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Abstract 

This	thesis	intends	to	act	as	a	resource	for	structural	engineers	or	architects	to	make	

informed	decisions	for	selecting	economical	bay	dimensions	for	a	steel‐framed	building.	

This	thesis	utilizes	a	parametric	study	to	investigate	how	different	design	variables	affect	

economical	bay	sizes	for	a	typical	steel‐framed	building.	While	there	are	many	ways	to	

define	an	“economical	bay”,	this	analysis	defines	an	economical	bay	size	as	the	bay	size	that	

uses	the	least	steel,	measured	in	pounds	per	square	foot	of	floor	area.		Although	other	

factors	contribute	to	the	overall	economy	of	a	steel	bay,	this	analysis	only	considers	the	

weight	of	steel.	

Investigated	parameters	include	beam	spacing,	beam	span,	girder	span,	floor	live	

load	intensity,	and	composite	versus	non‐composite	construction.		Beam	center‐to‐center	

spacing	varies	from	four	feet	to	12	feet	in	two‐foot	increments.		Beam	spacing	varies	

independently	from	beam	span.		Beam	spans	range	from	20	feet	to	52	feet	in	four	foot	

increments.		Girder	spans	also	range	from	20	feet	to	52	feet	in	four	foot	increments.		Beam	

and	girder	spans	vary	independently	of	one	another.		Floor	live	loads	include	50	lb/ft2,	75	

lb/ft2,	and	100	lb/ft2.		The	effect	of	member	construction	type	is	also	evaluated	in	this	

analysis	by	considering	both	composite	and	non‐composite	beams	and	girders.	

This	analysis	finds	that	20‐foot	by	20‐foot	bays	use	the	least	steel	per	square	foot,	

while	52‐foot	by	52‐foot	bays	use	the	most.		Identical	bays	framed	with	girders	spanning	

the	long	direction	use	less	steel	than	with	beams	spanning	the	long	direction.		Beams	

contribute	the	majority	of	the	steel	weight	in	the	structure,	while	columns	contribute	the	

least.		Live	load	intensity	produces	minimal	effect	on	the	steel	weight,	while	the	use	of	

composite	construction	saves	30‐40%	of	steel	weight	versus	non‐composite	construction.
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Chapter 1 - Introduction 

Selection	of	a	bay	size	is	one	of	the	first	and	most	fundamental	steps	in	the	

development	of	a	building’s	structural	system.		A	framing	bay	is	the	basic	unit	of	a	steel	

framing	layout.		Determining	the	proportions	and	framing	scheme	for	a	single	bay	in	turn	

determines	the	framing	layout	for	the	entire	building.		The	framing	layout	defines	the	load	

path	of	the	building	and	serves	as	a	basis	for	load	calculations,	structural	analysis,	and	

member	design.	

 “Before	any	members	are	selected,	before	any	connections	are	designed,	even	

before	any	loads	are	calculated,	the	efficient	structural	engineer	will	conceive	and	lay	out	a	

steel	framing	system;	this	is	one	of	the	true	arts	of	structural	engineering.”	ሺCarter,	2004ሻ	

Although	developing	a	framing	layout	requires	very	few	calculations	compared	to	the	rest	

of	the	design	process,	choices	in	the	layout	of	the	steel	framing	can	be	a	strong	indicator	of	

the	efficiency	and	economy	of	the	framing	system	as	a	whole.		Choosing	a	poor	framing	

layout	can	negatively	impact	the	cost	and	performance	of	the	structure.	ሺCarter,	2004ሻ	

When	selecting	a	bay’s	size	and	dimensions	for	a	project,	a	structural	engineer	

should	have	a	strong	sense	for	the	way	project	design	conditions	will	affect	the	economics	

of	a	building’s	structural	design.		Does	a	building’s	design	live	load	have	a	large	effect	on	the	

cost	of	the	structure?		Is	it	more	cost	efficient	to	span	beams	in	the	long	or	short	direction?	

Is	it	more	cost	efficient	to	space	small	beams	closely	together,	or	use	larger	beams	spaced	

farther	apart?	

This	thesis	utilizes	a	parametric	study	to	investigate	how	different	design	variables	

affect	economical	bay	sizes	for	a	typical	steel‐framed	building.		An	“economical	bay”	may	be	

defined	in	several	ways;	however,	the	most	simple	way	to	define	an	economical	bay	is	in	
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terms	of	steel	weight	which	correlates	to	steel	cost.		Specifically,	a	bay	that	is	economical	in	

terms	of	steel	weight	would	be	a	configuration	which	uses	the	least	structural	steel	to	

support	a	given	floor	area.		Likewise,	an	economical	bay	in	terms	of	monetary	cost	would	

be	a	configuration	which	costs	the	least	per	square	foot	to	fabricate	and	construct.		As	

shown	by	Ruddy	ሺ1983ሻ,	the	definitions	of	the	least‐weight	solution	and	the	least‐cost	

solution	are	not	necessarily	equivalent.		While	this	study	will	focus	on	the	least‐weight	

solution,	both	definitions	have	value	for	design	applications.	

Beam	spacing,	beam	span,	girder	span,	floor	live	load	intensity,	and	composite	

versus	non‐composite	construction	are	all	parameters	investigated	in	the	analysis.		Beam	

center‐to‐center	spacing	varies	from	four	feet	up	to	12	feet	in	two	foot	increments.		Beam	

spacing	varies	independently	from	beam	span.		Beam	spans	range	from	20	feet	to	52	feet	in	

four	foot	increments.		Girder	spans	also	range	from	20	feet	to	52	feet	in	four	foot	

increments.		Beam	and	girder	spans	vary	independently	of	one	another.		Floor	live	loads	

include	50	lb/ft2,	75	lb/ft2,	and	100	lb/ft2.		The	effect	of	member	construction	type	is	also	

evaluated	in	this	analysis	by	considering	both	composite	and	non‐composite	beams	and	

girders.	The	analysis	requires	the	design	of	999	unique	beam,	girder,	and	column	members	

and	results	in	486	unique	framing	solutions.			
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Chapter 2 - Literature Review 

 “Economics of Low-Rise Steel-Framed Structures”: John Ruddy, 1983 

In	1983,	John	Ruddy,	P.E.,	member	of	ASCE,	conducted	a	study	on	the	topic	of	

economic	bay	sizes	which	is	often	cited.		He	distinguishes	the	difference	between	a	solution	

of	least	weight	and	a	solution	of	least	cost	in	this	study	by	providing	cost	and	weight	

information	in	the	results.	

The	study	analyzes	a	single	story	structure	constructed	with	evenly‐spaced	open‐

web	steel	roof	joists	that	are	spaced	evenly	between	column	centerlines.		These	joists	are	

supported	by	continuous	wide	flange	steel	girders,	which	span	to	wide	flange	steel	

columns.		These	columns	are	evenly	spaced	in	each	direction	such	that	the	structure	forms	

rectangular‐sized	bays.		

Although	this	study	only	analyzes	a	single‐story	structure	with	steel	joist	framing	

subjected	primarily	to	roof	live	loads,	this	study	is	often	referenced	to	justify	bay	sizes	for	

multi‐story	buildings	where	the	members	are	resisting	floor	live	and	dead	loads,	which	

tend	to	be	much	larger	in	magnitude	than	roof	loads.		Likewise,	floor	framing	commonly	

utilizes	wide	flange	members	rather	than	steel	joists.		

	

 Parameters - Ruddy 1983 

With	this	layout,	Ruddy’s	study	varies	many	parameters	to	assess	how	each	affects	

the	overall	cost	of	the	structure.		These	parameters	include	foundation	type,	joist	span,	

girder	span,	and	roof	load.		The	foundation	types	considered	were	spread	footings,	timber	

piles,	and	augured	caissons.		Only	the	results	from	Ruddy’s	study	regarding	spread	footings	

are	considered,	since	spread	footings	are	the	foundation	chosen	for	the	building	in	this	
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analysis.		Spread	footings	were	sized	to	be	square	with	side	dimensions	with	increments	of	

6	inches,	and	thicknesses	greater	than	12	inches	in	increments	of	2	inches.	

Joist	and	girder	spans	were	determined	by	selecting	a	bay	area	and	multiplying	it	by	

a	length‐to‐width	ratio.		Bay	areas	analyzed	in	Ruddy’s	study	range	from	50	square	feet	to	

2500	square	feet	in	50	square	foot	increments.		Length‐to‐width	ratios	range	from	0.5	to	

2.75	in	0.25	increments,	where	joist	spans	are	considered	the	bay	lengths	and	girder	spans	

are	the	bay	widths.		Joist	spacing	is	not	directly	considered	in	Ruddy’s	study,	as	joist	

spacing	only	changes	to	satisfy	the	constraints	of	being	evenly	spaced	and	not	exceeding	

the	maximum	span	of	the	roof	deck,	which	was	6’‐6”.			Total	roof	load	intensity	ranges	from	

30	lb/ft2	to	80	lb/ft2	in	10	lb/ft2	increments.	

	

Figure 2-1: Ruddy’s Structural Framing Isometric (1983) 
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 Results - Ruddy 1983 

As	these	parameters	were	varied,	information	on	the	cost	ሺ$/ft2ሻ	and	steel	weight	

ሺlb/ft2ሻ	were	provided	for	the	foundation,	joists,	girders,	and	columns,	as	well	as	a	

combined	total	cost	and	weight	per	unit	area.	Ruddy’s	study	differentiates	between	the	

least‐cost	solution	and	least‐weight	solution	since	the	two	are	often	not	the	same.		As	

Ruddy	notes	in	his	study,	structures	that	seek	only	to	minimize	weight	often	become	more	

expensive	due	to	increased	labor	costs.	

	 As	shown	in	Figure	2‐2,	Ruddy	found	that	spread	footing	costs	increase	dramatically	

as	the	bay	area	decreases	below	500	ft2,	which	represents	a	roughly	22‐foot	by	22‐foot	bay.	

Footing	cost	per	square	foot	for	a	500	ft2	bay	was	$0.25/	ft2,	while	the	cost	for	a	200	ft2	bay	

was	about	$0.75/	ft2,	in	1983	dollars.			

	

Figure 2-2: Spread Footing Cost Variation (Ruddy, 1983) 
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By	contrast,	footing	costs	per	square	foot	were	almost	constant	for	bay	areas	greater	than	

500	ft2.		The	footing	cost	for	a	2500	ft2	bay	was	about	$0.20/	ft2	in	1983	dollars,	which	is	

only	slightly	less	than	the	cost	of	the	500	ft2	bay,	which	is	only	one‐fifth	the	area.	

	 With	steel	joists,	steel	weight	was	minimized	at	a	bay	size	of	roughly	200	ft2	and	a	

length‐to‐width	ratio	of	1:1	as	indicated	in	Figure	2‐3.		The	grey	area	demonstrates	the	

general	trend	of	the	figure.	The	cost	of	steel	per	pound	varies	slightly	as	a	function	of	bay	

area	such	that	the	steel	cost	for	bay	areas	greater	than	500	ft2	was	nearly	constant	around	

$0.50/lb,	while	the	cost	rapidly	increased	past	$1.00/lb	for	bay	areas	less	than	500	ft2	as	

indicated	in	Figure	2‐4.		When	these	costs	are	applied	to	the	weight	results,	it	reveals	that	a	

bay	area	of	roughly	300	ft2	ሺabout	17‐foot	by	17‐footሻ	minimizes	steel	costs.	
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Figure 2-3: Joist Weight Variation (Ruddy, 1983) 
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Figure 2-4: Joist Cost Variation (Ruddy, 1983) 

	

Girder	weight	is	minimized	for	a	bay	area	of	roughly	350	ft2,	but	increases	

considerably	as	the	bay	area	decreases	as	indicated	in	Figure	2‐6.		In	regard	to	steel	costs,	

girder	costs	are	least	for	bay	areas	near	500	ft2.		Bays	larger	than	500	ft2	become	only	

slightly	more	expensive	per	square	foot.		Again,	steel	costs	increase	severely	as	the	bay	area	

drops	below	250	ft2.	



9 

 

 Figure 2-5: Girder Weight Variation (Ruddy, 1983) 

	

As	shown	in	Figure	2‐6,	columns	have	a	unique	cost	and	weight	profile	compared	to	

all	of	the	other	examined	parameters.		Column	weight	starts	at	almost	3	lb/ft2	for	a	bay	

area	of	150	ft2	and	continually	decreases	as	the	bay	area	increases.		Column	weight	drops	

below	1	lb/ft2	for	500	ft2	bays	and	reaches	a	mere	0.25	lb/ft2	for	a	bay	area	of	2500	ft2.		

Column	steel	costs	reflect	the	same	type	of	behavior.		For	250	ft2	bays,	columns	cost	
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$2.50/ft2;	at	500	ft2,	they	cost	$1.00/ft2;	for	bay	areas	of	2500	ft2,	columns	cost	only	

$0.50/ft2.		

	

Figure 2-6: Column Weight Variation (Ruddy, 1983) 

	

	 The	magnitude	of	the	roof	load	produces	considerable	effects	on	both	the	structure	

costs	and	the	bay	sizes	that	produce	the	minimal	cost.		As	the	roof	load	increases	from	30	

lb/ft2	to	80	lb/ft2,	the	optimal	bay	size	decreases	while	the	structure	cost	increases	

significantly.		At	a	30	lb/ft2	roof	load,	the	optimal	bay	size	is	around	1000‐1250	ft2	and	the	
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cost	was	roughly	$1.70/	ft2.		In	comparison,	at	a	roof	load	of	80	lb/ft2	the	optimal	bay	size	

shrinks	to	about	750	ft2	while	the	structure	cost	increases	to	greater	than	$2.50/	ft2.		This	

represents	a	50%	increase	in	structure	costs	with	a	simultaneous	40%	decrease	in	bay	

area.		

When	combining	all	of	the	study’s	parameters	as	shown	in	Figure	2‐7,	the	final	

result	shows	that	a	bay	area	ranging	from	750‐1250	ft2	with	a	length‐to‐width	ratio	of	1.25‐

1.75	will	produce	a	design	that	minimizes	structure	costs.		As	seen	earlier,	the	roof	load,	

along	with	each	of	the	other	building	parameters,	has	a	significant	effect	on	the	exact	

proportions	of	the	economical	bay	size.	
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Figure 2-7: Least Cost of Steel Elements (Ruddy, 1983) 

	

  Conclusion - Ruddy 1983 

	 From	the	bay	areas	and	length‐to‐width	ratios	produced	from	Ruddy’s	study,	the	

resulting	optimal	bay	dimensions	range	from	32‐foot	by	24‐foot	to	47‐foot	by	27‐foot	with	

joists	spanning	the	long	direction.		Ruddy	notes	that	the	dominating	factor	affecting	the	

economical	bay	size	of	a	structure	is	the	roof	load	intensity.		The	highest	roof	load	tested	in	
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this	study	is	80	lb/ft2.		While	this	is	a	heavy	load	for	roof	structures,	floor	loads	have	the	

potential	to	be	significantly	higher.	

Given	that	higher	roof	loads	tend	to	reduce	the	optimal	bay	size,	it	is	likely	that	floor	

bays	have	optimal	sizes	that	are	even	smaller	than	the	750‐1250	ft2	proposed	in	this	study.	

Furthermore,	it	is	possible	that	the	theoretical	optimal	bay	size	for	some	floor	conditions	

may	be	smaller	than	practical	limits	of	design	and	construction.		As	an	example,	if	the	

optimal	bay	size	for	a	floor	was	100	ft2	ሺ10‐foot	by	10‐footሻ	the	bay	size	would	be	too	small	

to	be	a	useful	space	to	the	occupants,	and	it	would	be	difficult	to	construct	due	to	the	close	

spacing	of	members.		At	this	point,	determining	an	appropriate	bay	size	would	be	a	semi‐

arbitrary	balance	between	a	more	flexible	use	of	space	afforded	by	larger	bays,	which	

would	be	countered	by	the	increased	costs	associated	with	increasing	the	bay	size.		In	

order	for	the	space	to	be	more	flexible	for	different	uses	and	occupancies,	a	minimum	bay	

area	should	be	utilized	when	determining	optimal	bay	dimensions.	

	 As	shown	in	Ruddy’s	study,	foundation	costs	associated	with	spread	footings	are	

nearly	constant	across	all	bay	areas	larger	than	about	500	ft2.		Cost	factors	that	remain	

constant	regardless	of	bay	area	do	not	affect	the	size	of	economical	bays;	rather,	they	only	

help	determine	the	cost	of	a	bay.		With	this	in	mind,	foundation	parameters	can	be	

neglected	in	analysis	of	economical	floor	bay	sizes	when	the	foundation	system	consists	of	

spread	footings.		This	is	not	the	case	for	other	types	of	foundation	systems,	which	requires	

their	inclusion	in	the	analysis	to	achieve	meaningful	results.	
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 “Rules of Thumb for Steel Design”: Ioannides, Ruddy, 2004 

Although	a	variety	of	sophisticated	analysis	software	tools	exist	to	aid	engineering	

design,	a	place	still	exists	for	design	rules	of	thumb.		Rules	of	thumb	often	provide	a	starting	

point	for	designs	that	require	multiple	iterations,	as	well	as	allowing	engineers	to	make	

quick	estimations	about	the	solution	to	a	design	problem.		Rules	of	thumb	are	not	a	

substitute	for	proper	engineering	analysis,	but	do	act	as	a	complement	to	analysis	by	

providing	a	quick	approximation	to	compare	results.		In	“Rules	of	Thumb	for	Steel	Design”,	

Socrates	Ioannides	and	John	Ruddy	discuss	a	wide	range	of	rules	of	thumb	and	

approximations,	including	their	derivations,	origins,	and	accuracy.	

	

 Structural Depths – Ioannides & Ruddy 2004 

Non‐composite	steel	beam	designs	typically	result	in	members	having	a	span‐to‐

depth	ratio,	L/D,	in	the	range	of	20	to	28.		For	example,	a	member	that	spans	30	feet	will	

likely	have	a	depth	between	12	inches	and	18	inches	depending	on	the	exact	load	

conditions.		When	this	ratio	is	converted	so	that	the	span	is	expressed	with	feet	while	the	

depth	is	expressed	with	inches,	it	becomes	approximately	Dൌ0.6L.	

Composite	beams	have	a	slightly	higher	L/D	ratio	due	to	the	strength	benefits	of	

composite	action.		Ioannides	and	Ruddy	place	this	ratio	at	roughly	21,	so	D	ൌ	0.55L.	

	

 Beam Section Properties – Ioannides & Ruddy 2004 

Ioannides	and	Ruddy	also	discuss	approximations	for	the	moment	of	inertia	and	

section	modulus	of	beam	members.	These	approximations	result	from	apply	basic,	yet	

accurate,	assumptions	about	the	proportions	of	cross‐section	of	a	typical	wide‐flange	beam.	
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Consider	a	generic,	doubly‐symmetric	wide	flange	member.		The	exact	moment	of	inertia	of	

the	section	depends	on	the	flange	thickness,	flange	width,	section	depth,	and	web	thickness.	

All	of	these	dimensions	are	unique	to	each	section	and	cannot	be	generalized	easily;	

however,	the	proportions	of	these	dimensions	are	fairly	consistent	across	sections.	

Specifically,	if	the	section	is	divided	horizontally	about	its	neutral	axis,	the	resulting	top	and	

bottom	T‐shape	sections	have	their	individual	neutral	axes	located	at	roughly	0.4d	from	the	

neutral	axis	of	the	whole	section,	where	“d”	is	the	depth	of	the	whole	section	as	shown	in	

Figure	2‐8.  

 

	

Figure 2-8: Typical Wide Flange Section 

	

Using	this,	the	Parallel	Axis	Theorem	can	be	applied	to	the	two	T‐shapes	to	find	the	

moment	of	inertia.	The	Parallel	Axis	Theorem	states:	

	

	 ࡵ ൌ෍ሺࡵ૙ ൅ ૛ሻ࢟࡭ Equation	2‐1

	

where:	

I	ൌ	moment	of	inertia	of	entire	section	ሺin4ሻ	
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I0	ൌ	moment	of	inertia	of	component	section	about	its	own	neutral	axis	ሺin4ሻ	

A	ൌ	area	of	component	section	ሺin2ሻ	

y	ൌ	distance	from	component	neutral	axis	to	total	section	neutral	axis	ሺinሻ	

	

As	stated	above,	the	T‐shape	members	have	neutral	axes	located	a	distance	of	0.4d	from	the	

total	section	neutral	axis,	therefore:	

	 ࢟ ൌ ૙. ૝ࢊ Equation	2‐2

Additionally,	the	moment	of	inertia	of	each	T‐shape	about	its	own	axis	is	much	smaller	than	

the	total	moment	of	inertia,	so	it	can	be	neglected.	Therefore:	

	 ૙ࡵ ൎ ૙ Equation	2‐3

Plugging	these	assumptions	into	the	Parallel	Axis	Theorem	equation	and	simplifying	

produces	the	following:	

	 ࡵ ൌ෍ሺࡵ૙ ൅ ૛ሻ࢟࡭ Equation	2‐1

Neglect	the	inertia	about	individual	axes.	

	 ࡵ ൌ෍ሺ࢟࡭૛ሻ Equation	2‐4

Substitute	assumptions	described	above.	

	 ࡵ ൎ෍ሺ࡭ሺ૙. ૝ࢊሻ૛ሻ Equation	2‐5

Since	two	T‐shape	sections	exist,	summing	the	components	produces	two	times	the	inertia	

of	one	T‐shape.	

	 ࡵ ൎ ૛ ∗ ࡭ ∗ ሺ૙. ૝ࢊሻ૛ Equation	2‐6

	

Adding	together	the	areas	of	both	T‐shapes	results	in	the	area	of	the	original	section,	As.	
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	 ࡵ ൎ ࢙࡭ ∗ ሺ૙. ૝ࢊሻ૛ Equation	2‐7

	

	 ࡵ ൎ ૙. ૚૟ࢊ࢙࡭૛ Equation	2‐8

	

Equation	2‐8	shows	the	moment	of	inertia	as	a	function	of	only	section	area	and	section	

depth.		While	the	section	depth	may	be	rather	simple	to	measure,	the	section	area	of	a	wide	

flange	member	is	not;	however,	the	section	area	can	be	used	to	find	the	section	weight	per	

foot	for	the	member.		This	leaves	the	section	depth	and	section	weight	as	variables	for	the	

moment	of	inertia,	both	of	which	are	identifying	properties	of	a	wide	flange	ሺi.e.	a	W14x90	

has	a	nominal	depth	of	14	inches	and	weighs	90	lb/ftሻ.		To	find	the	section	weight,	multiply	

the	volume	of	a	1‐foot‐long	section	of	the	member	by	the	specific	weight	of	steel.	

	

	 ࢚ࢃ ൌ ࢂ࢙ࢽ Equation	2‐9

	

where:	

Wt	ൌ	section	weight	ሺlb/ftሻ	

γs	ൌ	specific	weight	of	steel	ሺ490	lb/ft3ሻ	

V	ൌ	volume	of	1‐foot‐long	section	ሺft3ሻ	

	

Furthermore,	the	volume	can	be	written	as	the	section	area	multiplied	the	length.	Since	the	

section	area	is	typically	expressed	in	square	inches,	divide	the	area	by	144	to	convert	from	

in2	to	ft2.	
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࢚ࢃ ൌ ૝ૢ૙ ∗
࢙࡭
૚૝૝

∗ ૚	

࢚ࢃ ൌ ૜. ૝࢙࡭	

	
࢙࡭ ൌ

࢚ࢃ
૜. ૝

Equation	2‐10

	

Substituting	into	the	original	moment	of	inertia	equation	yields:	

	

	 ࡵ ൎ ૙. ૚૟ࢊ࢙࡭૛ Equation	2‐8

	

	
ࡵ ൎ ૙. ૚૟ ∗

࢚ࢃ
૜. ૝

∗ ૛ࢊ Equation	2‐11

	

	
ࡵ ൎ

࢚ࢃ ∙ ૛ࢊ

૛૙
Equation	2‐12

	

Considering	that	this	equation	utilizes	no	section	properties	aside	from	the	section	weight	

and	height,	the	approximation	produces	values	typically	within	10%	of	the	exact	value.	

Table	2‐1	shows	commonly	used	beam	sizes	varying	in	size	from	W8x10	to	W24x76.	
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Table 2-1: Comparison of Actual Versus Approximate Moments of Inertia 

Ix	ሺin4ሻ
Section	 Approx. Actual %	Difference	

W	 8	 x	 10 32 30.8 3.9%
W	 10	 x	 12 60 53.8 11.5%
W	 12	 x	 19 137 130 5.2%
W	 14	 x	 22 216 199 8.3%
W	 16	 x	 31 397 375 5.8%
W	 18	 x	 40 648 612 5.9%
W	 21	 x	 55 1213 1140 6.4%
W	 24	 x	 76 2189 2100 4.2%

	

The	potential	weakness	of	this	approximation	lies	in	the	assumption	made	about	the	

distribution	of	material	in	the	cross	section.		The	center	of	mass	of	each	T‐shape	is	assumed	

to	be	0.4d	from	the	total	section	neutral	axis;	however,	this	varies	depending	on	the	

proportions	of	the	flange	compared	to	the	web.		For	instance,	lighter	W‐shape	sections	in	a	

series	have	smaller	flanges	compared	to	the	size	of	the	web,	producing	a	parallel‐axis	

distance	less	than	the	assumed	0.4d.		Conversely,	heavier	sections	of	a	series	have	larger	

flanges	in	comparison	to	their	webs,	resulting	in	a	parallel‐axis	distance	more	than	0.4d.		

This	variation	becomes	apparent	when	comparing	different	beams	from	the	same	

series,	a	W24x55	and	W24x84	for	instance.		A	W24x55	has	an	approximate	moment	of	

inertia	of	1584	in4,	which	is	17%	greater	than	the	actual	moment	of	inertia	of	1350	in4.		By	

contrast,	a	W24x84	has	an	approximate	moment	of	inertia	of	2419	in4,	which	is	only	2%	

greater	than	the	actual	value	of	2370	in4.		

Additionally,	several	iterations	of	rounding	take	place	during	the	formulation	of	this	

equation.		The	most	critical	instance	occurs	at	the	beginning	of	the	derivation	when	the	

parallel	axis	distance	of	0.4d	is	selected.		Although	a	value	such	as	0.44	may	be	more	
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appropriate,	the	number	is	rounded	to	0.4	for	simplicity.		Although	this	approximation	

possesses	flaws,	it	is	certainly	more	than	adequate	for	quick	calculations.	

	

 Section Modulus – Ioannides & Ruddy 2004 

A	similar	approximation	for	the	elastic	section	modulus	results	from	combining	the	

definition	of	the	section	modulus	with	the	moment	of	inertia	approximation	from	above.	

Consider	Equation	2‐13	for	the	elastic	section	modulus:	

	

	
ࡿ ൌ

ࡵ
ࢉ

Equation	2‐13

	

where:	

S	ൌ	elastic	section	modulus	ሺin3ሻ	

I	ൌ	moment	of	inertia	ሺin4ሻ	

c	ൌ	distance	from	neutral	axis	to	extreme	beam	fiber	ሺinሻ	

	

The	moment	of	inertia	approximation	is	substituted	into	the	term	for	the	moment	of	

inertia.	Additionally,	the	distance	from	the	neutral	axis	to	the	extreme	fiber	for	doubly‐

symmetric	section	is	simply	half	of	the	section	depth.	

	
ࡵ ൎ

࢚ࢃ ∙ ૛ࢊ

૛૙
Equation	2‐12

	

	
ࢉ ൌ

ࢊ
૛

Equation	2‐14
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Substituting	these	items	into	the	original	section	modulus	equation	yields	the	following:	

	
ࡿ ൎ

࢚ࢃ ∙ ࢊ
૚૙

Equation	2‐15

Because	this	equation	depends	on	the	moment	of	inertia	approximation,	this	

approximation	possesses	similar	strengths	and	weaknesses	as	a	design	tool.	Another	

important	point	to	note	is	that	a	similar	approximation	cannot	be	made	for	the	plastic	

section	modulus	using	the	same	method,	due	to	the	plastic	stress	distribution	on	the	

section.	

	

 Column Section Properties – Ruddy 2004 

Ruddy	and	Ioannides	also	discuss	several	rule‐of‐thumb	approximations	for	column	

section	properties	and	critical	stresses.	The	most	important	among	these	is	that	for	the	

weak‐axis	radius	of	gyration,	which	directly	affects	compressive	strength	of	a	member.	

Recall	that	the	basic	definition	of	the	weak‐axis	radius	of	gyration	is	as	follows:	

	

	
࢟࢘ ൌ ඨ

࢟ࡵ
࡭

Equation	2‐16

	

For	W‐shape	members,	the	flanges	contribute	the	vast	majority	of	the	weak‐axis	moment	of	

inertia,	while	the	moment	of	inertia	of	the	web	is	negligible.	As	such,	approximating	the	

weak‐axis	moment	of	inertia	as	the	moment	of	inertia	of	the	flanges	produces:	

	

	
࢟ࡵ ൌ ૛ ൬

૚
૚૛

૜൰࢈ࢌ࢚ Equation	2‐17
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where:	

tf	ൌ	flange	thickness	ሺinሻ	

b	ൌ	flange	width	ሺinሻ	

	

Similarly,	the	area	of	the	section	can	be	approximated	as	the	area	of	only	the	flanges	for	the	

purposes	of	simplifying	the	analysis.	

	 ࡭ ൎ ૛ࢌ࢚࢈ Equation	2‐18

Substituting	these	equations	into	the	original	definition	of	the	radius	of	gyration	produces:	

	

	

࢟࢘ ൌ ඩ
૛ቀ ૚૚૛ ࢈ࢌ࢚

૜ቁ

૛ࢌ࢚࢈
Equation	2‐19

	

	
࢟࢘ ൌ ඨ࢈

૛

૚૛
Equation	2‐20

	

	 ࢟࢘ ൌ ૙. ૛ૡૢ࢈ ൎ ૙. ૛૞࢈ Equation	2‐21

	

The	resulting	radius	of	gyration	is	roughly	equal	to	29%	of	the	flange	width	of	the	section.	

Rounding	down	to	25%	of	the	flange	width	is	more	conservative,	easier	to	remember,	and	

compensates	for	excluding	the	area	of	the	web.	
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 Steel Weights - Ruddy 2004 

Ruddy	and	Ioannides	introduce	a	method	for	estimating	the	section	weight	of	a	

beam	for	a	given	section	depth	and	required	moment	capacity.	Equations	for	both	36	ksi	

and	50	ksi	steel	grades	are	provided.	Equations	2‐22a	and	2‐22b	are	formulated	using	ASD	

and	utilize	elastic	stress	distribution.	

	

Fy	ൌ	36	ksi:	 	
࢚ࢃ ൎ

૞ࡹ
ࡰ

Equation	2‐22a

	

Fy	ൌ	50	ksi:	 	
࢚ࢃ ൎ

૜. ૞ࡹ
ࡰ

Equation	2‐22b

where:	

Wt	ൌ	section	weight	ሺlb/ftሻ	

M	ൌ	required	moment	strength	ሺk‐ftሻ	

D	ൌ	nominal	section	depth	ሺinሻ	

	

These	equations	represent	more	than	strictly	empirical	rules	of	thumb;	they	are	derived	

directly	from	section	properties	of	wide	flange	members.	Although	the	equations	presented	

in	the	article	use	Allowable	Stress	Design,	they	can	be	re‐formulated	to	utilize	Load	

Resistance	Factor	Design	methods.	A	detailed	analysis	and	derivation	of	this	equation	into	

terms	of	LRFD	is	included	in	the	Appendix	section	of	this	thesis.	

	



24 

 Total Weight - Ruddy 2004 

Finally,	Ruddy	and	Ioannides	provide	weight	approximations	of	the	total	structural	

steel	per	square	foot	in	a	building.	The	approximation	comes	in	the	form	of	a	graph	of	steel	

weights	per	square	foot	of	several	major	projects	that	utilize	steel	construction.	These	steel	

weights	are	plotted	versus	the	number	of	stories	that	the	project	possesses,	resulting	in	the	

figure	below.	

	 	

Figure 2-9: Steel Weight Versus Building Stories (Ruddy, 2004) 

	

The	graph	shows	a	tendency	for	the	steel	weight	per	square	foot	to	increase	as	the	number	

of	stories	increases.	The	resultant	best‐fit	straight	line	corresponds	to	Equation	2‐23.	

	 	
࢚ࢃ ൌ

ࡺ
૜
൅ ૠ Equation	2‐23
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Wt	ൌ	structural	steel	weight	ሺlb/ft2ሻ	

N	ൌ	number	of	stories	

	

Considering	that	the	range	of	stories	for	projects	plotted	on	the	graph	range	from	55	to	110	

stories,	this	approximation	likely	applies	only	to	buildings	with	a	large	number	of	stories.	

Buildings	with	only	a	small	number	of	stories	likely	behave	differently.	

	

 Conclusion - Ruddy 2004 

	 Many	of	these	rules	of	thumb	provide	simplifications	of	complex	relationships	that	

are	used	in	several	derivations	found	in	the	Appendix	of	this	thesis.	The	beam	span‐to‐

depth	ratios	and	moment	of	inertia	equations,	as	well	as	the	beam	section	weight	equations	

assist	with	the	derivation	of	equations	for	beam	and	girder	weights	per	square	foot.	

Although	many	parameters	affect	the	steel	weight	of	beams	in	a	framing	system,	these	rules	

of	thumb	simplify	the	situation	by	relating	parameters	to	one	another.	 	
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 “Design Guide 5: Low- and Medium-Rise Steel Buildings”: AISC, 2003 

	 Design	Guide	5	published	by	the	American	Institute	of	Steel	Construction	discusses	a	

wide	variety	of	topics	concerning	the	design	and	construction	of	low‐rise	and	medium‐rise	

steel	buildings.	The	specific	topics	included	in	the	design	guide	concerning	the	topic	of	this	

analysis	include	basic	rules	for	economical	design,	live	load	and	bay	size	selection,	and	

factors	concerning	composite	member	design	and	construction.	

	

 Basic Design Rules for Economy 

	 Designing	an	economical	framing	system	for	a	building	requires	effective	planning	

and	forethought	on	the	part	of	the	engineer.	Two	basic	design	rules	hold	the	potential	to	

dramatically	reduce	the	cost	of	the	structural	system	of	a	building.		

First,	create	a	framing	layout	that	maximizes	the	use	of	repetitive	member	sizes	

arranged	in	a	regular,	repeating	pattern.	This	produces	two	benefits	that	reduce	project	

costs.	Duplicating	members	enables	fabrication	and	construction	discounts	due	to	

economies	of	scale.	Additionally,	a	simple,	regularly‐spaced	framing	pattern	further	

simplifies	fabrication	and	construction	processes	while	also	producing	a	clean,	well‐defined	

load	path	that	reduces	the	size	requirements	of	the	structural	members.	

Second,	utilizing	the	maximum	allowable	live	load	reduction	code	provisions	

produces	additional	steel	savings	by	reducing	the	strength	demand	of	framing	members.	

This	savings	is	especially	pronounced	in	the	design	of	column	members,	where	it	is	

possible	to	eliminate	a	majority	of	the	gravity	live	load	demand	using	live	load	reduction.	

Even	reducing	a	member	by	one	size	potentially	saves	a	considerable	amount	of	steel	

weight	and	cost	over	the	entirety	of	the	project.	
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 Live Load and Bay Size Selection 

	 An	important	first	decision	for	a	project,	and	a	major	topic	of	the	design	guide,	is	the	

determination	of	the	design	live	load	for	the	building’s	floor	structure.	Initially,	it	appears	

intuitive	that	selecting	a	heavier	live	load	results	in	a	proportionally	heavier	and	more	

expensive	structure;	however,	the	design	guide	indicates	that	this	is	not	necessarily	the	

case.	In	fact,	it	states	that	the	live	load	for	a	space	such	as	an	office	can	be	increased	“from	

the	minimum	permitted	design	live	load	of	50	lb/ft2	plus	20	lb/ft2	partition	load	to	a	100	

lb/ft2	live	load	capacity	ሺwith	no	additional	partition	load	allowanceሻ	at	virtually	no	

increase	in	cost.”	

	 To	demonstrate	this,	the	Design	Guide	includes	an	example	building	with	30‐foot	

square	bays	and	10	stories	to	compare	the	steel	costs	for	the	different	live	load	intensities.	

The	bay	with	50	lb/ft2	live	load	plus	20	lb/ft2	partition	load	costs	$1.41/	ft2,	while	the	100	

lb/ft2	live	load	bay	cost	$1.50/	ft2.	Although	the	bay	with	the	heavier	live	load	costs	more,	

the	difference	is	a	mere	$0.09/	ft2,	a	6%	increase	in	cost.	Considering	that	this	increase	

results	from	a	live	load	increase	greater	than	40%,	the	corresponding	increase	in	steel	

costs	is	essentially	negligible.	

According	to	the	design	guide,	framing	bay	dimensions	play	less	of	a	role	in	the	cost	

of	the	structural	system	than	anticipated.	Selecting	smaller	bay	dimensions	does	not	

appreciable	decrease	the	structural	costs.	Reducing	the	number	of	framing	pieces	typically	

produces	a	more	significant	reduction	in	costs.	

To	demonstrate,	the	design	guide	provides	a	comparison	between	bay	sizes	of	25‐

foot	by	25‐foot,	30‐foot	by	30‐foot,	and	30‐foot	by	40‐foot.	In	addition,	another	30‐foot	by	

30‐foot	bay	with	closer	beam	spacing	is	added	to	demonstrate	the	cost	of	additional	
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framing	pieces.	The	results	are	shown	in	Table	2‐2	below,	with	the	25‐foot	by	25‐foot	bay	

used	as	reference.	

Table 2-2: Percentage Comparison of Per-Square-Foot Costs (AISC, 2003) 

Bay	Size	 Mill	
Material	

Fabrication	
&	Delivery

Erection	
&	Studs

Composite	
Deck

Total	

25'	x	25'	 21%	 14% 34% 31% 100%	
30'	x	30'	 25%	 14% 32% 32% 103%	
30'	x	30'	
ሺAlt.ሻ	 31%	 16% 35% 31% 113%	

30'	x	40'	 31%	 13% 33% 32% 109%	
	

Based	on	the	results	of	the	design	guide	example,	increasing	the	bay	size	only	

produces	minor	increases	in	the	cost	per	square	foot	of	the	structure.	Doubling	the	bay	area	

from	25	feet	by	25	feet	ሺ625	ft2ሻ	up	to	30	feet	by	40	feet	ሺ1200	ft2ሻ	increases	the	structure	

costs	per	square	foot	by	less	than	10	percent.	By	contrast,	changing	the	framing	layout	to	

include	an	extra	filler	beam	in	the	30	foot	by	30‐foot	bay	increases	the	steel	cost	per	square	

foot	by	10%	without	any	associated	benefit	to	the	structure.	The	design	guide	concludes	

that	“the	smallest	bay	size	and	lowest	live	load	probably	will	not	produce	the	most	

economic	design”	when	considering	the	project	as	a	whole.	

	

 Composite Design 

	 The	inclusion	of	composite	members	into	the	design	of	the	floor	system	introduces	

the	potential	for	significant	weight	and	costs	savings	in	the	structure.	Mechanically	

attaching	the	concrete	slab	to	the	steel	beams	below	allows	for	the	slab	material	to	be	

utilized	in	resisting	bending	moment	of	the	beam.	Despite	the	added	costs	of	purchasing	

and	installing	shear	studs,	composite	construction	typically	reconciles	these	costs	with	a	
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substantial	reduction	in	steel	member	sizes.	As	such,	composite	construction	has	become	a	

commonplace	construction	technique.	

	

 Shored Construction 

	 With	composite	construction,	an	important	choice	presents	itself	with	regard	to	the	

method	of	supporting	the	metal	deck	and	wet	concrete	during	the	placing	stage.	Both	

options,	shored	construction	and	un‐shored	construction,	each	possess	unique	advantages	

and	disadvantages	which	present	themselves	in	both	the	design	and	construction	phases.		

With	shored	construction,	the	metal	deck	alone	cannot	provide	sufficient	strength	

and	stiffness	to	support	the	construction	loads,	including	the	wet	concrete	before	it	cures.	

To	supplement	the	strength	of	the	metal	deck,	shoring	is	placed	to	support	the	deck	and	

concrete	until	the	concrete	can	accept	its	portion	of	the	structural	demand.	The	primary	

advantages	of	this	method	exist	in	the	design	phase.	First,	the	member	deflection	only	

needs	to	be	calculated	for	the	composite	section,	since	the	non‐composite	stage	of	the	

member	supports	relatively	small	loads	due	to	the	shoring	equipment.	Second,	the	bare	

steel	section	does	not	need	to	be	checked	for	strength	requirements.	Again,	this	is	due	to	

the	support	received	from	the	shoring.	

Several	disadvantages	accompany	the	use	of	shored	construction.	In	contrast	to	the	

advantages,	which	occur	during	the	design	of	the	member,	the	disadvantages	occur	

typically	during	and	after	construction	has	taken	place.	The	most	obvious	disadvantage	is	

that	assembling	and	placing	shoring	takes	considerable	amounts	of	time.	Once	the	shoring	

is	in	place,	it	must	remain	until	the	concrete	gains	sufficient	strength.	This	adds	further	
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time	to	the	construction	process.	The	additional	required	time	this	process	takes	slows	the	

rate	of	construction	of	projects,	especially	those	with	multiple	floors.	

By	contrast,	the	advantages	and	disadvantages	of	un‐shored	construction	are	

essentially	the	inverse	of	those	for	shored	construction.	While	the	advantages	of	shored	

construction	primarily	facilitate	simplified	design	procedures,	un‐shored	construction	

benefits	the	construction	procedures	at	the	expense	of	increasing	the	design	requirements.	

The	main	advantage	of	un‐shored	construction	lies	in	its	ease	of	construction.	Unlike	

shored	construction,	the	metal	deck	possesses	the	necessary	strength	to	support	the	

construction	loads	and	wet	concrete	without	the	assistance	of	shoring.	This	permits	the	

concrete	to	be	placed	immediately	after	the	deck	and	studs	have	been	installed	on	the	

structure,	which	shortens	and	simplifies	the	construction	process.	

Several	additional	design	checks	accompany	un‐shored	construction	that	engineers	

must	consider	during	the	design	phase.	First,	the	bare	steel	section	must	be	designed	to	

support	the	construction	loads	and	wet	concrete,	since	shoring	is	not	present.	This	requires	

a	heavier	beam	section	than	would	be	needed	for	shored	construction.	Second,	the	floor	

structure	becomes	more	vulnerable	to	high	deflections	due	to	ponding	of	the	wet	concrete.	

This	results	in	concrete	thicknesses	greater	than	necessary	near	the	centers	of	bays,	while	

inadequate	concrete	thicknesses	are	more	likely	near	the	edges	of	a	bay.	One	method	to	

remedy	this	problem	involves	cambering	the	beams	to	balance	the	dead	load	deflection;	

however,	specifying	camber	greater	than	necessary	to	counter‐act	the	deflection	from	the	

wet	concrete	may	result	in	the	opposite	problem,	where	wet	concrete	ponds	near	the	edges	

of	a	bay.	This	decreases	the	concrete	thickness	near	the	middle	of	the	bay,	decreasing	the	
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final	strength	of	the	composite	section.	In	addition,	the	increased	cost	of	cambering	

members	can	be	more	than	the	steel	savings	from	using	a	shallower	section.	

 Conclusion 

Design	Guide	5	highlights	several	tips	that	improve	the	costs	of	a	framing	design.	A	

repetitive	framing	layout	decreases	costs	through	economies	of	scale	by	allowing	

fabricated	members	to	be	duplicated	as	much	as	possible.	As	shown	by	examples	in	the	

Design	Guide,	the	selection	of	floor	live	loads	has	only	a	minor	effect	on	the	cost	of	a	

framing	system.	

Composite	construction	significantly	reduces	the	amount	of	steel	used	in	a	framing	

system.	Both	methods	of	composite	construction,	shored	and	un‐shored,	have	their	

advantages	and	disadvantages	in	construction	and	design.	Un‐shored	construction	requires	

less	time	and	manpower	due	to	the	lack	of	shoring.	
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 “Value Engineering for Steel Construction”: David Ricker, 2000 

	 An	engineer	must	be	well‐rounded	in	their	knowledge	of	building	construction	in	

order	make	educated	design	choices	during	any	stage	of	the	planning,	design,	and	

construction	of	a	building.	David	Ricker	discusses	several	items	that	should	be	considered	

during	the	design	of	a	building	that	require	knowledge	outside	of	a	single	construction	

discipline.	

	

Stay Informed about Material Costs 

Knowledge	of	the	economic	factors	associated	with	different	steel	designs	allows	an	

engineer	to	make	educated	decisions	regarding	design	costs.		Local	steel	fabricators	serve	

as	a	source	of	information	such	as	steel	costs	and	mill	extras.	According	to	Ricker,	

“approximately	30%	on	material,	30%	on	shop	costs,	30%	on	erection,	and	10%	of	other	

items	such	as	shop	drawings,	painting	and	shipping.	Labor	is	more	than	60%!”	

	

Use of Composite Beams 

Although	fully‐composite	members	possess	strength	superior	to	partially‐composite	

members,	the	costs	required	to	achieve	full	composite	action	usually	exceeds	the	structural	

benefits.	According	to	the	Ricker,	the	cost	of	one	shear	stud	roughly	equates	to	the	cost	of	

10	pounds	of	steel.	Because	of	this	cost,	the	optimal	member	design	utilizes	somewhere	

between	50‐75%	of	full	composite	action.	This	compromise	enables	the	strength	benefits	of	

composite	design	without	requiring	an	excessive	quantity	of	shear	studs.	
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Selection of Optimal Bay Sizes 

Ricker	quotes	the	parametric	study	performed	by	John	Ruddy	in	1983	that	deals	

with	economical	bay	sizes	and	dimensions.	As	discussed,	the	study	concludes	that	

rectangular	bays	with	an	aspect	ratio	between	1.25	and	1.5,	with	beams	spanning	the	long	

direction,	produce	the	most	economical	designs.	For	more	information	on	the	results	of	the	

study,	refer	to	the	previous	discussion.	

	

Consider More than Minimum Steel Designs 

Similar	to	the	advice	of	Ruddy,	Ricker	advises	that	engineers	do	not	simply	select	a	

design	that	minimizes	steel	weight,	as	other	factors	contribute	to	final	structure	cost	that	

may	result	in	a	more	expensive	structure	in	the	long	term.	The	engineer	should	consider	

number	of	connections	and	members	utilized	in	the	design	in	order	to	keep	fabrication	and	

erection	costs	in	check.		

	

Design for Un-Shored Composite Construction  

Shored	construction	of	composite	floor	systems	requires	the	installation	of	

temporary	shoring,	which	adds	substantial	costs	to	the	project.	Using	un‐shored	

construction,	although	more	complicated	to	design,	typically	results	in	a	less	expensive	

design.	Increasing	the	gauge	of	the	deck	or	decreasing	the	span	of	the	framing	member	

saves	money	over	the	use	of	shoring.	
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Duplication of Member Sizes 

While	design	a	structure	for	the	duplication	of	members	may	result	in	inefficiencies	

at	small	scales,	it	permits	the	fabricator	to	produce	identical	members	on	a	larger	scale,	

which	results	in	lower	fabrication	costs.	In	general,	a	design	that	utilizes	a	smaller	number	

of	section	sets	costs	less	than	a	design	of	minimal	weight	with	a	large	number	of	section	

sets.	

	

Duplication of Member Connections 

Just	as	designing	for	duplicated	member	sizes	results	in	cost	savings,	designing	for	

the	duplication	of	connections	reduces	costs	to	an	even	greater	extent.	For	connections,	the	

cost	of	steel	and	hardware	is	essentially	negligible	compared	to	the	cost	of	fabricating	the	

connection.	Designing	a	connection	with	four	bolts	instead	of	only	three	adds	very	little	to	

the	final	cost	of	the	connect;	however,	the	four‐bolt	connection	possesses	a	higher	strength,	

allowing	it	to	be	used	in	a	larger	number	of	load	conditions.	

	

Conclusion 

	 Ricker	echoes	the	recommendations	of	many	other	sources	discussed.	Utilizing	

composite	construction	significantly	decreases	the	amount	of	steel	used	in	a	project.	When	

utilizing	composite	construction,	adopting	un‐shored	construction	techniques	for	the	floor	

system	reduces	the	time	and	labor	required	to	construct	the	composite	floor	slab,	which	

further	reduces	costs.	Framing	layouts	should	allow	for	duplication	of	member	sizes	and	

connections,	which	reduces	fabrication	costs.		
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Chapter 3 - Analysis Method 

 Scope 

This	analysis	intends	to	determine	economical	bay	sizes	for	a	typical	steel‐framed	

building	supporting	floor	loads.		Beam	spacing,	beam	span,	girder	span,	floor	live	load	

intensity,	and	composite	versus	non‐composite	construction	are	all	parameters	

investigated	in	the	analysis.			

Beam	center‐to‐center	spacing	varies	from	four	feet	up	to	12	feet	in	two	foot	

increments.		Beam	spacing	varies	independently	from	beam	span.		Beam	spans	range	from	

20	feet	to	52	feet	in	four	foot	increments.		Girder	spans	also	range	from	20	feet	to	52	feet	in	

four	foot	increments.		Beam	and	girder	spans	vary	independently	of	one	another.		Floor	live	

loads	include	50	lb/ft2,	75	lb/ft2,	and	100	lb/ft2.		The	effect	of	member	construction	type	is	

also	evaluated	in	this	analysis	by	considering	both	composite	and	non‐composite	beams	

and	girders.		Columns	remain	as	non‐composite	members	throughout	the	analysis.	
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Figure 3-1: Framing plan of a typical bay. 

	

 Analysis Criteria 

An	“economical	bay”	may	be	defined	in	several	ways;	however,	the	most	direct	way	

to	define	an	economical	bay	is	in	terms	of	steel	weight	or	steel	cost.		Specifically,	a	bay	that	

is	economical	in	terms	of	steel	weight	would	be	a	configuration	which	uses	the	least	

structural	steel	per	square	foot	of	bay	area.		Likewise,	an	economical	bay	in	terms	of	steel	

cost	would	be	a	configuration	which	costs	the	least	per	square	foot	to	fabricate	and	

construct.		As	shown	by	Ruddy	ሺ1983ሻ,	the	definitions	of	the	least‐weight	solution	and	the	

least‐cost	solution	are	not	equivalent.		Both	definitions	have	value	for	design	applications;	

however,	this	study	will	primarily	focus	on	the	least‐weight	solution	due	to	variability	of	

costs	associated	with	fabrication	and	construction.		Costs	associated	with	fabrication	and	

construction	will	only	be	discussed	qualitatively.	
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	 The	structural	steel	weight	of	a	typical	bay	results	from	the	summation	of	the	weight	

of	its	structural	members:	beams,	girders,	and	columns.		These	member	weights	depend	on	

the	size	of	the	section	selected	during	the	design	of	the	members.		The	weights	of	structural	

members	can	be	represented	in	terms	of	lb/ft2	by	taking	the	weight	of	each	member	and	

dividing	it	by	the	supported	tributary	area.		For	beams	and	girders,	this	simplifies	to	

dividing	the	member’s	section	weight	ሺpounds	per	footሻ	by	the	tributary	width	of	the	

member,	as	shown	by	Equation	3‐1	below.	

	

	
ࡴ ൌ

࢚ࢃ
ࢀ࢝

Equation	3‐1

	

where:	

H	ൌ	steel	weight	ሺlb/ft2ሻ	

Wt	ൌ	member	section	weight	ሺlb/ftሻ	

wT	ൌ	member	tributary	width	ሺftሻ	

	

For	columns,	the	method	is	slightly	different	due	to	the	fact	that	the	tributary	area	is	

perpendicular	to	the	span	of	a	column	member.		Column	weight	per	square	foot	can	be	

determined	by	taking	the	weight	of	a	one	story	tall	section	of	the	column	and	dividing	it	by	

the	bay	area	of	one	floor,	as	shown	in	Equation	3‐2.			

	

	
ࡴ ൌ

࢚ࢃ ∗ ࢎ
࡭

Equation	3‐2
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where:	

H	ൌ	steel	weight	ሺlb/ft2ሻ	

Wt	ൌ	member	section	weight	ሺlb/ftሻ	

h	ൌ	floor‐to‐floor	height	ሺftሻ	

A	ൌ	bay	area	ሺft2ሻ	

	

 Excluded from Analysis 

In	order	to	qualify	the	results,	several	factors	are	not	considered	as	part	of	this	

analysis:	foundation	design,	variations	in	story	height,	and	variations	in	the	number	of	

stories.			

In	his	1983	study	“Economics	of	Low‐Rise	Steel‐Framed	Structures”,	John	Ruddy	

found	that	costs	associated	with	spread	footing	foundations	were	essentially	constant	

across	most	bay	sizes.		Although	the	building	analyzed	in	his	study	is	slightly	different	than	

the	one	chosen	for	this	study,	it	is	reasonable	to	assume	that	foundation	costs	will	likewise	

be	constant	across	bay	sizes	for	this	building	as	well.		This	allows	foundation	parameters	to	

be	neglected,	while	maintaining	the	integrity	of	the	analysis.		Since	foundation	costs	remain	

nearly	constant	in	terms	of	dollars	per	square	foot	over	differing	bay	areas,	foundation	

design	will	not	affect	the	results	for	determining	economical	bay	dimensions.	

The	effect	of	story	height	and	the	number	of	stories	is	not	investigated	as	part	of	this	

analysis.		Unlike	foundation	parameters,	story	height	and	the	number	of	stories	will	likely	

affect	the	size	of	an	economical	bay.		As	shown	in	Equation	3‐2,	the	story	height	is	

represented	as	a	term,	meaning	that	story	height	does	affect	the	structure	weight.		Taller	

stories	require	larger	columns	due	to	the	longer	un‐braced	column	lengths.		The	increased	
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axial	load	from	the	larger	number	of	stories	will	also	tend	to	increase	the	column	size,	

which	will	be	required	to	resist	the	larger	load.		These	variables	will	be	eliminated	from	

this	analysis	by	keeping	the	story	height	and	number	of	stories	constant.	

A	quantitative	analysis	of	the	monetary	costs	of	framing	layouts	is	not	provided	as	

part	of	this	study.		Costs	are	considered	qualitatively	for	fabrications	and	construction	

costs,	such	as	shear	stud	installation	and	connection	fabrication.	

	

 Building Parameters 

The	building	used	in	this	analysis	is	a	steel‐framed	building	with	rectangular	bays	

that	are	uniform	in	size.		It	is	five	stories,	including	the	ground	floor	slab‐on‐grade,	with	

each	story	having	a	floor‐to‐floor	height	of	fifteen	feet.		The	floor	consists	of	18‐guage	3‐

inch	Vulcraft	model	3VLI18	composite	steel	deck	with	5‐1/2‐inch	deep	lightweight	

concrete	ሺ110	lb/ft3ሻ.	Although	the	deck	can	be	selected	for	each	specific	framing	condition,	

it	is	kept	constant	in	this	study	for	simplicity.	The	profile	of	the	deck	is	shown	in	Figure	3‐2.		

	

Figure 3-2: Section of Composite Metal Deck 
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The	metal	deck	is	selected	based	on	the	maximum	span	and	floor	live	load	that	is	

tested	in	the	study,	as	well	as	fire	rating	considerations.	The	worst	load	case	experienced	

by	the	deck	is	100	lb/ft2	live	load	while	spanning	12	feet	between	beams.		This	eliminates	

1.5‐inch	metal	deck	due	to	insufficient	strength	at	such	spans.		While	2‐inch	metal	deck	is	

capable	of	spanning	the	required	distance,	it	requires	more	concrete	than	3‐inch	deck,	

which	results	in	a	higher	dead	load.	Both	strength	and	fire	protection	requirements	

determine	the	depth	of	the	concrete.		Considering	strength	alone,	18‐guage	3‐inch	

composite	deck	with	only	lightweight	concrete	of	4‐inch	total	thickness	is	sufficient;	

however,	increasing	the	concrete	thickness	to	5‐1/2	inches	total	provides	a	one‐hour	fire	

rating	from	the	Underwriters’	Laboratory	without	the	need	to	apply	any	additional	fire	

protection	to	the	deck.			

	All	beams,	girders,	and	columns	are	designed	with	A992	Grade	50	steel	wide	flange	

sections.		Members	comprised	of	different	section	types	or	steel	grades	are	not	considered.		

All	framing	members	are	simply‐supported.		Columns	are	assumed	to	be	a	constant	section	

for	the	entire	height	of	the	building	without	reducing	section	size	at	splices.		This	prevents	

column	weight	per	square	foot	from	varying	from	story	to	story.	

 Load Conditions 

Structure	loads	include	gravity	dead	loads	and	live	loads.		Dead	loads	include	those	

from	the	structure	self‐weight	and	imposed	loads	from	other	building	components.		Live	

loads	have	been	selected	to	reflect	a	range	of	common	building	occupancies,	as	well	as	

account	for	construction	loads	in	the	composite	steel	design.	

Dead	load	from	floor	deck	and	concrete	is	40	lb/ft2,	while	the	imposed	floor	dead	

load	is	15	lb/ft2.		Floor	live	loads	are	either	50	lb/ft2,	75	lb/ft2,	or	100	lb/ft2.		A	50	lb/ft2	live	
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load	would	be	representative	of	an	office	without	partitions,	while	75	lb/ft2	is	more	

appropriate	for	an	office	space	with	partitions.		A	live	load	of	100	lb/ft2	represents	heavier	

occupancies	such	as	assembly	spaces.		These	three	live	load	intensities	cover	a	wide	variety	

of	possible	building	occupancies,	which	allow	the	results	of	this	analysis	to	be	applicable	to	

many	types	of	building	occupancies.		In	addition	to	occupancy	live	loads,	composite	

members	are	designed	with	a	construction	live	load	of	20	lb/ft2	which	acts	on	the	member	

before	composite	action	is	achieved	between	the	beam	and	slab	ሺASCE,	2010ሻ.			

	 The	roof	is	an	ordinary	flat	roof	that	does	not	support	any	rooftop	mechanical	units	

or	other	large	equipment	that	would	act	as	a	concentrated	load.		Roof	dead	loads	consist	of	

a	10	lb/ft2	imposed	dead	load	from	building	components	such	as	insulation,	waterproofing,	

etc.,	and	a	20	lb/ft2	dead	load	for	the	assumed	steel	framing	and	deck	that	supports	the	

roof.		A	20	lb/ft2	live	load	acts	on	the	roof	in	accordance	with	ASCE	7‐10	live	load	

provisions	under	Table	4‐1	for	ordinary	flat	roofs.	

	 For	the	purposes	of	simplifying	analysis,	several	load	categories	are	not	considered:	

seismic,	wind,	and	snow	loads,	which	are	both	highly	dependent	on	the	geographic	location	

of	the	building,	the	exact	geometric	configuration	of	the	building,	and	the	lateral	system	of	

the	building.		Including	these	loads	in	even	a	limited	extent	would	greatly	complicate	the	

analysis	of	the	structure,	possibly	without	adding	any	benefit	to	the	results.		In	fact,	adding	

loads	that	are	dependent	on	location	and	geography	would	decrease	the	value	of	this	

analysis,	as	the	results	would	become	specific	only	areas	similar	to	the	location	used	in	the	

analysis.			
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 Member Design 

All	framing	members	are	designed	using	the	Load	Resistance	Factor	Design	method.		

The	governing	ASCE	7‐10	load	combination	for	all	members	is	Combination	2:	

ܷ ൌ ܦ1.2 ൅ ܮ1.6 ൅ 	௥ܮ0.5

In	addition	to	being	designed	for	strength	limit	states,	beams	and	girders	are	also	

designed	for	serviceability	limit	states	for	member	deflection.	

	

 Beams 

	 Beam	center‐to‐center	spacing	varies	from	4	feet	up	to	12	feet	in	two‐foot	

increments.		These	spacing	boundaries	result	from	limits	in	construction	techniques.		

Beams	spaced	closer	than	4	feet	on	center	become	difficult	to	install	due	to	lack	of	

maneuvering	space.		The	maximum	beam	spacing	is	limited	by	the	maximum	allowable	

span	of	the	floor	deck.		This	maximum	span	varies	depending	on	the	deck	type	and	amount	

of	concrete;	however,	spans	greater	than	12	feet	become	difficult	to	achieve	with	metal	

deck.			

	 Beam	span	ranges	from	20	feet	to	52	feet	in	4‐foot	increments.		These	span	ranges	

result	from	practical	limits	of	steel	fabrication	and	construction.		Steel	members	shorter	

than	20	feet	are	not	commonly	produced	by	steel	mills	as	a	standard	size,	so	specifying	

shorter	members	result	in	mill	extras.	ሺNucor‐Yamato,	2016ሻ		According	to	AISC	Design	

Guide	5	ሺ2003ሻ,	when	bay	dimensions	begin	to	exceed	45	feet,	other	framing	methods	

become	more	economical.	
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 Non-Composite 

Beam	members	are	designed	to	resist	flexural	and	shear	forces	imposed	by	the	

external	loads.		For	non‐composite	beams,	the	concrete‐filled	metal	deck	is	considered	

adequately	stiff	to	laterally	brace	the	compression	flange	against	lateral‐torsional	buckling	

limit	states.	ሺYura,	2001ሻ		This	allows	the	beams	to	be	governed	by	the	limit	state	of	

flexural	yielding,	so	beams	develop	their	full	plastic	moment.	Based	on	the	total	member	

forces,	a	wide	flange	member	of	least	weight	is	first	selected	based	on	flexural	strength	

alone	using	from	the	AISC	Equation	F2‐1,	shown	below	in	Equation	3‐3.			

	

	 ࢔ࡹࣘ ൌ ࢖ࡹࣘ ൌ ࢞ࢆ࢟ࡲࣘ Equation	3‐3

where:	

ϕ	ൌ	strength	reduction	factor	ሺ0.9	for	flexureሻ	

Mp	ൌ	plastic	moment	strength	ሺk‐inሻ	

Fy	ൌ	material	yield	stress	ሺksiሻ	

Zx	ൌ	plastic	section	modulus	about	strong	axis	ሺin3ሻ	

	

 Composite 

Composite	beams	receive	adequate	lateral	bracing	from	the	deck	and	slab	since	the	

concrete	slab	is	mechanically	attached	to	the	steel	beam	with	shear	studs.		Figure	3‐3	

shows	a	typical	section	through	a	composite	beam	used	in	this	analysis.	
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Figure 3-3: Composite Beam Section 

	

Composite	beams	are	designed	to	withstand	loads	experienced	before	and	after	

composite	action	is	achieved.		Partial	composite	action	is	used	in	this	study.	Composite	

beams	are	designed	to	achieve	50%	composite	action,	which	Ricker	suggests	is	more	

economical	than	full	composite	action	ሺ2000ሻ.		The	composite	section	resists	all	post‐

construction	live	and	dead	loads,	while	the	non‐composite	section	supports	construction	

loads	and	the	slab	dead	load.		Live	load	reduction	code	provisions	are	not	utilized	in	the	

analysis	for	beams.	The	three	live	load	cases	cover	the	variation	of	live	loads	for	the	

purposes	of	this	study.		

After	sizing	a	member	for	flexure	only,	the	members	must	satisfy	shear	strength	

requirements.		Shear	strength	is	determined	using	AISC	Equation	G2‐1,	which	is	shown	

below	as	Equation	3‐4.	

	 ࢔ࢂࣘ ൌ ࣘ૙. ૟࢜࡯࢝࡭࢟ࡲ Equation	3‐4

where:	

ϕ	ൌ	strength	reduction	factor	ሺ1.0	for	compact	wide‐flange	membersሻ	
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Fy	ൌ	material	yield	stress	ሺksiሻ	

Aw	ൌ	section	web	area	ሺin2ሻ	

Cv	ൌ	web	shear	coefficient	ሺ1.0	for	compact	wide	flange	shapesሻ	

	

In	addition	to	strength	requirements,	beams	are	designed	to	satisfy	deflection	limits	

for	floor	members	as	specified	in	the	2015	International	Building	Code	ሺIBCሻ.		Table	3‐1	

summarizes	the	deflection	limits	described	in	the	2015	IBC.		

	

Table 3-1: 2015 IBC Allowable Deflections 

	

	

	

	

	

	

	

	

	

	

For	this	research,	maximum	member	deflections	due	to	live	loads	shall	not	exceed	

L/360,	and	maximum	deflections	due	to	combined	dead	and	live	loads	shall	not	exceed	

L/240.		Composite	beams	are	designed	to	have	a	maximum	pre‐composite	deflection	not	

exceeding	L/360	due	to	construction	and	pre‐composite	loads.		Beam	cambering	is	not	

Construction L S	or	W D	൅	L	
Roof	members:	 	
Supporting	plaster	or	stucco	ceiling L/360 L/360 L/240	
Supporting	non‐plaster	ceiling L/240 L/240 L/180	
Not	supporting	ceiling	 L/180 L/180 L/120	
Floor	members	 L/360 ‐ L/240	
Exterior	walls:	 	
With	plaster	or	stucco	finishes ‐ L/360 ‐	
With	other	brittle	finishes ‐ L/240 ‐	
With	flexible	finishes	 ‐ L/180 ‐	
Interior	partitions:	 	
With	plaster	or	stucco	finishes L/360 ‐ ‐	
With	other	brittle	finishes L/240 ‐ ‐	
With	flexible	finishes	 L/180 ‐ ‐	
Farm	buildings	 ‐ ‐ L/180	
Greenhouses	 ‐ ‐ L/120	
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considered	as	a	method	to	reduce	deflection	for	the	purposes	of	simplifying	this	analysis.		

The	full	dead	load	is	included	in	calculating	the	member	deflection	under	the	total	load.	

This	results	in	a	conservative	design	and	helps	minimize	concrete	ponding	due	to	excessive	

member	deflection	during	concrete	placement.	Member	deflection	are	determined	using	

Equation	3‐5.	

	

	
ઢ ൌ

૞ࡸ࢝૝

૜ૡ૝ࡵࡱ
Equation	3‐5

	

where:	

Δ	ൌ	member	mid‐span	deflection	ሺinሻ	

w	ൌ	uniformly‐distributed	service‐level	load	intensity	ሺk/inሻ	

L	ൌ	member	span	ሺinሻ	

E	ൌ	elastic	modulus	ሺksiሻ	ሺ29,000	ksi	for	steelሻ	

I	ൌ	moment	of	inertia	about	bending	axis	ሺin4ሻ	

	

Deflection	is	checked	using	the	deflection	equation	for	a	beam	as	shown	in	Equation	

3‐5.		This	equation	is	reworked	to	produce	an	L/Δ	value	based	on	the	input	moment	of	

inertia	of	the	selected	member,	as	shown	in	Equation	3‐7.			

	

	
ઢ ൌ

૞ࡸ࢝૝

૜ૡ૝ࡵࡱ
Equation	3‐5

	 ૜ૡ૝ࡵࡱઢ
૞࢝

ൌ ૝ࡸ Equation	3‐6
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	 ࡸ
ઢ
ൌ
૜ૡ૝ࡵࡱ
૞ࡸ࢝૜

Equation	3‐7

	

The	minimum	allowable	L/Δ	value	for	a	beam	is	simply	the	inverse	of	the	deflection	

criteria.		As	an	example,	the	minimum	L/Δ	value	a	valid	member	can	have	for	a	deflection	

ratio	of	L/360	is	360.		A	value	less	than	360	corresponds	to	a	deflection	that	exceeds	the	

L/360	serviceability	limit.	

Based	on	the	required	moment	capacity,	shear	capacity,	and	moment	of	inertia	

determined	from	the	analysis,	beams	are	selected	with	properties	meeting	or	exceeding	the	

design	minimums.		

	

 Girders 

Girder	center‐to‐center	spacing	depends	on	the	span	of	the	beams	that	frame	into	it,	

since	beams	frame	into	a	girder	on	each	of	their	ends.		Beam	spans	vary	from	20	feet	to	52	

feet	in	4‐foot	increments,	which	corresponds	to	the	range	in	girder	on‐center	spacing.		

Girder	spans	range	from	20	feet	to	52	feet	in	4‐foot	increments.		These	limits	exist	for	the	

same	reason	as	the	limits	for	beams,	which	are	explained	above.	

Girder	members	is	designed	to	resist	flexural	and	shear	forces	imposed	on	them	by	

the	building	loads.		For	non‐composite	girders,	the	metal	deck	is	assumed	to	provide	no	

lateral	bracing	to	the	top	flange	of	the	girder	because	it	spans	parallel	to	the	span	of	the	

girder	and	has	very	little	stiffness;	however,	beams	that	frame	perpendicularly	into	the	

girders	do	possess	sufficient	stiffness	to	act	as	lateral	brace	locations	for	the	compression	

flange.		This	corresponds	to	the	compression	flange	un‐braced	length	Lb	equaling	the	

center‐to‐center	beam	spacing.		Having	an	un‐braced	length	greater	than	zero	allows	the	
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girder	to	experience	several	possible	flexural	limit	states,	namely	flexural	yielding,	inelastic	

lateral‐torsional	buckling,	and	elastic	torsional	buckling.		

Similar	to	the	procedure	for	beam	members,	a	wide	flange	member	of	least	weight	is	

selected	based	on	the	total	member	forces;	the	members	must	satisfy	strength	and	

deflection	limits	as	specified.		Unlike	beams,	the	un‐braced	length	for	non‐composite	

girders	is	not	zero,	which	may	cause	lateral	torsional	buckling	to	be	the	governing	limit	

state	for	the	member.		In	such	cases,	the	moment	strength	of	the	member	is	determined	by	

AISC	Equations	F2‐2	and	F2‐3,	shown	in	Equations	3‐8	and	3‐9	below.	

	

࢖ࡸ ൏ ࢈ࡸ ൑ 	:࢘ࡸ ࢔ࡹ ൌ ࢈࡯ ቈ࢖ࡹ െ ሺ࢖ࡹ െ ૙. ૠ࢞ࡿ࢟ࡲሻሺ
࢈ࡸ െ ࢖ࡸ
࢘ࡸ െ ࢖ࡸ

ሻ቉ ൑ 	࢖ࡹ Equation	3‐8

	

where:	

Cb	ൌ	lateral	torsional	buckling	modification	factor	ሺtaken	to	be	1.0ሻ	

Sx	ൌ	elastic	section	modulus	about	strong	axis	ሺin3ሻ	

Lp	ൌ	maximum	unbraced	length	to	achieve	plastic	moment	strength	ሺftሻ	

Lb	ൌlateral	brace	length	ሺftሻ	

Lr	ൌ	minimum	unbraced	length	for	elastic	lateral	torsional	buckling	to	occur	ሺftሻ	

	

࢈ࡸ ൐ 	:࢘ࡸ ࢔ࡹ ൌ ࢞ࡿ࢘ࢉࡲ ൑ ࢖ࡹ Equation	3‐9

	

Fcr	can	be	calculated	conservatively	using	AISC	Equation	F5‐4,	shown	in	Equation	3‐10.	
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	 ࢘ࢉࡲ ൌ
ࡱ૛࣊࢈࡯

ቀ
࢈ࡸ
࢙࢚࢘
ቁ
૛ Equation	3‐10

	
࢙࢚࢘ ൌ

૙ࢎ࢟ࡵ
૛࢞ࡿ

Equation	3‐11

Iy	ൌ	weak	axis	moment	of	inertia	ሺin4ሻ	

h0	ൌ	distance	between	flange	centroids	ሺinሻ	

	

		The	un‐braced	length	of	the	girder	is	considered	to	be	the	greatest	length	that	

divides	the	girder	into	equal	spans	yet	remains	less	than	the	maximum	allowable	span	of	

the	metal	deck.	Once	the	unbraced	length	is	determined,	a	section	can	be	selected	for	the	

girder.	The	member	must	satisfy	strength	and	deflection	limits	as	specified	above.		These	

requirements	are	checked	separately	by	designing	the	member	for	moment	strength	only,	

checking	the	shear	strength,	then	checking	and	resizing	the	member	for	deflection.		Girder	

deflection	criteria	is	checked	using	the	same	method	as	for	beams.	

Although	girders	primarily	experience	point	loads	in	the	form	of	tributary	beam	

reaction	forces,	shear	and	moment	forces	are	approximated	as	those	of	a	uniformly	

distributed	load.		This	method	provides	an	adequate	approximation	of	the	exact	member	

forces	in	the	girders,	while	greatly	simplifying	the	load	analysis.		It	is	important	to	note	that	

any	discrepancy	in	the	approximate	method	is	due	to	the	approximate	method	being	

conservative.		A	detailed	analysis	and	justification	of	this	method	can	be	found	in	Appendix	

A.	

Like	beam	members,	girder	members	shall	satisfy	deflection	limits	for	floor	

members	as	specified	in	the	2015	IBC.		Composite	girders	are	designed	to	have	a	maximum	
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pre‐composite	deflection	not	exceeding	L/360	due	to	construction	and	pre‐composite	

loads.		Girder	cambering	is	not	considered	as	a	method	to	reduce	deflection.	

	

 Columns 

	 Column	members	support	beam	and	girder	members	by	transmitting	their	end	

reactions	as	axial	forces	to	the	foundation.		The	tributary	areas	of	columns	span	across	

multiple	stories,	where	the	tributary	on	each	floor	is	equal	to	the	area	of	one	bay.		This	

occurs	for	every	story	that	the	column	supports,	so	the	total	tributary	area	of	the	column	is	

the	area	of	one	bay	multiplied	by	the	number	of	supported	stories.		This	can	be	expressed	

as	shown	in	Equation	3‐13.	

	 ࢀ࡭ ൌ ࡲ࡭ࡺ Equation	3‐12

	

AT	ൌ	total	column	tributary	area	ሺft2ሻ	

N	ൌ	number	of	supported	stories	

AF	ൌ	area	of	a	typical	bay	ሺft2ሻ	

	

The	number	of	stories	that	the	building	possesses	remains	constant	at	5	stories	in	this	

analysis,	but	the	bay	area	varies	with	the	spans	of	the	beams	and	girders.		Both	beams	and	

girders	range	in	span	from	20	feet	to	52	feet,	which	allows	the	bay	area	to	range	from	400	

ft2	up	to	2,704	ft2.		Over	the	5	supported	levels,	the	tributary	area	of	a	single	column	ranges	

from	2,000	ft2	to	13,520	ft2.		The	uniformly	distributed	building	loads	that	act	on	this	

tributary	area	produce	the	axial	load	that	the	column	must	carry.	
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	 Building	floor‐to‐floor	height	remains	constant	at	15	feet	throughout	the	analysis,	

which	corresponds	to	the	column	un‐braced	length.		For	determining	the	effective	length	of	

the	column,	an	effective	length	factor,	K,	is	assumed	to	be	equal	to	1,	despite	the	columns	

being	continuous	members	with	a	K	factor	potentially	different	than	1.		This	assumption	

serves	to	simplify	the	analysis	while	also	remaining	conservative.		ሺAISC,	2010ሻ	

	 ASCE	7‐10	provisions	for	live	load	reduction	are	utilized	for	column	design,	since	

significant	steel	savings	can	be	realized	from	the	reduction	in	load.		Initially,	columns	are	

sized	with	the	load	acting	concentrically	on	the	member.		W8,	W10,	W12,	and	W14	column	

members	are	selected	using	AISC	Equation	E3‐1,	shown	in	Equation	3‐13.		The	column	self‐

weight	is	accounted	for	in	the	axial	force.	

	

	 ࢔ࡼ ൌ ࢍ࡭࢘ࢉࡲ Equation	3‐13

where:	

ࡸࡷ
࢘
൑ ૝. ૠ૚ඨ

ࡱ
࢟ࡲ
	 ࢘ࢉࡲ ൌ ࢟ࡲ ቈ૙. ૟૞ૡ

࢟ࡲ
቉ࢋࡲ Equation	3‐14a

ࡸࡷ
࢘
൐ ૝. ૠ૚ඨ

ࡱ
࢟ࡲ
	 ࢘ࢉࡲ ൌ ૙. ૡૠૠࢋࡲ Equation	3‐14b

KL/r	ൌ	column	slenderness	ratio	about	weak	axis	

Fe	ൌ	Euler	buckling	stress	ሺksiሻ	

	

To	facilitate	ease	of	construction	and	fabrication,	girders,	which	typically	have	wider	

flanges,	frame	into	the	flanges	of	the	column,	while	beams	frame	into	the	column	web.		This	

provides	the	most	optimum	use	of	space	for	connections,	as	well	as	eliminates	the	need	to	
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cope	beam	or	girder	flanges	to	fit	into	the	column	connection.	Figure	3‐3	illustrates	the	

framing	configuration.	

	

	

Figure 3-4: Beam- and Girder-to-Column Detail 

	

Because	the	girders	connect	to	the	face	of	the	column	flange,	the	girder	reaction	

force	acts	at	a	distance	from	the	longitudinal	axis	of	the	column,	which	induces	an	eccentric	

moment.		These	eccentricities	reduce	the	design	axial	capacity	of	the	column.		After	being	

sized	for	pure	axial	load,	the	columns	are	re‐checked	to	consider	the	eccentricities	of	the	

beam‐to‐column	connections.		The	eccentricity	of	the	connection	produces	a	moment	in	the	

column	according	to	Equation	3‐15.	The	resulting	moment	is	used	in	the	interaction	

equation	shown	in	Equation	3‐17	to	determine	the	adequacy	of	the	member	for	concurrent	

axial	and	bending	forces.	

	 ࢛ࡹ ൌ ࢋࢋ࢛ࡼ Equation	3‐15

where:	

Mu	ൌ	factored	moment	induced	by	eccentricities	ሺkip‐feetሻ	
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Pue	ൌfactored	axial	load	acting	non‐concentrically	ሺkipsሻ	

e	ൌ	offset	between	force	and	member	axis	ሺfeetሻ	

	

Consequently,	column	members	are	designed	with	consideration	given	to	both	axial	load	

and	bending	moment	acting	concurrently	due	to	the	eccentric	connections.		Column	

members	satisfy	AISC	Specification	Equation	H1‐1a,	shown	in	Equation	3‐16,	since	axial	

load	is	greater	than	20%	of	the	column’s	axial	capacity.	

	

	 ࢘ࡼ
ࢉࡼ

൅
ૡ
ૢ
ቆ
࢞࢘ࡹ

࢞ࢉࡹ
൅
࢟࢘ࡹ

࢟ࢉࡹ
ቇ ൑ ૚ Equation	3‐16

where:	

Pr	ൌ	required	axial	strength	ሺkipsሻ	

Pc	ൌ	available	axial	strength	ሺkipsሻ	

Mrx	ൌ	strong	axis	required	flexural	strength	ሺkip‐feetሻ	

Mcx	ൌ	strong	axis	available	flexural	strength	ሺkip‐feetሻ	

Mry	ൌ	weak	axis	required	flexural	strength	ሺkip‐feetሻ	

Mcy	ൌ	weak	axis	available	flexural	strength	ሺkip‐feetሻ	

	

Since	beam	members	frame	directly	into	the	column	webs,	their	eccentricity	is	

approximated	as	0,	so	the	weak‐axis	bending	term	drops	out	of	the	equation	as	shown	in	

Equation	3‐17.	
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	 ࢘ࡼ
ࢉࡼ

൅
ૡ
ૢ
൬
࢞࢘ࡹ

࢞ࢉࡹ
൰ ൑ ૚ Equation	3‐17

	

Column	members	experience	the	limit	states	of	elastic	buckling	and	inelastic	

buckling,	depending	on	their	slenderness	ratios,	KL/r.	Column	members	are	selected	based	

on	their	design	axial	strengths	using	Equation	3‐13.		Column	design	flexural	strengths	are	

determined	using	Equation	3‐3.	

 

  



55 

Chapter 4 - Analysis Procedure 

With	five	beam	spacing	distances,	nine	beam	spans,	nine	girder	spans,	three	live	

load	intensities,	and	two	methods	of	construction,	the	analysis	requires	the	design	of	999	

beam,	girder,	and	column	members	and	results	in	486	unique	framing	solutions.		The	sheer	

number	of	repetitive	calculations	lends	itself	extremely	well	to	the	use	of	spreadsheet	

software,	such	as	Microsoft	Excel.		The	spreadsheet	allows	for	the	quick	calculation	of	

member	forces,	deflections	and	steel	weights.		All	members	are	selected	and	input	

manually	into	the	spreadsheet.		While	non‐composite	member	design	utilizes	only	the	

spreadsheet,	composite	members	also	utilize	Enercalc,	a	software	program	to	assist	in	the	

design	the	composite	section.			

	

 Beams 

Values	for	the	slab	self‐weight	dead	load,	imposed	dead	load,	floor	live	load,	and	

member	tributary	width	are	used	to	calculate	the	factored	distributed	load	on	the	beam	

according	to	the	governing	load	combination.	Table	4‐1	shows	information	on	the	service‐

level	dead	and	live	loads,	as	well	as	the	factored	distributed	load	acting	on	the	beam.	

	

Table 4-1: Load Information 
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Moment	and	shear	forces	are	calculated	using	the	distributed	load	value	and	the	

member	span.		Member	self‐weight	is	included	in	the	design	forces	once	a	preliminary	

member	is	selected.		Determining	the	self‐weight	forces	is	an	iterative	process,	as	the	self‐

weight	cannot	be	determined	until	a	member	has	been	selected;	however,	an	appropriate	

member	cannot	be	selected	until	the	total	forces,	including	the	self‐weight,	are	known.		An	

initial	member	is	selected	solely	based	on	flexural	strength,	and	then	the	member	is	re‐

checked	considering	its	self‐weight	loads.		If	the	member	is	inadequate,	a	new	member	is	

selected	based	on	the	current	self‐weight	forces.	Table	4‐2	indicates	a	sample	of	beam	

spans	and	members	sized	for	strength	only.	

	

Table 4-2: Beam Loads and Members Sized for Strength Only 

	

For	composite	members,	the	same	load	parameters,	member	span,	and	tributary	

width	are	used	to	calculate	the	required	strength.		Analysis	software,	Enercalc,	calculates	

the	strength	and	deflection	of	the	partially	composite	section.	The	moment	strength	of	the	

section	is	calculated	based	on	a	plastic	stress	distribution.	The	deflection	of	the	member	is	

calculated	using	the	lower	bound	moment	of	inertia	of	the	partially	composite	section.	The	

lower	bound	moment	of	inertia	for	a	partially	composite	section	is	calculated	according	to	

AISC	Equation	C‐I3‐1,	shown	in	Equation	4‐1.	
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௅஻ܫ ൌ ௦ܫ ൅ ௦ሺܣ ாܻே஺ െ ݀ଷሻଶ ൅ ቆ
Σܳ௡
௬ܨ

ቇ ሺ2݀ଷ ൅ ݀ଵ െ ாܻே஺ሻଶ	

where:	

ILB	ൌ	lower	bound	moment	of	inertia	ሺin4ሻ	

Is	ൌ	moment	of	inertia	of	steel	section	ሺin4ሻ	

As	ൌ	area	of	steel	section	ሺin2ሻ	

YENA	ൌ	elastic	neutral	axis	distance	measured	from	bottom	of	steel	ሺinሻ	

d1	ൌ	distance	from	compression	force	in	concrete	to	top	of	steel	section	ሺinሻ	

d3	ൌ	distance	from	resultant	tension	force	to	top	of	steel	section	ሺinሻ	

ΣQn	ൌ	sum	of	nominal	strengths	of	steel	anchors	on	half	the	member	length	

ሺkipsሻ	

Fy	ൌ	yield	strength	of	steel	ሺksiሻ	

	

The	geometry	of	the	metal	deck,	concrete	properties,	and	the	effective	concrete	

flange	width	are	input	to	calculate	these	properties.			A	wide	flange	member	of	least‐weight	

is	then	selected	to	satisfy	the	strength	and	deflection	requirements.	Table	4‐3	indicates	a	

sample	of	beams	sized	when	considering	deflection	criteria.	
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Table 4-3: Members Sized for Deflection 

	

After	the	selected	member	is	checked	for	moment	strength,	shear	strength,	and	

deflection,	the	self‐weight	of	the	beam	is	converted	to	steel	weight	per	square	foot,	which	is	

achieved	by	dividing	the	section	weight	ሺpounds	per	footሻ	by	the	tributary	width	of	the	

member.		This	is	done	for	both	members	designed	only	for	strength	and	for	members	

designed	with	deflection	as	a	consideration.		Lastly,	the	steel	weights	between	the	strength‐

only	member	and	deflection	member	are	compared.		If	the	strength	and	deflection	weights	

are	equal,	then	it	indicates	that	strength	governs.		If	the	deflection	weight	is	larger,	it	

indicates	that	deflection	governs	the	design	of	the	member,	as	shown	in	the	last	column	of	

Table	4‐3.	

	

 Girders 

The	girder	self‐weight	dead	load,	imposed	dead	load,	live	load,	and	member	

tributary	width	are	used	in	the	same	way	as	for	beams.		Likewise,	member	forces	are	

calculated	in	a	similar	manner;	however,	the	self‐weight	of	the	beams	must	be	accounted	

for	in	the	member	forces.		To	account	for	this,	the	beam	steel	weight	per	square	foot	is	

applied	to	the	girder	as	a	uniformly	distributed	dead	load.	Although	the	beams	framing	into	
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a	girder	act	as	point	loads,	their	self‐weight	and	the	loads	that	they	carry	can	accurately	be	

treated	as	uniformly	distributed	loads	for	the	purpose	of	approximating	design	loads	on	

the	girder.		

Girder	steel	weight	per	square	foot	is	calculated	in	the	same	way	as	beam	steel	

weight	per	square	foot.		Dividing	the	section	weight	of	the	girder	by	the	tributary	width	

yields	the	girder	weight	per	square	foot.		In	this	case,	the	tributary	width	coincides	with	the	

span	of	the	beams	that	the	girder	supports.		The	girder	steel	weight	is	reported,	as	well	as	

the	combined	weight	of	beams	and	girders	together.			

Deciding	which	beam	weight	to	add	to	the	girder	weight	requires	some	additional	

consideration.			As	defined	previously,	the	un‐braced	length	for	non‐composite	girders	is	

defined	by	the	beam	on‐center	spacing,	which	varies	by	increments	of	two	feet.		For	girder	

design,	the	maximum	allowable	beam	spacing	is	selected	that	will	fit	on	the	girder	span.		

Girder	spans	range	from	20	feet	to	52	feet	by	increments	of	four	feet.	Therefore,	

combinations	of	beam	spacings	and	girder	spans	do	not	match.		For	instance,	a	32‐foot	

girder	with	beams	at	12	feet	on‐center	does	not	line	up.		The	beams	cannot	be	evenly	

spaced	while	maintaining	constant	12‐foot	or	10‐foot	on‐center	spacing;	only	four‐foot	or	

eight‐foot	spacing	works	in	this	case.			

A	solution	to	this	is	interpolating	between	beam	spacing	increments.			Take	the	same	

32‐foot	girder	as	an	example;	a	beam	spacing	of	12	feet	does	not	work	because	it	divides	

the	girder	into	2.67	spans,	which	is	not	a	whole	number.		To	achieve	an	even	number	of	

spans,	the	beam	spacing	must	be	either	increased	or	decreased.		Due	to	the	limits	of	the	

metal	deck,	the	beam	spacing	cannot	exceed	12	feet,	so	the	spacing	must	be	decreased.		

Dividing	the	32‐foot	girder	into	three	even	spans	yields	a	required	beam	spacing	of	10.67	
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feet,	which	is	between	the	10‐foot	and	12‐foot	standard	beam	spacing	modes.		The	average	

between	the	10‐foot	and	12‐foot	beam	steel	weights	will	yield	approximately	the	result	of	

10.67‐foot	beam	spacing.		Therefore,	the	beam	weight	to	add	to	the	32‐foot	girder’s	weight	

is	the	average	weight	of	the	10‐foot	and	12‐foot	on‐center	beams.		This	same	approach	is	

applied	to	other	instances	where	the	girder	span	and	the	beam	spacing	are	not	compatible.		

Table	4‐4	summarizes	these	instances.	
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Table 4-4: Beam Spacing Interpolation Method 

Girder	
Span	
ሺftሻ	

#	of	
Equal	

Divisions	

Beam	Spacing	ሺftሻ %	
Difference	Exact Span	Interpolation Result

20	 2	 10.00 10 10 0.00%	
24	 2	 12.00 12 12 0.00%	
28	 3	 9.33 10 10 ‐7.14%	
32	 3	 10.67 Average	of	10	&	12 11 ‐3.13%	
36	 3	 12.00 12 12 0.00%	
40	 4	 10.00 10 10 0.00%	
44	 4	 11.00 Average	of	10	&	12 11 0.00%	
48	 4	 12.00 12 12 0.00%	
52	 5	 10.40 10 10 ‐5.77%	

	

In	spite	of	the	extreme	simplicity	of	this	interpolation	method,	it	produces	relatively	

small	percent	error.		Of	the	nine	possible	girder	spans,	only	four	require	the	use	of	the	

interpolation	method:	28	feet,	32	feet,	44	feet,	and	52	feet.		One	of	those	four	spans,	the	44‐

foot	span,	produces	an	exact	solution	from	the	approximation.		For	the	other	three	spans,	it	

produces	single‐digit	percent	errors	between	exact	and	approximate	girder	un‐braced	

lengths.		Furthermore,	the	interpolation	method	only	requires	the	use	of	the	weights	of	two	

beam	spacing	increments:	10‐foot	and	12‐foot	on‐center.	

	

 Columns 

The	required	strength	of	the	column	Pu	is	the	sum	of	all	the	dead	loads	and	reduced	

live	loads	acting	on	the	column	from	the	governing	load	combination.		The	floor	live	loads	

and	roof	live	loads	are	then	reduced	in	accordance	with	ASCE	7‐10	provisions	for	live	load	

reduction.	Table	4‐5	shows	loads	and	member	sizes	for	columns	design	for	pure	axial	load.	
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Table 4-5: Column Axial Loads and Members Sized for Pure Axial Load 

	

Because	the	girders	connect	to	the	face	of	the	column	flange,	the	girder	reaction	

force	acts	at	a	distance	from	the	longitudinal	axis	of	the	column,	which	induces	an	eccentric	

moment.		Figure	4‐1	depicts	the	connection	between	the	girder	and	the	column	that	

produces	this	eccentric	moment.			

  

Figure 4-1: Typical Girder-to-Column Connection 
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This	eccentricity	is	half	the	depth	of	the	section,	plus	3	inches	to	estimate	the	

distance	between	the	face	of	the	column	and	the	bolts	connecting	the	beam.		To	simplify	the	

calculation	of	the	eccentricity,	the	nominal	section	depth	shall	be	used	instead	of	the	actual	

depth.		For	instance,	the	nominal	section	depth	of	a	W14x176	column	is	14	inches	although	

the	actual	depth	is	15.2	inches.		This	allows	the	section	depth	to	only	vary	by	member	

series,	rather	than	being	unique	to	each	individual	member	that	is	selected.		Furthermore,	

the	eccentricity	for	the	same	W14x176	is:	

݁ ൌ
14	݅݊
2

൅ 3	݅݊ ൌ 10	݅݊	

Although	this	eccentricity	may	be	un‐conservative	for	heavier	sections,	it	is	

balanced	by	the	fact	that	larger	column	sections	tend	to	support	larger	floor	areas,	which	

are	less	likely	to	be	unevenly	loaded.		The	unbalanced	force	Pe	producing	the	moment	

results	from	unbalanced	distribution	of	live	loads.		As	a	worst‐case	scenario,	the	live	load	is	

distributed	so	the	full	design	live	load	acting	on	one	half	of	a	bay,	but	no	live	load	acting	on	

the	other	half.		The	corresponding	Pue	equals	half	of	the	unreduced	floor	live	load	

supported	by	the	column	on	one	story.	Large	bays	are	less	likely	to	have	this	binary	live	

load	distribution	due	to	the	probability	that	a	large	area	will	be	completely	empty	and	

another	area	will	be	fully	loaded.	

	 After	calculating	the	eccentric	moment	acting	on	the	column,	the	column	is	designed	

by	calculating	the	nominal	design	axial	and	flexural	strengths,	then	checking	them	against	

the	required	strengths	using	the	interaction	equation	as	shown	in	Table	4‐6.			
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Table 4-6: Design of Columns for Eccentric Loads 

	

	 Once	a	member	has	been	selected	to	resist	the	combined	axial	and	bending	forces	

due	to	eccentric	connections,	the	column	steel	weight	per	square	foot	is	calculated.		This	

value,	the	beam	weight,	and	the	girder	weight	are	all	combined	to	produce	a	total	steel	

weight	per	square	foot,	as	shown	in	Table	4‐7.	

 

Table 4-7: Steel Weight Results 
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Chapter 5 - Analysis Results 

	 Steel	weights	per	square	foot	for	the	individual	components	ሺi.e.	beams,	girder,	and	

columnsሻ	are	presented	in	the	form	of,	two‐axis	graphs,	and	three‐axis	graphs.	The	two‐

axis	graphs	present	the	data	as	a	series	of	lines,	with	multiple	graphs	presenting	the	steel	

weight	versus	different	parameters.	For	instance,	beam	steel	weight	is	shown	in	a	graph	

versus	beam	on‐center	spacing	and	a	graph	versus	beam	span.	Three‐axis	graphs	allow	for	

these	two	graphs	to	be	combined	into	one	graph.	These	present	the	values	as	a	surface,	

rather	than	a	series	of	lines.	These	surfaces	are	marked	with	a	series	of	colored	bands	

merely	to	assist	the	reader	with	visualizing	the	data,	and	do	not	hold	any	physical	

significance.	This	method	allows	for	the	study	of	two	parameters	in	a	single	graph.	The	

previously	mentioned	two‐axis	graphs	of	steel	weight	versus	beam	spacing	and	steel	

weight	versus	beam	span	can	be	combined	into	a	single	three‐axis	graph	with	beam	

spacing	on	one	horizontal	axis,	beam	span	on	the	other	horizontal	axis,	and	steel	weight	per	

square	foot	on	the	vertical	axis.	

	 In	addition	to	individual	component	results,	results	are	reported	for	combined	steel	

weight	of	beams	and	girders	as	well	as	total	steel	weight,	the	sum	of	the	beam,	girder,	and	

column	steel	weights.	These	results	utilized	the	same	presentation	methods:	two‐axis	

graphs,	and	three‐axis	graphs.	For	brevity,	only	select	graphs	are	included	in	the	main	body	

of	this	thesis.	All	graphs	can	be	found	in	the	Appendix	D.	
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 Beams  

Figure	5‐1	displays	results	for	beam	weight	per	square	foot	versus	the	on‐center	

spacing	of	the	beams	for	non‐composite	beams.	These	results	are	for	50	lb/ft2	live	loading,	

but	are	representative	of	the	results	of	non‐composite	beams	of	all	live	load	conditions	in	

general.	A	detailed	discussion	of	the	effects	of	live	load	intensity	is	included	later	in	this	

thesis.	As	can	be	seen	from	Figure	5‐1,	the	steel	weight	of	beams	has	a	clear	tendency	to	

decrease	as	the	on‐center	spacing	increases.	This	tendency	becomes	more	pronounced	as	

the	beam	span	increases.		

Figure 5-1: Beam Weight vs. Beam Spacing 
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feet	beams	varies	from	12.00	lb/ft2	at	4	feet	on‐center	to	7.00	lb/ft2	at	12	feet	on‐center.	

Interestingly,	the	percent	reduction	in	steel	weight	per	square	foot	from	4	feet	to	12	feet	

on‐center	is	roughly	40%	for	all	beam	spans.	

Figure	5‐2	shows	beam	weight	per	square	foot	versus	beam	span	for	non‐composite	

beams.	Like	the	preceding	graph,	this	shows	results	for	50	lb/ft2	live	loading,	but	is	

representative	of	the	results	for	non‐composite	beams	in	general.	The	graph	depicts	a	

relationship	directly	proportional	between	beam	span	and	beam	weight	per	square	foot.	

Steel	weight	as	a	function	of	span	increases	the	most	rapidly	for	small	on‐center	spacing	

distances,	while	the	weight	increases	less	dramatically	for	more	widely	spaced	beams.	

Figure 5-2: Beam Weight vs. Beam Span 
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	 For	beams	spaced	at	4	feet	on	center,	steel	weight	for	20	feet	beams	is	3.00	lb/ft2	

and	increases	to	12.00	lb/ft2	at	52	feet.	Beams	spaced	at	12	feet	on	center	weigh	1.83	lb/ft2	

for	20	feet	beams	and	increase	to	only	7.00	lb/ft2	for	52	feet	beams.	For	all	beam	spacing	

distances,	the	steel	weight	increases	by	about	a	factor	of	four	when	the	span	increases	from	

20	feet	to	52	feet.	For	all	beams	spacing	increments,	beam	steel	weight	increases	by	

roughly	250‐300%	from	20	feet	to	52	feet	spans.	

Combining	the	two	preceding	two‐axis	graphs	produces	the	surface	presented	

below	in	Figure	5‐3,	which	shows	beam	steel	weight	plotted	versus	beam	spacing	and	beam	

span.	The	surface	shows	how	beam	spacing	and	span	affect	the	steel	weight	of	the	beam	

members.	The	absolute	minimum	steel	weight	results	from	situations	of	maximum	beam	

spacing	and	minimum	beam	span.	This	corresponds	to	a	12	feet	on‐center	spacing	and	20	

feet	span,	which	results	in	1.83	lb/ft2	of	steel.	Conversely,	the	maximum	steel	weight	occurs	

at	a	configuration	of	minimized	beam	spacing	and	maximized	beam	span.	This	corresponds	

to	beam	spacing	of	4	feet	and	beam	span	of	52	feet,	which	results	in	12.00	lb/ft2	of	steel.	

The	absolute	maximum	beam	weight	is	approximately	550%	greater	than	the	absolute	

minimum	weight.	
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Figure 5-3: Beam Weight vs. Beam Proportions 
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 Girders	

	 Figure	5‐4	below	shows	the	results	of	non‐composite	girder	steel	weight	per	square	

foot	versus	girder	span	for	50	lb/ft2	floor	loads.	The	trends	in	this	graph	are	similar	for	

other	live	load	intensities.	Similar	to	the	results	for	beam	weights	versus	beam	span,	girder	

weight	increases	in	direct	proportion	to	the	girder	span,	regardless	of	the	span	of	the	

beams	that	the	girders	support.	Girders	supporting	the	shortest	tributary	beams	yield	the	

greatest	girder	weights	per	square	foot,	while	girders	that	support	the	longest	tributary	

beams	possess	the	least	steel	weight	per	square	foot.	At	20	feet	spans,	girders	supporting	

20	feet	beams	weigh	1.70	lb/ft2	and	increase	to	5.80	lb/ft2	when	those	girders	span	52	feet.	

Girders	with	48	feet	beams	and	52	feet	beams	were	the	lightest	per	square	foot	and	the	

steel	weighs	occasionally	cross	each	other	on	the	graph.	Girders	with	48	feet	beams	happen	

to	be	lighter	than	girders	with	52	feet	beams	when	the	girder	spans	are	20	feet	and	52	feet.	

For	20	feet	girders,	the	lowest	girder	weight	was	1.19	lb/ft2,	and	for	52	feet	girders	it	was	

3.83	lb/ft2.	These	weights	differ	from	those	for	girders	with	52	feet	beams	by	merely	

hundredths	of	a	pound	per	square	foot.	For	all	tributary	beam	lengths,	the	girder	weight	

per	square	foot	increases	roughly	200‐250%	between	20	feet	and	52	feet	girder	spans.	
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Figure 5-4: Girder Weight vs. Girder Span 
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Figure 5-5: Girder Weight vs. Beam Span 
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Figure 5-6: Girder Weight vs. Bay Size 
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 Columns 

Figure	5‐7	displays	column	weight	per	square	foot	versus	girder	span.		Like	the	

preceding	graph,	this	shows	results	for	50	lb/ft2	live	loading;	however,	the	tendencies	of	

the	results	are	representative	of	all	live	load	intensities	in	general.	Since	column	design	

only	depends	on	the	supported	axial	load,	the	direction	that	the	beam	and	girder	members	

span	is	not	significant,	allowing	them	to	be	neglected;	therefore,	column	weight	is	only	

plotted	versus	girder	span.	The	results	for	column	weight	versus	girder	span	are	essentially	

identical	to	those	versus	beam	span.	Likewise,	the	type	of	construction	has	little	effect	on	

the	column	weight.	Although	the	self‐weight	of	composite	construction	may	be	reduced	

compared	to	non‐composite	construction,	the	resulting	decrease	in	column	load	is	

insignificant	next	to	the	magnitude	of	the	imposed	live	and	dead	loads	acting	on	the	

column.	Accordingly,	the	effects	of	composite	design	can	be	neglected.		
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Figure 5-7: Column Weight vs. Girder Span 
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minimum	weight,	a	considerably	smaller	change	in	weight	compared	to	that	of	beams	and	

columns.	

Total 

Superimposing	the	steel	weights	from	the	individual	structural	components	

produces	the	total	steel	weight	for	the	structure.	Figure	5‐8	shows	total	steel	weight	versus	

beam	span	by	combining	the	data	from	beam,	girder	and	column	weights	versus	beam	span	

for	50	lb/ft2	floor	live	loads.		

Figure 5-8: Total Steel Weight vs. Beam Span 
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the	majority	steel	weights	do	not	increase	significantly	between	32	feet	beams	and	36	feet	

beams.	

Bays	supporting	the	longest	beams	yield	the	greatest	steel	weights	per	square	foot,	

while	bays	that	support	the	shortest	beams	possess	the	least	steel	weight	per	square	foot.	

Similarly,	bays	supporting	the	longest	girders	yield	the	greatest	steel	weights	per	square	

foot,	while	bays	that	support	the	shortest	girders	possess	the	least	steel	weight	per	square	

foot.		

	For	20	feet	girders,	bays	supporting	20	feet	beams	weigh	5.06	lb/ft2	and	increase	to	

10.53	lb/ft2	when	beams	span	52	feet.	For	bays	with	52	feet	girders,	total	structural	steel	

weighs	8.84	lb/ft2	for	20	feet	beams	but	increases	to	12.96	lb/ft2	for	52	feet	beams.	Unlike	

the	results	for	component	weights,	percent	changes	in	steel	weight	are	not	uniform.	Bays	

with	20	feet	girders	undergo	a	weight	increase	of	roughly	110%	between	20	feet	and	52	

feet	beams,	while	52	feet	girders	only	increase	by	50%.	

	 Total	steel	weight	generally	increases	as	girder	span	increases;	however,	the	lines	

have	a	tendency	to	“zig‐zag”	to	a	greater	extent	than	for	other	data.	This	is	a	by‐product	of	

the	beam	spacing	interpolation	method	described	in	the	Analysis	Procedure	section,	and	is	

discussed	in	more	detail	in	the	Conclusion. Figure 5-9 displays total steel weight versus girder 

span. 
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Figure 5-9: Total Steel Weight vs. Girder Span 
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lb/ft2	of	steel.	The	absolute	maximum	steel	weight	occurs	at	maximum	beam	and	girder	

spans.	This	corresponds	to	beam	span	of	52	feet	and	girder	span	of	52	feet,	which	weighs	

12.96	lb/ft2.	The	absolute	maximum	girder	weight	is	approximately	150%	greater	than	the	

absolute	minimum	weight.	

Figure 5-10: Total Steel Weight vs. Bay Size 
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 Live Load 

In	Figures	5‐11	and	5‐12	below,	graphs	for	total	steel	weight	versus	bay	dimensions	

show	results	for	both	75	lb/ft2	and	100	lb/ft2	live	load	intensities.	The	contours	of	each	of	

the	surfaces	are	similar	between	live	load	intensities;	however,	the	steel	weight	tends	to	

increase	as	the	live	load	intensity	increases.	

Figure 5-11: Total Steel Weight vs. Bay Size 
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Figure 5-12: Total Steel Weight vs. Bay Size 
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Table 5-1: Steel Weight Versus Live Load Intensity 

Steel	Weight	vs.	Live	Load
		 Min.	Steel Max.	Steel	

Live	Load	
Intensity	
ሺlb/ft2ሻ	

Steel	Weight	
ሺlb/ft2ሻ

lb	Load/
lb	Steel

Steel	Weight	
ሺlb/ft2ሻ

lb	Load/	
lb	Steel	

50	 5.06	 9.88 12.96 3.86	
75	 5.45	 13.76 13.75 5.45	
100	 6.19	 16.16 15.33 6.52	

	

Structural	steel	weights	increase	approximately	6‐8%	when	the	live	load	increases	

from	50	lb/ft2	to	75	lb/ft2,	independently	of	bay	dimensions.	When	the	live	load	increases	

from	75	lb/ft2	to	100	lb/ft2,	the	steel	weight	increases	further	by	an	additional	10‐13%.	

Overall,	doubling	the	live	load	from	50	lb/ft2	to	100	lb/ft2	produces	a	20%	increase	in	

structural	steel	weight.	

In	addition	to	the	steel	weights	from	the	graph,	the	table	displays	a	ratio	of	the	load	

weight	to	the	structural	steel	weight.	This	ratio	acts	as	a	simplistic	parameter	to	visualize	

the	efficiency	of	the	structure.	As	the	ratio	increases,	the	amount	of	load	that	a	structure	

can	carry	for	a	given	self‐weight	also	increases,	indicating	a	more	efficient	structure.	

As	seen	from	Table	5‐1,	despite	the	steel	weight	increasing	as	the	live	load	intensity	

increases,	the	structural	efficiency	also	increases	as	the	live	load	intensity	increases.	While	

the	structural	efficiency	of	a	bay	ranges	from	3.86	to	9.88	at	50	lb/ft2,	the	efficiency	

increases	to	6.52	to	16.16	when	the	live	load	reaches	100	lb/ft2.	This	constitutes	an	

increase	in	structural	efficiency	of	30‐70%,	depending	on	the	particular	dimensions	of	the	

bay.		
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 Composite 

Figure	5‐13	shows	results	for	composite	beam	weights	per	square	foot	versus	bay	

spacing	and	span	dimensions	for	50	lb/ft2	live	loading.	This	graph	can	be	compared	to	the	

results	for	non‐composite	beams	presented	earlier	in	this	section.	When	compared	to	the	

graph	for	non‐composite	beams,	this	graph	shows	a	sharper	increase	in	steel	weight	for	

narrow	spacing	distances	and	long	beam	spans.		

Figure 5-13: Composite Beam Weight vs Beam Spacing 
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	 The	minimum	steel	weight	of	1.00	lb/ft2	occurs	for	beams	with	12	feet	on‐center	

spacing	and	20	feet	spans.	Beams	spaced	at	4	feet	on‐center	with	52	feet	spans	produce	the	

maximum	steel	weight	of	11.00	lb/ft2.	By	comparison,	the	minimum	and	maximum	steel	

weights	for	non‐composite	beams	are	1.83	lb/ft2	and	12.00	lb/ft2,	respectively.	Although	

the	absolute	maximum	and	minimum	steel	weights	remain	mostly	unchanged,	

intermediate	framing	conditions	used	significantly	less	steel	when	utilizing	composite	

action.	For	instance,	52	feet	long	beams	at	12	feet	on‐center	weigh	7.00	lb/ft2	for	non‐

composite	members,	while	the	same	framing	configuration	weighs	only	5.17	lb/ft2	for	

composite	members.	This	constitutes	a	25%	reduction	in	steel	weight.	

Like	composite	beams,	the	weight	of	composite	girder	members	behaves	very	

similarly	to	the	weight	of	non‐composite	members	as	a	function	of	bay	dimensions.	The	

composite	construction	primarily	creates	an	overall	reduction	in	steel	weight.	The	absolute	

minimum	steel	weight	is	0.67	lb/ft2	for	52	feet	by	20	feet	bays	ሺshort	girdersሻ,	and	the	

maximum	steel	weight	is	4.20	lb/ft2	for	20	feet	by	52	feet	bays	ሺlong	girdersሻ.	By	

comparison,	the	minimum	and	maximum	steel	weights	for	non‐composite	girders	are	1.19	

lb/ft2	and	5.80	lb/ft2,	respectively.	Converting	from	non‐composite	to	composite	

construction	produces	weight	reductions	around	30‐40%.	Figure	5‐14	shows	girder	weight	

plotted	against	bay	dimensions.	

	 	



85 

Figure 5-14: Composite Girder Weight vs. Bay Size 
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8.83	lb/ft2.	The	absolute	maximum	girder	weight	is	approximately	180%	greater	than	the	

absolute	minimum	weight.	Compared	to	the	results	for	non‐composite	construction,	

composite	construction	yields	significant	weight	savings.	Recall	that	the	minimum	and	

maximum	steel	weights	for	50	lb/ft2	non‐composite	members	are	5.06	lb/ft2	and	12.96	

lb/ft2,	respectively.	Consequently,	composite	construction	reduces	the	minimum	steel	

weight	by	roughly	40%	and	the	maximum	steel	weight	by	over	30%.	

Figure 5-15: Total Composite Steel Weight vs. Bay Size 
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Chapter 6 - Conclusion 

 Beams 

Beams	typically	constitute	the	majority	of	the	steel	weight	of	a	gravity	framing	

system.	On	average,	beams	account	for	roughly	50‐55%	of	the	framing	steel,	although	the	

exact	amount	varies	greatly	depending	on	the	proportions	of	the	frame.	For	instance,	bays	

with	very	long	beams	and	short	girders	receive	closer	to	80%	of	their	weight	from	beams	

alone.	On	the	other	hand,	beam	weight	only	accounts	for	25%	of	the	steel	weight	for	bays	

with	very	short	beams	and	long	girders.	

Beam	weight	may	be	decreased	in	two	ways:	decreasing	the	beam	span	and	

increasing	the	beam	spacing.	Beam	weight	increases	linearly	as	the	span	increases,	so	

keeping	the	beam	span	minimized	prevents	excessive	beam	weight.	Likewise,	every	time	

the	spacing	of	beams	is	doubled,	the	beam	weight	per	square	foot	decreases	by	roughly	

1/3.	To	minimize	beam	steel	weight,	beams	should	be	spaced	as	far	apart	as	possible.	This	

spacing	dimensions	will	likely	be	limited	by	the	maximum	allowable	span	of	the	metal	

deck.	

	

 Girders 

Girders	also	contribute	significantly	to	the	weight	of	the	steel	bay	than	beams	on	

average,	but	to	a	lesser	extent	than	for	beams.	On	average,	girders	account	for	roughly	35%	

of	the	framing	steel,	although	this	depends	on	the	proportions	of	the	frame.	Bays	with	very	

long	beams	and	short	girders	receive	roughly	to	10%	of	their	weight	from	girders.	

Conversely,	girders	account	for	66%	of	the	steel	weight	of	bays	with	long	girders	and	short	

beams.	
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Girder	weight	may	be	decreased	in	the	same	two	ways	as	for	beams:	decreasing	the	

span	and	increasing	the	spacing.	Girder	weight	increases	linearly	as	the	span	increases,	so	

minimized	spans	reduce	steel	weight.	Additionally,	every	time	the	spacing	of	the	girders	is	

doubled,	the	girder	weight	per	square	foot	decreases	by	roughly	1/4.		

	

 Columns 

	 Out	of	all	the	structural	elements	of	a	framing	system,	columns	contribute	the	least	

to	the	total	structural	weight	by	a	wide	margin.	On	average,	columns	contribute	about	10‐

15%	of	the	total	steel	weight	to	the	framing	system.	Small	bays	receive	about	25%	of	their	

weight	from	columns,	while	large	bays	receive	only	6%	of	their	steel	weight	from	columns.	

Column	weight	per	square	foot	tends	to	decrease	such	that	the	column	steel	weight	is	

reduced	by	25%	every	time	the	bay	area	quadruples.	

Since	columns	are	the	only	members	in	a	typical	framing	arrangement	that	carry	

loads	from	multiple	stories,	their	share	of	the	total	structural	weight	will	vary	depending	

on	how	many	stories	they	support.	Buildings	consisting	of	a	large	number	of	stories	

possess	columns	that	contribute	a	larger	portion	of	the	total	steel	weight.	Conversely,	low‐

rise	buildings	with	a	few	stories	require	only	small	columns,	which	will	contribute	very	

little	to	the	total	steel	weight	in	comparison	to	the	beams	and	girders	of	the	system.	

	

 Total 

A	significant	caveat	to	these	rules	is	that	changing	one	parameter	of	the	framing	

pattern	may	affect	other	parameters.	For	instance,	doubling	the	girder	spacing	decreases	

the	girder	weight	by	roughly	25%;	however,	it	necessitates	doubling	the	span	of	the	beams	
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that	span	between	those	girders.	As	discussed,	beam	weight	increases	linearly	with	the	

beam	span,	so	doubling	the	beam	span	will	result	in	roughly	twice	the	steel	weight.	Since	

beams	typically	contribute	more	to	the	total	steel	weight	than	girders,	any	savings	

produced	by	increasing	the	girder	spacing	will	be	negated	or	even	reversed	by	the	

increased	weight	of	the	longer	beams.	Similarly,	large	bay	areas	provide	the	benefit	of	

decreasing	the	column	steel	weight	per	square	foot;	however,	the	increases	of	beam	and	

girder	steel	weights	overshadow	any	weight	savings	from	the	columns.	

	

 Live Load 

	 Since	live	loads	imposed	on	the	structure	directly	contributed	to	the	design	forces	of	

structural	members,	it	would	be	expected	that	live	load	intensity	would	greatly	affect	the	

steel	weigh	of	a	structure.	In	fact,	this	is	not	the	case;	live	load	intensity	has	relatively	little	

effect	on	the	structure	weight	compared	to	other	factors	considered	in	this	parametric	

study.	Increasing	the	live	load	imposed	on	a	bay	by	50%	from	50	lb/ft2	to	75	lb/ft2	only	

increases	the	steel	weight	per	square	foot	by	11%.	Doubling	the	live	load	from	50	lb/ft2	to	

100	lb/ft2	only	produces	a	weight	increase	of	26%.		

	

 Construction Type 

	 Composite	construction	of	beams	and	girders	produces	significant	savings	in	steel	

weight	compared	to	non‐composite	construction.	Bays	framed	with	composite	members	

typically	use	between	70%	and	80%	of	the	steel	used	for	non‐composite	bays.	This	

relationship	is	consistent	across	all	bay	dimensions.	The	cost	of	installing	shear	studs	for	
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beams	and	girders	partially	negates	the	benefits	of	the	steel	weight	reduction	afforded	by	

composite	construction.	

	

 Summary 

	 From	a	“steel‐weight‐only”	perspective,	the	results	show	that	minimized	steel	

weight	results	from	minimized	bay	dimensions.	Few	parameters	analyzed	in	this	study	

benefit	from	increased	bay	dimensions.	Beam	weight	and	girder	weight,	which	contribute	

the	vast	majority	of	the	steel	weight	of	a	bay,	strongly	favor	minimized	bay	dimensions	to	

achieve	the	least‐weight	solution.	Beam	spacing,	live	load	intensity,	and	construction	type,	

although	they	do	have	an	effect	on	the	steel	weight,	do	not	affect	the	dimensions	of	the	

least‐weight	bay	configuration.	These	parameters	tend	to	act	uniformly	as	a	percentage	

increase	or	decrease	in	steel	weight	across	all	bay	dimensions.	Only	two	parameters,	girder	

spacing	and	columns,	demonstrate	any	steel	weight	reductions	as	bay	dimensions	increase.	

As	mentioned,	any	weight	savings	due	to	increasing	the	girder	spacing	are	wiped	out	due	to	

the	corresponding	increase	in	beam	span.	Columns	show	a	reliable	tendency	to	decrease	in	

weight	per	square	foot	as	the	bay	dimensions	increase,	with	diminishing	returns	as	the	bay	

dimensions	become	progressively	large.	Due	to	the	comparatively	small	weight	of	column	

steel	compared	to	beams	and	girders,	any	weight	savings	from	increasing	the	bay	

dimensions	again	pale	in	comparison	to	the	steel	weight	increases	in	the	beams	and	

girders.	

	 Since	no	result	produced	a	least‐weight	framing	solution,	optimal	bay	dimensions	

likely	do	not	exceed	practical	minimum	dimensions	for	construction	and	architectural	

purposes.	This	means	that	bay	dimensions	will	always	be	determined	solely	by	the	limits	in	



91 

construction	methods	and	the	architectural	requirements	of	the	space.	Bay	dimensions	

smaller	than	these	limits	will	be	more	difficult	to	construct	due	to	space	constraints.	

Additionally,	small	bays	constrict	the	use	of	a	space	by	forcing	the	floor	plan	to	conform	to	

the	closer	column	spacing,	greatly	reducing	the	flexibility	and	robustness	of	the	space.	In	

this	case,	bay	dimensions	should	be	selected	such	that	the	bay	is	as	small	as	possible,	yet	

still	allows	the	space	to	function	adequately	for	the	use	of	the	occupants.	
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Chapter 7 - Further Research 

The	analysis	performed	provides	a	basis	to	conduct	additional	research	on	the	topic	

of	economical	framing.	Many	opportunities	exist	to	expand	this	research,	as	well	as	explore	

related	topics	in	the	economics	of	building	structural	design.	

	

 Structural systems 

	 Studies	similar	to	this	could	be	conducted	for	many	other	common	structural	

systems,	including	timber,	reinforced	concrete,	and	steel	joist	systems.	Timber	systems	

could	include	glue‐laminated	beams,	timber	trusses,	or	I‐joist	framing.	Reinforced	concrete	

systems	could	include	flat	plates,	flat	slabs,	pan	joists,	and	beam	and	girder	systems.		

	

 Building Parameters 

	 Many	of	the	building	characteristics	chosen	for	this	study,	including	the	number	of	

stories	and	the	story	height,	were	selected	semi‐arbitrarily	with	the	intention	of	creating	a	

building	that	emulated	a	typical	low‐rise	structure.	These	parameters	that	were	treated	as	

constants	in	the	study	may	in	fact	greatly	affect	the	final	results.	Certainly,	as	discussed	

earlier,	the	number	of	stories	would	have	a	significant	effect	on	the	column	weight	per	

square	foot	within	the	structure.	

	 Likewise,	the	metal	deck	and	concrete	depth	were	kept	constant	throughout	the	

analysis;	however,	situations	with	lighter	floor	loads	and	shorter	deck	spans	would	benefit	

from	the	use	of	thinner	deck	and	less	concrete.	This	change	could	provide	significant	cost	

savings	which	could	change	the	economics	of	the	situation.	
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 Economics 

	 Although	this	study	attempts	to	discuss	costs	in	a	general	sense,	it	does	not	provide	

enough	detail	for	fabrication	and	construction	to	compare	framing	solutions	between	

structural	systems.	This	study	largely	measures	the	economy	of	a	framing	system	by	the	

weight	of	its	structural	components.	Providing	more	information	and	detail	on	the	

monetary	cost	of	materials	and	labor	required	to	construct	the	structural	framing	would	

increase	the	value	of	the	results	of	this	analysis. 	
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Appendix A - Approximate Moment Method 

Calculating	the	required	moment	capacity	of	a	beam	or	girder	is	a	crucial	part	of	the	

design	of	the	structural	system	of	a	building.		Miscalculating	the	moment	carried	by	a	beam	

or	girder	results	in	an	over‐designed	system,	which	wastes	money	and	material,	or	an	

under‐designed	system	which	becomes	a	safety	hazard	to	the	occupants.				

For	any	beam	located	in	a	floor	system	subjected	to	uniformly‐distributed	floor	

loads,	the	load	in	the	beam	can	be	treated	as	a	uniformly‐distributed	load	acting	along	the	

length	of	the	member,	which	represents	the	floor	deck	or	slab	bearing	uniformly	along	the	

member.		In	this	situation,	the	equation	for	the	moment	in	a	simply	supported	beam	with	a	

uniformly	distributed	load	accurately	represents	the	actual	moment	in	the	beam.	

	 ࡹ ൌ
૛ࡸ࢝

ૡ
Equation	A‐1

This	equation	provides	a	quick	and	simple	way	to	calculate	the	moment	in	a	beam.	

For	girders,	determining	the	exact	moment	requires	more	calculation	than	for	

beams.		Beam	reaction	forces	carried	by	the	girder	resemble	point	loads,	which	produce	a	

more	complicated	moment	diagram	than	the	uniformly	distributed	load	carried	by	beam	

members.				Solving	for	the	exact	moment	requires	solving	for	the	girder’s	end	reactions	

and	plotting	shear	and	moment	diagrams.		This	process	is	more	time‐consuming	and	

tedious.	

If	the	moment	produced	in	a	girder	could	be	approximated	as	being	produced	by	a	

uniformly	distributed	load,	the	same	equation	used	above	for	beams	could	also	be	used	for	

girders.		An	approximation	like	this	saves	time,	which	saves	money.		The	question	at	hand	

is	this:	Is	this	approximation	accurate?	
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To	investigate	the	value	of	this	approximation,	an	example	girder	is	used	to	compare	

the	maximum	moment	due	to	a	uniformly	distributed	load,	one	point	load,	two	point	loads,	

three	point	loads,	and	four	point	loads.		In	order	to	simplify	the	investigation,	several	

conditions	are	set.		First,	point	loads	acting	on	a	girder	represent	beam	reactions,	which	

will	be	evenly	spaced	along	the	girder’s	span.		Second,	beam	reaction	forces	are	the	result	

of	the	uniformly‐distributed	loads	carried	by	the	beams.		This	means	that	all	point	loads	

will	be	equal	in	magnitude.		Third,	beam	reactions	forces	are	proportional	to	their	tributary	

width,	so	their	magnitude	will	be	proportional	to	the	beam	spacing.		4th,	the	end	supports	

of	the	girder	are	treated	as	columns.		These	columns	will	also	have	beams	framing	into	

them	perpendicular	to	the	girder.		This	affects	the	load	taken	by	the	girder,	because	these	

end	beams	will	take	part	of	the	floor	load	that	would	normally	be	taken	by	the	girder	if	the	

load	was	uniformly	distributed	along	its	span.	

The	example	girder	has	a	span	of	10	feet	and	is	simply	supported.		It	carries	a	

uniformly	distributed	floor	load	of	1	k/ft.		This	distributed	load	will	be	divided	into	each	

beam’s	tributary	area	to	determine	point	load	magnitudes.	

	

Distributed Load Approximation: 

 

  

Figure 7-1: Distributed Load Diagram 
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	 ࡹ ൌ
૛ࡸ࢝

ૡ
	

	
ࡹ ൌ

ሺ૚ሻሺ૚૙ሻ૛

ૡ

	

	 ࡹ ൌ ૚૛. ૞ ࢑ െ ࢚ࢌ 	

	

For	the	moment	approximation,	the	equation	for	a	uniformly	distributed	load	yields	a	

maximum	moment	of	12.5	k‐ft.		This	value	will	be	compared	to	the	values	obtained	from	

the	one‐,	two‐,	three‐,	and	four‐point‐load	situations.		This	approximation	ignores	any	

beams	transferring	reaction	forces	as	point	loads	and	treats	the	girder	as	if	the	uniformly	

distributed	floor	load	were	acting	directly	on	it.	

	

 One Point Load: 

For	one	point	load,	a	single	beam	frames	into	the	girder	at	mid‐span.		Because	the	

beams	are	evenly	spaced	along	the	girder,	the	tributary	width	of	the	beam	is	5	feet.		This	

means	that	the	beam	reaction	force	will	be	5	kips.		For	one	point	load,	the	maximum	

moment	can	be	calculated	as	shown	below.	

 

  

Figure 7-2: One Point Load Diagram 
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ࡹ ൌ
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	 ࡹ ൌ ૚૛. ૞ ࢑ െ ࢚ࢌ 	

	

Calculating	the	exact	moment	due	to	a	single	point	load	at	mid‐span	results	in	a	maximum	

moment	in	the	girder	of	12.5	k‐ft,	which	is	exactly	equal	to	the	uniformly	distributed	load	

approximation.			

	

 Two Point Loads: 

For	two	point	loads,	two	beams	frame	into	the	girder	at	third‐span	points	on	the	

girder.		The	beams	are	spaced	3.333	feet	on	center,	and	each	produces	a	point	load	on	the	

girder	of	3.333	kips.		For	two	point	loads,	the	maximum	moment	can	be	calculated	as	

shown	below.	

  

Figure 7-3: Two Point Load Diagram 

	

	 ࡹ ൌ ࢇࡼ 	

	 ࡹ ൌ ሺ૜. ૜૜૜ሻሺ૜. ૜૜૜ሻ 	

	 ࡹ ൌ ૚૚. ૚ ࢑ െ ࢚ࢌ 	
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The	maximum	moment	on	the	girder	produced	by	two	point	loads	is	11.1	k‐ft,	which	does	

not	match	the	moment	from	a	uniformly	distributed	load.		However,	the	exact	value	is	

about	13%	less	than	the	approximate	value,	meaning	that	the	approximation	is	

conservative	in	this	case.			

	

 Three Point Loads: 

For	three	point	loads,	three	beams	frame	into	the	girder	at	quarter	points	of	the	girder.		

The	beams	are	spaced	2.5	feet	on	center,	and	each	point	load	is	2.5	kips.		Calculating	the	

moment	now	becomes	more	complicated,	which	demonstrates	the	possible	value	of	this	

approximation.			

  

Figure 7-4: Three Point Load Diagram 

	

Reaction	force	at	end	supports:	3.75	k	

Taking	a	cut	at	the	mid‐span	and	summing	the	moments	produces:	

઱ࡹ ൌ ૙	

઱ࡹ ൌ െࡹ ሺ૜. ૠ૞ሻሺ૞ሻ ൅ ሺ૛. ૞ሻሺ૛. ૞ሻ ൌ ૙	

ࡹ ൌ ሺ૜. ૠ૞ሻሺ૞ሻ െ ሺ૛. ૞ሻሺ૛. ૞ሻ	

ࡹ ൌ ૚૛. ૞	࢑ െ 	࢚ࢌ
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Calculating	the	exact	moment	due	to	three	point	loads	results	in	a	maximum	moment	in	the	

girder	of	12.5	k‐ft,	which	is	exactly	equal	to	the	uniformly	distributed	load	approximation.	

Four Point Loads: 

With	four	point	loads,	four	beams	frame	into	the	girder	at	fifth	points	on	the	girder.		

The	beams	are	spaced	2	feet	on	center,	and	each	point	load	is	2	kips.			

	

  

Figure 7-5: Four Point Load Diagram 

	

Reaction	force	at	end	supports:	4	k	

Taking	a	cut	at	the	mid‐span	and	summing	the	moments	produces:	

઱ࡹ ൌ ૙	

઱ࡹ ൌ െࡹ ሺ૝ሻሺ૞ሻ ൅ ሺ૛ሻሺ૜ሻ ൅ ሺ૛ሻሺ૚ሻ ൌ ૙	

ࡹ ൌ ሺ૝ሻሺ૞ሻ െ ሺ૛ሻሺ૜ሻ െ ሺ૛ሻሺ૚ሻ	

ࡹ ൌ ૚૛	࢑ െ 	࢚ࢌ

Calculating	the	exact	moment	due	to	four	point	loads	results	in	a	maximum	moment	

in	the	girder	of	12	k‐ft,	which	is	nearly	equal	to	the	uniformly	distributed	load	

approximation.		This	constitutes	a	difference	of	only	4%	between	the	approximate	and	

exact	moments,	with	the	approximate	moment	being	slightly	conservative.	
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Results: 

The	tabulated	comparison	in	Table	7‐1	between	the	approximate	and	exact	

moments	presented	below	demonstrates	the	accuracy	of	the	approximate	method.		The	

table	includes	data	for	five	and	six	point	loads	to	illustrate	the	results	further.	

The	results	show	that	the	maximum	deviation	from	the	exact	moment	is	only	13%	

for	two	point	loads,	with	the	deviation	between	the	two	values	rapidly	converging	toward	

0%	as	the	number	of	point	loads	increases.		Furthermore,	the	moment	in	girders	with	an	

odd	number	of	point	loads	matches	perfectly	between	approximate	and	exact	methods.	

 

Table 7-1: Maximum Bending Moment Results for Approximate Moment Method 

Load	
Distribution	

Maximum	Girder	Moment	ሺk‐ftሻ	

Approximate Exact %	Above	
Exact	

1	Point	Load	 12.50 12.50 0.0%	
2	Point	Loads	 12.50 11.11 12.5%	
3	Point	Loads	 12.50 12.50 0.0%	
4	Point	Loads	 12.50 12.00 4.2%	
5	Point	Loads	 12.50 12.50 0.0%	
6	Point	Loads	 12.50 12.24 2.1%	

…	 ‐ ‐ 	‐	
Uniform	 12.50 12.50 0.0%	

	

Conclusion: 

The	results	from	the	investigation	clearly	show	that	the	approximate	moment	

method	closely	models	the	exact	maximum	moment	in	a	girder	subjected	to	any	number	of	

evenly	spaced	point	loads.		Several	interesting	conclusions	can	be	drawn	from	these	

results,	including	a	determination	of	the	validity	of	this	approximate	method.			
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As	stated	previously	for	an	odd	number	of	point	loads,	the	moment	from	the	

approximate	method	will	always	be	equal	to	the	moment	from	exact	methods.		Although	an	

unexpected	result	of	the	approximate	method,	it	is	a	direct	product	of	the	initial	conditions.		

Consider	the	difference	between	a	single	mid‐span	point	load	and	a	distributed	load.	If	P	ൌ	

wL,	the	point	load	produces	twice	the	moment	as	the	distributed	load.	However,	due	to	the	

way	the	load	is	distributed	in	the	approximate	moment	method,	P	ൌ	wL/2.	This	produces	

equal	moments	for	the	point	load	and	distributed	load	cases.	

For	an	even	number	of	point	loads,	the	percent	difference	begins	at	acceptable	

levels,	but	quickly	converges	towards	0%.		This	result	makes	sense,	considering	that	a	

uniformly	distributed	load	can	be	treated	as	an	infinite	number	of	small,	evenly	space	point	

loads.		As	the	load	on	the	beam	is	divided	into	increasingly	many	point	loads,	the	moment	

diagram	resembles	that	of	a	uniformly	distributed	load	with	increasing	accuracy.		At	a	limit,	

when	the	number	of	point	loads	approaches	infinity,	the	load	condition	essentially	becomes	

a	uniformly	distributed	load.	

An	important	limitation	of	this	method	is	that	it	cannot	approximate	shear	forces	

with	the	same	accuracy.	Approximating	shear	forces	with	this	method	will	always	produces	

values	that	are	greater	than	the	exact	values,	but	by	a	much	larger	margin	than	for	moment	

approximations.	For	the	case	of	a	single	point	load,	the	shear	force	calculated	with	the	

approximate	method	will	be	twice	the	magnitude	of	the	exact	value.	This	discrepancy	

decreases	as	the	number	of	point	loads	increases,	converging	to	a	0%	difference	when	the	

number	of	point	loads	approaches	infinity.	The	table	below	summarizes	these	results.	
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Table 7-2: Maximum Shear Results for Approximate Moment Method 

Load	
Distribution	

Maximum	Girder	Shear	ሺkሻ

Approximate Exact %	Above	
Exact	

1	Point	Load	 5.0 2.5 100%	
2	Point	Loads	 5.0 3.333 50%	
3	Point	Loads	 5.0 3.75 33%	
4	Point	Loads	 5.0 4 25%	
5	Point	Loads	 5.0 4.167 20%	
6	Point	Loads	 5.0 4.286 17%	

…	 ‐ ‐ 	‐	
Uniform	 5.0 5.0 0.0%	

	

Although	this	method	is	not	as	accurate	for	shear,	the	margin	of	error	can	be	accepted	for	a	

few	reasons.	First,	the	value	is	always	conservative,	which	allows	the	engineer	to	accept	the	

value	without	having	to	check	if	it	falls	short	of	the	real	value.	Second,	shear	strength	of	

beams	and	girders	rarely	governs	the	selection	of	a	member	under	normal	load	conditions	

for	a	floor	system.	

The	approximate	method	is	a	powerful	design	tool	to	assist	engineers	with	

estimating	loads	and	developing	preliminary	member	sizes.	Engineers	should	acknowledge	

the	limits	of	this	method	as	an	approximation,	and	not	use	it	as	a	substitute	for	good	

engineering	practice.	This	method	was	analyzed	with	point	loads	of	uniform	spacing	and	

magnitude.	In	more	unique	or	more	complicated	load	cases,	a	more	rigorous	analysis	

method	should	be	used	to	assess	the	forces	acting	on	a	member.	
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Appendix B - Beam and Girder Weight Derivations 

In	“Rules	of	Thumb	for	Steel	Design”,	by	Socrates	Ioannides	and	John	Ruddy,	the	

following	equation	was	presented	as	a	method	of	approximating	the	required	section	

weight	of	a	steel	beam	for	a	given	moment	and	nominal	section	depth	ሺe.g.	a	W24x55	has	a	

nominal	section	depth	of	24	inchesሻ:	

where:	

Wt	ൌ	estimated	section	weight	ሺlb/ftሻ	

M	ൌ	required	moment	capacity	of	the	beam	ሺk‐ftሻ	

D	ൌ	nominal	section	depth	ሺinሻ	

	

Derivation 

This	equation	is	formulated	using	the	Allowable	Stress	Design	method;	however,	the	

equation	can	be	re‐formulated	using	Load	Resistance	Factor	Design.	Start	with	the	same	

equation	form,	with	the	coefficient	of	3.5	being	replaced	by	a	new	constant:	

where:	

k	ൌ	constant	

Mu	ൌ	required	moment	capacity	of	the	beam	ሺk‐ftሻ	

	

	 ࢚ࢃ ൌ
૜. ૞ࡹ
ࡰ

Equation	2‐22b

	 ࢚ࢃ ൌ
࢛ࡹ࢑

ࡰ
Equation	B‐1
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The	value	of	the	new	coefficient,	k,	can	be	found	that	reflects	the	change	in	design	

method	from	ASD	to	LRFD.	To	simplify	the	derivation	of	this	equation,	the	beam’s	

compression	flange	is	assumed	to	be	continually	braced	so	that	the	governing	limit	state	is	

flexural	yielding.	When	the	governing	limit	state	of	a	beam	is	flexural	yielding,	the	nominal	

strength	of	the	beam	is	its	plastic	moment	capacity,	therefore:	

	

	

The	plastic	moment	strength	as	defined	by	AISC	Specification	Equation	F2‐1:	

	

where:	

ϕ	ൌ	strength	reduction	factor	ሺϕൌ0.9	for	flexureሻ	

Fy	ൌ	yield	stress	of	steel	ሺFy	ൌ	50	ksi	for	ASTM	A992	steelሻ	

Zx	ൌ	plastic	section	modulus	ሺin3ሻ	

	

Zx	is	a	section	property,	but	can	be	approximated	as	being	proportional	to	the	cross‐

sectional	area	of	the	section	multiplied	by	the	nominal	depth	of	the	section,	as	shown	in	

Equation	B‐4.	

where:	

β	ൌ	constant	

	 ࢛ࡹ ൌ ࢔ࡹࣘ ൌ ࢞࢖ࡹࣘ Equation	B‐2

	 ࢞࢖ࡹࣘ ൌ
࢞ࢆ࢟ࡲࣘ
૚૛

Equation	B‐3

	 ࢞ࢆ ൌ ࡰ࢙࡭ࢼ Equation	B‐4
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As	ൌ	cross‐sectional	area	ሺin2ሻ	

	

Values	for	Zx,	As,	and	D	were	compared	for	17	“economy”	beam	sections.	The	

“economy”	beam	sections	are	the	shapes	which	possess	the	highest	moment	strength	for	

their	weight	and	are	bolded	in	Table	3‐2	in	the	AISC	Steel	Manual.	The	17	analyzed	shapes	

are	W18x35,	W18x40,	W21x44,	W21x48,	W21x	50,	W21x55,	W24x55,	W24x62,	W24x68,	

W24x76,	W24x84,	W27x84,	W30x90,	W30x99,	W30x108,	W30x116,	W33x118.	These	

shapes	were	chosen	because	they	are	the	most	common	member	sizes	resulting	from	the	

analysis.		The	average	value	for	β	from	this	set	of	shapes	is	about	0.36.	A	plot	of	these	

values	is	shown	in	Figure	7‐8.	

 

  

Figure 7-6: Section Modulus Coefficient for Economy Sections 
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Now,	Equations	B‐1,	B‐2,	B‐3,	and	B‐4	can	be	combined.	

	

Substitute	Equation	B‐2	for	Mu:	

	

	

Substitute	Equation	B‐3	for	ϕMpx:	

	

	

Substitute	Equation	B‐4	for	Zx:	

	

	

	

Wt,	the	section	weight	in	pounds	per	foot	can	be	written	as	the	section	area	multiplied	by	

the	specific	weight	of	steel,	shown	in	Equation	B‐9.	

	 ࢚ࢃ ൌ
࢛ࡹ࢑

ࡰ
Equation	B‐1

	 ࢚ࢃ ൌ
ሻ࢞࢖ࡹሺࣘ࢑

ࡰ
Equation	B‐5

	 ࢚ࢃ ൌ
ሺ࢑
࢞ࢆ࢟ࡲࣘ
૚૛ ሻ

ࡰ
Equation	B‐6

	 ࢚ࢃ ൌ
ሻࡰ࢙࡭ࢼ࢟ࡲሺࣘ࢑

૚૛ࡰ
Equation	B‐7

	 ࢚ࢃ ൌ
࢙࡭ࢼ࢟ࡲࣘ࢑

૚૛
Equation	B‐8

	 ࢚ࢃ ൌ
࢙ࢽ࢙࡭
૚૝૝

Equation	B‐9
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where:	

γs	ൌ	specific	weight	of	steel	ሺ490	lb/ft3ሻ	

	

Substitute	Equation	B‐9	into	Equation	B‐8	for	Wt	and	solve	for	k:	

	

࢑ ൌ
૝ૢ૙

૚૛ሺ૙. ૢሻሺ૞૙ሻሺ૙. ૜૟ሻ
	

࢑ ൌ ૛. ૞		

	

	Solving	the	equation	results	in	a	value	for	k	of	about	2.5,	which	is	smaller	than	the	

value	of	3.5	from	the	equation	presented	in	the	article.	This	smaller	value	reflects	the	

difference	between	the	ASD	and	LRFD	methods	of	calculating	loads	and	member	capacities.	

Substituting	the	value	for	k	into	the	original	equation	produces:	

This	equation	can	be	generalized	to	produce	a	steel	weight	per	area	as	a	function	of	

floor	loads	and	member	span.	This	provides	the	powerful	capability	of	estimating	the	total	

structural	weight	of	a	building	before	even	selecting	member	sizes	or	spacing.	As	

demonstrated	in	the	Approximate	Moment	Method	Appendix,	the	required	moment	

	 ࢚ࢃ ൌ
࢙࡭ࢼ࢟ࡲࣘ࢑

૚૛
Equation	B‐8

	
࢙ࢽ࢙࡭
૚૝૝

ൌ
࢙࡭ࢼ࢟ࡲࣘ࢑

૚૛
Equation	B‐10

	
࢙ࢽ
૚૛

ൌ ࢼ࢟ࡲࣘ࢑ Equation	B‐11

	 ࢑ ൌ
࢙ࢽ

૚૛ࣘࢼ࢟ࡲ
Equation	B‐12

	 ࢚ࢃ ൌ
૛. ૞࢛ࡹ

ࡰ
Equation	B‐1



109 

capacity	of	the	beam	can	be	accurately	approximated	as	being	produced	by	a	uniformly	

distributed	load,	so:	

where:	

wu	ൌ	factored	uniform	distributed	load	intensity	ሺk/ftሻ	

L	ൌ	member	span	ሺftሻ	

	

Since	the	primary	loads	acting	on	the	floor	system	are	gravity	dead	and	live	loads,	the	

governing	ASCE	7	load	combination	is	Uൌ1.2D൅1.6L.		

The	nominal	section	depth	can	be	approximated	to	be	proportional	to	the	span	of	

the	member.	“Rules	of	Thumb	for	Steel	Design”	suggests	an	L/D	ratio	between	20	and	28	

for	beams,	which	is	supported	by	the	results	of	this	research.	For	beams,	an	L/D	ratio	of	24	

will	be	used	to	relate	the	section	depth	to	the	member	span,	and	for	girders	an	L/D	ratio	of	

16	will	be	used.	These	L/D	ratios	are	consistent	with	the	results	of	the	analysis	in	this	

thesis.	In	summary:	

For	beams:	
ࡸ ሺ࢔࢏ሻ
ࡰ ሺ࢔࢏ሻ

ൌ ૛૝
ሻ࢚ࢌሺ	ࡸ
ሻ࢔࢏ሺ	ࡰ

	ൌ ૛	

For	girders:	
ࡸ ሺ࢔࢏ሻ
ࡰ ሺ࢔࢏ሻ

ൌ ૚૟
ࡸ ሺ࢚ࢌሻ
ࡰ ሺ࢔࢏ሻ

	ൌ ૚. ૜૜૜

These	ratios	mean	that	the	member	depth	roughly	increases	linearly	with	the	

member’s	span.	For	example,	a	beam	that	spans	32	feet	will	have	a	depth	of	roughly	16	

inches.	Of	course,	the	span	to	depth	ratio	of	the	member	is	dependent	on	a	wide	variety	of	

factors,	such	as	the	intensity	of	loading	and	the	tributary	width	that	it	serves.	This	is	

	 ࢛ࡹ ൌ
૛ࡸ࢛࢝

ૡ
Equation	A‐1
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reflected	in	the	analysis	results.	The	depths	of	non‐composite	32‐foot	beams	range	from	10	

inches	for	lightly‐loaded	beams	to	21	inches	for	heavily‐loaded,	widely‐spaced	beams.	

Although	these	simple	ratios	fail	to	capture	the	variations	due	to	these	conditions,	they	do	

provide	a	very	simple	relationship	that	captures	the	average	of	these	different	situations.	

These	ratios	are	substituted	into	Equation	B‐1	for	D	and	Equation	A‐1	can	be	substituted	

for	Mu.	

	

For	beams:		 	 	

Substitute	Equation	A‐1	for	Mu:	

Substituting	the	L/D	ratio	to	eliminate	D:	

For	girders:	 	

Substitute	Equation	A‐1	for	Mu:	

	

	 ࢚ࢃ ൌ
૛. ૞࢛ࡹ

ࡰ
Equation	B‐1

	 ࢚ࢃ ൌ
૛. ૞ሺ

૛ࡸ࢛࢝
ૡ ሻ

ࡰ
Equation	B‐10

	 ࢚ࢃ ൌ
૛. ૞ሺ

૛ࡸ࢛࢝
ૡ ሻ

ሺ૙. ૞ࡸሻ
Equation	B‐11

	 ࢚ࢃ ൌ
૞
ૡ
ࡸ࢛࢝ Equation	B‐12a

	 ࢚ࢃ ൌ
૛. ૞࢛ࡹ

ࡰ
Equation	B‐1

	 ࢚ࢃ ൌ
૛. ૞ሺ

૛ࡸ࢛࢝
ૡ ሻ

ࡰ
Equation	B‐10
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Substitute	the	L/D	ratio	to	eliminate	D:	

	

The	weight	per	square	foot	of	a	member	can	be	found	by	taking	the	weight	per	foot	of	the	

member	and	dividing	it	by	the	tributary	width	of	that	member.	Also,	the	uniformly	

distributed	load	on	a	member	in	kips	per	foot	is	equal	to	the	floor	loading	multiplied	by	the	

tributary	width.	

	

where:	

H	ൌ	steel	weight	ሺlb/ft2ሻ	

Wt	ൌ	section	weight	ሺlb/ftሻ	

wT	ൌ	tributary	width	of	member	ሺftሻ	

	

where:	

qu	ൌ	factored	floor	load	ሺkips/ft2ሻ	

	

Equation	3‐1	can	be	expanded	using	Equations	B‐12aሻ,	B‐12b,	and	B‐14.	

For	beams:	

	 ࢚ࢃ ൌ
૛. ૞ሺ

૛ࡸ࢛࢝
ૡ ሻ

ሺ૙. ૠ૞ࡸሻ
Equation	B‐13

	 ࢚ࢃ ൌ
૞
૚૛

ࡸ࢛࢝ Equation	B‐12b

	 ࡴ ൌ
࢚ࢃ
ࢀ࢝

Equation	3‐1

	 ࢛࢝ ൌ ࢀ࢛࢝ࢗ Equation	B‐14
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Substitute	Equation	B‐12a	for	Wt:	

	

Substitute	Equation	B‐14	for	wu:	

For	girders:		 	

Substitute	Equation	B‐12b	for	Wt:	

Substitute	Equation	B‐14	for	wu:	

	

	

These	equations	are	formulated	with	the	assumption	that	the	members	are	limited	

by	the	strength	of	the	material	and	therefore	represent	a	theoretical	minimum	steel	weight.	

	 ࡴ ൌ
࢚ࢃ
ࢀ࢝

Equation	3‐1

	 ࡴ ൌ
ሺ૞ૡࡸ࢛࢝ሻ

ࢀ࢝

Equation	B‐15

	 ࡴ ൌ
ሺ૞ૡࡸ࢛࢝ሻ

ࢀ࢝

Equation	B‐15

	 ࡴ ൌ
૞
ૡ
ࡸ࢛ࢗ Equation	B‐16a

	 ࡴ ൌ
࢚ࢃ
ࢀ࢝

Equation	3‐1

	 ࡴ ൌ
ሺ ૞૚૛ࡸ࢛࢝ሻ

ࢀ࢝

Equation	B‐17

	 ࡴ ൌ
ሺ ૞૚૛ ሺࢀ࢛࢝ࢗሻࡸሻ

ࢀ࢝

Equation	B‐18

	 ࡴ ൌ
૞
૚૛

ࡸ࢛ࢗ Equation	B‐16b
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The	only	way	to	decrease	the	steel	weight	would	be	either	to	increase	the	yield	stress	of	the	

material	or	to	increase	the	section	depth	while	decreasing	the	section	area,	which	would	

change	the	β	factor	used	in	this	derivation.	

Strength	is	not	the	only	limit	state	that	governs	member	selection.	In	many	cases,	

serviceability	limit	states	such	as	deflection	are	the	limiting	factor	in	beam	design.	Since	

design	limits	for	deflection	result	in	members	not	reaching	to	their	full	design	moment	

capacity,	the	previous	equations	will	not	provide	accurate	estimates	of	steel	weights.	

Members	designed	based	on	deflection	will	be	heavier	than	those	designed	purely	for	

strength	because	the	members	are	not	loaded	to	their	full	capacity	before	reaching	their	

deflection	limit	if	deflection	governs.	Nevertheless,	equations	similar	to	Equations	B‐16a	

and	B‐16b	can	be	formulated	to	find	steel	weights	per	square	foot	when	members	are	sized	

for	deflection.	These	weights	can	be	considered	as	a	theoretical	upper	limit	to	steel	weights	

because	members	will	not	have	to	be	larger	than	demanded	by	the	deflection	criteria	if	

deflection	governs	the	design.	

Start	with	the	deflection	equation	for	a	simply	supported	member	subjected	to	a	

uniformly	distributed	load:	

where:	

Δ	ൌ	maximum	member	deflection	ሺinሻ	

w	ൌ	intensity	of	un‐factored	uniformly	distributed	load	ሺk/inሻ	

L	ൌ	member	span	ሺinሻ	

E	ൌ	Young’s	Modulus	of	the	material	ሺ29,000	ksi	for	steelሻ	

	 ઢ ൌ
૞ࡸ࢝૝

૜ૡ૝ࡵࡱ
Equation	3‐5
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I	ൌ	moment	of	inertia	of	member	ሺin4ሻ	

	

The	deflection	criteria	selected	for	beam	design	will	determine	how	heavy	the	

beams	must	be.	Instances	where	deflection	must	be	tightly	controlled	will	require	

members	with	a	larger	moment	of	inertia	to	resist	deformation	under	loads,	which	in	turn	

usually	means	heavier	sections.		The	analysis	in	this	thesis	uses	deflection	criteria	of	L/360	

for	live	load	deflection	and	L/240	for	total	load	deflection,	which	are	presented	in	the	

International	Building	Code	as	serviceability	limits	for	deflection	of	floor	members.	

Deflection	due	to	combined	dead	plus	live	load	is	the	governing	deflection	case,	which	can	

be	written	as,	

	

This	can	be	substituted	into	Equation	3‐5	to	yield	the	following:	

	

The	equation	is	rewritten	to	express	the	member	length,	L,	in	feet	and	the	uniform	un‐

factored	load	intensity,	w,	in	kips	per	foot.	

	

	
ઢ
ࡸ
ൌ

૚
૛૝૙

Equation	B‐19

	 ઢ ൌ
૞ࡸ࢝૝

૜ૡ૝ࡵࡱ
Equation	3.5

	
ઢ
ࡸ
ൌ

૞ࡸ࢝૜

૜ૡ૝ࡵࡱ
Equation	B‐20

	 ૚
૛૝૙

ൌ
૞ࡸ࢝૜

૜ૡ૝ࡵࡱ
Equation	B‐21
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Simplify	constants	and	solve	for	I:	

	

In	a	similar	method	to	the	plastic	section	modulus,	the	moment	of	inertia	can	be	

approximated	as	being	proportional	to	the	section	area	multiplied	by	the	nominal	section	

depth	squared.	This	equation	originates	from	the	approximation	proposed	in	Equation	2‐8	

by	Ruddy	and	Ioannides	in	“Rules	of	Thumb	for	Steel	Design”	ሺ2000ሻ;	however,	the	

constant	C	is	empirically	obtained	specifically	for	the	“economy”	sections	to	produce	a	

more	accurate	approximation	and	to	independently	verify	its	validity.	

	

	

I	ൌ	moment	of	inertia	of	member	ሺin4ሻ	

C	ൌ	constant	

	

Values	for	I,	As,	and	D	were	compared	for	the	same	17	economy	beam	sections,	and	an	

average	value	for	C	was	about	0.155,	as	shown	in	Figure	7‐9	below.	This	value	not	only	

confirms	Ruddy	and	Ioannides’	findings,	but	also	demonstrates	how	closely	the	sections	

approach	the	average	when	plotted.	

	 ૚
૛૝૙

ൌ
૞࢝ሺ ૚૚૛ሻሺ૚૛ ∗ ሻࡸ

૜

૜ૡ૝ࡵࡱ
Equation	B‐22

	 ૚
૛૝૙

ൌ
૞ࡸ࢝૜ሺ૚૝૝ሻ
૜ૡ૝ࡵࡱ

Equation	B‐23

	 ۷ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐24

	 ࡵ ൌ ૛ࡰ࢙࡭࡯ Equation	B‐25
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Figure 7-7: Moment of Inertia Coefficient for Economy Sections 

	

Equation	B‐25	can	be	substituted	into	equation	B‐24	for	I:	

Empirical	L/D	ratios	for	beams	and	girders	can	be	substituted	in	for	D.	The	L/D	

ratios	for	members	governed	by	deflection	are	slightly	higher	than	for	those	governed	by	

strength.	
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	 ۷ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐24

	 ૛ࡰ࢙࡭࡯ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐26

	 ૙. ૚૞૞ࡰ࢙࡭૛ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐27
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For	beams:											 ࡸ ሺ࢔࢏ሻ
ࡰ ሺ࢔࢏ሻ൘ ൌ ૜૙ ࡸ ሺ࢚ࢌሻ

ሻ൘࢔࢏ሺ	ࡰ 	ൌ ૛. ૞

For	girders:										 ࡸ ሺ࢔࢏ሻ
ࡰ ሺ࢔࢏ሻ൘ ൌ ૚ૢ. ૛ ࡸ ሺ࢚ࢌሻ

ሻ൘࢔࢏ሺ	ࡰ 	ൌ ૚. ૟

	 	

Additionally,	the	un‐factored	uniformly	distributed	load	intensity,	w,	can	be	written	

as	the	product	of	the	un‐factored	floor	load	and	the	tributary	width	of	the	supporting	

member,	as	shown	in	Equation	B‐28.	This	is	similar	to	Equation	B‐14;	however,	Equation	B‐

28	uses	un‐factored	loads	while	Equation	B‐14	uses	factored	loads.	

For	beams:	

Substitute	the	L/D	ratio	to	eliminate	D:	

Substitute	Equation	B‐28	for	w:	

Solve	for	As	and	simplify:	

	

Equation	B‐33a	can	be	combined	with	Equations	3‐1	and	B‐9:	

	 ࢝ ൌ ࢀ࢝ࢗ Equation	B‐28

	 ૙. ૚૞૞ࡰ࢙࡭૛ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐29

	 ૙. ૚૞૞࢙࡭ሺ૙. ૝ࡸሻ૛ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐30

	 ૙. ૚૞૞࢙࡭ሺ૙. ૝ࡸሻ૛ ൌ
ૢሺࢀ࢝ࢗሻࡸ૜

૞ૡ૙
Equation	B‐31

	 ࢙࡭ ൌ
ࡸࢀ࢝ࢗૢ

ሺ૙. ૚૞૞ሻሺ૙. ૝૛ሻሺ૞ૡ૙ሻ
Equation	B‐32

	 ࢙࡭ ൌ
૞
ૡ
ࡸࢀ࢝ࢗ Equation	B‐33a
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Substitute	Equation	B‐9	for	Wt:	

Substitute	Equation	B‐33a	for	As:	

For	girders:	

Substitute	the	L/D	ratio	to	eliminate	D:	

Substitute	Equation	B‐28	for	w:	

Solve	for	As	and	simplify:	

	

Equation	B‐33b	can	be	combined	with	Equations	3‐1	and	B‐9:	

	

	 ࡴ ൌ
࢚ࢃ
ࢀ࢝

Equation	3‐1

	 ࡴ ൌ
ሺ࢙ࢽ࢙࡭ሻ
ࢀ࢝

Equation	B‐34

	 ࡴ ൌ
ሺ૞ૡࡸࢀ࢝ࢗሻሺ૝ૢ૙ሻ

ሺ૚૝૝ሻࢀ࢝

Equation	B‐35

	 ࡴ ൌ
૚ૠ
ૡ
ࡸࢗ Equation	B‐36a

	 ૙. ૚૞૞ࡰ࢙࡭૛ ൌ
૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐29

	 ૙. ૚૞૞࢙࡭ሺ
૞
ૡ
ሻ૛ࡸ ൌ

૜ࡸ࢝ૢ

૞ૡ૙
Equation	B‐37

	 ૙. ૚૞૞࢙࡭ሺ
૞
ૡ
ሻ૛ࡸ ൌ

ૢሺࢀ࢝ࢗሻࡸ૜

૞ૡ૙
Equation	B‐38

	 ࢙࡭ ൌ
ࡸࢀ࢝ࢗૢ

ሺ૙. ૚૞૞ሻሺ૞ૡሻ
૛ሺ૞ૡ૙ሻ

Equation	B‐39

	 ࢙࡭ ൌ ૙. ૛૞૟ࡸࢀ࢝ࢗ Equation	B‐33b
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Substitute	Equation	B‐9	for	Wt:	

Substitute	Equation	B‐33b	for	As:	

	

	

Results 

Estimated	steel	weights	per	square	foot	when	governed	by	strength	limit	states	can	

be	described	by	the	following	equations	for	beams	and	girders.	

Similarly,	estimated	steel	weights	per	square	foot	when	governed	by	deflection	limit	states	

can	be	described	by	the	following	equations.		

	 ࡴ ൌ
࢚ࢃ
ࢀ࢝

Equation	3‐1
	 ࡴ ൌ

ሺ࢙ࢽ࢙࡭ሻ
ࢀ࢝

Equation	B‐34

	 ࡴ ൌ
ሺ૙. ૛૞૟ࡸࢀ࢝ࢗሻሺ૝ૢ૙ሻ

ሺ૚૝૝ሻࢀ࢝
Equation	B‐40

	 ࡴ ൌ
ૠ
ૡ
ࡸࢗ Equation	B‐36b

Beams	 ࡴ ൌ
૞
ૡ
ࡸ࢛ࢗ Equation	B‐16a

	 	

Girders	 ࡴ ൌ
૞
૚૛

ࡸ࢛ࢗ Equation	B‐16b

Beams	 ࡴ ൌ
૚ૠ
ૡ
ࡸࢗ Equation	B‐36a

	 	

Girders	 ࡴ ൌ
ૠ
ૡ
ࡸࢗ Equation	B‐36b
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Conclusions 

Equations	B‐36a	and	B‐36b	that	result	from	this	are	very	similar	to	Equations	B‐16a	

and	B‐16b.	Two	differences	are	worth	noting.	Equations	B‐36a	and	B‐36b	use	the	factored	

floor	loads,	while	Equations	B‐16a	and	B‐16b	use	un‐factored	floor	loads.	This	is	due	to	the	

fact	that	Equations	B‐16a	and	B‐16b	are	based	on	the	member	strength,	resulting	in	the	

equations	having	the	factored	loads	and	strength	reduction	factors	built	into	them.	

Conversely,	deflection	criteria	are	based	on	service‐level	loads,	which	leaves	Equations	B‐

36a	and	B‐36b	in	terms	of	un‐factored	loads.	The	second	difference	is	a	difference	in	the	

coefficients.	Equations	B‐36a	and	B‐36b	have	higher	coefficients,	meaning	that	designs	

governed	by	deflection	criteria	will	result	in	a	heavier	structure	weight	per	square	foot	

than	a	design	governed	by	member	strength.		

These	equations	show	that	the	structure	weight	increases	proportionally	to	both	the	

imposed	floor	load	and	the	member	spans.	Since	steel	weight	increases	proportionally	to	

the	member	spans,	it	seems	that	short	spans	would	result	in	lighter	structural	weights.	This	

may	cause	an	increase	in	the	steel	weight	of	columns,	as	more	columns	are	needed	to	

support	the	short‐span	members.	Because	of	these	opposing	influences,	a	minimum	usage	

of	steel	may	not	necessarily	a	structure	with	the	shortest	beam	and	girder	spans,	but	one	

that	balances	the	beam	and	girder	weight	with	the	column	weight.	As	an	example,	consider	

a	building	with	5	feet	beams	and	5	feet	girders	with	columns	5	feet	on‐center	in	each	

direction	to	support	the	beams	and	girders.	Aside	from	obvious	space	constraints	imposed	

by	this	arrangement,	the	structure	is	not	an	efficient	use	of	material.	While	the	beam	and	

girder	weight	may	be	very	low	due	to	their	short	spans,	the	column	weights	would	be	very	
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high	simply	due	to	needing	so	many	so	close	together.	This	conceptually	shows	that	a	

practical	limit	exists	to	these	equations.	

These	equations	also	yield	several	non‐intuitive	results.	The	first	of	these	is	no	term	

for	the	tributary	width	of	the	member	is	used,	which	means	that	the	estimated	steel	

weights	are	independent	of	the	tributary	width	of	the	members,	and	consequently,	the	

spacing	of	the	members.	The	spacing	of	the	members	may	determine	where	the	steel	

weights	fall	between	these	two	limits,	but	it	does	not	affect	the	boundaries	of	the	limits	

themselves.	For	instance,	a	long	member	with	a	narrow	tributary	width	would	be	governed	

by	deflection,	placing	it	near	the	deflection	limits	of	the	equations,	while	a	shorter	member	

with	a	wide	tributary	width	would	be	governed	by	member	strength,	placing	it	near	the	

strength	limits	of	the	equations.	

Another	interesting	and	possibly	unintuitive	result	of	these	equations	is	that	steel	

weight	increases	only	linearly	with	member	span.	Since	moments	due	to	a	distributed	load	

are	proportional	to	the	square	of	the	member	span,	and	member	deflection	is	proportional	

to	the	member	length	to	the	4th	power,	it	is	reasonable	to	assume	that	the	strength	and	

deflection	limits	would	follow	in	a	similar	manner.		

An	important	consideration	when	using	these	equations	is	that	they	were	developed	

using	the	properties	of	A992	W‐shape	non‐composite	beam	sections.		These	equations	

would	not	accurately	represent	situations	using	members	with	different	steel	grades	or	

section	types.	Also,	these	equations	were	derived	based	on	a	deflection	limit	of	L/240	

deflection	under	combined	dead	and	live	load.	For	different	deflection	criteria,	the	

coefficients	for	these	equations	will	be	different.	These	equations	were	also	developed	with	
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the	assumption	of	regularly‐shaped,	rectangular	bays;	therefore,	they	would	not	accurately	

represent	situations	with	irregular	framing	plans.	
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Appendix C - Column Weight Derivation 

Formulas	for	the	steel	weight	of	columns	per	square	foot	can	be	derived	with	a	

method	similar	to	that	for	beams	and	girders.	For	the	LRFD	design	method,	the	following	

equation	is	used	for	the	design	of	a	column:	

	

	

The	design	strength	of	a	column	is,	according	to	the	AISC	Steel	Manual	Equation	E3‐1:	

where:	

where:	

ϕPn	ൌ	column	design	axial	capacity	ሺkipsሻ	

ϕ	ൌ	strength	reduction	factor	ሺϕൌ0.9	for	bucklingሻ	

Fcr	ൌ	critical	stress	ሺksiሻ	

Ag	ൌ	Column	cross‐sectional	area	ሺin2ሻ	

	

The	critical	stress	of	a	column	depends	on	a	wide	variety	of	factors	relating	to	the	

section’s	properties	and	the	member	un‐braced	length.	To	reduce	the	number	of	variables	

to	consider,	the	critical	stress	can	be	approximated	as	a	function	of	only	the	gross	section	

area.		

In	order	to	evaluate	this	relationship	between	the	critical	stress	and	gross	section	

area,	critical	stresses	and	section	areas	from	the	243	columns	designed	in	the	original	

analysis	are	plotted	in	the	figure.		The	critical	stress	is	calculated	by	dividing	the	required	

	 ࢔ࡼࣘ ൌ ࢛ࡼ Equation	C‐1

	 ࢔ࡼࣘ ൌ ࢍ࡭࢘ࢉࡲࣘ Equation	C‐2
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axial	strength	by	the	column	section	area	and	the	strength	reduction	factor.	Using	the	

required	axial	strength	Pu,	rather	than	the	design	axial	strength	ϕPn,	allows	for	the	effects	

of	eccentric	loading	to	be	accounted	for	when	calculating	the	critical	stress.	This	results	in	a	

lower	critical	stress	than	for	purely	axial	loading.	

 

	

Figure 7-8: Column Stresses 

	

The	graph	reveals	two	distinct	behaviors	in	the	relationship	between	critical	stress	

and	section	area.	For	smaller	column	areas,	a	slight	increase	in	column	area	produces	an	

increase	in	critical	stress,	which	suggests	a	positive	correlation	between	the	two.	In	
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	 ࢘ࢉࡲ ൌ
࢛ࡼ
ࢍ࡭ࣘ

Equation	C‐3
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contrast,	large	columns	have	a	relatively	constant	critical	stress	after	the	column	area	

exceeds	about	30	in2.	

The	smaller	columns	have	a	higher	slenderness	ratio,	KL/r,	resulting	in	a	lower	

critical	stress.	As	the	slenderness	decreases	for	larger	columns,	the	critical	stress	increases	

and	approaches	the	yield	stress,	Fy.	The	yield	stress	is	the	absolute	limit	of	the	critical	

stress,	only	being	reached	when	KL/r	equals	zero.	Obviously,	a	KL/r	ratio	of	zero	cannot	be	

reached	in	real	columns;	rather,	a	practical	limit	is	encountered	where	the	critical	stress	

can	no	longer	be	significantly	increased	by	increasing	the	column	area.	This	practical	limit	

in	critical	stress	is	reduced	by	material	imperfections	and	the	presence	of	eccentric	loading,	

as	a	portion	of	the	column	capacity	must	be	utilized	to	resist	the	induced	bending	moment	

rather	than	pure	axial	force.	

These	two	regions	in	the	critical	stress	graph	can	be	approximated	with	the	

following	relationship:	

	

	

This	approximation	reflects	the	two	different	behaviors	shown	in	the	graph.	In	

Region	1,	the	critical	stress	increases	in	proportion	to	the	square	root	of	the	column	area.	

This	continues	until	the	stress	reaches	Region	2,	where	the	critical	stress	stabilizes	around	

35	ksi.	

The	critical	stress	of	a	column	directly	affects	the	required	quantity	of	structural	

steel	for	columns.	Achieving	a	higher	critical	stress	decreases	the	required	section	area,	

	 ࢘ࢉࡲ ൌ ૟. ૞ටࢍ࡭ ൑ ૜૞ ࢏࢙࢑ Equation	C‐4
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which	in	turn	reduces	the	weight	of	the	column.	The	relationship	established	above	allows	

an	estimate	of	required	structural	steel	to	be	made.	

	

Region 1 

Substitute	Equation	C‐5	into	Equation	C‐2:	

	

	

Substitute	Equation	C‐1	for	ϕPn:	

The	required	axial	strength	of	the	column	can	be	expressed	as	the	tributary	area	of	

the	column	multiplied	by	the	factored	floor	load.	The	columns	in	region	1	are	small	

columns	that	support	smaller	tributary	areas.	Because	the	tributary	areas	for	these	

columns	are	small,	live	load	reduction	will	be	neglected;	therefore:	

	

where:	

qu	ൌ	factored	floor	load,	unreduced	live	load	ሺkips/ft2ሻ	

AT	ൌ	column	tributary	area	ሺft2ሻ	

	

	 ࢔ࡼࣘ ൌ ࢍ࡭࢘ࢉࡲࣘ Equation	C‐2

	 ࢔ࡼࣘ ൌ ࣘ൬૟. ૞ටࢍ࡭ ൰ࢍ࡭ Equation	C‐5

	 ࢔ࡼࣘ ൌ ૟. ૞ ∗ ૙. ૢ ∗ ࢍ࡭
૜/૛ Equation	C‐6

	 ࢛ࡼ ൌ ૞. ૡ૞ࢍ࡭
૜/૛ Equation	C‐7

	 ࢛ࡼ ൌ ࢀ࡭࢛ࢗ Equation	C‐8
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For	multi‐story	columns	with	regularly‐shaped	bays,	the	tributary	area	of	the	

column	can	be	expressed	as	the	tributary	area	per	floor	multiplied	by	the	number	of	floors.	

For	the	purposes	of	simplifying	this	analysis,	roofs	will	be	treated	as	half	of	a	floor	to	

account	for	the	lighter	loads	on	the	roof.	

where:	

N	ൌ	number	of	floors	supported	by	the	column	ሺroof	ൌ	1/2	floorሻ	

Af	ൌ	column	tributary	area	per	floor	ሺft2ሻ	

	

For	rectangular	bays,	the	floor	area	supported	by	one	column	is	defined	as	the	beam	span	

multiplied	by	the	girder	span:	

where:	

Lb	ൌ	beam	span	ሺftሻ	

Lg	ൌ	girder	span	ሺftሻ	

	

Substitute	Equation	3‐12	into	Equation	C‐8:	

	

	

Substitute	Equation	C‐10	for	Af:	

	 ࢀ࡭ ൌ ࢌ࡭ࡺ Equation	3‐12

	 ࢌ࡭ ൌ ࢍࡸ࢈ࡸ Equation	C‐10

	 ࢛ࡼ ൌ ࢀ࡭࢛ࢗ Equation	C‐8

	 ࢛ࡼ ൌ ሻࢌ࡭ࡺሺ࢛ࢗ Equation	C‐11
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Substitute	Equation	C‐12a	for	Pu	in	Equation	C‐7	and	solve	for	Ag:	

	

	

Column	weight	per	square	foot	can	be	determined	by	taking	the	weight	of	a	one	

story	tall	section	of	the	column	and	dividing	it	by	the	bay	area	of	one	floor.	This	is	

expressed	by	the	following	equation:	

where:	

H	ൌ	steel	weight	ሺlb/ft2ሻ	

Wt	ൌ	column	section	weight	ሺlb/ftሻ	

h	ൌ	floor‐to‐floor	height	ሺftሻ	

	

Substitute	Equations	C‐10	into	Equation	3‐2:	

	

	 ࢛ࡼ ൌ ࢍࡸ࢈ࡸࡺ࢛ࢗ Equation	C‐12a

	 ࢛ࡼ ൌ ૞. ૡ૞ࢍ࡭
૜/૛ Equation	C‐7

	 ࢍࡸ࢈ࡸࡺ࢛ࢗ ൌ ૞. ૡ૞ࢍ࡭
૜/૛ Equation	C‐13

	 ࢍ࡭
૜/૛ ൌ

ࢍࡸ࢈ࡸࡺ࢛ࢗ
૞. ૡ૞

Equation	C‐14

	 ࢍ࡭ ൌ ൬
ࢍࡸ࢈ࡸࡺ࢛ࢗ
૞. ૡ૞

൰
૛/૜

Equation	C‐15

	 ࡴ ൌ
࢚ࢃ ∗ ࢎ
ࢌ࡭

Equation	3‐2
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Additionally,	the	section	weight	of	a	member	equals	the	cross‐sectional	area	multiplied	by	

the	specific	weight	of	steel.	This	yields	the	following	equation:	

	

where:	

γ	ൌ	specific	weight	of	steel	ሺ490	lb/ft3ሻ	

	

Substitute	Equation	C‐17	into	Equation	C‐12a	for	Wt:	

	

	

Substitute	the	formula	for	Ag	in	Equation	C‐15	into	Equation	C‐19	and	simplify:	

	 ࡴ ൌ
࢚ࢃ ∗ ࢎ
ࢍࡸ࢈ࡸ

Equation	C‐16

	 ࢚ࢃ ൌ
ࢽ ∗ ࢍ࡭
૚૝૝

Equation	C‐17

	 ࡴ ൌ
࢚ࢃ ∗ ࢎ
ࢍࡸ࢈ࡸ

Equation	C‐16

	 ࡴ ൌ
ሺ
ࢽ ∗ ࢍ࡭
૚૝૝ ሻ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐17

	 ࡴ ൌ
ሺ
૝ૢ૙ ∗ ࢍ࡭
૚૝૝ ሻ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐18

	 ࡴ ൌ
૜. ૝ࢍ࡭ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐19

	 ࡴ ൌ
૜. ૝ࢍ࡭ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐19
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Although	this	equation	is	somewhat	complicated,	it	manages	to	create	a	method	of	

determine	the	column	steel	weight	without	directly	designing	the	column.	Column	design	

typically	requires	information	about	the	following	parameters:	column	height	ሺLሻ,	weak‐

axis	radius	of	gyration	ሺryሻ,	end	fixity	factor	ሺkሻ,	column	gross	area	ሺAgሻ.	Both	ry	and	Ag	are	

section	properties,	and	both	of	these	values	affect	the	critical	stress	of	the	column.	This	

results	in	an	iterative	design	process.	

This	equation	is	a	function	of	the	following	parameters:	story	height	ሺhሻ,	factored	

floor	load	ሺquሻ,	the	number	of	stories	ሺNሻ,	and	the	dimensions	of	a	typical	bay	ሺLb	and	Lgሻ.	

None	of	these	parameters	are	section	properties	of	the	column,	which	allows	the	steel	

weight	to	be	estimated	before	the	structure	is	designed.	

	
ࡴ ൌ

૜. ૝ ∗ ൬
ࢍࡸ࢈ࡸࡺ࢛ࢗ
૞. ૡ૞ ൰

૛/૜

∗ ࢎ

ࢍࡸ࢈ࡸ

Equation	C‐20

	
ࡴ ൌ

૜. ૝ ∗ ൬
ࢍࡸ࢈ࡸࡺ࢛ࢗ
૞. ૡ૞ ൰

૛/૜

∗ ࢎ

ሺࢍࡸ࢈ࡸሻ૜/૜
Equation	C‐21

	 ࡴ ൌ
૜. ૝ ∗ ቀ

ࡺ࢛ࢗ
૞. ૡ૞ቁ

૛/૜
∗ ࢎ

ሺࢍࡸ࢈ࡸሻ૚/૜
Equation	C‐22

	 ࡴ ൌ
૜. ૝ ∗ ૙. ૜૙ૡ ∗ ሺࡺ࢛ࢗሻ૛/૜ ∗ ࢎ

ሺࢍࡸ࢈ࡸሻ૚/૜
Equation	C‐23

	 ࡴ ൌ ૚. ૙૞ ∗ ࢎ ∗ ඨ
૛ࡺ૛࢛ࢗ

ࢍࡸ࢈ࡸ

૜
ൎ ࢎ ∗ ඨ

૛ࡺ૛࢛ࢗ

ࢍࡸ࢈ࡸ

૜
Equation	C‐24

	 ࡴ ൌ ࢎ ∗ ඨ
૛ࡺ૛࢛ࢗ

ࢍࡸ࢈ࡸ

૜
Equation	C‐25a
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Region 2 

	

Substitute	Equation	C‐1	for	ϕPn:	

	

The	required	axial	capacity	Pu	can	be	expressed	with	an	equation	similar	Equation	

C‐12a.	In	contrast	to	the	columns	in	the	previous	case,	columns	in	this	case	typically	have	

large	tributary	areas	where	live	loads	can	be	reduced	by	the	code	maximums.	This	

corresponds	to	the	following	equation:	

	

qur	ൌ	factored	floor	load,	fully‐reduced	live	load	ሺkips/ft2ሻ	

	

Substitute	Equation	C‐12b	for	Pu	into	Equation	C‐27:	

	

Solve	for	Ag:	

	

Substitute	Equation	C‐29	for	Ag	into	Equation	C‐30:	

	 ࢔ࡼࣘ ൌ ࢍ࡭࢘ࢉࡲࣘ Equation	C‐2

	 ࢔ࡼࣘ ൌ ૙. ૢ ∗ ૜૞ ∗ ࢍ࡭ Equation	C‐26

	 ࢛ࡼ ൌ ૜૚. ૞ࢍ࡭ Equation	C‐27

	 ࢛ࡼ ൌ ࢍࡸ࢈ࡸࡺ࢛࢘ࢗ Equation	C‐12b

	 ࢛ࡼ ൌ ૜૚. ૞ࢍ࡭ Equation	C‐27

	 ࢍࡸ࢈ࡸࡺ࢛࢘ࢗ ൌ ૜૚. ૞ࢍ࡭ Equation	C‐28

	 ࢍ࡭ ൌ
ࢍࡸ࢈ࡸࡺ࢛࢘ࢗ
૜૚. ૞

Equation	C‐29
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Like	the	previous	equation,	this	is	not	a	function	of	any	column	section	properties.	

The	equation	is	a	function	of	the	story	height	ሺhሻ,	factored	floor	load	ሺquሻ,	and	the	number	

of	stories	ሺNሻ.	None	of	these	parameters	are	section	properties	of	the	column,	which	allows	

the	steel	weight	to	be	estimated	without	the	design	and	selection	of	a	column	member.	

	

Results 

The	following	two	equations	produce	estimated	column	steel	weights	per	square	

foot	that	correspond	to	the	two	states	of	behavior	observed	from	the	graph	above.	

	

	

Conclusion 

For	Region	2,	column	steel	weight	per	square	foot	is	directly	proportional	to	the	

number	of	supported	floors,	imposed	floor	load,	and	story	height.	Column	weight	is	

	 ࡴ ൌ
૜. ૝ࢍ࡭ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐30

	 ࡴ ൌ
૜. ૝ ∗ ൬

ࢍࡸ࢈ࡸࡺ࢛࢘ࢗ
૜૚. ૞ ൰ ∗ ࢎ

ࢍࡸ࢈ࡸ
Equation	C‐31

	 ࡴ ൌ
ࢎ࢛࢘ࢗࡺ
ૢ

Equation	C‐25b

	 ࡴ ൌ ࢎ ∗ ඨ
૛ࡺ૛࢛ࢗ

ࢍࡸ࢈ࡸ

૜
Equation	C‐25a

	 ࡴ ൌ
ࢎ࢛࢘ࢗࡺ
ૢ

Equation	C‐25b
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independent	of	bay	size	in	this	equation,	indicating	that	for	very	large	bays	no	significant	

weight	savings	occurs	from	further	increasing	the	bay	size.	

The	results	of	this	equation	are	fairly	intuitive.	It	would	be	expected	that	the	column	

steel	weight	would	increase	directly	in	proportion	to	the	number	of	supported	floors.	Each	

floor	increases	the	required	axial	capacity	of	the	column,	which	means	that	a	heavier	

section	must	be	used.	This	reasoning	extends	to	the	relationship	between	column	steel	

weight	and	the	factored	floor	load.	The	fact	that	column	steel	weight	is	directly	

proportional	to	the	building’s	story	height	is	also	reasonable.	For	a	higher	story	height,	a	

longer	column	is	required	to	span	that	height,	which	requires	more	steel.	

For	Region	1,	column	weights	per	square	foot	is	a	more	complicated	function	of	

story	height,	number	of	stories,	imposed	floor	loads,	and	bay	area.	Similar	to	the	other	

equation,	steel	weight	is	directly	proportional	to	the	story	height.	This	results	from	the	

definition	of	the	column	weight	per	square	foot	used	in	Equation	C‐25a.		

Column	weights	are	also	directly	proportional	to	the	square	root	of	the	number	of	

supported	floors.	This	relationship	is	likely	valid	only	for	a	small	number	of	stories.	For	a	

large	number	of	supported	floors,	the	columns	would	likely	be	governed	by	inelastic	

buckling,	at	which	point	the	steel	weight	would	be	directly	proportional	to	the	number	of	

supported	stories	in	accordance	with	Equation	C‐25b.	

One	interesting	result	of	this	equation	is	that	column	steel	weight	is	directly	

proportional	to	the	cube	root	of	the	square	of	the	imposed	floor	load.	This	means	that	an	

increase	in	floor	loads	of	50%	will	result	in	a	steel	weight	increase	of	only	30%	for	columns	

with	small	tributary	areas.	A	related	result	is	that	the	column	steel	weight	is	inversely	
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proportional	to	the	cube	root	of	the	bay	size.	By	this	relationship,	doubling	the	bay	area	

would	actually	reduce	the	column	steel	weight	per	square	foot	by	roughly	30%.	

The	cube	root	in	this	equation	is	significant,	and	originates	from	the	fact	that	the	

critical	stress	was	approximated	as	being	proportional	to	the	square	root	of	the	section	

area.	Because	of	this,	the	section	area	contributes	in	two	ways	to	the	strength	of	the	

column.	Not	only	does	an	increase	in	area	contribute	to	the	column	strength	by	increasing	

the	amount	of	material	to	carry	load,	but	also	by	increasing	the	critical	stress	of	the	section.	

As	the	required	axial	strength	of	the	column	increases,	the	column	requires	a	section	with	a	

larger	area;	however,	due	to	the	double	effect	that	the	section	area	provides	to	the	column	

strength,	the	section	area	ሺand	by	extension	the	section	weightሻ	does	not	increase	linearly	

with	the	required	axial	load.	

While	these	equations	constitute	power	design	aides	for	engineers,	they	are	

formulated	using	a	series	of	assumptions	and	approximations,	and	as	such,	have	limitations	

to	their	use.	It	is	important	to	note	that	these	equations	consider	eccentrically	applied	

loads.	Eccentrically	applied	loads	have	the	potential	to	considerably	decrease	the	axial	

capacity	of	columns,	resulting	in	an	increase	in	column	steel	weights.	Although	the	

eccentricities	used	in	the	analysis	are	within	the	typical	range	for	simple	beam‐to‐column	

connections,	they	may	not	be	appropriate	for	all	cases	or	connection	types.	

Perhaps	the	most	important	consideration	regarding	these	formulas	is	that	the	final	

results	treat	the	story	height	as	a	variable	despite	it	being	kept	constant	at	15	feet	during	

the	original	analysis.	The	story	height	constitutes	the	un‐braced	length	of	the	column,	

which	has	a	substantial	impact	on	the	strength	of	a	column	by	means	of	the	KL/r	ratio.	

Consequently,	these	equations	are	most	accurate	when	used	with	buildings	that	have	story	
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heights	around	15	feet,	which	is	not	uncommon	for	many	types	of	buildings.	Nevertheless,	

these	equations	likely	require	some	modification	in	order	to	accommodate	very	short	or	

very	tall	story	heights.	

The	final	consideration	is	that	these	equations	were	formulated	around	the	

properties	of	A992	W‐shape	column	sections.	These	equations	cannot	be	used	for	columns	

of	different	steel	grades,	such	as	A36,	or	different	section	types,	such	as	circular	or	

rectangular	hollow	structural	sections;	however,	it	is	possible	to	reformulate	these	

equations	based	on	different	section	properties,	likely	resulting	in	similar	relationships.	

Additionally,	these	equations	were	formulated	for	regularly‐shaped,	rectangular	bays	and	

floor	loads	and	framing	layouts	that	are	common	to	all	supported	floors.	Situations	with	

irregular	bays	or	loads	that	vary	between	floors	will	not	be	accurately	represented	by	these	

equations.	
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Appendix D - Steel	Weight	Graphs	

Beams		 Non‐Composite	 	 50	PSF		
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Girders	 	 Non‐Composite	 	 50	PSF		
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Beams	&	Girders	 Non‐Composite	 	 50	PSF	
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Columns	 Non‐Composite	 	 50	PSF	
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Total	 	 Non‐Composite	 	 50	PSF	
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Beams		 Non‐Composite	 	 75	PSF		
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Girders	 	 Non‐Composite	 	 75	PSF		
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Columns	 Non‐Composite	 	 75	PSF	
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Girders	 	 Non‐Composite	 	 100	PSF	
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Beams	&	Girders	 	 Non‐Composite	 	 100	PSF	

	

	

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16 20 24 28 32 36 40 44 48 52 56

St
e
e
l W

e
ig
h
t 
(l
b
/S
F 
Fl
o
o
r 
Sp
ac
e
)

Girder Span (ft)

Beam & Girder Weight (lb/SF) vs. Girder Span (ft)
[100 PSF Non‐Composite]

20' Beams

24'

28'

32'

36'

40'

44'

48'

52'

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16 20 24 28 32 36 40 44 48 52 56

St
e
e
l W

e
ig
h
t 
(l
b
/S
F 
Fl
o
o
r 
Sp
ac
e
)

Beam Span (ft)

Beam & Girder Weight (lb/SF) vs. Beam Span (ft)
[100 PSF Non‐Composite]

20' Girders

24'

28'

32'

36'

40'

44'

48'

52'



159 

	

	 	

20

24
28

32
36

40
44

48
52

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

20

24

28

32

36

40

44

48
52

Girder Span (ft)

St
e
e
l W

e
ig
h
t 
(l
b
/S
F 
Fl
o
o
r 
Sp
ac
e
)

Beam Span (ft)

Beam & Girder Weight (lb/SF) vs. Bay Size (ft)
[100 PSF Non‐Composite] 

14.0‐15.0

13.0‐14.0

12.0‐13.0

11.0‐12.0

10.0‐11.0

9.0‐10.0

8.0‐9.0

7.0‐8.0

6.0‐7.0

5.0‐6.0

4.0‐5.0



160 

Columns	 	 Non‐Composite	 	 100	PSF	
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Total	 	 Non‐Composite	 	 100	PSF	
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Girders	 	 Composite	 	 50	PSF		
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Beams	&	Girders	 Composite	 	 50	PSF	
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Total	 	 Composite	 	 50	PSF	
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Beams		 Composite	 	 75	PSF		
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Girders	 	 Composite	 	 75	PSF		
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Beams	&	Girders	 Composite	 	 75	PSF	
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Columns	 Composite	 	 75	PSF	
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Total	 	 Composite	 	 75	PSF	
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Beams		 Composite	 	 100	PSF	
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Girders	 	 Composite	 	 100	PSF	
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Beams	&	Girders	 	 Composite	 	 100	PSF	
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Columns	 	 Composite	 	 100	PSF	

	

	 	

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

16 20 24 28 32 36 40 44 48 52 56

St
e
e
l W

e
ig
h
t 
(l
b
/S
F 
Fl
o
o
r 
Sp
ac
e
)

Girder Span (ft)

Column Weight (lb/SF) vs. Girder Span (ft)
[100 PSF Composite]

20' Beams

24'

28'

32'

36'

40'

44'

48'

52'



188 

Total	 	 Composite	 	 100	PSF	
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