The bed 

system was designed to keep all of the sensors hidden. I.e., the bed should not look or feel any 

different from a normal bed. Further, the system should operate autonomously, not requiring any 

effort from the user. 

 Goals and Objectives 

The overall goal of this bed-based effort is three-fold: design, validate, and demonstrate 

the functionality of a new multi-sensor physiological monitoring device that can operate 

unobtrusively and autonomously. The bed-based system provides a platform for the concepts 

addressed in this dissertation: custom biomedical sensor design, sensor integration and 

management, and novel ballistocardiogram processing algorithms for signal quality assessment 

and heartbeat interval estimation. Five technical objectives support the overall goal: 

1. Design a multi-sensor, bed-based system that can be integrated into the bedroom of a 

severely disabled autistic child without disrupting their environment. 

2. Design an acquisition architecture to collect data from multiple bed systems, which 

also includes the collection and management of thermal imagery. 

3.  Validate the system against gold standard metrics (e.g., respiration rates and heart 

rate intervals synchronously collected from a patient monitor). 

4. Demonstrate the capability of the system to operate and collect data accurately over a 

long-term period in the environment of children with severe disabilities and low-

functioning autism. 

5. Propose and validate novel ballistocardiogram signal processing techniques for signal 

quality and heartbeat interval estimation for this multi-sensor platform. 

 Technology Overview 

The bed system incorporates highly sensitive force sensors (electromechanical films and 

load cells), custom analog signal conditioning circuitry and signal management, National 

Instruments (NI) [107] compact data acquisition modules and chassis, and NI virtual 

instrumentation software. The custom analog circuitry was specially designed to condition low 
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amplitude physiological signals (e.g., BCGs, including their respiration components). NI 

hardware and software are utilized to collect and process high-resolution, analog-to-digital 

channels for real-time or post-collection analyses. The high-level virtual instrument (VI) 

manages multiple instances of the acquisition hardware, making it possible to collect and store 

datasets from multiple bed systems with a single VI.  

A low-resolution thermal camera controlled by a Raspberry Pi unit [108] is used in 

conjunction with each bed system. The low-resolution thermal imagery serves as a corroboration 

source for motion detection. Additionally, a thermal camera is useful to diagnose system failures 

that result from in-room activity.  

The custom analog conditioning module and acquisition hardware were also designed to 

accommodate signals from a patient monitor – signals gathered synchronously that provide 

standard “ground-truth” parameters against which bed system parameters can be compared. E.g., 

R-to-R peak intervals are extracted from electrocardiograms gathered from the patient monitor, 

and these intervals are used to validate BCG heartbeat intervals estimated from bed sensor data.  

The multitude of sensors makes the system a suitable platform to track physiological 

signals from any individual who may sleep in a variety of positions and bed locations. The 

system is also highly sensitive, accommodating a wide range of subject heights and weights. 

Further, the platform is flexible in terms of bed compatibility – the system does not require a 

special type of mattress.  

Currently, the platform does not perform real-time data processing in terms of respiratory 

rate or heart rate estimation. The VI manages the data collection, and these data are stored 

directly to a series of LabVIEW measurement files (LVMs) [109], where the file structure is 

outlined in Appendix C. A subset of the currently collected data is displayed on the VI front 

panel; this provides a real-time means to verify that the bed system is working correctly. 

 Bed-Based System Concept Model 

An initial diagram illustrating the various upper layers of the custom bed-based system is 

depicted in Figure 3-1. These layers, consisting of (a) a thermocouple layer, (b) a foam pad, (c) a 

film sensor layer, and (d) a mattress, only represent the top portion of the bed system. The 

approximate locations of the load cells and the system acquisition hardware are depicted in 

Figure 3-2, where the dotted white lines represent analog channels. Custom breakaway cables are 

used to route the output from each EMFi sensor to the conditioning board housed in the bed’s 
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cavity. An accompanying block diagram for the acquisition system is contained in Figure 3-3. 

An example of a typical Heartspring bed fitted with the sensor system is illustrated in Figure 3-4. 

 

 

Figure 3-1. Upper layers of the bed. 

 

Figure 3-2. Approximate sensor and hardware acquisition locations within the bed system. 
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Figure 3-3. Overall system diagram and primary sensor set. 

 

Figure 3-4. Typical Heartspring captain’s bed fitted with the monitoring system. 

 

This platform fits well within the personalized health-monitoring model. The eight 

primary film and load cell sensors, each capable of recording BCGs, make the system robust in 

its ability to track physiological signals regardless of sleeping position. I.e., no restrictions are 
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placed on how a person must sleep – a limitation of commercial BCG-based sleep monitoring 

technologies. Load cells make it easy to track bed entrance and exit events, and these load cell 

data can be processed to offer center of position (see the next chapter). The bed system can be 

programmed to operate autonomously – a user does not need to start or stop the system when 

they get into bed at night or when they wake up the next morning, respectively. The VI 

management aspect also makes the system capable of real-time analysis. For example, for 

individuals in need of constant monitoring, parameters estimated from the bed system (e.g., 

respiration rate, heart rate, heart rate variability, ambient temperature, motion, etc.) can be 

monitored continuously and unobtrusively. Another aspect to note is that these physiological 

parameters can be monitored over time, making it possible to track trends over weeks, months, or 

even longer. Parameters such as weight, resting heart rate, and sleep efficiency offer insight into 

general wellbeing when tracked over a longer time period. 
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Chapter 4 - Bed System Architecture 

This chapter details the sensors, custom hardware, and NI hardware and software that 

work together to comprise the bed-based platform. Given that BCG forces are in the approximate 

range of a few newtons, highly sensitive force sensors capture these micro-movements [26]. 

Custom hardware conditions these small signals, amplifies the signal components in the 

frequency ranges of interest, and filters out unwanted noise. The National Instruments hardware 

provides means for remote configuration, data management, signal synchronization, and timing 

control. The NI hardware and software allow the platform to simultaneously record data streams 

from two bed systems located in separate rooms via a single VI. An added benefit of the NI 

toolset is that selected waveforms can be viewed in real time, making it possible to debug 

elements of the system without the need for additional test equipment (e.g., an oscilloscope). 

Sensor Selection 

As discussed in earlier chapters, several sensing modalities exist to monitor BCGs. When 

acquiring these signals from children with severe disabilities and low-functioning autism, the bed 

system needs to hide the sensors, making it appear no different from a standard bed. To this end, 

different types of sensitive force sensors were considered. Given that little prior nighttime 

research has been conducted on this population, it was unclear which types of sensors or sensor 

placements would work well. The team ultimately decided to place large, sensitive 

electromechanical film (EMFi) sensors beneath the mattress, and load cells were also placed 

under the four corner bedposts. The initial design was planned to be redundant, with the thought 

that it could be simplified in future implementations. However, the team soon discovered that the 

multi-sensor system is robust as opposed to just redundant – an aspect detailed in Chapter 6. 

Electromechanical Films 

EMFis are thin (37 or 70 µm thick) polypropylene sheets that are sensitive to forces 

applied normal to their surfaces. I.e., a voltage measured at a film’s contacts will be proportional 

to the applied force due to the film’s structure [110]. This high sensitivity makes it possible to 

capture micro-movements of the body caused by cardiac activity (the BCG). For the bed-based 

system, four EMFi sensors (EMFit; L series; 300 mm x 580 mm) are placed in a row under the 

mattress and therefore coincide with a large amount of the mattress surface area (see Figure 4-1).  
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Figure 4-1. Example film sensor and pockets sewn into a fitted sheet that hold sensors in 
place. The mattress is turned upside down to illustrate EMFi sensor and pocket locations. 

Typically, a bed-based BCG monitoring system only uses one EMFi sensor placed under 

the torso to capture both BCG and respiration data [69]. However, children sleep in a variety of 

positions throughout the night, making a single sensor system impractical. This multi-film design 

choice was justified during the pilot study to be discussed in Chapter 6 [70]. 

Two analog conditioning circuit designs were considered to amplify and filter the 

acquired EMFi signals – either a charge or a voltage amplifier configuration can work well with 

an EMFi sensor. A review of these two approaches, describing the pros and cons of each, is 

contained in [110]. The film sensors are located a short distance from the acquisition hardware 

(one or two feet), but this distance is great enough that cable capacitance needs to be considered. 

Further, these EMFi sensors have a large surface area, resulting in a high structural capacitance. 

By using the selected charge amplifier configuration, the sensor and cable capacitances are 

shorted out, leading to the output voltage being dependent only on the circuit’s feedback 

capacitor.  

BCG frequency components cover a range from approximately DC up to around 30 Hz, 

so other investigators have suggested a lowpass conditioning filter with a cutoff frequency not 

lower than 25 Hz [111]. However, with regard to retaining the low-frequency signal components, 

it would be impractical to design the charge amplifier without a feedback resistor parallel to the 

feedback capacitor (see Figure 4-2), which creates a simple RC highpass filter that blocks a 

percentage of the DC and lower-frequency components. (The feedback resistor bleeds off the 

charge buildup on the capacitor, preventing the amplifier from going into saturation. Further, the 
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resistor provides a DC bias current path for the operational amplifier’s negative input.) 

Therefore, the primary task is to choose a sensible cutoff frequency for this highpass filter that 

allows the meaningful acquisition of both the respiration baseline and the BCG pulsatile 

components while avoiding saturation at the output of the signal conditioning circuitry. Note that 

the forces due to breathing are much greater than the forces that correspond to the BCG pulsatile 

components, and typical respiration rates range from 6 to 30 breaths per minute, or 0.1 to 0.5 Hz 

[112].  

 

 

Figure 4-2. Charge amplifier analog conditioning circuit topology. Cc represents cable 
capacitance, Ri provides ESD protection, and Rf and Cf are the feedback resistor and 
capacitor, respectively. 

 

A short analysis was performed to determine which of two candidate highpass cutoff 

frequencies, 0.3 and 1 Hz, would be more suitable in this context. While these cutoff frequencies 

appear high, recall that the recorded respiration signals are strong and require attenuation so that 

they do not overwhelm the pulsatile BCG signal components. A data collection exercise was 

conducted as part of this short analysis, where one subject laid in a supine position with their 

chest above EMFi sensor 1 (F1 – see Figure 3-2). Twenty seconds of clean data were analyzed in 

the frequency domain for each film-and-cutoff-frequency combination, yielding the single-sided 

amplitude spectra in Figure 4-3, where each blue trace (S1) and red trace (S2) correspond to 1 Hz 

and 0.3 Hz cutoff frequencies, respectively.  

The respiration component is visible in the spectrum for each configuration in Figure 4-3, 

but the BCG harmonics are sharper for the 0.3 Hz cutoff frequency (the BCG sampling 

frequency is 250 Hz). A comparison of the time domain signals for the two highpass cutoff 

frequencies is depicted in Figure 4-4. Note that both configurations captured the respiration and 
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BCG components without allowing the system to saturate. Thus, to preserve as much signal 

information as possible, the high-pass cutoff frequency was set to 0.3 Hz: 1/(2RC) = 0.32 Hz, 

where the feedback resistance, R, is 4.99 M and the feedback capacitance, C, is 0.1 F (refer to 

Figure 4-5). Figure 4-5 also depicts the 2nd-order, lowpass Sallen-Key Butterworth filter (cutoff 

frequency = 25 Hz) used to limit the higher frequency content, including 60 Hz power line 

interference. To avoid aliasing the first harmonic of the 60 Hz interference into the BCG 

frequency range of interest, the sampling frequency was chosen to be 250 Hz: more than twice 

the Nyquist sampling requirement. This allows the 60 Hz signal’s 2nd harmonic (120 Hz) to also 

be properly sampled. 

 

 

Figure 4-3. Single-sided amplitude spectra for the BCG data acquired using each film sensor, 
where two highpass cutoff frequencies are considered: fc = 1 Hz (blue) and fc = 0.3 Hz (red). 
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Figure 4-4. Time domain counterparts for the spectra illustrated in Figure 4-3 given a cutoff 
frequency of 1 Hz (blue) and a cutoff frequency of 0.3 Hz (red). Note each small-amplitude 
BCG riding on a larger-amplitude respiration baseline. 

   

 

Figure 4-5. Electromechanical film analog conditioning circuitry. 

Load Cells 

The load cells, which operate on a Wheatstone bridge principle, are also highly sensitive 

to forces applied normal to their surfaces. Although a wide variety of load cells are available on 

the market, choosing the right type of load cell for BCG acquisition proved to be a challenge 

given that load cells are not specifically designed to record such signals. The team experimented 

with several different types of load cells and found the TE Connectivity Measurement Specialties 

FX1901-0001-0200-L to work well in the bed system in terms of the resulting BCG signal-to-
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noise ratio. A load cell is placed underneath each bedpost (see Figure 3-2). These load cells can 

individually acquire BCGs and can collectively provide center of position (COP) data, since the 

output voltage of each cell is directly proportional to the applied static and dynamic forces. In 

comparison, a film sensor only measures changes in applied force. 

Since the load cell sensors are mechanically coupled to the BCG through the bed frame, 

their signals also need conditioning. The analog circuitry for the load cells consists of an 

instrumentation amplifier and active filters with an aggregate passband of 0.05 to 35 Hz (see 

Figure 4-6). The load cell PCB illustrated in Figure 4-7 contains an implementation of the circuit 

depicted in Figure 4-6 (for Load Cell 1 (B)) and routes the signal from a second load cell board 

(Load Cell 0 (A)) – two load cell boards were daisy chained together to reduce the number of 

wires. 

 

Figure 4-6. Load cell analog conditioning circuitry. 
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Figure 4-7. Load cell analog conditioning PCB (bottom) and example implementation in a 
captain’s bed (top), courtesy Ahmad Suliman. 
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Custom Conditioning Hardware 

Several design iterations were made to the custom analog conditioning hardware. The 

first version of the EMFi acquisition design included a separate PCB for each EMFi sensor – see 

Figure 4-8. Further, the first version did not include routing of the load cell channels alongside 

the EMFi channels – each load cell had to be separately wired to the NI 9205 module. 

Additionally, the first version was purposefully made more modular and flexible (e.g., the final 

gain stage was set using a 10 k potentiometer), since at the time the optimal settings to acquire 

EMFi signals were unclear. This hardware worked well for the three-night pilot study detailed in 

a later chapter. However, it was cumbersome, and it was not aesthetically pleasing due to the 

multiple wires running to/from each component (see Figure 4-9). Further, the design included a 

switched-capacitor voltage converter to provide the negative power supply. Therefore, to reduce 

the amount of voltage ripple seen on the output, a separate power supply module was used as the 

negative power supply, leading to a bulkier design. To be clear, the setup worked well, since a 

great deal of data were collected during the three-night study. However, updates were clearly 

needed in order for the design to become practical for larger-scale scenarios. 

 

 

 

 

 

Figure 4-8. Custom EMFi analog conditioning hardware – version 1. 
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Figure 4-9. Bed system setup for the three-night pilot study at Heartspring, illustrating the 
version 1 hardware/wiring system hidden under the bed’s cavity. 

A second hardware iteration included the use of a single power supply plus the 

aggregation of the four EMFi channels onto a single PCB. An image of the PCB for the second 

version can be seen in Figure 4-10, and Figure 4-11 depicts the PCB interfaced to the NI 9205. 

Even though this version had a considerably smaller footprint and fewer wires, it still took 

several minutes to set up – each conditioned EMFi signal output from the custom PCB (a wire 

within the yellow Ethernet cable in Figure 4-11) had to connect to an NI 9205 spring terminal. 

 

Figure 4-10. Custom EMFi analog conditioning hardware – version 2. 
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Figure 4-11. Connections between the version 2 analog conditioning circuitry, the NI 9205, 
and the NI 9184. 

The final iteration of the hardware (custom PCB revision 3) includes these updates: 

 interfaces to the load cells via two RJ-45 connectors and to the EMFi sensors with an 8-pin 

Molex connector, 

 combined signal conditioning for the four EMFi channels and shared routing of the EMFi 

and load cell channels, 

 a 37-pin D-SUB connector to directly connect to the NI analog module (the NI 9220), and 

 a 44-pin D-SUB connector to interface to a GE Datex-Ohmeda CardiocapTM/5 vital sign 

monitor, allowing synchronous collection of electrocardiogram (ECG), respiration, 

photoplethysmogram (PPG), pulse rate, and respiration rate data to be used as comparison 

standards for corresponding health metrics determined with bed-based sensor data. 

An example image of the EMFi signals, load cells, and patient monitor channels interfaced with 

the version 3 design is contained in Figure 4-15 later in this section. The D-SUB connectors 
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make it easy to connect the conditioning PCB to the NI analog module and the patient monitor. 

The overall design was vastly improved compared to the first version – a visual comparison is 

shown in Figure 4-12. Board schematics and layout files are included in the appendices. 

 

Figure 4-12. The final iteration of the analog conditioning hardware – version 3 (b) vs 
version 1 (a). The physical board size needed to perform the data acquisition and signal 
conditioning functionality has been substantially reduced. 

System Configurations  

Two versions of NI hardware used for data collection and analysis are presented in this 

dissertation. The first system is based on a more configurable NI 9205 analog input module and 

an NI 9184 Ethernet-based compact DAQ chassis. This system worked well during the testing 

phase and the three-day pilot study described in the next two chapters. However, due to 

reliability issues encountered with the NI 9205 module, the team decided to upgrade to the NI 

9220 analog input module. At the beginning of the six-month study described in Chapter 9, the 

children’s rooms did not have easily accessible Ethernet connection points. Consequently, the NI 

9184 compact DAQ chassis were replaced with Wi-Fi capable NI 9191 compact DAQ chassis. 

Thus, system two replaces the NI 9205 module and NI 9184 Ethernet chassis with the NI 9220 

Version 3 

(a) 

(b) 
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module and NI 9191 Wi-Fi chassis, respectively. In each system, four channels are used for 

EMFi signals, four are used for load cell BCG signals, four are used for load cell DC values 

(used for COP), and four are interfaced to the GE Datex-Ohmeda CardiocapTM/5 patient monitor. 

System 1 Data Acquisition 

The C series NI 9205 module was selected due to its flexibility in terms of signal 

configuration (single-ended or differential) and its high-resolution, selectable voltage input 

ranges. The main features of the NI 9205 module are 

 32 single-ended or 16 differential channels, 

 selectable signal ranges to manage resolution (±200 mV, ±1 V, ±5 V, or ±10 V), 

 a maximum sample rate of 250 kS/sec, and 

 16-bit resolution on each channel. 

Figure 4-13 contains the high-level block diagram for System 1, and images that depict 

the custom circuit board, NI analog module, and chassis connection interface are contained in 

Figure 4-14. A complete setup, including all cabling for the sensors and the patient monitor, is 

contained in  

Figure 4-15. 

 

Figure 4-13. System 1 data acquisition block diagram. 
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Figure 4-14. National Instruments hardware and custom analog signal conditioning 
hardware. 

 

 

Figure 4-15. Analog signal conditioning and signal management hardware, including a 37-
pin DIN connector to a patient monitor (left), two RJ-45 connections that provide load cell 
signals (bottom), and a Molex connector to acquire EMFi signals (right). 
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 System 2 Data Acquisition 

The C series NI 9220 analog module also has 16 16-bit differential channels, but it offers 

a much higher sampling rate – 1.6 MS/s compared to 100 kS/s offered by the NI 9205 unit. The 

module is connected to an NI 9181 wireless cDAQ chassis that is controlled remotely from a PC 

running LabVIEW 14.0.1. The high-level block diagram and an example setup illustrating how 

the custom hardware connect to the NI hardware are contained in Figure 4-16 and Figure 4-17, 

respectively. 

 

Figure 4-16. System 2 data acquisition block diagram. 

 

 
Figure 4-17. System 2 data acquisition modules (analog input and Wi-Fi chassis). 
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 Virtual Instrumentation and Data Management 

A Virtual Instrument (VI) running on a remote PC manages the data acquisition system 

and controls the sampling rates of all twelve signals. A producer-consumer architecture, see 

Figure 4-18, was implemented within the VI to collect and consolidate data. The example 

depicted in Figure 4-19 and Figure 4-20 manages data collected from the two bed systems. The 

front panel design (a) makes it possible to configure start and stop times for data collection and 

(b) utilizes chart graphs to display a subset of the acquired signals in real time – see Figure 4-18. 

A BCG waveform from film sensor 0 is clearly visible in the real-time waveform chart contained 

in Figure 4-20. 

 

Figure 4-18. Producer-consumer architecture for the two bed systems. 
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Figure 4-19. Example LabVIEW virtual instrument block diagram implementation of the 
producer-consumer architecture. 

 

Figure 4-20. Example LabVIEW virtual instrument front panel display depicting real-time 
waveforms from four EMFi sensors.  
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 Center of Position with Load Cells 

Load cells placed under each bedpost make it possible to calculate the subject’s center of 

position (COP). The BCG signal from each load cell rides on top of a static offset due to the 

weight of the bed. The COP is calculated from these four DC offsets using equations 18 and 19, 

with load cell 1 acting as the (0, 0) point for the coordinate system (see Figure 4-21): 

𝑋   (18) 

𝑌      (19) 

where 𝐿𝐶  is the DC voltage measured at load cell z with z = 0, 1, 2, or 3. Here, 𝐿𝐶  is the initial 

voltage measured at load cell z with the bed unoccupied.  

 

 

Figure 4-21. Sensor locations and center-of-position reference coordinate system. 

 Thermal Camera to Track Movement and Position 

After the first pilot study (detailed in Chapter 6), it was evident that an automated 

imaging system was needed to validate movement and position. Standard video recording would 

compromise the privacy and dignity of the children, so an alternative solution was needed. As a 

compromise, a FLiR Lepton® thermal imaging module was selected to monitor each child’s 
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movements and possibly track their positions. The FLiR Lepton® module is a small, low-

resolution longwave infrared imager. An accompanying breakout board, purchased as a kit from 

Sparkfun, makes it simple to interface the module to a Raspberry Pi unit. The thermal imaging 

module is connected to a breakout board and interfaced to a Raspberry Pi 3 B+ using a serial 

peripheral interface. The Pi unit saves and transmits the low-resolution thermal images (80 by 60 

pixels; captured every 1 to 2 seconds) to a remote PC over Wi-Fi using WinSCP.  

The low-resolution thermal camera makes it possible to analyze each child’s movement 

without comprising their integrity. In addition to providing a visual reference for movement and 

position, bed entrance and bed exit events can be tracked. An example thermal camera setup and 

the associated camera module and breakout board are depicted in Figure 4-22 and Figure 4-23 

(left), respectively. An example thermal image illustrating two students working at a lab bench is 

contained in Figure 4-23 (right). 

 

Figure 4-22. 3D printed housing (left), swivel (center), and wall mount setup (right). 

 

Figure 4-23. FLiR Lepton ® module and breakout board (left) and example grey scale 
thermal image (right). 
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Chapter 5 - Preliminary System Results  

The bed system was carefully tested in a laboratory setting to verify its ability to track 

parameters such as pulse rate, respiration rate, and movement. A captain’s bed just like the ones 

used by many of the children at Heartspring was modified and fitted with sensors and a data 

acquisition system. An example setup showing the locations of the load cells is depicted in 

Figure 5-1. The original load cell configuration included six load cells, but the team reduced the 

load cells to four (one at each corner) to minimize the number of redundant channels while 

retaining the ability to calculate center of position. This also freed up some NI analog input 

channels (only sixteen are available) to collect signals from the patient monitor. The four film 

sensors are not visible in Figure 5-1 since they were placed under the mattress (for film sensor 

placement, see Figure 4-1 or Figure 4-21). 

This chapter presents representative signals and preliminary estimated heartbeat interval 

data collected from one subject to verify the system’s capabilities. Three activities (rolling left 

and right on the shoulders, moving around, and sitting on the long side of the bed) were 

performed to test the load cells’ ability to track movement and center of position – see Figure 

5-2, where the upper plot and lower plot illustrate data acquired relative to the x (short) axis and 

y (long) axis of the bed, respectively. Lastly, a subject laid on the bed for a few minutes in a 

prone position to test the system’s ability to estimate heartbeat intervals from acquired BCGs. 

 

 

Figure 5-1. Load cell placement. 
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Figure 5-2. Center of position along the x axis (upper plot) and y axis (lower plot) measured 
with four load cells. 

 

Preliminary Heartbeat Interval Estimation 

Heartbeat Interval Estimation 

A peak detection algorithm described in [54], coupled with a template matching approach 

described in [113], were implemented in MATLAB and used to estimate the heart beat intervals 

(HBIs) from the acquired BCG. An example output from the HBI extraction script is depicted in 

Figure 5-3, where the blue trace is the correlation coefficient computed with a local sliding 
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window function and the green squares depict the local maxima that represent individual heart 

cycles. 

Ballistocardiogram and Electrocardiogram Data Collection 

Several minutes of data were recorded with a subject lying in a supine position on the 

bed. ECG data were collected (iWorx ECG module with an iWorx ETH-255 bioamplifier) in 

concert with data from four EMFi sensors. The Pan Tompkins algorithm [114] was used to find 

the ECG R peaks, and the method described in the previous section (with and without template 

matching) was used to locate BCG heart beats and estimate the HBIs. Figure 5-4 and Figure 5-5 

display the comparative results, where the HBI values more closely track the ECG RR intervals 

when template matching is used (r2 = 0.9890/0.0204 with/without template matching). 

 

 

Figure 5-3. Heartbeat interval estimation – BCG compared to ECG. 
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Figure 5-4. Bland-Altman plots comparing BCG HBI to ECG RRI without (top) and with 
(bottom) the use of template matching. 
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Figure 5-5. Estimated BCG heartbeat intervals compared to ECG R-to-R intervals with 
(bottom) and without (top) template matching. 
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Chapter 6 - Heartspring Three-Night Pilot Study and Follow-On 

Data Analyses 

This chapter presents data collected from a three-night pilot study performed at 

Heartspring. This was the first test of the system in the room of a child with severe disabilities 

and autism. The main goal of this short study was to determine if the system could operate and 

provide valid data in such an environment. A secondary goal was to see if all of the film and load 

cell sensors were necessary for the bed system to prove useful. I.e., are eight sensors redundant 

for monitoring the sleep of each child? The team learned almost immediately that these children 

sleep in a wide variety of positions and bed locations. Nonetheless, the system worked well and 

collected high quality data from the child. Early analyses indicated that the presence of the entire 

sensor set is useful, since the BCG with the highest signal-to-noise ratio can be collected from a 

different sensor for each of the three different sleeping positions that were analyzed. 

Overnight Data Collected at Heartspring 

The sensor-laden bed system was placed in one severely disabled autistic child’s 

residential apartment bedroom, and a team of Kansas State University (KSU) students collected 

data from the bed system overnight for three consecutive nights after receiving consent from the 

child’s parents.1 Over 30 hours of data were collected with each of the eight sensors (four EMFis 

and four load cells). Students on the KSU team also tracked the movement and position of the 

child in real time during each of the three nights via a wall-mounted baby monitor with a black 

and white camera (no video recordings were conducted during this pilot study in order to protect 

the privacy and dignity of the child). During each subsequent day, para-educators tallied a set of 

daytime behaviors for the child, which is standard practice for all children at the facility.  

As discussed in the previous chapter, the existence of four EMFi sensors hidden under 

the mattress and four load cells placed under the corners of the bed means the system is 

redundant in its ability to monitor BCGs. This redundancy is helpful and arguably necessary. 

E.g., when a subject lies in a supine position, their BCG is measurable with all sensors. However, 

                                                 
1 This research protocol and the accompanying informed consent documents were approved by the Kansas 

State University Institutional Review Board under protocol #7783. This protocol became active on June 26, 2015 

and has since been renewed annually. It is currently active through June 26, 2019. 
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the team learned that a child may rarely sleep in such a position, choosing instead to lay 

sideways, perhaps even at the end of the bed, so the sensors must exhibit broad coverage. 

Ballistocardiogram and Respiration Signal Separation 

Early BCGs acquired with EMFi sensors and load cells were digitally bandpass filtered in 

MATLAB over the frequency range of 1 to 25 Hz to reduce noise and to remove the respiration 

baseline. While a 1 Hz highpass cutoff frequency seems high compared to expected pulse rates, 

most of the BCG information is contained in the secondary signal harmonics at frequencies up to 

15 Hz [115]. The higher cutoff frequency helps to reduce the effects of respiration. 

Representative time-domain signals and frequency-domain spectra from a short data segment are 

depicted in Figure 6-1 and Figure 6-2. 

 

Figure 6-1. Twenty-second section of data acquired from film sensor 1 during night three: 
raw waveform (blue), extracted respiration signal (black), and extracted BCG (red). 
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Figure 6-2. Single-sided frequency spectra for the raw film signal (blue), the extracted 
respiration signal (black), and the extracted BCG (red). 

Sensor Comparison 

Simultaneous data collection with load cells and films allows for straightforward 

comparison of the respective signals. Approximately two minutes of BCG data were used for 

each comparison presented here, where three different subject positions (prone, supine, and left 

side) were identified when choosing data intervals. To clarify, the goal is to see how BCG 

morphology changes, depending on both the sensing method and the position of a film or a load 

cell relative to the body.  

BCG Cycle Separation and Ensemble Averaging 

Since ECG data time-aligned with these BCGs were unavailable (as in [116]), the BCG J 

peaks were first located using an adapted form of the algorithm presented by Brüser et al. in 

[69]. The implementation of the algorithm is outlined in Appendix A. Each individual BCG 

cycle was identified as starting 0.25 seconds to the left of the estimated J peak and ending 0.50 

seconds to the right of the same peak. These surrogate R peak locations will not cause 

consecutive BCG cycles to overlap given that a heartbeat interval was never shorter than 0.75 

seconds (heart rate of 80 beats per minute), which the team felt was reasonable for this subject 

|H
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while they were asleep. These single-cycle waveforms were then aligned based on J-peak 

locations, and an ensemble average was computed. The ensemble average was calculated and 

plotted to visualize how the BCG morphology changed for each sensor and position. Figure 6-4 

depicts an example ensemble average computed from the BCGs extracted from film sensor 0 

using 156 individual cycles.

 

Figure 6-3. Example BCG waveform illustrating how the individual BCG cycles were 
segmented. 

 

Figure 6-4. 156 Individual cycles (grey) and ensemble average (green) for film sensor 2. 
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Sample Correlation Coefficient Signal-To-Noise Ratio 

After determining the individual BCG cycles, the signal-to-noise ratio (SNR) was 

estimated using the sample correlation coefficient [117]. The sample correlation coefficient, r, 

was computed for each adjacent pair of BCG cycles, 𝑥 , 𝑥 , 𝑥 , 𝑥 , … 𝑥 , 𝑥 , where M 

is the total number of individual cycles (number of heartbeats), from a given sensor as 

 𝑟
∑

∑  ∑
,    𝑚 1, … ,  (20) 

where N = 188 is the length of a given cycle for this study (0.75 seconds at a sampling rate of 

250 Hz). Note that each pair of BCG cycles is used to compute one sample correlation 

coefficient. The estimated SNR is then calculated as 

 𝑆𝑁𝑅 𝐴 ∗ 𝐵 (20) 

 

 The constants A and B are defined in [117] and computed as 

 𝐴 exp  (21) 

and 

 𝐵  0.5 ∗ 1 𝐴         (22) 

The mean sample correlation coefficient SNR was computed using two minutes of data for each 

sensor and position (see Table 6-1). Comments regarding these data are included at the end of 

this section.  
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Table 6-1. Mean sample correlation coefficient signal-to-noise ratio comparison between 

BCG segments acquired with different sensors given different subject sleeping positions. 

Sensor Prone (position 1) Supine (position 2) Left Side (position 3) 

Film 0 14.4 1.8 7.7 

Film 1 7.4 1.9 4.5 

Film 2 1.8 1.4 2.4 

Film 3 4.2 4.3 5.0 

Load Cell 0 1.3 3.1 2.1 

Load Cell 1 3.2 6.5 19.9 

Load Cell 2 7.3 3.6 5.5 

Load Cell 3 NA 6.1 28.3 

 

During the first night of this three-night test, the baby monitor feed indicated that the subject laid 

close to the head of the bed in a nearly prone position – the first position analyzed. During the 

third night, the subject stayed on the lower quarter near the foot of the bed for the entire night, 

transitioning back and forth multiple times between a supine-like position (second analyzed 

position) and their left side (third analyzed position). The ensemble averages for the film BCGs 

acquired at the various sensor locations are depicted in Figure 6-5, where the four films are 

numbered relative to the top (head) of the bed. Load cells LC0 through LC3 are numbered 

counter-clockwise around the bed corners. Each illustrated ensemble average was computed 

using the same BCG cycles that were used to compute the mean sample correlation coefficients. 

Comments regarding these data are included at the end of this section. 
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Figure 6-5. BCG ensemble averages and approximate sensor locations (not to scale). Each 
ensemble average has a duration of 0.75 seconds. 

Daytime Behaviors 

Heartspring day school classrooms are tailored to the needs of the children, who lack 

communication and social interaction skills. The Heartspring staff systematically track specific 

behaviors for each child to better understand and quantify the effects of intervention strategies 

(e.g., therapies and medications), where the most common behaviors are aggression, self-

injurious behavior, and property destruction [118]. Daytime behaviors tracked for the child who 

participated in this short three-day study are noted in Table 6-2, where each day followed a 

nighttime data collection period. 

Preliminary Sleep Quality Estimates 

In [52], two motion-detection algorithms geared toward classifying restlessness as a 

surrogate sleep quality indicator are presented. The first technique involves a frame-by-frame 

Neyman-Pearson detection test based on the time-domain signal variance. For the second 

approach, a sequential detection test uses a fitted Gaussian distribution on the BCG data, where 

the parameters (mean and variance) are used in the decision process. In each approach, 

assessments of “clean” and “motion-corrupted” one-second BCG data frames are formulated 
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based on training data, where a binary hypothesis test determines if a given data frame is clean or 

motion-corrupted. Any continued movements longer than one minute are then classified as 

“restlessness,” and all other periods are classified as “sleep.” This makes it possible to estimate 

sleep quality based on a subject’s sleep-restlessness states for each night. Sleep quality estimates 

derived using the sequential detection algorithm are listed in Table 6-2. 

Table 6-2. Number of recorded daytime behaviors and estimated sleep quality from each 

prior night. 

Day AGG PDE SIB Total Estimated Sleep Quality 

1 1 0 4 5 73% 

2 0 0 4 4 69% 

3 0 2 7 9 82% 

AGG = Aggression; PDE = Property destruction; SIB = Self injurious behavior 

 Discussion and Lessons Learned 

During the first night of data collection, the team noticed that the floor in the subject’s room was 

not level. Also, the subject slept on the upper portion of their bed for most of the night, shifting 

from their left side to a supine-like position several times throughout the night. Coupled with the 

non-level-floor issue, the movement of the upper left corner of the bed caused load cell 3 to yield 

an intermittent signal, so the team was unable to calculate its SNR estimate or ensemble average 

for the first sleeping position. Thus, load cell 3 results for the first position are not included in 

Table 6-1. The bed was adjusted to improve contact between load cell 3 and the floor for the 

second and third nights.  

When considering the SNR estimate values in Table 6-1, neither sensing modality proved 

consistently superior. The “best” signal was heavily dependent on the subject’s position. When 

the subject lay in a more prone position, film sensor 0 had the highest SNR. When the subject 

was positioned on their left side, load cell 3 had the highest SNR. It is also interesting to note 

that the ensemble averages varied for each sensor and position, which is reasonable considering 

the coupling between the body and each sensor is different. Table 6-2 provides only preliminary 

sleep quality estimates based on sleep-wake state classifications, like wrist-worn actigraphy 

systems. Given only three nights worth of data, it is difficult to draw conclusions or parallels 

between the recorded daytime behaviors and the sleep quality estimates. Nonetheless, the pilot 
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study demonstrates that the system is capable of unobtrusively monitoring physiological and 

activity parameters indicative of sleep quality for a disabled autistic child. 
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Chapter 7 - A Ballistocardiogram Signal Quality Index 

The BCG can be a difficult signal to process and extract information from depending on 

the instrumentation device and the characteristics of the measurement setup, i.e., how the forces 

of the heart are coupled to the sensor. Accurately pinpointing heartbeat occurrences in a BCG 

can be a problematic task if the waveform becomes altered due to motion, other artifact-inducing 

phenomena, or due to the measurement system. Thus, an ECG is often gathered synchronously 

with a BCG. ECG R-to-R intervals (RRIs) typically serve as the gold standard for heartbeat 

intervals (HBIs) estimated with  BCG analysis algorithms [119]. ECGs offer additional benefits, 

including R-peaks that can act as separation points to determine individual BCG cycles [55]. 

Further, timing parameters can be extracted when both waveforms are collected together (e.g. R-

J, R-I, R-K, etc.) – parameters which have been linked to hemodynamic features [120], [121].  

In some circumstances, however, it is infeasible to collect ECG and BCG data 

simultaneously, such as when monitoring the sleep of children with severe disabilities and low-

functioning autism, as noted in earlier chapters [70], or in situations that involve long-term 

physiological monitoring [122]. Wearing the required ECG electrodes often and for extended 

periods is not sensible. In these types of situations, an approach is desired to quantify BCG 

quality independent of ECG availability. For example, investigators have found that posture and 

BCG instrumentation affect signal morphology [88], [89], but in such cases the need still remains 

to estimate cardiopulmonary parameters based on BCG morphology and to understand the 

quality of those estimates (e.g., heartbeat intervals).  

Thus, is it possible to gage the quality of BCG-based heartbeat interval estimates in terms 

of error, false alarm rate, or false negative rate without access to corresponding ECG data? This 

chapter seeks to address this question by investigating the relationship between a proposed BCG 

signal quality index and the aforementioned performance metrics. 

 Modified Signal Quality Index Definition 

In [55], a signal quality index (SQI) is presented to determine the quality of a BCG 

acquired with a weighing scale. In that study, ECG R waves are used to partition individual BCG 

cycles. For the modified approach proposed here, each individual BCG cycle is centered on an 

estimated J-peak location, where J-peak locations are determined by the detection and interval 

estimation algorithm proposed by Brüser [69]. Figure 7-1 contains an illustration depicting the 

proposed method. Once the BCG J-peaks are estimated, each individual cycle is defined as a 
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one-second segment of data centered on a J-peak. All individual cycles during a one-minute 

analysis window are used to create an ensemble average or parent template. Then, a correlation 

coefficient is calculated between each individual cycle and the parent template. The mSQI is 

computed as the average of the correlation coefficients for the one-minute window. This 

parameter is similar to the SNR metric in Chapter 6, but the mSQI bounds are [0, 1], making it 

(a) simpler to compare mSQI values computed for different BCGs gathered from different 

sensors with different circuit gains at different time periods and (b) sensible to map a linear 

relationship to this performance metric. 

 

Figure 7-1. Generating an ensemble average from individual ballistocardiogram cycles. 

 Performance Metrics 

To gage the sensibility of the BCG intervals used to determine the mSQI, a sum-squared 

error (SSE) metric is computed between the N J-peak times and their corresponding ECG R 

times as identified using the Pan-Tompkins algorithm [114]: 

 𝑆𝑆𝐸 ∑ 𝑇 𝑇  (23) 
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where 𝑇  and Ti represent the times associated with the ith J peak and the ith R peak, respectively. 

For determining which estimated BCG J peak to use with 𝑇  in equation 23, consider the time 

window between the ith and (i+1)th ECG R peaks (Ti to Ti+1). Within this window, the BCG J 

peak associated with 𝑇  is the closest estimated peak to Ti where 𝑇  > Ti (the initial electrical 

activity of the ventricular contraction must precede the corresponding BCG J peak). Any 

additional peaks within the window are considered “false alarms”, and if no estimate exists, a 

false negative (miss) is tallied. The false alarm rate (FAR) and false negative rate (FNR) are 

computed as the total number of false alarms or total number of misses, respectively, divided by 

the total collection time.  

 Linear Models 

Two linear models were considered to map the mSQI to the performance metrics. The 

linear model fits were computed using MATLAB. For the first linear model (equation 24), all 

performance metrics (SSE, FAR, and FNR), were considered. For the second linear model 

(equation 25), only the FAR was considered. The adjusted R-squared and the root mean square 

error were computed for both models considered – equations 24 and 25 below: 

 𝑚𝑆𝑄𝐼 𝑥 𝑥 𝑆𝑆𝐸 𝑥 𝐹𝐴𝑅 𝑥 𝐹𝑁𝑅 𝜖 (24) 

 𝑚𝑆𝑄𝐼 𝑥 𝑥 𝐹𝐴𝑅 𝜖 (25) 

 Data Collection 

Film- and load-cell-based BCG data were collected from 27 subjects – twelve male 

(weight = 79.9 ± 18.6 kg, height = 175.7 ± 3.6 cm, and age = 32.8 ± 8.8 yrs. (mean ± standard 

deviation)) and fifteen female (weight = 67.5 ± 11.2 kg, height = 168.7 ± 10.3 cm, and age = 

47.2 ± 18.2 yrs.) under Kansas State University Institution Review Board (IRB) protocol No. 

9386. After providing consent, each subject was asked to lie on their back in a supine position on 

the bed system for approximately five to ten minutes. 

 Results 

The coefficients for the above equations were determined using 1,208 estimates (151 

one-minute segments of data from eight sensors) from 27 subjects whose demographics are 

explained in the next section. See Table 7-1 and Table 7-2 for the coefficients and the associated 

fitting parameters. 
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Table 7-1. Parameter estimates for equation 24. 

Parameter Value 

𝑥  0.88 

𝑥  -0.34 

𝑥  -0.43 

𝑥  -0.21 

RMSE 0.08 

Adjusted R2 0.64 

Model p-value p < 0.001 

 

Table 7-2. Parameter estimates for equation 25. 

Parameter Value 

𝑥  0.88 

𝑥  -0.45 

RMSE 0.09 

Adjusted R2 0.61 

Model p-value p < 0.001 

 

The relationship between the mSQI and the FAR parameters becomes more apparent when 

examining a scatter plot of the two parameters (see Figure 7-2). For the 1,208 estimates, the 

correlation coefficient between the two was -0.78. The negative result and the negative 

coefficient, 𝑥 , verify that the mSQI is inversely proportional to the FAR. 
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Figure 7-2. Scatter plot indicating the inverse relationship between the mSQI and the false 
alarm rate (FAR). 

 

Figure 7-3. Representative ballistocardiograms acquired from all eight sensors. The 
accompanying mSQI values are in Table 7-3. 
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Table 7-3. mSQI for each BCG plotted in Figure 7-3. 

Signal Modified SQI 
Film 0 0.87 
Film 1 0.67 
Film 2 0.41 
Film 3 0.90 
LC 0 0.68 
LC 1 0.97 
LC 2 0.58 
LC 3 0.64 

Discussion 

The work presented in this chapter quantifies the quality of clean BCG data for the 

purpose of estimating HBIs. In earlier work published by our group, a model was presented to 

classify BCG data as noisy or clean [123]. The work presented here seeks to further quantify the 

suitability of BCG data for the purpose of extracting HBI estimates. 

This study was limited in that only one BCG HBI estimation algorithm was used. If 

alternative HBI estimates are available, the corresponding BCG mSQIs can be computed. 

Further, data were only collected from subjects that laid in one position on the mattress (supine). 

However, the bed system used to collect these BCGs consists of two sensing technologies, and 

the sensors are spread out throughout the bed, meaning that this approach did analyze BCGs of 

varying morphology due to the presence of different sensing technologies that reside at a variety 

of sensor locations relative to the subject. 
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Chapter 8 - Robust Heartbeat Interval Estimation 

As discussed in the last chapter, a challenge with ballistocardiography is the extraction of 

heartbeat intervals (HBIs). Estimating HBIs from bed-based BCGs has been the focus of several 

research groups [54], [113], [124]–[126], some of whom have demonstrated that their methods 

for extracting HBIs are accurate when those HBIs are compared to gold-standard ECG R-R 

intervals.  

The redundancy built into the multi-sensor KSU system appears to give it a natural 

advantage over single-sensor systems in terms of the potential accuracy of the resulting HBI 

estimates. However, determining which sensor signal to use for HBI estimates is not a 

straightforward process. Chapter 6 confirmed that subject position and sensor location are factors 

that affect which sensor will ultimately provide the “best” signal in terms of a signal-to-noise 

metric. Fusion methods that combine multi-sensor, bed-based data have demonstrated better 

accuracy when estimating HBIs compared to methods that employ data from only one sensor in 

such a system [53], [67]. 

The KSU system differs from previous systems that utilized fusion approaches in that it 

collects BCG signals from more than one type of sensor: electromechanical films (EMFis) and 

load cells. Furthermore, the distance between a given sensor and the chest of the subject can be 

far greater because the sensors cover a large percentage of the mattress surface area and also 

reside under the corners of the bed posts: the team wanted to ensure that BCGs could be detected 

regardless of where a child slept on the bed. Given the availability of both EMFis and load cells, 

one of the questions of interest was, “Does the fusion technique always provide better accuracy 

compared to a single sensor?” If not, then the mSQI method discussed in the previous chapter 

could be used in selecting the “best” sensor signal for estimating HBIs.  

Another characteristic that is often overlooked in bed-based systems is the “bed filtering 

effect.” When examining BCG time-domain characteristics, it is quite clear that the bed system 

itself filters BCG data and causes resonance to occur in the range of 3 to 5 Hz – see Figure 8-1. 

These effects make it difficult for algorithms to estimate HBIs due to the multiple prominent 

peaks for most of the BCG cycles (see Figure 8-2). When dealing with bed-based systems, one 

could model the body and mattress as a spring-mass system, which is driven by the forcing 

function of each heartbeat, similar to the models outlined in Chapter 2. Therefore, a 
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deconvolution or “bed effect removal” preprocessing step is a sensible goal toward improving 

the accuracy of the HBI estimation technique. 

 

Figure 8-1. Comparison of single-sided frequency spectra: 30 seconds of standing BCG data 
(red) and bed-based BCG data (blue). 

 

 

Figure 8-2. Multiple BCG and ECG cycles. The BCG J-peaks are not easy to visually 
distinguish from the secondary waves. 
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 Study Approach 

BCG data were collected from five subjects (three male and two female; ages 31 ± 4 

years; weights 70.8 ± 3.8 kg; heights 166.4 ± 6.0 cm). Two types of mattresses were employed: 

one plush mattress that induces obvious resonant, BCG-filtering effects, and one firm mattress 

that induces minimal filtering. All five subjects are part of the KSU research team and have no 

known cardiovascular health issues. The short study was conducted at the Kansas State 

University Lafene Health Center, Manhattan, Kansas. Data were collected from each subject, 

who laid in five different positions on each mattress: 

1. supine, with their head close to the top of the mattress, 

2. on their right side, 

3. on their left side, 

4. prone, and 

5. supine, with their head toward the bottom of the mattress. 

For each position, a subject laid still to minimize motion artifacts. The signal quality metric 

outlined in the previous chapter was used to select the best sensor signal to estimate HBIs. To 

compare the four different HBI estimation approaches illustrated in Figure 8-3, the sum-squared 

error (SSE), false alarm rate (FAR), and false negative rate (FNR) were calculated for the 

estimated HBIs given the gold-standard ECG R-R intervals.  

 In addition to comparing all four methods using data from the entire sensor set, a 

secondary comparison was made using only the HBIs determined from EMFi sensor 1 BCGs, 

with and without a deconvolution filter (refer to the next section for deconvolution algorithm 

details). Figure 8-3 presents another diagram of the bed system that illustrates the sensor 

locations. Often, systems only utilize one film sensor placed under the torso (e.g., EMFit QS [18] 

and Beddit Sleep Monitor [19]), so one goal was to determine if an inverse filter (a 

deconvolution filter) provides improved performance at this location. 
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Figure 8-3 Sensor locations (top) and four different approaches for estimating heartbeat 
intervals (bottom). 

 Deconvolution Process Using an Inverse Filter 

 Overall Signal Preprocessing Process 

No additional software filtering was applied to these BCG data before they were saved to 

files. During the post-processing phase, the signals were bandpass filtered in MATLAB using a 

sixth-order Butterworth filter with a passband of 1.0 to 10 Hz. The deconvolution (‘inverse’) 

filtering method described in the following section was then applied to the EMFi and load cell 

data – see HBI estimation methods 3 and 4 in Figure 8-3. 
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 Deconvolution Approach 

The following algorithm was used to apply an inverse filter: 

1. Find the coefficients for an inverse filter that will apply linear predictive coding 

(LPC) on a window of BCG data (100 seconds for this study) that have already been 

bandpass filtered. 

2. Apply the inverse filter, followed by a lowpass filter with a cutoff frequency of 10 

Hz. 

The MATLAB function, LPC(), was used to find the inverse filter coefficients. Three weights 

appeared sufficient for the inverse filter to remove the bed’s filtering effect – this determination 

is discussed further in the Results section. A brief description of LPC is provided in the 

following section. 

 Linear Predictive Coding 

The following provides a brief summary of linear predictive coding and how the method was 

utilized for this study. For further details, see [127]. If the force signal, 𝑢 𝑡 , generated by the 

heart is assumed to be stationary, and the oscillation distortion is modeled as a shaping filter, 

ℎ 𝑡 , then the bed output signal can be formulated as 

 𝑆 𝑧 𝑈 𝑧 𝐻 𝑧  (26) 

where 𝑆 𝑧  is the z-transformed version of the observed signal, 𝑠 𝑡 . LPC can be used to 

estimate the coefficients of the filter, 𝐻 𝑧  where the ^ symbol indicates estimation: 

 𝐻 𝑧 𝐺  (27) 

An all-pole model is assumed for this problem (see Figure 8-4). Thus, the inverse filter, with 𝑝 

being the number of poles, can be written as 

 

 𝐴 𝑧 1 𝑎 𝑧  (28) 

The output error signal can then be written as 

 𝑒 𝑛 𝑠 𝑛 ∑ 𝑎 𝑠 𝑛 𝑘  (29) 
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where n is an integer and represents a periodically sampled time domain signal, i.e., s(t) sampled 

every T seconds results in s(n) = s(nT). The above equation is solved to determine the weights, 

𝑎 , using a least-squares method to minimize the mean error signal [127]. An example BCG 

waveform with and without the inverse filter applied is illustrated in Figure 8-5. 

 

 

Figure 8-4. All-pole model (adapted from [127]) with representative BCG signals before 
(blue) and after the applying the inverse filter (red). 

 

 Heartbeat Interval Estimation and Fusion Technique 

The heartbeat interval estimation technique proposed by Brüser in [69] was used for this 

study. In a previous study [119], the KSU team implemented and compared multiple BCG HBI 

and peak-detection algorithms, finding the robust single sensor HBI algorithm outlined by Brüser 

to work best for the bed system. For the fusion approach, the multichannel continuous interval 

estimation algorithm, referred to as xCLIE, proposed by Brüser in [53] was used. A description 

of the heartbeat interval estimation techniques is provided in Appendix A. 



77 

 

 

Figure 8-5. Top: BCG acquired from Film sensor 0 for subject A (blue) and corrected film 0 
BCG (black), along with the estimated heartbeat locations identified via the algorithm 
described in the Heartbeat Interval Estimation and Fusion Technique section. Bottom: 
corresponding frequency spectra computed on two-minutes of data. 
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Quantifying the Performance 

To compare the accuracy of each approach’s estimated HBIs, the sum-squared error 

(SSE) was computed between the corresponding estimated heartbeat interval times, 𝑇 , and the 

ECG R-R interval times, 𝑇 , in the same way as outlined in Chapter 7. Also computed were the 

false alarm rate (FAR) as the total number of false alarms divided by the total collection interval 

time and the false negative rate (FNR) as the total number of misses divided by the same total 

interval time. The HBI estimates were determined by finding estimated J-peak locations that 

occurred after the corresponding ECG R peaks. If no estimated J peak exists between two R-peak 

locations, that heart beat cycle is considered a “miss.” If multiple estimated peaks exist between 

two R-peak locations, the J peak closest to the corresponding R peak is considered a “hit” and 

any additional peaks are considered “false alarms”. 

Paired t-tests [128] were performed on log-transformed SSE, FAR, and FNR metrics to 

reduce the abnormality of the distributions. A one-sample Kolmogorov-Smirnov (KS) test [129] 

was conducted to test the normality of the log-transformed metrics. All testing was performed at 

the five percent significance level. Both tests were performed using MATLAB. 

Results 

Inverse Filter Weights 

Three different inverse filter lengths, i.e., number of weights = p from equation 28, were 

considered: 2, 3, and 5. The bias and limits of agreement are tallied in Table 8-1. Boxplots for 

each performance metric are depicted in Figure 8-6. The paired t-test results are included in 

Table 8-2. Considering the boxplots in Figure 8-6, all of the distributions are quite similar. 

However, the inverse filter with three weights has the tightest limits of agreement. Thus, three 

weights are used for the rest of the analyses presented in this chapter. 
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Table 8-1. Bias and limits of agreement for three different inverse filter lengths. 

Number of 

Weights 
Bias 1st Percentile 99th Percentile (P99-P1) 

2 -9.6 ms -651 ms 448 ms 1099 ms 

3 15.8 ms -98 ms 484 ms 582 ms 

5 52.6 ms -412 ms 526 ms 938 ms 

 

Table 8-2. Mean (stdev) and paired t-test p values for three different filter lengths. SSE and 
FAR data were log-transformed for each metric. 

Number of Weights SSE FAR FNR 

2 0.029 (0.024) 0.238 (0.225) 0.051 (0.080) 

3 0.028 (0.023) 0.249 (0.223) 0.046 (0.069) 

5 0.027 (0.021) 0.246 (0.213) 0.041 (0.068) 

t-test p values 

2 vs 3 0.89 0.19 NA 

5 vs 3 0.37 0.82 NA 

Note that the KS test did reject the hypothesis that the log of FNR for method 3 with 3 weights 

came from a normal distribution – the p value was 0.006. 
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Figure 8-6. Boxplots of SSE, FAR, and FNR for inverse filters with the number of weights 
being 2, 3, and 5. 
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Results for Each Method 

The average heartbeat interval and BCG signal quality index (see Chapter 7) for each 

subject/mattress combination is listed in Table 8-3. Note that the highest mean HBI was 1.12 

seconds, or 53.6 beats per minute, and the lowest mean HBI was 0.74 seconds, or 81.1 beats per 

minute, so each method was tested over a reasonably broad range of heart rates. The average 

BCG signal quality index for each position is provided in Table 8-4.The performance metrics, 

bias, limits of agreement, and p values were computed for each of the four methods (see Table 

8-5 and Table 8-6), where three weights were used for the deconvolution filter. The paired t-test 

results are included in Table 8-6. Bland-Altman plots can be seen in Figure 8-7 (Methods 1 and 

2) and Figure 8-8 (Methods 3 and 4). The corresponding box plot are illustrated in Figure 8-9. 

 

Table 8-3. Mean (stdev) heartbeat-interval durations (seconds) and mean (stdev) signal 
quality index for each subject and mattress. The average was calculated for all five laying 
positions. 

Subject - Mattress 
Mean (stdev) 

heartbeat interval 

Mean (stdev)  

signal quality index 

A – 1  1.05 (0.09) 0.876 (0.051) 

A – 2 1.12 (0.10) 0.895 (0.048) 

B – 1   0.94 (0.046) 0.856 (0.109) 

B – 2  0.98 (0.66) 0.779 (0.081) 

C – 1  1.01 (0.063) 0.872 (0.066) 

C – 2  1.00 (0.063) 0.838 (0.054) 

D – 1  0.74 (0.063) 0.808 (0.062) 

D – 2  0.76 (0.073) 0.742 (0.100) 

E – 1  0.90 (0.043) 0.805 (0.082) 

E – 2  0.96 (0.043) 0.818 (0.143) 

Mattress 1 – plush; Mattress 2 – firm 
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Table 8-4. Mean (stdev) BCG signal quality indexes for each position. 

Position Mean (stdev) Signal Quality Index 

1 0.858 (0.070) 

2 0.714 (0.101) 

3 0.865 (0.043) 

4 0.862 (0.074) 

5 0.881 (0.087) 

 

Table 8-5. Bias and limits of agreement. 

Method Bias 1st Percentile 99th Percentile (P99-P1) 

1 6.4 ms -209 ms 427 ms 636 ms 

2 -5.6 ms -783 ms 398 ms 1181 ms 

3 15.8 ms -98 ms 484 ms 582 ms 

4 0.3 ms -155 ms 261 ms 416 ms 

 

Table 8-6. Paired t-test p values for each method. SSE, FAR and FNR data were log-
transformed for each metric. 

Method SSE FAR FNR 

1 0.034 (0.029) 0.212 (0.177) 0.052 (0.073) 

2 0.038 (0.047) 0.508 (0.216) 0.081 (0.085) 

3 0.028 (0.023) 0.249 (0.223) 0.046 (0.069) 

4 0.028 (0.035) 0.430 (0.199) 0.067 (0.082) 

t-test p values 

1 vs 2 0.35 < 0.001 < 0.001 

3 vs 2 0.75 < 0.001 NA 

4 vs 2 < 0.001 < 0.05 < 0.05 

3 vs 1 0.22 0.40 NA 

3 vs 4  < 0.05 < 0.001 NA 

Note that the KS test did reject the hypothesis that the log of FNR for method 3 came from a 

normal distribution – the p value was 0.006. 



83 

In terms of the limits of agreement, method 4 (deconvolution filter plus fusion) had the 

tightest bounds. However, both fusion methods had a much higher false alarm rate compared to 

the single-sensor HBI estimation methods. Given that (a) methods 3 and 4 had similar SSEs, (b) 

method 3 had only a slightly higher FAR compared to method 1 (not a significant difference), 

and (c) method 3 had the lowest average FNR, method 3 can be considered the best option. 

However, there is the tradeoff of a larger bias and wider limits of agreement compared to method 

4. 

 

 

Figure 8-7. Bias and limits of agreement for HBI estimation methods 1 and 2 considering 
both mattresses. Different colors represent the five positions analyzed.  Red = position 1, 
green = position 2, blue = position 3, black = position 4, and magenta = position 5. 
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Figure 8-8. Bias and limits of agreement for HBI estimation methods 3 and 4 considering 
both mattresses. Different colors represent the five positions analyzed.  Red = position 1, 
green = position 2, blue = position 3, black = position 4, and magenta = position 5. 
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Figure 8-9. Boxplots of SSE, FAR, and FNR for each method. 
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Results for Each Mattress – Mattress 1 (Plush) 

This section provides analysis results for the plush mattress. The bias, limits of 

agreement, mean (stdev), and t-test results for the performance metrics are provided in Table 8-7 

and Table 8-8. Corresponding box plots are illustrated in Figure 8-10.   

Table 8-7. Bias and limits of agreement for the plush mattress. 

Method Bias 1st Percentile 99th Percentile (P99-P1) 

1 -5.2 ms -619 ms 455 ms 1074 ms 

2 -24.1 ms -611 ms 406 ms 1017 ms 

3 -0.92 ms -580 ms 380 ms 960 ms 

4 3.3 ms -555 ms 438 ms 993 ms 

 

Table 8-8. Mean (stdev) and paired t-test p values for the plush mattress analysis. SSE, FAR, 
and FNR data were log-transformed. 

Method SSE FAR FNR 

1 0.039 (0.034) 0.241 (0.184) 0.060 (0.085) 

2 0.040 (0.045) 0.614 (0.184) 0.108 (0.094) 

3 0.027 (0.022) 0.242 (0.198) 0.052 (0.079) 

4 0.031 (0.044) 0.470 (0.164) 0.084 (0.091) 

t-test p values 

1 vs 2 0.43 < 0.001 < 0.001 

3 vs 2 0.55 < 0.001 < 0.001 

4 vs 2 < 0.001 < 0.001 < 0.05 

3 vs 1 0.10 0.90 0.24 

3 vs 4 0.13 < 0.001 < 0.001 
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Figure 8-10. Boxplots of SSE, FAR, and FNR considering only mattress 1 (plush). 
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Results for Each Mattress – Mattress 2 (Firm) 

This section provides analysis results for the firm mattress. The bias, limits of agreement, 

mean (stdev), and t-test results for the performance metrics are provided in Table 8-9 and Table 

8-10. Corresponding box plots are illustrated in Figure 8-11. 

Table 8-9. Bias and limits of agreement for the firm mattress. 

Method Bias 1st Percentile 99th Percentile (P99-P1) 

1 1.0 ms -502 ms 427 ms 929 ms 

2 -12.4 ms -783 ms 399 ms 1182 ms 

3 9.5 ms -296 ms 484 ms 780 ms 

4 5.4 ms -155 ms 381 ms 536 ms 

 

Table 8-10. Mean (stdev) and paired t-test p values for the firm mattress analysis. SSE, FAR, 
and FNR data were log-transformed. 

Method SSE FAR FNR 

1 0.029 (0.024) 0.183 (0.169) 0.044 (0.059) 

2 0.037 (0.050) 0.403 (0.196) 0.055 (0.066) 

3 0.029 (0.024) 0.256 (0.250) 0.039 (0.059) 

4 0.025 (0.022) 0.389 (0.225) 0.050 (0.069) 

t-test p values 

1 vs 2 0.63 < 0.001 0.10 

3 vs 2 0.87 < 0.001 < 0.05 

4 vs 2 0.11 0.45 0.42 

3 vs 1 0.88 0.31 0.07 

3 vs 4 0.12 < 0.05 < 0.05 
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Figure 8-11. Boxplots of SSE, FAR, and FNR considering only mattress 2 (firm). 
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Results Only Considering EMFi 1 

For this comparison, only HBIs from EMFi sensor 1 and the first four positions were 

considered for analysis since EMFi sensor 1 was located approximately under each subject’s 

mid-section for these trials (for position 5, their head was closer to the foot of the bed). The bias, 

limits of agreement and performance metrics are listed in Table 8-11 and Table 8-12. 

Table 8-11. Bias and limits of agreement. 

Method Bias 1st Percentile 99th Percentile (P99-P1) 

1 12.7 ms -658 ms 554 ms 1212 ms 

3 63 ms -636 ms 484 ms 1120 ms 

 

Table 8-12. Mean (stdev) and paired t-test p values for both methods. SSE, FAR, and FNR 
data were log-transformed. 

Method SSE FAR FNR 

1 0.071 (0.047) 0.519 (0.266) 0.082 (0.092) 

3 0.060 (0.045) 0.510(0.291) 0.063(0.087) 

t-test p values 

3 vs 1 < 0.05 0.34 < 0.05 

 

The addition of the inverse filter slightly improved the limits of agreement but did 

increase the bias. In terms of the performance metrics, the inverse filter substantially improved 

the SSE without significantly influencing the FAR or FNR. Boxplots for each metric are 

provided in Figure 8-12.  
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Figure 8-12. Boxplots of SSE, FAR, and FNR for method 1 and 3 considering only the first 
four positions and EMFi sensor 1. 
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The findings presented in this chapter confirm that the multi-sensor bed-based system can 

accurately estimate HBIs regardless of sleeping position and mattress type. Further, an inverse-

filter preprocessing step improves the performance of already proven, robust HBI estimation 

techniques.  Therefore, this inverse-filtering step could be used as a preprocessing step for other 

BCG HBI or peak-detection algorithms to improve performance, especially for a single sensor 

system that utilizes a sensor placed under the torso. 

Some study limitations existed. First, the number of subjects was low – only five. However, 

by asking each subject to lie in different positions and by using two different mattresses, the team 

was able to gather 50 data points for each performance metric (5 subjects x 5 positions x 2 

mattresses). Another limitation was the consideration of only healthy individuals. Future studies 

will investigate how different heart conditions (e.g., arrhythmias) affect the performance of the 

various algorithms.   
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Chapter 9 - Heartspring Six-Month Study 

After verifying that the system can successfully operate in the room of a child with low-

functioning autism, and thus help to quantify their sleep, a longer study was needed. First, these 

data were required to better understand the relationship linking sleep quality to daytime 

performance/behaviors. Second, a longer study would test the feasibility of the system to operate 

for weeks to months without the presence of KSU staff on-site at Heartspring, allowing the team 

to vet the methods employed for remote access and storage. Two bed systems were developed: 

the original system that utilized a “captain’s bed” design (the traditional wood panel bed design 

used with Heartspring children), and another system that utilized an Endurance Bed 2.0, since an 

Endurance bed was used by a second child participating in the study. The Endurance bed design, 

a much heavier-duty plastic form factor, is the design to which Heartspring residential staff are 

migrating because it is more robust, harder for a child to move, and less susceptible to bed-

wetting damage. The team sought to minimize the number of changes and disturbances made to 

each child’s environment to minimize any influence on the quality of their sleep. 

In summary, these two male children with severe disabilities and low-functioning autism 

had their standard beds at the Heartspring campus replaced with KSU custom bed-based 

systems: one captain’s bed and one Endurance bed. Nighttime physiological data and daytime 

behavioral data were collected under KSU IRB protocol #7783. Both systems were put in place 

March 20, 2018 and remained in these boys’ rooms until the beginning of September 2018, at 

which point the Endurance bed system was removed. The remaining captain’s bed system 

continued to operate until the middle of October 2018. In total, over 200 nights of data were 

collected for bed system 1 and over 150 nights of data were collected for bed system 2.   

Each bed system was configured to collect data between 7:00 p.m. and 9:00 a.m. to 

increase the likelihood that the system would capture bed entrance and bed exit events. Each 

child generally went to bed around 8:00 p.m. and awoke the next morning anywhere between 

7:00 and 8:00 a.m. This fourteen-hour timeframe typically generated 168 8 MB LabVIEW 

measurement files (LVMs) per night. The LVM file structure is illustrated in Appendix C. Low-

resolution thermal camera images were acquired every 1-2 seconds during the same fourteen-

hour period, where each image is 5 kB (60 by 80 pixels). Considering all of the bed system and 
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thermal camera data, approximately 1.5 GB of data were collected per bed per night, for a total 

of 576 GB of data over the full six-month study. 

 Signal Preprocessing 

All signal processing and analysis is performed in MATLAB. A sixth-order Butterworth 

bandpass filter with a 1 to 10 Hz passband is applied to these BCG data to accentuate the BCG 

signal components and attenuate the respiration and noise components. Prior to the bandpass 

filter, a simple lowpass filter with a 0.3 Hz cutoff is used to extract the respiratory component. A 

visual example of this BCG signal preprocessing is illustrated in Figure 9-1. 

 

Figure 9-1. Signal preprocessing example – separation of the respiration and BCG 
components given the composite recorded waveform. 

 Overnight Analysis 

Seven consecutive nights of data for each bed system are selected for overnight analyses 

as a means to illustrate the processing performed on these data sets. The nights of June 7th-8th 

through June 13th-14th are chosen for bed system 1, while Aug. 9th-10th through Aug. 15th-16th are 

chosen for bed system 2. For these time periods, each night within the respective time window 

offers a full set of data from both the bed system and the thermal camera. BCG signal quality 

indexes, heartbeat intervals, and respiration rates are estimated from BCG signals acquired 
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between 8:00 p.m. and 7:00 a.m. the next morning. Other than limiting the time window from 

8:00 p.m. to 7:00 a.m. the next day, no additional data were removed from these analyses (e.g., 

data corrupted by motion). First, two representative short, raw waveforms (one film BCG and 

one load cell BCG) acquired with bed system 1 and corresponding thermal images are contained 

in Figure 9-2. Heartbeat occurrences and respiration cycles are clearly visible, along with the 

beginning of a motion-artifact-corrupted segment that is confirmed in the thermal images. The 

child moves from laying down, close to supine, to slightly sitting up, looking over the side of the 

bed. 

 

Figure 9-2. Representative data from bed system 1: BCG/respiration composite data from 
film 2 and load cell 2 (left) and corresponding thermal imagery (color inverted) (right). 

In addition to the week-long datasets, two nights of representative data are selected for 

COP analysis – the night of June 7th-8th and August 10th-11th for bed system 1. COP estimates are 

computed for each LVM file, where approximately 168 LVM files are generated per night. These 

data are displayed in Figure 9-3 for two nights, where the child using bed system 1 stayed more 

towards the center of the bed for the night of August 10th-11th but was closer to the top for June 

7th-8th. The team was unable to produce COP plots for bed system 2 since three of the load cell 

acquisition channels were working improperly.  

During the installation of the bed systems, it was soon realized that an Ethernet access 

point was not easily accessible in either room. At first, the team decided to utilize commercial 

PowerLine networking devices, where the data are transmitted over the power line between two 

PowerLine hubs, and the second hub that receives these data is connected to the network. 

However, the PowerLine devices caused regular spikes in the supply voltage for the load cells. 
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Once this was discovered, the PowerLine devices were replaced with the Wi-Fi data acquisition 

systems discussed in Chapter 4. Unfortunately, the voltage spiking due to the PowerLine devices 

caused some of the load cell acquisition channels on the NI analog input module to malfunction. 

Having a spare NI 9220 analog module available made it possible to begin gathering COP data 

for bed system 1. However, the NI 9220 module for bed system 2 was not repaired within the 

timeframe of the study, so the team decided to let the system run with the channels that were still 

functional as opposed to losing days of BCG data due to the entire system being down. Even 

with this setback, vast amounts of high-quality data were collected with both systems. 

 

Figure 9-3. Center of position throughout the night for bed system 1: June 7th-8th (blue 
circles, 145 points) and August 10th-11th (red diamonds, 133 points). Each point is the median 
x and y position per saved LVM file. 

 BCG Signal Quality 

The BCG signals were segmented into one-minute intervals, and the BCG signal quality 

index (see Chapter 7) was calculated for each one-minute window of BCG data for each sensor 

and bed system for the entire week worth of data. Note that the analysis window was restricted 

from 8 p.m. to 7 a.m. the next morning for each night. In total, 4,655 signal quality values on an 

average of 665 one-minute data segments per night were calculated for each bed system for the 

entire week. Table 9-1 and Table 9-2 depict the amount of intervals that each sensor had the 

highest signal quality for bed system 1 and bed system 2, respectively. 
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Table 9-1. Number of times each sensor had the highest signal quality index for seven nights 
of data (June 7/8 to June 13/14) – Bed system 1. 

Sensor Number of Times Best 
Number of Times 
Best (percentage) Total Intervals 

 4,655 
Film 0 702 15.1% 
Film 1 1188 25.5% 
Film 2 378 8.1% 
Film 3 471 10.1% 

Load Cell 0 800 17.2% 
Load Cell 1 880 18.9% 
Load Cell 2 143 3.1% 
Load Cell 3 93 2.0% 

 

Table 9-2. Number of times each sensor had the highest signal quality index for seven nights 
of data (August 10/11 to August 17/18) – Bed system 2. 

Sensor Number of Times Best 
Number of Times 
Best (percentage) Total Intervals 

 4,655 
Film 0 1319 28.3% 
Film 1 968 20.8% 
Film 2 502 10.8% 
Film 3 1122 24.1% 

Load Cell 0 0 0% 
Load Cell 1 582 12.5% 
Load Cell 2 1 0% 
Load Cell 3 161 3.5% 

Heartbeat Interval Estimation 

Heartbeat interval estimates were extracted from the BCG signal with the highest quality 

index. Boxplots displaying the median (red line), 25th and 75th percentiles of the estimated HBIs 

are illustrated for each bed system in Figure 9-4, where the red ‘+’ symbols represent outliers 

beyond the maximum whisker length of 1.0 times the interquartile range (25th to 75th percentile). 
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Figure 9-4. Boxplots of estimated heartbeat intervals (HBIs) over seven consecutive days for 
both bed systems. 

 Respiration Rate Estimation 

For each night, collected data are separated into one-minute segments. For each segment, 

the respiration component is separated from the BCG components, the DC offset is removed, and 

the maximum value of the single-sided spectrum in the frequency domain is identified. The 

frequency corresponding to the maximum provides the respiration rate. Similar boxplots for 

estimated respiration rates per night for both bed systems are contained in Figure 9-5. 
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Figure 9-5. Boxplots of estimated respiration rates over seven consecutive days for both bed 

systems. 

One night of estimated HBIs after a 21st order median filter was applied are illustrated in 

Figure 9-6. 

 

Figure 9-6. Estimated heartbeat intervals for bed system 1, night 1 (June 7th-8th). The plot 
presents results from applying a 21-point median filter to the estimates. 
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The above data/plots, which are representative of any night while the bed systems are 

functional, illustrate the ability of these systems to collect data over long time periods. These 

data also demonstrate that these multi-sensor systems are useful for estimating heartbeat 

intervals. For both children, and for each night, the median heartbeat interval stayed below 1 

second, or in other words, stayed above 60 beats per minute. It is worth noting that these children 

are not large individuals – it speaks well of the sensitive bed system that it is able to record such 

data consistently.  

Discussion/Lessons Learned 

Issues with Individual Beds 

The two children were two different ages/sizes and had different demographics, but each 

system still worked well when it was properly integrated into the respective child’s room. These 

systems require power and must be plugged into wall outlets – they are not battery operated. For 

bed system 2, the layout of the child’s room made it difficult to hide the power cable running 

from the wall to the acquisition hardware stored under the bed. This was not an issue for the first 

month or so, but after he became aware of the power cord, it became a common habit to unplug 

the cable. The team attempted to move the bed in order to cover the outlet but was unsuccessful 

in deterring him from finding a way to unplug the system. This habit eventually led to a behavior 

incident in which he not only unplugged the bed, but he also pulled on the cord connected to the 

hardware and disabled the system. After this incident, the team decided to take down system 2, 

emphasizing the need to develop unobtrusive systems for this population. The room housing bed 

system 1 had a better layout. From the start of the study, the power cord stayed hidden behind the 

head of the bed and never became an issue.  

 Broader Thoughts 

Currently, the best option to assess the nighttime sleep quality of this population is with 

manual periodic bed checks [39]. While this study only involved two children, the work has 

demonstrated that a sensor-based bed system has the capability to monitor the physiological 

signals of children with severe disabilities and autism unobtrusively and reliably over the course 

of months as an arguably superior alternative to manual bed checks. 

One major lesson learned from this study was that children are very curious and they will 

interact/play with anything that appears out of the ordinary. Once subject two (bed system 2) 
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became aware of the power cord running from his bed to the wall, it became a consistent habit 

for him to unplug the system. Even after our team was able to securely hide the cable, it was too 

late – the behavior had been developed, and it did not take long before the system was unplugged 

again. This issue was never encountered with the other child (bed system 1), as the power cord 

was successfully hidden behind the bed for the entire duration of the study.  

Another major lesson learned is that communication is extremely important. Heartspring 

has a day school, several residential group homes, a gym, a cafeteria, and other facilities on their 

campus – they have quite a large staff to keep everything running smoothly. When the KSU team 

did not effectively communicate to the group home 3 staff that bed system 2 was moved on 

purpose to prevent another unplugging event, a staff member pushed the bed back to its original 

location, breaking the connection from the wall, leading to a loss of data for several nights. At 

first, the team believed this was another behavior incident, but after viewing the thermal images 

the next day, the cause of the power outage was clear.  
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Chapter 10 - Conclusion 

This dissertation presented a bed-based nighttime monitoring toolset capable of acquiring 

physiological signals unobtrusively and autonomously. Such a system can be utilized in 

numerous applications (e.g., personalized healthcare, preventative care systems, or the 

monitoring of sensitive populations). The driving motivation for the creation of this monitoring 

toolset was the need to quantify the sleep of children with low-functioning autism. Therefore, the 

system platform was designed to appear to be, and feel no different from, a normal bed. This is 

an important design detail, as the acceptance of monitoring platforms and medical devices is 

vital to their success in long-term monitoring applications.  

A review of ballistocardiography instrumentation techniques, including the originally 

proposed methods from the dawn of the field in the 1940s to modern-day techniques was 

provided, making it possible to understand how the forces generated by the heart are coupled to 

the instrumentation device and how waveform morphology can be affected. The system 

platform, sensor set, custom conditioning hardware, and National Instruments data acquisition 

hardware and software that comprise the bed system were described in detail in Chapters 3 and 

4. Results and lessons learned from gathering nighttime data from children at Heartspring was 

the focus of Chapters 6 and 9. Innovative BCG signal processing techniques were presented in 

Chapters 7 and 8 – both of which add promise to the realization of a longer-term robust 

monitoring system.  

The review in Chapter 2 presented a model for how the forces due to each heartbeat are 

coupled to the sensing device, and this model helps to describe the instrumentation effects in 

terms of signal changes that occur in all forms of ballistocardiography. Ideal cases based on 

original system designs were discussed to understand how different systems provide BCGs of 

varying morphology. The models can be further used to understand instrumentation effects due 

to modern measurement systems, where the more popular techniques were discussed. The 

approach presented in the review can be applied to innovative BCG acquisition systems, making 

it possible to compare recorded waveforms between systems. 

The bed-based system was tested in the environments of three different children with 

severe disabilities and low-functioning autism, demonstrating that it can function well for long 

periods of time and monitor the physiological signals of this underserved, sensitive population. 
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The system proved to be capable of unobtrusively recording 1) the BCG, which can be used to 

estimate instantaneous heart rate, 2) respiration, and 3) motion without causing any disturbance 

to a children’s environment, when implemented properly. These investigations open the door to 

better understanding how sleep quality relates to daytime cognitive ability for children with 

autism and physical disabilities. Future studies can seek to collect more data on numerous 

children to better understand this relationship for this underserved population. 

Further, BCG signal processing techniques to characterize BCG signal quality, plus a 

preprocessing inverse filter, were presented, and their effectiveness was quantified. The team 

found that the EMFi or load cell sensor which provides the highest SNR seems to depend on the 

location of the sensor relative to the subject; neither sensing modality proved to be superior 

(Chapter 6).  

The BCG signal makes it possible to assess cardiac health and track physiological 

parameters unobtrusively. Often, an ECG is collected simultaneously with a BCG to assess 

BCG-based HBI estimation algorithms, but in real-world applications, ECG data will not always 

be available. To that end, Chapter 7 presented a modified signal quality index that can be used to 

assess BCG HBI estimates and demonstrated that a close relationship exists between the quality 

index and the FAR. 

Estimating the heartbeat intervals from BCG signals is not a trivial problem, especially 

when working with multi-sensor systems. The work presented in Chapter 8 demonstrated that 

this bed-based system is capable of accurately tracking HBIs regardless of sleeping position (an 

important aspect when working with severely disabled autistic children) and mattress type. 

While this study had a limited number of subjects, the team was still able to gather 400, 100-

second data segments for analysis. 

The link between sleep quality and daytime behaviors for children with severe disabilities 

and low-functioning autism is still not well understood. With this underserved population, the 

standard technique for monitoring sleep quality (PSG) is simply not a viable option. Unobtrusive 

techniques such as ballistocardiography offer the ability to quantify sleep quality by monitoring 

the micro-movements caused by each heartbeat.  Chapter 9 presented the results from a six-

month long study conducted at Heartspring, where data were collected on two children with 

severe autism. The long duration study tested the bed system’s capability to operate in such an 

environment for a prolonged period of time. Heartbeat intervals, respiration rates, and motion 
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activity were tracked each night for the duration of study. The success with running the bed 

system remotely for this study indicates that the bed system can be utilized for even longer 

studies and greater numbers of children – studies which will be needed to fully develop the 

relationship between sleep quality and daytime functionality for this population. 
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Appendix A - Robust Heartbeat Interval Estimation and Fusion 

Technique  

The complete algorithm from [69] has two main sections: a basic algorithm and an 

extended algorithm. In the basic algorithm, the following approach is used to detect continuous 

heartbeat intervals using an overlapping sliding window with a small step size. 

Basic Algorithm. The basic algorithm provides HBI estimates: 

1. Within the windowed data, calculate three functions (a-c) that are lag-dependent. 

a. Modified autocorrelation. 

b. Modified average magnitude difference. 

c. Maximum amplitude pairs. 

2. Interpreting the three estimates as posterior probability density functions, combine the 

three estimates into a joint probability density function. 

3. Find the maximum point in the joint PDF. This is the estimated local interval length. 

4. Shift the window by a small constant Δt and repeat steps 1 through 3. 

Given the small window shift, several estimates will correspond to the same HBI. Thus, an 

extended algorithm is needed to reduce the number of estimates to one for each HBI. 

Extended Algorithm. The extended algorithm reduces duplicate HBI estimates to one HBI: 

1. For each segment of windowed data, find the set of peaks in the right half of the analysis 

window. 

2. Using the estimated local interval length, 𝑁 , determine the right boundary peak (𝑃 , as 

 

𝑃 𝑛 𝑎𝑟𝑔 max 𝑤 𝑚 𝑤 𝑚 𝑁 .       (30) 

where 𝑤  is the current window of data under analysis, 𝑀  is the set of peaks within the 

right half of the analysis window, and 𝑛  is the center of the analysis window. The 

extended algorithm determines anchor points in each analysis window that can be used to 

combine similar heartbeat estimates. 

3. Find the set of unique peaks among the set of estimated right boundary points. 

4. Group the local interval lengths together that correspond to unique right boundary peaks 

(a.k.a., anchor points). 

Calculate the median local interval length for each set as the final HBI estimate. 
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The algorithm outputs the estimated HBIs along with a corresponding estimated peak 

location. For the fusion approach, instead of combining three lag-dependent functions, there are 

three functions for each sensor. Thus, for the bed-based system comprised of eight sensors, 24 

posterior probability density functions are combined into one joint probability density function. 

The local beat intervals are computed in the same fashion as the outlined Basic Algorithm. 

For the Extended Algorithm, a single waveform is needed to determine the right 

boundary points. A simple technique to create the single waveform can be implemented by 

computing the average across time for all of the signals. However, with the bed system being 

comprised of multiple sensors having a large distance between them, BCGs recorded by the 

various sensors are often out of phase with each other. To help mitigate this, a single sensor’s 

BCG (typically Film sensor 0) is used as a reference, and the other BCG waveforms are 

corrected if they are out of phase. To accomplish this, the correlation coefficient is computed 

between the reference BCG and every other recorded BCG. If the correlation coefficient is 

negative, the BCG under question is inverted. After the single, time-averaged waveform is 

calculated, the Extended Algorithm is computed in the same manner as the single-channel 

approach. 
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Appendix B - Custom Hardware Printed Circuit Board Design 

 

Figure B-1. Circuit board schematic version 1. 
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Figure B-2. Circuit board layout version 1. 

Table B-1. Bill of materials version 1. 

Part Value Device Package Description 

C1 0.1uF C-USC0805 C0805 CAPACITOR 

C2 0.1uF C-USC0805 C0805 CAPACITOR 

C3 0.1uF C-USC0805 C0805 CAPACITOR 

C4 0.1uF C-USC0805 C0805 CAPACITOR 

C5 0.1uF C-USC0805 C0805 CAPACITOR 

C6 0.1uF C-USC0805 C0805 CAPACITOR 

C7 0.01uF C-USC0805 C0805 CAPACITOR 

C8 0.022uF C-USC0805 C0805 CAPACITOR 

C9 0.1uF C-USC0805 C0805 CAPACITOR 

C10 0.1uF C-USC0805 C0805 CAPACITOR 

C11 10uF C-USC0805 C0805 CAPACITOR 

C12 0.002uF C-USC0805 C0805 CAPACITOR 
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C13 10nF (0.01u) C-USC0805 CAPACITOR 

C14 1uF C-USC0805 C0805 CAPACITOR 

C15 2.2uF C-USC0805 C0805 CAPACITOR 

C16 0.47uF C-USC0805 C0805 CAPACITOR 

C17 0.1uF C-USC0805 C0805 CAPACITOR 

C18 2uF C-USC0805 C0805 CAPACITOR 

C19 100uF CPOL-USE2.5-7 E2,5-7 POLARIZED 

FILM PINHD-1X8 1X08 PIN HEADER 

J1 JACK-PLUG0 SPC4077 DC POWER 

OUTPUT PINHD-1X2 1X02 PIN HEADER 

POWER PINHD-1X2 1X02 PIN HEADER 

R1 80k R-US_R0805 R0805 RESISTOR 

R2 10M R-US_R0805 R0805 RESISTOR 

R3 510k R-US_R0805 R0805 RESISTOR 

R4 510k R-US_R0805 R0805 RESISTOR 

R5 POTENTIOMETER PT-SPIN Potentiometer  
R6 500 R-US_R0805 R0805 RESISTOR 

R7 20k R-US_R0805 R0805 RESISTOR 

R8 100k R-US_R0805 R0805 RESISTOR 

TP1 TPTP5001 TPTP5001 TP5000OR5001  
TP2 TPTP5001 TPTP5001 TP5000OR5001  
TP3 TPTP5001 TPTP5001 TP5000OR5001  
U1 LF411CD LF411CD SOIC127P600X175-8N JFET-INPUT 

U2 LF411CD LF411CD SOIC127P600X175-8N JFET-INPUT 

U3 LF411CD LF411CD SOIC127P600X175-8N JFET-INPUT 

U4 LT1054CP LT1054CP DIP254P762X508-8 VOLTAGE 

U5 LP2985A-18DBVJ LP2985A-18DBVJ SOT95P280X145-5N 150-mA 
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Figure B-3. Circuit board schematic version 2. 
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Figure B-4. Circuit board layout version 2. 

Table B-2. Bill of materials version 2. 

Part Value Device Package Description 

C1 0.1 uF C-SMD0603 603 CAPACITOR 

C2 0.1 uF C-SMD0603 603 CAPACITOR 

C3 0.1 uF C-SMD0603 603 CAPACITOR 

C4 0.1 uF C-SMD0603 603 CAPACITOR 

C5 0.1 uF C-SMD0603 603 CAPACITOR 

C6 0.1 uF C-SMD0603 603 CAPACITOR 

C7 0.1 uF C-SMD0603 603 CAPACITOR 

C8 0.1 uF C-SMD0603 603 CAPACITOR 

C9 100 uF C-USC1206 C1206 CAPACITOR 

C10 10 uF C-SMD0603 603 CAPACITOR 

C11 10 uF C-SMD0603 603 CAPACITOR 

C12 0.1 uF C-SMD0603 603 CAPACITOR 

C13 0.1 uF C-SMD0603 603 CAPACITOR 

C14 0.1 uF C-SMD0603 603 CAPACITOR 

C15 0.1 uF C-SMD0603 603 CAPACITOR 

J1  JACK-PLUG0 SPC4077 DC POWER JACK 

JP1  PINHD-1X8 1X08 PIN HEADER 

LED1  LED1206 LED-1206 LEDs 
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POWER  PINHD-1X2 1X02 PIN HEADER 

R1 120 R-US_R0603 R0603 RESISTOR 

R2 120 R-US_R0603 R0603 RESISTOR 

R3 120 R-US_R0603 R0603 RESISTOR 

R4 120 R-US_R0603 R0603 RESISTOR 

R5 4.99 M R-US_R0603 R0603 RESISTOR 

R6 200 k R-US_R0603 R0603 RESISTOR 

R7 120 R-US_R0603 R0603 RESISTOR 

R8 4.99 M R-US_R0603 R0603 RESISTOR 

R9 200 k R-US_R0603 R0603 RESISTOR 

R10 120 R-US_R0603 R0603 RESISTOR 

R11 4.99 M R-US_R0603 R0603 RESISTOR 

R12 200 k R-US_R0603 R0603 RESISTOR 

R13 120 R-US_R0603 R0603 RESISTOR 

R14 4.99 M R-US_R0603 R0603 RESISTOR 

R15 200 k R-US_R0603 R0603 RESISTOR 

R16 120 R-US_R0603 R0603 RESISTOR 

R17 330 R-US_R0603 R0603 RESISTOR 

U$2 RJLSE4238101T RJLSE4238101T RJLSE4238101T  

U1 TLV4333 TLV274CPW 
SOP65P640X120-
14N 

OPERATIONAL 
AMPLIFIERS 

U2 TLV4333 TLV274CPW 
SOP65P640X120-
14N 

OPERATIONAL 
AMPLIFIERS 

U3 REG1117-5V REG1117-3.3 
SOT230P700X180-
4N 

Low Dropout Positive 
Regulator 

U4 REG 2.5V LP2985A-18DBVJ SOT95P280X145-5N 

150-mA LOW-
NOISE LOW-
DROPOUT 
REGULATOR 
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Figure B-5. Circuit board schematic version 3. 
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Figure B-6. Circuit board layout version 3. 

Table B-3. Bill of materials version 3. 

Part Value Device Package Description 

C1 0.1 uF C-SMD0603 603 CAPACITOR 

C2 0.1 uF C-SMD0603 603 CAPACITOR 

C3 0.1 uF C-SMD0603 603 CAPACITOR 

C4 0.1 uF C-SMD0603 603 CAPACITOR 

C5 0.1 uF C-SMD0603 603 CAPACITOR 

C6 0.1 uF C-SMD0603 603 CAPACITOR 

C7 0.1 uF C-SMD0603 603 CAPACITOR 

C8 0.1 uF C-SMD0603 603 CAPACITOR 

C9 0.2 uF C-SMD0603 603 CAPACITOR 

C10 0.1 uF C-SMD0603 603 CAPACITOR 

C11 0.2 uF C-SMD0603 603 CAPACITOR 

C12 0.1 uF C-SMD0603 603 CAPACITOR 
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C13 0.1 uF C-SMD0603 603 CAPACITOR 

C14 0.1 uF C-SMD0603 603 CAPACITOR 

C15 0.2 uF C-SMD0603 603 CAPACITOR 

C16 0.1 uF C-SMD0603 603 CAPACITOR 

C17 0.2 uF C-SMD0603 603 CAPACITOR 

C18 0.1 uF C-SMD0603 603 CAPACITOR 

C19 0.1 uF C-SMD0603 603 CAPACITOR 

C20 100 uF C-USC1210 C1210 CAPACITOR 

C21 10 uF C-SMD0603 603 CAPACITOR 

C22 10 uF C-SMD0603 603 CAPACITOR 

C23 0.1 uF C-SMD0603 603 CAPACITOR 

C24 0.1 uF C-SMD0603 603 CAPACITOR 

FILM RJLSE4238101T RJLSE4238101T 
RJLSE42381
01T 

J1  JACK-PLUG0 SPC4077 DC POWER JACK 

JP1  PINHD-1X8 1X08 PIN HEADER 

LC1 RJLSE4238101T RJLSE4238101T 
RJLSE42381
01T 

LC2 RJLSE4238101T RJLSE4238101T 
RJLSE42381
01T 

LED  R-SMD0402 402 RESISTOR 

LED1  R-SMD0402 402 RESISTOR 

R1 120 R-US_R0603 R0603 RESISTOR 

R2 120 R-US_R0603 R0603 RESISTOR 

R3 120 R-US_R0603 R0603 RESISTOR 

R4 120 R-US_R0603 R0603 RESISTOR 

R5 4.9 M R-US_R0603 R0603 RESISTOR 

R6 45k R-US_R0603 R0603 RESISTOR 

R7 45k R-US_R0603 R0603 RESISTOR 

R8 4.9 M R-US_R0603 R0603 RESISTOR 

R9 45k R-US_R0603 R0603 RESISTOR 

R10 45k R-US_R0603 R0603 RESISTOR 

R11 4.9 M R-US_R0603 R0603 RESISTOR 

R12 4.9 M R-US_R0603 R0603 RESISTOR 

R13 45k R-US_R0603 R0603 RESISTOR 

R14 45k R-US_R0603 R0603 RESISTOR 

R15 45k R-US_R0603 R0603 RESISTOR 

R16 45k R-US_R0603 R0603 RESISTOR 

R17 45k R-US_R0603 R0603 RESISTOR 

R18 45k R-US_R0603 R0603 RESISTOR 

R19 45k R-US_R0603 R0603 RESISTOR 

R20 45k R-US_R0603 R0603 RESISTOR 
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R21 45k R-US_R0603 R0603 RESISTOR 

R22 45k R-US_R0603 R0603 RESISTOR 

R23 45k R-US_R0603 R0603 RESISTOR 

R24 45k R-US_R0603 R0603 RESISTOR 

R25 10k R-US_R0603 R0603 RESISTOR 

R26 10k R-US_R0603 R0603 RESISTOR 

U$1 SWITCH_SPDT SWITCH_SPDT KPS-1290 SWCH-10651 

U1 TLV4333 TLV274CPW 
SOP65P640X
120-14N 

OPERATIONAL 
AMPLIFIERS 

U2 TLV4333 TLV274CPW 
SOP65P640X
120-14N 

OPERATIONAL 
AMPLIFIERS 

U3 TLV4333 TLV274CPW 
SOP65P640X
120-14N 

OPERATIONAL 
AMPLIFIERS 

U4 SN74LVC1G3157DCKR 
SN74LVC1G3157
DCKR 

SOT65P210X
110-6N 

SPDT ANALOG 
SWITCH 

U5 SN74LVC1G3157DCKR 
SN74LVC1G3157
DCKR 

SOT65P210X
110-6N 

SPDT ANALOG 
SWITCH 

U6 SN74LVC1G3157DCKR 
SN74LVC1G3157
DCKR 

SOT65P210X
110-6N 

SPDT ANALOG 
SWITCH 

U7 SN74LVC1G3157DCKR 
SN74LVC1G3157
DCKR 

SOT65P210X
110-6N 

SPDT ANALOG 
SWITCH 

U8 REG1117-5 REG1117-3.3 
SOT230P700
X180-4N 

Low Dropout Positive 
Regulator 

U9 REG 2.5V 
LP2985-
28DBVTE4 

SOT95P280X
145-5N 

LOW-NOISE LOW-
DROPOUT 
REGULATOR WITH 
SHUTDOWN 

X1  HF44HN HDF44HN SUB-D 

X2  F37VP F37VP SUB-D 
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Appendix C - LabVIEW Measurement File Structure 

The LabVIEW measurement (LVM) file structure was configured within the virtual 

instrument using the Write to Measurement File subvi. The settings for the subvi are shown 

below. Only one header segment and no x values (time column) were included to save space. 

The data were saved to a series of LVM files, where a new file was generated every five minutes. 

Therefore, if any of the data were corrupted, only a segment of data would be lost. 

 

Figure C-1. LabVIEW measurement file structure. 
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Figure C-2. LabVIEW multi-file settings. 

  



128 

Appendix D - Conditioned Analog Channels and NI 9220 Inputs 

Interface 

NI 9220 pinout and connection to conditioned EMFi and LC signals 

AI 4 (pin 5)   - Film0 

AI 5 (pin 6)   - Film1 

AI 6 (pin 7)   - Film2 

AI 7 (pin 8)   - Film3 

AI 8 (pin 11)  - LC_COP0 

AI 9 (pin 12)  - LC_BCG0 

AI 10 (pin 13) - LC_COP1 

AI 11 (pin 14) - LC_BCG1 

AI 12 (pin 15) - LC_COP2 

AI 13 (pin 16) - LC_BCG2 

AI 14 (pin 17) - LC_COP3 

AI 15 (pin 18) - LC_BCG3 

 

NI cDAQ chassis info 

NI cDAQ-9184 "Bed_1_Wood" 

NI cDAQ-9174 "Bed_2_Plastic" 
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Appendix E - Reuse Permission Grants 
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