
	 	

IMPLEMENTING A LAMBDA ARCHITECTURE TO
PERFORM REAL-TIME UPDATES

by

PRAMOD KUMAR GUDIPATI

B.E., OSMANIA UNIVERSITY (OU), INDIA, 2012

A REPORT

submitted in partial fulfillment of the
requirements of the degree

MASTER OF SCIENCE

Department of Computing and Information Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2016

Approved by:

Major Professor
Dr. William Hsu

	 	

COPYRIGHT

Pramod Kumar Gudipati

2016

	 	

Abstract

The Lambda Architecture is the new paradigm for big data, that helps in data processing with a
balance on throughput, latency and fault-tolerance. There exists no single tool that provides a
complete solution in terms of better accuracy, low latency and high throughput. This initiated the
idea to use a set of tools and techniques to build a complete big data system. The Lambda
Architecture defines a set of layers to fit in a set of tools and techniques rightly for building a
complete big data system: Speed Layer, Serving Layer, Batch Layer. Each layer satisfies a set of
properties and builds upon the functionality provided by the layers beneath it.

The Batch layer is the place where the master dataset is stored, which is an immutable and
append-only set of raw data. Also, batch layer pre-computes results using a distributed
processing system like Hadoop, Apache Spark that can handle large quantities of data. The
Speed Layer captures new data coming in real time and processes it. The Serving Layer contains
a parallel processing query engine, which takes results from both Batch and Speed layers and
responds to queries in real time with low latency.

Stack Overflow is a Question & Answer forum with a huge user community, millions of posts
with a rapid growth over the years. This project demonstrates The Lambda Architecture by
constructing a data pipeline, to add a new “Recommended Questions” section in Stack Overflow
user profile and update the questions suggested in real time. Also, various statistics such as
trending tags, user performance numbers such as UpVotes, DownVotes are shown in user
dashboard by querying through batch processing layer.

	 	 IV	

Table of Contents

	

	List of Figures	..	V	

Acknowledgements	...	VI	

Chapter 1 - Introduction	...	1	

Chapter 2 - Background and Related Work	...	2	

Chapter 3 - Architecture	...	5	

3.1 Batch Layer	...	5	

3.1.1 HDFS	..	5	

3.1.2 Apache Spark	..	6	

3.2 Speed Layer	...	6	

3.3 Serving Layer	..	8	

3.4 Flask	..	9	

Chapter 4 - Implementation	...	10	

4.1 DataSet	..	10	

4.2 Batch Layer	...	11	

4.3 Data Ingestion	...	12	

4.4 Speed Layer	...	13	

4.5 Cassandra	..	13	

Chapter 5 - Results	...	15	

Chapter 6 - Conclusion & Future Work	..	18	

6.1 Conclusion	...	18	

6.2 Future Work	...	18	

Bibliography	..	19	

	

	

	 	 V	

List of Figures	

Figure	1:	Lambda	Architecture	...	2	

Figure	2:	Lambda	Architecture	Diagram	..	4	

Figure 3: HDFS Architecture. Adapted from Apache Hadoop	..	5	

Figure 4: Apache Spark Ecosystem. Adapted from Apache Spark	..	6	

Figure 5: Spark Streaming Architecture. Adapted from DataBricks	..	7	

Figure 6: Kafka Architecture	..	8	

Figure 7: Data Pipeline	...	10	

Figure 8: Raw Data Format	..	11	

Figure 9: Apache Spark setup on AWS Cluster	...	12	

Figure 10: Kafka, Flask Cluster on AWS	...	13	

Figure 11: Cassandra cluster on AWS	..	14	

Figure 12: Application Home Page	..	15	

Figure 13: User Dashboard Page	..	16	

Figure 14: Top Tags	...	17	

Figure 15: Trending Tags	...	17	

	
	

	 	 VI	

Acknowledgements

I would like to express my gratitude to my advisor, Dr. William Hsu, for his constant support and
encouragement in completing this project. I would also like to thank Dr. Mitch Neilsen and Dr.
Torben Amtoft for serving on my M.S. committee. Finally, I thank my family and friends for
their love and support.

	

	 	 1	

Chapter 1 - Introduction

In the last decade, the amount of data being created has increased enormously. In the internet, on
an average for every second 7000 tweets are made on twitter, 5000 statuses are updated on
Facebook, 746 Instagram photos uploaded, more than 30,000 gigabytes of data is generated and
the rate of data creation is only boosting up. There is a vast diversity in the data being generated
like photos, blog posts, videos, tweets and servers log a message for each event occurring which
would help in loading history back if needed. As a result, the internet is almost incomprehensibly
large. Traditional data base systems like relational databases fail to handle these large amounts of
data. This resulted in the raise of new technologies grouped under the term NoSQL. These
systems can scale up to large amounts of data and can handle complexity issues easily, as the
databases and computation systems used for big data are aware of their distributed nature.

The most important technique with NoSQL systems is making data immutable. At any point data
is not mutated, instead stored as it is in the system, making it possible to revert back if you make
a mistake and write a bad data. This is a much stronger human fault-tolerant system than a
traditional systems operated based on data mutation. Traditional systems can also store
immutable data but they can't scale up with larger inputs of data coming in for storage.

Last decade has seen huge amount of innovation in scalable data systems, with the invention of
large-scale computation systems like Apache Hadoop, Apache Spark and databases such as
Cassandra, HBase and Riak. For instance, Hadoop can process large amounts of data with
parallelized computations but with higher latency. Databases like Cassandra offer scalability
through distributed nature by offering a confined data model compared to traditional database
systems. It is very complex to fit your application data model into these systems. Each tool has
its own trade-offs, but when these tools used in conjunction, one can develop scalable systems
with low latency, human fault-tolerance and a minimum of complexity. The Lambda
Architecture provides a general purpose approach that takes entire dataset as input and answers
your questions with low latency. The set of technologies used may change based on the
requirements of the application, but the lambda architecture defines a consistent approach in
wiring those technologies together to build a system that meets your requirements.

There is no single tool that builds a complete data system with low latency, high throughput and
human fault-tolerant. Instead, a set of tools and techniques should be used in conjunction to build
a complete data system.

	

	 	 2	

Chapter 2 - Background and Related Work

The Lambda architecture defines the conjunction of different tools as a series of layers and each
layer satisfies a set of properties and built on top of the functionality provided by the layer
beneath it.

 	

Figure	1:	Lambda	Architecture

The entire dataset is passed as input to the system on which you run a query to retrieve
the information needed, which can be generalized as

 query = function (all data)

If the input data is of size 1 petabyte, for each input query you want to answer, you can run the
function and get the results. But processing huge data for each query not only takes a large
amount of resources but also unreasonably expensive. An alternative approach would be to pre-
compute the query function; the result would be called as a batch view. Instead of computing the
results on the fly, you could read batch view to get results.

batch view = function (all data)

query = function (batch view)

The batch view makes it possible to get results quickly without having to process entire data set
each time. Also, do remember that creating batch view is a high latency operation as it processes
entire data set, during which a lot of new data gets created which is not considered while creating
the batch view and results are out of data for few hours.

Batch Layer part of the Lambda architecture is responsible for creating the batch view. The

Speed	Layer	

Serving	Layer	

Batch	Layer	

	

	 	 3	

master data set is stored in the batch layer and creates pre-compute views on the master data set.
The two tasks of the batch layer are: to store an immutable growing master dataset and compute
arbitrary functions on the data set to create batch views. This type of computations is done by
batch processing systems like Hadoop, Apache Spark.

The Serving Layer loads the batch views that are produced by batch layer as a result of it
functions. The Serving Layer is a specialized distributed database that loads batch views and
provides random access to the batch view through queries. The database should be able to update
batch views coming from the batch layer periodically and allow random reads. Random writes
are not important for the serving layer databases, reducing the most complex part of the database.
Thus, these databases are simple making them easy to operate, configure and robust. ElephantDB
is an example of a database that can be used in the serving layer.

The Speed Layer is responsible for handling low latency updates, which occur due to high
latency batch view creation in the batch layer. The serving layer updates when the batch layer
completes computing a batch view, which means it misses processing the data that arrived during
batch view creation. The Speed layer processes this missing data and ensures that new data is
represented in query functions as quickly as needed based on the applications need.

The Speed layer is similar to the batch layer in that it computes views based on data it receives.
The only difference being the speed layer just considers recent input data for processing, whereas
batch layer takes all the data. As it receives the data, it updates the real-time views and does
perform an incremental computation. We can generalize the speed layer computation into:

 realtimeview = function (realtimeview, new data)

The Lambda Architecture in total can be generalized into following:

batch view = function (all data)

realtimeview = function (realtimeview, new data)

query = function (batchview. realtimeview)

	

	 	 4	

Figure	2:	Lambda	Architecture	Diagram

New	Data	

	

RealTimeView	

RealTimeView	

RealTimeView	

Speed	Layer	

	

Batch	Layer	

Master	dataset	

Serving	Layer	

Batch	
View	

Batch	
View	

Batch	
View	

Query:		
How	many?	

	

	 	 5	

Chapter 3 - Architecture
	

To implement the Lambda architecture, we need different tools at each layer to perform the tasks
at each layer.

3.1 Batch Layer
The Hadoop Distributed File System (HDFS) and Apache Spark are the technologies/tools which
I have used for my batch layer portion.

3.1.1 HDFS
It is a distributed, scalable and portable file system. It can store large files typically from
gigabytes to terabytes. It achieves reliability by replicating data across multiple nodes. HDFS has
a master/slave architecture. An HDFS cluster consists of a single NameNode, which acts as a
master server that manages the file system namespace and regulates the access to files by clients.
a set of DataNodes is present in the cluster, that store blocks of data achieved by splitting input
files into blocks of data. DataNodes are responsible for serving read and write requests from the
file system's clients. The NameNode is responsible for handling operations like data blocks to
DataNodes mapping, opening, closing, renaming files and directories.

Figure 3: HDFS Architecture. Adapted from Apache Hadoop

HDFS stores each file as a sequence of blocks of the same size, except the last block size. It
provides fault tolerance by replicating blocks of data across different DataNodes. The block size
and replication factor are configurable. The NameNode handles replication of data blocks and

	

	 	 6	

periodically receives a heartbeat from DataNode as an acknowledgment that DataNode is alive
and working.
3.1.2 Apache Spark
It is an open source cluster computing framework, that provides a high-level API's built to
perform various operations on data structure named Resilient Distributed DataSet(RDD). RDD is
a read only multi-set of data items distributed over a cluster of machines that is maintained in a
fault-tolerant way. It also supports a rich set of tools like Spark SQL for SQL and structured data
processing, MLlib for machine learning, GraphX for graph processing. These API's are available
in Java, Scala, Python, and R.

Apache Spark has an advanced DAG execute engine that supports cyclic data flow and in-
memory computing. Spark is very optimized for iterative operations on data set because the data
set is cached in memory instead of accessing it from disk every time.

Transformations and Actions are the 2 types of operations performed on RDD's. Spark constructs
a Directed Acyclic graph before performing the actual operation itself, performs all the actions at
once after reaching the statement that performs save or show the result. This kind of evaluation is
named as Lazy Evaluation, which optimized the spark performance.

Figure 4: Apache Spark Ecosystem. Adapted from Apache Spark

Spark SQL is a tool built on top of Apache Spark, which is used for processing structured
dataset. I have mainly used Spark SQL for batch processing. To use Spark SQL, we create
temporary tables on top of input data and write SQL queries that run on temporary tables to
retrieve the results in a distributed fashion.

3.2 Speed Layer
I have used Spark Streaming in the Speed layer for processing real-time data. Spark Streaming is
an extension of core Spark API that enables scalable, high throughput processing capability on
streaming data. Spark Streaming divides data into batches, which are processed further to

	

	 	 7	

generate a stream of results in batches. It provides a high-level abstraction called Discretized
Stream or DStream, which represents a continuous stream of data. DStream is internally
represented as a sequence of RDDs. Data can be ingested to Spark Streaming from a variety of
sources like Kafka, Flume, Twitter, Kinesis.

Figure 5: Spark Streaming Architecture. Adapted from DataBricks

Kafka is a distributed streaming platform that helps in building real-time streaming data
pipelines in a fault-tolerant way. Kafka architecture is a combination of Message Queue and
Publish-Subscribe models and it is highly scalable. Kafka is run as a cluster on one or more of
the servers.

Kafka clusters store streams of records categorized as topics. Kafka contains producers and
consumers. Producers as the name suggests, are the ones who create streams of records and write
to topics. Consumers read a stream of records from topics and processes the records. In our case,
Spark Streaming acts as a consumer and reads records.

	

	 	 8	

Figure 6: Kafka Architecture

3.3 Serving Layer
This project uses Cassandra as a database in the serving layer to service information requested
from the batch view and real-time views. Cassandra is an open source distributed database
management system that can handle large amounts of data providing high availability with no
single point of failure. It provides robust support for clusters with asynchronous masterless
replication. Cassandra follows a decentralized approach i.e. every node in the cluster has the
same role. Data is distributed across all the nodes in the cluster since there is no master any node
can service any request.

Cassandra supports data replication and replication strategies are configurable. Data is
automatically replicated across nodes for fault-tolerance. New nodes can be added to existing
clusters without any interruption, making it scalable to handle more read and write operations
with no downtime. Failed nodes can be replaced with no downtime. Cassandra provides tunable
and eventual consistency with a latency of hundreds of milliseconds. Cassandra Query
Language(CQL) is similar to traditional Structured query language(SQL), a simple interface to
access Cassandra.

Kafka	Cluster	

App	App	 App	

App	 App	 App	

Producers	

Consumers	

	

	 	 9	

Cassandra's Data Model is a hybrid of key-value and column-oriented databases. Its data model
is a partitioned row store, partitioned based on hashing of the first component of the primary key
called as partition key, the remaining component of a primary key is used for clustering known
as the clustering key. KeySpace in Cassandra resembles schema in Relational database and
column family resembles a table in an RDBMS.

3.4 Flask
Flask is a micro web framework written in python. I have used flask for application development
and hosted the application on Tornado web server. Tornado is a scalable, non-blocking web
server and web application framework. With the use of non-blocking network I/O, Tornado
scales to tens of thousands of open connections making it ideal for web sockets and applications
that require long-lived connection to each user. Also, used HTML and Bootstrap to develop
application pages.

	
	

	
	
	

	

	 	 10	

Chapter 4 - Implementation
	

The tools selected for each of those layers as explained in the earlier chapter are connected to
create a data pipeline.

Figure 7 below depicts how the pipeline looks like:

Figure 7: Data Pipeline

4.1 DataSet
To implement the lambda architecture, we need a large dataset that requires batch and real-time
processing. I opted for Stack Overflow dataset for my project. Stack Overflow releases data on a
monthly basis, I took recent release of September month with data set size being around 200 GB.
The complete application data is spread across different file types like users, posts, votes, badges.
Data is in XML format with self-closing tags.

DataSet is downloaded from the Stack Overflow archive and stored in Hadoop File
System(HDFS). Since data is in XML format with self-closing tags, existing XML libraries don't
support processing XML with self-closing tags so I need to convert to CSV format to process the
data.

	

	 	 11	

Figure 8: Raw Data Format

The above figure shows sample record from each of the users, posts, votes files and the
highlighted attributes are the ones which I used for processing.

I would like to process following information from the dataset:

1. Identify top tags for each user,

2. Update user performance numbers like UpVotes, DownVotes in real time

3. Recommend Questions to users in real time using top tags,

4. Trending Tags in the application and update their counts in real time.

4.2 Batch Layer
I need to obtain above mentioned information from the dataset in the batch layer and update
them in real time using the speed layer.

Since the data is in XML format, I have used Scala XML library and used Spark distributed
nature to parse data into CSV format. Helper files are used to remove top 2 and last 1 line from
the input files, as those lines are not records.

How I defined a top tag? If a tag has at least 10 accepted answers in last 1 year for a user, then
that tag can be a top tag for that user. If a user has more than 3 tags that satisfy top tag definition,
I chose only top 3 based on accepted answers count sorted in descending order.

For each user, I identified the posts they made that were marked as accepted answers for
corresponding questions and took tags of those questions. Then, counted how many times a tag is

	

	 	 12	

appearing and sorted the results based on accepted answers count and took top 3 results for each
user. Also, it is obvious that not every user will have top tags and each user can have at most 3
tags as top tags. I will store these results as a user to tags mapping in Cassandra database.

Figure 9: Apache Spark setup on AWS Cluster

For each user, I stored user DisplayName, UpVotes, DownVotes and Reputation in the
Cassandra database. To calculate, trending tags in Stack Overflow, I took tag name and count
values from tags.xml, sorted them based on the count to take top 10 tags and stored the results in
the Cassandra database.

I have used Spark SQL to create temporary tables for each of the input files and wrote SQL
queries to fetch information. All my batch layer code is written in Scala.

4.3 Data Ingestion
Kafka is used for ingesting new data to Spark streaming as well as HDFS. I have created 3 topics
on Kafka cluster to store posts, UpVotes, DownVotes respectively. I have only 1 producer
writing to each of these topics. Since I have not connected to Stack Overflow real time-API to
get real-time data, I have saved 1000 records in a file and my producer is reading records from
that file to write to Topics.

Command to create a topic:

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic
posts

Instance	type:	m4.large	
Number	of	Instances:	4	

	

	 	 13	

 Figure 10: Kafka, Flask Cluster on AWS

posts are the topic name and 3 is the replication factor for my Kafka cluster setup. From Kafka
topics, records are read by Spark Streaming for processing. My producer script is written in
python.

4.4 Speed Layer
Spark Streaming acts as a producer for my Kafka cluster and reads records from Kafka topics. I
have created different DStream objects for each of the record types like posts, Upvotes,
DownVotes read from Kafka topic and operated on DStream object.

Whenever a new post record comes to Spark Streaming, I took title and tags of that post. For
those tags, I got the users with those tags as top tags from the batch layer results stored in
Cassandra. Now, I have the user to tags mapping and title to tags mapping, from which I have
identified the user to title mapping and stored the results in the Cassandra database.

Whenever a new UpVotes or DownVotes record comes from the Kafka topic, I overwrite
corresponding user counts in the real-time views in the Cassandra.

Spark and Spark Streaming are on same AWS cluster.

4.5 Cassandra
Cassandra database acts as the serving layer database, storing all the results coming from Batch
and the Speed Layer.

I created a KeySpace named stackoverflow, followed by a list of tables to store the results:

1. userprofile - id, displayname, upvotes, downvotes, reputation

2. toptags - userid, tags

3. usertoquestion - userid, questions

4. trendingtags - updatedon, count, tagname

Instance	type:	m4.large	
Number	of	Instances:	3	

	

	 	 14	

Spark Streaming connects to Cassandra to read and write the speed layer results.

Figure 11: Cassandra cluster on AWS

	
	
	

Instance	type:	m4.large	
Number	of	Instances:	4	

	

	 	 15	

Chapter 5 - Results
	

I have run the batch layer on the master data set stored in HDFS. It took nearly 2 hours to
process the data and stored results in the tables created in the Cassandra database.

• User records - 6 million approx.
• Users with top tags - 1789

I have created an application to see how batch layer results are used and updated when some real
time data comes into the application. Whenever a new post record comes to the speed layer, it is
mapped to the users with those post tags as top tags and that post is recommended to User in
User dashboard. Also, whenever new UpVotes record comes, the corresponding UpVotes value
is updated immediately. I have load tested the application, it can handle 1000 records per second
in real time.

Figure 12: Application Home Page

ESOUP - Extending Stack Overflow Profile
Whenever a user enters the userid, he is redirected to user dashboard page. Use dashboard
displays user performance numbers, recommended question, favorite tags and trending tags in
the application along with their counts.

	

	 	 16	

Figure 13: User Dashboard Page

All information shown in the dashboard gets updated in real-time if any event related to the
corresponding happens in the background.

	

	 	 17	

Figure 14: Top Tags

Figure 15: Trending Tags

	

	 	 18	

Chapter 6 - Conclusion & Future Work

6.1 Conclusion
The Lambda Architecture provides a consistent approach to building a big data system that can
perform real-time updates with low latency, high throughput and in a fault-tolerant way. A single
tool cannot meet all the requirements of an application, so there is a need to use
technologies/tools as a conjunction in a layered way as specified in the Lambda Architecture to
achieve application that satisfies our requirements. Stack Overflow is a proper application to
demonstrate the Lambda Architecture as it has huge user community with large posts getting
created every second.

6.2 Future Work
There is scope for a lot of improvement in obtaining results with better accuracy. We can use
some machine learning techniques in identifying top tags for a user. Also, tags are provided by a
user which are not validated, building a prediction model that predicts accurate tags to a question
can improve question recommendation in overall. We can also add Job Recommendations to the
application based on user expertise. We can add events like MeetUps, Conferences information
to the application based on user location and user expertise.

All this information keeps user more occupied whenever he visits the application and makes him
an active user of the application. We can also increase the input events per second and batch
dataset size to perform load testing on the application and scale the application accordingly.

	

	 	 19	

Bibliography

[1] Apache Kafka. URL http://kafka.apache.org/documentation.html

[2] Apache Spark. URL http://spark.apache.org/

[3] Apache Cassandra. URL http://cassandra.apache.org/

[4] Hadoop Architecture. URL https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[5] Tathagata Das, Matei Zaharia and Patrick Wendell. (2015). Spark Streaming Architecture.
Retrieved from https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-
execution-model.html

[6] Nathan Marz and James Warren. (2015). Big Data Principles and best practices of scalable
real-time data systems. Retrieved from https://www.manning.com/books/big-data

[7] Data Source. URL https://archive.org/details/stackexchange

[8] Flask. URL http://flask.pocoo.org/

[9] Tornado Server. URL http://www.tornadoweb.org/en/stable/

