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Abstract 

Mine waste materials from the Tri-State mining region in Kansas, Missouri, and Oklahoma pose 

environmental hazards. The area is contaminated with trace elements, such as Pb, Zn and Cd, 

which are transported to surrounding areas through water, wind erosion, and runoff. 

Phytostabilization or establishing healthy vegetative cover could be used to reduce or control 

these contaminated materials from further spreading with wind and water. However, further 

research is needed to monitor the long-term sustainability and assess if high applications of 

compost amendments could help to facilitate soil reclamation. The overall focus of this thesis 

was to monitor long-term effects of compost or lime additions at two different rates, with or 

without other soil amendments, on soil properties, plants, and soil biota. We used the earthworm 

avoidance test as a screening tool for testing effects of soil amendments on ecotoxicity. In the 

first field study, pelletized manure compost additions of 448 Mg ha
-1

significantly decreased the 

bioavailable Pb, Zn, and Cd while increasing plant nutrients, vegetative cover, and plant biomass 

as compared to the contaminated control and the low addition of compost (224 Mg ha
-1

) over 2.5 

years. Plant tissue metal concentrations with compost addition did not show any phytotoxicity in 

this study. Lime additions did not show any significant effect on any of the measurements. 

Results from the first study suggest that one time addition of large quantities of compost at 224 

to 448 Mg ha
-1

 can support establishing and maintaining healthy vegetative cover at least for a 

2.5 year period. In the second field study, long-term monitoring of the effectiveness of the 

amendments was studied. Compost was applied at two different rates (45 or 269 Mg ha
-1

) in 

2006. Various chemical properties, microbial activities, and vegetative growth or plant biomass 

were measured approximately for 4.5 years to evaluate long-term changes in soil quality and 

sustainability of phytostabilization efforts, when combined or assisted with soil amendments to 



 

improve the quality of trace element-contaminated mine waste materials. Plants grown with 

compost additions of 269 Mg ha
-1

 showed higher nutrients, biomass, and enzyme activities as 

compared to plants grown on the contaminated control and with the low addition of compost (45 

Mg ha
-1

) over 4.5 years. Decrease in plant biomass and enzyme activities seen in the high 

compost treatments by the end of the study period suggested that long-term sustainability of 

these efforts may require repeated addition of soil amendments every 4 to 5 years. Additionally, 

a laboratory study was conducted to assess the long-term effects of treatments used in the second 

field study on ecotoxicity using the avoidance behavior responses of the earthworm Eisenia 

fetida. There was no mortality of earthworms after a 48 h exposure period of any of these treated 

and untreated mine waste materials. Avoidance was clear for the contaminated control and the 

low compost treatment (45 Mg ha
-1

). Moreover, the contaminated control did show habitat 

limitation (< 20% of earthworms was found in test soil). Current research studies provide 

evidence that, high rates of compost applications can be used to stabilize and reduce the 

bioavailability of trace elements in mine waste materials. 
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Chapter 1 - Literature Review 

 1.1 The Tri-state Mining Region 

1.1.1 History  

The Tri-state mining region includes parts of southeastern Kansas, southwestern 

Missouri, and northeastern Oklahoma, covering approximately 6475 square km (Pope, 2005). 

For nearly half-a century this area was the leading zinc-lead mining district in the world and it 

was also an important producer of cadmium (Cd), silver, germanium, and gallium (Hagni, 1986). 

In southwestern Missouri the mining operations were carried out between 1850 and 1957 and an 

estimated 196 million tons were mined, in which the recoverable lead (Pb) and zinc (Zn) were 

0.8 million and 0.3 million tons, respectively (Stewart, 1986). In Oklahoma, the mining period 

was from 1891-1970 and the estimated tons mined were 187 million, in which the recoverable Pb 

and Zn accounted were 0.3 and 0.5 million tons (Stewart, 1986). The extreme southeast corner of 

the state, 115-square miles, occupies the Kansas portion of the Tri-state mining region. This 

portion has been divided into seven subsites namely Galena, Baxter Springs, Treece, Badger, 

Lawton, Waco, and Crestline, and mining occurred within all of these sites. The zinc-lead mines 

of Cherokee County, Kansas especially around the towns of Galena, Treece and Baxter Springs 

produced nearly 2.0 million tons of Zn and 0.7 million tons of Pb. Although throughout the Tri-

State mining district Zn was much more common than Pb, production was mainly confined to 

Pb, which could be easily smelted in homemade furnaces. The Pb mining in Kansas was started 

in Linn County in the 1830‘s. After the Civil War, around 1870, due to rapid development in 

transport and in technology, the first commercial production of Pb was started near Galena in 

1877 (Schoewe, 1958).  
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 The early ore production was processed by crushing and grinding the rock to standard 

sizes, and the ore was separated either via dry gravity separation or through a wet washing or 

flotation separation. Each of these mining operations produced ―chat‖, a fine gravel waste that 

typically ranges in diameter from 6.35 mm to 15.87 mm; ―tailings‖, typically a sand and silt size 

waste material, ranges in diameter from 0.84-0.20 mm; and a lesser occurring mine waste called 

the ―development rock‖ (Ritchie, 1986). Much of the chat was disposed in massive piles 

covering thousands of hectares in this region (Magoo, 1996).  The chat is composed mainly of 

chert, a siliceous rock mined with the ores (Dames and Moore, 1993) and contains trace elements 

including Cd, Pb, and Zn. It was found that the average concentration of Pb and Zn in the chat 

ranged from 360 to 1,500 mg kg
-1

 and 6,000 to 13,000 mg kg
-1

, respectively (USEPA, 1997), and 

in smelter slag from Dearing, KS, it was reported that the Pb and Zn concentrations ranged from 

9,111 mg kg
-1

 to 25,313 mg kg
-1

 and 42,592 mg kg
-1

to 67,654 mg kg
-1

, respectively 

(Hettiarachchi et al., 2001; Sonmez and Pierzynski, 2005).  

1.1.2 Current Situation and Environmental Concerns 

 Unfortunately, trace elements have dispersed throughout the tri-state mining district in 

the form of milled mined waste and raised concerns over elevated concentrations of trace 

elements in water, soil, food, and in other environments because they could negatively impact 

human health. For example, it was found that the persons consuming home grown food living 

near old smelter sites have elevated (50%) concentrations of Pb and Cd in their blood levels than 

those eating comparable items purchased in a control area (Lagerwerff and Brower, 1974). An 

epidemiological study from Galena, KS, showed that the population living more than 5 years in 

the community was significantly prone to chronic kidney disease, heart disease, skin cancer, and 
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anemia compared to a population living in a nearby control area (Neuberger et al., 1990). Chat 

has distinct physical and chemical properties such as low organic matter, low nutrient content, 

poor water holding capacity, and elevated concentrations of metals and, therefore, has raised 

concern related to phytotoxicity, which can limit biomass production (Pierzynski and Schwab, 

1993).  

 Metals associated with the mining process have contaminated water (KDHE, 2005) and 

caused toxic effects in fish (Brumbaugh et al., 2005). Elevated concentrations of Cd, Pb, and Zn 

in fish from mining-influenced waters were founded by sampling of blood and liver from 

northeastern Oklahoma (Brumbaugh et al., 2005). Zinc and Pb poisoning was diagnosed in birds: 

American robins (Turdus migratorius), northern cardinals (Cardinalis cardinalis), and waterfowl 

based on increased Pb concentrations in tissues as compared with reference birds (Beyer et al., 

2005; Sileo et al., 2003). Considerable efforts have been made by local, state, and federal 

governments to remediate the mine hazard due to extensive mining and mining-related activities 

in the past, many hazards continue to exist to the present time. 

 1.2 Chemistry of Lead, Zinc and Cadmium 

Unvegetated and exposed mine tailings or mill tailing piles from mining sites are the 

major source of trace element contamination in nearby communities. It is estimated that on an 

annual basis nearly 700 million kg of metals in mine tailings was disposed on land (Warhurst, 

2000). Although the use of the term ―heavy metals‘‘ is discouraged in the scientific literature, Pb, 

Zn, and Cd are heavy metals. The use of the term ―trace element‖ is encouraged instead, and 

trace elements are elements that are present in relatively low concentrations in soils or in the 

plant and, above a threshold concentration, these elements are found to cause either acute or 
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chronic health issues in living organisms (Pierzynski et al., 2005). For example, Pb, Zn, Cd, and 

manganese (Mn) are major environmental pollutants present in Pb-Zn mining. 

 Lead is a member of group IVA of the periodic table of elements and it has an atomic 

number 82. The valence shell electron configuration of Pb (6s
2
 6p

2
) allows it to have three 

possible oxidation states, +2, +3, and +4 but only two oxidation states ( Pb (II) and Pb (IV)) are 

stable. The tetravalent state of Pb is a powerful oxidizer; hence its occurrence in the earth‘s 

surface is rare. Elemental Pb is a bluish-grey color, dense (11.34 g cm
-3

), malleable, and ductile 

metal that melts at 327°C and boils at 1725 
o
C. Lead is resistant to corrosion and it is a poor 

conductor of electricity (Callendar, 2005). The ionic radius of Pb (84 (+4) to 120 (+2)) pm is 

similar to that of second group elements (strontium, barium, and calcium), allowing Pb to occur 

in other mineral deposits by being substituted during the crystallization process of minerals 

(Nesse, 2000). Historically, Pb was used in plumbing and its oxide is used to make leaded 

'crystal' and flint glass. Lead alloys are used as solder, bullets, antifriction lubricants, and 

plumbing. Tetraethyl Pb was used as an anti-knock agent in petrol and as an additive in paints. In 

uncontaminated soils the average background concentration of Pb is found to be 11 mg kg
-1 

in 

the US (Holmgren et al., 1993). Lead ranked number two on the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA) priority list of hazardous substances and 

is identified as a major hazardous trace element found on 47% of Superfund sites on the U.S 

Environmental Protection Agency (USEPA) national priority list (Hettiarachchi and Pierzynski, 

2004). 

 Zinc is a member of group IIB of the periodic table of elements and it has an atomic 

number 30. Because of its low natural concentration in soils, it is treated as a trace element 

(Essington, 2004). The valence shell electron configuration of Zn (3d
10

 4s
2
) allows it to have two 
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possible oxidation states, 0 and +2, but only the Zn (II) ionic state is significant in nature. 

Elemental Zn is a bluish-white in color with a density of 7.14 g cm
-3

; it melts at 419.6°C and 

boils at 907°C. It is the fourth most common metal used and it has found use in a wide range of 

applications such as brass, soldering formulas, applications in the automobile industry, as a 

pigment in paints, deodorants, and lotions (National Research Council, 1979). In uncontaminated 

soils the average background concentration of Zn is found to be 43 mg kg
-1

 in the US (Holmgren 

et al., 1993).  

 Cadmium is a member, along with Zn and mercury (Hg), of group IIB of the periodic 

table of the elements. The atomic number of Cd is 48, and it is generally characterized as a soft, 

ductile, silver-white or bluish-white metal, with 8.64 g cm
-3

 of density at room temperature. The 

valence shell electron configuration of Cd is 5s
2
 4d

10
. Similar to Zn, Cd prefers the oxidation 

state +2 in most of its compounds. The melting point of Cd is 321.07 °C and its boiling point is 

767 °C.  Cadmium is mainly found in association with zinc sulfide based ores and it forms 

stable alloys with copper (Cu), tin (Sn) and several other nonferrous metals. It is also found in 

sedimentary rocks at higher levels than in metamorphic rocks (Nesse, 2000). Cadmium is mainly 

used in manufacturing of plastic, luminescent dial and paint pigments, alloy preparation, and 

batteries that contain Cd (Ni-Cd). Automobiles and trucks, household appliances, agricultural 

implements, airplane parts, industrial tools, and hand tools are commonly Cd coated (Adriano, 

2001; Cordero et al., 2004). In US agricultural soils the background Cd level is less than 1 mg 

kg
-1 

(Adriano, 2001). Long-term application of sewage sludge to agricultural soil has led to 

accumulation of cadmium. 92% of the cadmium present in sewage sludge has been retained in 

topsoil as well as 7% in the upper subsoil (Chaney, 1980).  
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1.2.1 Pb, Zn and Cd Minerals and their Stability 

In the environment Pb is available either as a mineral or in a complex form because it is 

unlikely that elemental Pb (PbO) will persist in natural soil environments, as can be illustrated by 

the following half-cell reaction.  

Pb
2+

 + 2e
-
 ↔ Pb (c) log K

o
 = -4.33 

Assuming the maintenance of an aqueous Pb concentration of 10
-8.5

 M, an electron activity (pe) 

of -6.41 would be required for elemental Pb to form. Equilibrium reactions of different Pb 

containing minerals and complexes are given in Table 1-1. Given these values it is highly 

unlikely for elemental Pb to form in soil environments.  

The most common Pb ore mineral is galena (PbS) because of its high affinity towards 

sulfur (S). Galena has approximately 87% Pb by weight and hence it serves as a major source of 

Pb. Further, it readily transforms into other forms of Pb minerals through oxidation of sulfur to 

sulfate: anglesite (PbSO4), cerussite (PbCO3), and pyromorphites (Pb5 (PO4)3 X; where X = Cl
-
, 

F
-
, or OH

-
). The most common phosphates of Pb are: Pb5(PO4)3OH (hydroxypyromorphite), 

Pb5(PO4)3Br (bromopyromorphite), Pb5(PO4)3Cl (chloropyromorphite), Pb5(PO4)3F 

(fluoropyromorphite), PbAl3(PO4)2(OH)5H2O (plumbogummite), Pb(H2PO4)2 lead 

bis(dihydrogenphosphate), PbHPO4 (lead phosphoric acid), Pb3(PO4)2 (lead (II) phosphate), and 

lead oxide phosphate Pb4O(PO4)2  (Hem and Durum, 1973; Lindsay, 1979; Nriagu, 1972; Nriagu, 

1973; Nriagu, 1974; Nriagu, 1978).  These phosphates are stable under a wide range of chemical 

and environmental conditions and their increase in stability is in the order of Pb5(PO4)3Cl > 

Pb5(PO4)3Br >Pb3(PO4)2 >Pb5(PO4)3OH >Pb5(PO4)3 F >Pb4O(PO4)2>PbHPO4 > Pb(H2PO4)2. 
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Table 1-1 Equilibrium reactions of various Pb minerals at 25
o
C (adapted from Lindsay, 

1979).  

Reaction No. Equilibrium Reaction log K
o

1 PbO (yellow) + 2H
+
 ↔ Pb

2+
 + H2O 12.89

2 PbO (red) + 2H+ ↔ Pb2+ + H2O 12.72

3 Pb(OH)2 (c) + 2H
+
 ↔ Pb

2+
 + 2H2O 8.16

4 Pb3O4 (c)+ 8H
+
 +2e

-
 ↔ 3Pb

2+
 + 4H2O 73.79

5 PbO2 (c) + 4H
+
 + 2e

-
 ↔ Pb

2+
 + 2H2O 49.68

6 PbCO3 (cerussite) + 2H
+
 ↔ Pb

2+
 + CO2 (g) + H2O 4.65

7 Pb2CO3Cl2 (phosgenite) + 2H
+
 ↔ 2Pb

2+
 + CO2 (g) + H2O + 2Cl

-
-1.80

8 Pb3(CO3)2(OH)2 (c) + 6H
+
 ↔ 3Pb

2+
 + 2CO2 (g) + 4H2O 17.51

9 PbCO3*PbO (c) + 4H
+
 ↔ 2Pb

2+
 + CO2 (g) + 2H2O 17.39

10 PbSO4 (anglesite) ↔ Pb
2+

 + SO4
2-

-7.79

11 PbSO4*PbO (c) + 2H
+
 ↔ 2Pb

2+
 + SO4

2-
 + H2O -0.19

12 PbSO4*2PbO (c) + 4H
+
 ↔ 3Pb

2+
 + SO4

2-
 + 2H2O 11.01

13 PbSO4*3PbO (c) + 6H
+
 ↔ 4Pb

2+
 + SO4

2-
 + 3H2O 22.30

14 PbSiO3 (c) + 2H
+
 + H2O ↔ Pb

2+
 + H4SiO4

o 
5.94

15 Pb2SiO4 (c) + 4H
+
 ↔ 2Pb

2+
 + H4SiO4

o
18.45

16 Pb(H2PO4)2 (c) ↔ Pb
2+

 + 2H2PO4
-

-9.85

17 PbHPO4 (c) ↔ Pb
2+

 + H2PO4
-

-4.25

18 Pb3(PO4)2 (c) + 4H
+
 ↔ 3Pb

2+
 + 2H2PO4

-
-5.26

19 Pb4O(PO4)2 (c) + 6H
+
 ↔ 4Pb

2+
 + 2H2PO4

-
 + H2O 2.24

20 Pb5(PO4)3OH (c) (hydroxypyromorphite) + 7H
+
 ↔ 5Pb

2+
 + 3H2PO4

-
 + H2O -4.14

21 Pb5(PO4)3Br (c) (bromopyromorphite) + 6H
+
 ↔ 5Pb

2+
 + 3H2PO4

-
 + Br

-
-19.49

22 Pb5(PO4)3Cl (c) (chloropyromorphite) + 6H
+
 ↔ 5Pb

2+
 + 3H2PO4

-
 + Cl

-
-25.05

23 Pb5(PO4)3F (c) (fluoropyromorphite) + 6H
+
 ↔ 5Pb

2+
 + 3H2PO4

-
 + F

-
-12.98

24 PbAl3(PO4)2(OH)5*H2O (c) (plumbogummite) + 9H
+
 ↔ Pb2

+
 + 2H2PO4

-
 + 3Al

3+
 + 6H2O 9.80†

25 Soil-Pb ↔ Pb
2+

-8.50‡

26 PbMoO4 (wulfenite) ↔ Pb
2+

 + MoO4
2-

-16.04

27 PbS (galena) ↔ Pb
2+

 + S
2-

-27.51

28 Pb
2+

 + e
-
 ↔ Pb (c) -4.33

29 Soil-Ca ↔ Ca
2+

-2.50

30 CaCO3 + 2H
+
 ↔ Ca

2+
 + H2O 9.74

31 Fe(OH)3-Soil + 3H
+
 ↔ Fe

3+
 + CO2 (g) + 3H2O 2.70

32 FePO4*2H2O (strengite) + 2H
+
 ↔ H2PO4

-
 + 2H2O -6.85

33 β-Ca3(PO4)2 (c) + 2H
+
 ↔ 3Ca

2+
 + 2H2PO4

-
10.18  

† Calculated using data from Nriagu (1984) and Lindsay (1979). Developed using reference level 

for Pb
2+

 in soils not containing cerussite. 
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Equilibrium reactions of several Zn containing minerals and complexes are given in 

Table 1-2. It is highly unlikely that elemental Zn (Zn
0
) will exist in natural soil environments, as 

can be observed in reaction 1 of Table 1-2.  

Zn
2+

 + 2e
-
 ↔ Zn (c) log K

o
 = -25.80 

Therefore, if we assumed a maintenance Zn
2+

 concentration of 1 M, an electron activity (pe) of -

12.90 would be required for Zn (c) to form. In the soil environment one may find a number of 

different Zn minerals and the most significant mineral is sphalerite (ZnS, zinc sulfide), which 

consists of 64% Zn by weight. The other important ores are wurtzite, hemimorphite, and 

smithsonite which consist of 61%, 54% and 52 % of Zn by weight, respectively. Further, zinc 

sulfides readily transform into other forms of Zn minerals through oxidation: Zn silicate 

(Zn2SiO4, willemite), zinc hydroxide, zinc oxide (ZnO, zincite), ZnS (ZnSO4 zinkosite), zinc 

carbonate (ZnCO3, smithsonite), and phosphate (Zn3 (PO4)2, 4H2O, hopeite) minerals. In soils, 

the solubility of Zn silicate (Zn2SiO4, willemite) is mostly dependent on the activity of H4SiO4 

(2H2O + SiO2) present in soils, which is controlled by quartz (SiO2) (Lindsay, 1979), whereas, 

the mineral franklinite (ZnFe2O4) is considered as the most insoluble Zn mineral. However, the 

Fe
3+

 activity is controlled by the +3 oxide form of iron (Fe2O3). The zinc phosphate mineral (Zn3 

(PO4)2, 4H2O, hopeite) activity is dependent upon the concentration of (PO4)
-3

 in soils (Lindsay, 

1979). Typically, these Zn minerals are too soluble to persist under normal levels of Zn activity 

in soils and the solubilities of all Zn mineral forms decrease100-fold for every unit increase in 

pH (Lindsay, 1979).  



9 

 

Table 1-2 Equilibrium reactions of various Zn minerals at 25
o
C (adapted from Lindsay, 

1979).  

Reaction No. Equilibrium Reaction log K
o

1 Zn
2+

 + 2e
-
 ↔ Zn (c) -25.80

2 Zn(OH)2 (amorphous) + 2H
+
 ↔ Zn

2+
 + 2H2O 12.48

3 α-Zn(OH)2 (c) +2H
+
 ↔ Zn

2+
 + 2H2O 12.19

4 β-Zn(OH)2 (c) +2H
+
 ↔ Zn

2+
 + 2H2O 11.78

5 γ-Zn(OH)2 (c) +2H
+
 ↔ Zn

2+
 + 2H2O 11.74

6 ε-Zn(OH)2 (c) +2H
+
 ↔ Zn

2+
 + 2H2O 11.53

7 ZnO (zincite) + 2H
+
 ↔ Zn

2+
 + H2O 11.16

8 ZnCO3 (smithsonite) + 2H
+
 ↔ Zn

2+
 + CO2 (g) + H2O 7.91

9 Soil-Zn + 2H
+
 ↔ Zn

2+
5.80

10 ZnFe2O4 (franklinite) + 8H
+
 ↔ Zn

2+
 + 2Fe

3+
 + 4H2O 9.85

11 Zn2SiO4 (willemite) + 4H
+
 ↔ 2Zn

2+
 + H4SiO4

o
13.15

12 ZnCl2 (c) ↔ Zn
2+

 + 2Cl
-

7.07

13 ZnSO4 (zinkosite) ↔ Zn
2+

 + SO4
2-

3.41

14 ZnO*2ZnSO4 (c) + 2H
+
 ↔ 3Zn

2+
 + 2SO4

2-
 + H2O 19.12

15 Zn(OH)2*ZnSO4 (c) + 2H
+
 ↔ 3Zn

2+
 + SO4

2-
 + 2H2O 7.50

16 Zn3(PO4)2*4H2O (hopeite) + 4H
+
 ↔ 3Zn

2+
 + 2H2PO4

-
 + 4H2O 3.80

17 Fe(OH)3-Soil + 3H
+
 ↔ Fe

3+
 + 3H2O 2.70

18 FePO4*2H2O (strengite) + 2H
+
 ↔ H2PO4

-
 + 2H2O -6.85

19 β-Ca3(PO4)2 (c) + 2H
+
 ↔ 3Ca

2+
 + 2H2PO4

-
10.18

20 Soil-Ca ↔ Ca
2+

-2.50

21 CaCO3 + 2H
+
 ↔ Ca

2+
 + CO2 (g) + H2O 9.74

22 CaHPO4*2H2O (brushite) + H
+
 ↔ Ca

2+
 + H2PO4

-
 + 2H2O 0.63

23 Ca5(PO4)3OH (hydroxyapatite) + 7H
+
 ↔ 5Ca

2+
 + 3H2PO4

-
 + H2O 14.46

24 SiO2 (amorphous) + 2H2O ↔ H4SiO4
o

-2.74

25 SiO2 (soil) + 2H2O ↔ H4SiO4
o

-3.10

26 α-SiO2 (quartz) + 2H2O ↔ H4SiO4
o

-4.00  

 

Commonly found Cd minerals and their dissolution reactions are summarized in Table 1-

3. Except for CdS, which is present in a reduced environment, most Cd minerals are rather 

soluble and not likely to be in the solid phase in soils that control the soil solution concentration  
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Table 1-3 Equilibrium reactions of various Cd minerals at 25
o
C (adapted from Lindsay, 

1979).  

Reaction No. Equilibrium Reaction log K
o

1 CdO (monteponite) +2H
+
 ↔ Cd

2+
 + H2O 15.14

2 β-Cd(OH)2 +2H
+
 ↔ Cd

2+
 + 2H2O 13.65

3 CdCO3 (octavite) +2H
+
 ↔ Cd

2+
 + CO2(g) +H2O 6.16

4 CdSiO3 +2H
+
 +H2O ↔ Cd

2+
 + H4SiO40 7.63

5 Cd3(PO4)2 +2H
+
 ↔ 3Cd

2+
 + 2H2PO4

-
1.00

6 CdS (greennokite) ↔ Cd
2+

 + S
2-

-27.07

7 CdSO4 ↔ Cd
2+

 + SO4
2-

-0.04

8 CdSO4·H2O ↔  Cd
2+

 + SO4
2-

 + H2O -1.56

9 CdSO4·2Cd(OH)2 + 4 H
+
 ↔ 3Cd

2+ 
+ SO4

2-
 +4H2O 22.65

10 2CdSO4·Cd(OH)2 + 2 H
+
 ↔ 3Cd

2+
 + SO4

2-
 +2H2O 6.73  

   

 The most common Cd mineral is greenockite (CdS) but it is usually associated with 

sphalerite (ZnS) and the ratio of Zn-to-Cd in a typical Zn ores ranges from 200:1 to 400:1. The 

solubility of CdS in water is approximately 0.13 mg/100 g at 18°C (Morrow, 2001). The Cd in 

Pb and Cu ores is also associated with  zinc sulfide (Helmuth Wedow Jr., 1973). The other rarer 

Cd minerals are octavite (CdCO3) and monteponite (CdO) (Reimann and P.de.Caritat, 1998). 

However, Cd readily forms complexes in solution with halides, cyanides, and ammonium 

species, and has a strong affinity for organic matter (Reuter and Perdue, 1977).  

1.2.2 Pb, Zn and Cd in Soil Solution 

Soil solution concentrations of Pb, Zn and Cd are generally very low. In soil solution, the 

solubility of Pb, Zn and Cd is mostly governed by adsorption- desorption processes. Adsorption 

and desorption processes are controlled by solution pH, the nature of the metal species, dominant 

cations, and inorganic and organic ligands present in the soil solution. In normal soil 

environments the concentration of Cd is too low to precipitate. However, in mine-impacted soils 
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or in other contaminated soils, Cd levels are high and, therefore, precipitation or co-precipitation 

of Cd with other metals can happen. Therefore, these trace elements are of great concern to 

humans, animals, plants, and aquatic animals. 

1.2.2.1 Effect of pH on Pb, Zn and Cd Solubility  

Soil solution pH is an important chemical property that determines the solubility, 

mobility and bioavailability of metals in the soil environment. The solubility of Cd minerals is 

influenced mainly by the soil solution pH and the adsorption of Cd is controlled by metal-ion 

hydrolysis through the formation of either inner or outer sphere complexes (Tiller et al., 1979). 

In Cd minerals for soils with pH > 7.25, the Cd concentration in the soil solution is controlled by 

the solubility of CdCO3. Workman and Lindsay (1990) found that the measured Cd
2+

 activities in 

alkaline soils were approximately two orders of magnitude lower than the activities of Cd
2+

 in 

equilibrium with CdCO3 and atmospheric CO2.  

 An increase in soil pH increases the concentration of metal-hydroxide species due 

to surface ionization and complexation at the oxide/water interface (Davis and Leckie, 1978). 

Further the adsorption of Cd is also controlled by the hydrous Fe oxide at pH 6 – 7 (Garcia-

Miragaya and Page, 1978) because when the pH increases the net negative surface charge also 

increases, and, therefore, the affinity for metal cations also increases. However, highly weathered 

tropical soils, due to their low negative surface charge densities at pH 4–5, exhibit relatively low 

affinities for trace elements (McBride, 1994). Naidu et al., (1994) has reported that ionic strength 

(30 mmol L
-1) had little effect on Cd sorption above pH 6; his experiments were conducted using 

soils with a range of metals sorption capacities and solutions in a range of pH values 3-8.  
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Soil Pb bioavailability depends on the solubility of Pb-bearing solid forms such as 

anglesite (PbSO4), cerrussite (PbCO3), and the pyromorphites (Pb5 (PO4)3 X; X= Cl
-
, F

-
, OH

-
) 

and other site-specific soil chemistry. Soil pH directly or indirectly governs Pb 

dissolution/precipitation, reduction/oxidation, and sorption/desorption reactions. In addition to 

the solid phase control of lead ions in the form of corresponding carbonates, phosphates or 

hydroxides ,so the solubility of Pb depends mainly on the nature of adsorption and the sorption 

process of Pb onto metal oxides, clay minerals, and organic substances, and investigating these 

processes has been found to be extremely complex (Matocha et al., 2001). Some of the inorganic 

solid phases (iron oxides, manganese dioxides, apatite, and clay minerals) and soil organic matter 

(dried plankton and peat moss) can act as an adsorbent of Pb (Hettiarachchi et al., 2001; 

Krauskopf, 1956; Strawn and Sparks, 2000).  

Lead undergoes hydrolysis at low pH values and displays multiple hydrolysis reactions. 

Above pH 9, the formation of Pb(OH)2 is important, while Pb(OH)
+
 is predominant between pH 

6 and 10. The hydrolyzed species [Pb(OH)
+
, Pb(OH)2, Pb(OH)3

-
] of Pb at above pH 7 are 

important because they reduce the activity of Pb ions and thereby decrease Pb bioavailability. 

Many metals may precipitate as oxides, hydroxides, carbonates, sulfides, or phosphates onto 

soils. Precipitation or adsorption of these metals is possible under ideal conditions, which would 

remove dissolved ions from solution making them less bioavailable (Bradl, 2004; Hettiarachchi 

and Pierzynski, 2004). In addition to the solid phases that control Pb
2+

 activities in the soil 

solution, adsorption processes can also have considerable control over both Pb bioavailabilities.  

1.2.3 Adsorption and Desorption 

Metal adsorption occurs by both specific and nonspecific processes. Specific adsorption 

results from surface complexation or inner-sphere complexation and in nonspecific adsorption 
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they either form outer-sphere complexes or metallic cations behave as counter-ions in the diffuse 

layer (Msaky and Calvet, 1990). On the one hand, complexation of trace metals has been 

explained on the basis of ionic radius and the ionization potential to form complexation, and, 

considering the above mentioned parameters, the complexation occur in the order of Pb > Cd > 

Cu > Co > Ni > Zn (Sposito, 1989). On the other hand, based on electrostatic interactions, the 

complexation is expected to follow in the order of: Ni > Mg > Cu > Co > Zn > Cd > Sr > Pb 

because the metal with the greatest charge-to-radius ratio will form a strong bond (McBride et 

al., 1997; McBride, 1994).  

 Cadmium can be retained by both precipitation and adsorption reactions. In soils, 

Cd precipitation occurs through S
2-

, CO3
2-

, OH
-
, and PO4

3-
 anions. In soil solutions, pH is the 

most influential parameter that controls the metal-solution and soil-surface chemistry (Gerth et 

al., 1993; Naidu et al., 1997), and the other soil environmental conditions which control the Cd 

adsorption are soil temperature, Cd concentration, ionic strength, adsorption period, and index 

cations. Angove et al. (1999) investigated the adsorption of Cd
2+

onto kaolinite at five 

temperatures between 10 and 70°C with the entire range of pH 4 to 7. This study concluded that 

at lower soil pH (pH 4) Cd adsorption increases with an increase in temperature.  Barrow and 

Whelan (1998) investigated the effects of soil pH on sorption of Cd, Zn, Ni and Co by changing 

the pH of a soil. The effects of pH on sorption were described in terms of the concentration of 

metal ions required to produce equal sorption. Where the metal ions were incubated with the soil, 

a unit increase in pH decreased the concentration of metal ions required in the soil about 10-fold 

for Zn, about 7-fold for Ni, about 6-fold for Co, and about 4-fold for Cd. Amongst the cations 

commonly found in the soil solution, Al, Ca, and Mg have significant effects on the sorption of 

Cd in soils. Boekhold et al. (1993) investigated the influence of electrolyte composition and pH 
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on Cd sorption by an acid sandy soil and reported that due to competition between Cd and Ca, 

sorption of Cd was reduced by 80% in the Ca-electrolytes as compared with the Na-electrolytes. 

Christensen (1984) reported that by increasing the solution Ca
2+ 

concentration of 10
-3

 to 10
-2 

M, 

adsorption capacity for Cd of a sandy loam was reduced by 67%.  

Similar to Cd adsorption in soil solutions, Cd desorption is also influenced by conditions 

such as pH, temperature, aging and Cd concentration (Davis and Upadhyaya, 1996; Gerth et al., 

1993; Gray et al., 1998; Gray et al., 1999; Tiller et al., 1979).  Amacher et al. (1986) studied the 

desorption behavior of Cd in different soils after allowing an adsorption reaction between metals 

and soils. They found that the soils with higher iron oxide contents (Oxisols and Ultisols) 

released relatively more sorbed Cd than Cr. The desorption behavior of Cd on Fe and Mn oxide 

surfaces at 20°C was investigated by Backes et al. (1995). Their results showed that the 

desorption kinetics of Cd was affected by the equilibration time allowed during adsorption.  

Hettiarachchi et al. (2003) investigated a series of Cd sorption and desorption reactions at pH 5.5 

on different fractions of soils from a long-term biosolids amended field experimental sites. They 

found that both organic matter and Fe/Mn fractions control the sorption and desorption of soil 

Cd.  

Similar to Cd, Zn can also be adsorbed onto Mn oxides (Stahl and James, 1991), Fe 

hydroxide/oxides, Al hydroxide/oxides (Kinniburgh and Jackson, 1982), and aluminosilicates 

(Sparks et al., 1995). The role of Fe oxides on metal adsorption and retention was demonstrated 

by Grimme (1968), who studied the adsorption of Mn, Co, Cu, and Zn on goethite. He reported 

that the amount of the metals adsorbed increased with increasing pH. At a given pH, adsorption 

decreased in the order of Cu > Zn > Co > Mn. His observations are in agreement with that 

reported by Kinniburgh et al. (1976) for an Fe gel: Cu > Zn > Co. These observations led to 
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numerous studies of the adsorption of trace elements by oxides. The X-ray absorption fine 

structure (XAFS) spectroscopy studies on Zn adsorption revealed that Zn is adsorbed through 

both inner and outer-sphere complexation. Bochatay and Persson (2000) studied the coordination 

of Zn ion with manganite. Their studies revealed that Zn forms both inner-sphere and 

multinuclear hydroxo-complexes on manganite. Schlegel et al. (1997) investigated Zn and Zn-

EDTA sorption at the goethite (α-FeOOH) /water interface by EXAFS and their investigations 

revealed that Zn forms an inner-sphere complex on goethite. In soil solutions, at high initial Zn 

concentrations and at high pH conditions Zn precipitates as Zn(OH)2, ZnCO3, and ZnFe2O4 

(Lindsay, 1979).  

The adsorption-desorption kinetic behaviors of Zn have been investigated by Dang et al. 

(1994) and Taylor et al. (1995). Zinc sorption increases with an increase in soil solution pH, 

while Zn desorption is reduced with it (Rupa and Tomar, 1999; Tagwira et al., 1993). This may 

be because increasing pH increases the negative charge of variable-charge soil for Zn adsorption 

(Saeed and Fox, 1979). Adsorption - desorption of Zn is also influenced by Zn concentration 

(Garcia-Miragaya et al., 1986; Hendrickson and Corey, 1981) and the mechanism of Zn sorption-

desorption could differ between low and high Zn concentrations (5–300 mmol L
-1

) in soil., At 

lower concentrations (0.015 to 1.5 mmol g
-1

), neither counter ion nor ionic strength affected Zn 

sorption by soils, whereas at high concentrations, adsorption of Zn resulted from the 

complexation of Zn by OH ions and a higher net negative charge by soils (Elrashidi and 

O'Connor, 1982).  

As for Cd and Zn, Pb adsorption is also influenced by soil solution pH. Pb has been 

found to exhibit a high affinity for manganese oxides (Bradl, 2004; Ma and Uren, 1998) and its 

affinity is found to be 40 times greater than that by Fe oxides (McKenzie, 1980).  
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Lead binds as an inner-sphere complex on goethite (FeO(OH)) (Weesner and Bleam, 

1998) and as an inner-sphere bidentate surface complex on γ-Al2O3 (Strawn et al., 1998). 

Investigations by Matocha et al. (2001) have concluded that Pb can be adsorbed by both 

birnessite (δ-MnO1.7) and manganite (γ-MnOOH) through inner-sphere complexation. 

Adsorption of Pb in soil solution can be enhanced in the presence of phosphate, sulfate, and Cl
-
 

anions, and Pb can retain by goethite and boehmite (Bargar et al., 1998; Weesner and Bleam, 

1998). Ponizovsky and Tsadilas (2003) ascribed Pb retention to an ion-exchange process 

resulting in strong specific binding of Pb by an Alfisol. Gomes et al. (2001) studied the retention 

of various metals (Pb, Cd, Ni and Cu) in a Brazilian Oxisol and found that Pb, Cd, Ni, and Cu 

can adsorb both specifically and as exchangeable cations. Strawn and Sparks (2000) investigated 

the effect of soil organic matter on the kinetics and mechanisms of Pb sorption and desorption in 

soil and suggested that soil organic matter plays an important role in the slow desorption 

reactions of Pb from most soil materials. 

1.3 Pb, Zn and Cd Effects on Human, Plant, Microbes and Terrestrial Soil 

Organisms 

1.3.1 Effects on Humans 

The primary task of the USEPA and by its counterparts in other nations is to determine 

the health risks of exposure to environmental agents, quantify them, and then prescribe exposure 

standards that offer an adequate margin of safety. Health guidelines in the US suggest that 

children‘s blood Pb concentrations should not exceed 10 μg dL
-1

 and Pb in drinking water must 

not exceed 15 μg dL
-1

 (ATSDR, 2005). Table 1-4 provides a list of blood Pb concentrations in 

adults and in children and the effects they have on adults and children (ATSDR, 2005).  
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Human exposure to Pb occurs mainly through inhalation of dusts and ingestion. In adults, 

the primary exposure occurs through inhalation; however, in children the pathways are mainly 

due to hand to mouth activity especially in the areas containing soil or dust with elevated 

concentrations of Pb (Pierzynski and Gehl, 2004).  

 

Table 1-4. Blood Pb levels and the effects they have on adults and children (ATSDR, 2005). 

 

Pb in Adults Pb in Children

  (μg dL
-1

)    (μg dL
-1

)

Nervous System: Encepholapathy 100-120 80-100

Kidney: Atrophy, Interstitial Nephritis 40-100 80-120

Gastrointestinal: Colic 40-60 60-100

Formation of blood Cells: Anemia 50 20-40

Reproductive System: Hypospermia, Testicular Atrophy 40-50 -

Nervous System: IQ, Sensory System Deficits 40 <10

Heart and Blood Vessels: Hypertension <7 -

Formation of Blood Cells: Enzyme Changes 3-30 <10

            System and effect

 

 

For many years research groups have focused on Zn deficiency in human beings. Zinc is 

one of the most important trace elements in the body and it acts as a catalytic, structural, and 

regulatory ion (Mocchegiani et al., 2000). The average amount of Zn found in the adults is about 

1.4 – 2.3 g Zn, and it is found in all body tissues and fluids (Calesnick and Dinan, 1988). Zinc is 

considered to be relatively non-toxic to humans (Fosmire, 1990). It is only recently that attention 

has been directed to the potential consequence of excessive Zn intake. Zinc enters the human 

body through three different routes: by inhalation, through the skin, or by ingestion (ATSDR, 

2005). Zinc toxicity can occur in both acute and chronic forms; inhalation of fresh metal fumes 

with a particle size < 1 μm of ZnO in occupational situations such as Zn smelting or welding 

causes the so-called metal fume fever (MFF) (Vangestel et al., 1989). A variety of studies 

indicate that, depending on Zn concentration, it can either regulate or hinder apoptosis: the 
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process of programmed cell death (Cummings and Kovacic, 2009; Formigare et al., 2007; Haase 

et al., 2001; Truong-Tran et al., 2001). Experimental evidence also indicates that endogenous Zn 

might be a relatively potent and rapidly acting neurotoxin (Cuajungco and Lees, 1997; 

Frederickson et al., 2000). Yokoyama et al. (1986) reported that exposure of Zn for 15 min at 

300–600 μM results in extensive neuronal death in cortical cell culture. Weiss et al. (1993) 

confirmed this by showing that depolarization with five minute-exposure to 100 μM Zn killed all 

neurons in cortical cell culture in a high potassium (25 mM) media. High intake of Zn causes 

adverse effects like nausea, vomiting, loss of appetite, abdominal cramps, diarrhea, and 

headaches. Broun et al. (1990)  reported human cases with severe nausea and vomiting within 30 

minutes of ingesting 4 g of zinc gluconate (570 mg elemental Zn). Large doses (80 mg/day in 

men) of Zn over extended periods of time are frequently associated with Cu deficiency. Willis et 

al. (2005) reported Zn-induced copper deficiency, and several additional reports of Zn-induced 

copper deficiency leading to anemia and cytopenias were reviewed by Fiske et al. (1994).  

The Agency for Toxic Substances and Disease Registry (ATSDR, 1997) has ranked Cd 

as the sixth most toxic substance for significant human health hazard. Human organs or systems 

that can be affected and/or damaged by Cd toxicity include lung, liver, kidney, bone, the 

cardiovascular system, and the immune system (Fowler, 2009). Studies have shown that the 

nutritional status of humans with regard to Zn, Fe and/or Ca can have a profound effect on the 

rate of Cd absorption from the gut. Arora et al. (2008) reported that environmental Cd exposure 

may be associated with increased risk of dental caries in deciduous teeth of children. Nishijo et 

al. (2006, 1999) has reported the ―relationship between urinary Cd and mortality among 

inhabitants living in a Cd polluted area in Japan‖ and the same research group has also studied 

the causes of death and renal tubular dysfunction in residents exposed to Cd in the environment. 
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Falcon et al. (2002) reported that pregnant women exposed to environmental Cd might have 

adverse effects on fetal growth, such as retardation, low birth weight, birth deformities, and 

premature deliveries. Nishijo et al. (2002) investigated the effects of maternal exposure to Cd on 

pregnancy outcome and breast milk, and their investigations concluded that higher urinary Cd 

concentration were accompanied by higher levels of Cd and lower Ca concentration in their 

breast milk. Cadmium exposure causes infertility in males and in females it poses a potential risk 

to breast cancer (Akinloye et al., 2006; McElroy et al., 2006). This might be because Cd mimics 

the function of steroid hormones (Akesson et al., 2008). Moreover, research data suggested that 

Cd exposure was associated with increasing testosterone levels in women and high testosterone 

levels have been associated with the risk of breast cancer (Akesson et al., 2008). 

1.3.2 Effect on Plants  

Contamination of agricultural soil by trace elements causes acute and chronic toxic effect 

on plants grown in such soils (Chaney, 1980). The sources of trace elements in agricultural soil 

include liming, sewage sludge, irrigation waters, pesticides; fungicides, inorganic fertilizers 

including phosphate fertilizers containing variable levels of Cd, Pb and Zn depending on their 

source. Plants are often sensitive both to the deficiency and to the excess availability of trace 

elements as micronutrients. 

Zinc is an essential micronutrient because it is a cofactor of many metallo-enzymes that 

are involved in nitrogen metabolism, photosynthesis, auxin biosynthesis, the synthesis of nucleic 

acids and proteins, and many other processes (Rout and Das, 2003; Wang et al., 2009). However, 

at higher concentrations it is found to be toxic to plants. At high Zn concentrations growth of 

both root and shoot systems are limited (Choi et al., 1996; Ebbs and Kochian, 1997; Fontes and 
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Cox, 1998). Further at high levels it causes chlorosis in younger leaves, and on prolonged 

exposure it even extends to the older leaves (Ebbs and Kochian, 1997). In plants chlorosis is due 

to induced iron deficiency as hydrated Zn
+2

 and Fe
+2

 ions have similar radii (Marschner, 1986). 

Studies conducted on the plants grown in soil containing high levels of Cd show visible 

symptoms of chlorosis, growth inhibition by Cd-induced oxidative stress on metabolic genes, 

and browning of root tips and finally death (Di Toppi and Gabbrielli, 1999; Guo et al., 2008; 

Mohanpuria et al., 2007). Cadmium can induce growth reduction by inhibiting carbon fixation 

and by decreasing photosynthetic rate and chlorophyll content (Hassan et al., 2005). Further, Cd 

has been shown to interfere with the uptake and transport of Ca, Mg, P, and K by plants (Das et 

al., 1997). Balestrasse et al. (2003) reported a decrease in nitrogen fixation and primary ammonia 

assimilation in nodules of soybean plants during Cd treatments. Moya et al. (1993) reported 

disturbances in mineral nutrition and carbohydrate metabolism due to excessive Cd in soils. 

Chen and Huerta (1997) reported that the Cd in soils could induce water stress in plants by 

decreasing stomatal conductance, transpiration rate, and leaf relative water contents.  

Lead is ubiquitously distributed as one of the most abundant toxic elements in the soil. 

Lead is available for plant uptake through both soil and airborne sources. High concentrations of 

Pb affect the uptake and transport of nutrients (Ca, Fe, Mg, Mn, P, and Zn) in plants (Patra et al., 

2004). Large quantities of Pb from soil can be taken up by the roots; however, the bulk of this Pb 

stays in the roots and is not translocated throughout the plant (Kumar et al., 1995). Lead is also 

known to affect photosynthesis by inhibiting activity of carboxylating enzymes (Stiborová et al., 

1987). Parys et al. (1998) investigated the long term exposure to Pb in leaves of Pisum satvium. 

These investigations concluded that the prolonged Pb exposure decreases the photosynthetic 

pigments and decreases the enzymatic activities for CO2 assimilation. At elevated concentration 
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Pb induces oxidative stress by increasing the production of reactive oxygen species in plants 

(Reddy et al., 2005). High levels of Pb also cause inhibition of enzyme activities, water 

imbalance, alterations in membrane permeability, and interference with proper nutrition (Sharma 

and Dubey, 2005).  

1.3.3 Effects on Microbes 

In the soil-ecosystem, microbes play an important role in maintaining the soil structure 

and recycling of plant nutrients by mineralization of organic inputs. The help in controlling plant 

pests, detoxify hazardous chemicals, and help plant growth (Elsgaard et al., 2001; Giller et al., 

1998). In general, the fertility of an ecosystem largely depends on soil organic matter turnover, 

which is mediated by the soil microbial biomass. Therefore, soil biomass is an important factor 

in maintaining sustainable soil-ecosystems. However, high concentrations of trace elements in 

contaminated soils have both short and long term hazardous impacts on the health and 

functioning of soil- plant ecosystems, and also they have adverse influences on soil biological 

processes (Bhattacharyya, 2008; Perez-de-Mora, 2006; Wang, 2007; Wang et al., 2007).  

Studies conducted on the indigenous microbial community at the smelter- impacted 

Anaconda mining site, at Anaconda, Montana, USA, have shown a profound decrease in the 

microbial biomass compared to a nonimpacted site. The low level of microbial biomass is not 

surprising as this site is contaminated with high concentrations of trace elements including Cd, 

Pb, Zn, Cu, and Arsenic (As) (Anderson et al., 2009). Likewise, similar lower values of 

microbial biomass have been reported in a reclaimed mine wasteland (Liao and Xie, 2007) and a 

significant negative correlation between soil metal concentration and biomass has been reported 

in artificial contaminated laboratory soils (Kandeler et al., 1996). These studies indicate the 

negative impact of the high concentration of trace elements on the microbial biomass.  
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A diverse microbial community is important to attain a sustainable plant-ecosystem, as it 

involves many physical-biological processes. However higher concentrations of trace elements 

have shown a drastic effect on soil microbial activities and community structure. For example, 

Liao et al. (2010) studied the influence of Cd on soil microbial activity and structure. In a 

greenhouse pot experiment, field soils were spiked with different Cd concentrations of 0, 1, 3, 8, 

15, 30 mg Cd kg
−1

. They found a relative increase in fatty acid indicators for fungi and 

actinomycetes and a gradual increase in the ratio of Gram-positive to Gram-negative bacteria, 

indicating a shift in the microbial community with an increase in Cd concentration. Trace 

elements also inhibit the soil enzymatic activity and the effects vary based on the nature of the 

metal, concentration, and interaction of metal with the microbial community. For example, Khan 

et al. (2010) evaluated the changes in indigenous microbial community structure and activities in 

soil amended with different rates of Cd, Pb, and Cd/Pb mixes. They found a significant decrease 

in the number of culturable heterotrophic bacteria in trace element (Cd and Cd/Pb mix) spiked 

soils, and the sensitivity of microbial community to trace elements was found to be in the order 

of fungi < actinomycetes < bacteria. Trace elements can interact with surface active sites and can 

inhibit enzymatic activities by denaturing the enzyme proteins (Vig, 2003). Similarly, Kelly et al. 

(2003) found that soil samples, selected based on their distance from a contamination source, had 

different degrees of contamination (distance from contamination source). The study was done in 

a field site next to a zinc smelter in Palmerton, Pa. (Dekalb, 6.5 km east of the zinc smelter, had 

551ppm of total Zn; Klinesville, 4.8 km east of the zinc smelter, had 2,616 ppm of total Zn; 

Dekalb, 1.6 km west of zinc smelter, had 4,032 ppm of total Zn; and Holly, 1.6 km east of the 

zinc smelter, had 13,656 ppm of total Zn).  The soils tended to have lower levels of indicator 

fatty acid levels of mycorrhizal fungi and Gram-positive bacteria when compared to soils with 
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less Zn contamination. Relatively high Zn concentration (13,656 ppm) of trace elements in a soil 

- ecosystem is found to be detrimental to soil microbial communities. 

Yang et al. (2006) studied the antagonistic effect of groups of pollutants, Cd, Zn and Pb, 

on the activities of four soil enzymes: calatase, urease, invertase, and akaline phosphatase. They 

found alkaline phosphatase activities significantly decreased with the increase of Cd 

concentration in the soil. However, there was no profound effect of Pb and Zn on these enzymes. 

Further, the alkaline phosphatase activity in Cd, Zn, and Pb combined decreased markedly with 

increasing Cd concentration, but enzyme activities increased with decreasing Zn concentration. 

Thus, the toxic effects of Cd, Zn, and Pb on four soil enzyme activities are in the order: Cd > Zn 

> Pb. The difference in the order of effectiveness of inhibition among trace elements was 

suggested to be due to the ion-soil interactions of the different trace elements and their different 

forms in the soil. Effron et al. (2004) found that Cd, Cu, and Pb can inhibit the arylsulfatase, acid 

phosphatase, protease, and urease activities, but not beta-glucosidase activity, at high 

concentrations. They found that protease is more sensitive to contaminants in soils as compared 

to other enzymes.  Marzadori et al. (1996) found that soil with 5,000 mg kg
-1

 of Pb will reduce 

phosphatase enzyme activities, but in general the decrease was not proportional to the increase in 

Pb additions. However, this variation is most likely due to differences soil properties such as pH, 

organic matter content, and moisture content.  

1.3.4 Effects on Terrestrial Soil Organisms 

Millions of species of soil organisms are ubiquitous throughout different soil 

environments. A surprising number of organisms cannot detect metal contamination and do not 

avoid food with elevated metal concentration (Mogren and Trumble, 2010). This frequently leads 



24 

 

to modification of several of their functions. For example, Das and Khangarot (2011) studied the 

effect of Cu on survival, number of eggs, egg masses laid, embryo development, growth, and 

food consumption in snail ( Lymnaea luteola L) exposed to the Cu for 7 weeks. They found food 

consumption in Cu exposed snails significantly decreased at 56 milli-micro grams per liter (mµ g 

L
-1

) and at 100 mµ g L
-1

 exposure it completely stopped feeding activity. Further, abnormal 

embryonic development was observed at 32 mµ g L
-1

 and 56 mµ g L
-1

 of Cu and at higher 

concentration (100 mµ g L
-1

) the egg development was completely inhibited. Snail growth was 

also found to be reduced by 6.2% and 16.9% at 5.6 and 10 mµ g L
-1

, respectively. Similarly, 

results of toxicity tests with earthworms have demonstrated negative effects of trace elements on 

growth (Spurgeon and Hopkin, 1999), cocoon production (Morgan and Morgan, 1988), and 

survival (Spurgeon et al., 2000). In another study, Gestel et al. (1991) reported that Cd and Cu 

applied at 18-32 and 56  mg kg
-1

 dry soil concentrations have no effect on the growth of 

earthworm (species Eisenia Andrei). However, at ≥ 32 mg kg
-1

 Cd dry soil shows growth 

deterioration. Similarly, sexual development of the earthworms was inhibited at 10 mg Cd kg
-1

 

and 100 mg Cu kg
-1

 dry soil. Nahmani et al. (2007) investigated changes in mortality, body 

weight, cocoon production and cocoon viability in Eisenia fetida in a suite of multi-element 

field-contaminated soils. Their results showed significant relationships between body weight and 

soil metal concentration (9.79 mg Ag kg
-1

, 161 mg Cd kg
-1

, 658 mg Fe kg
-1

, 206 mg Mg kg
-1

, 

57.5 mg Ni kg
-1

, 162 mg Pb kg
-1

, 6.81 mg Sr kg
-1

, 6.52 mg Tl kg
-1

 and finally 1630 mg Zn kg
-1

). 

The toxicity of the different metals at these concentrations agrees with the other research groups. 

For example, Malecki (1982) tested the effects of Cd, Cu, Pb, Ni, and Zn on growth and 

concluded that Cd was the most toxic metal at concentrations > 50 mg kg
-1

. Gestel et al. (1991) 

found that growth of Eisenia andrei was reduced 44% by a Cd concentration of 96 mg kg
-1

 and 
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Spurgeon and Hopkin (1995) found that field soils amended with 264 mg kg
-1

 of Cd had similar 

effects. Nevertheless, it should be noted that Gestel et al. (1991) studied an artificial soil 

substrate. Spurgeon and Hopkin (1995) carried out their experiments in 3 different soil 

conditions. In experiment 1, worms were exposed to single metals in a standard artificial soil. 

The concentrations of the four metals in the soils were (in mg/kg dry weight of soil): Cd 5, 20, 

80, 300; Cu 10, 40, 200, 1000; Pb 100, 400, 2000, 10 000; and Zn 100, 400, 2000, 10 000. The 

highest concentrations were chosen to mimic the levels found in the most contaminated soils 

adjacent to the smelting works where earthworms are absent. In experiment 2, worms were 

maintained in contaminated soils collected from sites at different distances from a smelting 

works situated at Avonmouth, south-west England. In experiment 3, worms were exposed to 

mixtures of metals in artificial soil at the same concentrations as those present in the field soils. 

In all the three experiments Zn was at least ten times more toxic to E. fetida in artificial soil than 

in contaminated soils collected from the field. This difference was probably due to the greater 

bioavailability of zinc in the artificial soil.  

Godet et al. (2011) investigated the effect of Cd, Pb, and Zn metals on growth and metal 

accumulation in the terrestrial isopod Porcellio scaber. Poplar field litter contaminated by trace 

elements was collected from three distinct sites in northern France and was given as food to P. 

scaber (Latr). Trace element concentrations in litter types (dry weight basis) ranged from 4 to 70 

mg kg
-1

 for Cd, from 2 to 364 mg kg
-1

 for Pb, and from 443 to 10,606 mg kg
-1

 for Zn. Growth 

was estimated by weight measurements taken every week for 26 days and Cd, Pb, and Zn body 

burdens measured in the woodlice present at the end of the exposure period. A negative 

correlation was observed between Cd, Pb, and Zn concentrations in litter types (pseudototal and 

CaCl2-extracted) and the weight gain of woodlice (i.e., a significant decrease in P. scaber growth 
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was observed with an increase in Cd, Pb, and Zn concentrations in litter types). A similar kind of 

effect was reported by Loureiro et al. (2006) when Porcellionides pruinosus was exposed to litter 

contaminated with lead acetate (32 mg kg
-1

). Studies conducted by Donker (1992) on Porcellio 

scaber sampled from an ancient Roman Zn-Pb mine at Plombieres (Belgium), a Zn smelter near 

Budel (The Netherlands), and Spanderswoud, near Hilversum (The Netherlands) concluded that 

mine isopods are in good physiological condition because of energy reserves (lipid, glycogen, 

and protein) in the hepatopancreas. Further, metal contaminated food is known to induce a 

decreased consumption rate in woodlice. A recent study by Calhoa et al. (2012) demonstrated 

that different Cd species (Cd(Cys)2 and Cd(NO3)2) have different effects on female and male 

survival because of differential impairment of physiological processes in P. dilatatus. The Cd 

species induced a decrease in time to reach pregnancy, pregnancy duration, and also caused the 

occurrence of inconclusive pregnancies. They concluded that Cd(Cys)2 is more toxic than 

Cd(NO3)2 to long term exposure. Among many kinds of organisms living in soil, the terrestrial 

microorganisms are useful for the evaluation of metal contamination in soil, because significant 

positive correlations have been found between the metal concentrations in the earthworm and the 

trace element concentrations in soil. However, at elevated concentrations these trace elements 

affect various biological processes, as mentioned above.  

1.4 Remediation of Pb, Zn and Cd Contaminated Mine Waste Materials 

The primary causes of high levels of Pb, Zn and Cd contamination in soils are mining and 

smelting activities generating a large amount of waste rocks and tailings which are deposited on 

the surface. Due to these tailings the land surfaces are damaged and are often unstable and 

become sources of potentially toxic metal contamination and are redistributed to the surrounding 
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environmental ecosystems by aerial and fluvial transport. Exposure to Pb, Zn and Cd from these 

contaminated mine waste materials invases risk to human health and can cause phytotoxicity, 

soil erosion, contamination of water and soil, and ecotoxicity (Chaney et al., 2004; McLaughlin 

et al., 2000; Pierzynski, 1997). Many remediation methods such as excavation, 

phytoremediation, in situ stabilization, earth-swap or solifluction (slow flowing from higher to 

lower ground of masses of waste, saturated with water or gradual movement of wet soil and so 

forth down a slope) soil flushing, solidification have been used to remediate these contaminated 

sites. Among these, in situ stabilization (in situ fixation) of trace elements using suitable soil 

amendments is a promising technology for stabilizing contaminated soils and wastes (Brown et 

al., 2005) and this technique is focused on reducing trace element bioavailability. 

Phytoremediation has also been widely adopted as a promising technique for the remediation of 

some trace element contaminated areas and these techniques are considered ―green‖ 

technologies, utilizing low-cost agriculture practices rather than heavy earth-moving equipment 

(Chaney et al., 2010; Garbisu et al., 2002; Gleba et al., 1999; Kamnev, 2003).  

1.4.1 Excavation 

Excavation and physical removal of the soil is an oldest remediation method for 

contaminated soil. Soil excavation is currently accepted by the USEPA (2000) for remediating 

Pb-contaminated soil in residential areas. Advantages of excavation include the complete 

removal of the contaminants and the relatively rapid cleanup of a contaminated site (Wood, 

1997). Disadvantages include the fact that the contaminants are simply moved to a different 

place, the risk of spreading contaminated waste dust particles during removal and transport of 

contaminated soil, and the relatively high cost. Excavation can be the most expensive option 
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when large amounts of soil must be removed or disposal as hazardous or toxic waste is required 

(Iskandar and Adriano, 1997).  

1.4.2 Phytoremediation 

Phytoremediation, also called green remediation, or vegetative remediation that uses 

plant and associated microbiota, soil amendments and agronomic techniques to remove, degrade, 

or immobilize various contaminants from polluted soils, but also from sediments, groundwater, 

or surface water (Helmisaari et al., 2007). Phytoremediation is recognized as a cost-effective, 

sustainable, and environmentally friendly approach to the problem, with great advantages for the 

large-scale cleanup of contaminated sites (Pilon-Smits, 2005). Plants have a range of potential 

mechanisms at the cellular level that might be involved in the detoxification and tolerance to 

trace element stress and different phyrotechnologies make use of different plant properties (Hall, 

2002; Pilon-Smits, 2005). Potential approaches of phytoremediation are phytovolatilization, 

phytoextraction, and phytostabilization. Among these, phytostabilization is the most promising 

technique applicable to remediation of trace element contaminated soil/mine waste materials. 

1.4.2.1 Phytostabilization 

Phytostabilization is one of the remediation strategies which involve the use of plants to 

stabilize trace element contaminated soil by limiting the mobility and bioavailability of trace 

elements to the food chain. This particular phytoremediation technology is commonly used as 

method in providing vegetative cover on highly trace element contaminated and phytotoxic areas 

that minimize potentially toxic trace element moving into shoot tissues (Cunningham et al., 

1995; Mench et al., 2003). Phytostabilization provides vegetative cover for the long-term 

stabilization of contaminants in the mine waste materials. The vegetation cover protects the 
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surrounding ecosystems from trace element contamination by minimizing soil erosion, reducing 

exposure of potentially toxic trace elements from contaminated mine waste material, reducing 

the water runoff and minimizing the leaching of metals to ground water. Phytostabilization 

involves the use of plants tolerant to high levels of trace elements that immobilize trace elements 

in soils through sorption and accumulation by the roots, adsorption onto roots, or precipitation, 

complexation, or chemical reduction reactions (USEPA, 1997). Further, the plant cover in mine 

tailings enhances the heterotrophic microbial community, which promotes plant growth and 

takes part in metal stabilization (Glick, 2003; Mench et al., 2003; Mummey et al., 2002). 

Phytostabilization technology requires plant communities which are drought, metal, and salt 

tolerant as well as plants that do not accumulate potentially toxic trace elements of concern in 

shoot tissues. Mostly native plant species are chosen for the phytostabilization that survive in 

mine tailings in that particular area. The plants chosen for phytostabilization include grasses or 

other plants that are fast growing in order to provide coverage with many shallow roots to 

stabilize mine waste and take up soil water, and are easy to care for once the growth is 

established. The most promising and common phytostabilization practice is to combine the use 

of plants and soil amendments in remediating trace elements contaminated wastes. 

1.4.3 In situ Stabilization 

In situ stabilization is one of the promising technologies of cleaning up trace elements 

contaminated soils and wastes by the addition of various amendments (Basta and McGowen, 

2004; Oste et al., 2002). Chemical immobilization is a cost effective in situ remediation method 

where fertilizers and waste materials are used as amendments in contaminated soil or mine waste 

materials to reduce the solubility or immobilize the potentially toxic metal contaminants. Many 
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studies were conducted using chemical amendments (includes organic matter, alkaline material, 

and phosphate fertilizer for remediation of Pb, Zn and Cd in contaminated soil). Biosolids, 

composts, manures, alkaline materials and phosphate-based amendments are widely used to 

immobilize Pb, Cd, and Zn in contaminated waste (Brown et al., 1996; Hettiarachchi et al., 1998; 

Lambert et al., 1997; Ma et al., 1995; Ma et al., 1993; Pierzynski, 1993; Pierzynski and Schwab, 

1993). This technique may give a long term remediation solution by the formation of low 

solubility minerals or precipitates. In in situ stabilization of contaminated soils the general 

mechanisms of immobilization of trace elements are basically based on the reduction of trace 

element mobility and its availability, either by increased precipitation, adsorption, complexation 

and cation exchange. The success of chemical immobilization can only be measured by 

evaluating its ability to reduce bioavailability or decrease the solubility of potentially toxic 

elements like Pb, Zn and Cd and thus reduce the human and environmental risks. 

1.4.3.1 Organic Amendments 

Mine tailings are found to be devoid of vegetative cover due to their neutral to low pH, 

high acid-producing potential, poor soil structure, and lack of organic matter, nitrogen, 

phosphorus (Anju and Banerjee, 2011; Krzaklewski and Pietrzykowski, 2002; Wong et al., 

1998). The addition of large quantities of organic amendments, such as manure compost, 

biosolid and municipal solid wastes have been used to remediate trace elements in contaminated 

soils, to sustain soil physical, chemical and biogeochemical nutrient cycles (Brunetti et al., 2011; 

Clemente et al., 2005; Cunha-Queda et al., 2010 ; Sneddon et al., 2008). In addition to organic 

matter amendments, an addition of lime to raise soil pH is a common practice for immobilization 

of cationic trace elements and to facilitate re-vegetation of contaminated soils (Clemente et al., 

2005). The addition of organic matter can improve overall soil quality characteristics such as 
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cation exchange capacity, water-holding capacity, improved aggregation, proper aeration, 

increased nutrient holding capacity, reduce surface temperatures of mine wastes and greater 

microbial activity (Abbott et al., 2001; Basta et al., 2001; Brown et al., 2005; Coyne et al., 1998; 

Shrestha and Lal, 2011; Tordoff et al., 2000; Walker et al., 2003; Wong, 2003). The addition of 

organic matter amendments can also have a profound effect on trace element bioavailability and 

it mainly depends on the nature of the soil, and the organic amendments. The underlying 

reasoning was shifting of metal speciation in soil or mine waster materials from ‗‗plant 

available‘‘ forms to fractions associated with organic matter, carbonates or metal oxides 

(Clemente et al., 2005). Walker et al. (2004) has reported lower Zn tissue concentration in 

Chenopodium album Linnaeus plants grown in compost and manure amended soil. Similarly, 

Marques et al. (2008) reported Zn accumulation in Solanum nigrum Linnaeus grown in naturally 

contaminated soil in the presence of different types of organic amendments: biosolids from a 

domestic wastewater treatment plant mixed with crushed pine tree bark or saw-dust, Agronat 

(20% organic carbon, 35% humic compounds), compressed cow and horse manure and Biorex 

(43% organic carbon, 40% humic compounds). They concluded that the addition of manure to 

the soil has increased the ability of the plant to decrease the percolation of Zn from the 

contaminated matrix. Further, the addition of organic matter was found to increase the biomass 

yields of roots, shoots and leaves of S. nigrum due to an increased nutrient availability to the 

plant. Clemente et al. (2005) found the same behavior for Brassica juncea grown in organic 

matter amended contaminated soil. Li et al. (2000) reported vegetation establishment on highly 

Zn-contaminated soils by using organic matter, biosolids compost with a high pH, Fe, and P 

content. Similarly when sewage sludge was used with fly ash, leaching of Zn and uptake of Zn 

by corn was significantly reduced but no change was observed for Cd (Su and Wong, 2004).  



32 

 

Farrell and Jones (2010) evaluated the success of contrasting compost of green waste 

derived compost (G), green waste and catering waste derived compost (GF), green waste, 

catering waste and paper waste derived compost (GFP), and municipal solid waste derived 

compost (MSW). They concluded that all composts reduced soil solution concentrations of 

potentially toxic elements (Pb, Zn) and raised soil pH, nutrient levels and are well suited to 

revegetation of contaminated sites. However, no reduction in the accumulation of Zn was 

demonstrated for Agropyron elongatun and Trifolium repens growing in Zn/Pb mine tailings 

amended with pig manure (Ye et al., 1999). Carmona (2008) applied pig manure to reclaim 

acidic Cu, Zn, Cd and Pb mining soils of southeast Spain to establish vegetation as a 

management option to stabilize metals by single (3,750 kg N/ha-yr) and double doses of pig 

manure. They found the influence of dissolved organic carbon (DOC) from pig manure-

amendment on release of metals in mine soils. After a single application of manure, the 

relationship between the DOC and metal concentrations in initial leachates were found to show 

positive correlations for Cd, Zn and Cu, but for Pb it was negative. However, after a second 

application of pig manure, significant correlations were observed for Cu, Pb, and Zn, and low 

and negative relation for Cd. Lead concentration of the leachates was low because it is normally 

retained in the solid phases (Dunnivant et al., 1992); while high Zn values in leachates were due 

to its high solubility and mobility. These results suggest that complexation between metals and 

organic matter may play a role in the mobility of metals in mine soils. 

Hanc et al. (2006) found that the addition of lime, limestone, bentonite and zeolite to 

biosolids have considerably reduced the bioavailable Cd due to immobilization of Cd by both 

organic and inorganic fractions. In this study, the most effective stabilizers were found to be 

limestone and bentonite added into the biosolids incubated under aerobic and anaerobic 
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conditions, respectively. Pierzynski et al. (2002) evaluated the effects of beef manure at a rate of 

90 Mg ha
-1

 as a soil amendment on basic soil chemical properties and on the chemical 

fractionation of Cd, Pb, and Zn. This treatment resulted in an increase in tall fescue (Festuca 

arundinacea Shreb) growth in the first year after the amendment addition. Vegetative cover 

reached 71% after first year however, steadily declined to 29% over the next two growing 

seasons. After the first and third years of the study, exchangeable forms of metals were increased 

while residual forms decreased. In another study, to establish a vegetative cover on Cd, Pb, and 

Zn mine tailings. (Brown et al., 2003a) applied high N biosolids (66 Mg ha
-1

) with wood ash for 

two growing seasons. Although they were successful in establishing the vegetative cover in the 

year 1, decreased Ca, K, and Mg concentrations was observed in plants.  

A number of studies have been carried out to examine the effect of different organic 

amendments on remediation of Cd. For example, Ayten (2004) reported a reduction in Cd 

sorption from 0.057 to 0.005 mg kg
−1 

upon using mushroom compost as an amendment. 

Similarly, Li et al. (2008) reported reduction of Cd concentration to 25.7% by incorporation of 

pig manure as an amendment. In another study, Liu et al. (2009) reported application of chicken 

manure compost in a Ferralsol, China decreased the concentration of soluble/exchangeable Cd 

by 71.8–95.7%, but increased the values of inorganic precipitated Cd by 0.6-1.5 times and 

organic-bound Cd by 0.9-7.8 times.  Mohamed et al. (2010) carried out a field trial to evaluate 

the influence of some low-cost organic materials such as rice straw (RS), green manure (GM), 

and pig manure (PM) on the distribution of Cu and Cd and the retention of these metals by 

organic matter fractions in trace element-contaminated soils. They concluded that incorporation 

of pig manure, green manure, and rice straw was effective in reducing the solubility of Cu and 

Cd especially at the highest applied rates (RS-23.2 t ha
-1

, GM 23.2 t ha
-1

 and PG-9.2 t ha
-1

) and 
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the highest binding of Cu and Cd with soil organic matter fractions was found in rice straw 

treatments through sequential extraction of Cu and Cd in soil.  

Huang et al. (1997) used different types of organic amendments: ground alfalfa 

(Medicago sativa Linnaeus.), sphagnum peat moss, and composted leaves. They concluded that 

organic materials reduced bioavailability of Pb. However, Pearson et al. (2000) found that 

composted leaves did not reduce the bioavailability of Pb to earthworms (Eisenia fetida), while 

Basta et al. (2001) reported that addition of lime along with biosolids did not reduce the available 

Pb in the physiologically based extraction test (PBET) of earthworms. Basta et al. (2001) 

suggested that alkaline organic treatments can reduce human exposure to both Cd and Pb by 

reducing Zn phytotoxcity via promoting the revegetation of contaminated sites. Similarly, Farrell 

and Jones (2010) used compost municipal wastes to evaluate highly acidic heavily contaminated 

soil (As, Cu, Pb, Zn) in the presence and absence of lime. All composts reduced the soil solution 

trace element levels and raised soil pH and nutrient levels. These changes after organic 

amendments are well suited to revegetation of contaminated sites. In another study Marques et 

al. (2008) investigated the influence of the addition of organic matter amendments on the growth 

and metal uptake and accumulation by S. nigrum in a metal contaminated soil. In non-amended 

mining soils at high Zn accumulations were found in the tissue of S. nigrum. However in 

amended soils the metal accumulations in the tissue of S. nigrum were reduced up to 80 and 

40%, for manure and compost, respectively. Further, organic amendments resulted in the 

enhancement of the plant biomass.  

Walker et al. (2004) reported the contrasting effect of manure and compost on trace metal 

availability. Trace element-contaminated waste site from the Aznalcollar mine spill (South-

western Spain) amended with manure application greatly increased shoot growth and reduced the 
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shoot concentrations of Cu, Zn, and Mn, and favored development of the soil microbial biomass 

in comparison to the compost application. This was mainly due to easily mineralisable organic 

matter in manure; increases in soil pH, the formation of insoluble carbonates and/or phosphates 

with CO2 and soluble phosphates, respectively. A similar result was also reported by Clemente et 

al. (2006) where they investigated the effects of two differing organic amendments on organic 

matter mineralization and fractionation of trace elements in a contaminated soil in an incubation 

experiment. The soil used was characteristic of the mining area at La Union (Murcia, Spain). The 

main differences between the manure and compost effects resulted from the different 

mineralization of their organic matter; affecting the soil microbial activity and formation of both 

inorganic salts and stable organic matter. 

All the above studies suggest that a large organic matter additions are necessary on a 

periodically basis to sustain vegetative cover on mining areas for plant growth and microbial 

populations over time.  

1.4.3.2 Inorganic Amendments 

Alkaline amendments are used as chemical immobilization treatments in various forms 

such as CaCO3, (Ca, Mg)CO3, CaO and Ca(OH)2.These alkaline amendments can reduce trace 

element solubility in trace metal contaminated waste by increasing soil pH and metal sorption to 

soil particles (Filius, 1998; McBride et al., 1997). Liming the contaminated mine waste to reduce 

the bioavailability of trace elements is the most widely used remediation treatment. Increased 

sorption of trace elements to soil colloids can decrease mobile forms in soil solution and that 

reduces trace element transport in contaminated waste. Increased pH and carbonate buffering 

allows the formation of metal-carbonate precipitates, complexes, and secondary minerals 

(Chlopecka and Adriano, 1996; McBride, 1989). The application of lime materials to the trace 
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element contaminated waste leads to significant increase in soil pH value because of the release 

of hydroxyl ion by a hydrolysis reaction of calcium carbonate. Liming can lead to the 

precipitation of metals as metal carbonate and significantly decrease the exchangeable fraction of 

metals in contaminated soil (Knox et al., 2001). This reduces the bioavailability of trace elements 

in soil and the uptake by plants (Chlopecka and Adriano, 1996; Hirsch and Banin, 1990; Street et 

al., 1977). These alkaline amendments are anticipated to be effective only for a short period of 

time before the pH-buffering capacity is depleted; this effect is seen more in mine wastes 

continuously generating the acidity. In such cases repeated application of alkaline amendments is 

required to reduce acidity (Vangronsveld and Cunningham, 1998). Lime amendments have been 

shown to be effective at reducing plant uptake Zn, but mixed results have been reported for plant 

uptake of Cd (Krebs, 1998; Pierzynski, 1993). This may be due to potential competition of Ca 

and Cd for the same sorption sites. Chaney et al. (1997) reported that lime amendment was fairly 

ineffective for treatment of high Zn content mine wastes from the Palmerton Zn Superfund site. 

However, when combined with high iron biosolids the reduced Zn uptake was noticed, thus 

helping phytostabilization of the site.  

 Alkaline amendments when combined with other organic amendments can aid in the 

sequestration of trace elements. Both inorganic and organic provide binding sites that can 

immobilize trace elements and an increase in pH contribute to the immobilization of trace 

elements by making the surface adsorption sites more reactive toward metal binding with 

decreased proton competition.  Works of Brown et al. (2003a; 2003b; 2005) have suggested that 

the addition of high nitrogen biosolids (66 Mg ha
-1

) long with lime and wood ash effectively 

restores ecological function of trace element contaminated mine wastes. Alvarenga et al. (2008) 

found that application of both compost and lime led to a decrease in the level of 
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mobile/effectively bioavailable fractions of Cu, Pb and Zn, probably as a result of increased soil 

pH. However, this treatment did not significantly reduce Pb concentrations in the plant. The form 

of liming was critical for the soil microbial activities. The application of CaO was found to 

decrease the soil microbial biomass C on the first day of incubation. However, over long term 

incubations (365 days), CaO caused rapid mineralization of the organic matter in soils. The 

CaCO3 amendment had less negative effects on the microbial biomass and its activities and from 

the microbial point of view it was a more suitable liming agent for soils (Mühlbachov and 

Tlusto, 2006). Liming which increases the soil pH usually improves bacteria growth (Bezdicek et 

al., 2003). Short-term liming helps in dispersion of colloidal clay, improves soil microbial 

activity and long-term liming increase crop yields, organic matter returns, soil organic matter 

content and thus soil aggregation (Haynes and Naidu, 1998). The addition of the manure or 

compost from beef cattle feedlots on acid soils can contain 1% to 4% of calcium carbonate that is 

excreted in animal waste. It serves dual purpose both as organic matter to adsorb metals and as a 

source of line (Eghball, 1999). Krebs (1998) investigated trace element uptake by peas grown in 

different treatments such as soils treated with mineral fertilizer (control) and soils treated with 

lime, sewage sludge, and pig manure. The peas grown in the lime treated soils contained lower 

concentrations of Cd, Cu, and Zn in above the ground parts than that of the peas grown on 

fertilized, un-limed soils. Friesl et al. (2003) also reported that lime application significantly 

decreased Zn uptake by barley. However, the labile or exchangeable form of trace elements in 

contaminated wastes may increase and decrease the liming effectiveness after applying lime 

materials for a long time (Chlopecka and Adriano, 1996).   
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 1.5 Bioavailability Assessment 

Many approaches have been used for assessing the bioavailability of soil trace elements 

including extractions using chemical reagents, solid –phase dilution for liability assessment, 

diffusive membranes, biosensors, and biological indicators (Iskandar, 2001; Rao et al., 2008). 

1.5.1 Chemical Extraction 

Over recent decades, a considerable number of studies have been performed to find 

suitable methods to determine trace element availability to plants (Mendez et al., 2007). Metal 

phytoavailability has been estimated by various chemical extractants such as neutral salts, mild 

acids, organic extractants, and resin-based techniques (McLaughlin et al., 2000). The proposed 

chemical extraction methods are based on single chemical extractions (McLaughlin et al., 2000; 

Pierzynski, 1998) or sequential extractions (McLaughlin et al., 2000). In single chemical 

extractions the use of neutral salt solutions is advocated on the assumption that phytoavailable 

trace elements are mostly located on mineral surfaces and can be displaced by other cations 

(Menzies, 2007).  In sequential extraction, chemical reagents used are increasingly more reactive 

and specifically target soil phases, thus providing clear distinctions among the sources of the 

trace elements released in the extracts. 

Single chemical extractions have been used because of their simplicity, ease of operation, 

and low cost with the most common being solutions containing chelates (e.g., EDTA), neutral 

salts (e.g., CaCl2, Ca(NO3)2, NH4NO3), mineral acids at various concentrations (HCl or HCl + 

HNO3, or HCl+H2SO4) and buffered salts (e.g., NH4OAc). For example, Nolan (2005) concluded 

that 0.01 M CaCl2-extracted Cd appears to be highly effective, inexpensive, and a simple 

technique to predict Cd uptake by plants. Similar results were found by Sonmez and Pierzynski 
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(2005) for CaCl2-extractble Zn in predicting Zn uptake by sorghum-sudan (Sorghum vulgare var. 

Sudanese).  Lambrechts et al. (2011) assessed soil Cd, Cu, Mn and Zn metal bioavailability by 

CaCl2 (0.01 M) selective extraction from two contrasting contaminated soils (Cabezo and 

Brunita) from a former mining area in La Union a former mining area in Spain. They found no 

correlation between heavy metal concentrations obtained by CaCl2 extraction and in the soil 

(heavy metal total concentrations). Total heavy metal (Cu, Mn, Pb and Zn) concentrations were 

highest in the soil from Cabezo, but CaCl2 extractions indicated higher heavy metal motilities in 

the Brunita soil (pH 3.47), which suggested that soil pH appears to be the major factor 

influencing metal bioavailability. These extraction procedures have also been used to estimate 

extractable metal levels in contaminated soils after an amendment addition. For example,  a  

study was done by Svendson (2007) to test the ability of alternative liming agents in combination 

with municipal biosolids amended mining tailing in Leadville, CO. This study concluded that 

surface amendments were able to reduce 0.01 M Ca (NO3)2 extractable Cd and Zn in mining 

tailings.  

Chemical extracts can also be used to estimate phytotoxic metal levels in contaminated 

soils after an amendment addition.  Basta et al. (2001) evaluated the effect of soil treatment on 

the metal extractability by sequential extraction. They found phytotoxic Zn levels (1188 mg Zn 

kg
-1

 extracted by a 0.05 M Ca(NO3)2 solution ) in a smelter sites soil was reduced to166, 25, and 

784 mg Zn kg
-1

 by lime-stabilized biosolids, N-Viro soil, and rock phosphate amendments 

respectively. Almendras (2009) used the potentially bioavailable assessment sequential 

extraction (PBASE) method to predict trace element mobility and bioavailability in smelter 

contaminated soils. In this method, soil sample was extracted sequentially with 0.5 M Ca (NO3)2 

at 25°C for 16 h, 1 M NaOAc (pH 5) at 25°C for 5 h, 1 M Na2 EDTA (pH 7) at 25°C for 6 h, and 
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4 M HNO3 at 80°C for 16 h. and concluded that this method indicates potential mobility of As, 

Cu, Fe, Pb, and Zn based on the metal solubility distribution in soil indicated by the PBASE 

extract. Lee et al. (2011) evaluated the effects of five different soil amendments: zero valent iron, 

limestone, acid mine drainage treatment sludge (consists of 22.8% Fe2O3, 30.5% CaO, 1.88% 

Al2O3, 0.67% MgO), bone meal, and bottom ash on trace element stabilization using different 

chemical extraction procedures: extraction with 0.1 M Ca(NO3)2, DTPA, the physiologically 

based extraction test (PBET), toxic characteristic leaching procedure (TCLP), and sequential 

extraction test. Bioavailability was determined by measuring uptake of the trace elements by 

lettuce (Lactuca sativa L) and earthworms (Eisenia fetida). They found that trace element 

concentrations determined by extractions, using chelating agents (e.g., EDTA, DTPA), were 

poorly correlated to plant uptake while neutral salt extractants (such as 0.01 M  CaCl2, 0.1 M  

NaNO3, and 1 M  NH4OAc) provided the most useful indication of metal phytoavailability across 

a range of metals. Trace elements that may be potentially bioavailable can be either predicted or 

estimated by using these various chemical extraction methods as illustrated by above studies. 

1.5.2 Microbial Indicators 

Soil microorganisms play an important role in regulating various processes within the soil 

ecosystem. Out of those processes, nutrient cycling and decomposition of organic matter are far 

more sensitive to trace metal stress than soil animals or plants growing on the same soils (Giller 

et al., 1998). The impact of elevated trace element concentrations on the key microbial processes, 

as well as the structure and diversity of microbial community have been well documented 

(Hinojosa, 2005; Obbard, 2001; Perez-de-Mora, 2006; Wang, 2007; Wang et al., 2007). Trace 

elements in contaminated soils could have both short and long term hazardous impacts on the 

health and functioning of soil- plant ecosystem, and they have long term adverse influences on 
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soil biological processes (Bhattacharyya, 2008; Perez-de-Mora, 2006; Wang et al., 2007).  Soil 

microorganisms (soil microbial biomass) are a rich source of plant nutrients and play an 

important role in soil-plant ecosystem sustainability. Further, these soil microorganisms serve as 

a sensitive indicator because they are found to be sensitive to any changes in the trace element 

concentrations (Vig, 2003). A number of soil microbiological parameters have been suggested as 

possible indicators of soil environmental quality. For example, Gil Sotres (2005) have used both 

general biochemical parameters, such as microbial biomass C, dehydrogenase activity and N 

mineralization potential, and the activity of hydrolytic enzymes, such as phosphatase, urease and 

P-glucosidase, to evaluate soil quality.  

Other soil microbiological parameters, notably enzyme activity, C and N mineralization, 

basal respiration, and microbial community structure, have been proposed to evaluate soil quality  

(Liao, 2007a; Liao, 2007b; Liao and Xie, 2007; Liao et al., 2007; Wang, 2007; Zhang et al., 

2008). Shifts in the microbial composition in different soil types after short and long-term metal 

exposures have been evaluated by Frostegard et al. (1993) by the detection of microbial 

community structure measurements based on phospholipid fatty acid (PLFA) composition. 

Changes in the ratio of Gram-positive to Gram-negative bacteria have also been suggested as 

indicative of trace element contamination, and ecosystem disturbance. Thus, using such 

approaches, it might be possible to determine whether the natural ecosystem is being altered by 

trace element contaminants. However, it should be noted that exposure may also lead to the 

development of metal-tolerant populations (Ellis et al., 2003).  

Microbial phospholipid-linked fatty acid (PLFA) composition is one of the widely used 

approaches for the analysis of microbial community structure. In this method, microbial lipids 

are extracted in a phase mixture of chloroform, methanol and ethanol (Bligh and Dyer, 1959). 
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Lipids with the organic phase are then fractionated into neutral, glyco-, and phospholipids 

(Vestal and White, 1989). ). In the final stage, the phospholipids are subjected to alkaline 

methanolysis to produce fatty acid methyl esters (FAMEs) for gas chromatography analysis. 

Phospholipid-linked fatty acids are one of the cell membrane constituents, and their 

compositions vary in several different microbial groups. (Hydrophilic head and hydrophobic tail 

and the head group will differ between cell membranes [types of cells] or different 

concentrations of the specific head group.) Hinojosa (2005) used calcium carbonate and iron 

oxy-hydroxides to remediate Cd, Cu, and Zn contaminated soil. By PLFA analysis they found 

higher fungal to bacterial ratios for nonpolluted and reclaimed soils than to the contaminated 

control.  

Liao et al. (2010) have assessed the impact of different concentrations of Cd on soil 

microbial activities in two different soils. They found that application of Cd at lower 

concentrations (1 and 3 mg kg
−1

) resulted in a slight increase in microbial biomass carbon (Cmic), 

whereas at > 8 mg kg
−1

 Cd concentration caused a significant decline in Cmic. This study showed 

that at elevated Cd concentrations a stressful condition for soil microflora was evident. The 

effects of soil metal contaminants on microbial biomass and activity are profound. For example, 

Anderson et al. (2009) have studied the long-term effects of Cd, Pb, Zn, Cu and As 

concentrations on microbial activity, biomass, functional diversity, and structural diversity at a 

mining and smelting contaminated site in Anaconda, Montana, USA. They concluded that 

microbial activity and biomass were decreased in the smelter-impacted soils compared to a non-

impacted site. Similarly, Nwachukwu and Pulford (2011) have studied the effect of trace 

elements on microbial respiration. In their study, green waste compost, peat, coir, and wood bark 

was added to contaminated field soil collected from the vicinity of a disused Pb/Zn mine in 
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Tyndrum, Scotland. Metal toxicity (Pb, Cu and Zn were 2291, 127 and 1842 mg kg
−1

, 

respectively) led to a significant decrease in carbon dioxide evolved by the contaminated 

materials, up to 80% less at the highest rate of addition compared to the untreated  contaminated 

material. This study concluded that the organic materials used as amendments for remediation of 

trace elements contaminated soil can persist and act as sorbents for metals and their rate of 

breakdown, as measured by CO2 release, can be inhibited by trace elements. However, organic 

material added to contaminated soils improved the microbial activity.  

Claassens et al. (2006) have found that sites that had more vegetation cover and organic 

C content had a positive association with soil enzyme activities in coal tailings under 

rehabilitation, indicating that enhanced nutrient cycling and soil quality are important for 

rehabilitation of contaminated sites. Stuczynski (2003) found that Zn had a substantial inhibitory 

effect on soil dehydrogenase, acid and alkaline phosphatase, arylsulfatase, and urease activities. 

However, Cd and Pb had a limited or stimulatory effect on the majority of these enzymes. This 

indicates that Zn may play a larger role in inhibiting microbial community function and growth 

than other trace elements. Similarly, Zhang (2006) investigated the structure and function of 

microbial communities during the early stages of revegetation of barren soils in the vicinity of a 

Pb/Zn Smelter in Southern China by PLFA analysis. They found that PLFA ratios including 

fungi/bacteria, monounsaturated /saturated fatty acids, and enzyme activities, including protease, 

CM-cellulase and β-glucosidase, consistently increased with time after revegetation. They 

attributed those changes to increases and improvements in total N, pH and porosity in the 

revegetated soils. 
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1.5.3 Behaviour test – Earthworm 

Ecotoxicological test systems are used to obtain information about the deleterious effects 

of contaminants in soil. Various terrestrial invertebrate were used by researchers to measure the 

relative toxicities of pollutants in contaminated soils by verifying various toxicological endpoints 

such as mortality, growth, abundance and biomass, cocoon production, total number of offspring 

produced, reproduction, and behavior (Domínguez-Crespo et al., 2011; Frampton et al., 2006; 

Ma et al., 2002; Martinez Aldaya et al., 2006; Ming et al., 2012; Spurgeon and Hopkin, 1995; 

Vangestel et al., 1989). However, the most widely used toxicological endpoints are mortality, 

growth, and reproduction. Without doubt, these standardized acute (ISO 11268-1,1993) and 

reproduction (ISO 11268-2, 1997) toxicity tests on earthworms are useful for evaluating harmful 

effects and possible risks of soil contaminants. However, these experiments are time consuming 

(56 days), labor intensive, economically not viable, they are insensitive to low levels of 

contamination, and they do not provide information on individual organism response when they 

are exposed to contaminants (Lokke and Gestel, 1998).  

Earthworms are being used mostly as test organisms for testing the effects of pollutants in 

the terrestrial environment due to sufficient background knowledge on the biology of the species, 

their lethal and sublethal responses to contaminants, their abundance, and ease of identification 

(Beeby, 1993). Further, earthworms are less able to perform their essential functions when 

exposed to metal contaminants (Edwards A. Clive, 1996). In recent years, the avoidance 

behavior of earthworms has been used as an early screening indicator of soil contaminants rather 

than acute and lethal tests (da Luz et al., 2004; Natal-da-Luz et al., 2008; Yeardley et al., 1996) 

and such a test is a valuable tool for rapid screening of either a large area or a large number of 

soil samples because the results can be available within 48 hours (Rombke, 2003).  
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The international organization for standardization (ISO) has designed two standardized 

soil quality- avoidance tests for determining the quality of soils and the effects of various 

chemicals on behavior test with earthworms (ISO 17512-1, 2008). This avoidance behavior test 

could be conducted by a two- compartment test systems or by a six- compartment test systems 

and both these tests can be used for assessing the quality of a field soil or for assessing the 

toxicity of a soil receiving a chemical spikes. In a typical two section vessel, one section is filled 

with uncontaminated or artificial soil (control soil) and the other section with the contaminated 

soil (test soil) and both these sections are separated by a divider. After removal of dividers, ten 

adult earthworms (250–600 mg of weight), which are pretreated (wash and wipe dry), are placed 

on the center line of the soil surface. The containers are covered with a transparent lid and 

incubated at 20 ± 2°C with a light intensity between 400 and 800 lux and a photoperiod time of 

16 h light: 8 h dark for 48 h. After this period, the number of worms found in each section is 

recorded. However, these tests were considered valid only when the mortality was less than or 

equal to 10%. The same procedure is used for the six section design as well.  

Loureiro et al. (2005) performed the terrestrial avoidance behavior test as a screening tool 

to assess soil quality and risk assessment using earthworms. Test organisms were exposed for 48 

h to soils collected from two different areas JNC and JC of an abandoned mine, Mina de Jales, 

located in the northeast of Portugal. The concentrations of different metals present in control the 

(Lufa 2.2 soil), NJC and JC are: < 0.2, 1.9 and 8.2 mg Cd kg
-1

; 16.8, 33.0, and 209.0 mg Pb kg
-1

; 

19, 33, and 97 mg Zn kg
-1

; and 1.5, 8.0, and 24.0 mg Cu kg
-1

, respectively. Further, four 

additional treatments (12.5%, 25%, 75% and 100% (only test soil)) for each soil were also used. 

These treatments were obtained by diluting the mine soils with the control soil. Organisms 

showed no avoidance in all NJC soil treatments, including the 100% treatment (soil with no 
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dilution). However, when they were exposed to the treatment, 75% JC soil+25% control, more 

than 80% earthworms had moved into the control. Compared to NJC, JC soils had higher 

concentrations of trace elements.  

Lukkari and Haimi (2005) conducted an avoidance test using three ecologically different 

earth worm species, Aporrectodea tuberculata (Eisen), Lumbricus rubellus (Hoffmeister), and 

Dendrobaena octaedra (Savigny). These species have different ecological characteristics, and 

therefore different ecological strategies that utilize the soil environment differently (i.e., epigeic, 

endogeic and anecic species, and concomitantly they become differently exposed to metals). For 

the test, a control (uncontaminated field soil) and four soil concentrations (25%, 50%, 75%, and 

100% of the contaminated field soil mixed with appropriate amounts of uncontaminated soil 

were used. Metal concentrations in the field were 2 mg kg
–1

 for Cu and Zn, 4 mg kg
–1

 for Pb, and 

1 mg kg
–1

 for Cd. For spiked experiments, four Cu/Zn concentration pairings (nominal) were 

used from 19/32 mg kg
–1

 to 300/500 mg kg
–1

 (dry weight of soil) with the respective 

concentrations increasing stepwise 2.5 X per step. It was found that all three earthworm species 

clearly avoided Cu/Zn contaminated soil. However, D. octaedra was found to be the most 

sensitive species, responding to low metal concentrations, whereas L. rubellus, being the least 

sensitive species, responded only to the highest metal concentration tested.  

In another study, Lukkari et al. (2005) compared the sensitivity of the earthworm 

avoidance test to the standardized acute toxicity and reproduction tests. They studied the 

avoidance behavior of the earthworm Aporrectodea tuberculata to soils simultaneously 

contaminated with Cu and Zn. In addition, they compared the behavior responses of earthworms 

with and without prior exposure to metal-polluted soils. Earthworms with prior exposure to 

metal-polluted soil was collected 1 km from the Imatra Steel Oy Ab-steel smelter (Imatra, SE 
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Finland) and the other the population without earlier exposure to soil polluted with metals were 

collected in Jyva¨skyla¨, central Finland. It was found that all earthworms of A. tuberculata 

populations (with and without prior exposure to metal-polluted soil) responded similarly, i.e. 

more than 80% of the earthworms avoided contaminated soil.  

The earthworm avoidance test is a sensitive laboratory bioassay that allows relatively 

faster screening than standardized acute toxicity or reproduction tests and it is an inexpensive 

screening tool in the terrestrial risk assessment and also in soil quality criteria studies. Eisenia 

fetida is the preferred test organism. E. fetida was chosen because it is cosmopolitan, known for 

its composting abilities, and it reproduces rapidly under laboratory breeding. The major 

advantage of this standardization is that it is practical, reproducible and allows comparability of 

results from different laboratories. It is well known that different earthworm species vary in their 

avoidance response to contaminated soils (Lukkari et al., 2005). Avoidance behavior tests can be 

used, with clear advantages, both as first screening tools in terrestrial risk assessment and also in 

soil quality criteria studies, warranting quantitative assessment of the contaminant(s) 

bioavailability and toxicity. 

 1.6 Summary 

In terrestrial environments, Pb, Zn, and Cd are present ubiquitously in the form of 

minerals or other complexes. These trace elements have many industrial uses. As a result of that, 

many Pb and Zn deposits were mined throughout the world. These trace elements in terrestrial 

environments may pose serious problems. Therefore, it is very important to remediate the areas 

that are contaminated with these elements. Several remediation techniques have been used to 

remediate trace element in contaminated soils. However, in situ remediation techniques have 

received a lot of attention because they are cost effective, reduce land cleanup time, and reduce 
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labor needs. Further these techniques do not require landfills or transportation of Pb and Zn 

contaminated materials. Research has shown the addition of significant quantities of compost 

amendments to mine wastes materials significantly improves both biomass and microbial 

enzymatic activity as compared to the unamended waste materials. The earthworm avoidance 

test can be used as a screening tool in soil ecological risk assessment for contaminated scenarios. 

 1.7 Objectives 

 To evaluate the effect of pelletized compost and lime addition on chemical properties of 

trace element-contaminated mine waste materials over time, and to study the plant 

growth responses with the addition of pelletized compost and lime (Chapter 2).  

 To evaluate the long-term effectiveness of amendments with and without lime and 

bentonite on supporting and sustaining a vegetative cover over time, and to determine any 

changes in enzyme activity (Chapter 3). 

 To determine the effect of soil amendments to contaminated mine waste materials on 

ecotoxicity or overall soil quality parameters by using the avoidance behavior of 

earthworms to the amended trace element-contaminated mine waste materials (Chapter 4) 
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Chapter 2 - Influence of Amendments on the Phytostabilization of 

Trace-Element Contaminated Mine Waste Materials 

 2.1 Abstract 

Former Pb and Zn mining towns such as Galena, Kansas, remained unvegetated for many 

years. These areas are contaminated with trace elements such as Pb, Zn, and Cd which are 

transported to surrounding areas through water and wind erosion and runoff. Phytostabilization, 

or establishing healthy vegetative cover to reduce the risk of contaminated material movement 

by wind or water, is widely used to limit further spreading of the contaminants. This study 

focuses on plant growth responses over time upon addition of pelletized manure compost and 

lime as amendments and the influence of these amendments on chemical properties of mine 

waste materials. The study was initiated late in the third quarter of 2007. Pelletized compost was 

applied at two different rates (224 or 448 Mg ha
-1

) with or without lime (0 or 11.2 Mg ha
-1

). 

Species of native grasses recommended by Kansas Department of Health and Environmental 

(KDHE) were seeded to the treated and untreated plots to establish a vegetative cover. During 

the first growing season there was no vegetative growth seen due to a high soluble salt content in 

the amended mine waste. From third growing season, the compost treatments maintained 

significantly higher vegetative ground cover compared to the contaminated control. Similarly, 

plant biomass in the compost added plots was higher compared to the contaminated control in all 

growing seasons. Application of compost increased pH and available N, P, and K levels in both 

the high and the low compost treatments, while significantly reducing 0.5 M Ca(NO3)2 

extractable metals compared to control. Further, the high compost treatment had higher pH and 

available N, P, and K levels compared to the low compost treatment. Plant tissue metal 



74 

 

concentrations with compost addition did not show or suggested any phytotoxicity. Lime 

additions did not show any significant effect on any of the measurements. Results from the 

current study suggest that one time addition of large quantities of compost at 224 to 448 Mg ha
-1

 

to trace elements contaminated mine waste materials can support establishing and maintaining 

healthy vegetative cover at least for a 2.5 yr period. 

 2.2 Introduction 

The tri-state mining district (southeastern Kansas, southwestern Missouri, and 

northwestern Oklahoma) covers approximately 3000 km and include parts of Ottawa County, 

OK; Cherokee County, KS; and Jasper and Newton Counties, MO, and are contaminated with 

Pb, Cd and Zn (Gibson, 1973). This region was mined for Pb ore, mainly galena (PbS), and Zn 

ore of mainly sphalerite (ZnS) (Gibson, 1973). Though mining activities were discontinued in 

1970 in this region, coarse mine waste materials known as chat (a local term used for the 

byproducts obtained from the mining and milling processes of Pb and Zn ore) materials are still 

spread over a vast area of this region. This chat is a main contributor to environmental pollution, 

which can affect both human and animal health (Abdelsaheb et al., 1994; Beyer et al., 2004; 

Brumbaugh et al., 2005; Neuberger et al., 1990; Shetty et al., 1994).   

If the concentration of heavy metals in the soil, such as Zn, exceeds 70 to 400 mg kg 
-1

, 

that could make the soil nonproductive due to heavy metal phytotoxicity (Kabata-Pendias, 1984). 

However the concentrations of Zn that cause phytotoxicity depend and vary with soil or material 

properties. Surface waters impacted by runoff and leachate from the contaminated sites also have 

increased concentrations of trace elements (Spruill, 1987) and pose a serious threat to both the 

environment (Beyer et al., 2004; Brumbaugh et al., 2005)and human health (Shetty et al., 1994). 
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Lack of vegetation will lead to continued exposure of mining waste to erosion processes 

and thereby restrict the development of a functional ecosystem (Martin, 2004). It is important to 

revegetate these contaminated sites to reduce further contamination of the surrounding soil by 

erosion and runoff. This can be partially achieved by the emerging phytostabilization technology. 

Phytostabilization is the use of metal- tolerant plants to establish ground cover, thereby reducing 

the risk of further environmental degradation by contaminant leaching into ground water or by 

wind- blown dusts. 

Phytostabilization is often combined with the addition of soil amendments to reduce 

contaminant bioavailability and/or improve the quality of the contaminated materials as a plant 

growth media. The addition of organic amendments to the contaminated materials facilitates the 

phytostabilization by providing increased metal sorption and favors plant growth by enhancing 

soil fertility and water holding capacity (Brown et al., 2004; Clemente et al., 2005). Application 

of organic residues to contaminated soils as an immobilizing agent has found to be a useful 

strategy that reduces both the mobility and bioavailability of heavy metals and thereby enhancing 

phytostabilization (Alvarenga et al., 2009a; Alvarenga et al., 2009b; Hettiarachchi and 

Pierzynski, 2004; Jaco Vangronsveld and Cunningham, 1998). Organic amendments are good 

sources of micro and macro nutrients and a potential source of soil organic carbon (Hargreaves et 

al., 2009; Iglesiasjimenez and Alvarez, 1993; Monaco et al., 2008), and these nutrients become 

available as the organic matter decomposes in the soil through microorganisms (Mondini et al., 

2008). Adding organic matter also leads to an increase in microbial biomass (Gopinath et al., 

2008). The addition of commercially available composts to mine tailings has been shown to 

enhance plant growth in a greenhouse trial (Mendez et al., 2007; Schippers et al., 2000; 

Schroeder et al., 2005). 
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The addition of compost improves soil physical and chemical properties and also reduces 

the bioavailability of trace elements by sorption to the organic matter (Clemente et al., 2006). 

Studies by Pierzynski et al. (2002) found that application of beef manure at a rate of 90 Mg ha
−1

 

increases tall fescue (Festuca arundinacea Schreb) growth in the first year. However, by the 

third year plant growth declined due to Zn toxicity. In another study, Baker et al. (2011) applied 

composted beef manure to mine waste materials at two sites in southeast KS at 45 and 269 Mg 

ha
−1

 with and without lime. The results suggested that an organic matter addition above 45 and 

up to 269 Mg ha
−1

 may be needed to support and sustain microbial activity and biomass in mine 

waste materials, at least over the two year period of evaluation. Similarly, Brown et al. (2003) 

found that the application of a high N biosolids at a rate of 66 Mg ha
−1

 and mixed with wood ash 

(200 tons ha
-1

) establishes a vegetative cover on the Cd, Pb, and Zn contaminated mine tailings 

for at least two growing seasons through the reduction of metal bioavailability. These studies 

suggest that it is important to do long-term investigations to fully understand the effect of 

organic amendment addition. The objectives of this study are as follows: 1) to evaluate the effect 

of pelletized manure compost and lime on chemical properties of trace-element contaminated 

mine waste materials over time; and 2) to study the plant growth responses with the addition of 

pelletized manure compost and lime.  

 2.3 Materials and Methods 

A field site was selected within the town of Galena, KS. The area is commonly referred 

as ―Hell‘s Half Acre‖, located on the northeast side of Galena. Research plots were established 

on September 27, 2007 (Fall 2007, F07) and samples of contaminated mine waste materials were 

collected from the site to determine chemical characterization prior to any amendment addition. 

Analyses included electrical conductivity (EC), available NH4
+
, NO3

-
, P, K, Ca, Mg, and Na, 



77 

 

total organic carbon (TOC), total nitrogen (TN), cation exchange capacity (CEC), pH, and total 

metals (Table 2-1). The amendments applied in the study were pelletized manure compost 

containing lime as Ca(OH)2. Pelletized manure compost wa supplied by Kansas livestock 

association. Pelletized composting includes composting beef manure waste, curing the compost, 

grinding the cured compost, and pelletizing the ground compost. In brief, composting the animal 

waste includes forming a pile, monitoring the pile temperature (100°F to 180°F with  average of 

120°F) and moisture, mixing the pile and adding moisture. The pile is mixed after a 

predetermined temperature drop. The continuance of composting is noted by a temperature 

increase. If a significant temperature increase does not occur after proper moisture is maintained, 

then it is evident that the composting is nearly complete and simply needs to be cured by waiting 

and mixing. Further, the samples are also analyzed for fecal coliform pathogens, viable weed 

seed presence, maturity, stability, nutrient content and other physical characteristics such as pH, 

electrical conductivity, percent moisture, percent ash,  bulk density, carbon to nitrogen ration, 

micro and macro nutrients to ensure that proper composting and curing have occurred. In total, 

pelletized compost is a nutrient rich, uniform, substantially devoid of weed seeds and easy to 

transport cattle manure.   

The experimental design is a split plot design with three replications. The main plot 

factor was the addition of compost at different levels and was arranged in a randomized complete 

block. The subplot factor was the addition of lime verses no lime. The individual plot size was 

50 x 100 ft (15 x 30 m) and with a split of lime application they became 50 x 50 ft (15 x 15 m). 

The study consisted of 6 treatments and they were as follows: (1) non-amended control (C) with 

lime; (2) non-amended control (C) with no lime; (3) low compost treatment with lime; (4) low 

compost treatment (LC) with no lime; (5) high compost treatment (HC) with lime; (6) high 
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compost treatment (HC) with no lime. For the low compost treatment the amount applied was 

100 tons acre
-1

 (224 Mg ha
-1

) and for the high compost treatment the amount applied was 200 

tons acre
-1

 (448 Mg ha
-1

). The lime was applied at 0 or 5 tons acre
-1

 (11.2 Mg ha
-1

). Plots were 

disked once before treatment addition, once after lime application and then again after compost 

application.  

Plots were seeded with sorghum-sudan grass (Sorghum vulgare var. sudanese) as 

protective winter cover after the final disking. Unfortunately there were no signs of sudan grass 

growth when the plots were inspected on November 10, 2007. This was most probably due to 

high soluble salt content built up in soils from the added compost. On May 20, 2008 plots were 

disked, fertilized with 33.6 kg ha
-1

 of N (most likely urea) and reseeded with grasses in a mixture 

recommended by the Kansas Department of Health and Environment (KDHE) (Table 2-2) for all 

Environmental Protection Agency (EPA) maintenance sites in this area. 

  Samples of treated and untreated mine waste materials were collected from the top 20 cm 

of each plot after the final disking following amendment additions on September 27, 2007 (F07, 

Time 0) and then on June 2, 2008 (spring 2008, S08), November 16, 2008 (F08), May 12, 2009 

(S09), November 20, 2009 (F09), June 2, 2010 (S10) and November 17, 2010 (F10). Five sub-

samples were taken and combined with a single sample to represent each subplot. Samples were 

air dried and sieved to < 2 mm for chemical analysis. Analyses performed were as follows (i) 

pH; (ii) EC; (iii) available nitrogen (NH4
+
 and NO3

-
); (iv) total metal concentrations; (v) 

bioavailable metals; (vii) available phosphorus (P); and (viii) available potassium (K).  

The pH of samples was determined using 1:1 soil in deionized (DI) water mixture 

(McLean, 1982) and  EC was measured using a saturated paste extract (USDA, 1954). Inorganic 

N was extracted using 1M KCl solution (Keeney and Nelson, 1987) and analyzed 
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colorimetrically. Soils for total metal concentrations were digested using 4M trace metal grade 

nitric acid (2 g sample with 20 mL 4 M  HNO3 at 80 to 85°C for 4 h in a water bath; Sposito et 

al., 1982) and acid digests were analyzed for Pb, Zn, and Cd using inductively coupled plasma - 

optical emission spectrometer (ICP-OES) using a Varian 710-ES with an axial plasma and argon 

as carrier gas. Extractable metals were determined by extracting 2 g of soil (dry weight basis) 

with 40 mL of 0.5 M  Ca(NO3)2 .The mixture was placed on a shaker for 4 h at 25°C (Basta and 

Gradwohl, 2000b), filtered, and analyzed for Cd, Pb, and Zn using ICP-OES or graphite furnace 

atomic adsorption spectrometry (GF-AAS, 240 AA Zeeman atomic absorption spectrometer) 

(Agilent Technologies, Santa Clara, CA). Extractable P was determined by Mehlich-3 (Mehlich, 

1984), extractable K was determined using 1 M ammonium acetate ( Missouri, 1998) and were 

analyzed on the ICP-OES.  

Vegetative ground cover measurements were taken on May 12, 2009 (S09); November 

20, 2009 (F09); June 2, 2010 (S10); and November 17, 2010 (F10) in all plots using a point 

intercept technique (Lutes et al., 2006). Briefly, a measuring tape of 50 ft was taken and placed 

diagonally in the plot and the number of times a plant intercepted the tape at 6 inch intervals was 

recorded. Aboveground biomass was harvested in a 1 by 1 meter square area from all plots for 

biomass measurements on November 16, 2008 (F08); November 20, 2009 (F09); and November 

17, 2010 (F10). After harvesting plant samples were washed thoroughly with tap water to 

remove any attached particles. This was followed by washing again with a sodium lauryl sulfate 

solution (5 g kg
-1

 distilled water (DI)) and rinsing with DI water to remove any strongly adhered 

waste materials. Plant samples were oven dried at 55°C until they reached a constant weight. Dry 

weights of the samples were recorded for biomass calculation. Samples were ground. Sub 

samples of ground and homogenized plant samples were digested to determine total Pb, Zn, and 
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Cd concentrations. Briefly, 0.5 g of plant sample was digested with 10 ml of concentrated trace 

metal grade HNO3 for 4 h at 120°C. Filtered samples were analyzed using ICP-OES or GF-AAS. 

For quality assurance and quality control both soil and plant samples were run in duplicates, 

blank samples and standard reference materials (SRMs) were also included. Montana II Soil 

(NIST SRM 2711) was used as SRM for soil analysis and apple leaf (NIST SRM 1515) was used 

as SRM for plant samples. 

 2.4 Data Analysis 

The experimental design was a split plot design with three replications arranged in 

randomized block design with compost as main factor and lime as the sub factor. Statistical 

analyses were performed using SAS for windows version 9.2 (SAS Institute Inc. Cary, NC). 

Least Significant Difference (LSD) values were used for mean separation at the 0.05 level of 

significance. Because available K, P, and extractable metal data were not normally distributed, 

data were log transformed to transform a non-normal distribution into a normal distribution.  The 

log transformed data were used for the statistical analysis. 

 2.5 Results and Discussions 

The compost was analyzed for basic chemical properties before application. Basic 

chemical properties of the pelletized compost are given in (Table 2-3). The pH of compost was 

high (8.1). It had a high EC value with low levels of Cd and Pb and high concentrations of Zn. 

The compost contained high concentrations of N, P, and K, higher than needed for plant growth 

(Table 2-3). 
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2.5.1 Effect of Amendments on Mine Waste Chemical Properties 

The addition of amendments led to a significant increase in the soil pH (Table 2-4). 

Initially at F07 (Time 0) the lime effect and the lime by compost interaction were not significant 

(P < 0.05). With time, the lime treatment did show a significant effect of pH at S10 and F10 

sampling times but no significant lime by compost interaction was seen at any sampling times. 

There were no significant differences between the high (448 Mg ha
-1

) and the low (224 Mg ha
-1

) 

compost treatments of contaminated mine waste materials. However, they were significantly 

different compared to the contaminated control throughout the study. Increase in pH in mine 

waste materials collected from plots received compost indicated that this composted manure had 

a liming effect on the mine waste materials. Cattle feedlot manure and compost can be good 

sources of CaCO3 for soils requiring lime addition and soil pH can be increased by manure or 

compost application because cattle feed rations usually contain calcium carbonate (Eghball, 

1999). Similarly, acid soils with Al and/or Mn toxicity and low levels of available Ca and P have 

also been reported to increase soil pH and reduce Al toxicity upon animal manure addition 

(Benke et al., 2010). 

Electrical conductivity of the contaminated control was 0.43 mS cm
-1

 at F07 (Time 0) 

which is below levels expected to cause plant salinity concerns (< 4 mS cm
-1

). The addition of 

amendments increased the EC. Both low compost and high compost treatments were resulted in 

significant (P < 0.05) increases in EC (Table 2-4) at F07 (Time 0). However, no significant 

differences were seen with the lime effect or the lime by compost interaction at any sampling 

time. Increase in EC in materials after amendment addition was due to large quantities of soluble 

salts present in this applied-composted manure (Table 2-3). However, there was a decrease in EC 

in all treatments over time (from sampling times F08 to F10), and only the high compost (448 
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Mg ha
-1

) treatment showed a significant treatment difference. The salts might have leached out 

from this relatively porous mine waste materials due to rainfall. Although over time leaching is 

reduced the EC, leaching might have caused some unwanted downward movement of metals. 

Nutrients such as N, P, and K are important and required in establishing and maintaining 

a healthy vegetative community. The addition of amendments caused changes in the nutrient (N, 

P, and K) levels in all compost amended treatments (Table 2-4). For available N, P, and K the 

lime effect and the lime by compost interaction were not significant (P < 0.05). The available N 

(NH4
+
-N and NO3

-
-N) in the mine waste materials was extremely low (Table 2-1). With compost 

addition the available N concentrations increased initially (F07, Time 0) and were significantly 

higher than the control in F07 and S08. However, NH4
+
-N levels did not show any significant 

treatment difference between the low and high compost treatments (Table 2-4) and no significant 

treatment differences were seen between compost treated materials and the untreated or the 

contaminated control in the S09 to F10 sampling times. 

At F07 (Time 0), the K levels of all the treatments were increased after compost addition, 

and the high (448 Mg ha
-1

) compost treatment was significantly different (P < 0.05) from low 

(224 Mg ha
-1

) compost treatment and the contaminated control (Table 2-4), all the treatments 

were significantly different from each other. This effect of increases in available K can be 

attributed to high levels of K in the compost. With time the reduction of K levels was seen in all 

compost treatments. However, in general, high compost treated materials had significantly higher 

available K levels compared to the low compost and the contaminated control treatments. 

Available K increased after the addition of 40 g kg
-1

of cattle manure to acid soils from 

Beaverlodge and Fort Vermillion in the Peace River region of Alberta, Canada, as much of the K 

added in the cattle manure remained in a pool that was available for plant uptake (Whalen et al., 
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2000). Pierzynski et al. (2002) found that after two years, K levels decreased or were at levels 

that were insufficient for plant growth when manure was added to a similar mine waste material. 

In this study though, while there was a reduction in K levels in all treatments with time, the 

compost added plots have sufficient levels. Moreover, the high compost treatment had higher 

levels of available K compared to the low compost treatment and the untreated or the 

contaminated control. Brown et al. (2003) also found a significant decrease in K after application 

of high N biosolids to mine tailings, which indicates that larger applications of organic materials 

may be needed to maintain sufficiently high nutrient levels and this decrease in K levels could be 

due to leaching as these mine waste materials are very coarse-textured.  

Extractable P was high in compost treated materials than in the untreated or the 

contaminated control at F07 (Time 0) (Table 2-4). Further, high compost treatment was 

significantly (P < 0.05) different compared to the low compost treatment and the contaminated 

control. This was maintained throughout the study period. This greater level of extractable P in 

high compost treated mine waste materials compared to the other treatments suggests that 

pelletized manure compost at the higher rate is capable of maintaining high available P levels for 

a long time.  

2.5.2 Effects of Amendments on Extractable Metal Concentrations 

Addition of amendments to mine waste materials decreased Ca(NO3)2 – extractable Cd, 

Pb, and Zn. The results of F07 (Time 0) to F10 are given in (Table 2-5). With high compost 

treatment, significant reduction in extractable Cd was seen. The lime effect and the lime by 

compost interaction for extractable Cd were significant (P < 0.05) at F07, F09 and F10 sampling 

times. Extractable Pb and Zn were also significantly reduced in high compost treatment 

throughout the study compared to the low compost treatment and the untreated or the 
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contaminated control. Extractable Pb was reduced in all three treatments with time. Other studies 

have reported that compost as an amendment with a combination of other treatments was able to 

reduce Ca(NO3)2-extractable Cd, Pb, and Zn (Basta et al., 2001; Ruttens et al., 2006). There was 

no significant effect of lime or lime by compost interaction at any time period as per other 

observations. The reduction in extractable metal concentrations upon compost addition might be 

partly due to alkalization of mine waste materials after addition of compost treatments (Brown et 

al., 2003). The lime effect with extractable Zn was seen only in F07 where no lime by compost 

interactions was seen throughout the study. For extractable Pb no lime effect and lime by 

compost interactions were seen throughout the study. 

2.5.3 Effects of Amendments on Plant Growth and Phytotoxicity  

Vegetative ground cover for the treatments over the periods from S09 to F10 was shown 

in the (Figure 2-1). There was no significant effect of lime or a significant lime by compost 

interaction seen at any sampling time during the study. The ground cover in the control 

treatments was from weed species such as horseweed or marestail (Conyza canadensis) and 

winter annuals. There were no significant treatment effects for ground cover at S09. From time 

periods F09 to F10, the compost treatments have shown a significant increase in (%) ground 

cover. No significant differences were seen between high compost and low compost treatments 

but compost treated plots had significantly higher ground cover than that of the untreated or the 

contaminated control. Pierzynski et al. (2002) found that vegetative cover declined due to Zn 

toxicity. In the current study the increase in ground cover in treated mine waste materials 

suggested that the addition of compost helped to maintain a vegetative cover by supplying 

enough nutrients required for vegetation for 2 years. Further, no seasonal effect on vegetative 

cover was seen during the study. 
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Plant biomass was harvested from the F08 to F10 time periods. In the first growing 

season there was no biomass to harvest as we were not able to establish any vegetation due to 

high soluble salt content added with the composted manure treatment. Figure 2-2 shows the plant 

biomass of mine waste material treated plots in g m
-2

. From the second growing season (F08), 

the vegetative growth was seen. However, at this sampling time, there was no significant (P < 

0.05) treatment effect was seen. In F09 and F10, compost treatments showed significant increase 

in biomass compared to the untreated or the contaminated control plots. However, there was no 

significant difference between the low compost and the high compost treatments on the biomass 

production. The increase in biomass can be attributed at least partly to the ability of compost in 

supplying large amounts of available nutrients for plant growth. Similar to these findings, Brown 

et al. (2003) have reported that biosolids compost mixed with wood ash showing active plant 

growth in metal contaminated tailings. Alvarenga et al. (2008; 2009) investigated the effect of 

three organic residues, sewage sludge, municipal solid waste compost, and garden waste 

compost, on the phytostabilization of Cd, Cu, As, Zn and Cr contaminated soil and succeeded in 

achieving increases in plant growth with treatments. 

Figure 2-3 shows the concentrations of (a) Cd, (b) Pb, and (c) Zn in the plant. Effect of 

lime treatment was again not significant. The plant Cd concentrations in treated and untreated 

mine waste material were not significant (P < 0.05) at any time period. The Cd concentrations in 

plants from high compost treatment plots were 2.9, 0.8 and 1.8 mg kg
-1

, in low compost 

treatment were 4, 2.5, 1.8 mg kg
-1

 and in the untreated or the contaminated control 3.8, 2.9 and 

3.5 mg kg
-1

 at F08, F09 and F10 sampling times, respectively. Cadmium concentrations in all 

plants were below 4 mg kg
-1

 and were below the maximum tolerable dietary limits for cattle, 

which is 10 mg kg
-1

 (NRC, 2005).  
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Lead concentrations in plant samples did not show any significant treatment difference at 

F08 and F09 sampling times where at F10 the LC and HC treatments were significantly different 

with lower concentrations compared to the control. Lead concentrations were less than 30 mg kg
-

1
 in plants grew in low and high compost treated waste materials at all times while Pb 

concentrations in plants grew in untreated or the contaminated control plots were increased from 

26 mg kg
-1

 in F08 to 85 mg kg
-1

 by F10 sampling time. However, Pb concentrations in all plant 

tissues were below the maximum tolerable dietary limits for cattle, which is 100 mg kg
-1

 for 

cattle (NRC, 2005).  

No significant differences were seen among Zn concentrations in plants during all 

sampling times. Concentrations of Zn in plant tissue in high compost treated plots were below 

185 mg kg
-1

, while for low compost treated plots it was always below 240 mg kg
-1

. Plant Zn 

concentrations in untreated plots were below 400 mg kg
-1

 while no plant sample had >500 mg 

kg
-1

 Zn concentration. Chaney (1993) reported that the Zn levels in plant > 500 mg kg
-1

are 

thought to be phototoxic. According to NRC (2005) the maximum tolerable dietary level of Zn 

for cattle is 500 mg kg
-1

. In the current study it shows that the addition of compost ranging from 

224 to 448 Mg ha
-1

 supported the plant growth and maintained Zn concentrations well below the 

phototoxic levels.  

 2.6 Conclusion 

A general conclusion of the current study is that application of pelletized compost at 224 

to 448 Mg ha
-1

 was effective in establishing and maintaining vegetative cover in Pb/Zn 

contaminated mine waste materials throughout the 2.5 yr study period. In general, application of 

448 Mg ha
-1

 compost was more effective than 224 Mg ha
-1

 for maintaining high levels of 

available nutrient concentrations, reducing extractable metal concentrations and reducing metal 
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concentrations in plants. Plant biomass establishment was successful from third growing season 

and the compost treatments did show significant increase in biomass production compared to the 

untreated or contaminated control. No decline in pH was seen in compost added plots indicating 

compost treatment was successful in maintaining pH. Plant tissue analyses did not show any 

signs of metal phytotoxicity. Additional monitoring will be required to see if these applied 

pelletized compost levels would be effective in reducing metal concentrations in plant tissue as 

well as maintaining vegetative growth for longer than 2.5 years. In conclusion, the current study 

suggests that the application of pelletized compost at 224 to 448 Mg ha
-1

 is sufficient in 

maintaining vegetative cover for at least 2.5 years. The addition of lime did not show any 

significant effect, so the addition of lime can be avoided for these mine waste material 

reclamation efforts and also may not be needed for similar types of mine waste materials. 
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Figure 2-1 Ground cover (%) of vegetated plots over time in different treatments. Lime factor was not significant (P < 0.05) 

for all treatments. The bars represent mean ± standard error. C- contaminated control is the average of with and without 

lime, LC- low compost (224 Mg ha
-1

) is the average of with and without lime, HC- high compost (448 Mg ha
-1

) is the average of 

with and without lime. 

 

Time

S09 F09 S10 F10

G
r
o
u

n
d

 c
o
v

e
r
 (

%
)

40

50

60

70

80

90

100

C

LC

HC



89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Plant biomass of vegetated plots over time period. Lime factor was not significant (P < 0.05) for all treatments. The 

bars represent mean ± standard error. C- contaminated control is the average of with and without lime, LC- low compost (224 

Mg ha
-1

) is the average of with and without lime, HC- high compost (448 Mg ha
-1

) is the average of with and without lime. 

 Letters indicate statistical significance among treatments (P < 0.05).
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Figure 2-3 Metal concentrations in plant tissue of different treatments. (a) Cd 

concentrations, (b) Pb concentrations, (c) Zn concentration of plant tissue. The bars 

represent mean ± standard error. C- contaminated control is the average of with and 

without lime, LC- low compost (224 Mg ha
-1

) is the average of with and without lime, HC- 

high compost (448 Mg ha
-1

) is the average of with and without lime. 

 Letters indicate statistical significance (P < 0.05) among treatments at each time period.  
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Table 2-1 Basic chemical properties of the contaminated mine waste materials before 

amendment additions. 

 

Characteristics Mine waste

pH (1:1) 6.7

Total Zn (mg kg
-1

) 4473

Total Pb (mg kg
-1

) 2351

Total Cd (mg kg
-1

) 17

Electrical Conductivity  (mS cm 
-1

) 0.2

Extractable  NH4
+
-N (mg kg

-1
) 4

Extractable NO3
-
-N (mg kg

-1
) 2.1

Extractable Ca (mg kg
-1

) 706

Extractable K (mg kg
-1

) 43

Extractable Mg (mg kg
-1

) 47

Extractable Na (mg kg
-1

) 16

Extractable P (mg kg
-1

) 47

CEC (cmol. kg
-1

) 
†

7.2

Total C (g kg
-1

) 6.6

Total N (g kg
-1

) 0.3
† 

CEC: Cation Exchange Capacity
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Table 2-2 Plant mix seeded into each plot on May 20th, 2008 and the amount applied of 

pure live seed.  

 

  

Common Name Scientific Name Amount Applied

Kg ha
-1

El Reno Sideoats grama Bouteloua curtipendula 2.24

Blackwell Switchgrass Panicum virgatum 1.68

Western Wheatgrass Pascopyrum smithii 5.6

Kaw Big Blue Stem Andropogon gerardi 1.34

Blaze Little Blue Stem Schizachyrium scoparium 1.12

Osage Indiangrass Sorghastrum nutans 2.02

Birdsfoot Trefoil Lotus corniculatus 0.56

Red River Crabgrass Digitaria sanguinalis 1.12  
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Table 2-3 Basic chemical properties of the pelletized compost material. 

 

Characteristics Compost

pH(1:1) 8

EC (mScm
-1

) 51

Total C (g kg
-1

) 238

Total N (gkg
-1

) 16.3

Total P (g kg
-1

) 8.4

Extractable  NH4
+
-N (mg kg

-1
) 319

Extractable  NO3
-
-N (mg kg

-1
) 238

Extractable  Ca (mg kg
-1

) 2745

Extractable  K (mg kg
-1

) 21500

Extractable  Mg (mg kg
-1

) 1522

Extractable  Na (mg kg
-1

) 5338

Total Zn (mg kg
-1

) 794

Total Pb (mg kg
-1

) 2.9

Total Cd (mg kg
-1

) 1.8

Total Cu (mg kg
-1

) 78

Total Mn (mg kg
-1

) 300

Total Ni (mg kg
-1

) 11  
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Table 2-4 Selected chemical properties of mine waste materials from F07 (Time 0) to F10 

sampling times. C- contaminated control is the average of with and without lime, LC- low 

compost (224 Mg ha
-1

) is the average of with and without lime, HC- high compost (448 Mg 

ha
-1

) is the average of with and without lime. 

 

Mean within a column followed by the same letter are not significantly different at P < 0.05. 

 

 

 

 

Time Treatments pH EC NH4
+
-N NO3

-
-N    P   K

mS cm
-1

C 7.1b 0.44c 18b 6.2b 33b 156c

F07 LC 8.1a 30b 127a 30a 1350a 12513b

HC 8.1a 43a 169a 47a 2056a 18339a

C 7.3b 0.41c 18b 10a 134c 222c

S08 LC 8.2a 0.81b 81a 12a 1463b 654b

HC 8.4a 0.97a 105a 9.0a 1952a 1032a

C 7.6b 0.57b 38b 5.3a 232b 182b

F08 LC 7.8a 0.80a 58ab 4.6a 1530a 337a

HC 7.7ab 0.95a 65a 8.7a 1995a 499a

C 7.1b 0.32c 3.5a 4.5b 478b 167b

S09 LC 7.5a 0.49b 3.8a 4.9b 1181a 246a

HC 7.5a 0.62a 4.8a 7.6a 2104a 322a

C 6.8a 0.29b 3.8a 4.8a 86b 92b

F09 LC 7.2a 0.40ab 4.6a 5.6a 621a 131ab

HC 7.4a 0.47a 4.3a 5.3a 726a 214a

C 7.2b 0.31a 2.5b 4.1a 109b 65b

S10 LC 7.7a 0.37a 3.6ab 3.8a 1347a 195a

HC 7.7a 0.45a 4.9a 4.4a 2008a 283a

C 7.0b 0.40b 11.2a 7.8a 84c 186c

F10 LC 7.4a 0.44b 9.0a 6.0a 979b 177b

HC 7.6a 0.59a 11.0a 8.7a 2524a 330a

Available

…………… mg kg
-1

……………
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Table 2-5 Ca(NO3)2 extractable Cd, Pb and Zn in mine waste materials from F07 (Time 0) 

to F10 sampling times. C- contaminated control is the average of with and without lime, 

LC- low compost (224 Mg ha
-1

) is the average of with and without lime, HC- high compost 

(448 Mg ha
-1

) is the average of with and without lime. 

Time Treatments

Cd Pb Zn

C 3.7a 100a 207a

F07 LC 0.5ab 23a 33b

HC 0.2b 3a 7b

C nm
† nm nm

S08 LC nm nm nm

HC nm nm nm

C 4.5a 80a 134a

F08 LC 1.5b 28a 8b

HC 0.5b 28a 6b

C 1.4a 26a 86a

S09 LC 0.3b 6a 9b

HC 0.1b 6a 4b

C 3.9a 70a 228a

F09 LC 0.3b 98a 74ab

HC 0.1b 6a 16b

C 2.3a 8a 100a

S10 LC 0.2b 2a 16b

HC 0.3b 2a 8b

C 1.7a 4.5a 80a

F10 LC 0.7b 1.0a 44b

HC nd
†† 0.5a 3.8c

0.5M  Ca(NO3)2 Extractable 

……… mg kg
-1

………

 

The values in each column marked with the same letter are not significantly different at P < 0.05 

†
nm: not measured; 

††
nd: not detectable. 
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Chapter 3 - Long-term Monitoring of Vegetative Growth and 

Microbial Enzyme Activity upon the Addition of Amendments to 

Trace Element-Contaminated Mine Waste Materials 

  3.1 Abstract 

Trace element-contaminated mine wastes pose environmental hazards to the surroundings 

due to wind and water erosions and leaching. We evaluated the long-term changes in soil quality, 

and sustainability of phytostabilization efforts, assisted with soil amendments, to enhance the 

quality of trace elements-contaminated mine waste materials at two field sites in the Tri-State 

mining region of Kansas, Missouri, and Oklahoma. Various chemical properties of the material, 

such as pH, extractable metal concentrations, total organic carbon (TOC), total nitrogen (TN), 

and nutrient availability together with biochemical properties, such as arylsulfatase, β-

glucosidase, and alkaline phosphatase activities, and plant parameters, such as plant biomass 

were measured. Compost was applied at two different rates (45 or 269 Mg ha
-1

) with and without 

lime and bentonite in 2006. Switchgrass (Panicum virgatum) was seeded to establish a vegetative 

cover. Results showed that all enzyme activities, plant biomass, and soil chemical properties, 

such as pH, TOC and TN, available N, P, and K concentrations, were higher in 269 Mg ha
-1

 

compost treated plots than in the untreated contaminated mine waste (control) after 4.5 years of 

application. However, decreased extractable Cd, Pb, and Zn were increased by the end of the 

study period in one study site. In the second study site at the end of study period, extractable Pb 

and Zn did not show any significant difference among the compost treatments and the untreated 

control. Moreover, a decrease in enhanced enzyme activities and plant biomass was also seen in 

all treatments by the end of the study. This study suggests that high amount of compost is needed 

to establish vegetation and improve soil chemical and biochemical properties while the long-term 
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sustainability of these efforts may require repeated addition of soil amendments in every 4 to 5 

years. Future research is needed to monitor the evolution of biochemical properties to assess 

longer-term (> 5-yr) sustainability and assess if more applications of amendments could help to 

facilitate reclamation of these mine impacted areas. 

 3.2 Introduction 

Trace elements are considered one of the major sources of soil pollution and many 

researchers have reported that trace elements cause long-term hazardous effects on soil 

ecosystems and negatively influence soil biological activity (Kahkonen et al., 2008; Kizilkaya, 

2008; Malley et al., 2006; Wang et al., 2007). Soil excavation is not a viable, and/or practical 

remedial option for most large mine-impacted areas due to time, cost and labor. In situ 

techniques have been developed in an attempt to establish self-sustainable ecosystems and 

stabilize mine waste materials (Hettiarachchi and Pierzynski, 2004). Remediation of trace 

element-contaminated mine waste materials may be done through the phytoextraction or by the 

phytostabilization of the contaminants. Phytoextraction is not a viable option for many trace 

elements due to lack of known hyperaccumulators. Ecological restoration of degraded 

contaminated mine waste can be accomplished through the addition of organic materials or 

composts (Pierzynski et al., 2002) along with other appropriate inorganic materials that 

precipitate or increase sorption of metals, thereby, decreasing the proportion of the metals in the 

soil solution (Geebelen et al., 2003). As a result, metal mobility can be further limited through 

the establishment of a vegetative cover. This approach is known as phytostabilization. Several 

studies have evaluated the effect of organic amendments (such as compost from municipal solid 

waste or biosolids) on trace elements-contaminated mine waste materials or soils. Most studies 

have focused on evaluating the effect of amendments on bioavailability of trace elements 
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(Alvarenga et al., 2008a; Alvarenga et al., 2008b; Brown et al., 2003b; Gaskin et al., 2003; 

Pérez-de-Mora et al., 2007; Walker et al., 2004), while only a few reported changes in microbial 

activity and soil enzymes (Alvarenga et al., 2008a; Garcia-Gil et al., 2000; Pérez-de-Mora et al., 

2006).  

The Tri-State mining region, located in southwest Missouri, southeast Kansas, and 

northeast Oklahoma, has a long history of Pb, and Zn mining. In general mine waste materials 

have very low concentrations of organic matter, N, and P; pH varies from neutral to alkaline; and 

have very poor soil physical properties (Krzaklewski and Pietrzykowski, 2002; Wang et al., 

2007) which harms native ecosystems (Pierzynski, 1997). By applying organic materials along 

with lime at a rate of 90 Mg ha
-1

, Pierzynski et al. (2002) witnessed an increase in tall fescue 

(Festuca arundinacea Shreb) growth in the first year after amendment addition. However, by 

year 3 plant growth began to decline and plant tissue analysis suggested Zn phytotoxicity as a 

causative factor. In another study, Brown et al. (2003b) found that applications of high N 

biosolids (66 Mg ha
-1

) with wood ash was effective at establishing a vegetative plant cover on 

the Cd, Pb, and Zn mine tailings for at least 2 growing seasons. This was attributed to the 

reduction of metal bioavailability and enhanced plant nutrient concentrations in waste materials. 

Over time, both studies have observed a decrease in available Ca, K, and Mg concentrations, 

which led them to conclude that higher amendment loadings may be needed to supply essential 

plant nutrients required to produce a self-sustaining plant cover.  

Baker (2008) investigated the effectiveness of increased additions of organic amendments 

on the permanence of vegetative covers on mine waste materials in southeast KS for about 2 

years. Baker et al. (2011) applied beef manure compost at two different rates (45 and 269 Mg ha
-

1
) with and without lime and bentonite to investigate the changes in microbial community 
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structure and function. They hypothesized that large applications of compost (> 200 Mg ha
-1

) 

will support increased microbial activity over time. Vegetative cover was established by seeding 

switchgrass (Panicum virgatum) into plots. They found that compost additions significantly 

changed the total organic (TOC), total nitrogen (TN) and available N, P, and K concentrations 

along with pH values. Further, enzyme activities and microbial biomass measurements were used 

to monitor nutrient cycling upon amendment added for >2 years, from 2006 to 2008. Five 

months after amendment additions, the high compost, high compost + lime, and high compost + 

lime + bentonite treatments were found to have significantly higher arylsulfatase, and 

phosphatase activities compared to all other treatments. The high compost treatment had a 

significantly increased β-glucosidase activity and also more microbial biomass C, while other 

measurements were more variable. The increase in microbial activities was significantly related 

to the increase in TOC, and available P. This study is a continuation of Baker (2008) and Baker 

et al. (2011). The objectives of this study were: to assess the effectiveness of added beef manure 

compost with and without lime and bentonite amendments to trace elements-contaminated mine 

waste materials using soil chemical and biological properties as indicators, and to evaluate if the 

addition of amendments capable of maintaining vegetative cover on mine waste materials for 

about 4.5 years after the application. 

  3.3 Materials and Methods 

 3.3.1 Site and Experimental Setup 

Two field study sites selected for this study were located in the Tri-State Mining Region 

near Galena, KS. Both the experimental field sites are located within and old mining areas where 

mining waste has been deposited on the surfaces due to mining activity for 100 years. One of the 
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most abundant mine waste materials found at these two sites are commonly known as chat and it 

is a by-product of the initial processing of Pb/Zn ores at the mine sites. Vegetation was not found 

at either of the sites prior to the study. Both the sites were initiated in 2006. A more detailed 

description of these research sites can be found in Baker (2008), where soil microbiological and 

biochemical properties reported from year 2006 to 2008. Physical and chemical characterization 

of contaminated mine waste materials collected from both the sites prior to any amendment 

addition are reported in Table 3-1 (Source: Baker et al, 2011). 

A field study was carried out in a randomized complete block design with a split-plot 

arrangement and three replications. Amendments applied include composted beef manure; lime 

as Ca(OH)2; and Enviroplug Grout (Wyo-Ben, Inc., Billings, MT), which is a Wyoming 

bentonite. Compost was applied at two different rates; a low composts treatment of 45 Mg ha
-1

 

and a high compost treatment of 269 Mg ha
-1

. The basic characteristics of compost are given in 

Table 3-2 (Source: Baker et al, 2011). Lime applied was 0 or 11.2 Mg ha
-1

. Bentonite applied 

was 50 g bentonite kg
-1

 compost providing 0.45 kg of bentonite for low compost treatment and 

2.69 kg bentonite for high compost treatment. The amount of bentonite was estimated based on 

what we may need to use if we are to pelletize the compost prior to application. The amount of 

lime and low compost rates were similar to that applied to other remediation plots in the area (G. 

Pierzynski, 2013, personal communication). Experimental plots were 1 m by 2 m in size. 

Treatments consisted of (1) CO, non-amended control plot; (2) LC, a low compost treatment; (3) 

HC, a high compost treatment; (4) LCL, low compost + lime; (5) HCL, high compost + lime; (6) 

LCLB, low compost + lime + bentonite; and (7) HCLB, high compost + lime + bentonite. In 

order to limit the amount of interplot contamination all plots had galvanized steel borders 
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installed, buried approximately 15cm deep more detailed description of this study can be found 

in Baker (2008).  

Plots were seeded with switchgrass (Panicum virgatum Linnaeus) on May 26, 2006 at 

6.72 kg of pure live seed (PLS) ha
-1

. No signs of vegetation were seen in the following season 

and establishment of vegetation failed in the first year due to high salinity caused by the compost 

and lack of rainfall. Annual ryegrass (Lolium multiflorum Lam.) [Lam. is an abbreviation of 

Lamarck, the man who first described the species, so you put a period after it] was then seeded to 

plots in the fall of 2006 to serve as a protective winter cover. In the spring of 2007, glyphosate 

was used to kill the annual ryegrass. Plots were re-seeded on April 19, 2007 with switchgrass.  

 3.3.2 Soil Samples 

Results from soil samples collected from time 0 to 814 days can be found in Baker (2008) 

and focus of this study was beyond 814 days after treatment application. All soils were sampled 

at 0- to 20-cm depth for this study from each plot on May 12, 2009 (1082 days), November 20, 

2009 (1274 days), June 2, 2010 (1468 days) and November 17, 2010 (1636 days). From each 

plot 5 sub samples were taken using a hand trowel and combined into one bulk sample. A portion 

of each field-moist sample was sieved to < 2 mm using a stainless-steel sieve and stored at < 4°C 

for microbial enzyme activity while other portion was air-dried and sieved to < 2 mm for 

chemical analyses. All air-dried and sieved samples were analyzed for pH (1:1 soil to deionized 

water) (McLean, 1982). Available N (NO3
-
-N and NH4

+
-N) was determined by extraction with 

1M KCl (Keeney and Nelson, 1987), concentrations of  N in filtered extracts were determined 

colorimetrically. Available P was determined by Mehlich-3 (Mehlich, 1984) and available 

cations (K, Na, Mg, and Ca) were determined by extraction with 1M ammonium acetate 

(Missouri, 1998). Filtered extracts were analyzed on inductively coupled plasma - optical 
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emission spectrometer (ICP-OES) using a Varian 710-ES (Agilent Technologies, Santa Clara, 

CA) with an axial plasma and argon as carrier gas. Total organic carbon and TN were measured 

by dry combustion on a LECO CN-2000 Elemental Analyzer (LECO Corporation, St. Joseph, 

MI). Samples were treated with phosphoric acid prior to TOC analysis to remove the carbonates. 

For total metal concentrations, nitric acid digestible metal concentrations were determined using 

2 g of material (≤ 2mm) with 20 mL of trace metal grade 4 M  HNO3 at 80 to 85°C for 4 h 

(Sposito et al., 1982). Filtered digests were then analyzed for Cd, Pb, and Zn by ICP-OES.   

Extractable metals were determined by extracting 2 g of soil (dry weight basis) with 40 mL of 

0.5M Ca(NO3)2, the mixture was placed on a rotary shaker for 4 h at 25°C (Basta and Gradwohl, 

2000) and extract was filtered. Extracts were analyzed for Cd, Pb, and Zn on ICP-OES or 

graphite furnace atomic absorption spectroscopy (GF-AAS, Varian AA 240G 220/240 Zeeman,) 

(Agilent Technologies, Santa Clara, CA). For quality assurance and quality control (QA/QC) 

samples run as duplicates, blanks and reference soil samples. The NIST standard reference 

material, Montana soil II (SRM 2711a) was used as our reference soil. 

3.3.3 Plant Samples  

Plant biomass was harvested on November 20, 2009 (1274 days), and November 17, 

2010 (1636 days). As mentioned in Baker (2008), a mixture of plant species was present at both 

sampling times and at both sites. In addition to switch grass at both sites, tufted hairgrass 

(Deschampsia cespitosa (L.) Beauv) and smooth pigweed (Amaranthus hybridus Linnaeus ) 

were present at site A, while at Site B there was yellow foxtail (Setaria glauca) and marestail 

(Conyza canadensis). After harvest, plant samples were washed thoroughly with water to remove 

any attached soil particles followed by washing again with a sodium lauryl sulfate solution (5g 

kg
-1 

DI water) and rinsing with DI [define DI] water to remove any strongly adhered waste 
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materials. Washed plant samples were oven dried at 55°C and dried sample weights were 

recorded for biomass calculation. Plant samples were then ground and digested to determine total 

Pb, Zn and Cd concentrations. Briefly 0.5 g of plant sample was digested with 10 mL of 

concentrated trace metal grade HNO3 for 4 h at 120°C. Filtered samples were analyzed using 

ICP-OES or GF-ASS. For QA/QC, duplicates, blanks, and standard reference samples (NIST 

SRM 1515, apple leaf sample) were included.  

  3.3.4 Microbial Enzyme Assays 

 Mine waste materials were assayed for enzyme activity within 2 weeks of sampling. 

During this period of time, samples were stored at 4
o
C after sieving wet samples to < 2 mm. 

Enzyme activities were determined on field-moist samples and are reported on a dry-weight 

basis. The moisture content was determined from  loss in weight after drying at 105ºC for 48 h. 

Activities of β-glucosidase (pH 6, 37
o
C); alkaline phosphatase (pH 11, 37ºC); and arylsulfatase 

(pH 5.8, 37
o
C) were assayed as described by (Tabatabai, 1994 ). The amount of p-nitrophenol 

released was determined colorimetrically using UV/VIS spectrophotometer (Beckman 800, Brea, 

CA). Duplicates were run for every fifth sample.  

 3.4 Data Analysis 

Statistical analyses were performed using SAS for windows version 9.2 (SAS Institute 

Inc. Cary, NC). All data were analyzed by the General Linear Model (GLM), using least 

significances for mean separations at P < 0.05. For available P, data were not normally 

distributed and, therefore, data were log transformed to transform a non-normal distribution into 

a normal distribution.  The log transformed data were used for the statistical analysis. Pearson 

correlation coefficients (r) were calculated between soil physico-chemical properties and their 
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enzymatic activities. Three levels of significance were considered: P < 0.05, P < 0.01 and P < 

0.001.  

  3.5 Results and Discussion 

In general, pH values were significantly higher (P < 0.05) in all high compost treatments 

(HC, HCL, HCLB) as compared to the control at all sampling times in both study sites (Table 3-

3). For the site A samples, pH trends of the low compost treatments (LC, LCL, LCLB) were less 

consistent and not always significantly higher than the control. For the site B, both low compost 

and high compost treatments had significantly higher pH values than the control material. In 

addition, all other treatments of low compost (LCL, LCLB) and high compost (HC, HCL, 

HCLB) were significantly different from the LC treatment, while LC was significantly different 

from the control. Overall, compared to  Baker (2008) findings (from 0 to 841 d), since 841 d the 

pH levels were declined regardless of the treatment (HCL, HCLB, LC, LCL, LCLB) except the 

HC treatment at site A. However, at site B the pH in all treated plots remained same, no such 

decrease was observed. Similarly Pierzynski et al. 2002 observed decline in pH over the course 

of study where the cattle manure was added equivalent to 90 Mg ha
-1

 mentioned that this 

decrease in pH could be attributed to the oxidation of sulfide minerals. Changing the pH is a 

frequent remediation practice for trace element contaminated soils, as the majority of the cationic 

metals (unlike trace elements such as arsenic forming oxyanions in solution) are less soluble in 

alkaline conditions (Adriano, 2001). Also, Cd, Zn, and Pb  have a high affinity for organic matter 

(Bernal et al., 2007; Brown et al., 2003a; Clemente and Bernal, 2006), while their stability in 

soils generally decreases with increasing acidity (Alvarenga et al., 2008a; Alvarenga et al., 

2008b). Decrease in soil pH both in amended and control over 4.5 years indicated that natural 

attenuation processes may have also played an important role in diminishing trace element 
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solubility and thereby increased bioavailability (Tan, 2000) because trace elements are bound by 

organic substance on average between pH 3 and pH 6 in the order Cu > Cd > Zn, mainly sorbed 

on deprotonated carboxyl groups and phenolic OH
– 

groups in the form of innersphere complexes. 

Hence, Cd and Zn become mobilized if pH falls below 6.5 and 5.5–6, respectively (Mansfeldt, 

2011). 

Available P concentrations were significantly higher (P < 0.05) in the high compost 

treatments compared to the control at both sites at all sampling times and remained constant for 

the duration of the study. At site A and B, for available P no significant differences are seen with 

lime and bentonite treatments of both low compost and high compost. At site A no significant 

difference (P < 0.05) was discovered among the treatments for available NH4
+
 throughout the 

study. For available NH4
+
 at site B, the treatments were not significantly different from the 

control except for 1274 d where the HCLB was significantly higher (P < 0.05) than the other 

treatments. For available NO3
-
 at site A, no significant difference was seen in all treatments at 

1082 and 1468 d while at 1274 and 1636 d the high compost treatments had significant higher (P 

< 0.05) available NO3
-
 than the LC treatment and the control treatment. At site B, available NO3

-
 

were significantly higher (P < 0.05) in high compost treatments in all sampling times except 

1082 d where no significant difference was seen between treatments. At both sites available K 

were significantly higher (P < 0.05) in high compost treatments than in low compost and the 

control treatments. However, compared to Baker (2008) findings the available K was decreased 

after 841 d in both sites and remained constant throughout the study (1082 d to 1636 d) in both 

sites. According to Kansas State University soil test interpretations available N levels less than 

25 mg/L; extractable K levels less than 125 mg/kg; and extractable P less than 25 mg/L are 

considered as low (Keeley and David, 1998).  Figure 3-1 and 3-2 shows the TOC and TN in site 
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A and B. Total organic carbon and TN were significantly higher (P < 0.05) in the high compost 

treatments while there were no significant differences seen in the LC and control treatments 

throughout the study in both study sites. 

Calcium nitrate extractable metal concentrations have been used as an indicator of metal 

bioavailability (Basta and Gradwohl, 2000).  Calcium nitrate extractable Cd concentrations in 

high compost treatments remained significantly less than the control throughout the study period 

(Table 3-5). Moreover, at site A there were sampling times that high compost treatments were 

able to maintain lower levels of extractable Cd than the LC and LCL treatments. For site A, 

extractable Pb concentrations in high compost treatments were significantly less than the control 

except at the last sampling time (1636 d), where no significant differences (P > 0.05) were seen 

between any treatments.  Further an increase in extractable Pb concentrations was seen by 1636 d 

in both the low compost and high compost treatments (Table 3-5).  

In site B, no significant difference was seen between the low compost and high compost 

treatments throughout the study and treated soils always had lower extractable Pb concentrations 

than the control. Calcium nitrate extractable Zn at site A did not show any consistent trends 

between treatments (Table 3-5). At site B, except for the LC treatment extractable Zn 

concentrations in all treatments (HC, HCL, HCLB, LCL, and LCLB) remained significantly less 

than control throughout the study. In general beef manure compost and inorganic amendments, 

lime and bentonite, used in this study were not able to maintain lower extractable metal 

concentrations compared to the unamended control after 4.5 years of application. This might be 

due to different factors implied in the mobility and interaction of heavy metals with soil 

properties. Decrease in extractable (bioavailable) Cd, Pb and Zn were seen in all treatments 

compared to the control at both sites six months after the amendment application (Baker, 2008).
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 The application of organic amendments initially immobilized a fraction of metals 

possibly by complexation of metals directly to stable organic carbon in soils and also due to 

direct interaction between added excessive levels of P and metals.   Increased organic carbon and 

available P concentrations in compost amended mine waste materials have declined over time; 

these reductions might have had effect on extractable metal concentrations.   Also the established 

vegetation in treated plots may be influencing the availability of metals as well. Plant roots are 

known to exude organic compounds capable of complexing metals, which can increase the 

metals availability in the rhizosphere, and this process would be differ among different species 

(Jones, 1998).  The significant increase in extractable metal concentrations in the amended mine 

waste materials may also be attributed to decrease in soil pH over time, similar findings were 

reported by Pierzynski et al. 2002.  Although heavy metals as studied here become less 

mobile/bioavailable with effective in situ treatments via immobilization of contaminants 

chemically, their total concentrations in the soil remains unchanged, and this immobilized pools 

of metals may become available again with time, through natural weathering process or through 

breakdown of high molecular mass organic-metal complexes (Bolan and Duraisamy, 2003).   

This study showed enhanced vegetative growth up to about 4.5 yr after treatment 

application (1274 d and 1636 d) and all treatments had a significant positive effect on total plant 

biomass production at both sites (Figure 3-3). It should be noted here that at site B, no biomass 

were present in the control treatment during this study period. Moreover, high compost (269 Mg 

ha
-1

) treatments produced significantly more plant biomass than both the low compost (45 Mg 

ha
-1

) and the unamended control treatments. The combinations of compost with lime, or with 

lime and bentonite did not yield significant differences in total plant biomass. However, 

compared to the findings of Baker (2008), after 841 d at site A and B, decrease in plant biomass 
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was seen in both low compost and high compost treatments. This decrease in plant biomass can 

be attributed to the soil acidification and subsequent high concentrations of bioavailable Zn in 

sites (Table 3-6). Total Zn concentrations of 300–400 mg kg
−1

 are regarded as toxic for 

monocotyledonous plants; however, vegetation in contaminated sites may manifest no negative 

symptoms or physiological disturbances (Kabata-Pendias and Pendias, 1992) due to their low 

bioavailability. Further some plants can tolerate high Zn levels by binding of Zn to cell 

membranes and precipitation of Zn with proteins, thus eliminating Zn from metabolic processes 

(Ross, 1994).  

Addition of organic amendments along with other amendments has immediately 

increased the pH of the tailings and in the short-term this immediate increase pH allows 

germination of seedlings and growth, resulted in improved plant biomass (Solis-Dominguez et al. 

2012, Pierzynski et al., 2002). However, in the longer-term, the tailings can continue to generate 

acidity and could have contributed to the decline of the plant biomass due to increase in the 

exchangeable forms of metals with the decrease in the residual forms of metals (Pierzynski et al., 

2002). Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, 

lower biomass production and metal accumulation. Low biomass production is common 

symptoms of trace element (Johnston and Proctor, 1977).  We also observed increased levels of 

extractable Pb by the end of this study period.  The inhibitory effects of Pb
2+

 on growth and 

biomass production may possibly derive from effects on metabolic plant processes (Nagajyoti et 

al., 2010; Van Assche and Clijsters, 1990).  Further, poor biomass resulting from amendment 

could be expected due to low levels of N; deficiencies in N and P are often limiting factors in 

revegetation of former mine sites (Tordoff et al., 2000). A large number of authors confirmed 

that N mineralization from compost is very limited in the short term. However, there is a 
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significant residual effect from the cumulative applications which becomes visible later after 4–5 

years, resulting in deferred higher N availability and yields (Barbarick and Ippolito, 2007; 

Blackshaw et al., 2005; Leroy et al., 2007).  Although P availabilities remained high throughout 

this study, declined available N and K levels were observed clearly by the end of this study even 

in the high compost added plots.   

Arylsulfatase is an extracellular enzyme that catalyzes the hydrolysis of organic sulfate 

esters, therefore releasing available sulfate.  Arylsulfatase activity values of all HC treatments 

were statistically higher than those of the control treatment in both study sites throughout the 

study (Table 3-6). Moreover, arylsulfatase activities at site A were significantly higher for the 

high compost treatments compared to the low compost treatments (LC, LCL) except for LCL 

and HCL at 1468 d. At site B, high compost treatments (HC and HCL) had significantly higher 

arylsulfatase activities at all 3 sampling times than the control. β-Glucosidase plays a critical role 

in C cycling and activity of glucosidase is the rate-limiting enzyme in the microbial degradation 

of cellulose to glucose. Activities of β-glucosidase of the high compost treatments were 

significantly higher than the control in both sites at all sampling times (Table 3-6). No consistent 

differences were seen between the high compost treatments throughout the study at both sites. 

Alkaline phosphatases are extra cellular enzymes that are produced primarily by microbes 

catalyzing the hydrolysis of organic phosphates (Tabatabai, 1994).  Alkaline phosphatase activity 

of high compost treatments was significantly higher than the untreated control at both sites A and 

B (Table 3-6). No significant difference seen between high compost applied treatments at both 

sites except for site A at 1468 d. Compared to the Baker et al. (2011) findings, after 841 d 

arylsulfatase, β-glucosidase, alkaline phosphatase activities decreased in all low compost 

treatments where as in high compost treatments no such decrease was seen suggesting that high 
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compost treatment are capable of maintaining high microbial enzyme activities for at least about 

4.5 years after application.  Table 3-7 and 3-8 shows the Pearson‘s correlation coefficients 

between soil chemical properties and enzyme activities in site A and site B, respectively. In 

general, all enzyme activities showed positive correlation between soil chemical properties such 

as pH, TOC and TN while they were negatively correlated with Ca(NO3)2 extractable or 

bioavailable metal concentrations.  

Arylsulfatase is an extracellular enzyme that catalyses the hydrolysis of organic sulphate 

esters (RO-SO3
-
), releasing inorganic sulphate (SO4) and its availability depends on its enhanced 

organic S mineralization or mobilization (Fitzgerald, 1976; Williams and McLachlan, 1975). 

This is due to the fact that certain proportions of sulphur in different soil profiles are bound into 

organic compounds and are indirectly available to plants. In this regard, its availability will 

depend on the extracellular hydrolysis of these aromatic sulfate esters or intracellular oxidation 

of soluble organic matter absorbed by the microorganisms to yield energy and carbon skeletons 

for biosynthesis by which some SO4-S are released as a byproduct (Dodgson et al., 1982). All 

these processes are dependent on arylsulfatase enzymes. Mean values are high in all compost 

added soils, indicating the importance of the compost amendments on the enzyme enhancement. 

Moreover, arylsulfatase activity correlated positively with pH, TOC and TN and correlated 

negatively with extractable or bioavailable Cd, Pb and Zn indicating suppression of arylsulfatase 

activity with increasing available metal concentrations. Similar results were obtained by others 

(Alvarenga et al., 2008a; Alvarenga et al., 2008b; Pérez-de-Mora et al., 2005; Pérez-de-Mora et 

al., 2006; Zornoza et al., 2012), where they found arylsulfatase activity was inhibited partially by 

these trace elements.  
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β-glucosidase is a common and predominant enzyme in soils (Eivazi and Tabatabai, 

1988; Tabatabai, 1994 ). Its activity is the rate-limiting enzyme activity in the microbial 

degradation of cellulose to glucose and plays a critical role in C cycling. β-glucosidase enzyme is 

reported to be very sensitive to changes in pH (Acosta-MartÃ­nez, et al., 2000). Further, 

Claassens et al. (2005) and Eivazi et al. (1990) reported a significant positive relationship of β-

glucosidase activity with total C, which is related to the increase in organic residues (Garcia-Gil 

et al., 2000). In the present study for both sites, β-glucosidase showed a positive correlation with 

pH but correlations were not significant. Similar to previous studies, we also found positive 

correlations with TOC. Some authors reported that β-glucosidase activity is strongly reduced by 

the presence of heavy metals (Hinojosa et al., 2004; Kuperman and Carreiro, 1997).  Kandeler et 

al. (1996) found that β-glucosidase activity was reduced by Zn, but only at the highest Zn 

loadings (900 ppm). We observed a similar result, where the β-glucosidase enzyme activity was 

decreased with an increase in bioavailable Zn concentrations in both sites. However, in contrast 

Pérez-de-Mora et al. (2005) reported that high Zn concentrations have very little effect on β-

glucosidase because microbes require more C for maintenance when stressed; therefore, they 

produce more β-glucosidase enzyme in heavy metal contaminated soils. 

Phosphatases are a broad group of extracellular enzymes that catalyze the hydrolysis of 

organic phosphates, releasing plant and microbial available phosphate. Alkaline phosphatases are 

produced primarily by microbes (Tabatabai, 1994). Alkaline phosphatase activity was 

significantly and positively correlated with TOC and TN fractions in the soil, suggesting that C, 

N and organic matter contents are the main factors affecting alkaline phosphatase activity (Aon 

and Colaneri, 2001; Zhu et al., 2012). Another factor that influences the release and stability of 

this enzyme is the soil pH (Martinez and Tabatabai, 1997; Tabatabai, 1994). Kandeler et al. 
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(1996) demonstrated inhibition of alkaline phosphatase activity by Cd and Zn. Moreover, 

Marzadori et al. (1996) reported that Pb significantly decreased phosphatase activity. Current 

study supports all above mentioned studies.  In the current study negative correlation were seen 

between alkaline phosphatase and bioavailable Cd, Pb or Zn concentrations. It should be noted 

here that high levels of heavy metals are not always translated into lower enzymatic activities for 

all soil enzymes. Examples were reported by Hinojosa et al. (2004), who found that alkaline 

phosphatase activities were similar in polluted and restored soils. 

  3.6 Conclusion 

In conclusion, the application of composted beef manure to contaminated mine waste 

materials at 269 Mg ha
-1

 was effective in enhancing soil chemical properties, enzyme actives and 

establishment of vegetation even after 4.5 years of application compared to the untreated control. 

However, the increase in bioavailable trace elements and decrease in plant biomass were seen 

over time. The pH and available N, P, K levels were decreased in the current study after >2 years 

(841 d). Enzyme activity measurements showed significant negative relations with bioavailable 

metals and positive correlation with pH, TOC and TN. Since soil chemical properties alone may 

not be sensitive enough to indicate long-term changes in soil quality after application of 

amendments, this study propose that biochemical parameters can be used to monitor changes in 

soil quality upon remediation procedures of mine waste materials, or soils contaminated with 

trace elements. The enzyme activities measured were decreased in the amended mine waste 

materials towards the end of the study period. Future studies are needed to monitor the evolution 

of biochemical properties to assure the long-term efficacy of this remediation strategy and assess 

if applications of organic amendments every 4-5 years could help to facilitate reclamation of 

larger areas impacted by these mine waste materials. 
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Figure 3-1 Total plant biomass of vegetated plots over time. A) Site A and B) Site B. Bars 

indicate the standard error of the mean values. CO is the control, LC is the average of LC, 

LCL, and LCLB since these treatments are not significantly different, and HC is the 

average of HC, HCL, and HCLB since these treatments are not significantly different. An * 

indicates significantly different at P < 0.05. 
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Figure 3-2 Total organic carbon (TOC) and total nitrogen (TN) over time for site A. 

 A) TOC and B) TN. Bars indicate the standard error of the mean values. CO- 

contaminated control, LC- low compost, LCL- low compost with lime, and LCLB- low 

compost with lime and bentonite, HC- high compost, HCL- high compost with lime, and 

HCLB- high compost with lime and bentonite. An * indicates significantly different at P < 

0.05. 
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Figure 3-3 Total organic carbon (TOC) and total nitrogen (TN) over time of site B.  

A) TOC and B) TN. Bars indicate the standard error of the mean values. CO- 

contaminated control, LC- low compost, LCL- low compost with lime, and LCLB- low 

compost with lime and bentonite, HC- high compost, HCL- high compost with lime, and 

HCLB- high compost with lime and bentonite. An * indicates significantly different at P < 

0.05. 
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Table 3-1 General properties of the chat material before amendment application.  

 

Characteristics Site A Site B

pH 6.5 4.9

Available NH4
+
-N (mg kg

-1
) 2.9 1.7

Available NO3
-
-N (mg kg

-1
) 5.4 1.5

Available P (mg kg
-1

) 55 19

Available K (mg kg
-1

) 81 45

Total C (g kg
-1

) 3.9 4.2

Total N (g kg
-1

) 0.35 0.33

Total Cd (mg kg
-1

) 30 40

Total Pb (mg kg
-1

) 3400 2300

Total Zn (mg kg
-1

) 6800 6200

CEC (cmolc kg
-1

)† 15 23

Electrical Conductivity (dS m
-1

) 0.08 0.05

Coarse Fragments (g kg
-1

)‡ 741 756

Sand (g kg
-1

) 207 204

Silt (g kg
-1

) 44 28

Clay (g kg
-1

) 8 12

† CEC: Cation Exchange Capacity

‡Coarse fragments are considered particles > 2 mm in size
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Table 3-2 Basic characteristics of the beef manure compost. 

 

Characteristics Compost

Electrical Conductivity (dS m
-1

) 36

pH 8.1

Total C (g kg
-1

) 126

Total N (g kg
-1

) 14

Total P (g kg
-1

) 7.5

C:N 9.4

K (g kg
-1

) 22

Ca (g kg
-1

) 2.7

Na (g kg
-1

) 5.3

Cd (mg kg
-1

) 1.3

Pb (mg kg
-1

) nd
†

Zn (mg kg
-1

) 496

† 
nd = not detectable  
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Table 3-3 Selected chemical properties of mine waste materials of Site A from 1082 to 1636 

days.  

Time Treatment pH NH4
+
-N NO3

-
-N P K

(d)

1082 CO 6.5b 3.3a 5.2a 68c 35c

LC 6.6b 3.4a 5.1a 234b 54bc

LCL 7.3a 3.4a 5.1a 263b 55bc

LCLB 7.2a 3.9a 5.5a 248b 51bc

HC 7.2a 4.8a 6.0a 857a 137a

HCL 7.3a 3.6a 4.8a 897a 92ab

HCLB 7.4a 3.5a 5.4a 915a 91ab

1274 CO 6.5d 3.3ab 5.9bc 69c 29c

LC 6.7cd 3.5ab 5.4bc 207b 30c

LCL 6.9cb 2.2b       4.4c 217b 39bc

LCLB 6.9cb 2.5ab 5.5bc 212b 34c

HC 7.3ab 4.2a 12.4a 644a 71ab

HCL 7.3a 3.2ab 8.0cb 897a 86a

HCLB 7.4a 4.0a 8.5ab 874a 74a

1468 CO 6.7b 2.8a 5.7a 83c 32b

LC 6.8b 4.2a 6.2a 224b 34b

LCL 7.0b 4.0a 5.8a 237b 38b

LCLB 7.0b 4.1a 6.3a 221b 40b

HC 7.4a 4.0a 6.0a 929a 86a

HCL 7.4a 3.1a 5.7a 815a 89a

HCLB 7.5a 3.4a 7.1a 975a 83a

1636 CO 6.7b 8.6ab 7.9b 75c 31b

LC 6.9b 9.2ab 8.7b 243b 32b

LCL 7.3a 6.0b 11ab 273b 38b

LCLB 7.3a 8.8ab 8.9b 252b 37b

HC 7.4a 8.5ab 11ab 965a 78a

HCL 7.6a 8.0ab 11ab 856a 88a

HCLB 7.5a 11a 17a 966a 78a

Available

---------------mg kg
-1

---------------

 

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05. 
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Table 3-4 Selected chemical properties of mine waste material of Site B from 1082 to 1636 

days.  

Time Treatment pH NH4
+
-N NO3

-
-N    P K

(d)

1082 CO 4.8c 3.6a 4.3a 41c 23d

LC 6.2b 3.2a 3.8a 366b 100cd

LCL 7.2a 3.6a 3.8a 356b 134bc

LCLB 7.4a 3.7a 3.8a 386b 131bc

HC 7.3a 4.2a 4.1a 1211a 153bc

HCL 7.5a 3.3a 3.7a 1274a 202ab

HCLB 7.5a 3.6a 3.5a 1263a 248a

1274 C 4.6c 2.5b 4.4b 46c 30c

LC 6.1b 3.8b 4.6b 395b 109b

LCL 7.3a 2.8b 8.5ab 382b 114b

LCLB 7.3a 3.7b 5.4ab 411b 93bc

HC 7.5a 4.2b 8.6ab 1179a 158b

HCL 7.8a 4.0b 9.7a 1279a 242a

HCLB 7.7a 6.4a 8.6ab 1338a 267a

1468 CO 4.6c 4.3a 5.3b 23d 22d

LC 6.4b 4.4a 6.4ab 196c 97bc

LCL 7.6a 3.0a 5.5ab 309bc 100bc

LCLB 7.7a 3.8a 5.9ab 373b 90c

HC 7.5a 4.0a 6.0ab 1128a 128bc

HCL 7.7a 3.8a 6.5a 923a 153ab

HCLB 7.6a 4.2a 5.6ab 1159a 207a

1636 CO 4.8d 10ab 8.4d 29c 26c

LC 7.1c 13ab 13cd 266b 103b

LCL 7.8a 10ab 14bcd 320b 107b

LCLB 7.9a 10b 14bcd 367b 92b

HC 7.6b 12ab 24a 1185a 143a

HCL 7.8a 12ab 20ab 1096a 197a

HCLB 7.7ab 13a 19abc 1174a 237a

                   Available

---------------mg kg
-1

---------------

 

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05. 
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Table 3-5 Mean extractable Ca(NO3)2 metals of mine waste materials of Site A and B from 

1082 to 1636 days. 

Cd Pb Zn Cd Pb Zn

(d)

CO 1.3bc 47.9a 300ab 1.1a 30.8a 68.3a

LC 2.7a 19.8bc 445a 0.4b 10.4b 26.2b

LCL 0.9bc 20.3bc 147b 0.1b 3.8b 2.0c

1082 LCLB 1.9ab 30.8ab 296ab 0.2b 3.6b 3.3c

HC nd 4.5c 81.3b 0.06b 3.6b 2.9c

HCL nd 8.2c 162b 0.03b 3.5b 2.1c

HCLB 0.5c 9.5c 254ab 0.1b 3.5b 2.0c

CO 4.4ab 95.4a 353abc 0.4a 42.4a 99.8a

LC 3.8bc 51.3a 375ab 0.5a 4.0b 75.3a

LCL 6.4a 37.0bc 391a 0.03b 0.5b 2.9b

1274 LCLB 4.3ab 42.3bc 355abc 0.1b 0.2b 5.1b

HC 1.4c 2.2c 189c nd 0.2b 4.7b

HCL 1.5c 8.6bc 231abc nd 0.3b 2.5b

HCLB 1.8c 7.0bc 212bc nd 0.3b 2.9b

CO 2.8ab 72.1a 407ab 0.7a 51.0a 94.8a

LC 3.3ab 42.5ab 503a 0.7a 5.8b 56.2b

LCL 3.7a 36.7ab 357ab 0.2b 0.6b 2.9c

1468 LCLB 2.9ab 45.6ab 357ab 0.2b 0.9b 3.1c

HC 0.3c 3.03b 218b 0.1b 0.7b 6.1c

HCL 0.8c 12.0b 279ab nd 0.6b 3.0c

HCLB 1.5bc 10.1b 255b nd 0.7b 2.0c

CO 2.7ab 73.1a 568a 1.4a 105.9a 186a

LC 3.4ab 56.5a 688a 0.6ab 2.2b 52.2b

LCL 4.6a 52.8a 533a 0.2b 4.0b 7.3c

1636 LCLB 2.5ab 63.8a 418a 0.2b 5.4b 13.9c

HC 1.3b 2.3a 384a 0.1b 4.4b 10.3c

HCL 1.6b 19.3a 445a nd 5.9b 6.7c

HCLB 1.1b 13.9a 299a 0.06b 6.5b 7.3c

Time Treatments

…….Site B…………..Site A……..

……….mg/kg……… ……….mg/kg………

 

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05.
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Table 3-6 Microbial enzyme activity of Site A and B at three sample times for five treatments. Bentonite treatments are left out 

because they are not significantly different (P ≤ 0.05) from LCL and HCL treatments. 

 

Time Treatments Arylsulfatase β- Alkaline Arylsulfatase  β- Alkaline

Glucosidase  Phosphatase Glucosidase  Phosphatase

(d)

CO 140b 1083ab 1649bc 31c 286b 500b

LC 121b 425b 2097bc 175bc 252b 580b

1082 LCL 191b 732ab 1052c 193b 240b 580b

HC 455a 2082a 4075a 488a 637ab 1959a

HCL 494a 1519ab 2695ab 455a 1302a 2734a

CO 51c 286b 422b 23c 162b 281c

LC 50c 327b 525b 176b 345b 971b

1274 LCL 95c 296b 764b 235b 259b 1194b

HC 377a 816a 1831a 308b 675a 2050a

HCL 271b 595a 1498a 578a 816a 2445a

CO 30c 223b 461b 8b 76b 42b

LC 31c 201b 444b 90b 170b 373b

1468 LCL 97bc 257b 741b 103b 153b 435b

HC 266a 516a 1896a 485a 420a 1535a

HCL 153b 302ab 986b 340a 401a 1493a

….……mgp-nitrophenolkg
-1

............. ………mg p-nitrophenol kg
-1

.............

……………..Site A………….. .……….Site B………………

 

Mean within a column and specific time period followed by the same letter are not significantly different at P < 0.05.
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Table 3-7 Pearson’s correlation between pH, TOC, TN, extractable metals (Cd, Pb and Zn) and enzyme activities at site A.  

pH TN TOC Cd Pb Zn Aryl Alka β-glue

pH 1 0.515*** 0.500*** -0.608*** -0.495*** -0.594*** 0.608*** 0.368** 0.127

TN - 1 0.956*** -0.466*** -0.442*** -0.298* 0.610*** 0.610*** 0.265*

TOC - - 1 -0.489*** -0.439*** -0.316* 0.610*** 0.598*** 0.288*

Cd - - - 1 0.410** 0.692*** -0.600*** -0.533*** -0.399**

Pb - - - - 1 0.295* -0.579*** -0.535*** -0.284*

Zn - - - - - 1 -0.558*** -0.412** -0.344**

Aryl - - - - - - 1 0.713*** 0.516***

Alka - - - - - - - 1 0.601***

β-glue - - - - - - - - 1

 

 

 

Aryl – Arylsulfatase activity: Alka - alkaline phosphatase: β- glue – β- glucosidase activity 

*Correlation significant at the 0.05 level 

** Correlation is significant at the 0.01 level 

*** Correlation is significant at the 0.001 level 
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Table 3-8 Pearson’s correlation between pH, TOC, TN, extractable metals (Cd, Pb and Zn) and enzyme activities at site B.  

pH TN TOC Cd Pb Zn Aryl Alka β-glue

pH 1 0.552*** 0.570*** -0.694*** -0.854*** -0.873*** 0.528*** 0.537*** 0.24

TN - 1 0.973*** -0.485*** -0.443*** -0.510*** 0.761*** 0.816*** 0.483***

TOC - - 1 -0.523*** -0.453*** -0.555*** 0.797*** 0.829*** 0.478***

Cd - - - 1 0.516*** 0.775*** -0.506*** -0.513*** -0.205

Pb - - - - 1 0.730*** -0.453*** -0.447*** -0.181

Zn - - - - - 1 -0.557*** -0.543** -0.277*

Aryl - - - - - - 1 0.872*** 0.599***

Alka - - - - - - - 1 0.665***

β-glue - - - - - - - - 1

 

  

Aryl – Arylsulfatase activity: Alka - alkaline phosphatase: β- glue – β- glucosidase activity 

*Correlation significant at the 0.05 level 

** Correlation is significant at the 0.01 level 

*** Correlation is significant at the 0.001 level 

 

 

 

 

 

 

 



130 

 

 3.6 References 

Acosta-Martínez, V., and M.A. Tabatabai. 2000. Enzyme activities in a limed agricultural soil. 

Biology and Fertility of Soils 31:85-91. 

Adriano, D.C. 2001. Trace elements in terrestrial environments: biogeochemistry, 

bioavailability, and risks of metals Springer. 

Alvarenga, P., P. Palma, A.P. Goncalves, N. Baiao, R.M. Fernandes, A. de Varennes, G. Vallini, 

E. Duarte, and A.C. Cunha-Queda. 2008a. Assessment of chemical, biochemical and 

ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial 

origin. Chemosphere 72:1774-1781. 

Alvarenga, P.M.L.F., A.P. Goncalves, R.M.C.S.C. Fernandes, A.P.A. de Varennes, E.C.N.F.A. 

Duarte, G. Vallini, and C.F. Cunha-Queda. 2008b. Effect of Organic Residues and 

Liming Materials on Metal Extraction from a Mining-Contaminated Soil. Bioremediation 

Journal 12:58-69. 

Aon, M.A., and A.C. Colaneri. 2001. Temporal and spatial evolution of enzymatic activities and 

physico-chemical properties in an agricultural soil. Applied Soil Ecology 18:255-270. 

Baker, L.R. 2008. In situ remediation of Pb/Zn contaminated materials: field- and molecular-

scale investigations. Ph.D Thesis, Kansas State University, Manhattan, Kansas. 

Baker, L.R., P.M. White, and G.M. Pierzynski. 2011. Changes in microbial properties after 

manure, lime, and bentonite application to a heavy metal-contaminated mine waste. 

Applied Soil Ecology 48:1-10. 

Barbarick, K.A., and J.A. Ippolito. 2007. Nutrient assessment of a dryland wheat agroecosystem 

after 12 years of biosolids applications. Agronomy journal 99:715-722. 

Basta, N.T., and R. Gradwohl. 2000. Remediation of heavy metal-contaminated soil using rock 

phosphate. Better Crops with Plant Food 82:29-31. 

Bernal, M., R. Clemente, and D.J. Walker. 2007. The role of organic amendments in the 

bioremediation of heavy metal-polluted soils, in: R.W. Gore (Ed.), Environmental 

Research at the Leading Edge, Nova Science, New York, 2007, pp. 1–58. 



131 

 

Blackshaw, R.E., L.J. Molnar, and F.J. Larney. 2005. Fertilizer, manure and compost effects on 

weed growth and competition with winter wheat in western Canada. Crop Protection 

24:971-980. 

Bolan, N.S., and V.P. Duraisamy. 2003. Role of inorganic and organic soil amendments on 

immobilisation and phytoavailability of heavy metals: a review involving specific case 

studies. Soil Research 41:533-555. 

Brown, S., R.L. Chaney, J.G. Hallfrisch, and Q. Xue. 2003. Effect of biosolids processing on 

lead bioavailability in an urban soil. Journal of Environmental Quality 32:100-108. 

Brown, S.L., C.L. Henry, R. Chaney, H. Compton, and P.S. DeVolder. 2003. Using municipal 

biosolids in combination with other residuals to restore metal-contaminated mining areas. 

Plant and Soil 249:203-215. 

Claassens, S., K.J. Riedel, L. Van Rensburg, T.L. Morgenthal, P.J. Jansen van Rensburg, and L. 

Rensburg. 2005. Soil microbial properties in coal mine tailings under rehabilitation. 

Appl. Ecology Environ. Res 4:75-83. 

Clemente, R., and M.P. Bernal. 2006. Fractionation of heavy metals and distribution of organic 

carbon in two contaminated soils amended with humic acids. Chemosphere 64:1264-

1273. 

Dodgson, K.S., G.F. White, and J.W. Fitzgerald. 1982. Sulfatases of microbial origin CRC Press. 

Eivazi, F., and M.A. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biology and 

Biochemistry 20:601-606. 

Eivazi, F., and M.A. Tabatabai. 1990. Factors affecting glucosidase and galactosidase activities 

in soils. Soil Biology and Biochemistry 22:891-897. 

Fitzgerald, J.W. 1976. Sulfate ester formation and hydrolysis: a potentially important yet often 

ignored aspect of the sulfur cycle of aerobic soils. Bacteriological Reviews 40:698. 

Garcia-Gil, J.C., C. Plaza, P. Soler-Rovira, and A. Polo. 2000. Long-term effects of municipal 

solid waste compost application on soil enzyme activities and microbial biomass. Soil 

Biology & Biochemistry 32:1907-1913. 



132 

 

Gaskin, J.W., R.B. Brobst, W.P. Miller, and E.W. Tollner. 2003. Long-Term Biosolids 

Application Effects on Metal Concentrations in Soil and Bermudagrass Forage. J. 

Environ. Qual. 32:146-152. 

Geebelen, W., D.C. Adriano, D. van der Lelie, M. Mench, R. Carleer, and H. Clijsters. 2003. 

Selected bioavailability assays to test the efficacy of amendment-induced immobilization 

of lead in soils. Plant and Soil 249:217-228. . 

Hettiarachchi, G.M., and G.M. Pierzynski. 2004. Soil lead bioavailability and in situ remediation 

of lead-contaminated soils: A review. Environmental Progress 23:78-93. 

Hinojosa, M.B., R. Garcia-Ruiz, B. Vinegla, and J.A. Carreira. 2004. Microbiological rates and 

enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic 

spill. Soil Biology & Biochemistry 36:1637-1644. 

Johnston, W.R., and J. Proctor. 1977. A comparative study of metal levels in plants from two 

contrasting lead-mine sites. Plant and Soil 46:251-257. 

Jones, D. 1998. Organic acids in the rhizosphere - a critical review. Plant and Soil 205:25-44. 

Kabata-Pendias,A. and Pendias, H.1992. Trace Elements in soils and plant. 2nd Edition, CRC 

Press, Boca Raton, FL.365 pp. 

Kahkonen, M.A., P. Lankinen, and A. Hatakka. 2008. Hydrolytic and ligninolytic enzyme 

activities in the Pb contaminated soil inoculated with litter-decomposing fungi. 

Chemosphere 72:708-714. 

Kandeler, F., C. Kampichler, and O. Horak. 1996. Influence of heavy metals on the functional 

diversity of soil microbial communities. Biology and Fertility of Soils 23:299-306. 

Keeley, S.J. and D.A. Whitney 1998. Kansas State Research and Extension. A Guide to 

Turfgrass Nutrient Recommendations. Kansas State University, MF-2311.  

http://www.ksre.ksu.edu/bookstore/pubs/mf2311.pdf.     

Keeney, D.R., and D.R. Nelson. 1987. Nitrogen--Inorganic Forms, sec. 33-3, extraction of 

exchangeable ammonium, nitrate, and nitrite. pp.648-9. In A. L. Page et al., eds., 

Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties. Agronomy, 

A Series of Monographs, no.9 pt.2, Soil Science Society of America, Madison, 

Wisconsin USA. 

http://www.ksre.ksu.edu/bookstore/pubs/mf2311.pdf


133 

 

Kizilkaya, R. 2008. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil 

affected by addition of different organic wastes and Zn. Bioresource Technology 99:946-

953. 

Krzaklewski, W., and M. Pietrzykowski. 2002. Selected Physico-Chemical Properties of Zinc 

and Lead Ore Tailings and their Biological Stabilisation. Water, Air, & Soil Pollution 

141:125-141. 

Kuperman, R.G., and M.M. Carreiro. 1997. Soil heavy metal concentrations, microbial biomass 

and enzyme activities in a contaminated grassland ecosystem. Soil Biology and 

Biochemistry 29:179-190. 

Leroy, B.L.M.M., L. Bommele, D. Reheul, M. Moens, and S. De Neve. 2007. The application of 

vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage 

maize monoculture: Effects on soil fauna and yield. European Journal of Soil Biology 

43:91-100. 

Malley, C., J. Nair, and G. Ho. 2006. Impact of heavy metals on enzymatic activity of substrate 

and on composting worms Eisenia fetida. Bioresource Technology 97:1498-1502. 

Mansfeldt, T. (2011): Kontamination von Böden – Metalle, in Blume, H.-P., Horn, R., Thiele-

Bruhn, S. (eds.): Handbuch desBodenschutzes. 4th edn. Wiley-VCH, Weinheim, 

Germany, pp. 287–313.. 

Martinez, C.E., and M.A. Tabatabai. 1997. Decomposition of Biotechnology By-Products in 

Soils. J. Environ. Qual. 26:625-632. 

Marzadori, C., C. Ciavatta, D. Montecchio, and C. Gessa. 1996. Effects of lead pollution on 

different soil enzyme activities. Biology and Fertility of Soils 22:53-58. 

McLean, E.O. 1982. Soil pH and lime requirement. p. 199-223. In A.L. Page et al. (ed.) Methods 

of soil analysis, part 2. Agronomy Monogr. 9, 2nd ed InA.L.Pageetal.(ed.) ed. ASA and 

SSSA, Madison, WI. 

Mehlich, A. 1984. Mehlich 3 soil test extractant - A modification of Mehlich-2 extraction. 

Communications in Soil Science and Plant Analysis 15:1409-1416. 



134 

 

Missouri Agricultural Experiment Station. (1998). ‗‗Recommended chemical soil test 

procedures.‘‘ Bull. SB1001, North Central Regional Publication No. 221, Univ. of 

Missouri, Columbia, Mo. 

Nagajyoti, P.C., K.D. Lee, and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity 

for plants: a review. Environmental Chemistry Letters 8:199-216. 

Pérez-de-Mora, A., J.J. Ortega-Calvo, F. Cabrera, and E. Madejón. 2005. Changes in enzyme 

activities and microbial biomass after "in situ" remediation of a heavy metal-

contaminated soil. Applied Soil Ecology 28:125-137. 

Pérez-de-Mora, A., F. Madrid, F. Cabrera, and E. Madejón. 2007. Amendments and plant cover 

influence on trace element pools in a contaminated soil. Geoderma 139:1-10. 

Pérez-de-Mora, A., P. Burgos, E. Madejón, F. Cabrera, P. Jaeckel, and M. Schloter. 2006. 

Microbial community structure and function in a soil contaminated by heavy metals: 

effects of plant growth and different amendments. Soil Biology and Biochemistry 

38:327-341. 

Pierzynski, G.M. 1997. Strategies for remediating trace-element contaminated sites, p. 67-84, In 

I. K. Iskandar and D. C. Adriano, eds. Remediation of soils contaminated with metals. 

Advances in Environmental Science. Science Reviews, Middlesex, UK. 

Pierzynski, G.M., M. Lambert, B.A.D. Hetrick, D.W. Sweeney, and L.E. Erickson. 2002. 

Phytostabilization of Metal Mine Tailings Using Tall Fescue. Practice Periodical of 

Hazardous, Toxic, and Radioactive Waste Management 6:212-217. 

Ross, S.: 1994, ‗Toxic Metals: Fate and Distribution in Contaminated Ecosystem‘, in Toxic 

Metals in Soil-plant System, Bristol, pp. 190–243. 

Solís-Domínguez FA, White SA, Borrillo Hutter T, Amistadi MK, Root AA, Chorover J, 

et al. Response of key soil parameters during compost-assisted phytostabilization 

in extremely acidic tailings: effect of plant species. Environ Sci Technol 2012;46: 

1019–27. 



135 

 

Sposito, G., L.J. Lund, and A.C. Chang. 1982. Trace metal chemistry in arid zone field soils 

amended with sewage sludge.1.Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. 

Soil Science Society of America Journal 46:260-264. 

Tabatabai, M.A. 1994 Soil enzymes. In R.W. Weaver et al. (ed.) Methods of Soil Analysis: 

Microbial and biochemical properties. Part 2. Soil Sci. Soc. Am. 5:775-833. 

Tan, K.H. 2000. Environmental Soil Science Marcel Dekker Incorporated. 

Tordoff, G.M., A.J.M. Baker, and A.J. Willis. 2000. Current approaches to the revegetation and 

reclamation of metalliferous mine wastes. Chemosphere 41:219-228. 

Van Assche, F., and H. Clijsters. 1990. Effects of metals on enzyme activity in plants. Plant, Cell 

& Environment 13:195-206. 

Walker, D.J., R. Clemente, and M.P. Bernal. 2004. Contrasting effects of manure and compost 

on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil 

contaminated by pyritic mine waste. Chemosphere 57:215-224. 

Wang, Y.P., J.Y. Shi, H. Wang, Q. Lin, X.C. Chen, and Y.X. Chen. 2007. The influence of soil 

heavy metals pollution on soil microbial biomass, enzyme activity, and community 

composition near a copper smelter. Ecotoxicology and Environmental Safety 67:75-81. 

Williams, C.H., and K.D. McLachlan. 1975. The chemical nature of sulphur compounds in 

soil.In:Sulphur in Australasian agriculture pp. 21-30. Sydney University Press. 

Zhu, R., D. Ma, W. Ding, B. Bai, Y. Liu, and J. Sun. 2012. Occurrence of matrix-bound 

phosphine in polar ornithogenic tundra ecosystems: Effects of alkaline phosphatase 

activity and environmental variables. Science of the Total Environment 409:3789-3800. 

Zornoza, R., A. Faz, D.M. Carmona, Martinez-Martinez.S, and J.A. Acosta. 2012. Plant Cover 

and Soil Biochemical Properties in a Mine Tailing Pond Five Years After Application of 

Marble Wastes and Organic Amendments. Pedosphere 22:22-32. 

 



136 

 

Chapter 4 - Earthworm Avoidance Behavior Test to Assess 

Ecotoxicity of Trace-Element Contaminated Mine Waste Materials 

 4.1 Abstract 

The avoidance of trace elements, lead (Pb), zinc (Zn), and cadmium (Cd) in untreated and 

composted manure and lime treated contaminated mine waste material by the earthworm Eisenia 

fetida was studied. A test was conducted to understand the ecotoxicity of treated mine waste 

materials collected from 4- yr-long field experimental plots located in southeast KS. 

Establishment of experimental plots and application of amendments were done in May 2006. 

Compost was applied at two different rates (45 or 269 Mg ha
-1

) with and without lime (11.2 Mg 

ha
-1

). Samples collected in June 2010 were used for the avoidance test. The avoidance test with a 

two-compartment test system developed by ISO 17512-1 (International Standard Organization) 

was used, and earthworms were exposed to test materials for 48 h exposure period. Three test 

material groups used were: OECD (Organization for Economic Co-operation and Development) 

soil as uncontaminated control soil (AS), untreated or contaminated control (CO) and treated 

contaminated mine waste materials (low compost, LC; low compost with lime, LCL; high 

compost, HC and high compost lime, HCL). Test pairs were: the OECD or uncontaminated 

control paired with the untreated or contaminated control and each treated mine waste materials; 

contaminated control paired with each treated mine waste materials; and each treated mine waste 

material paired with other treated mine waste material. There was no mortality of earthworms 

observed after 48 h exposure period. Avoidance was clear with the contaminated control and the 

LC treatment where the contaminated control material has shown the habitat limitation (< 20% 

of earthworms was found in this material).  
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 4.2 Introduction 

Soils contaminated by trace elements like lead (Pb), zinc (Zn) and cadmium (Cd) can 

pose unacceptable risk to human and ecological health and must be remediated (Pierzynski, 

1997). Many studies report the use of soil amendments including organic matter (Pierzynski and 

Schwab, 1993) alkaline materials (Mench et al., 1994), and more permanent and less expensive 

in situ stabilization with P, and P and Mn (IV) oxides (Hettiarachchi et al., 2000; Hettiarachchi 

and Pierzynski, 2002). A recent study comparing biosolids, alkaline cement kiln dust and rock 

phosphate amended Cd, Zn smelter-contaminated soils were found to reduce the 

phytoavailability (Basta and Gradwohl, 2000b; Basta et al., 2001). However, the long-term effect 

of these amendments on metal toxicity and bioavailability was scarcely evaluated (Brown et al., 

1998). Metal fractions in contaminated soils are generally assessed by selective chemical 

extraction processes. For example, chemical extraction procedures based on the use of single 

exaction or by sequential extractions are widely applied for assessing trace elements (Conder et 

al., 2001; Mulligan et al., 2001). However, such indirect methods where no organisms are 

involved are often time-consuming, can be expensive and use strong acids such as hydrofluoric 

and perchloric acid for digestion (ISO 11466, 1995) in addition to not being able to extract 

specific fractions. Various test methods have been proposed to assess the potential ecotoxicity of 

contaminated materials using invertebrate organisms such as earthworms (ISO, 1998a; ISO, 

1998b), potworms (family Enchytraeidae) (ISO, 2004) and collembolans (ISO 11269, 1999). In 

addition, to obtain rapid answers with low cost in assessing contamination problems a sublethal 

avoidance behavior test has been developed and standardized using earthworms (ISO/CD, 2003). 

Where organisms have the ability to choose or avoid a soil, such avoidance behavior helps in 

quickly assessing an ecological endpoint that is not measured by any other test using the soil 
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matrix (Yeardley et al., 1996). The avoidance behavior tests are not aimed to replace other 

ecotoxicological tests.  Rather they can be used as an initial screening test in the soil 

contamination assessment (Loureiro et al., 2005).  

  Earthworms are the major macrofauna found in many grassland soils (Lee, 1985). These 

organisms can modify soil organic matter, mix leaf litters with the soil, improve soil structure, 

stabilize soil aggregates, and improve soil porosity, which in turn improve aeration, water 

dynamics, and help root exploration (Amador and Gorres, 2005; Lavelle, 2001; Wen et al., 

2006). In addition, they suppress plant pathogen and influence the growth of microfauna and 

flora, which may be beneficial to plant growth (Clapperton et al., 2001). Moreover, it has been 

reported that these organisms can improve the bioavailability of soil nutrients like C, N, and P 

(Chaoui et al., 2003; Cheng and Wong, 2002). For these reasons, earthworms are considered as 

‗‗ecosystem engineers‘‘ (Jones, 1994). However, when exposed to high concentration of trace 

elements they are less able to perform their essential functions (Edwards, 1996). For example, 

Spurgeon et al. (1994) reported the effects of Cd, Cu, Pb, and Zn on growth, reproduction, and 

survival of the earthworm Eisenia fetida (Savigny) and concluded that these elements cause 

mortality under high exposure. Similarly, Siekierska et al. (2002) found that higher concentration 

of Cd affect the ovarian structure and reduce the fertility. They avoid contaminated soils by 

moving into less contaminated area as their chemoreceptors on the prostomium and on the 

anterior segments are found to be sensitive to the chemicals present in their surrounding 

environment (Curry and Schmidt, 2006; Lukkari and Haimi, 2005). Therefore, the use of the 

earthworm avoidance tests is recommended as a screening tool for assessing the toxicity effect of 

trace elements in soils (Amorim et al., 2008), and also as an indicator of soil pollutants (Sousa et 

al., 2008).  
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A wide number of earthworm species have been used in studies related to risk assessment 

test. However, E. fetida is found to be sensitive to a wide range of toxicant, matures in 8 weeks; 

unlike other species, they can be cultured in large quantities in laboratories due to its higher 

productive rate. More importantly they are commercially available in homogeneous batches 

(both age and weight-wise, so those factors would not be interfering with their behavior). For 

these reasons, E. fetida was selected as the reference species in the international toxicity tests by 

International Standard Organization (ISO11268-1, 1993; ISO, 1998a) and the Organization for 

Economic Co-operation and Development (OECD, 2004). It should be noted here that the use of 

E. fetida in toxicity and accumulation studies has been criticized because it is not a natural soil 

earthworm species. Rather it inhabits organic rich habitats such as compost and manure heaps 

(Bouche, 1972). Additionally some authors have found that E. fetida is less sensitive to 

contaminants than other species (Langdon et al., 2005).  

Many studies followed the ISO recommendation (ISO11268-1, 1993; ISO 11268-2, 1998; 

OECD, 2004) of standard soil comprising 20% kaolin clay, 70% quartz sand, 10% sphagnum 

peat (organic C is about 5.8%) and CaCO3 or an identical ASTM artificial soil comprising 69.5% 

silica sand, 20% kaolin clay, 10% 2-mm sieved sphagnum peat moss, and approximately 0.5% 

CaCO3 (Conder and Lanno, 2000; Conder et al., 2002) in their studies to reduce the variability 

due to soil properties. So far, the majority of studies have applied such assays to either artificial 

or natural soils spiked with toxicants. For example, Yeardley et al. (1996) performed avoidance 

tests with toxicant potassium chloride (KCl), ammonium chloride (NH4Cl) and 2-

chloroacetamide (C2H4ClNO) spiked artificial soil and metal (Zn, Mn, Fe, and Cu) contaminated 

soil. They concluded that the earthworm E. fetida showed avoidance for two of the three 

reference toxicants (KCl and NH4Cl) in artificial soil, and three different contaminated soils. 
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Similarly, Loureiro et al. (2005) carried out an avoidance behavior test by exposing earthworms 

to the toxicants carbendazim binomial, dimethoate, and copper sulfate (CuSO4).  They found that 

earthworms were able to perceive the presence of toxic compounds and escape contaminants to 

clean soil. Alvarenga et al. (2008a) evaluated avoidance behavior test using an acidic (pH=3. 6) 

metal-contaminated (Cd, Cr, Cu, Ni, Pb, and Zn) soil from the Aljustrel mining area in SW 

Portugal, where the total concentration of Cu, Zn, and Pb in the soil are 362, 245 and 1,250 mg 

kg
-1

 dry weight basis, respectively. Further, dilutions of the contaminated soils were carried with 

an artificial soil (1/3 peat: 1/3 sand: 1/3 perlite, pH 4.5). Their studies concluded that E. fetida 

avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). Reinecke et al. 

(2002) investigated avoidance response of earthworms to a nominal concentration (2000 mg kg
-

1
) of lead nitrate (PbNO3) mixed directly into the substrate by dissolving the PbNO3 in the 

distilled water with which the dry substrate was wetted to obtain a moisture content of 76%. The 

number of worms in the sides treated with PbNO3differed significantly from those in the 

untreated side with significantly more worms aggregating in the contaminated side. 

As mentioned before most of these bioassays that were performed using invertebrates as 

test organisms used laboratory spiked soils or by diluting the field contaminated soils with the 

artificial soils. Only limited number of studies was performed with real field-contaminated soils 

using invertebrates. In the present study multi-metal contaminated mine waste materials 

amended with two different rates of composts and with and without lime were investigated. The 

major objective of this study was to assess the long-term effects of compost and lime additions 

on ecotoxicity of multi-metal contaminated mine waste materials collected from southeast KS 

field experimental plots by using the avoidance behavior responses of E. fetida.  
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 4.3 Materials and Methods 

4.3.1 Control and Test Soils 

The OECD uncontaminated or artificial soil (AS) is considered as an uncontaminated 

control soil in the avoidance test. It was prepared according to OECD Guidelines (2004) 

consisting 70% sand, 20% kaolin clay, 10% sphagnum peat moss (based on dry weight) and pH 

was adjusted to 6.0 ± 0.5 with calcium carbonate (CaCO3). The AS was adjusted to 60% of the 

maximum water holding capacity with deionized water. The Pb, Zn and Cd contaminated mine 

waste materials from long-term test plots located in Tri-state Mining Region near Galena, KS 

was used for this study as test soils. The test soils used in the avoidance test were from one of the 

field sites, mentioned as site A in chapter 3 of this thesis. The site A was chosen based on the 

high concentrations of Pb, Zn and Cd compared to site B. Experimental site A was established on 

May 8, 2006. The amendments applied in the plots were composted beef manure and lime as 

Ca(OH)2. The experimental plots were 1 m by 2 m in size with 3 replications of each treatment. 

Each plot was installed with a border to reduce the potential for inter-plot contamination. 

Samples for this study were collected in June 2010, approximately 4-yr after treatment 

application. The treatments used in avoidance test were follows: (1) CO, unamended control ; (2) 

LC, low compost treatment of 45 Mg ha
-1

; (3) HC, high compost treatment of 269 Mg ha
-1

; (4) 

LC+L, low compost (45 Mg ha
-1

) + 2.24 kg lime (11.2 Mg ha
-1

); (5) HC+L, high compost (269 

Mg ha
-1

) + 2.24 kg lime. All test soils were sieved using ≤ 2mm sieve. The moisture content was 

then determined by drying a 10g soil at 105°C for 48 h and re-weighed, maximum water holding 

capacity (WHCmax) was determined following Jenkinson and Powlson (1976) method in all soils. 

All soils were adjusted to 60% of WHCmax with deionized water. 
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Soil parameters of test soils measured are pH (1:1 DI water) (McLean, 1982). For total 

metal concentrations, 2 g of material (< 2mm) was digested with 20 mL of trace metal grade 4M 

HNO3 at 80-85°C for 4 h (Sposito et al., 1982). Filtered digested samples were analyzed for Pb, 

Zn and Cd by using inductively coupled plasma - optical emission spectroscopy (ICP-OES, 

model Varian 720-ES with an axial plasma and argon as carrier gas). Trace element availability 

was measured in the mine waste material treatments using a weak electrolyte extraction as 

follows. Two grams of dry material to which 40 mL of 0.5M Ca (NO3)2 was added and mixed by 

placing on a rotary shaker for 4 h at 25°C (Basta and Gradwohl, 2000). Filtered extracts were 

acidified with 0.5 mL trace metal grade nitric acid and were analyzed for Pb, Zn and Cd using 

the ICP-OES. 

4.3.2 Test Organism 

The test organism used in the avoidance test was the earthworm E. fetida. Earthworms 

were obtained from laboratory cultured company Carolina Biological Supply (Burlington, NC). 

Earthworms were washed and wiped the body surface dry and conditioned for two days in AS 

soil. Adult worms weighed between 300 mg and 600mg with fully developed clitella were 

selected for the test.  

 4.4 Experimental Procedure 

Avoidance test was performed following the ISO 17512-1 (2008) guidelines. Two section 

chamber system or test was conducted and Figure 4-1 is the schematic representation of two 

chamber test conducted. For the two chamber test, containers of 20 cm length 10 cm wide with a 

depth of 6cm were taken. The containers were divided into two equal sections with a vertically 

introduced cardboard separator. Containers were filled with appropriate soils up to a height of 6 

cm. For the avoidance test with control and test soils, one half of the container was filled with an 
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uncontaminated artificial control soil (AS) while  other half section was filled with the test soils. 

Avoidance test was also conducted among pairs of test soils (one treatment versus another 

treatment combination). All possible combinations were AS/CO, AS/LC, AS/HC, AS/LCL, 

AS/HCL for the AS control and test soil avoidance test; and CO/LC, CO/HC, CO/LCL, 

CO/HCL, LC/HC, LC/LCL, LC/HCL, HC/LCL, HC/HCL, LCL/HCL for test soil-test soil 

avoidance tests. Total of 15 combinations were tested, each treatment combinations were 

replicated 5 times. After filling with appropriate combinations of soils into the containers, the 

separator was removed. Ten earthworms were placed on the separating line of each container. In 

order to prevent the worms from escaping, the containers were covered with transparent lid 

permeable to air and light. Small holes were made in order to facilitate better air circulation. 

Containers containing earthworms were incubated for 48 h in a controlled climate chamber, 

maintaining temperature at 20 ± 2°C and delivering light intensity of 400 lux to 800 lux with a 

photoperiod of 16:8 h light: dark. After 48 h of an incubation period, the lids were removed and 

the separators were placed back in between two sections in all containers before removing from 

the controlled climate chamber. Soils from each section of each container were then emptied into 

separate dishes and the numbers of worms present in the control and test soils were counted. In 

this avoidance test, the test was considered invalid when the mortality was greater than 10% 

according to the ISO guidelines  Individuals were counted as 0.5 for each section if they are 

found in between the soil sections (on separating line) irrespective of the space occupied by the 

individual body in each section. 
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 4.5 Data Analysis 

Avoidance endpoint was expressed as the percentage of earthworms that avoided the test 

soils from the total number of earthworms in that container. The following equation was used to 

calculate avoidance response percentage: 

X = ((C-T)/N) x 100 

where,  

X = avoidance response expressed in percentage; C = number of worms in the uncontaminated 

control soil (AS); T = number of worms in test soil (untreated and treated contaminated mine 

waste materials); N = total number of worms per container. A positive (+) avoidance response 

indicated avoidance and a negative (-) avoidance response indicated a non-response (or 

attraction) to the test soils. ―Habitat function‖ definition assessment strategies were applied 

according to the ISO 17215-1 (2008), contaminated/test soils are considered toxic, i.e. habitat 

function is limited if on average < 20 % of worms are found in the test soil which indication as 

an impact on behavior (Hund-Rinke and Wiechering, 2001; Lukkari et al., 2004). Avoidance 

data were analyzed using one way ANOVA using SAS for windows version 9.2 (SAS Institute 

Inc., Cary, NC).The least significant difference (LSD) method was used for treatment differences 

at α= 0.05 level of significance.  

 4.6 Results and Discussion 

 Groups of 10 E. fetida individuals were presented with a choice between the control soil 

and test soil. All the earthworms were found alive in the soils in all set of containers at the end of 

the avoidance tests. As mentioned previously the ISO 17215-1 (2008) guidelines, a test is 
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considered invalid if more than one worm per container is dead or missing at the end of the test.  

This study achieved the validity criteria as all earthworms were alive by the end of the test.   

Selected physical and chemical characterization of mine waste materials (test soils) was 

given in Table 4-1. Comparisons of soil abiotic characteristics indicated higher soil pH for all 

test soils compared to the untreated control soil (Table 4-1). The application of both composts 

and/or liming materials led to an increase in pH of the treated contaminated mine waste materials 

(LC, LCL, HC and HCL) compared to the contaminated control.  Changing the pH is a frequent 

remediation practice for trace element contaminated mine waste materials, as the majority of 

these contaminants are divalent metals (apart from trace elements such as arsenic that forms 

oxyanions in solution) and are less soluble in alkaline condition (Adriano, 2001). Also, Cd, Zn, 

and Pb have a high affinity for stable soil organic matter/humic substances (Bernal et al., 2007; 

Brown et al., 2003; Clemente and Bernal, 2006), while their stability in soils generally decreases 

with increasing acidity (Alvarenga et al., 2008a; Alvarenga et al., 2008b).   

Avoidance behavior of earthworm could also be influenced by the change in soil pH. The 

point at which stress due to pH may begin to influence the test results (acute, chronic, and 

avoidance) could be established by carrying out a series of avoidance tests with the pH set to 

neutral to acidic and or to basic pH. Studies show that the effect of earthworm activity is to 

increase the soil pH, reportedly due to cutaneous mucus secretion (Schrader, 1994). Most 

earthworm species favor neutral to slightly acid soil. Soil pH may also influence the numbers of 

worms that go into diapauses: a physiological state of dormancy. The more acid the soil, the 

sooner worms go into diapause and remains in diapause for the longest time at a pH of 6.4 and 

this correlates with the avoidance response of earthworm to untreated or contaminated control 

mine waste.  As a result of high compost, the increased soil pH would also be expected to reduce 
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metal availability (Baker et al., 2011). Investigation of Rombke (2003) showed that the different 

species distribution in the field was not affected by an increase in Zn exposure and these findings 

were attributed to the increase in pH that would reduce Zn availability.  Studies conducted by 

Lahr et al. (2008) demonstrated the impact of high Zn on soil processes depending on the 

presence and the densities of earthworms, which is a critical examination of bioassay species' 

tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn.  Table 4-1 

shows the soil pH was lowest in CO followed by LC treated soils, and Figure 4.2 shows 

earthworms showing avoidance behavior in CO and LC when paired with AS. The non response 

behavior seen in other treated soils with LCL, HC, and HCL could very well be due to high pH 

and reduced metal availability (Table 4-2). However, in the current study earthworms used are 

not from the study site and because they were only introduced for a short period of time in the 

avoidance test, we may not be able to draw conclusions on this pH effect with certainty. 

Therefore, the effect of pH in the current study is inconclusive.  

The avoidance response of E. fetida in control soil AS and the test soils are shown in 

Figure 4-2. A positive (+) avoidance response indicating avoidance was seen with both the CO 

and the LC treatments, and that could be because of high bioavailable Pb, Zn, and Cd 

concentrations in these treatments compared to other treatments (Table 4-1) or interactive effect 

of low pH and high metal bioavailability. A negative (-) avoidance response indicating a non-

response (or attraction) was seen with the LCL, HC, and HCL treatments. However, higher non-

response (or attraction) was seen with the HC and HCL treatments than the LCL. The HC and 

HCL treatments had low bioavailable Pb, Zn and Cd concentrations.  Large amount of compost 

added with the high compost treatment should diluted the initial total Pb, Zn, and Cd 

concentrations in the mine waste materials, although dilution effect was unclear due to variability 
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that can be expected in the field (Table 4-1).  Dilution of total metal concentrations could partly 

be responsible for reduced metal bioavailability.  In addition, high affinity of Pb, Zn, and Cd for 

organic matter due to the formation of stable organometallic complexes could be another reason 

for reduced metal bioavailability (Bernal et al., 2007; Brown et al., 2003; Clemente and Bernal, 

2006).  Enhanced available P due to compost addition may have helped reducing the 

bioavailability of these metals, especially Pb (Attanayake et al., 2013).  It has been shown that P 

amendment is a promising in situ remediation approach for Pb-contaminated (Ma et al., 1993; 

Laperche et al., 1996; Cotter-Howells and Caporn, 1996; Hettiarachchi et al.; 2001).   

Earthworms have the ability to avoid soils in contaminated areas because they have 

chemoreceptors in the prostomium and sensory tubercles on their body surface, which provide 

high sensitivity to chemicals in soil (Reinecke et al., 2002).  Earthworm avoidance tests can help 

to determine if earthworms are likely to be absent or decreased in numbers at contaminated sites. 

When avoidance behavior is shown by earthworms, it is often at concentrations lower than those 

affecting life-cycle parameters (Loureiro et al., 2005). The pattern observed here is in good 

agreement with reported findings of Nahmani et al. (2002). They found that high concentration 

of Zn reducing the overall density of earthworms in a contaminated site. Further, the body Zn 

concentration in E. fetida is regulated at a fairly constant level (100–200 mg kg
-1

) (Lock and 

Janssen, 2003; Lukkari et al., 2005) and also the ability of earthworm to eliminate excess  Zn  

due to the fact that Zn is an essential metal which can be regulated to some extent by several 

earthworm species, leading to a relatively constant body concentration over a range of soil 

concentrations (Spurgeon and Hopkin, 1999; Heikens et al., 2001; Renoux et al., 2007).  The 

results obtained in the current study showed that the avoidance behavior test is fairly sensitive 
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and effective test and support the suitability of using the avoidance behavior test as an initial 

screening tool for contaminated sites.   

In the Figure 4-3, line shows the 20% habitat function limit.  Limited habitat function of 

< 20% was seen with treatment CO, which is the untreated contaminated material with high 

concentrations of bioavailable trace elements (Table 4-1). The treatment LC also contained high 

concentrations bioavailable trace elements but the limited habitat function was not seen when it 

was paired with the AS soil. This could be due to the beneficial effects of composted manure 

treatment and the increased pH (6.8) compared to the CO treatment.  Chapter 3 shows that 

concentrations of plant nutrients and organic C (Figure 3-2 and Table 3-3), in compost-added 

materials were significantly higher than in mine-waste materials that did not receive compost 

(CO treatment).  It appeared that even after ~ 4-yr of application of compost earthworms were 

able to sense the overall quality enhancement of this mine-waste material due to compost 

addition.    

E. fetida showed a clear avoidance response to the CO treatments with strong and 

significant differences in all combinations tested (p < 0.05 for all; Figure 4-4). The most 

frequently avoided treatment was CO (Figure 4-4a) and the least frequently avoided treatments 

were HC and HCL (Figure 4-4d and e). The comparisons between the LC and the LCL 

treatments (Figure 4-4b and c) showed a significant avoidance of the former by E. fetida. Order 

of materials from the least avoided to the most frequently avoided: HC < HCL < LCL < LC < 

CO).  The avoidance behavior of earthworms is a clear sign of their ability to detect the 

bioavailable contaminants in the given test soils (Natal da Luz et al., 2004). This increase in 

avoidance response from HC to the CO treatments was correlated with the increase in extractable 

trace element concentrations or the bioavailable trace element concentrations (Table 4-1).
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 According to the > 80% avoidance criterion for the habitat function proposed by (Hund-

Rinke and Wiechering, 2001) and when using the HC treated mine waste material as the 

reference soil, the other treatments presented a limited habitat quality. All treatments except the 

HCL had less than 20% of earthworms when paired with the HC. In HC/HCL combination 

(Figure 4-4 (d)) earthworms preferred the HC treatment and a greater percentage of earthworms 

was observed in the HC treatment, although both the HC and the HCL contain the same rate of 

compost. This observation or preference of choosing the HC treated materials by earthworms 

over the HCL treated materials might be due to a higher concentration of extractable trace 

elements in the HCL treated materials compared to the HC treatment (Table 4-1) 

Yeardley et al. (1996) tested E. fetida and observed that an avoidance response could be 

detected after two days of exposure. Although other exposure times between 24 and 72 h were 

also being tested, for most studies a 48 h exposure period was used. As a result of higher 

exposure time in some studies, a high variation in response was observed (Amorim et al., 2008; 

Udovic and Lestan, 2010). However, a longer exposure test period longer than two days can be 

advantageous to explain the possible difficulties in variability by allowing the earthworms to 

strengthen the response (Yang et al., 2012). Test results in the current study clearly showed 

avoidance of earthworm in the CO treatment but not in other treatments with different amounts 

of compost (45 Mg ha
-1

 and 269 Mg ha
-1

) with or without lime treatment.  The present study 

showed no habitat function limit with the LC (45 Mg ha
-1

) but the avoidance behavior for this 

treatment was seen next to the most avoided treatment, CO. However it is not clear whether   a 

longer exposure time might have made the earthworms to consolidate their response.  This aspect 

may deserve further research. 
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 4.7 Conclusion 

 A general conclusion of the current study is that E. fetida showed avoidance to the both 

contaminated control and the LC treated materials when compared with the uncontaminated 

artificial soil.  They showed no response or preferred the LCL, HC, and HCL treated materials 

over the uncontaminated artificial soil. Limited habitat function was seen only in the 

contaminated control treatment where < 20% of earthworms was found. In the avoidance test 

between  treated-contaminated mine waste material pairs, earthworms preferred the HC 

treatments by showing avoidance response to the LC treated and the untreated contaminated 

materials.   Addition of compost and liming material  at high rate not only led to an increase in 

pH of treated contaminated mine waste materials but also helped to stabilize Pb, Zn, and Cd and 

make them less bioavailable as evident from the earthworm test results. The current study 

showed that the avoidance behavior of E. fetida is a sensitive test for testing reduced toxicity of 

mine-waste materials following in situ treatments. The avoidance behavior test may offer a fast 

and accurate way to obtain initial information needed for future decision making especially in 

terms of reapplication of soil amendments.  
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Figure 4-1 Schematic representation of two chamber avoidance test setup: (a) container with separating wall; (b) placing two 

different soils in two sections separated by separating wall; (c) removing the separator after adding soils; (d) earthworms 

placed on the separating line and covered with a lid; (e) placing the separator after 48 h incubation time; (f) counting the 

earthworms from both sections.  
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Figure 4-2 Results of Avoidance response (%) with Eisenia fetida exposed to OECD soil as control soil versus contaminated 

mine waste material treatments as test soils. AS- uncontaminated control soil, CO- contaminated control, LC-low compost, 

HC- high compost, LCL- low compost lime, HCL- high compost lime. A positive (+) avoidance response indicated avoidance 

and a negative (-) avoidance response indicated a non-response (or attraction) to the test soils. 
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Figure 4-3 Avoidance test: Percentage of Eisenia fetida (average + standard error) in the uncontaminated control soil (AS) 

(black bars) tested against the test soils (white bars); CO- contaminated control, LC- low compost, HC- high compost, LCL- 

low compost lime, HCL- high compost lime. The dash line states the 20% “habitat function limit”. 
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Figure 4-4 (a) Avoidance tests: Contaminated control versus other treatments; Percentage of Eisenia fetida (average + 

standard error) in a specific treatment type (black bars) tested against the other treatments (white bars). CO- contaminated 

control, LC- low compost, HC- high compost, LCL- low compost lime, HCL- high compost lime. An * indicates statistical 

differences (P < 0.05). 

* * * * 
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Figure 4-4 (b) Avoidance tests: Low compost treatment versus other treatments; Percentage of Eisenia fetida (average + 

standard error) in a specific treatment type (black bars) tested against the other treatments (white bars). CO- contaminated 

control, LC- low compost, HC- high compost, LCL- low compost lime, HCL- high compost lime. An * indicates statistical 

differences (P < 0.05). 
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Figure 4-4 (c) Avoidance tests: Low compost lime versus other treatments; Percentage of Eisenia fetida (average + standard 

error) in a specific treatment type (black bars) tested against the other treatments (white bars). CO (contaminated control), 

LC (low compost), HC (high compost), LCL (low compost lime), HCL (high compost lime). An * indicates statistical 

differences (P < 0.05). 
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Figure 4-4 (d) Avoidance tests: High compost versus other treatments; Percentage of Eisenia fetida (average + standard error) 

in a specific treatment type (black bars) tested against the other treatments (white bars). CO- contaminated control, LC- low 

compost, HC- high compost, LCL- low compost lime, HCL- high compost lime. An * indicates statistical differences (P < 0.05). 
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Figure 4-4 (e) Avoidance tests: High compost lime versus other treatments; Percentage of Eisenia fetida (average + standard 

error) in a specific treatment type (black bars) tested against the other treatments (white bars). CO- contaminated control, 

LC- low compost, HC- high compost, LCL- low compost lime, HCL- high compost lime. An * indicates statistical differences 

(P < 0.05). 
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Table 4-1 Physical and chemical characterization of test soils (mine waste materials). CO- contaminated control, LC- low 

compost, HC- high compost, LCL- low compost lime, HCL- high compost lime.  

 

Test soils CO LC HC LCL HCL

pH 6.4b 6.8b 7.4a 7.0b 7.5a

WHCmax (%) 21 23 32 23 28

Total metals Pb    1634a   1892a   775b   1810a   1870a

(mg/kg dry wt.) Zn    1510a   1536a   1425a   1556a   1509a

Cd    22b   27ab   22b   36a   26b

Extractable Metals Pb    72a   42ab   3.0b   36ab   12b

(mg/kg dry wt.) Zn    407ab   503a   218b   357ab   279ab

Cd    3.1a   3.3a   0.9b   3.5a   1.1b

Letters that are different in the same row indicate significant differences (P < 0.05).  
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Chapter 5 - Summary 

Application of pelletized manure compost to trace element-contaminated mine waste 

materials decreased trace element bioavailability and was effective in establishing and 

maintaining vegetative cover compared to the non-amended control. However, 448 Mg ha
-1

 of 

compost addition was more effective than 224 Mg ha
-1 

in maintaining higher plant nutrients, 

reducing bioavailable metal concentrations and reducing metal uptake by plants. The compost 

addition was also able to significantly increase the vegetative cover and plant biomass than the 

contaminated control. However, in the first growing season there was no vegetation seen due to 

high soluble salt content. For the third growing season, the compost treatments maintained 

significantly higher vegetative ground cover and plant biomass in compost added plots compared 

to the control plots. The addition of lime to these waste materials did not show any additional 

benefits. 

 The second study or the long-term monitoring study showed that the application of 

composted beef manure to contaminated-mine waste materials at 269 Mg ha
-1

 was effective in 

enhancing soil chemical properties, enzyme activities, and in establishing vegetative cover even 

after 4.5 years of amendment application compared to the lowest rate of manure addition (45 Mg 

ha
-1

) and the unamended control. However, by the end of the study decrease in plant biomass and 

enzyme activities and increase in bioavailable metal concentrations were seen in the high 

compost treatment (269 Mg ha
-1

). Lime and/or bentonite application were not effective in the 

long-term. The avoidance test with E. fetida has shown clear avoidance behavior of E. fetida to 

the contaminated control and the low rate of compost (45 Mg ha
-1

) treatments and non-response 

with 269 Mg ha
-1

 compost treatments. No mortality was seen after a 48 h exposure period in all 
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treatments. The contaminated control showed habitat limitation where < 20% of earthworms was 

found in this test soil.  

Our studies indicate that the high rate compost application would provide efficient 

vegetative growth, reduce metal exposure, and improve chemical and biochemical properties of 

the soil.  It helps in mine impacted area reclamation. Further research is needed to investigate or 

to assess long-term sustainability of these reclamation efforts through re-application of compost 

every 4-5 years. 
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Appendix A - Field Research Data 

Table 5-1 Total metal concentrations of mine waste material treatments (compost applied 

at 224 to 448 Mg ha
-1

) from F07 (Time 0) to F10. C- contaminated control is the average of 

with and without lime, LC- low compost (224 Mg ha
-1

) is the average of with and without 

lime, HC- high compost (448 Mg ha
-1

) is the average of with and without lime. 

 

Cd Pb Zn

C 17a 2713a 5493a

F07 LC   5a 797b 1987ab

HC   6a 320b 1166b

C 17a 1827a 3318a

S08 LC   8a 823a 2079a

HC   6a 710a 1866a

C 20a 21002a 1009a

F08 LC   6a 432b  770ab

HC   5a 268b 717b

C 12a 877a 829a

S09 LC     8ab 433a 746b

HC   5b 414a 656b

C 19a 1533a 563a

F09 LC 10a 747b 473a

HC   8a 701b 429a

C 23a 772a 1134a

S10 LC 11b 487a   886b

HC    8b 602a   785b

C 12a 722a 1084a

F10 LC 14a 546a 1069a

HC   4b 244a   828b

Time Treatments
Total Metals

      …………mg/kg……

 

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05. 
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Table 5-2 Available cation concentrations of mine waste material treatments (compost 

applied at 224 to 448 Mg ha
-1

) from F07 (Time 0) to F10. C- contaminated control is the 

average of with and without lime, LC- low compost (224 Mg ha
-1

) is the average of with and 

without lime, HC- high compost (448 Mg ha
-1

) is the average of with and without lime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05. 

Time Treatments

Ca Na Mg

C 1768b 14c 69c

F07 LC 2165ab 2728b 1179b

HC 2463a 4198a 1379a

C 1236a 23c 91c

S08 LC 1434a 37b 315b

HC 1499a 64a 330a

C 1410a 12b 115b

F08 LC 1670a 17ab 297a

HC 1826a 23a 309a

C 1320a 23b 88b

S09 LC 1597a 28ab 328a

HC 1720a 32a 394a

C 1230a 33a 61b

F09 LC 1524a 38a 359a

HC 1613a 41a 479a

C 1128b 40a 80c

S10 LC 2150a 44a 575b

HC 2249a 45a 869a

C 2200b 62b 384b

F10 LC 2377b 62b 475b

HC 3451a 69a 1100a

Available cations

mg/kg
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Table 5-3Total metal concentrations of mine waste material treatments of Site A and B 

from 1082 to 1636 d CO - control, LC – low compost, LCL – low compost with lime, and 

LCLB – low compost with lime and bentonite, HC - high compost, HCL – high compost 

with lime, and HCLB – high compost with lime and bentonite. 

Cd Pb Zn Cd Pb Zn

(d)

CO 18b 1593abc 683a 43a 747ab 734a

LC 26ab 1571abc 668a 25a 853a 615ab

LCL 25ab 1215c 633a 37a 726ab 670ab

1082 LCLB 30a 2454a 699a 21a 613ab 581b

HC 18ab 891c 632a 32a 557b 642ab

HCL 20ab 1572abc 648a 30a 639ab 613ab

HCLB 25ab 1924ab 653a 23a 592b 565b

CO 20b 1666a 1036a 33a 750ab 734a

LC 18b 1871a 994a 25a 817a 615ab

LCL 31a 1729a 1044a 37a 693abc 670ab

1274 LCLB 23ab 1714a 1033a 37a 601bcd 581b

HC 15b 781a 952a 40a 502cd 642ab

HCL 18b 1661a 992a 25a 489d 613ab

HCLB 16b 2013a 953a 26a 576bcd 565b

CO 22c 1635ab 1510abc 40a 947a 1501a

LC 27abc 1892ab 1536abc 35a 973a 1439ab

LCL 36a 1810ab 1556ab 44a 834a 1444ab

1468 LCLB 35ab 2596a 1603a 32a 709a 1371ab

HC 23c 775b 1425bc 41a 548a 1426ab

HCL 26bc 1870ab 1509abc 31a 964a 1354ab

HCLB 18c 2080a 1393c 18a 701a 1191b

CO 15b 1290ab 1379ab 49a 771ab 1584a

LC 23ab 1430ab 1431ab 37a 900a 1492a

LCL 30a 1825a 1470a 45a 797ab 1511a

1636 LCLB 17b 1431ab 1396ab 38a 666bc 1447a

HC 23ab 906b 1417ab 41a 494c 1425a

HCL 19ab 1338ab 1396ab 34a 611bc 1403a

HCLB 19ab 1894a 1334b 34a 628bc 1330a

Time Treatments

……..Site A…….. …….Site B……

………mg/kg…… ………mg/kg……

Mean within a column and specific time period followed by the same letter are not significantly 

different at P < 0.05.
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Appendix B - Avoidance test laboratory set up 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1 Two chamber avoidance test setup conducted at the lab. 
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Figure B-2 Pictures show the placement of earthworms in each container. Containers containing earthworms were incubated 

for 48 h in a controlled climate chamber. After 48 h of incubation period the lids were removed and the separators were 

placed back in between two sections in all containers and the numbers of worms present in the control and test soils were 

counted. 
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