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INTRODUCTION 

Green's Function is the term applied to an unusual 

function developed by George Green, an English mathematician, 

early in the nineteenth century and used, primarily at that 

time, in the solution of problems in electricity and 

magnetism. 

The use of the Green's Function is a powerful method 

for solving boundary-value problems and many physical problems 

involving heat flow, electricity and magnetism, aerodynamics, 

and others. The Green's Function may be calculated in one, 

two, or three dimensions and its form depends on the number 

of dimensions and the type of solid for which it is constructed. 

It has been the purpose of this paper to calculate the Green's 

Function for a number of systems and collect some of the 

work done by writers in this field. 
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GREEN'S FUNCTION IN ONE DIMENSION DEFINED 

Green's Function (Ince, 1927) in one dimension may be 

defined by considering the completely-homogeneous linear 

differential system: 

(1) 

P 
°dnn ln1 

+ p 
2dna-2=u2. 

+ 
4n-ldu 

+ p 
n 
u a 0, 

dx dx a7 

U 
i 
(u) =0, i =1,2,3, . . ., n. 

where pi, i = 1,2,3, , n are functions of x and 

Ui(u) E Aiu(a)+Alui (a) + . . . + Ai 
(n-1)u(n-1)(a) 

+Biu(b) +Biul(b) + . . . + Bi 
(n-1), 

b) 
, 

k =Ci. 

It will be supposed that for a given interval (a, b) this 

system is incompatible, that is to say, it admits of no solu- 

tion, not identically zero, which together with its first 

(n-1) derivatives, is continuous throughout the interval. 

Although no solution exists which satisfies these stringent 

conditions, there may exist another solution which formally 

satisfies the system but violates, at least in part, the 

condition of continuity. 

Such a function is the Green's Function G(x,t) which has 

the following properties: 

(A) It is continuous and possesses continuous derivatives 

of orders up to and including (n-2) when a4x0; 

(B) It is such that its derivative of order (n-1) is 

discontinuous at a point t within (a,b), the discontinuity 

being an upward jump of amount - 
1 

PO(t) 



(C) It formally satisfies the system at all points 

except at x -t. 

The algebraic formula for the jump may be written as: 

(2) 

3 

an-1G(xot) an-1G (x, t) 1 

x t + 0 
axn-1 x=t- OPO(t). a x11-1 

THE CONSTRUCTION OF A GREEN'S FUNCTION 

The method of calculating a Green's. Function .will be 

shown fOr two special cases. 

In the first example consider the self -ad joint differen- 

tial system 

(3)fd 

2 u .00 
dx2 

U1(0) -u 
2(1) 

-0. 

where u 
1 
(x) and u 

2 
(x) represent the solutions of the system 

(3) on the intervals (0,t) and (t01), respectively. 

The formal solution of the differential equation in (3) 

is u= C +Cu, and hence on the separate intervals the 

solution must be of the same form. Since the discontinuity 

of the Green's Function is assumed to be at x =to the Green's 

Function may be represented by 

= Ax + Bo 
(4) G(x,t) 

u 
2.-Cx 

+D. 

The use of the boundary conditions in (3) gives: 
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for u 
1(0) 

-0; B=0, 

for u 
2 
(1) =0; C = -D. 

The Green's Function may now be rewritten as 

t 
(5) G(x,t). 111-111x, 

(0,t) 

u 
2.C(x-1), 

(t,1) 

The application of (2) gives 

aG aG =C-A=-1 ax x-t+o °x1xmat-o 

hence C -A -1. 

Since the function is continuous at x t, it follows 

that 

At - (A-1) (t-1), 

At =At -A-t +1, 

or A --t +1. 

Therefore 
u1=-x(t-1), (0,t) 

(6) G(x,t) 
u2=-t(x-1), (t11). 

As a second example, consider the boundary-value problem 

d 4u 
=0 

1(0) .0 
2 1 2 
(1) =u1(0) -ut(0). 0; 

alt.] x. a 
where u'(a) = a U 

U sa C 1X3 + C"X2 4. C" x + C"" is the formal solution. 

Hence the Green's Function is 

IG(x,t) = 
u1 = Ax3 + Bx2 + Cx + D 

('7) 

u 
2 
.Ex3 + Fx2 + + . 



The use of the boundary conditions gives the following 

equations: 

u 
1 
(0) =0; D=0 

u2(l) =0; E+F+H+J.0 

u{(0) .0; C =0 

u2(l) =0; 3E +2F + J 0. 

The conditions of continuity give 

At3+ Bt2 - Et3 Ft Ht .00 

3At 
2+ 

2Bt -3Et 2 - 2Ft H = o, 

and 6At + 2B - 6Et - 2F .0. 

From the discontinuity of the third. derivative, we have 

a3G a 3 G .-6A +6E .-1. 
ax3x.t+0-ax3ix.t-0 

Hence A -E = 1/6. 

The evaluation of the constants in the above equations 

leads to 

t3 t2 4.3 A a a + : B U t 

3 2 6' 

t3 t2 
E = +t4, 

t2 t3 
am 

Therefore, the Green's Function for this differential 

system is 

(8) G(xot): 1 
= 

tr 
x2 - (t-1) 

2 
[(2t +1) x-3t] (0,t) 

u2 =t2 ( 
2 r 

x-1) [(2x+ 1) t-34 (t,1). 

5 
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It may be noticed that G(x,t) is symmetric in x and t. 

That is, G(x0t)... G(t0x) (Ince, 1927). 

A TABLE OF GREEN'S FUNCTIONS 

Green's Functions are of sufficient importance in the 

solution of physical problems to warrant a study of the 

ones most likely to be met. Different one dimensional 

differential systems have been used to construct a number 

of these Green's Functions, according to the methods in 

the preceding section. These results are tabulated in 

table I. 

Column III is applicable only to the case of second 

order differential equations and is obtained from a general 

formula for F(x,t) for this case (Ince, 1927). 



Table 1. A table of Green's Functions 

Non-Homogeneous System 
u(x) finite 

Homogeneous System F(x,t) 
G ( x , t ) Solution of System 

d2u / d G 
rkx), 

2 

2 
= 0 

dx6 dx 

111(0)-u2(1)-0. u1(0) u2(1)=0 

u u 2 d 

x2 

2 G 
n u = r(x) - n2G = 0 

d 

ul(0)=u2(1)=0 

dx 
[H(x)11] =r(x) 

1 
1177 is regular for 

x=0, x=1. 

ul(0)-u2(1)-0 

51E[ex r(x) 

u1(0) = u2(1) - 0 

c..[(x+1)Q=r(x) 

u1(0) m u2(1) 
= 0 

444(cos2x)41 = r(x) 

u1(0) m u2 Mal 0 

..1(x2+1)A = r(x) 

u1(0) mu2(1) m ° 

A + Bx + 

A cosh nx + B sink nx 

u 
1 --x(t-l) 

[),t] 

u 
2 

=- t(x -l) [til] 

sinh nx Binh n(t-1) 
u1 n sinh n 

sinh nt sinh u(x-1) 

ul(0)=u2(1)=0. --t3tFt sinh n(t-x) u2 m n sink n 

..a[H(x) =0 
dx 

Af 01777 + B 

1 
is regular for rx rt 11(x) 

J 01157 o PT x-o, x=1. 
li t 

ul(0)112(1)=0 -2 

d [e x dG] 

u1(0) =u2(1)=0 

1.37[(x+1)fl 
.0 

u1(0) m u2(1) m ° 

2[4(cos2x)di 

u1(0) = u2(7.) = 0 

I, 2 dG] 
7GE kx +14,7 

u1(0) = u2(1) - 0 

d 
2 
u + 1 du + 1 + 

n 2 d 
2 
G 1 dG 14, n2 

dx' x dx x' 
-vy 

d-77c 
-1r 

x u = r(x) 

ul(a) = u2(b) = 0 

14.4 m r(x) 

u1(0) = u2(1) = 0 

ul(a) = u2(b) - 

x.c_14, dG 0 

dx dx 

u1(0) = u2(1) = 0 

+ B + - 1 

ear t 

A log (x+1) + B 

log(x +1)- log(t +l) 

-2 

A tan x B 

[o , t] 

frx 
dx 

u 
1 

0 Rrn- r rt dx 
r 1 

dx fo,ti 
rl dx [ 

H(x) oliocd 
J 

dx 

o 11M- dx 
1 

dx 
112m [i 

0 o dx 

o 777 

t4. -1 

ul 1) 
1-e-- 

[0 , t] 

_e-x 4.e-1 
u2 = ( et 1) [t,i} 

1-e 

, log 2 - log (t+1) u1 = log(x log 2 

U2 = log(t+1)1°g 2 - log (x+1) 

log 2 

u 
1 

= - tan x(tan t - 1), 

4. tan x - tan t u 
2 
=- tan t(tan x - 1), 

-2 

Arctan x + B 

arotan x - arctan t 

-2 

u 
1 

u 
2 

4 
Tr 

t , 

arctan t)arctan x [0,t} 

arctan x)arctan 

U 

=if1 

G(x,t)r(t)dt 

1 

u 
7j7 G(x,t)r(t)dt 
0 

G(x,t)r(t)dt 
o 

G(x,t)r(t)dt 

u 

=191 

G(x,t)r(t)dt 

u = G(x,t)r(t)dt 
0 

1 

u 7,119 G(x,t)r(t)dt 

1J(t)Y(b)-J(b)Y(ti [J(x)Y(a)-J(a)y(x)] ra,t1 

u13". r 
AAjn(x) + BYa(x) t LJ(b)Y(a)-J(a)MA kt)Y(t)-J(t)r(t)] j b 

U =.1 G(x,t)r(t)dt 

Jn(x)Yri(t)-Y11(x)Ji(t) a 

[J(x)Y(b)-J(b)Y(xA [1(t)Y(a)-J(a)Y(t)] rt,ti 
- 2 Jn(t)Ygt)-Yn(t)J3"a(t) 

- 

t[J(b)Y(a)-J(a)Y(b)] EP(t)Y(t)-J(t)E1(t)1 

ln t ln t - ln x 
2 

A ln x + B .1. log x - log 
-2 

u 
1 

=-1n t 

u 
2 

= -ln x 

[o ,t] 

[t u .J71 
G(x,t)r(t)dt. 
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A PRACTICAL APPLICATION AS RELATED TO A GREEN'S FUNCTION 

As a practical application (Bateman, 1932) of the equation 

d4y - .00 consider a weightless contilever beam of length a 
dx4 

with a weight W concentrated at a point t units from the fixed 

end.' Choose the axis as in figure 1; the x-axis coinciding 

with the elastic curve. Since there is no bending at the 

fixed end, y' =0 at x =0, and y =0 at x=0. If z represents 

the deflection from the normal, the resisting moment for 

z small, M =B 
A 

where B is a constant depending on the 
dx2 

elastic properties of the material of the beam. 

a 

Fig. 1. Cantilever beam. 

x 
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If moments are taken about any point, 0 4 x 4 t, the moment 

due to W is 
M =-Wx +Wt. 

Therefore 

(9) 13- =-Wx + Wt, 
cbc2 

and upon integrating 
(10) Wtx 2 Wx 3 4.0 'x +C". 

2B W S - 
T h e use of the boundary conditions y(0) y ' ( 0 ) = 0 gives 

for y I (0) = 0; C = 0, 

for y(0) =0; C' =0. 

Therefore 

( 11 ) y =Wtx2 Wx3 
2B Mr, x4t. 

But for a point where a> x> t, there is no shearing force. 

Hence 

B 0, a>x>t. 

Two integrations give 

(12) y=2432E+ a> x> t. 

The continuity of the deflection x necessitates that the 

values of in (11) and (12) be identical. at x =t; whence 

t3 Olt +Cu. (13) 313 

Using the value of from (11), the slope of the elastic 
curve at x = t is given by 

Wt2 
x =t 277 
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and from (12) 

C 
x = t 

Therefore 

(14) CI =2B Wt2 7- 

The solution of (13) and (14) gives 

Wt 3 and 11, C 
Wt2 an, - 

The deflection of z may then be written as 

w_2 
y= (3t-x) 0<x(t, 

ird+.2 

v 
aa 

(3x-t), a) x >t, 
6B 

which is a type of Green's Function. The Green's Function 

might have been constructed for the boundary value problem 

given by 
d 4 u 
--if =0 

(15)f dx 

u 
1 
(0)..u11 (0) 

2 
utt 

2 
(a) =0, uftf (a) =0. 

GREEN'S FORMULA 

For the further development of the theory of Green's 

Function it will be necessary to use Green's Formula; the 

proof of which will now be given. 

Consider the Sturm- Liouville equation (Lovitt, 1924) 

for which the following permanent notation will be used: 

(16) L(u) ,c1E(pcia) 

where p(x), q(x), Jand Pl(x) are continuous functions in x 
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on a4x4b. If u and v are any two linearly independent 

solutions of (16), the following identity may be established: 

(17) vL(u) - uL(v)amcki [p(141.1 - ug)1 . 

The relation given by (17) is known as Green's Formula. To 

prove this relation, write the left member of (17) in 

determinant form as follows: 

L(u) 
vL(u) - uL(v) 

L(v) 

The determinant may be rewritten using a faailiar property 

of determinants to give the following steps in the process 

of simplification: 

d du 
Fif(PUE) qu 

91 

a'd (Pa 
dv 

) + qv 

u()P-a) 

d dv 
(13-a) 

aTc.(p) -udat (Pd4). 

The right member of (16) may be shown to be of the same form 

by the following equation: 

d du dvl d , du, still_ dv d dv, .1L du a vpa -upa -vap-a) -uakpa) - 

Therefore (17) has been established. 

EQUIVALENCE BETWEEN A BOUNDARY PROBLEM 

AND A HOMOGENEOUS LINEAR INTEGRAL EQUATION 

The relation (Lovitt, 1924) between a boundary value 

problem and an integral equation will now be shown. 



Theorem 1. If F is continuous, together with its first 

two derivatives mad 

f 

L(F) f. 0; 

(18) Ro(f)..A.F(a)+BF1(a) .0, 

R 
1 
(F). CF(b) + DF1(b) .0. 

Then 

b F(x). G(x,t)f(t)dt, r 

a 

where G(x0t) is the Green's Function for the boundary value 

problem (18). 

Proof: 

L(F)., -f on (a,b). 

L(G). 0 on (alt) and (-bob) separately. 

Multiply the first by -G and the last by F and add. 

-GL(F) =Gf 

FL(G) =0 

FL(G) - GL(F) 

By Green's Formula 

FL(G)-GL(F) ap(FG1-GFI) 

Integrate from a to t and from t to b. Then 

t-o rt-oG(x,t)f(x)dx, 
(19) [p(FG1-GFI) 

-I a J a 

where 

t-o limit t-E 

(x) 
--*0 a 

and 

12 



[P(FGI-GF1) 
lb G(x,t)f(x)dx. 

t +o t+ o 

Therefore 
t-o xao 

(20) p(FG1-GF1) - [p(FV-GIP1)1 +(PG-1-MP') 
t+o 

G(x,t)F(x)dx. 
a 

13 

Since G and F' are continuous at x =t, the value of the first 
terra is 

t-o 
-GF' } .00 

t+o 

and 

pFG1 .p(t-o)F(t-o)01(t-o)-p(t+o)F(t+o)G1(t+o) 
t+o 

.p(t)F(t)[GI(t-o)-G1(t+o)]. 
But by the definition given in (2) 

[G1(t-o)-G/(t+o)] = 1 
p(t) 

Therefore 
pPG1]t-o 

=F(t) 
t o 

The value of the second term of the left member in (20) if 
A /40 is 

F(a) F'(a) 
[p(FGA-G111)]xjila =p(a) 

0(a) G' (a) 

..P(a) 
AF(a) +13F1 (a) 111(a) 

A AG(a) +BGt (a) G1(a) 

The use of the boundary condition Ro(F)= 0 gives 

[P(FGT-CIFI), x2'61- p(a) 
R0(F) 

F'(a) °"0. 
A R 0 (G) (a) 
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If A.0, then B 140 and 

[P(FGI-Gpf)ixs% 
p(a) F(a) [R0 F(al 

G(a) [R0 G(a)] 

In like manner 

x=b 
[p(FG1-GF1)] =O. 

Therefore 

(21) f(t).T G(x,t)f(x)dx. 
a 

If x and t are interchanged, which is allowable since 

G(x,t)vm G(t,x), 

then 

f(x) =J G(x,t)f(t)dt. 
a 

GREEN'S FUNCTION IN THE FLOM OF HEAT 

The use of Green's Function in the theory of potential 

is well known. The function is most conveniently defined 

for the closed surface S as the potential which vanishes 

over the surface, and is infinite as 1 when r is zero, at r - 
the point P inside the surface. If this solution be denoted 

by G(k), the solution of the equation 

v2u sa 0 

with no infinity inside S and an arbitrary value V over the 

surface is given by 

(22) u .agn G(F)VdS, 
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6 denoting differentiation along the outward drawn normal. 
an 

We proceed (Carslaw, 1906) to show how a similar 

function may be employed with advantage in the mathematical 

theory of the conduction of heat. In this case we shall 

take the Green's Function as the temperature at (x,y,z) at 

the time t, due to an instantaneous point source of strength 

unity generated at the point P (x0,y0,z0) at the time T, the 

solid being initially at zero temperature, and the surface 

being kept at zero temperature. 

This temperature at (x,y,t) may be written 

u .F(x,y,t,x0,y0,t0,t-T), (t>T) 

and u satisfies the heat equation (Carslaw, 1906) 

u 2 
-b--E- K > T). 

However since t only enters in the form t-T, we have also 

a u +K 72u Op (T< t). 

Further 

Limit (u) .0 

t-+T 

at all points inside S except at the point (xo,yolzo) where 

the solution takes the form 

1 

(a ( t- T )) 3 

e- 

x...X0)2 +(y -y0)2 +(z -z0)2 
4k(t-T) 

To show that this is a solution we should first consider 

the linear flow of heat in an infinite solid. The equation 

of conduction then reduces to 
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3 v a2v 
am aocZ 

since v depends only on x and t. Consider the expression 

Since 

and 

2 
1 -x u e 4-kt 
irf 

x2 x2 
a u _ 1 eTzt x2 
a t 2-0/2 4kt`' 

e 

x2 x2 
a 2u 

1 TR- + 
x2 "rt 

ax2 2kt 3/2 e 4k20/2 e 

this expression is a particular integral of the differential 
equation. Therefore 

(x-x0)2 
4kt 

2 7Tcct 

is also an integral. 
Finally at the surface 5, u =0, (T < t) . 
Now let v be the temperature at time t in thid solid 

due to the surface temperature 0 (x,'y,z,t) and the initial 
temperature f (x, y, z) . 

Then v satisfies the equations 

a v 
-a-E" 

k (t >0). 
v = f(x,y,z) initially, inside S, 

0(x,y,z,t) at S for (t>0); 
and, since the time of our former equations lies within the 

interval for t, we have also 
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ov 072v, (T<t), 
aT 

v. (x,y1z,t) at the "surface. 

Therefore 

aT a 
(uv).0 -a v 

T T T +v a u =k [u\72v-vN72u], 
- 

and 
t-E 

(23) f [ jiff (uv) dx dy dzi dT 
-57" 

ft-E[ 1.(uV2v-vV2u) dx dy dz} dT, 
o 

the triple integration being taken throughout the solid, and 

t being any positive quantity less than t as small as we 

please. 

Interchanging the order of integration on the left hand 

side of this equation and applying Green's Theorem (Osgood, 

1935) to the right hand side, we have 

(24) f 119(uv) 
T t-E 

dx dy dz - iff (uv) dx dy dz 
T=0 

= kJ t-effill'. a v -v a dT .(r (1)21) dT, an an an i 

where a denotes differentiation along the inward drawn 
i 

normal, and we have used the condition that u vanishes at 

the surface. 

Now take the limit as E vanishes. The left side gives 

[VP]ti, J:guT.t-odx dy dzi - jalfu 
T.o 

dx dy dz, 

the first integral being taken through an element of volume 

including the point P (x0,y00z0) where the function u becomes 

infinite at t =0, the second integral being taken through 
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the 

P 

solid, and 

(x 
o 
,y 

o 
,z 

o 
) 

[17 

J P 

at the 

t 

stands for the value at the point 

time t. 

But since u is the temperature at the time t due to a 

source at (x 
o 
,y 

o 
0z 

o 
) at time T (Carslaw, 1906) 

fff u T t-o dx dy dz =1 
and we have 

(25) 
Fp] t-iff (u) T-0 

(v)t.odx dy dz 

and 

+ kf iffv(2) dSidT: n 

frdt-fffuT 
f(x,y,z) dx dy dz 

ff0(x,y,z,T) 411 dS dT 
an 

i 

as the temperature at (x 
0 
,y 

o 
oz 

0 
) at the time t due to the 

initial distribution f(x,y,z) and the surface temperature 

0(x,y,z,t). 

Green's Functions for the flow of heat in various solids 

will now be obtained. Three special cases will be given. 

In the first case (Carslaw, 1906) consider the linear 

flow of heat in a semi-infinite solid bounded by the plane 

x mO. The initial temperature will be f(x), x >0, and the 

boUndary will be kept at a temperature (t). Then the Green's 

Function, or the temperature at (x,y,z) at the time t due to 

the instantaneous source of unit strength at time T is given 



by 
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(x-xn)2 _(x x0)2 

(26) u. 1 
-4k(t-T) 4k(t-T) 

241/7rk(t-T) 

It is known (Carslaw, 1906) that 

(ESai! 1 041.tftT) u,= 
2 4f'rrk(t -T) 

gives the temperature at (x,y,z) due to a heat source located 

at x0,y0,z0) in the semi-infinite solid. The temperature at 

(x,y,t) due to a sink of unit strength at (-x0,y00z0) is 

given by 

1 
e 417C 1121. 

2 frrk(t-T) 

Physically, the temperature due to a source and boundary 

kept at a zero temperature is equivalent to the source and 

a sink of equal and opposite strength located at the image 

point. The combination of the source and sink of equal 

strength will keep the boundary x .0, at the temperature 

u =0 and at the sane time, satisfy the heat equation. The 

Green's Function is the one given in (26). 

The application of the general formula (25) for the 

temperature at (x0,y0,z0) at time t, is given by 

t 

a 
x 

(27) [v i ...0 
51° 

f(x)ax +ki 
0 a p(T) u dT 

P t o x-0 

(x-x0)2 (x x )2 
1 

f 
wf(x4e 4kt -e qlct° dx 

2KE 



x?) 

#(T) e 4k(t-T) 
dT. 2 71{11r o ir( t-T) 

The result in (27) is of theoretical value but for all 

cases except the simple ones arising from elementary functions 

for f(x) and # (t) give integrals in general which must be 

evaluated by some method of approximation. 

In the second case we study the two dimensional flow of 

heat (Carslaw, 1906) in a semi-infinite solid bounded by the 

plane y .0. The initial temperature will be v f(x,y) and 

the boundary will be kept at v .F(x,t). In a manner similar 

to the one for the linear case, Green's Function may be 

written as: 

4wk(t-T) 

(x -x )2 + (7-yn )2_ (x-xc2( (+ 
(28) u. 1 e 4k(t-T) -e 
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Differentiation and evaluation at y. 0 gives 

au 
(x -x )2 + y2 

° 
-KT u 

au Yo 
ay 4 k2(t-T)4 

e 41at-T) 

y.0 

Thus the temperature at P(xo,y0) at time t is given by 

fe(2512024.(Y-Y,)2 
(29) [Vp it. 4kt 

4 grikt Li: 2 

(X"Xn)2+(57-+Y 
° 
)2] 

akt 
-e dx dy 

+ 

ft wr(x,T) (x-xo)2 Yo 
IMF 

_ oicbo(t-T)2 
4k(t-T) dx dT. 

In the three dimensional flow of heat (Carslaw, 1906) 
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in the semi-infinite solid x >0, the initial temperature 

will be v ..f(x,y,z) and the plane x =0, kept at V =F(y,z,t). 

In this case the Green's Function is 

and 

_(x_x0)24.(y_y0)2+(z_zn)2 

(30) u . 1 
'-' 

,, {,e 4k(t-T) 

(2 firk(-t-T ) 

(x+ xo)2 4. (y -yo )2 4. ( )2 

-e 4k(t-T) 

au au 
e n axx 

=0 8 7T 
3 

k 
5- (t-T)0 

1111 

x02 +(y- yo)2 +(z -z 2 

4k(t-T) 

The temperature at P(x0,y0,z0) at the time t,is given by 

(31) IV = 
1 

f(x,y,t) 
P t 2 lirrTrt)3Josis _m 

(x-x0)2 (y-y0) (t -t0)2 

4kt 

(x x(,)2 4.(y_7)2 
4kt 

dx dy dz 
-e 

m 

71.g/2 3/21 ill (x ,y , 
/T2) 

xcia + (Y-70)2 + (z -z0)2 

xe- 4k(t-T) dT dy dt. 

In the case of radiation at the surface (Carslaw, 1906), 

the Green's Function u is taken as the temperature at (x,y,z) 

at time t due to an instantaneous point source at (x ,y oz ) 

o o o 

at time T, radiation taking place at the surface into a 
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medium at zero temperature. For completeness we include 

some results on this type of boundary value problem. 

Theorem 2. The temperature at P(xo,y0,z0) at time t 
due to an initial distribution f(x,y,z) and radiation at 

the surface into a medium at temperature # (x,y,z,t) is 
given as 

(32) rpitufff uTi.of(xsy,z)dx dy dz 

+ hkf 
t 
[fie t 

o 
x,y,z,T)dSidT 

ridti.jrffuTmof(x,y0z) dx dy dz 

kf [ ff.W) (x,y,z,T)dd dT 

For a semi-infinite solid: Radiation at the surface 

x=0 into a medium at zero, 

(x+x+t)2 ) 
2 (x +x0)2 co 

1 v 4/a + e- 4kt -2h e- 4kt d 
2 7f-TFt 

For a semi-infinite solid: radiation into a medium at 
temperature (t) , 

(x -x' )2 (x +10)2 (x +x' +,)2 
1 [el- 4kt +e 4kt 4kt V at -2h we-111.e 

2 TiFFEctfo 

x dt 1 f(xt)dxf 



+hatr x2 co -f F4k(t-T)-hj e-h .e )dE.] (T) dT. 

For other types of solids involving radiation at the 

surface the reader is referred to Carslawis text on the flow 

of heat. 

GREEN'S FUNCTION FOR A MISCELLANEOUS GROUP OF SOLIDS 

The Green's Function for various solids has been 

constructed. Smythe (Smythe, 1939) has given the following: 

(A) For a cone 

r< a Vi Amn k-.11n Pmn (m)cos m( - o) 

n mao 

r > a Vc....>->7 Anwi[eln+1 Pn (pt ) cos in (# - 
o 

- 
n m=o 

(B) For a conical box 

2n+1 21+1 2n +1 
r <a V .>"L a -d 

rn 
C in 

mo an (c2n+l_d2n+1) rn+ 

x m(!4) cos m ( - #O) 

r>a a2n +1-c2n+1 Vo rn d2n+1 
fau. an(c2n+l_d2n+1) 7:1- 

X Pnm (p) cos m(0 0 0) 
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(C) For a circular cylinder 

-12r 

s =o 

soy.T 
(u 

b)Je(4.1 p.) 

s 4.3-84.1(ttra 

(D) For a cylindrical box 

Vs ja st0.144 r(L-c )sinhp rz 
2 

a r.1 sinhiu L 

(E) For a disc 
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os s( -0 0) 

2F(2.4:)Js(prb)Js 
a) 

rP) 
h COS s( 0) 

S si° µr s +1 Our 

Viam,g>(4n+1),Qzn(JS,0)Q2nW 
)P2n(E) 
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(F) For a rectangular prism 

V (m2a2 n2b2) 

n.1 m3. 

(m2a2+ n2b2 )21m I 

lz-z01 
ab 

11 7T Xr, .2_117T X pin v, ynn X Sin 
b 
e 

a. a 

(G) For a sphere 

V q i(r24.b2-2brcos (31 
)z..a(b2r2.0.4_2a2brcos (4)i] 
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CONCLUSION 

The main results of this paper are given in Table 1. 

By the application of the formulas in the section on the 

flow of heat, the solutions to certain types of problems 

in the flow of heat may be found. 
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