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Abstract
Simulating and visualizing fluid and solid materials in agricultural domains is an im-

portant and challenging problem in scientific computing and computer vision. Modern

seed breeding programs require the ability to analyze seeds efficiently to be useful. Even

simple measures such as volume and density can be challenging to compute efficiently

with modest equipment. The dynamics of liquid and soil materials involve significant de-

formation during storm flows and require sophisticated numerical algorithms to achieve

sufficient accuracy and visual realism. This dissertation focuses on extending volume

carving techniques to measure seed volume and to create a new Material Point Method

(MPM) models and finite volume models to simulate solids and fluids for dam safety

analysis and visualization.

This dissertation makes the following major contributions: The first is to create a

novel framework for the design and analysis of computer experiments. The framework is

applied to perform efficient dam breach and internal erosion analysis on a large number

of structures. Given historical dam breach or design data input, the modeling framework

can also be used to conduct sensitivity analysis to determine which parameters make the

most impact on the resulting dam erosion. The second contribution is to develop new

models for numerical simulation of dam erosion by combining fluid flow models devel-

oped using Computational Fluid Dynamics (CFD) with new dam erosion models using

the Finite Element Method (FEM). A new model that combines fluid flow and erosion

simulation into a single model is also developed using the Material Point Method (MPM).

The third contribution is to build a comprehensive image capture and processing frame-

work for seed property analysis. Rather than having a human manually measure seed



properties such as length, width, thickness, and volume, the framework can automati-

cally analyze a set of images from multiple angles and calculate the physical measure-

ments for single seed samples. Finally, image analysis is extended using deep learning to

increase the accuracy of rice image classification.

The proposed frameworks are suitable for larger scale and more dynamic data in both

dam safety and agricultural domains. They are also useful for computer animation in de-

veloping physics-based special effects for the animation of dam erosion. Previous work

on MPM has resulted in models used in animation for Disney Studios, and the new mod-

els proposed could be used for accurate animation of fluid flows and dam erosion. Finally,

the combination of image analysis algorithms and deep learning has many applications

in the biomedical domain as well as the agricultural domain.
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Chapter 1

Introduction

Starting from its roots with the first neural network project in the 1950s, computer vision

applications embedded with artificial intelligence have seen explosive growth. As the

internet matured in the 1990s, large sets of images became more readily available online

for analysis. This enabled rapid advances in computer vision algorithms that make it

possible for machines to identify specific objects in photos and videos.

Computational technologies are widely expanding in diverse scientific domains. There

is growing interest in integrating computer vision algorithms into other scientific do-

mains. In the field of hydrology and dam safety, earthen embankment dams are a crucial

part of the world’s infrastructure. Dam risk assessment helps mitigate the catastrophic

impact of dam failures and flooding. Earthen dam failure analysis has been conducted by

many facilities using an empirical approach. In the past, computational resources were

so limited, researchers built physical dam models to simulate the dam break process and

analyzed the results to derive computational models. Physical models represent an im-

portant component in model design, but they are very expensive and time consuming to

build. Typically, only a few dam structures can be built and analyzed each year. On the

other hand, hundreds or thousands of abstract models can be simulated using computa-

tional models. This increases the velocity and accuracy of model creation and evolution

for different scenarios. In Chapter 2, a novel risk assessment tool is described to facilitate
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the analysis of hundreds of dams.

In the field of seed breeding, researchers also use physical measurement. They typi-

cally use calipers to measure single seeds and conducted property analysis based on this

information. They might also use bead displacement to estimate seed volume without

destroying the seed. There are some limitations to accuracy using physical property anal-

ysis. Developing efficient computer vision frameworks to advance productivity becomes

an important and challenging problem in both of these domains.

Therefore, this thesis addresses the challenges of improving the productivity for var-

ious scientific domains in two ways: The first is through establishing modeling frame-

works for the dam breach and internal erosion analysis. Given a historical dam breach

or experimental data input, our modeling framework can conduct parameter studies and

sensitivity analysis to see which parameter(s) make the most impact on the erosion of

a dam structure. Also, our modeling frameworks can detect when and where erosion

is occurring. The second is through building the image frameworks for seed property

analysis. Rather than having a human manually measure the seed properties including

length, width, thickness, and volume, we can automatically derive a set of measurements

from our image analysis framework. The goal of this thesis is to study the power of

computational modeling and computer vision, and their application in dam safety and

agricultural domains.

1.1 Background

1.1.1 Physics-based simulation of fluids

For the physics-based simulation of fluids in dam safety, there is growing interest in ana-

lyzing the impact of fluid flow on different types of erosion including overtopping of the

dam, internal erosion through the dam, and erosion of the auxiliary (also called emer-

gency) spillway. A hydrograph is just a function describing the amount of discharge of

water that results as a function of time. The analysis should provide information about
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the integrity (ability to resist dam failure) and stability (ability to resist erosion) of the

dam during the passage of different types of hydrographs. Passage of a stability-design

hydrograph (SDH) should not cause any erosion on the downstream face of the dam or

spillway; whereas, the passage of a freeboard hydrograph (FBH) should not cause the dam

to fail. For example, a stability-design hydrograph might be the result of a 2-year storm;

that is, a storm that we expect to occur once every two years, but a freeboard hydrograph

might be the result of a 100-year storm.

Fluid simulations generally use one of two approaches: the Eulerian approach and

the Lagrangian approach. The Lagrangian approach models individual particles and cal-

culates the trajectory of each particle separately, but the Eulerian approach considers

a collection of particles and calculates the overall diffusion and convection of the set

of particles. The most popular fluid simulations using the Eulerian approach is called

Computational Fluid Dynamics (CFD). Computational Fluid Dynamics(CFD) uses nu-

merical analysis and data structures to analyze and solve problems involving fluid flow.

The CFD modelling approach for dam-break simulation study has been extensively in-

vestigated1 2 3. In our previous study4,5, we explored using the Finite Volume Method

(FVM) for dam breach simulation using the open-source CFD toolbox OpenFOAM. Cao

and Neilsen simulated the flooding due to overtopping without considering the deforma-

tion of the solid body dam structure5.

Unlike the Eulerian approach, there is no numerical dispersion for the Lagrangian

approach. Therefore, Lagrangian techniques are useful for simulations when large topo-

logical changes occur in the fluid interface. Smoothed Particle Hydrodynamics (SPH) is

a well-known method in the computer simulation field. Instead of considering the dam

embankment structure as a solid body material in4,5, the granular material like soil can

be represented as either continuum or a set of individual particles using SPH. SPH mod-

eling approach is used to simulate large surface flow6 7, and dam break flows8 9 10. In ad-

dition, the Discrete Element Method (DEM) is a very popular particle-based system used

for fluid simulation. Often, CFD has been coupled with DEM in many studies and en-

gineering problems including rockslides11;12, granular flow in water reservoirs13;14, and

3



fluid-particle interaction in dam break15;16. Other than CFD-DEM, the coupled model

SPH-DEM is encountered in many multi-species simulation studies as well. Rungji-

ratananon et al. simulate sand-water interaction in real-time using a hybrid SPH-DEM

model17.Wu18 and Canelas19 used the SPH-DEM method to simulate multi-phase free

surface flow. Lenaerts20 also proposed a dynamics framework for simulation of both

fluid and porous granular material using SPH-DEM.

A hybrid approach, called the Material Point Method (MPM), was introduced to han-

dle topological change by multi-species interaction like water and porous soil21. Ban-

dara et al.22 23 introduced the soil deformation and pore fluid flow using MPM and also

the landslides in unsaturated soil slopes. Tampubolon et al.24 simulate the interaction of

sand and water mixtures using MPM and obtained encouraging results. For the porous

material property, Klár25 used the improved Drucker-Prager plastic flow model with vol-

ume correction. For the MPM implementation, Arduino26 and Jassim27 examined that

momentum exchange using the two-grid MPM for the multi-species interaction. In this

thesis, a novel, new dam breach simulation framework has been developed using the Ma-

terial Point Method (MPM) to simultaneously simulate fluid flow and dam erosion for

both analysis and computer animation.

1.1.2 Physics-based simulation of solids

For the physics-based simulation of solids, the focus is on the physical property anal-

ysis of seed samples. The principle goal for seed property analysis is to identify seed

quality by measuring physical and physiological factors that regulate the performance

of seeds. Among those physical factors, seed volume and density are among the most

crucial aspects to measure since they are highly correlated with seed functionality and

quality. There are several existing seed physical property analysis models using image

processing including 2D affordable scanning28–30 and commercial software designed for

different seed types31;32. These existing models calculate typical parameters including

width, length, and area from the 2D images. They can be used to analyze different seed
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types such as rice, soybeans, and barley.

Other than these specific seed image processing frameworks which focus on mea-

suring physical factors, general image processing models can be introduced for volume

measurement. From a geometric perspective, there are stereo-based techniques, space-

carving methods, and a newly developed Volumetric and Multi-View Convolutional Neu-

ral Network (CNN) methods. Although the CNN methods may use fewer images, effective

solutions typically require multiple images.

To design an efficient framework for seed volume measurement, two approaches are

further investigated; the first one is through building a volume measurement framework

using only two images. The second one is by setting up a multiple-image capture frame-

work to reconstruct the 3D model of the seed and compute the volume measurement

using multiple images.

1.2 Problem Statement

1.2.1 Computer vision frameworks in dam safety

The goal of developing a computer vision framework for dam safety is to simulate the

dam erosion processes and conduct both parameter studies and sensitivity analysis. Input

files already generated by design engineers are automatically parameterized to enable

efficient analysis of a range of material properties, hydrologic properties such as peak

and duration of the hydrograph, and dam dimensions such as auxiliary spillway width,

height, etc. This allows designers to consider a range of design options quickly. The

tool has also been used by other research groups at USDA and the University of Illinois -

Chicago.

Typically, in the field of dam safety simulation, two approaches for discretization have

typically been used: Eulerian or Lagrangian. For the Eulerian based methods, quanti-

ties of interest are in fixed locations or fixed girds like the application using CFD and

CFD-DEM mesh modeling. For the Lagrangian based method, quantities of interest are
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attached to the materials including SPH, SPH-DEM, and MPM particle-based method.

Many researchers have experimented with hybrid grid and particle methods. Among all

these modeling methods, the Material Point Method (MPM) is tested and selected because

MPM combines aspects of both types of discretization.

In this thesis, a novel, multi-species material point method simulates the interaction

between soil and water. The wet soil transitions are considered from cohesive grains to

flowing as water saturation increases. The overtopping dam erosion simulation model

is created using multi-species particles and the two-grid material point method. For the

purpose of validation, the MPM simulation model of overtopping dam erosion is com-

pared with available experimental data and results from other physical-based models

including WinDAM33.

1.2.2 Computer vision frameworks in agriculture

The goal of developing a computer vision framework in agriculture is to accurately mea-

sure single seed volume and density. The physical properties of seed include length,

width, thickness, and volume. Seed volume is among the most important agronomic

traits because seed quality and seed traits are heavily dependent upon seed volume. The

water displacement method is the most common way to measure the volume of the ob-

ject. However, due to the tiny size of the single seed, these testing procedures can be

time-consuming, labor-intensive, and subject to human error. In addition, the seed may

be destroyed by absorbing water. Another approach is to measure seed displacement in

small beads, but this approach is not as accurate and subject to overestimate the actual

volume. To solve the seed volume measurement problem, many image analysis methods

have been developed.

Neilsen, et. al34 introduced a dynamic image processing method to identify seed

contours and calculate individual seed length, width, and total seed count by analyz-

ing dynamic video footage. Tanabata, et. al35 developed a software package, called

SmartGain, to provide high-throughput phenotyping from a single image and achieve
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seed size information. Roussel36 conducted a volume curving model and performed 3D

shape reconstruction and achieved a great result for the volume measurement of a single

seed. Fıratlıgil-Durmuş37 applied the oblate spheroid model to get the size properties

of legume seeds by image analysis. Razavi38;39 developed a computer vision system to

calculate the physical properties for basil seed and wild sage seed. Sabliov40tackles the

image processing method to determine the volume of agricultural products like lemon,

peach, and egg using a single camera. Cervantes41 focuses on the parameters used to

describe seed shape. Pedersen42’s work compares the proposed SKWCS system with tra-

ditional laboratory measurements using 16 single sorghum kernels.

However, there are several limitations in the previous studies, Neilsen34, SmartGain35,

Sabliov40, Cervantes41, and Pedersen42’s work did not focus on seed property analysis

like seed volume measurement. Roussel36’s work requires a high-cost professional cam-

era, and it is not capable of dealing with multiple seeds at the same time. Amiryousefi,

Fıratlıgil-Durmuş, and Razavi’s work only design the computer vision system specific for

a single type of seed sample, the pomegranate seed43, lentil seed44, legume seed37, wild

sage seed Razavi38 and basil seed39. These computer vision systems cannot be used to

calculate volume measurements for other seed samples.

To the best of our knowledge, no rapid, accurate, and universal seed imaging frame-

work has been designed for general-purpose seed volume measurement. To solve this

problem, a seed property analysis framework is developed. The design goal of this frame-

work is to accurately measure each seed volume on a low-cost turntable, with modest

cameras and modest computing requirements.

After the implementation of the framework, some research questions arise. Can we

find a better reference method to determine the true measurement of the seed volume?

Can we also achieve more precise volume measurement by taking multiple images? To

answer these research questions, we further investigate several approaches for volume

measurement using multiple images. Among them, in order to achieve reasonable quality

3D reconstructions and volume measurement, we investigate volume carving, shape from

the silhouette method45–47 for 3D seed shape reconstruction.
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A novel multiple image capture frameworks for the single seed volume measurement

is designed and developed using the 3D reconstruction volume carving method. Al-

though existing software and models have been developed in the literature and in prac-

tice, we propose a complete, end-to-end framework for volume measurement of a single

seed. Our proposed work achieves high accuracy from multiple images automatically

acquired and analyzed.

1.3 Contribution and Dissertation Overview

To summarize, the dissertation focuses on improving productivity in various scientific

domains. It achieves this goal through two main approaches, the first is to create a novel

framework for the design and analysis of computer experiments. The second is to build

a comprehensive image capture and processing framework for seed property analysis.

The overview of the dissertation is as follows:

1. In Chapter 2, we consider the risk assessment problem and design an integrated

framework by coupling traditional dam safety software, including WinDAM and

BREACH, with DAKOTA. Our framework is able to provide visualization results

and conduct sensitivity analysis for dam safety. This work was published previ-

ously34.

2. In Chapter 3, we develop a dam breach model using OpenFOAM to generate fluid

flows and couple the flows step-wise with a Finite Element Model (FEM) used to

model the erosion processes on the dam. Step-wise, as the dam profile changes,

updates are fed back to update the CFD model to change the flow. This work has

been published48. Due to the lack of detailed information about the topological

change during the process, we present a Material Point Method (MPM) to simulate

the overtopping dam breach using multi-species particles.

3. In Chapter 4.1, we present a turntable setup for measuring the single seed volume

using a two image setup and our framework achieves great accuracy on the refer-
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ence sphere ball. This work and paper are ready to be submitted to the related

journal.

4. In Chapter 4.2, we propose a new 3D reconstruction framework for the efficient

single seed volume measurement by taking multiple images and 3D reconstruction

using the volume carving method. The proposed framework is an end-to-end prod-

uct which simplifies the all process and easy to use. The related work has been

accepted in CSCI 202049.

5. In Chapter 4.3, we consider the classification problem for the rice image data. The

rice images are labeled from 2 to 7 based on the dissolved level in the alkali solution.

For our trained classifier, the proposed work can gain great results for classifying

the different stages of rice images.

6. We conclude with future directions in Chapter 5.
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Chapter 2

Computer Vision in Dam Safety - Risk

Assessment Tool

Earthen embankment dams are a crucial part of the world’s infrastructure and provide

electricity, irrigation, flood control, and water supply to millions of people. Embank-

ment dam risk assessment helps mitigate the catastrophic impact of dam-break flooding.

Extreme weather, construction deficiencies, and other circumstances have led to many

major dam failures in the last two centuries. These have resulted in significant loss of

life, as well as economic, social, and environmental damage.

In the past, earthen dam failure experiments have been conducted by many facilities

using an empirical approach. Computational resources were so limited during that time,

researchers had to build a physical dam model to simulate the dam break process. With

the explosive growth of computer vision frameworks, scientific computing and computer

graphics can be integrated with dam engineering principles, and mathematical statistics

models to obtain quantitative estimates of the embankment dam risk of erosion or fail-

ure. These conclusions can be obtained for a dam in its existing condition and for a range

of risk reduction alternatives to explore equitable, economical, and rational resource al-

locations for structural safety, and practical and emergency planning to improve public

safety management.
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2.1 Parameterized Simulation Models (WDT)

The goal of the laboratory embankment breach testing program is to develop and im-

prove the ability to model potential embankment failures numerically for risk assess-

ment and emergency planning purposes. Parameterized simulation models (*.WDT =

WinDAM Template files) are automatically derived from user-input WinDAM C (*.WDC

files). They can be used to aid in the prediction of hydraulic and erosion processes that

are associated with the flow over an earthen dam or through an internal erosion channel.

Parametric simulation models become more feasible, while further developments reduce

the reliance on physical models and improve their accuracy and usability. Other existing

parametric models can be generated from models used to analyze overtopping-induced

embankment failures, in addition to those used in this study: WinDAM C50, BREACH51,

DL Breach52 and EMBREA.

2.2 Parameter Studies

Parameter studies can specify a range of input parameters and compute the correspond-

ing output which can be displayed in text or graphical format. DAKOTA53 is a soft-

ware toolkit developed by engineers at Sandia National Laboratories to provide a flexi-

ble, extensible interface between analysis codes and iterative systems analysis methods.

DAKOTA contains optimization algorithms to help with parameter study capabilities. It

provides an ideal platform for providing iterative analysis of the inputs selected by a user.

DAKOTA currently supports four types of parameter studies:

1. Vector parameter studies

2. List parameter studies

3. Centered parameter studies

4. Multi-dimensional parameter studies
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This framework supports the most general parameter study, the multi-dimensional pa-

rameter study. Any number of parameters can be specified over a range or fixed.

2.3 Uncertainty and Sensitivity Analysis

The goal of uncertainty analysis is to obtain a better understanding of the probable range

of outputs given that there is a certain amount of uncertainty in the input. In particu-

lar, based on uncertain inputs, determine the distribution function (uncertainty) of the

outputs and probabilities of failure (reliability metrics); identify the statistical measures

(mean, variance, etc.) of the outputs; and identify the inputs whose variance contributes

most to variance in the outputs (global sensitivity analysis)54. Sensitivity analysis is the

study of how the uncertainty in the output of a mathematical model can be divided and

allocated to different sources of uncertainty in its inputs. Sensitivity analysis can deter-

mine which inputs have the most influence on the output. Based on the uncertain input,

sensitivity analysis can identify the statistical measures of the outputs and investigate the

inputs whose variance contributes most to the variance in the outputs.

2.4 Risk Assessment Tool

WindowsTM Dam Analysis Modules (WinDAM) is a set of modular software components

that can be used to analyze overtopped earthen embankments and internal dam ero-

sion50. The National Weather Service BREACH model is a physically-based model to

predict the discharge hydrograph resulting from a breached earthen dam51. Dakota is an

extensive software framework for design exploration and simulation53.

This section describes a new risk assessment tool developed using Dakota and Win-

DAM/BREACH. The integrated water resource risk assessment tool Dakota + WinDAM/BREACH

is designed to fully integrate the simulation models in WinDAM/BREACH with the un-

certainty quantification, sensitivity analysis, and parameter studies capabilities in DAKOTA.

This tool interactively guides user input, parses the results, and invokes the sampling and
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simulation models in the background. This tool also allows a user to conduct parameter

studies and specify the inputs to be analyzed based on a list of probability distribution

functions. The new tool has been designed to conduct coupled analysis over a wide range

of input parameters including both structural properties and flow properties.

Hydraulic engineers are comfortable with the tools of the trade to develop Computa-

tional Models which are typically used to evaluate a single set of model input parameters

defining both structural and hydraulic properties. If a user wants to determine which

input parameters are the most important or influential in determining peak outflow, flow

duration, or the amount of dam erosion that may result, the user is faced with the daunt-

ing task of executing the model many times after simply tweaking the input parameters

and recording the output which results. The goal of this new framework is to minimize

this tedium.

Figure 2.1: Iterative analysis with Dakota and models.

Dakota supports several different automated options for the Design and Analysis of

Computer Experiments (DACE):

• Sensitivity Analysis (SA) - determine which inputs have the most influence on the

output.
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• Uncertainty Analysis (UA) -compare the relative importance of model input uncer-

tainties on output.

• Uncertainty Quantification (UQ) - from a set of probability distributions on the

inputs, propagate them through the model to obtain distributions on the outputs.

• Parameter Studies – specify a range of input parameters and compute the corre-

sponding output to be displayed in text or graphical format.

The Analysis Model, shown in figure 2.1, is generated by the framework using the

Dakota modeling language. An intuitive user interface guides the user to specify the

input required to construct the Analysis Models, and a collection of parsers automatically

convert input parameters generated by Dakota into the fixed-column format expected by

the Computational Models; that is, they pre-process the models to generate input files for

the model simulators. After the simulation, they post-process the output generated by the

simulators to extract the key parameters of interest34. These parameters are then passed

to Dakota to complete a single iteration as shown in figure 2.1. Thus, the framework,

consisting of the green boxes, provides the glue to enable efficient analysis.

WinDAM/BREACH + Dakota is a framework created by Neilsen and Cao to extend the

capabilities of both. It is designed to integrate the simulation models in WinDAM and

BREACH with the uncertainty quantification, sensitivity analysis, and parameter studies

capabilities in Dakota. In a Dakota input file, there are six specification blocks that may

appear in the Analysis Model, and the blocks are identified using the keywords: envi-

ronment, variables, interface, responses, model, and method. A model contains a set of

variables, an interface, and a set of responses, and an iterator operates on the model to

map the variables into responses using the interface. WinDAM C is extended to automat-

ically generate Dakota input files for simple parameter studies on material properties.

Then, Dakota is invoked to iterate on the WinDAM simulation models, or vice versa, as

needed to generate output. Instead of having WinDAM drive the analysis, we can also

use Dakota to drive the analysis iteratively as shown in figure 2.1.
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A synthetic data set is developed to evaluate differently computational models over a

range of different material properties and different erosion models ranging from a sand

material which has high erodibility, to a clay material with low erodibility as shown in

table 2.1.

In addition to a range of material properties, a user may want to evaluate a range

of different dam configurations and sizes. For this synthetic analysis, a typical range

of dam sizes is used ranging from a dam height of 4 feet to a maximum of 128 feet,

with appropriate dam crest, etc., and internal erosion originating at 1/4th of the dam

height. For convenience, we introduce a scale variable ranging from 0 to 5 to represent

dam heights of 2(scale+2) ft. Not surprisingly, stronger materials with less hydraulic flow

results in much less erosion, in fact, the same inflow resulted in no failure even after 72

hours for the same physical experiment conducted at the USDA Hydraulic Engineering

Research Unit just outside Stillwater, Oklahoma.

Silty sand(SM) Clay(CL)
Total Unit Weight (Tw) (lb/f t3) 120 130

Undrained Shear Strength (Us) (lb/f t2) 70 0.3
Erodibility (Kd) (ft/h)/(lb/f t2) 300 1700

Critical Shear Stress (lb/f t2) 0 0.2

Table 2.1: Silty sand (SM) and Clay (CL) bare material properties.

Then, the framework automatically generates the initial template of a Dakota input

control file and template files with placeholders for the parameters to be varied. Finally,

the user can simply click on the Run button to save the Dakota input analysis file, and fire

up Dakota and WinDamSim (the Computational Model) to perform the analysis in this

case using iterative analysis on 6x6x6 = 216 input data sets. The values for erodibility Kd

and undrained shear strength Us are computed by Dakota sampling on fixed intervals at

the end of each partition. Custom parsers are used to extract and format the data gen-

erated by Dakota, and a Dakota double-precision pre-processing tool, dprepro, is used

to replace the tokens for Kd , Us, and Scale in the template file with the values in the

parameter input file to generate a simulation input file to be processed by WinDamSim.
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A portion of a WinDAM C input file used in the synthetic study is shown below.

WINDAM 1/1/2009

OPTION SIMPLE BARESOIL NOPS INTERNAL

IEMODEL 2 120 70 1700 0.2

HYD 0.0167 0 1C 10

0.02

..

ENDtable

CRESTPRFL

0 8

900 8

ENDtable

STROUTE 6 0 ELEV

The corresponding template file is shown below. Note that the fields denoting the

values for erodibility, Kd, and undrained sheer strength, Us, are replaced with tags Kd

and Us, respectively. Also, Scale is used to allow for the range of different dam geometries

to be specified. The values for Scale range from 0 to 5; e.g., dam crests of 4 feet to 4*25 =

128 feet.

WINDAM 1/1/2009

OPTION SIMPLE BARESOIL NOPS INTERNAL

IEMODEL 2 120 {Kd} {Us} 0.2

HYD 0.0167 0 1C 10

0.02

..

ENDtable

CRESTPRFL

0 {4*(2**Scale)}

900 {4*(2**Scale)}
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ENDtable

STROUTE { 3*(2**Scale) } 0 ELEV

..

CONDUIT 0.2 0.2 {(2**Scale)} 450

This processing can take place in parallel to reduce the overall computation time.

Once the iterative analysis is complete, the output can be viewed in text or graphical

format. In this example, tabular text data is stored in the file dakota multidim.dat. The

peak outflow is shown below in figure 2.2. A single template file can be used to represent

a wide range of different input parameters representing both material properties and

geometric properties. Graphs are genearted using Jzy3d. Each surface below represents

a different Scale from 0 (on the bottom) to 5 (on the top).

The framework user interface shown in figure 2.2, allows users to specify a range of

input parameters. The framework also allows Dakota to drive the computational model

and change the model inputs and perform different analyses.

Figure 2.2: WinDAM/BREACH+Dakota GUI

The new interface shown in 2.2 allows users to specify a range of input parameters

to allow Dakota to vary the model inputs and perform different types of analyses includ-

ing uncertainty quantification, sensitivity analysis, and parameter studies. For example,

users can analyze a range of varying input parameters. From the user interface, users

just open an existing WinDAM C project, select the type of study, for example, a sim-
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Figure 2.3: Surface Plot.

ple multidimensional parameter study. Then, the user is prompted to specify a range of

parameters denoting different materials as shown in 2.2. The user can also specify the

number of partitions in each dimension, or edit the generated Dakota input file directly.

For the given example, the resulting output shown in figure 2.3 and figure 2.4 con-

firms a strong positive correlation between erodibility Kd and peak discharge and a small

negative correlation between Undrained Shear Strength Us and maximum discharge34.

The parameter study can be extended to perform uncertainty quantification by mak-

ing a few small changes to the input. The resulting output confirms a strong positive

correlation between Kd and peak discharge and a small negative correlation between Us

and maximum discharge. The same framework can also be used to evaluate input files

from an existing BREACH project. The corresponding BREACH variables, such as initial

pool elevation HI, height of dam HU and Scale can be automatically parameterized, and

response variable is set to MaxOutflow.

This processing can take place in parallel to reduce the overall computation time.

Once the iterative analysis has been completed on all 75 input files. The resulting output
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Figure 2.4: Scatter Plot.

confirms a strong positive correlation between HU and maximum discharge and a strong

positive correlation between HI and maximum discharge.

Subsequent modules in WinDAM are being developed in stages to evaluate the per-

formance of earth dams. Existing modules with well-defined interfaces enable efficient

integration of existing legacy software with new model innovations. The system provides

tools that can be used to better understand the structure, function, and dynamics of water

control structures.

2.5 Conclusion

WinDAM is being developed in stages to evaluate the performance of earth dams. Ex-

isting modules with well-defined interfaces enable efficient integration of existing legacy

software with new innovations. The system provides tools that can be used to better un-

derstand the structure, function, and dynamics of water control structures. This section

describes how WinDAM and BREACH models can be analyzed efficiently using a novel
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new Dakota interface.

Computational Fluid Dynamics(CFD) flow models and other computer graphics mod-

els are introduced in Chapter 3, to simulate the erosion process that results from the given

flows. Efficient, high-level analysis can still be performed by combining these new mod-

els with Dakota. All of these simulation models are tested and the results are compared

with the existing physics-based model and direct user input.
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Chapter 3

Computer Vision in Dam Safety -

Computer Simulation Models

For computer simulation modeling, interest in the potential flooding due to overtopping

or internal erosion has existed for years. There are many simulation processes that can

mimic and reproduce the visualization results. Fluid simulations are divided into the Eu-

lerian and Lagrangian methods. The most popular fluid simulation software that uses the

Eulerian method is called Computational Fluid Dynamics (CFD). Computational fluid

dynamics uses numerical analysis and data structures to analyze and solve problems.

CFD modelling approach for dam-break simulation study has been extensively investi-

gated1 2 3. CFD uses three discretization methods: finite differences, finite volumes, and

finite element methods. These three discretization methods use distinct mathematical

models and governing equations for computation. In our previous study4;5, we explored

the Finite Volume Method (FVM) for dam breach simulation using the open-source tool-

box OpenFOAM. Cao5 simulated the flooding due to overtopping without considering

the deformation of the solid body dam structure.

Unlike Eulerian methods, there is no numerical dispersion for the Lagrangian method.

Therefore, Lagrangian techniques are useful for simulations when large topological changes

occur in the fluid interface. Smoothed Particle Hydrodynamics (SPH) is a well-known
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method in the computer simulation field. Instead of considering the dam embankment

structure as a solid body material in4;5, the granular material, such as soil, can be rep-

resented as either continuum or a set of individual particles using SPH. SPH modeling

approach is used to simulate large surface flow6 7 and dam break flows8 9 10. The Discrete

Element Method (DEM) is also a very popular particle-based system to handle fluid simu-

lation. Often, CFD is coupled with DEM in many studies and engineering fields including

rockslide11 12, granular flow in water reservoir13 14, and fluid-particle interaction in dam

break15 16. Other than CFD-DEM, the coupled model SPH-DEM is encountered in many

multi-species simulation studies as well. Rungjiratananon et al. simulate sand-water in-

teraction in real-time using a hybrid SPH-DEM model17. Wu18 and Canelas19 used the

SPH-DEM method to simulate multi-phase free surface flow. Lenaerts20 also proposed

a dynamics framework for simulation of both fluid and porous granular material using

SPH-DEM.

Another graphic approach Material Point Method(MPM) was introduced to handle

topological change by multi-species interaction like water and porous soil21. Bandara

et al.22 23 introduced the soil deformation and pore fluid flow using MPM and also the

landslides in unsaturated soil slopes. Tampubolon et al.24 simulate the interaction of

sand and water mixtures using MPM and get encouraging results. For the porous mate-

rial property, Klár25 used the improved Drucker-Prager plastic flow model with volume

correction. For the MPM implementation, Arduino26 and Jassim27 examined that mo-

mentum exchange using the two-grid MPM for the multi-species interaction.

3.1 Computational Fluid Dynamic Method (CFD)

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical

analysis and data structures to analyze and solve problems that involve fluid flows. Open-

FOAM is a C++ toolbox for the development of customized numerical solvers, and pre-

/post-processing utilities for the solution of computational fluid dynamics. Our work48

uses OpenFOAM to design an architecture for analysis of water control structures. An
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extensible computing framework is developed to compare with and on the existing Win-

DAM erosion models’ use of OpenFOAM.

OpenFOAM55 is a C++ toolbox for the development of customized numerical solvers,

and pre-/post-processing utilities for the solution of computational fluid dynamics (CFD).

Beocat56 is a Kansas State University High-Performance Computing (HPC) cluster. Pre-

liminary analysis can be conducted with a limited number of grid elements, and a more

detailed analysis can be conducted on a high-performance computing cluster. The com-

puting power for a single machine is limited, high-performance computing (HPC) plays

a significant role in scientific computing for its capability of parallel computing for large-

scale simulation jobs.

For this study, the new framework automates the process and can be used to evaluate

the performance of OpenFOAM on a local laptop or on a cluster, such as Beocat. Com-

puter simulation reproduces the behavior of a system using the mathematical model so

that computer simulation becomes a useful tool to examine and compare with the exper-

imental results. This extensible computing framework is used to compare and improve

existing WinDAM33 erosion models’ use of OpenFOAM. The new framework allows com-

putational fluid dynamics models for OpenFOAM to model the hydraulic flow over dams

and through auxiliary spillways. OpenFOAM has extensive features and packages for

solving complex fluid flows.

The first step is to construct the geometry of the dam and the water flow environment.

The stereolithography (STL) file format is used to specify the dam cross-section. SALOME

is an open-source software that provides a generic platform for pre-processing and post-

processing numerical simulations. To define the geometry of the dam, the framework

uses the input file to WinDAM to automatically generate an STL file. This STL file can

be edited in SALOME. SALOME provides a variety of handy features, it can be used to

generate a mesh from the STL file and view the geometric results using ParaView from

within SALOME’s generic platform.

For a simple trapezoidal dam cross-section, each dam STL file contains 18 triangular

facets. Each triangular facet is defined by 3 vertexes and 1 direction. For this experimen-
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tal design, a real empirical dam model is used to generate the physical parameters in a 2D

geometry. Therefore, the length and mesh element in the Z direction has been set to one

unit long. Though the model is constructed for 2D geometry, the default layout dimen-

sions are 3D in OpenFOAM, so the non-zero (any length) is required for the Z dimension.

Water velocity in X direction is recorded, and the Y-axis is the gravity direction.

For the construction of our water flow environment, SALOME has been widely used to

generate the mesh and separate the water flow section and the airflow section in the geom-

etry. The inlet height of water flow for our model is modified to match a real dam model.

The background mesh is generated using the OpenFOAM ideasUnvToFoam solver. The

ideasUnvToFoam solver is a format mesh conversion function that transfers the output

file I-Deas unv format from SALOME to blockMesh format for OpenFOAM. Then, snap-

pyHexMesh is the solver used to refine the mesh and generate more mesh elements on

the border between the water and the solid dam. After running extrudeMesh by ex-

trudeMeshDict, a 2D patch will remove the dam cross section and generate a dam shape

in the water flow simulation model. In the future, we plan to apply 3D geometry in our

simulation model as well.

time ( hr ) discharge ( cfs ) velocity (m/ s )
0 1.35 0.00095

0.063 4.54 0.00321
0.126 11.32 0.00801
0.189 23.72 0.01679

. . .
8.757 0.5 0.00035

Table 3.1: Input hydrograph data

After the geometry model is fixed, the water flow model must be specified. The reser-

voir capacity is specified as an initial condition in setFieldsDict. For the water flow, there

are two possible types of flow in the pipe: laminar flow or turbulent flow. For this analy-

sis, we specify turbulent flow, use the kEpsilon and RASmodel which stands for standard

k-epsilon turbulence model for incompressible and compressible flows including rapid

distortion theory (RDT) based compression term.
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As shown in table 3.1, the left table is the WinDAM output for the hydrograph. The

right table shows the ASCII text file for datatable.txt, the first column represents the

time and the time interval; for this example input file, 02-SDHstability.WDC; the time

interval is 0.063 hours. The second column has three values in one bracket, and it shows

the different velocities in the X, Y, and Z directions for simulation purposes.

The conversion equation applied is shown below:

V elocity =
Discharge

(W ×D)
(3.1)

Where W is Width and D is Depth.

In the analysis,W = 1m,D = 4m. For units of measurement, all variables are converted

from the US system (used by USDA) to the Imperial (MKS) system. In order to apply to

the OpenFOAM model properly, a scale factor has been added. The initial velocity in the

model is only in the X direction because the model is constructed using a 2D geometry

and the water inlet is designed to flow in the X-direction. Thus, the initial velocity in the

Y direction is 0, as shown in table 3.1.

Figure 3.1: Dam Region Simulation Result, Top(Left), Bottom(Right).

To achieve the hydrograph data in a different aspect, the sample data from two differ-

ent regions in our simulation model has been selected. One hydrograph data came from

the top of the dam, and another set of hydrograph data came from the bottom of the dam

as shown in figure 3.1. In figure 3.1, there are two different lines in the graph, the red

line represents the measure of area (m2), and the brown line represents velocity (m/s).
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In figure 3.2, the scatter plot displays the results for the WinDAM and OpenFOAM

simulation. The OpenFOAM simulation is based on a 10-second time frame and 0.05-

time interval. The blue line represents the inflow, the orange line shows the total outflow

for WinDAM and the gray line shows the total discharge for the top of the dam which is

generated by the OpenFOAM simulation. For WinDAM, the total outflow is calculated

near the top of the dam. Therefore, the result for the top of the dam generated in Open-

FOAM is selected to compare with WinDAM. The hydrograph for these two different

results should have the same amount of area in the graph because the amount of water

that goes through the dam is expected to be similar. The hydrograph for WinDAM has

a higher peak than OpenFOAM. For the OpenFOAM hydrograph, it is shifted slightly to

the right compared to the WinDAM hydrograph, as expected. The turbulence that oc-

curs at the end of the hydrograph shows that there is friction along the edge of the dam.

Therefore, the total water volume is close to these two hydrographs. The reason why the

OpenFOAM hydrograph has a two-second delay is that for the OpenFOAM simulation,

the position of inlet water is built far away from the dam. It takes more time to reach the

dam compared to WinDAM. WinDAM assumes that the water inlet is fairly close to the

dam. For the overall comparison, both outflow hydrographs have similar patterns and

shapes.

After completing a preliminary experiment, the model is executed on Beocat. Beocat

is a High-Performance Computing (HPC) cluster at Kansas State University, it is running

under CentOS and coordinated by a job scheduler system called Slurm.

The sample code:

# ! / b in / bash

#SBATCH −−job −name=opf i l e1 4C32G 0 .0001 f 2

#SBATCH −−mem−per −cpu=32G

# Memory per core , use −−mem= f o r memory per node

#SBATCH −−time =02:00:00

# Use t h e form DD−HH:MM: SS

#SBATCH −−nodes=1

#SBATCH −−ntasks −per −node=4
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Figure 3.2: Hrydrograph Comparison Plot.

#SBATCH −−mail −u s e r=caocd@ksu . edu

#SBATCH −−mail −t y p e=ALL

# same as =BEGIN , FAIL ,END

s i n g u l a r i t y exec / opt / beocat / co nta in ers /

openfoam−v1712 . img / bin / bash <<EOF

. / opt /OpenFOAM/ setImage v1712 . sh

. . . . .

OpenFOAM code

. . . . .

EOF

Listing 3.1: Slurm job bash code.

As shown above, in Listing 3.1, starting with /bin/bash and OpenFOAM code is added

inside the SBATCH code segment. One single job can request 32 GB of memory per CPU,

request 4 core at a time and total running time of 2 hours. Since the OpenFOAM module

is installed inside a container on Beocat, the number of nodes is limited to only one. For

this running time simulation job, we select two flow functions:
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f1 = 0.5 + 0.5sin(0.2πt).

f2 = 4.
(3.2)

f is the velocity of water flow in X direction. t is the time in seconds.

We run the simulation based on different cores and vary deltaT, where deltaT is the

time step of the simulation. In OpenFOAM’s contolDict file, we turn off the time stamp

auto adjustment. The summary table as shown in table 3.2. The simulation is performed

under the circumstance that the end time is 4 seconds, the write interval is 0.05 seconds,

and the unit for runtime is in hours. For example, the first case uses the f1 flow function,

delaT = 0.0001, 1 Core represents that one 32GB memory CPU requested, therefore the

simulation time case 1 is 4 hours 54 minutes and 59 seconds. By reviewing the result,

roughly 1 core performs 2 times faster than 1 core, 4 core performs 2 times faster than 2

core, 8 core performs 2 times faster than 4 core. So, we achieve nearly linear speedup. As

expected, the run time gets smaller when you increase the timestamp deltaT.

N F deltaT 1 Core 2 Core 4 Core 8 Core
1 f1 0.0001 4:54:59 2:33:16 1:29:36 0:50:11
2 f1 0.0002 2:38:29 1:17:46 0:52:56 0:28:19
3 f1 0.0005 1:18:25 0:26:47 0:17:15 0:12:44
4 f1 0.0010 0:46:08 0:21:36 0:09:26 0:07:25
5 f2 0.0001 4:36:29 2:32:46 1:28:09 0:48:56
6 f2 0.0002 2:43:03 1:12:17 0:52:29 0:27:23
7 f2 0.0005 1:07:25 0:30:42 0:16:57 0:12:29
8 f2 0.0010 0:34:40 0:22:44 0:09:16 0:07:09

Table 3.2: Run Time table for OpenFOAM simulation.

For different deltaT, figure 3.3 shows the speedup for the different numbers of cores;

8 cores perform approximately 5 times faster than 1 core, 4 cores perform almost 3 times

faster than 1 core and 2 cores are about 2 times faster than 1 core. This figure also shows

that with larger deltaT’s, less speedup can be achieved.
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Figure 3.3: Performance comparison plot for different number of cores.

3.2 Discrete Element Method (DEM)

A discrete element method (DEM), also called a distinct element method, is a numerical

method for computing the motion and effect of a large number of small particles. DEM is

a particle-based simulation method, which was originally used for rock mechanics prob-

lems. Now, DEM is becoming widely accepted as an effective method of addressing engi-

neering problems in granular and discontinuous materials.

3.3 Smoothed Particle Hydrodynamic (SPH)

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating

the mechanics of continuum media, such as solid mechanics and fluid flows. It was devel-

oped by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It

is a mesh-free Lagrangian method, and it can easily be adjusted with respect to variables

such as density.
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3.4 Coupled Model CFD-DEM, DEM-SPH

We know that computational fluid dynamics (CFD), discrete element method (DEM) and

Smoothed Particle Hydrodynamic (SPH) techniques can be used to study the mechanical

and hydraulic behavior of particles and fluid flow. The coupled DEM-CFD method has

been widely used to study complex continuum-discrete problems, with a variety of en-

gineering and industry applications, such as the modeling of granular flows57, granular

impacting on a water reservoir14. Also, the coupling method of SPH and DEM can deal

with application interactions between free surface flow and strong fluid particles.

3.5 Material Point Method (MPM)

Material Point Method (MPM) was initially introduced by Sulsky58 and used to tackle

more complex problems. Material Point Method (MPM) is a method to simulate fluids

and solid materials undergoing large deformation. MPM discretize the model since it

provides a natural and efficient way of treating contact, topological change, and history-

dependent behavior.

The Material Point Method computes forces using a fixed Eulerian grid, while it also

stores information on Lagrangian particles. The fixed grid handles the topology changes

like collisions between the material. MPM stores the information using two distinct rep-

resentations, and it must be transferred between them. MPM also avoids re-meshing and

storing connectivity between particles.

The large deformation landslide problem using MPM was widely investigated. Soga59

introduce MPM to analyze large-deformation of landslide mass movements and post-

failure behavior. Troncone60;61 use MPM to simulate landslide triggered by an increase

in the groundwater level or water pressure. Yerro62;63 apply MPM to analyze landslides

for brittle soils or unsaturated soils. Also, there are lots of potentiality of MPM for ana-

lyzing geotechnical problems including the landslide that occurred at Oso in USA64, the

landslides of Senise and Maierato in Italy65;66, the Sainte-Monique landslide67. Dong
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applied MPM to solve submarine landslide problems68;69.

To handle multi-species interaction such as water and porous soil21, Bandara et al.22;23

introduced models for soil deformation and porous fluid flow using MPM. Tampubolon

et al.24 simulate the interaction of sand and water mixtures using MPM and get encourag-

ing results. For the porous material property, Klár25 used the improved Drucker-Prager

plastic flow model with volume correction. For the MPM implementation, Arduino26

and Jassim27 examined that momentum exchange using the two-grid MPM for the multi-

species interaction.

For dam safety simulation, the two most common approaches for the discretization

of solids or liquids are Eulerian or Lagrangian. For Eulerian-based methods, quanti-

ties of interest are in fixed locations or fixed grids such as in CFD or CFD-DEM mesh

modeling. For the Lagrangian-based methods, quantities of interest are attached to the

materials including SPH, SPH-DEM, and MPM particle-based methods. Among these

modeling methods, in order to simulate dam erosion with multi-species interactions be-

tween soil and water, the proposed new dam simulation models use the Material Point

Method which combines aspects of both types of discretization.

In particular, we construct a new model for the multi-species material point method

to allow interaction between soil and water. We allow wet soil transitions from cohe-

sive grains to flowing sediment as water saturation increases. We create an overtopping

dam erosion simulation model using multi-species particles and a two-grid Material Point

Method. For validation, the MPM simulation model of overtopping dam erosion is com-

pared with available experimental data and results of other physical-based models like

WinDAM70.

Mathematical background

Tampubolon24, Atktn71 and Borja72 all considered multi-species using mixture theory.

Therefore, the soil and water have been model as a multi-species continuum using mix-

ture theory.
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Conservation laws

The conservation of mass and conservation of momentum has been calculated individ-

ually, and each species obeys the following conservation laws with respect to its own

motion.

Conservation of mass

Dρ

Dt
+ ρ5 ·v = 0 (3.3)

Conservation of momentum

ρ
Dρ

Dt
= 5 · σ + ρg (3.4)

Here, the superscript s is used to represent soil, w is used to represent water, total

mass density is ρ = ρs+ρw and total momentum is the sum ρv = ρsvs+ρwvw. The velocity

v = 1
ρ (ρsvs + ρwvw) After summing the two species, the standard conservation of mass is

obtained in (??) and also note that the conservation of linear momentum for the individual

species implies conservation of linear momentum for the mixture (??).

3.6 Deformation Gradient

The deformation gradient represents how deformed material is local. It is used to mea-

sure how the material has locally rotated and deformed due to its motion24. Plastic-

ity is represented by factoring the deformation gradient into elastic and plastic parts as

F = FEFP 25.

DF
Dt

= (5v)F (3.5)

By factoring the deformation gradient in this way, we divide this deformation his-

tory into two pieces, plastic deformation FP and elastic deformation FE . figure 3.4 shows
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Figure 3.4: Multi-phase deformation combining water and soil.

Figure 3.5: The deformation of a material.

single-phase deformation gradient F and material properties. figure 3.5 displays mate-

rial property for multi-phase deformation between water and soil, the overlap region is

captured through a momentum exchange.

3.7 Elastoplasiticity

The elastoplastic theory defines when elastic and inelastic deformation occurs in the ma-

terial. Elastic deformation is when the soil is forming piles, and inelastic deformation

is when soil particle is freely rolling down a slope and won’t try to return to its original

shape. Compression and tension for elastic and inelastic deformation is shown in figure

3.6
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Variable Meaning
I identity matrix
a a = s,w soil and water
∆t time step size
D
Dt material derivative
ρα density
g gravitational constant
cE drag coefficient
wa,nip weight
5wa,nip weight gradient

Particle
V α
p h initial particle volume
mαp particle mas
xa,np particle position
va,np particle velocity
FsE,np soil elastic deformation gradient
FsP ,np soil plastic deformation gradient
Jw,np water determinant deformation gradient
φs,nP water saturation
cs,nCp cohesion

vs,n+1
cp volume correction scalar

Grid
vαi grid velocity
mαi grid node mass
xa,ni grid node location
φw,ni mixed water saturation on grid

Table 3.3: table of notation.

3.8 Constitutive Model: Soil Elastoplasticity

Tampubolon24 modify the model in Klár25 to include cohesive stresses for porous and

water mixture. Therefore, the amount of cohesion varies with the saturation of water in

the mixture. The soil partial stress σ s is defined in terms of the hyperelastic potential

energy density ψs as

σ s =
1

det(Fs)
∂ψs

∂F
(Fs,E)Fs,E

T
(3.6)

The Fs term represents the deformation gradient of soil motion. The Fs,E
T

and 1
det(Fs)
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Figure 3.6: Compression and tension for elastic and granular material.

terms arise because of the potential energy density in terms of the deformation gradi-

ent. As in finite strain elastoplasticity73, Fs = Fs,EFs,P defines plastic flow for porous

soil.Fs,E represents the compression and shearing, while Fs,P represents the sliding and

separation. We use the Drucker-Prager74 plastic flow and yield condition to determine

the elastic and plastic deformation gradient. Bonet and Wood73 provides background

for elastoplastic constitutive modeling. Dry porous material can be modeled effectively

with the assumption made by the Drucker-Prager condition because the yield condition

is defined from the constraint that shear stress should be no larger than the compressive

normal stress in all directions24. For the elastic part of the constitutive behavior for the

soil phase. The elastic potential energy density is defined in terms of the logarithmic

strain ε as

ψs(FS) = ψ̃s(ε) = µtr(ε2) +
λ
2
tr(ε) (3.7)

where FS =UΣV is the singular decomposition of FS and ε = log(Σ).
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Water

We model the water incompressible stress75 with partial stress

σw = −pwI,pw = k(
1
Jwγ
− 1) (3.8)

pw is the water pressure. Jw is the ratio of current to initial local volume of material in

the water phase.
Dw

Dt
Jw = 5vwJw (3.9)

Where k is the bulk modulus of the water and γ is a term that more stiffly penalizes large

deviations from incompressibility.

3.9 Momentum Exchange

The momentum exchange term P s, P w for water and porous soil interactions can be con-

sidered as a combination of dissipative and reversible interactions72. Bandara23 intro-

duced the formulation, and they assume

P s = cE(vw − vs) + pw 5φw, P w = −P s (3.10)

where cE = n2ρwg

k̂
is drag coefficient and n is the soil porosity, k̂ is the soil permeability

and g is the gravitational acceleration. φw = ρw

ρ is the water volume fraction and pw is the

water pressure.

3.10 Cohesion and Saturation

The method used to estimate the saturation is the percentage of water in mixture to the

total density, which is φw = ρw

ρw+ρs . The soil cohesion varies as a function of water satura-

tion. The cohesion of soil is zero when it is completely dry ( φw = 0). Robert and Soga76
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found that the increase to a maximal value cC when the φw is setting to 0.4. In our ex-

periment, we create a model in which the water interaction with wet soil and also the wet

soil can keep the shape. We set the soil cohesion to the maximal at the beginning, and the

cohesion decreases linearly with increasing saturation beyond this point which means if

we have full saturation for the mixture, the cohesion equals zero and ratio φw = 1.

3.11 Discretization

Material Point Method (MPM) computes the forces using a fixed Eulerian grid but also

keeps the information on Lagrangian particles. Information can be transferred through

the grid and particles since MPM use two distinct representations. There are other ap-

proaches in the engineering literature77 27 26 using MPM to solve the multi-species prob-

lem. We follow Tampubolon24 to discretize the continuum equation using two sets of the

grid. One is associated with soil and the other is associated with water. We use super-

script α = s,w indicates the corresponding species.

Transfer to grids

As the process demonstrated in figure 3.8, the primary representation of the state is

stored on particles in MPM in figure 3.8(1). MPM transfers the mass and momentum

of each species to the grid. We use the mass and momentum of each species to com-

pute velocity on its corresponding grid in figure 3.8(2). We apply related velocity spatial

derivatives: mass, position, velocity, and affine momentum.

Cnp =
∑

wnip(xni − xpn)(xni − x
n
p)T =


h2

3 I cubic

h2

4 I quadratic

(3.11)

Where Cnp is an inertia tensor matrix and h is the grid spacing. We use the APIC transfer

as discussed in78.
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Figure 3.7: Overtopping dam breach simulation with different cohesion at timestamp t0
and t0 +∆t.
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Figure 3.8: MPM algorithm with two grid multi-species.
1.(a)-(b) Transfer to grids: The mass and momentum of each species are transferred to its
corresponding grid.
2.(b)-(c) Update grids momentum: The coupled water and soil grid velocities is updated.
3.(c)-(d) Update particles: All particle states, including the momentum, velocity, and
cohesion based on saturation are updated.

The information needs to be transferred between grid and particle representations.

We do this by assigning each particle and grid node to a weight that determines how

firmly the particle and node interact. If the particle and grid node are close together,

the weight should be large. Otherwise, the weight should be small. As demonstrated in

figure 3.8, information like velocity and momentum exchange can be transferred between

grid nodes and particles according to the weights. We initialize mass for gird nodes and

particles, calculate weight, weight gradient, and kernel using cubic b-splines kernel for

the particle. The first step is the transfer of state particles to the fixed Cartesian grid,

and then distributing the mass of each particle to its surrounding grid nodes, summing

up mass for grid nodes and multiplying the surrounding weight and particle mass, as

addressed in the equation

ma,ni =
∑
p

wa,nip m
a
p (3.12)

We compute weights based on a kernel as wa,ni,p = N (xa,np − xa,ni ), where xa,np and xa,ni are

the locations of the particle and grid node locations based on each species a = s,w.
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N̂ (x) =



1
2 |x|

3 − |x|3 + 2
3 0 ≤ |x| < 1

1
6(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x| < 0

(3.13)

N (u) = N̂ (
ux
h

)N̂ (
uy
h

)N̂ (
uz
h

) (3.14)

Where h is the grid spacing. We use the cubic spline for all of our examples.

va,ni =
1
ma,ni

∑
p

wa,nip m
a
p(va,np +Ca,np (xa,ni − x

a,n
p )) (3.15)

For this step, we initialize the velocities for the particle and nodes, grid nodes velocity

is calculated using velocity transfer using Ca,np = Ba,np (Da,np )−1 is where Da,np is cubic b-

splines kernel and Ba,np is affine momentum matrix followed the APIC transfer78.

Update grids momentum

As shown in figure 3.8, MPM computes the forces using elastic and plastic deformation

gradient and solve for coupled water and soil grid velocities. We determine the explicit

grid node force using particle volume times energy differential, particle deformation gra-

dient transpose, and weight gradient.

The forces in the soil and water phases are computed by

f si (x̂s) = −
∂ψs

∂x̂si
= −

∑
p

V 0
p

(
∂ψs

∂Fs
(Fs,Ep (x̂s))

)
(FsE,np )T 5ws,nip (3.16)

f wi (x̂w) = −
∂ψw

∂x̂wi
= −

∑
p

V 0
p

(
∂ψs

∂Jw
(Jw(x̂w))

)
Jw,n 5ww,nip (3.17)

Stomakhin79 mentioned that x̂ai can be considered as the position of the grid node i corre-

sponding to species a that has been deformed from its original position xai by the amount
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of 4tva,n+1
i . The discrete momentum balance as

ms,ni (vs,n+1
i − vs,ni ) = 4t

(
f si (x̂s) +ms,ni g + dsi (x̂)

)
(3.18)

mw,ni (vw,n+1
i − vw,ni ) = 4t

(
f wi (x̂w) +mw,ni g + dwi (x̂)

)
(3.19)

where the discrete interaction term given by

dsij(x̂) = −cEmsim
w
j (vs,n+1

i − vw,n+1
j ) (3.20)

dwji (x̂) = cEm
s
im

w
j (vs,n+1

i − vw,n+1
j ) (3.21)

for the drag coefficient cE . Setting

M =
(
Ms,n

Mw,n

)
,v =

(
vs

vw

)
(3.22)

f (x̂(vn+1)) =
(
f s(x̂s)

f w(x̂w)

)
(3.23)

Then, we calculate the grid nodes velocity for both soil and water materials using drag

coefficient cE and updated grid nodes explicit forces are shown in figure 3.8(2) and figure

3.8(3).

(M +4tD)vn+1 =Mvn +4t(Mg + f (x̂(vn+1))) (3.24)

Where M is the mass matrix, v is the velocity matrix for both soil and water particles. g

is gravity.
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Figure 3.9: Overtopping dam breach simulation with empty(left) and full(right) reservoir.
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Update particles

As illustrated in figure 3.8(3) and figure 3.8(4) , MPM updates all particle states, includ-

ing the cohesion based on saturation as well as plasticity return mappings. The frame-

work also keeps track of the water determinant Jw.

Jw,n+1
p = (I +4t · tr(5vw,n+1

p ))Jw,n (3.25)

Since we don’t consider the effects of plasticity during simulation, the framework implic-

itly solves for momentum, F̂s,E,n+1, with the grid during the grid momentum update.

F̂s,E,n+1 = (I +4t · tr(5vs,n+1
p ))F̂s,E,n (3.26)

For each grid, We set the indicator function of the overlap region between the soil

and water constituents. Then, we compute the soil particle cohesion using the sum of

surrounding grid nodes cohesion

φs,n+1
P =

∑
i

wns,ipφ
w,n+1 (3.27)

We use the cohesion linear function of water saturation.

cs,n+1
Cp = cs,0Cp(1−φw,n+1

p ) (3.28)

Next, the framework applies the Drucker-Prager projection and introduces volume cor-

rection treatment. Plasticity is defined in terms of the singular value decomposition of

the deformation gradient. Fs,E,n+1
p = UpΣpV T

p , and εp = lnΣp. For the artifact, we add an

extra scalar attribute vs,ncp and at each time step24.

For the next step, the framework updates the grid node velocity for collisions and

friction based on the explicit case. Then, velocities are updated for particles using the
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surrounding grid node velocities. The velocity of particles updated according to

va,n+1
p =

∑
i

wa,nip v
a,n+1
i (3.29)

The position of particles updated according to

xa,n+1
p = xa,np +∆tva,n+1

p (3.30)

Finally, the algorithm updates the deformation gradient and position for both soil and

water particles.

Implementation and simulation results

Dam Failure Example 1 2 3 4 5 HansonE1S1 05-HR 05-HR
Cohesion cCp 0.01 0.008 0.006 0.004 0.002 0.008 0.008 0.008
Gravity (m/s2) 3 3 3 3 3 3 9.8 9.8
Initial Reservoir Level (m) No 3.25 3.25 3.25 3.25 4 2.4 2.4
Number of Water Particle 0 197542 197542 197542 197542 195811 95131 95131
Dam Height (m) 3.75 3.75 3.75 3.75 3.75 4.6 3.3 3.3
Crest Width (m) 6 6 6 6 6 3.68 1 1
Upstream Slope V/H 0.8333 0.8333 0.8333 0.8333 0.8333 0.3333 0.3882 0.3882
Downstream Slope V/H 0.8333 0.8333 0.8333 0.8333 0.8333 0.3333 0.3143 0.3143
Number of Soil Particle 277887 277887 277887 277887 277887 403225 173982 173982
Water Inlet Height (m) 7.25 7.25 7.25 7.25 7.25 7.25 2.5 2.5
Inlect Velocity (m/s) 2 2 2 2 2 2 5 2
Resolution 7000*2800 7000*2800 7000*2800 7000*2800 7000*2800 7000*2800 7000*2800 7000*2800
Number of Iteration 2399 2185 1503 2399 1979 2399 2087 2371
Simulation Time (hrs) 44 50 30 55 42 71 64 43

Table 3.4: Condition for the cohesive dam’s overtopping failure cases and simulation
cases.

The project is implemented in C++ and visual studio 2017, and the implementation

idea is inspired by Xia’s project80. Simulation times shown in table 3.4 have been mea-

sured on a PC with Intel(R) Core i5-3570K CPU, 16 GB RAM, and an NVIDIA GeForce

GTX 470 GPU.

Parametric studies has been conducted and shown in figure 3.7 , 3.9 , 3.10 and ta-

ble 3.4. For figure 3.7, it shows a different selection of the cohesion parameter cCp from

the range 0.002 to 0.008, which will make an influence on the overtopping dam breach

erosion simulation. The result shows that with the higher cohesion demonstrated in fig-
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Figure 3.10: WinDAM C 05-HR-OvertopBreach(A) and our simulation(B) method com-
parison.
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ure 3.7(4), the dam structure is more stable during the overtopping breach for the same

timestamp. Especially on the right edge of the dam in figure 3.7(4), the dam struc-

ture contains less shape deformation than the low cohesive dam structure at the same

timestamp compare with figure 3.7(3). The soil with a higher cohesion parameter for the

earthen embankment homogeneous cohesive dam will maintain the dam structure from

the overtopping dam breach.

For figure 3.9, it demonstrated two initial reservoir setups that will make an impact

on the overtopping dam breach erosion along the downslope embankment. From figure

3.9 A(1) to A(4), it shows the empty initial reservoir overtopping breach process at each

timestamp.For 3.9 A, the quantified quantified parameters are shown in table 3.4 exam-

ple 1. The initial reservoir level is 0 meters and dam dimensions including crest width

which is 6 meters and dam height which is 3.75 meters. From figure 3.9 B(1) to B(4), it

shows the full reservoir overtopping breach process at each timestamp. For 3.9 B, the

quantified quantified parameters are shown in table 3.4 example 2. For example 2, The

initial reservoir level is 3.25 meters, and dam dimensions including crest width which is

6 meters, and dam height which is 3.75 meters. The result clearly shows that the 3.9 B

experience more erosion at the downward levee during the breach process.

Also, WinDAM C70 05-HR-OBA example has been applied to proposed MPM simula-

tion, and the comparison result is shown in figure 3.10. WinDAM C70 is a module used to

analyze overtopping earth embankments. figure 3.10 A is the output from WinDAM C.

figure 3.10 B are the simulation results using the proposed MPM simulation model. The

parameter setting and condition for cohesive dam’s overtopping failure cases are shown

in table 3.4. The dimension and dam structure specs are set up in the column 05-HR-

OBA in table 3.4. WinDAM C simulates the result using the same 05-HR-OBA example.

As shown in figure 3.10, from figure 3.10 A WinDAM output, the dam breach erosion pro-

cess gradually deforms the right top edge of the dam crust. The physical based erosion

model used by WinDAM is Hanson/Robinson Stress-driven Model81. Hanson/Robin-

son’s model assumes the vertical cut in a cohesive soil was located at a distance of half the

bank height back from the edge. Also, the head cut is made to advance through a series of
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mass failures driven by erosion at the base. Therefore, the model will erode the cohesive

soil on the base surface and form a wedge-shaped notch.

In our MPM simulation result in figure 3.10 B, the head cut during dam overtop-

ping breach has occurred progressively. As the saturation of the water and soil mixture

reaches the critical point, the right downward levee starts to erode. The right bottom has

enlarged due to the erosion and gradual soil movement and the deformation shape of the

dam head cut is not necessary a wedge shape. Compare with the output from WinDAM

C, we noticed that the erosion deformation on the levee happened dramatically since for

the WinDAM C since it used the Hanson/Robinson Stress-driven Model, and in our simu-

lation result, the erosion process occurred smoothly due to the MPM method calculation

based on the interaction between each particle and surrounding grids. table 3.4 also

concludes other dam failure examples we simulated using our method. It contains our

samples 1 to 5, which are the samples we simulate shown in figure 3.7,3.9. HansonE1S1

is another physical-based experimental dam failure example tested by Hanson82.

3.12 Conclusion

For the preliminary experiment, the CFD modeling has been introduced to simulate the

overtopping dam break without the deformation of the downward levee. The simulation

can be run locally and on a cluster to improve efficiency.

With further research, a novel dam breach simulation framework using the Material

point method is developed. Based on the simulation results, our MPM method can pro-

vide extensive details during the erosion process on the downward levee. The simulation

results have been compared with the existing physical-based model like WinDAM. For

the current implementation, the model for the momentum exchange and energy density

function is a simplified version and this can be improved. Also, the simulation time for

our MPM method is 60 seconds, but the simulation time for WinDAM C is around 16

hours. For the current stage, our MPM simulates the process in a shortened time. In the

future study, a large scale simulation will be designed, and we will implement the com-

47



plete version of momentum exchange and energy density function. By optimizing the

experiment implementation, better experimental accuracy can be achieved and run time

will be reduced at the same time.

Overall, our proposed MPM simulation framework provides rich details during the

dam breach process. Unlike simply consider the dam break removal part as a triangle

in a physics-based model like WinDAM, our framework can capture the water and soil

interaction and gradually remove the soil during the breach process when simulating

using the existing dam breach example.

48



Chapter 4

Computer Vision in Agriculture

Computer vision applications have been widely used in various agricultural fields includ-

ing plant disease, phenotyping, grading and sorting of fruits and vegetables, and preci-

sion agriculture. The use of machine learning and computer vision has been increasing in

agriculture and seed phenotyping. Making image analysis methods suitable for seed phe-

notyping applications is currently a driving force in the agriculture field. The principle

goal for seed property analysis is to identify seed quality by measuring physical factors

that regulate the performance of seeds. From computer vision fundamentals, pictures are

constructed in a two-dimensional grid of pixels. Each pixel has a vector of three numbers

to specify the red, green, and blue components (in the RGB color space). By applying a

color threshold to an image, we can separate the seed from the picture background and

measure the seed’s physical properties. In some cases, other color spaces are better suited

for effectively color thresholding the seeds.

Many image processing applications for seed phenotyping analysis have been inves-

tigated, including seed imbibition83, seed germination84–86, seed size property analy-

sis37–39;44;87;88, and seed viability analysis89;90. Seed image processing methods such as

segmentation, image clustering91, and feature extrusion43 have been developed in the

agriculture field. In addition, seed variety classification applications92–94, and combined

machine learning classification methods using neural networks85;95;96 have been investi-
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gated.

4.1 Computer Vision using Two Images

4.1.1 Single seed volume measurement

The elliptical cylinder model performs well on a variety of seed samples including milo

and wheat. The error rate is below 3% on selected reference objects when the number

of slices used is at N=50 or above. Due to the lack of the seed image processing frame-

work for volume measurement in the agriculture field, we propose a framework that can

calculate the seed volume by measuring its cross-section using two cameras to gather im-

age information. First, we set up a turntable with two cameras: the top-view and the

side-view. Next, we turn on the seed feeder and turntable, and our framework captures

pictures for one single seed dynamically. Then, our model makes image analysis on two

images of one seed and displays the result in real-time through the framework. Combin-

ing knowledge of seed image analysis, our proposed framework applies a state-of-the-art

imaging processing model for seed image analysis and achieves rapid measurement of

seed volume. This framework significantly improves the efficiency in the lab of seed

property analysis for researchers.

The use of machine learning and computer vision has been increasing in agriculture

and seed phenotyping. Making image analysis methods suitable for seed phenotyping

applications is currently a driving force in the field of agriculture. The principle goal

for seed property analysis is to identify seed quality by measuring physical factors that

regulate the performance of seeds. From computer vision fundamentals, pictures are

constructed by pixels. Each pixel may consist of a vector of three numbers to specify the

red, green, and blue components (in the RGB color space). By applying a color threshold

to the images, we can separate the seed from the picture background and measure the

seed’s physical properties.

The physical properties of the seed including length, width, thickness, and volume
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are considered the most critical factors to be estimated. Seed volume is among the most

important agronomic traits because seed quality and seed traits are heavily dependent

upon seed volume. The water displacement method is a common way used to measure

the volume of an object. Due to the tiny size of the single seed, these testing procedures

can be time-consuming, labor-intensive, and subject to human error. In addition, seeds

are porous, so they tend to absorb water making such measurements inaccurate. To solve

the seed volume measurement problem, many image analysis methods have been devel-

oped. Neilsen, et. al97 introduces a dynamic, real-time seed counter which is able to

process dynamic video footage and generate an accurate seed count. SmartGrain is mo-

bile software35 that can provide high-throughput phenotyping from a single image and

generate approximate seed size information. Roussel36 uses a volume carving method

to perform 3D shape reconstruction to estimate the volume of a single seed. Fıratlıgil-

Durmuş37 applied the oblate spheroid model to estimate the size of legume seeds by

image analysis. Razavi38;39 developed a computer vision system to calculate the physical

properties for basil seed and wild sage seed. Sabliov40 uses an image processing method

to determine the volume of agriculture products like lemon, peach, and egg using a single

camera. Cervantes41 focuses on the parameters used to describe seed shape. Pedersen42

compares the proposed SKWCS system with traditional laboratory measurements using

16 single sorghum kernels.

However, there are limitations in the previous studies, Neilsen97, SmartGrain35, Sabliov40,

Cervantes41, and Pedersen42, all lack seed volume measurement. Roussel36’s work re-

quires a high-cost professional camera, and it is not capable of dealing with multiple

seeds. Amiryousefi, Fıratlıgil-Durmuş, and Razavi’s work only design the computer vi-

sion system specific for one seed sample like pomegranate seed43, lentil seed44, legume

seed37, wild sage seed Razavi38 and basil seed39. These computer vision systems cannot

be used to calculate volume measurements for other seed samples.

To the best of our knowledge, no rapid, accurate, and universal seed imaging frame-

work has been designed for seed volume measurements. To solve this problem, Kansas

State University cooperated with USDA to develop TT2Cam, a seed property analysis
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framework. The design goal of this framework is to accurately measure seed volume us-

ing a turntable to capture multiple images from different angles. The seed is fed by a

vibrating feeder while the turntable turns at the same time. We develop a novel and uni-

versal seed imaging processing framework to compute the seed volume by capturing two

orthogonal images in real-time. The TT2Cam image processing framework is used for

seed quality research. Subsequent research uses more than two orthogonal images.

4.1.2 Slicing model for volume measurement

Even seeds of the same variety have unique shapes. For empirical analysis, a variety of

different types of seeds of different varieties are analyzed. The goal is to derive a universal

model that can be used for distinct seed samples. Wheat seeds are generally considered as

an ellipsoid or oblate spheroid. Subsequent research will also consider the crease which

is typically found on the wheat seed. On the other hand, milo or soybean seeds generally

have a spherical shape. In our framework, to calculate the volume of different seeds, we

assume a single seed has an ellipsoid shape. The single seed can be more roundish like a

sphere or more flat like an elongated ellipsoid. Then, we slice the whole seed, we estimate

the single seed volume by adding up the individual slices. We apply an elliptic cylinder

model for every single seed, each slice is considered as an elliptic cylinder as shown in

figure 4.1. The estimated seed shape is calculated by the aggregation of the small slices.

After removing the background using an image threshold method and slicing the

whole seed into several distinct pieces, we get the estimated seed volume by adding each

slice together. The volume of each slice is given by the elliptic cylinder model:

vi = πAiBihi

Where vi is each slice volume, Ai is one radius of the ellipse, Bi is another radius of

the ellipse, and hi is the height of the elliptic cylinder. Therefore, the volume estimation
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Figure 4.1: Slice segmentation method for seed model

Figure 4.2: Main-view captured image and side-view captured image

Figure 4.3: Two camera setup. Top: main-view, Left: side-view. Set at equal distance d
from seed
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model for a single seed:

V =
n∑
i=1

πAiBihi

Each slice contains Ai , Bi , hi and we consider each slice as an elliptic cylinder model

shown in 4.1. For each seed sample, we capture two images and we slice the whole image

into many slices shown as figure 4.2.

Framework setup

The framework consists of three main components: Dynamic Feeding, Image Capture,

and Image Analysis.

1. Dynamic Feeding: A vibrating feeder and a turntable are used to feed the seed dy-

namically. The seed queue can be lined up perfectly by the feeder and pass through

the camera section one by one on the turntable. The custom-built turntable has been

connected to a Syntron Electric Controller with Syntron Vibrating Feeders F-TOC.

2. Image Capture: Two cameras are set up to capture a top-view and a side-view.

When the seed passes by the front camera, the two cameras take pictures simul-

taneously. We are using a Techniquip Foi-150 Fiber Optic Illuminator as the light

source, an Imaging Source DFK 37BUX287 color industrial camera is mounted as

the top camera and an Imaging Source DMK 37BUX287 monochrome industrial

camera is mounted as the side camera. Subsequent research uses two color cam-

eras.

3. Image Analysis: The framework comes with a user interface for the Windows op-

erating systems. The user interface and image capture is implemented using C# in

Visual Studio. Image processing algorithms are implemented using Python and rely

on a few libraries from OpenCV.

The two components of the framework: Dynamic Feeding and Image Capture are

shown in figure 4.4.
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Auto ROI
Auto Functions ROI Enabled
Preset Center 50%

Exposure
Brightness 0
Gain(Top color camera) 20.00 db
Gain(Side monochrome Camera) 8.00 db
Exposure 1/2000 sec
Auto Reference 0
Auto Max Value 1/2000 sec
Highlight Reduction Disabled

Image
Sharpness 0
Gamma 1
Denoise 0
Filp Horizontal Disabled
Flip Vertical Disabled

Partial scan
Auto-center Enabled
X Offset 0
Y Offset 0

Special
Trigger Disabled
GPIO IN 0
GPIO Out 0
Strobe Disabled

WDR
Tone Mapping Enable, Auto Disabled
Intensity 0
Global Brightness Factor 0

Color(Top color camera only)
Hue 0
Saturation 100%
White Balance Auto Disabled
White Balance mode Grey World
White Balance Red 1
White Balance Green 1
White Balance Blue 3.98

Table 4.1: Camera calibration settings
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Figure 4.4: The framework setup including a turntable, a light source, one top color
camera, one side monochrome camera, a seed feeder, and an electric controller

Camera calibration

The acquired images without estimating camera pose and lighting source are known to

be particularly sensitive to calibration errors. Therefore, requiring the precise position of

the cameras and adjustment of light intensity is important for accurate image analysis.

For this framework setup, the two cameras are mounted at the same distance as the object.

From the top-view and side-view, the distance d from the object to the cameras are set to

be fixed.

1. Light Source: Dual fiber optic lights are placed next to the two camera lenses and

have the same distance d to the seed object.

2. Camera Setting: Our framework is developed using the IC Imaging Control .NET

Component; the camera setting can be adjusted by setting device properties as

shown in table 4.1.
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3. Calibration Reference Object: To calibrate the camera distance and pixel ratio for

each frame. We simply test a ceramic ball as a calibration object with r0 = 3.8mm

radius to calibrate the working distance d and pixel ratio for our framework.

The user interface is implemented using C#. Imaging Source cameras come with a

C# package and libraries for low-level camera control. These libraries are integrated into

the framework. Image processing for volume measurement using the slicing method is

developed using Python and only relies on libraries from OpenCV. For each frame:

1. Convert the image to the HSV color space. HSV (Hue, Saturation, Value) is an alter-

native color space that can be used in place of the RGB color space for better color

thresholding.

2. Adjust the threshold for the HSV image to filter out the background from the seed

object and apply the color threshold to the HSV image.

3. Set the searching area of the region of interest-based on the seed sample.

4. Find the seed image contour using the result of the HSV image thresholding to

generate a mask.

5. Construct a fixed orientation bounding box for the contour.

6. Draw the contour on the seed sample image.

7. Calculate the length of the individual slice based on the slice number. xi = X
N .

8. Slice the whole seed region based on the contour and the bounding box.

• First, construct a line that connected the left most and right most points for the

contour.

• Then, compute the middle point in that separating line and use it to separate

high and low points on the contour and save them to the list.
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• Next, calculate the average of the 5 adjacent high point list and low point list

and make a rectangular box for each slice.

• If the adjacent high point cannot be found, in some cases there are no points

in contour, we can use the most recent average point for the current slice from

memory.

9. Calculate each slice values by applying elliptic cylinder model. vi = πAiBihi

10. The final step is to sum up all the single slice and get the total estimation of single

seed volume V =
∑n
i=1πAiBihi .

The seed volume measurement value and corresponding images are saved in a project

folder. The user can also access the saved Excel spreadsheet which records all of the seed

property data including sample name, width, length, thickness, and volume measure-

ments. In the current phase, the framework works in a static mode, and it is not able to

capture and process images in real-time. Modifications to make it run in real-time are un-

derway. The seed property analysis results will be displayed when turntable and feeding

machines are running simultaneously. In that scenario, our framework will be refined to

deal with the heavy load of seed image processing jobs. For our framework, the velocity

of the turntable is 53 mm/s, the radius is 118 mm, the perimeter is 741.4 mm and there

is about 7 mm space between each adjacent seed, therefore at most 5 seeds pass through

the camera per second. Also, our image processing algorithm can process 15 images per

second. In future implementation, our framework can handle 5 seeds per second with

the current turntable speed.

Experiment

Analysis experiments are conducted by feeding the seed sample using a vibrating feeder,

the electric controller can adjust the feeding speed and the turntable speed while the

turntable is running. Seeds are aligned perfectly by the white plastic obstacles placed

on the side and middle of the turntable. When the seed dynamically goes through the
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Figure 4.5: Wheat seed (top-view, color camera). A: Source image, B: Binary image after
thresholding, C: Bounding box with detected contour, D: Sliced image

front region, the top color camera and the side monochrome camera capture the images

simultaneously. The turntable, seed feeder, controller, and light source are shown in

figure 4.4.

After images are captured, they are processed by image analysis code developed in

Python. The image processing process for a wheat sample is shown in figure 4.5. After

the camera calibration setup, the pixel ratio is set to p = 46.30 pixels per millimeter. The

main side view is captured using a color camera, which is shown in the A picture in figure

4.5. The first step is to apply the HSV image threshold to it and find the image contour

using the binary threshold. For this wheat sample, the HSV threshold range is set to H

[0,30], S [60,255], V [0,255]. In that HSV range, we filter out all colors except the roughly

brown color which is the wheat color on the source image. The binary image is shown in

the B picture in figure 4.5. After processing the source image, OpenCV library methods

are used to detect the seed contour, and this contour is displayed on the source image.

Due to the OpenCV contour detection algorithm, it finds all the possible contours inside

the source image. Normally, the number of possible contours is more than one. Among

them, only one contour has a similar size to the wheat seed in the source image, others are

typically noise in the background. In our case, the searching area (or region of interest
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Figure 4.6: Wheat seed (side-view monochrome camera). A: Source image, B: Binary
image after thresholding, C: Bounding box with detected contour, D: Sliced image

(ROI)) of the contour region range in the interval [15000, 50000] in pixel value. Any

contour size which falls outside of that range will be considered as noise and discarded.

Once the target contour is found, our implemented algorithm will draw the contour in

the picture, shown in green on the C picture in figure 4.5. The bounding box can be

generated by minimizing the length and width of the contour constructed as shown as

the blue line in the C picture in figure 4.5.

The same image processing algorithm is also applied to the side image captured by

a monochrome camera shown in figure 4.6. Before applying our slicing method, we cal-

ibrate and adjust the measurement error for the two images. Although we mount both

cameras in the same distance d from the lens to the seed, the side camera may still have

some measurement error due to the turntable movement as shown in figure 4.7. The im-

age is taken from closer seed sample distance = = d−∆ has a larger measurement of length

and thickness, ∆ is measurement error. Likewise, the image taken from further position

distance = = d + ∆ has a smaller measurement compared to the distance d. Therefore,

we applied a scale factor of s to the thickness and length measured in the side image to

compromise the measurement error. Since we measure the length both in main and side

camera, and the distance d between the top camera and object won’t change during the

experiment, we simply set the scale factor s =
Xtop
Xside

. In that way, we can deal with radial
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Figure 4.7: Wheat sample with volume measurement results

positioning errors. For the seed rotation problem, we handle it by adding a white plastic

ring above the turntable. Due to the shape of the elongated seeds, when the seed is pass-

ing by the white plastic ring, the seed orientation will be adjusted to perpendicular to the

radius. This system will minimize seed rotation errors when taking the side pictures. Af-

ter setting the scale factor, the slicing method will be applied to the images of the wheat

sample. The first step is to decide on the number of slices to use for each sample. We

will further discuss the relationship between the number of slices selected and volume

measurement in the next section. For now, we select N = 50 slices for our wheat seed

sample. The algorithm divides the length into 50 segments and calculates the average for

the adjacent five upper and lower points, then draw and connect the area as a rectangle.

The number of points can be smaller, five adjacent points are suitable for saving our most

recent point list. A separation line is constructed and shown in figure 4.7, the middle

point of each slice rectangle is calculated based on the separation line. We use the middle

point from the separation line to distinguish the upper and lower points.
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Slice number and accuracy

We numerically investigate the impact of the number of slices N on the accuracy of the

volume estimation for seed samples. To do so, we calculate the relative error Ei = Vi−V0
V0

,

where Ei is the error rate, Vi is the volume measurement calculated by our framework,

V0 is the physical experiment volume measured by our collaborator at the USDA using a

glass bead displacement method. figure 4.8 shows the different number of slice selections

applied on the milo seed and gives different results on volume measurement. In this milo

example, V0 = 22.91mm3. figure 4.8 picture A shows the milo sample divided into five

rectangle slices V1 = 24.49mm3, E1 = 6.89%. figure 4.8 picture B shows the milo sample

divided into ten slices V2 = 24.35mm3,E2 = 6.28%, and figure 4.8 picture C shows the milo

sample divided into twenty slices V3 = 23.18mm3 , E3 = 1.18%. Comparing these three

images, figure 4.8 picture A has the largest volume estimate due to the lowest number of

slices, figure 4.8 picture C has the smallest volume estimate. The reason is that with the

smallest number of slices, our framework will select the average of the adjacent points

to calculate the width and length of an individual slice. These estimations of length

will exceed the border of the actual contour of the seed, which will lead to a higher

volume estimate in summation. When the number of slices increases in figure 4.8 C, the

aggregation of the slices is closer to the contour shape of the milo seed, and it will achieve

better results. figure 4.8 shown the experiment using the milo sample, we want to test

our framework using other objects. To reduce human error when conducting the glass

bead displacement method for volume measurement, we use a known volume reference.

In the next step, we further discuss the impact of the different number of slices and

error rates using reference objects. Our goal is to minimize the error rate of our volume

measurement method.

Therefore, we tested the different number of slices and their corresponding error rate

for two reference objects shown in figure 4.9. Sphere1 and sphere2 are two known volume

reference ceramic bearing spheres of diameters 3.18 mm and 6.35 mm respectively. We

conducted our experiment with the slice number selection from the range N = 5 to 150.
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Figure 4.8: Milo sample with different numbers of slices N = 5 (A), N = 10 (B), N = 20 (C)

Figure 4.9: Volumetric error for different slice numbers of two ceramic spheres. Sphere 1
diameter = 3.18 mm; Sphere 2 diameter = 6.35 mm.
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From figure 4.9, we can see that the error of volume measurement goes down as the

number of slices goes up. As the beginning of the graph, the error rate is at a very high

level above 10% when the number of slice N is 5. As we increase the number of slices,

the error rate is significantly decreased, and the curve almost flat when the slice number

N is greater than 50. The reason for this experiment result is that for the larger number

of slices, the aggregation of the slices is close to the actual shape of the ceramic sphere.

When we increase the number of slices, the error rate goes down. For figure 4.9, the graph

shows that when the slice number N is greater than 50, for both reference object sphere1

and sphere2, the volumetric error rate is relatively low at less than 3%. According to the

relationship between error rate and slice number N , we conclude that a good trade-off is

to use N = 50 as the number of slices for analysis. For the wheat and milo examples in

this paper, the number of slices is set to N = 50.

We also investigate the camera calibration and lighting conditions to improve mea-

surement accuracy. The light intensity and light color perform a crucial role in the image

analysis procedure. We added an adaptive camera calibration algorithm to reduce the

noise of the light source. By skipping sophisticated calibration steps, an adaptive thresh-

old algorithm can fine-tune the camera setting and reduce the background noise of the

single seed and extract the region of interest as a prior process. This added feat is very

helpful for reducing noise and improving the performance of our framework.

Volume measurement for different samples

For our experiment, we tested our algorithm on wheat seeds and milo seeds. As shown in

table 2, there are two wheat seed samples named L and O, and twenty milo seed samples.

The samples are provided by our collaborators at USDA in Manhattan, KS. The values

WLg and WOg are the volumes of the L and O samples measured using a glass bead

displacement method at USDA, as our reference for the wheat samples. For the wheat

example, VWLg = 51mm3, VWL1 = 49.25mm3, EWL1 = 3.43%. VWL2 = 47.62mm3, EWL2 =

6.62%. VWOg = 21.1mm3, VWO1 = 18.86mm3, EWO1 = 10.62%. VWO2 = 17.76mm3, EWO2 =
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Sample Length Width Thickness Volume Weight Density
(mm) (mm) (mm) (mmˆ3) (mg) (mg/mmˆ3)

WLg 7.17 3.64 2.91 51.00 87.00 1.71
WL1 7.17 3.69 2.90 47.25 87.00 1.84
WL2 7.11 3.71 2.86 45.62 87.00 1.91
WOg 5.56 2.23 2.10 21.10 31.00 1.47
WO1 5.83 2.26 2.26 16.86 31.00 1.84
WO2 5.70 2.30 2.05 14.86 31.00 2.09
M1-1 3.87 3.76 2..46 19.55 31.80 1.63
M1-2 3.81 3.80 2.80 24.20 30.40 1.26
M1-3 4.04 3.72 2.98 28.18 37.30 1.32
M1-4 3.85 3.41 2.54 19.52 37.00 1.90
M1-5 3.75 3.68 2.73 25.08 29.50 1.18
M2-1 3.89 3.21 3.09 23.07 23.10 1.00
M2-2 3.91 2.70 3.00 21.91 18.70 0.85
M2-3 3.39 2.83 2.55 9.90 16.80 1.70
M2-4 3.88 3.27 2.68 23.95 20.60 0.86
M2-5 3.82 2.86 2.20 16.65 17.90 1.08
M3-1 3.61 3.41 2.26 15.86 21.10 1.33
M3-2 3.75 3.62 2.55 25.40 23.90 0.94
M3-3 3.42 3.42 2.10 13.26 20.90 1.58
M3-4 3.35 3.28 2.53 13.66 18.90 1.38
M3-5 3.55 3.54 2.86 25.04 26.40 1.05
M4-1 3.79 3.70 2.32 21.67 26.30 1.21
M4-2 4.41 3.85 2.47 21.60 33.30 1.54
M4-3 3.80 3.71 2.31 21.91 24.60 1.12
M4-4 4.16 3.96 2.74 26.41 36.80 1.39
M4-5 4.50 4.23 2.91 30.44 37.60 1.24

Table 4.2: Volume measurement of wheat samples
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15.82%. From the experimental results, we can conclude that our volume measurement

method performs very well on the wheat sample overall. The large error rate for the O

sample is because of the small size of the wheat seed. Due to the small size of the wheat

seed, the glass bead displacement method from USDA may introduce human error for

calculating the VWOg .

M1-1 to M4-5 denote the twenty different milo seed samples. All of the volume mea-

surements use N = 50 slices when computing volume. Accurate weight data can be easily

obtained to compute the density as mass/volume. To evaluate the performance of our

algorithm, we compare our milo density with previous works. Pedersen’s work42 uses

their SKWCS method to calculate the single kernel characteristics. Pedersen compares

his SKWCS method with traditional laboratory measurement data using single kernel

data for 16 milo (sorghum) seeds. The average milo density from the Pedersen SKWCS

system is 3.70 g/cm3. The average density from Traditional Laboratory Measurements

is 1.39 g/cm3. The average density from our imaging processing method is 1.25g/cm3.

For the single milo seed, the Pedersen SKWCS system has 1.31 g/cm3 difference with the

laboratory results, our method outperformed his system and achieve 0.14 g/cm3 differ-

ence with the laboratory results. Roussel36’s model achieves great volume measurement

results using 36 images for a single seed. They use a ball-bearing ball and measured

the diameter use a digital sliding caliper and calculated the volume 14.137 mm3 ±0.007

mm3 with 0.05% volume tolerance. Their algorithm measures the volume of 14.11 mm3

and mean diameter of 2.998 mm for the bearing ball. This is a relative error of -0.19%.

The absolute error rate of their method can be lower than 2.5%, but it requires lots of im-

ages and a high-end camera. Our image processing framework only requires two images

for one single seed, our model is more time-efficient. Other than wheat and milo seed,

we continue testing different seed samples. Unlike Amiryousefi, Fıratlıgil-Durmuş, and

Razavi’s work only targeting pomegranate seed43, lentil seed44, legume seed37, wild sage

seed Razavi38and basil seed39, our image processing framework are capable to measure

different kinds of single seed samples and achieve great measurement results simultane-

ously.

66



Conclusions and future work

Our framework provides a user-friendly interface, a Windows application TT2Cam for

agriculture researchers to use, and conduct image analysis. The volume measurement

algorithm designed in Python is integrated into the framework. Researchers can easily

capture two pictures and get the measurement result of a single seed from image analysis

conveniently. The algorithm provides fast, novel, and universal image processing solu-

tions for seed volume measurement. Based on the main view image captured by a color

camera, side view image captured by a monochrome camera, the algorithm can detect the

contour of the single seed, automatically slice the whole seed, apply the scale factor for

calibration purpose, and finally estimate the volume of a single seed. For image process-

ing, only two cameras are used to gather pixel information. There is a possibility to get

more information by adding more cameras from different angles. For the camera setting

and orientation. Our framework has one color camera and one monochrome camera. The

reason we use one monochrome camera is that the image sourcing monochrome camera

has NIR wavelength data collection. In the future, we can also investigate more advanced

color analysis by extracting NIR wavelength data from the monochrome camera. We plan

to add more features to our TT2Cam framework. Seed volume measurement is our first

step, trigger function in real-time, color information extraction, and automated seed den-

sity measurement will be our future steps.

4.2 Computer Vision using Multiple Images

Modern seed breeding programs require the ability to analyze seeds efficiently to be use-

ful. Even simple measures such as volume and density can be challenging to compute

efficiently with modest equipment. Accurately measuring seed volume becomes a highly

under-constrained problem. Multiple images from different perspectives are required.

We present an efficient and affordable 3D single seed volume measurement system to

extract image contours and compute volumes using a modified volume carving method in
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a controlled lab environment. The framework is constructed with a turntable, a stepper

motor controlled by an Arduino microcontroller, three orthogonal cameras, and camera

control via a modest computer used for data acquisition and processing. For testing, im-

ages are captured using only a side camera from different angles by rotating the turntable.

Then, the framework processes the multiple images in parallel and reconstructs 3D seed

objects to calculate the volume based on the voxel numbers. The proposed framework:

(1) generates single seed 3D geometries for visualization, (2) calculates precise seed vol-

umes within seconds, and (3) achieves less than a 3% error rate on a reference ceramic

sphere.

The principle goal for seed property analysis is to identify seed quality by measuring

physical and physiological factors that regulate the performance of seeds. Among those

physical factors, seed volume and density are among the most crucial aspects to measure

since they are highly correlated with seed functionality and quality. There are several

existing seed physical property analysis models using image processing including 2D af-

fordable scanning28–30 and commercial software designed for different seed types31;32.

These models calculate typical parameters including width, length, and area from the

2D images. They can be used to analyze different seed types such as rice, soybeans, and

barley. Other than these specific seed image processing frameworks to measure physical

seed factors, we can also apply general image processing models for volume measure-

ment. From a geometric perspective, there are stereo-based techniques, space-carving

methods, and newly developed methods based on convolutional neural networks (CNNs).

Although CNN methods may use fewer images, effective and accurate solutions typically

require multiple images.

For seed property analysis, 3D reconstruction modeling can be applied to solve the

volume measurement problem and conduct property analysis. Reconstructing and re-

covering the 3D shape of a single object is a long standing ill-posed problem, which has

been explored by computer vision, computer graphics, and machine learning communi-

ties. The single object 3D reconstruction model has made enormous progress and rapid

revolution since 201598. The goal of image-based 3D reconstruction is to infer the 3D
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geometry and structure of objects from one or multiple 2D images. The recovery of a 3D

shape using multiple 2D images has been extensively investigated.

In order to achieve high quality 3D shape reconstruction, volume carving with shapes

generated from the silhouette method45–47 is used for reconstruction. A silhouette of an

object in an image refers to a contour separating the object from the background. Shape-

from-silhouette methods require multiple views of the scene taken by cameras from dif-

ferent viewpoints. For each image, the silhouette of the target objects is segmented using

background subtraction. The retrieved silhouettes are back-projected to a common 3D

space with projection centers equal to the camera locations99.

In this section, we present a novel measurement framework for single seed volume

measurement using a modified 3D reconstruction volume carving method. Although ex-

isting software and models have been well-known or developed in the literature and in

practice, we propose a complete, end-to-end system for the volume measurement of a sin-

gle seed. Our proposed work achieves high accuracy from multiple images automatically

acquired and processed.

To demonstrate the accuracy of the proposed framework, a reference ceramic ball is

reconstructed with less than a 3% error rate. In cooperation with collaborators from

USDA, the framework is used to measure a variety of seeds, including wheat seeds. The

computed results are compared with the results obtained directly using beads and vol-

ume displacement measurement. The results indicate that the proposed framework is

highly accurate and usable in practice. It is also much faster than physical measurement

using volume displacement.

4.2.1 Volume carving framework for volume measurement

Shape from silhouettes

The shape-from-silhouette method for single seed volume measurement requires mul-

tiple images from distinct views. For each image, the silhouette of the target objects is

segmented using background subtraction. The retrieved silhouettes are back-projected
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to a common 3D space with projection centers equal to the camera locations.

We use the intrinsic camera matrix K and the distance between the origin of our work-

ing volume and the camera center from the calibration. The origin of the working volume

is selected to be the intersection point (IP) of the seed bottom horizontal line and the cen-

terline in the image36. We acquire N images, showing a seed under equidistantly spaced

rotation angles ai where i ∈ {1, ...,N }. The rotation is around the vertical axis through the

IP and is parallel to the y-axis of the camera. We apply a grayscale threshold method

on each image and segment each image into a binary mask Mi for i ∈ {1, ...,N }. For each

image, we calculated the camera projection matrix Pi from the rotation angle ai by

Pi = K(Ri) (4.1)

Where Ri is the rotation matrix corresponding to the given angle ai , Ti is the translation

matrix for the optical center. After that, we define an equidistantly spaced cubic voxel

grid around the world origin, and set each voxel size to 1mm3. Each voxel center with

homogeneous world coordinates
−→
X is projected to a point −→x i in each mask Mi by

−→x i = Pi
−→
X (4.2)

If a voxel belongs to the foreground object, its value V (~X) is set to 1. If the voxel does

not belong to the foreground object, its value V (~X) is set to 0.

V (
−→
X ) =

N∏
i=1

Mi(
−→x i) (4.3)

The mask Mi in this volume carving method is sensitive to misalignment of the object

volume. Camera calibration to minimize misalignment is discussed in the next section.

4.2.2 Turntable framework setup

The hardware design is a relatively simple, convenient turntable design. The system

includes a NEMA 23 stepper motor to control the rotation of a 3D printed turntable
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with a minimum step size of 1.8 degrees (a maximum of 200 steps per rotation), three

orthogonal cameras, and an LED light as shown in figure 4.14.

• Turntable control: A NEMA 23 stepper motor controls the base and a 3D printed

custom-sized turntable is designed to handle a range of seeds at the required camera

distance. The seed samples can be placed in the center of the turntable perfectly.

The stepper motor is connected to a power supply and controlled using a low-cost

Arduino microcontroller using a Synthetic gShield stepper driver.

• Physical framework: For printing the 3D parts, a MakerGear M2 3D printer is

used100. For each part, a 3D stereolithography (STL) model is designed using Core-

form Cubit101. The STL 3D camera mounts are shown in figure 4.10. All parts are

designed in millimeters. After the STL model is designed, they are sliced into gcode

using slic3r102. Finally, 3D parts are printed on the Makergear M2 3D printer using

the Printrun103 software or the Makergear M2 software.

• Image capture: The image capture component is built using three ImagingSource

color cameras DFK 37BUX287104. These cameras are mounted orthogonally at three

different angles: front, left, and top, each 90 degrees apart. The images are taken

using the ImagingSoure IC measurement software.

• Controller and power supply: The stepper motor is controlled by a DFRduino UNO

R3 board105 attached with a Sythetos gShield v5 board106. A Universal Gcode

Sender (GCS)107 is used to test the whole system. Then, simple control software

is developed to control the system by sending gcode strings. The turning degree

and capture rate can be controlled by the user based on their needs. For example, a

rotation of 360 degrees requires a step size of 6.4. If N = 36 equidistant images are

desired, the turntable should rotate 10 degrees on each step; therefore, the rotation

is set to a 6.4/36 = 0.178 step size for 10 degrees.

• Mounts and stands: All camera mounts are 3D printed, the base is built using

simple Legos to stabilize the whole system. The mounts and parts are designed
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(a) Mount bottom
(b) Mount join

(c) Rotate 10 degrees in X and Y direction (d) Rotate 10 degrees to the left

(e) Pillar (f) Pillar with crossbars

Figure 4.10: Selected camera mount 3D models

to be assembled together. For example in figure 4.10f, the length of the pillar is

76.00 mm, the width is 32.50 mm, and the height is 4.60 mm, and in in figure

4.10a,4.10b,4.10c,4.10d, the length of the square is 5.00 mm to fit the pillar leg

which length is 4.60 mm.
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Camera calibration

The acquired images without appropriate parameters, adapting camera pose, and adjust-

ing lighting sources are known to be particularly sensitive to calibration errors. There-

fore, controlling the precise positioning of the cameras, determining the accurate photo

parameters, and adjusting light intensity are crucially important for accurate image anal-

ysis. For the framework setup, three cameras are mounted at the same distance as the

object. From the top view, side view, and front view. The distance d from object to cam-

eras are set to be fixed. To reduce glare and focus on the turntable, the camera angle

is rotated by 10 degrees as shown in figure 4.10c,4.10d. For the testing phase, only the

front camera is used to capture multiple images when rotating the turntable. Future

testing will involve all three cameras.

• Camera Position: As shown in figure 4.11, the cameras are mounted at different

angles, but they are all orthogonal to each other. To better capture images without

glare from overhead lighting, the front camera is rotated 10 degrees along the x-

axis towards the turntable, the side camera is rotated 10 degrees along the y-axis

towards the turntable, and the top camera is rotated 10 degrees along both the x

and y-axes away from the turntable.

• Camera Parameters: The image properties and camera properties of the framework

are shown in table 4.3. ImagingSoure IC measurement software is used to capture

raw image data. The camera settings for the software is shown in table 3.3.

• Light Source: One goose-neck LED light is placed next to the left side camera, the

light source is set on top at a distance d from the object.

• Calibration Reference Object: To calibrate the camera distance and pixel ratio for

each frame, we simply test a ceramic ball of a known fixed size as a calibration

object to calibrate the working distance d and pixel ratio for the framework.
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Figure 4.11: Turntable setup with 3D printed camera mounts in STL model
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Auto ROI
Auto Functions ROI Enabled
Preset Center 50%

Exposure
Brightness 0
Gain(Top color camera) 0 db
Exposure 1/30 sec
Auto Reference 128
Auto Max Value 1/30 sec
Highlight Reduction Enabled

Image
Sharpness 0
Gamma 100
Denoise 0
Image size 720 x 540
Pixel per mm at working depth 145/5.74
Pixel size 1/0.0062
Focal Length 12.5

Color
Hue 0
Saturation 64
White Balance Auto Disabled
White Balance mode Temperature
Auto-Preset Auto Daylight
Temperature Preset Cool White LED
Temperature 7500

Table 4.3: Camera calibration setting

Software implementation

The framework software is implemented using Python. When capturing the raw data,

the Imaging Source camera is controlled by the IC Measurement Software. For each ex-

periment:

1. Determine the number of images N taken by the front camera. Therefore, the de-

gree between adjacent images is D = 360
N .
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2. Crop and trim images in the input sequence, and save the offset for each image for

image matching using normalized cross-correlation.

3. Convert each image to the HSV color space. HSV (hue, saturation, value) is a better

alternative representation used in place of the RGB (red, green, blue) color space

for better thresholding.

4. Adjust the threshold of the HSV image to filter out the background from the seed

object and apply a threshold to the HSV image to obtain a binary mask image.

5. Get the total number of images N , and set the turntable center using pixel coordi-

nates.

6. Apply volume carving method to reconstruct seed shape.

• First, the software finds the center of the reconstruction cuboid by finding the

intersection point (IP) of the seed bottom horizontal line and the centerline

in the image. A cuboid is constructed outside of the object defined by voxels.

Each voxel size is 1 ∗ 1 ∗ 1, and initially, we fill the cuboid with the voxels.

• Then, for each image of a different angle, the software trims, crops, and gener-

ates the mask image from raw input. The projection matrix108 for each image

is computed and the background is carved out.

• The reconstructed 3D shape is the object that remains after carving out all

N = 36 images.

7. For each voxel, the volume is vi = 1∗1∗1, the total voxel volume of the 3D reconstruc-

tion seed is V =
∑n
i=1 vi . The total volume of the seed is calculated by multiplying

by a factor, which is the cubic volume of a pixel per mm in camera properties.

Experiment

Each camera view captured one image from its visual hull and carve out the background

of the images. The camera is using the central projection method shown in figure 4.12.
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Therefore, we will notice the surplus volume as a measurement error when creating 3D

objects. We further investigate the 3D reconstruction object using a different number of

camera views. From figure 4.13 by Roussel36, we can see parallel projection and central

projection for the 3D reconstruction on the reference sphere with the different number of

camera views.

Figure 4.12: 2D view for volume carving method using voxel grid

For demonstration purpose, we conduct our preliminary experiment on the soybean.

The images are captured, processed, and analyzed show in the folder in figure 4.15. The

3D reconstruction model of soybean is shown in figure 4.16.

As shown in table 4.4, we applied our volume carving framework on two reference

ceramic spheres with known diameters of 3.95 mm for computed sphere volumes of 32.27

mm3. We did 4 repetitions on each sphere and computed the average sphere volume

and all statistical analysis in table 4.5. For the reference spheres, our method achieves

accurate results, the coefficient of variance is around 1%. Our method gets slightly larger

estimates than the actual volume of the sphere.
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Figure 4.13: 3D sphere reconstruction using parallel projection (left) or central projection
(right)
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Figure 4.14: Single seed 3D reconstruction framework
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Figure 4.15: 3D reconstruction profile pictures for soybean

Figure 4.16: 3D reconstruction model for soybean
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Sphere Volume Difference Absolute Relative
Sample (mmˆ3) Error(ARE)

1 1 33.41 1.14 3.53%
1 2 33.08 0.81 2.51%
1 3 33.12 0.85 2.63%
1 4 32.65 0.38 1.18%
2 1 33.59 1.32 4.09%
2 2 33.68 1.41 4.37%
2 3 32.92 0.65 2.01%
2 4 33.89 1.62 5.02%

Table 4.4: Volume data computed for reference spheres

Average Sphere Standard Coefficient of
volume(mmˆ3) volume(mmˆ3) Deviation Variation(CV)

Sphere1 33.07 32.27 0.31 0.95%
Sphere2 33.52 32.27 0.42 1.25%

Table 4.5: Summary data for reference spheres

Results and analysis

Number of images and accuracy

After implementing the code and setting up the turntable framework, results are com-

puted from many wheat samples. But, before applying our framework to small seeds,

reference objects are used to test the accuracy of shape reconstruction from the silhou-

ette volume carving method. Shapes reconstructed from the silhouette 3D reconstruction

using a finite set of objects images results in an approximated visual hull of the object.

The object obtained by the visual hull is guaranteed to enclose the object in 3D space.

However, some surplus volume is typically produced in the visual hull by the finite set

of objects images shown in figure 4.12,4.13 because the seeds are not totally concave,

they also have convex regions. The four cameras project the orthogonal visual hull in

2D space. The brown region represents the wheat seed object, and the light brown region

represents the 3D reconstruction volume from the visual hull. It is challenging to engrave

the surplus region using only four images.

To further investigate the relationship between the number of images captured and
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volume measurement accuracy, an experiment is conducted using a reference ceramic

sphere with radius r = 1.975mm, the theoretical volume is 32.75mm3. For the experimen-

tal design, different numbers of images N are acquired from rotating the turntable at a

D = 360
N degrees in each step. For example, if N = 5,the turntable is rotated 360

5 = 72

degrees for each step and a total of 5 images are captured.

Before the experiment, we calculated the arithmetic volume of the reconstructed ob-

ject when using a central projection. If N = 4, the reconstruction object is exactly a Stein-

metz solid109, and the volume is

Vsteinmetz =
16r3

3
(4.4)

and the actual volume of a sphere is

Vsphere =
4πr3

3
(4.5)

Therefore, we calculate the theoretical reconstruction volume using our framework.

V =
4N
3

(tan(
180
N

))r3 (4.6)

Different numbers of images N have been selected and to evaluate the performance of

the volume measurement using a ceramic ball. The 3D reconstruction object is shown in

figure 4.17 and the line chart is shown in figure 4.18.

To test the reconstruction shape and volume measurement using the different num-

bers of images N , we set the number of images from 5 to 12. figure 4.17 shows for N = 12

number of images yields much better reconstruction than for N = 6. This is in full agree-

ment with the measurement error in figure 4.18. From the experimental data, we observe

that for the N = 12, the theoretical error rate is below 3%. As the number of images goes

up, the error rate goes down. When we select N = 36, the error rate is also below 3%. In

practice, other error sources may dominate when we select a higher number ofN . For the
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number of image value selection, we want to achieve higher accuracy in the controlled

environment. Therefore, based on the N parameter analysis of the reference ceramic

sphere, we achieve an experimental error rate of less than 3%, and we apply N = 36 as

the number of images value to the experiment samples including wheat, soybean, and

corn seeds.

Figure 4.17: Comparing number of images N for 3D volume reconstruction using refer-
ence ceramic ball

The framework is tested on different seeds, the 3D reconstruction and volume mea-

surement data for wheat, corn, and soybean seed is shown in figure 4.19. Four pictures of

each seed from 0, 90, 180, and 270 degrees are selected to show the comparison between

original seed pictures and reconstruction 3D models. For wheat seed, the framework is

able to accurately calculate the volume and also capture the brush end and germ end de-

tails from the seed shape property. Also, for the corn seed and soybean seed, the overall

performance of 3D reconstruction is great except for the imperfection for the concave and

dark region as shown in the 270-degree picture for corn.
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Figure 4.18: Error rate when using different number of images (N)

Figure 4.19: 3D reconstruction and volume measurement for wheat, corn and soybean
seeds

Voxel size

To understand the voxel size impact on the performance of the volume measurement, we

conduct complexity and accuracy analysis for the volume carving method. The complex-

ity of the volume carving algorithm depends on the number of voxels and the number of

images acquired. Run time experimental data is shown in table 4.6. We select different
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Figure 4.20: Large-scale voxel reconstruction using reference ceramic ball

numbers of voxel sizes from 125*125*125 to 625*625*625, which increments of 125 vox-

els. The run time significantly increases from 10s to 681s. We plot the run time and voxel

size relation plot in figure 4.20, the data are shown in table 4.6.

Based on figure 4.20, we clearly find out that the larger the voxel size we select, the

more roundish and smooth the reconstruction ball we can achieve from our framework.

From table 4.6, we observe that the voxel size and run time have a positive relationship

with each other. When we increase the voxel size, the run time complexity significantly

increases. For the relationship between voxel size and volume measurement, the situation

is really different here. Although the volume slightly goes up, we didn’t detect noticeable

improvement for the volume measurement by increasing the voxel size. Considering the

tradeoff between time-efficient and volume accuracy, we choose voxel size 1253 in our

experiment.

Voxel size(X*Y*Z) Volume(mmˆ3) Run time(s)
125*125*125 33.44 10.08
250*250*250 33.46 42.15
375*375*375 33.46 138.23
500*500*500 33.46 328.07
625*625*625 33.47 681.65

Table 4.6: Volume measurement for reference ceramic ball using different voxel sizes

Comparison with other methods

We performed volume measurement experiments on wheat samples using the proposed

framework. Our collaborator from USDA provided these wheat samples and divided
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them into five categories. They are HRW, HRS, SRW, S.WHITE, and DURUM. To compare

with other methods, we also introduced the two image volume measurement method

from our preliminary work and the glass bead displacement method. In the previous

work TT2Cam used a turntable setup with two cameras, then the framework captures

two pictures for single seed, and measure the volume using an elliptical cylinder model.

We modified TT2Cam by applied a mirrored turntable. In that way, we can only use

one camera to capture two orthogonal images at the same time. For the second method,

the glass beads displacement experiments are performed by our collaborator research

scientists from USDA. We know that extensive researches are using glass beads of 100-

200 µm as solid displaced media due to their uniform size, compactness, and fluidity

properties.

A total of one hundred wheat samples are selected from five categories. For each cat-

egory, the wheat samples are also divided by its size, small, medium, large, and x-large.

We applied the three-volume measurement methods on these wheat samples including

the glass beads method, two image methods using the TT2Cam framework, and our pro-

posed framework using N = 36 number of images.

For comparison purposes, the same small group of all the wheat samples has been

selected to do statistical analysis. A total of 75 wheat samples are analyzed. For each

group, 25 wheat samples have been tested. Before applying the Tukey posthoc compar-

ison test, the normality assumption must be checked on the data. Other than using the

visual normality checks like histogram plot or quantile-quantile plot, the D’Agostino’s

K2 Test has been introduced to test normality. Distinct group, glass beads method (A),

two images method (B), and our proposed method (C) has been tested individually using

D’Agostino’s K2 Test to check normality.

For Group A, the test statistic is 3.964 and the p-value is 0.138; for group B, the test

statistic is 0.817 and the p-value is 0.665; finally, for group C, the test statistic is 1.784 and

the p-value is 0.410. All these results show that we failed to reject the null hypothesis,

so we conclude that the data is drawn from a normal distribution. This means that all

three groups of data meet the assumption of normality. Another ANOVA assumption
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Figure 4.21: Box plot, A: Glass beads method, B: Two images method (TT2Cam), C: Pro-
posed method (N=36)
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Figure 4.22: Tukey comparison test: A: Glass beads method, B: Two images method
(TT2Cam), C: Proposed method (N=36)

88



that must be checked is the homogeneity of variance. For our case, Bartlett’s test has been

used. As the p-value from Bartlett’s test is 0.57, we failed to reject the null hypothesis and

conclude that treatments have equal variances. Therefore, both assumptions have been

met and we can apply the Tukey comparison test on our data to evaluate which pairs have

significantly different treatments.

The box plot and the data analysis from the Tukey comparison test are shown in figure

4.21, 4.22. From the box plot, we observed that the glass beads method(A) and two images

method(B) both have a higher average value than our proposed method(C). Our proposed

method(C) has a wider range between Q2 and Q3, which means the measurement data is

more sparse than the glass beads method(A) and two images method(B). The results from

the Tukey comparison test also shows that for all methods A, B, and C, group C is signifi-

cantly different from group A and group B. But group A and group B have no significant

difference between them. As shown in table 4.7, it is clear that our proposed method can

achieve a low error rate of less than 3% on the reference ceramic ball. The reference ball

has radius r = 1.975mm, and volume 32.75mm3. Comparing with the glass beads method

(A) and two images method (B), our proposed method (C) performs significantly better

with respect to volume measurement accuracy.

We also compare our result with Roussel’s work36, they are able to achieve an error

rate below 0.1% when using N = 36 images. There are several reasons they are able to

achieve better accuracy, they are using an expensive camera and lens setup, and they

applied a different carving algorithm since they set a tiny stand to hold the seed and

remove the surplus afterward. For our experiment environment, we haven’t put any stand

to elevate the seed, it may potentially cause some information loss on the bottom of the

seed.

Average Absolute Coefficient of
volume(mmˆ3) relative rate(ARE) Variation(CV)

Sphere1 33.07 2.46% 0.95%
Sphere2 33.52 2.87% 1.25%

Table 4.7: Summary data for reference spheres
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Conclusions and future work

We presented an inexpensive, efficient computer vision system to simplify the image

capture and analysis process for single seed volume measurement. The simple volume

carving method combined with an inexpensive 3D printed, affordable turntable setup is

sufficiently accurate for the volume measurement of most single seeds. To optimize the

framework, we are currently testing different numbers of imagesN and the resulting per-

formance with respect to efficiency, both in space and time, and accuracy. When N = 36,

for a reference ceramic ball, the proposed framework achieves less than a 3% error rate.

For this affordable setup, systematic errors are relatively low.

For future work, other factors that influence the accuracy will be further investigated.

For example, the system needs to identify the concave and convex regions of the seed

and adjust the volume measurement for concave regions. There is a need to add a more

precise stand to hold a seed. Our volume carving algorithm assumes the bottom part of

the 3D object is a flat surface due to the lack of information from the bottom. We will

improve this by using the top camera and changing the orientation of the single seed

with a more sophisticated seed holder. Finally, automating calibration to account for

camera distances and orientation will allow small perturbations in camera position and

orientation to be automatically accounted for. Overall, the framework provides an end-

to-end, efficient computer vision system for accurate seed reconstruction for volume and

density measurement.

4.3 Computer Vision using Deep Learning

4.3.1 Image classification model

The convolutional neural networks (CNNs) has been widely used in the late 1980s. The

architecture contains convolutional layers, pooling layers, fully connected layers. In re-

cent years, deep learning models exploit multiple layers of nonlinear information pro-

cessing110. Among them, deep CNNs (DCNNs) were brought into the limelight as a
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result of the deep learning renaissance.

The image classification problem is that the task of assigning an input image a label

from a fixed set of categories. The image classification has a large variety of practical

applications, and many other distinct computer vision tasks including object detection

and segmentation can be reduced to image classification.

One fundamental image classifier is K Nearest Neighbor which did not introduce the

neural network and conventional neural network. Although the Nearest Neighbor is very

simple to implement and the classifier takes no time to train, it can rarely appropriate for

use in practical image classification settings and performs poorly when the images are

high-dimensional objects.

If we are now going to develop a more powerful approach to image classification,

we eventually naturally extend to Neural Networks and Convolutional Neural Networks.

The approach will have two major components: a score function that maps the raw data

to class scores, and a loss function that quantifies the agreement between the predicted

scores and the ground truth labels.

There are several architectures of Convolutional Networks we can choose from includ-

ing LuNet, AlexNet, ZF Net, GoogleNet, VGGNet, ResNet. In practice, very few people

train an entire Convolutional Network from scratch, because it is relatively rare to have

a sufficient dataset. Instead, it is common to pretrain a ConvNet on a very large dataset,

and then use the ConvNet as a pretrained model for the task of interest.

ResNet architectures

A residual neural network (ResNet) is a framework to ease the training of networks that

are substantially deeper than those used previously. The ResNet are easier to optimize

and can gain accuracy from considerably increased depth.111 Instead of setting each

stacked layer directly fit an underlying mapping, ResNet lets these layers fit a residual

mapping. The ResNet builds the shortcut connections and skips one or more layers see

figure 4.23. The formulation of F(x) + x can be realized by feed-forward neural networks
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with these shortcut connections. For the ResNet design, these shortcuts simply perform

identity mapping, and their outputs are added to the outputs of the stacked layers. In

this way, it will not add any computational complexity or extra parameter.

Figure 4.23: Residual learning: a building block

The ResNet also obtain excellent results on the ImageNet Classification dataset and

CIFAR-10 dataset. The ResNet152 obtain 3.57% top-5 error rate on the ImageNet test

set and won the 1st place in the ILSVRC 2015 classification competition. Therefore, we

decide to applied ResNet as the backbone for our rice image classification framework.

The ResNet architectures have been tested using two models for ImageNet. One is

plain network, it is inspired by the philosophy of VGG nets. The other is the residual

network, it is based on the plain network. The plain network has two simple design

rules: 1) for the same output feature map size, the layers have the same number of filters,

2) if the feature map size is halved, the number of filters is doubled so as to preserve the

time complexity per layer. The network ends with a global average pooling layer and a

1000-way fully-connected layer with softmax. The total number of layers is 34. For the

residual network, the shortcut connections have been inserted into the plain network.

The shortcut can be directly used when the input and output are of the same dimensions.

4.3.2 Rice image classification using ResNet

Rice has been one of the staple foods that contribute significantly to human food sup-

plies. Numerous rice varieties have been cultivated, imported, and exported worldwide.

For our experiment, the rice image data were taken at a different state when the rice

grains were in dilute alkali to measure the alkali spreading value. Alkali spreading value

of the whole kernel milled rice is the measure of volume expansion in contact with dilute
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Figure 4.24: ResNet34 architecture
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alkali and also a measure of gelatinization temperature. The disintegration of different

rice grain in contact with dilute alkali may vary from no apparent effect to a completely

dispersed state. The starch gel area of the images of alkali-gelatinized grains was mea-

sured after a given gelatinization time. Then, the images are manually labeled by experts

from the range 2 to 7. No.2 stands for the initial state, and No.7 stands for the almost

completely dispersed state as shown in figure 4.25.

Figure 4.25: Alkali spreading value from 2 to 7

Kansas state university cooperates with USDA, the rice images are provided by the

USDA. Each alkali spreading value sample folder contains 70 images, the total amount

is 420 images. Therefore, the task is to use these images to train an image classifier to

distinct the rice alkali spreading value based on the image input.

Experiment

For the model training setup, the top 1 error rate is used to evaluate the performance

of our classifier. That means the model is considered to have classified a given image

correctly if the target label is the model’s top prediction. The image data has been divided

into three groups: training dataset, validation dataset, and test dataset. The training

dataset is the sample of data used to fit the model. The validation dataset is the sample

of data used to provide an unbiased evaluation of a model fit on the training dataset

while turning the model hyperparameters. The test dataset is the sample of data used to

provide an unbiased evaluation of a final model fit on the draining dataset. Therefore, for

our dataset, we split 75% images in the training dataset, 12.5% images in the validation

dataset, and 12.5 %images in the test dataset.
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For the categories label, we divide the alkali spreading value from 2 to 7 into 3 groups

(alkali spreading value small(2,3), medium(4,5), and high(6,7)). The training steps are as

follow:

1. For each epoch, it has two-phase which are the training and validation phase.

2. Then, the training method literately processes the inputs and labels from the dataset.

3. Next, parameter gradients are set to zero initially.

4. During the training, the model tracks the training history and optimize the hyper-

parameter if it is in the training phase.

5. For each epoch, the model calculates the loss and accuracy for the result.

If the image classifier is trained based on the limited amount of the dataset, the transfer

learning is the practical initialization for the task. ResNet is used as a pretrained model.

The pretrained model has been trained on ImageNet, which contains 1.2 million images

with 1000 categories.

The pre-setup of transfer learning before the training step is as follow

1. First, the pretrained model ResNet34 is loaded for transfer learning.

2. Then, the fully connected layer is reset based on the output sample size.

3. Next, the cross-entropy loss is calculated for evaluating the performance of our clas-

sification model.

4. The model optimizes the parameters using stochastic gradient descent by updating

weights after each epoch is calculated.

5. The model adjust the learning rate based on the number of epochs.

95



Results

ResNet pretrained model is applied on ImageNet, by removing the last fully-connected

layer, then the rest of the ResNet is treated as a fixed feature extractor for the new rice

image dataset. For the ResNet architecture, the distinct ResNet architecture has been

testing including ResNet18, ResNet34, ResNet101 and ResNet152.As shown in figure

4.8, training experiments using different ResNet architectures. ResNet34 architecture is

shown in figure 4.24.

ResNet18 ResNet34 ResNet152
Accuracy Overall : 85% 78% 78%

Accuracy of ASV L : 95% 65% 100%
Accuracy of ASV M : 80% 80% 95%
Accuracy of ASV H : 80% 90% 40%

Table 4.8: Model training top one accuracy using different ResNet architectures

For experiment results, the alkali spreading value has been divided into three groups

(alkali spreading value small(2,3), medium(4,5), and high(6,7)). For all these training ex-

periments, a range of epochs has been conducted. Due to the performance result, 150

epochs are selected. For the ResNet18, the accuracy is around 85% overall. For the

ResNet34, the accuracy is around 78% overall. For the ResNet152, the accuracy is around

78% overall.

4.4 Conclusion

For the two image turntable framework, the experiment is conducted by feeding the seed

samples using the vibrating feeder, with adjustable speed controlled by the electric con-

troller. While the turntable is running, the seed is aligned perfectly by the white plastic

obstacles placed on the side and middle of the turntable. When the seed dynamically

goes through the front region, the top color camera and the side monochrome camera

will capture the images simultaneously. Our framework provides a user-friendly inter-

face, a windows application TT2Cam for breeders or agriculture researchers to use and
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conduct image analysis. The volume measurement algorithm designed in Python will be

integrated into the original C# framework, researchers can easily capture two pictures

and get the measurement result of a single seed from image analysis conveniently by the

C# application.

For the multiple-image turntable framework, we propose an inexpensive, efficient

computer vision system to simplify the image capture and analysis process for single

seed volume measurement. The simple volume carving method combined with our 3D

printed, affordable turntable setup is sufficiently accurate for the volume measurement

of most single seeds. To optimize our framework, we are testing different numbers of

images N and the resulting performance with respect to efficiency, both in space and

time, and accuracy. When we select N = 36 in our reference ceramic ball, the proposed

framework achieves less than a 3% error rate. For this affordable setup, systematic errors

are relatively lower than we expect. For future work, other factors that influence the ac-

curacy will be further investigated. For example, the concave and convex region of the

seed, improving the camera calibration method, adding a stand to hold a seed. Also, our

volume carving algorithm assumes the bottom part of the 3D object is the flat surface

due to the lack of information from the bottom. We will improve it by using the top cam-

era or change the orientation of the single seed. Overall, we conclude that our proposed

framework provides an end-to-end, efficient computer vision system for accurate seed

reconstruction for volume and density measurement.

For the deep learning classification framework, we propose a rapid, convenient rice

image classification application to classify the rice dispersion images using alkali spread-

ing value. The neural network model has been trained using 420 rice dispersion images in

the range of 2 to 7 of alkali spreading values. For the raw image data, the alkali spreading

value is manually labeled by the agriculture experts. The whole dataset is divided by 75%

images in the training dataset, 12.5% images in the validation dataset, and 12.5 %images

in the test dataset. For this proposed application, we are able to achieve 85% accuracy on

the 3 categories (alkali spreading value small(2,3), medium(4,5), and high(6,7)).
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Chapter 5

Conclusions and future work

WinDAM is being developed in stages to evaluate the performance of earth dams. Exist-

ing modules with well-defined interfaces enable efficient integration of existing legacy

software with innovations. The system provides tools that can be used to better un-

derstand the structure, function, and dynamics of water control structures. Our work

in Chapter 2 describes how WinDAM and BREACH models can be analyzed efficiently

using a novel new risk assessment framework that uses Dakota to perform parameter

studies, sensitivity analysis, and uncertainty quantification. The next step in Chapter 3

shows the coupling of CFD flow models with physical models to model the erosion that

results from a given flow. Our CFD coupling framework shows promising results when

modeling the internal and overtopping erosion process in accurately modeling the total

and peak discharges that may result from dam erosion or failure.

After further investigation, to deal with the topological change of the dam structure,

the material point method (MPM) is introduced for the dam breach simulation frame-

work in Chapter 3. Due to the limitation of the mesh constructed by the CFD coupling

framework, we simulate the erosion processes that cause dam deformation. A new model

is developed and implemented using the material point method. It is shown to be a good

solution to model both flow and dam structure deformation because it incorporates both

Lagrangian and Eulerian methods. Lagrangian methods employ a framework in which
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space is discretized into initial sub-volumes, whose flow paths are then charted over time.

Eulerian methods, on the other hand, employ a framework in which the motion of mate-

rial is described relative to a mesh that remains fixed in space throughout the calculation.

MPM methods combine Lagrangian and Eulerian frames of reference allowing us to more

accurately model the interaction at the liquid-solid interface.

Therefore, we implemented our dam erosion framework using the MPM method.

Based on the simulation results, our MPM method can provide extensive details during

the erosion process on the downstream face of a dam. We also compare our simulation

results with an existing physical-based model such as WinDAM. For the current imple-

mentation, the model we use for the momentum exchange and energy density function

is a simplified version and this can be improved upon. Also, the simulation time for the

MPM method is limited to 60 seconds, but the simulation time for a typical WinDAM

C run is around 16-24 hours. The obvious next step is to analyze a run over a full sim-

ulation interval. For the current stage, our MPM model only simulates the process in a

shortened time. Overall, our MPM simulation framework provides rich details during

the dam breach process. It can capture the water and soil interaction and gradually re-

move the soil during the breach process when simulating using the existing dam breach

example.

For future study, we will further investigate the implementation method, we will de-

sign the simulation model on a larger scale, and also implement a complete version of

the momentum exchange and the energy density function. Also, the algorithm can be

optimized to reduce run-time complexity. In particular, we want to achieve better exper-

imental accuracy and reduce the run-time as well.

In Chapter 4.1, we provide a user-friendly Windows application TT2Cam for agri-

culture researchers to use and conduct image analysis. With the volume measurement

algorithm designed in Python, researchers can easily capture two pictures and get the

measurement result of a single seed from image analysis conveniently. The algorithm

provides fast, novel, and universal image processing solutions for seed volume measure-

ment. Based on the main view image captured by a color camera, side view image cap-
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tured by a monochrome camera, the algorithm can detect the contour of the single seed,

automatically slice the whole seed into equal height rectangle pieces, apply the scale fac-

tor for calibration purpose, and finally estimate the volume of a single seed.

For the image processing part, we only use two camera settings to gather pixel in-

formation. For the camera setting and orientation, our framework has one color camera

and one monochrome camera. The reason we use one monochrome camera is that the

image sourcing monochrome camera has NIR wavelength data collection. The number of

cameras can be extended to three or more to gain more information from various angles.

In the future, the advanced color analyses including extracting NIR wavelength data

will be further investigated. Other options to improve the accuracy are color adjustment

and light adjustment, these methods can be added to our TT2Cam frameworks. Seed

layout also plays a significant impact on the accuracy of seed volume measurement. Also,

the next step is to add trigger function in real-time, color information extraction, and

seed density measurement to our TT2Cam framework. The goal of this framework is to

complete the volume measurement in real-time after two images are captured when a

seed passes a fixed point on the turntable.

The completed framework in Chapter 4.2 provides an inexpensive, efficient computer

vision system to simplify the image capture and analysis process for single seed volume

measurement from any number of images. The simple volume carving method combined

with our 3D printed, affordable turntable setup is sufficiently accurate for the volume

measurement of most single seeds. To optimize our framework, we are testing different

numbers of images N and the resulting performance with respect to efficiency, both in

space and time, and accuracy. When we select N = 36 in our reference ceramic ball, the

proposed framework achieves less than a 3% error rate. For this affordable setup, system-

atic errors are relatively lower than we expect. Overall, we conclude that our proposed

framework provides an end-to-end, efficient computer vision system for accurate seed

reconstruction for volume and density measurement.

For future work, other factors like the concave and convex regions of the seed which

influence the accuracy will be further explored. Also, we can change the camera cali-
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bration method, or add a stand to hold a seed to improve the testing results. Since our

volume carving algorithm assumes the bottom part of the 3D object is the flat surface due

to the lack of information from the bottom, the algorithm can be improved by using the

top camera or change the orientation of the single seed.
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[37] Ebru Firatligil-Durmuş, Evžen Šárka, Zdeněk Bubnı́k, Matyáš Schejbal, and Pavel

Kadlec. Size properties of legume seeds of different varieties using image analysis.

Journal of Food Engineering, 99(4):445–451, 2010. ISSN 02608774. doi: 10.1016/j.

jfoodeng.2009.08.005.

[38] Seyed M.A. Razavi, A. Bostan, and M. Rezaie. Image processing and physico-

mechanical properties of basil seed (ocimum basilicum). Journal of Food Process

106

https://regentinstruments.com/assets/winseedle_about.html
https://regentinstruments.com/assets/winseedle_about.html
https://www.nextinstruments.net/products/seedcount


Engineering, 33(1):51–64, 2010. ISSN 01458876. doi: 10.1111/j.1745-4530.2008.

00259.x.

[39] Seyed M.A. Razavi, A. Bostan, and R. Rahbari. Computer image analysis and

physico-mechanical properties of wild sage seed (Salvia macrosiphon). Inter-

national Journal of Food Properties, 13(2):308–316, 2010. ISSN 10942912. doi:

10.1080/10942910802398453.

[40] C. M. Sabliov, D. Boldor, K. M. Keener, and B. E. Farkas. Image processing method

to determine surface area and volume of axi-symmetric agricultural products. In-

ternational Journal of Food Properties, 5(3):641–653, 2002. ISSN 10942912. doi:

10.1081/JFP-120015498.
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