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Abstract

Agriculture and climate change are closely connected as climate change impacts agricul-

ture through crop yield loss, reduction in area harvested and increase in irrigation water use.

Agriculture plays both roles in the emission and sequestration of greenhouse gases. This

dissertation is divided into two main parts. The first part has two essays that examine the

impacts of climate change on winter wheat production and irrigation water use. The second

part examines the cost–effectiveness of using lands under the Conservation Reserve Program

(CRP) to sequester carbon through tree planting program. This dissertation contributes to

the literature by showing how crop yield variability is not the same as production variabil-

ity. The total impact of climate change is underestimated if climate change impact on yield

alone is used. Another contribution to the literature is the modeling of crop abandonment

in relation to climate change using correlated random effects fractional probit model. My

work also illustrates how irrigation water use will change and how this change will impact

the level of water in the aquifer by mid–century.

In my first essay, I examine the impact of climate change on winter wheat produc-

tion in Kansas. I decompose the total impact of weather variables on wheat production in

Kansas through crop abandonment and yield. Using yield impacts alone to measure the

climate change impact on production underestimates the total impact of climate change on

production. I use the correlated random effects fractional probit model to estimate crop

abandonment and account for unobserved heterogeneity between time–invariant variables

and yield. The result projects a 16.3% decrease in winter wheat production by mid–century

under the Representative Concentration Pathway (RCP) 4.5. I find that 86.72% of the pro-

jected decrease in production is due to the reduction in yield while crop abandonment is

projected to decrease production by 13.17%. Yield is projected to decrease by 14.12% while



crop abandonment is expected to increase by 18% by mid–century. Majority of damages

from climate change are explained by an increase in temperature.

In the second essay, I examine the impact of climate change on groundwater extraction

for corn production in Kansas. Using a 24–year panel data of irrigation water use, weather

and soil data, I estimate the impact of weather variability on irrigation water use for corn. I

include the field–level fixed effects and a quadratic time trend to control for time invariant–

variables and technological progress over time. I provide new evidence that shows farmers

are less responsive to changing irrigation water use than an irrigation schedule would predict

due to changes in weather. The result indicates 9% and 12% increase in irrigation water use

by mid–century under RCP 4.5 and 8.5 respectively. The number of water rights that exceed

their authorized water quantity will increase by 18.1% on average across different climate

models under RCP 4.5. The effect of an increase in irrigation water use on the water level

in the aquifer is spatial different. In Southwest Kansas, the historical rate of depletion is

2.05ft/year and by mid-century, the rate of depletion is projected to increase to 2.43 ft/year.

In South Central Kansas, historical depletion is around 0.19 ft/year and the rate of depletion

is predicted to increase to 1 ft/year by mid-century.

In the third essay, I analyze the cost–effectiveness of carbon sequestration through the

afforestation of the Conservation Reserve Program (CRP). I use the correlated random effects

probit model (CRE) to estimate the impact of an increase in the Conservation Reserve

Program (CRP) payments on land use change. The CRE model allows me to control for

unobserved heterogeneity and exploit variation in returns to land over time. Estimation

without control for unobserved heterogeneity produces biased estimates with coefficients

with the wrong sign. My estimates are used to simulate land use change, carbon sequestered

and the marginal cost of carbon at different levels of CRP rent (i.e., the supply curve for

carbon sequestration). At the average CRP rent rate of $71.21, 118,046 acres is gained by

CRP and 2.1 million tons of carbon is sequestered per year at a marginal cost of $24.6.

Increasing the average rent by 30% will add additional 159,736 acres and 0.24 million tons

of carbon per year.
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Agriculture plays both roles in the emission and sequestration of greenhouse gases. This

dissertation is divided into two main parts. The first part has two essays that examine the

impacts of climate change on winter wheat production and irrigation water use. The second

part examines the cost–effectiveness of using lands under the Conservation Reserve Program

(CRP) to sequester carbon through tree planting program. This dissertation contributes to

the literature by showing how crop yield variability is not the same as production variabil-

ity. The total impact of climate change is underestimated if climate change impact on yield

alone is used. Another contribution to the literature is the modeling of crop abandonment

in relation to climate change using correlated random effects fractional probit model. My

work also illustrates how irrigation water use will change and how this change will impact

the level of water in the aquifer by mid–century.

In my first essay, I examine the impact of climate change on winter wheat produc-

tion in Kansas. I decompose the total impact of weather variables on wheat production in

Kansas through crop abandonment and yield. Using yield impacts alone to measure the

climate change impact on production underestimates the total impact of climate change on

production. I use the correlated random effects fractional probit model to estimate crop

abandonment and account for unobserved heterogeneity between time–invariant variables

and yield. The result projects a 16.3% decrease in winter wheat production by mid–century

under the Representative Concentration Pathway (RCP) 4.5. I find that 86.72% of the pro-

jected decrease in production is due to the reduction in yield while crop abandonment is

projected to decrease production by 13.17%. Yield is projected to decrease by 14.12% while



crop abandonment is expected to increase by 18% by mid–century. Majority of damages

from climate change are explained by an increase in temperature.

In the second essay, I examine the impact of climate change on groundwater extraction

for corn production in Kansas. Using a 24–year panel data of irrigation water use, weather

and soil data, I estimate the impact of weather variability on irrigation water use for corn. I

include the field–level fixed effects and a quadratic time trend to control for time invariant–

variables and technological progress over time. I provide new evidence that shows farmers

are less responsive to changing irrigation water use than an irrigation schedule would predict

due to changes in weather. The result indicates 9% and 12% increase in irrigation water use

by mid–century under RCP 4.5 and 8.5 respectively. The number of water rights that exceed

their authorized water quantity will increase by 18.1% on average across different climate

models under RCP 4.5. The effect of an increase in irrigation water use on the water level

in the aquifer is spatial different. In Southwest Kansas, the historical rate of depletion is

2.05ft/year and by mid-century, the rate of depletion is projected to increase to 2.43 ft/year.

In South Central Kansas, historical depletion is around 0.19 ft/year and the rate of depletion

is predicted to increase to 1 ft/year by mid-century.

In the third essay, I analyze the cost–effectiveness of carbon sequestration through the

afforestation of the Conservation Reserve Program (CRP). I use the correlated random effects

probit model (CRE) to estimate the impact of an increase in the Conservation Reserve

Program (CRP) payments on land use change. The CRE model allows me to control for

unobserved heterogeneity and exploit variation in returns to land over time. Estimation

without control for unobserved heterogeneity produces biased estimates with coefficients

with the wrong sign. My estimates are used to simulate land use change, carbon sequestered

and the marginal cost of carbon at different levels of CRP rent (i.e., the supply curve for

carbon sequestration). At the average CRP rent rate of $71.21, 118,046 acres is gained by

CRP and 2.1 million tons of carbon is sequestered per year at a marginal cost of $24.6.
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Chapter 1

Introduction

Climate change and agriculture are closely connected. Numerous studies have examined the

relationship between climate change and agriculture and how climate change and agriculture

impact each other (Hendricks et al., 2018; Howden et al., 2007; Lubowski et al., 2006; Nelson

et al., 2009; Rosenberg et al., 1999; Schlenker and Roberts, 2009). Figure 1.1 shows the

interaction and impacts of climate change on agriculture, and how agricultural activities

contribute both to the emission of greenhouse gases and sequestration of carbon from the

atmosphere. The red arrow in figure 1.1 shows that climate change impacts agriculture by

affecting yield, area harvested, and irrigation water use.

Climate change impacts agriculture in two main ways: (i) warming and drought condi-

tions increase the chance of crop failure which may result in crop yield loss and reduction in

the area harvested, and (ii) the increasing temperature and variability in pattern and amount

precipitation impacts crop water demand and use. Extreme climate events do not impact

yield alone, but can also cause some area of the field planted to be abandoned. The impact

of agriculture on climate change can be divided into two categories: (i) agricultural activities

contribute to climate change through land use change and emission of greenhouse gases as a

result of deforestation, bush burning and management practices and, (ii) agricultural prac-

tices can mitigate climate change through carbon sequestration, such as the afforestation

of agricultural lands. About 6% of all greenhouse gas emissions originating in the United
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AgricultureClimate Change
Yield
Area Harvested
Water Use

Carbon emission & sequestration

Extreme weather

Figure 1.1: The Interaction between Agriculture and Climate Change

States come from agricultural activities (Denef et al., 2011). Agricultural activities like rice

production and deforestation increase carbon emissions which causes climate change while

the same agricultural programs like the adoption of conservation practices and afforestation

can be used to mitigate climate change (Canadell et al., 2007; Dale, 1997; Guo and Gifford,

2002; Karl and Trenberth, 2003; Lal, 2004).

My first essay analyzes how crop production responds to weather shocks. The IPCC

(2013) projects an increase in temperature between 0.9oC and 5.4oC by the end of the

century. As the global average surface temperature increases over the 21st century, these

changes will create different impacts on agriculture. Corn yield is projected to decrease

by 30–46% as a result of warming (Schlenker and Roberts, 2009), and dryland wheat yield

is projected to decline by 32% due to reduction in precipitation (Hernandez-Ochoa et al.,

2018). Variability created by climate change will perturb cropping patterns and growing

season length, reducing crop production as demand for food increases due to population

increase (Iizumi and Ramankutty, 2015; Lobell and Burke, 2010).

Therefore, I examine how responsive is wheat production through yield and harvested

acres to weather shocks. The majority of existing studies on yield–weather relationship use

yield measured as total production divided by area harvested (Berry et al., 2014; Miao et al.,

2016; Schlenker and Roberts, 2009). Apart from using this harvested yield information, some

of the literature uses yield as the sole source of variation in production (Berry et al., 2014;

Gammans et al., 2017). Using these methods underestimate the total effect during extreme

weather conditions. I decompose the total impact of climate change on production in Kansas
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through yield and crop abandonment. There is crop abandonment when a portion of the

planted acres are not harvested because the adverse weather shocks reduce the yield below

the point where the value of production is less than the cost of harvesting. Kansas is the

number one state for winter wheat production in the United States and ranked 49th in the

world based on acres planted. I use the correlated random effects fractional probit model

to estimate crop abandonment and account for unobserved heterogeneity. I use 18 different

general circulation models to project the impact of climate change on winter wheat yield,

crop abandonment and production by mid–century. I find that using climate change impacts

on yield alone to represent climate change impact on production underestimates the total

impacts from climate change.

In the second essay, I examine the impact of climate change on irrigation in Kansas.

Irrigation water demand and use will change in the future especially in the High Plains

as the variability created by climate change increases. Döll (2002) shows that about two–

thirds of the global area equipped for irrigation suffer from increased water requirements

due to an increase in temperature. De Silva et al. (2007) shows that a 3.5% increase in

potential evapotranspiration will increase irrigation water use by 23% due to rain ending

earlier. According to Steward et al. (2013), about 39% of the total water left in the High

Plains Aquifer is expected to be depleted over the next 50 years (Steward et al., 2013), while

a 35% reduction is expected in the areas of the southern High Plains supported by irrigation

due to increase in depletion rate and demand for water (Basso et al., 2013; Döll, 2002;

Scanlon et al., 2012). Increase in the global average surface temperature means an increase

in crop water demand and use. Gondim et al. (2012), Döll (2002) and Fischer et al. (2007)

all project an increase in irrigation water demand as climate changes. With the projected

depletion of the Ogallala aquifer in the future, more pressure is expected to be exerted on

the aquifer.

In the second essay, I examine the impact of climate change on groundwater extraction

for corn production in Kansas. More than 90% of the irrigation water pumped in Kansas

is used for agriculture with more than 3.3 million acre–feet of water applied annually to

approximately 3 million irrigated acres (Lanning-Rush, 2016). More than 50% of the irrigated
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acreage is used for corn production in Kansas, while billions of dollars are contributed in

revenue annually to the economy through the continued dependence on the aquifer. This

narrative will probably change in the future as the aquifer is completely depleted (Scanlon

et al., 2012; Steward et al., 2013). This means that any increase in crop water requirements

will likely increase irrigation water use which will further put more pressure on the aquifer. I

combine farm–level water use information, climate data, soils data and price information to

explain how precipitation variability and warming effects of temperature impacts irrigation

water use. I provide new evidence that shows how farmers react to increasing irrigation

water demand when climate changes. I also simulate how the enforcement of authorized

water quantity will reduce irrigation water use if fully enforced. I also assess the impact

of climate change on the change in the rate of depletion of the High Plains Aquifer across

the major Groundwater Management Districts (GMDs). Irrigation water use is projected

to increase as temperature increases by mid–century. The impact of climate change on the

level of water in the aquifer varies substantially across the GMDs in Kansas.

In the third essay, I examine how land use change can be used to mitigate climate change.

Land use will change due to different reasons especially to meet human development and its

nutritional needs as the world population continues to surge.1 Land use and other activities

especially on agricultural land can cause or mitigate climate change. Land use change distorts

the dynamics of CO2 exchange between the soil, plant and the environment that occur

through photosynthesis and respiration processes. In 2015, land conversion to cropland

released 23.2 MMT CO2 equivalent while 75 MMT of CO2 equivalent was sequestrated from

land that transitioned to forestry.2 Trees and other vegetation can sequester carbon in their

biomass and soils through the photosynthetic conversion of CO2 to carbon. For instance,

one of the aims of the Kyoto Protocol was to reduce climate change by reducing greenhouse

gases through forest sequestration.

The third essay examines the cost-effectiveness of mitigating climate change through

forest restoration of agricultural land. The Conservation Reserve Program (CRP), one of

1 More than 50 million acres associated with deforestation will take place in U.S. by 2051 as the population
reaches 400 million (Alig et al., 2010) 2 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016
at https://www.epa.gov/sites/production/files/2018-01/documents/2018_complete_report.pdf.
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the USDA programs established by the Food Security Act of 1985, provides annual rental

payments to farmers and landowners to voluntarily retire environmentally sensitive land from

agricultural production for the duration of 10 to 15 years. Currently, there are over 23 million

acres of land under CRP (USDA-FSA, 2015). Apart from carbon sequestration, reforestation

of CRP land has the potential of reducing carbon emissions, erosion and improving water

quality (Goodwin and Smith, 2003; Gorte, 2009). I combined a parcel–level data on land

use choice and quality from the National Resources Inventory (NRI) with the county–level

estimates of annual net returns (per acre) for six major crops and CRP returns between

2000 and 2012 for the Southeastern parts of the United States. I use the correlated random

effects probit model (CRE) to estimate the impact of an increase in CRP payments on land

use change. I simulate the amount of carbon that will be sequestered on a CRP parcel under

the tree–planting program. Carbon flow increases as the CRP return increases. Increasing

CRP rent to the social cost of carbon will increase the amount of carbon sequestered. I find

that increases in crop prices reduce land enrolled in the CRP program and results in net

carbon emissions.
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Chapter 2

Climate Change Impacts on Wheat

Production

2.1 Introduction

Changing climatic conditions are becoming one of the major challenges facing agricultural

production globally as demand for staple foods increases as the world population moves to-

ward 9 billion by 2050. Despite the fact that advancements in agriculture production have

improved agricultural productivity, risk due to climate change has also increased (Ortiz-

Bobea et al., 2018; Wang et al., 2015). Wheat is one of the most important staple foods

consumed globally, with the USA producing 8% of the world’s total production (Bond and

Liefert, 2015). With continuous changes in climatic conditions, it may be difficult to guaran-

tee production of staple foods in the future as extreme heat events in the spring and freezing

temperatures in the fall are considered to be the largest drivers of winter wheat yield loss

(Tack et al., 2015). For example, Kansas, the leading state in winter wheat production aban-

doned 1.05 million acres (11.1 percent of the planted acres) in 2013 due to below freezing

temperature in the second week of April and mostly above normal temperatures throughout

June (USDA, 2016).

I examine how responsive is wheat production through yield and harvested acres to

6



weather shocks. Climate change impacts agriculture in different ways in terms of crop mix,

planting date, yield and harvested area (Cho and McCarl, 2017; Deschenes and Greenstone,

2007; Kang et al., 2009; Miao et al., 2016; Nelson et al., 2009; Schlenker and Roberts,

2009; Tack et al., 2015). There are two sources of variation in production: yield and acres

harvested. I focus on dryland winter wheat production because 93% of the wheat acres

planted in Kansas are under dryland production, which is vulnerable to weather and secondly,

winter wheat is almost a year–long production where a lot of things can go wrong between

planting and harvesting due to weather shock. Increasingly unfavorable conditions under

observed and projected climate change conditions are expected to impact wheat production

variability as harvested areas are exposed to more extreme temperature and yield damage

(Gourdji et al., 2013). Tack et al. (2015) using experimental yield find freezing temperatures

in the fall and extreme heat events in the spring as the largest drivers of yield loss. Zampieri

et al. (2017) attribute wheat yield loss to heat waves, drought and water excess at the global,

national and subnational scales. Asseng et al. (2015) using 30 different wheat simulation

models predict a 6% fall in global wheat production for each 1oC increase in temperature,

while Finley (1963) highlights government programs and weather as some of the reasons for

the change in harvested acres.

There is a long list of literature that analyzes the impact of weather shocks on yield

measured as total production divided by harvested acres (Lobell et al., 2008; Miao et al.,

2016; Schlenker and Roberts, 2009). Extreme weather can cause some of the planted acres to

be abandoned reducing harvested acres. Then measuring the impact of weather on harvested

yield underestimates the impact on total production. According to Schlenker and Roberts

(2009), the use of harvested yield presents a selection problem during extremely bad years

when yields are close to zero and farmers choose not to harvest. Maunder (2012) explains

that yield information that does not consider abandonment can lead to inflated estimates.

A majority of the existing literature uses yield variability as the sole source of variation

in production (Asseng et al., 2015; Gammans et al., 2017; Kukal and Irmak, 2018; Schlenker

and Roberts, 2009). Schlenker and Roberts (2009) and Gammans et al. (2017) use average

growing area and weather impact on yield to estimate the total impact of climate change on
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production. The use of average acreage ignores the relationship between the area harvested,

weather and other factors that may influence production. Kukal and Irmak (2018) use yield

variability as production variability. Winter wheat is a long duration crop facing different

temperature ranges and damages before harvest (Shroyer et al., 1995), therefore, accounting

for crop abandonment is important. Iizumi and Ramankutty (2015) define annual production

as a product of harvested yield, harvested area, and cropping intensity. The impact of

weather variability on production is extensive for the use of yield variability alone to capture.

Maunder (2012) highlight that the portion of the field abandoned are probably the poorest

acres which are most sensitive to climate impacts.

I decompose the total impact of weather shocks on production through its impact on

harvested yield (total production divided by harvested area) and crop abandonment (the

portion of the planted acres not harvested). Only a few studies have estimated the separate

responses of production, harvested area and yield to climate (Koide et al., 2013; Lobell et al.,

2008). Based on Iizumi and Ramankutty (2015)’s definition of production, cropping intensity

is set to one as winter wheat can only be cultivated once in a year. Winter wheat is planted

in the fall, goes through vernalization during the winter (Herbek and Lee, 2009), resisting

freeze, and reaches maturity in the spring when the conditions are ideal. There can be crop

abandonment or crop failure. Crop failure and abandonment are both caused by extreme

weather conditions and the distinction between crop failure and abandonment are based on

the degree of damage. Mendelsohn (2007) defines the complete loss of crops on a farm as

crop failure.

There is crop abandonment when a portion of the planted acres is not harvested because

adverse weather shocks have reduced the yield below the point where the value of production

is less than the cost of harvesting. Crop abandonment depends mainly on crop performance

and the area harvested. Sometimes crop abandonment decision depends on crop’s expected

price and moral hazard (Chen et al., 2007; Miao et al., 2016), and sometimes it depends

purely on the weather (USDA, 2016). Koide et al. (2013) find a positive correlation between

area harvested and precipitation for rice production in the Philippines. If the weather is bad

during a cropping season, a farmer has to decide either to abandon acres before harvest or
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harvest yield at a loss. For example, crop abandonment in Kansas is as small as 4% of the

total wheat area, but there are some years where loss from crop abandonment is as high as

one-quarter of the total area for wheat in Kansas (Figure 2.1).

Depending on the stage of production, a farmer may decide to abandon a portion of

the planted acreage if the degree of possible damage by extreme heat or freeze is severe

enough. If the damage is early, the farmer can replant with the initial cost at this stage

being considered as a sunk cost. Late frost during early grain filling cause yield loss between

13 and 33% as grains was 80% lighter in spikes (Cromey et al., 1998). Barlow et al. (2015)

identified freeze to have the greatest impacts on production as it is associated with sterility

and the abortion of formed grains around anthesis. Warm temperatures during the winter

stop hardening very early, setting the crop for further damage when cold temperatures set

in during spring (Li et al., 2015). Extreme drought during major development also results

in poor development and reductions in yield. If the damage happens at a later stage, efforts

and resources can be diverted to the rest of the field if there is a prospect of better yield.

Farmer’s decisions and choices are influenced by uncertainty in weather conditions that

determine the performance of the crop. There is a large literature on the nonlinear effects of

weather on crop yields, rent and profit (Deschenes and Greenstone, 2007; Hendricks et al.,

2018; Lobell et al., 2011; Schlenker and Roberts, 2006, 2009; Tack et al., 2015). Different

temperature exposure ranges are needed for optimal winter wheat production (Acevedo et al.,

2002; Porter and Gawith, 1999). Bunting et al. (1982) explained that winter wheat is mostly

planted when the daily temperature is between 8–16oC while an optimal temperature ranging

between 12–15oC is needed for germination (Acevedo et al., 2002). Temperature between

3–10oC is needed during winter for vernalization (Herbek and Lee, 2009; Robertson et al.,

2004) and temperature below zero is damaging for yield in the spring (Shroyer et al., 1995).

Tack et al. (2015) show that yield will increase when the temperature is between 10–17oC

during fall, 5–10oC during winter and 18–34oC during spring. Lobell et al. (2012) using

satellite measurements of wheat grown in northern India found temperature above 34oC to

accelerate wheat senescence.

Different approaches have been used to measure the nonlinear effects of weather variables
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on winter wheat. Gammans et al. (2017) use both the step and flexible polynomial functions

with a 2oC and 1oC temperature intervals respectively, while controlling for non–monotonic

precipitation effects. Tack et al. (2015) use a piecewise linear approach where the authors

account for exposure to freezing temperature, and implement time separability to explain

how weather variables affect different physiological processes of winter wheat. I modify

Tack et al. (2015)’s preferred specification by adding expected wheat price to account for

other factors apart from weather shocks that could impact production through yield and crop

abandonment. Huang et al. (2010) incorporate state–level prices into the yield equation while

using crop stocks as an instrumental variable. Miao et al. (2016) include input prices and

expected output prices as other factors that can impact yield and land allocation decisions.

Kaufmann and Snell (1997) include price and other social factors to simulate the effect of

management decisions by farmers and found that a 1% increase in the use of purchased

inputs will increase output, but at a lesser rate than 1%.

I estimate crop abandonment with the correlated random effect fractional probit model

to control for unobserved heterogeneity. Fractional probit models allow the use of panel data

and controls for time–invariant variables by including the time averages of weather variables

(Papke and Wooldridge, 2008; Wooldridge, 2010). Ignoring unobserved heterogeneity results

in biased estimates. Parcels may have unobserved characteristics that can influence yield

like soil characteristics or be susceptible to flood and be correlated spatially. Fixed effect

estimates can also correct the omitted variable bias, but the use of fixed effects in nonlinear

estimation gives rise to an incidental parameter problem (Wooldridge, 2010). Cho and

McCarl (2017) use of county fixed effect to control for unobserved heterogeneity may have

introduced an incidental parameter problem in their analysis. Ji and Cobourn (2018) also

use a fractional multinomial logit model to explain the influences of irrigation districts on

land allocation, but failed to control for unobserved heterogeneity.

I use 18 different climate models to simulate the impact of climate change on production

by mid–century to capture relevant uncertainties. As reported in Wehner et al. (2017),

climate change is projected to further increase the duration and intensity of drought over

the Southern Great Plains. I project how precipitation variability and increasing temperature
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will affect production under Representative Concentration Pathways (RCPs) 4.5 and 8.5. I

combine my estimates from my historical estimation with the climate change model to project

how yield and crop abandonment will change by mid-century by assuming no adaptation

(Burke and Emerick, 2016). Temperature is expected to rise in the Southern Great Plains

between 2oC (3.6oF) and 2.83oC (5.1oF) by the mid–21st century and by 2.4oC (4.4oF) and

4.67oC (8.4oF) by the late 21st century, with the occurrence of temperature similar to that

of 2011 (Reidmiller et al., 2018). According to Wuebbles et al. (2017), the Southern Great

Plains is projected to experience an additional 30–60 days per year above 37.78oC (100oF)

than it does now by late 21st century if there are no reductions in greenhouse gas emissions.

My key result is that when there is crop abandonment, using yield impacts alone to

measure the climate change impact on production underestimate the total impact of climate

change on production. Increase in crop abandonment is projected to reduce production

by 13.17%, while the reduction in yield is projected to lower production by 86.72%. Pro-

duction is projected to decline by 16.3% under the RCP 4.5 scenario. From the historical

climate, freeze in the fall and spring, and extreme heat in spring are the major cause of crop

abandonment, while freeze in the fall and extreme heat in the spring is the major cause of

decline in winter wheat yield. For the future projections, the temperature increase will be

the main cause of reduction in wheat production. The impact of weather variables on yield

is consistent with results from Tack et al. (2015). Increasing temperature by 1oC while hold-

ing precipitation constant reduces yield by 6.87%. This result is also similar in magnitude

with both US and global aggregate impacts predicted by Liu et al. (2016) and Asseng et al.

(2015). A uniform 2oC increase in temperature will reduce abandonment and yield by 5.5%

and 14.8% respectively.

2.2 Theoretical Framework

Iizumi and Ramankutty (2015) define annual production (Prodit) as a product of harvested

yield, harvested area, and cropping intensity. For this study, I assume cropping intensity

for dryland winter wheat to be one. Let superscript H and P denote harvested and planted.
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Harvested yield is defined as production divided by area harvested while planted yield is

defined as production divided by area planted. Let yHit =
Prodit
AcresH

be denoted as harvested

yield and yPit=
Prodit
AcresP

be denoted as the planted yield. Let yit be explained as a function of

weather variables Wit (temperature, precipitation) given that other variables are controlled

for in the empirical analysis using fixed effects. That is:

yit = f(Wit). (2.1)

Let harvested acres and planted acres be denoted as AcresH(Wit) and AcresP , respectively.

Assuming acres planted does not depend on the weather,
∂AcresP

∂Wit

= 0 and the proportion

of acres harvested be represented as AR(Wit) = AcresH(Wit)
AcresP

. Let the proportion of the area

not harvested or acreage response (cait(Wit)) be defined as;

cait(Wit) = 1− AR(Wit) (2.2)

where

AR(Wit) =
AcresH(Wit)

AcresP
, (2.3)

The effect of weather on the area not harvested can be represented as ;

∂cait(Wit)

∂Wit

= −∂A
R(Wit)

∂Wit

(2.4)

Production can be redefined as:

Prodit(Wit) = yPit (Wit)× AcresP = yHit (Wit)× AcresH(Wit) (2.5)

where

yPit (Wit) = yHit (Wit)×
AcresH(Wit)

AcresP
(2.6)

Note that AR(Wit) = 1− cait(Wit)
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yPit (Wit) = yHit (Wit)× (1− cait(Wit)). (2.7)

yHit ×cait(Wit) is the production loss, which is defined as the product of the area of the planted

acres not harvested and yield that should have been realized. The impact of weather pro-

duction can be measured by differentiating equation 2.7. More than 32% of yield variability

is explained by climate variability (Ray et al., 2015), while winter wheat is expected to re-

duce between 10 and 20% by 2090 due to climate change (Chen et al., 2004). Taking the

derivative of equation 2.7 gives the total impact of climate change on production. The total

impact of climate change on production is the sum of climate change impact on yield and

harvested acres;

yH
′

it .A
R
it − ca

′

it.y
H
it = yP

′

it (2.8)

The primes denote first derivatives. If the total planted area is harvested (ARit = 1), crop

abandonment equals zero (cait = 0), climate change impact on production is the same as

its impact on yield (yH
′

it = yP
′

it ). If the total planted area is not harvested (ARit < 1), crop

abandonment is not equal to zero (cait 6= 0), and climate change impact from harvested yield

understate the total impact of climate change on production (yH
′

it < yP
′

it ).

I divide equation 2.8 by yp

yp
where yp is defined by equation 2.6 (yp =

yHit (Wit)×AcresH(Wit)

AcresP
).

yH
′

it

yHit
− ca

′
it

ARit
=
yP
′

it

ypit
(2.9)

In other words, the percent change in production is equal to the percent change in harvested

yield plus the percent change in acres harvested. Equation 2.9 shows the contribution of

each component of production.
yH
′

it

yHit
represents the impact of climate change on production,

while
ca
′
it

AR
it

represents changes in harvested acres production.
yP
′

it

ypit
represents the total impact

of climate change on production.

13



2.3 Data

2.3.1 Yield Information

I used a panel data set of USDA data on production, planted and harvested acres for dryland

winter wheat producing counties in Kansas from 1981 to 2007. There is limited production

information for the winter after 2007 due to a change in the method of reporting production

information. Since planted yield per net–planted was not reported for all counties and years

for every county where I have crop abandonment data, I used the harvested yield. Therefore,

the harvested yield will be referred to as yield. Table 4.2 shows the production data. The

average yield between 1981–2007 is 35.05 bu./acres, while the average crop abandonment

between the same period is 11%.

2.3.2 Weather Information

I use the daily weather data from PRISM1 to construct the weather variables from September

to May following Tack et al. (2015). Following Tack et al. (2015) and assuming temperature

and precipitation effects are additive, I divide the growing season into three periods; Fall

(September–November), Winter (December–February) and Spring (March–May). I exclude

the weather information during the final parts of the growing season because of harvest

in Kansas typically starts in the month of June. More details on how the degree days

and freeze variables are constructed are explained in details in section 2.4.2. The average

minimum temperature in the winter is –6.25oC compares to the minimum temperature of

6.1oC in the fall and 5.13oC in the spring (Table 2.6). I aggregate the total precipitation

received during each period. Less precipitation is received during the winter when compared

to the other two periods. Figures 2.2 and 2.3 show the distributions of average temperature

and precipitation across counties in Kansas between 1981 and 2007.

1 PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu
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2.3.3 Soil Information

I use detail soil data from the gSSURGO (gridded Soil Survey Geographic) database created

by NRCS.2 I include root zone available water, which is the volume of plant available water

that the soil can store within the root zone based on all map unit earthy major components.

Other soil characteristics included as controls are: soil organic carbon, bulk density, electrical

conductivity, the proportion of cropland with a pH less than 6, and the proportion of cropland

with a pH greater than 7.5. These soil characteristics were chosen to represent indicators

of the five functions of soil: sustaining biological diversity and productivity (D); regulating

water (W); filtering, buffering, and degrading organic and inorganic materials (F); storing

and cycling nutrients and carbon (N); and providing physical stability (S) (Hendricks, 2018;

NRCS, 2018).

Soil organic carbon (SOC) is the source and sink of principal plant nutrients, absorbing

water at low moisture potentials to increase plant available water capacity (Lal, 2004).

Bulk density reflects the soils ability to function for structural support, water and solute

movement, and soil aeration (NRCS, 2018). Soil pH generally refers to the degree of soil

acidity or alkalinity which impacts soils physical, chemical, and biological properties and

processes, as well as plant growth. Electrical conductivity is used as an indirect indicator of

the amount of nutrients available for plant uptake and salinity levels (NRCS, 2018). Table 2.6

has the descriptive statistics of each of the soil variables.

2.3.4 Price Information

I used the Chicago Mercantile Exchange (CME) expected price of wheat which is the average

daily settled price between August and September for July contract. To reduce any concern

of endogeneity, I use winter wheat price prior to the start of the growing season so that the

total area of acres planted is exogenous to price set by the CME. According to Hendricks

et al. (2014), using expected price information before that start of the growing season may

reduce endogeneity as these prices are exogenous factors that affect planting area.

2 Read Hendricks et al. (2018) for more information about the soil data

15



2.4 Econometric Model

I modify the approach by Tack et al. (2015) by including expected wheat price to measure

changes in farmers practices in response to changes in price. I separately estimate the

nonlinear effect of weather variables on (1) yields and (2) crop abandonment.3 Let 1, 2 and

3 denote fall, winter, and spring respectively. I explain yield and crop abandonment as a

function of weather variables and expected wheat price. For the yield model estimation,

time–invariant variables such as soil controls are controlled with fixed effects. The yield

model is specified as;

yit =
3∑

s=1

Xitβs + δi + τ(t) + γWpricet + εit. (2.10)

where yit is in log form to remove the skewness in yield distribution across counties, δi is the

county fixed effect used to control for time–invariant heterogeneity like soil quality, τ(t) is

the linear and quadratic time trend specified to capture changes in management practices

like planting date and technological change. γ is the coefficient of the expected wheat price.

According to Miao et al. (2016), expected output price and management practices are other

factors that can influence crop yield. εit is the error term, clustered at the county level. βs

is the vector of parameters to be estimated for each of the growing periods, while Xit is the

vector of degree days, freeze variables, and precipitation.

I construct the degree days as a sinusoidal interpolation of minimum and maximum

temperature exposure within each day (Schlenker and Roberts, 2009; Tack et al., 2015).

Following Tack et al. (2015), a piecewise linear regression is estimated using equation 2.10

over different possible thresholds within each period. There is no guidance in the literature

on what thresholds bounds should be within each growing periods. The same principle used

by Tack et al. (2015) was adopted by restricting the lower threshold at least five degrees

above zero and ten degrees below the maximum observed temperature, while the upper

threshold is restricted to be five degrees above the lower threshold and five degrees below

3 I use the harvested yield instead of the planted yield. Planted yield information are missing for some
counties for some years.
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the maximum for fall and spring.

I select the optimal thresholds for the harvest yield model from the model with the best

fit based on r–squared. For crop abandonment, I use the same thresholds from the yield

model. I use these thresholds to construct temperature exposure for each period during the

growing season. I define the low degree days for each period as the degree days between

zero and lower threshold. The medium degree days measures the degree days between lower

and upper threshold, while the high degree days measures degree days above the upper

threshold. I construct the freeze variables as exposure in days to freezing temperature. The

beneficial temperatures within each period vary across the growing season (Table 2.6). The

critical temperature for wheat in the fall is 15oC, 11oC in the winter and 30oC in the spring.

These thresholds appear consistent with Porter and Gawith (1999) regarding the effects of

temperature exposure on wheat development.
∑3

s=1Xit is defined as

3∑
s=1

Xit =
3∑
s=1

β1sFreezeit +
3∑
s=1

β2sDDLowit +
3∑
s=1

β3sDDMediumit

+
3∑
s=1

β4sDDHighit +
3∑
s=1

β5sPrecit +
3∑
s=1

β6sPrec
2
it.

(2.11)

The crop abandonment model has the same variables as the yield model except with the

inclusion of soil control variables. Since cait is between 0 < cait ≤ 1, I use the correlated

random effect fractional probit to model the nonlinear relationship between weather and

crop abandonment. The notation Φ(.) denotes the cumulative normal distribution. βs can

be estimated consistently with a standard probit model by imposing some condition on the

correlation between the unobserved effect and the covariates. (Chamberlain, 1980; Mundlak,

1978; Wooldridge, 2010). This is called correlated random effects. The inclusion of county

fixed effects in the fractional probit model introduces an incidental parameter problem if T

is fixed and N −→∞. The crop abandonment model is specified as;

E(cait) = Φ(
3∑

s=1

Xitβs + τ(t) + δi + γWpricet). (2.12)
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By assuming a conditional normal distribution with linear expectation and constant variance

(Chamberlain, 1980; Wooldridge, 2010), I control for δi by introducing Xi ≡ T−1
∑T

t=1Xit

into equation 4.3 to consistently estimate βs as well as the estimators of the average partial

effects (APEs). By introducing Xis into equation 4.3, it means any remaining unobserved

heterogeneity is uncorrelated with the weather variables.

E(cait) = Φ(
3∑

s=1

Xitβs + τ(t) + γWpricet + θχi + ρs

3∑
s=1

Xi). (2.13)

χi is a vector of soil control variables described in the data section.

2.4.1 Warming Scenarios

I use eqs. (2.10) and (2.13) to simulate the impact of an increase in temperature on yield and

crop abandonment for each 1oC increase in temperature up to 5oC. I simulate the effect of

drought defined by tenth-percentile precipitation outcome of average precipitation received.

I also simulate the combined effects of drought and with different ranges of temperature

increase (Tack et al., 2014). The impact on yield is specified as the relative change in winter

yield due to increase in temperature;

Impacty = e(Xi−X0)β̂i − 1, (2.14)

while the impact on crop abandonment is specified as;

Impactca = Φ (.)i − Φ (.)o (2.15)

Where i=1, 2, 3, 4 and 5 are the warming scenarios in degrees Celsius and X0 and Φ (.)o are

the baseline scenarios.
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2.4.2 Climate Change Projection

I use data from 18 different climate models to construct climate variables which are aggre-

gated to growing periods and used to project change in crop abandonment and yield under

the Representative Concentration Pathways (RCPs) 4.5 and 8.5 by mid–century (2034-2065).

I use the downscaled Coupled Model Intercomparison Project (CMIP5) daily climate projec-

tions for two main reasons. Downscaled CMIP5 was used to inform the Intergovernmental

Panel on Climate Change (IPCC) Fifth Assessment and secondly, the data are downscaled,

which resolves any issue of aggregation bias raised by Auffhammer et al. (2013). I make a

bias correction to account for bias in certain climate models. Bias–corrected projections are

obtained by using the mean difference between variables constructed from historical simu-

lated data by the climate models and the observed data from the PRISM to adjust the future

data projection around the bias (Hawkins et al., 2013). Data between 1981–2005 are used

to correct future projections.

Other challenges associated with the use of a single projection of future climate are

resolved by using an ensemble average (Auffhammer et al., 2013; Burke et al., 2015). I

report a simulation with an ensemble average by averaging the predicted change in each

variable across all models. I also report simulation for each climate change models to show

the level of uncertainty across different climate models under RCP 4.5 and 8.5 respectively.

The list of the 18 climate models and institutions are listed in table A. The use of an ensemble

average smooths out the uncertainty and extreme projections from different models.

2.5 Result and Discussion

The results of crop abandonment and yield response to weather effects are shown in tables 2.5

and 2.6. Table 2.5 shows the parameter estimates from the fractional probit, average partial

effects (APEs) and the fixed effects linear probability model. The APEs from the fractional

probit are similar in sign and the coefficients are close in magnitude to the coefficients from

the linear fixed model.
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The major drivers of crop abandonment are freeze in the fall and spring, and extreme heat

in the spring. An additional day of freezing temperatures in the spring is associated with a

1.04 percentage point increase in crop abandonment while exposure to freezing temperatures

in the fall will increase abandonment by 0.85 percentage points. Crop abandonment is highly

sensitive to increased exposure to a temperature above 30oC. An additional degree day above

30oC will increase crop abandonment by 1.33 percentage points. Wheat is sensitive to freeze

temperature as cold temperatures cause injury like leaf chlorosis and death of growing points

after hardening in the fall and dehardening in the spring (Warrick and Miller, 1999).

Both the linear and quadratic coefficients of precipitation are significant for fall and

spring. Precipitation has an inverted U shape in all the periods. At sample means, a 1mm

increase in precipitation in the fall and the spring season will reduce abandonment by 0.08

and 0.04 percentage points respectively.

Table 2.6 shows the weather effects on winter wheat yield. The major driver of yield loss

is exposure to freezing temperatures during fall and extreme heat in the spring. Spring is

when plants grow to maturity after dehardening in the winter. An additional day of freeze in

the fall reduces harvested yield by 3.54%. Freezing temperatures during the spring also lower

yield by 1.66%. Freeze impact from the fall is consistent, but smaller in magnitude when

compared to the impact associated with yield reduction in Tack et al. (2015).4 Gammans

et al. (2017) also find exposure to a temperature below -6oC in the fall to have a negative

effect on yield. Freezing temperatures during the spring bring about freeze injuries ranging

from leaf chlorosis to floret sterility that have moderate to severe effects on yield (Shroyer

et al., 1995). According to Warrick and Miller (1999) and Shroyer et al. (1995), the duration

of injury depends on the duration of exposure and how cold the temperature is.

Extreme heat in the spring lowers harvested yield by 4.53%. Extreme heat in the fall

and winter also have a minimal impact on yield. A temperature exceeding 11oC during the

winter reduces yield by 0.79%. Extreme heat damage is most common during grain filling

when the kernels are shriveled and prematurely ripe. High temperature hastens the decline

in photosynthesis and leaf area, decreases shoot and grain mass as well as weight and sugar

4 Tack et al. (2015) associate a 9% reducing in yield with freeze in the fall
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content of kernels, and reduces water-use efficiency (Shah and Paulsen, 2003).

Precipitation has a statistically significant inverted–U shape in all the seasons. Increase

in precipitation through all the growing season is important as it all increase yield. For the

fall, the yield-maximizing level is 14.09 inches, 4.81 inches in the winter and 8.49 inches for

the spring.

2.5.1 Warming Scenario

I simulate the impact of an increase in temperature on crop abandonment and yield to under-

stand the impact of warming, while holding precipitation constant. A uniform temperature

increase of 2oC or less will reduce crop abandonment as the impacts from warming offset

damages from exposure to freezing temperature. Although not significant, a 2oC increase

in temperature will reduce area crop abandonment by less than 5.5%. Beyond 2oC, the net

warming impacts outweigh the benefits from the reduced damage from exposure to freez-

ing temperature. A 3oC increase in temperature will increase crop abandonment by 11.2%

(figure 2.4).

I also simulate the impact of drought, while holding temperature effects constant. Crop

abandonment increase by 31.6% when only 10 percentile of the historical average precipi-

tation is received. The red bar of figure 2.4 shows how crop abandonment will increase by

22.1% when there are drought and temperature increase of 2oC.

For winter wheat yield, a 1oC and 2oC uniform increase in temperature reduces yield by

6.1% and 14.8% respectively (figure 2.5). My predicted yield reduction under 1oC is similar

in magnitude with both US and global aggregate impacts predicted by Liu et al. (2016) and

Asseng et al. (2015). The effect from drought why holding the temperature constant is 27.5%

which is a bit higher in magnitude when compared to the estimate from Tack et al. (2014).

The difference in impact can be attributed to the type of yield used in these estimations.

Under the combined scenarios of 2oC increase in temperature and drought, winter wheat

yield is reduced by 38% (figure 2.5).
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2.5.2 Climate Projection

I combine the climate projections with my empirical models to project the impact of climate

change on crop abandonment and winter wheat yield by mid–century (eqs. (2.10) and (2.13)).

To derive the impact of climate change on crop abandonment and winter wheat yield, I

predict crop abandonment and yield by using the historical climate (1981–2007) and the

projected climate data from 18 different climate models under scenarios RCP 4.5 and 8.5.

The projection for the mid–century is done at 2007 technology.

The ensemble average of the crop abandonment varies across years at mid–century and

is higher in almost all years above the historical climate (Figure 2.6). The variation in crop

abandonment from one year to another reflects climate variability and the effects of extreme

weather conditions by mid–century. On average, crop abandonment is expected to increase

by 1.9 and 3.9 percentage points under RCP 4.5 and 8.5 respectively. In some models,

crop abandonment is high as 60 percent increase for some years above the historical climate

(figures 2.15).

Figure 2.7 shows the winter wheat yield projection by year for the mid–century. The

yearly projections are all below the historical climate outcomes. Winter wheat yield is

expected to decrease by an ensemble average of 14.12% and 19.71% under RCP 4.5 and 8.5

respectively (Figure 2.16). Gammans et al. (2017) projected a yield decrease between 3.5%

to 12.9% for winter wheat by 2037–2065 for France. In some models, the yield is as low as

10 bushels per acre for some years (figures 2.7).

Figures 2.15 and 2.16 show the level of uncertainties in change in crop abandonment

and yield across the 18 climate models from the baseline. Most of the models project an

increase in crop abandonment under both scenarios except for MRI-CGM3, MIROC-ESM,

and CNRM-CM5 that project reduction in crop abandonment (figure ??). For yield, all

these models project reduction in yield which is as high as 21% under RCP 4.5.

Next, I isolate the source of change in crop abandonment and winter wheat yield: (i)

degree days (ii) freeze variables, (iii) precipitation. To decipher the contribution of each

variable, I simulate crop abandonment and yield using degree days while I assume no change
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in freeze variables and precipitation relative to the reference period (1981–2007). Similar

procedures are repeated for freeze variables and precipitation. Each impact is bootstrapped

with 500 replications to obtain their confidence interval.

Figures 2.10 and 2.11 show the contributions of each climate characteristics to the overall

impact on crop abandonment and yield. The middle dot indicates point estimates and

the bars represent the 95% confidence interval generated using 500 bootstrap replications.

Summing the relative change in crop abandonment and yield across sources does not equal

the relative change in crop abandonment or yield due to the functional form used. For the

crop abandonment, the cumulative normal distribution of a sum of different values is not

the same as the sum of separate cumulative normal distributions –Φ(a + b) 6= Φ(a) + φ(b).

For yield, the relative change nearly adds to the total effect.

Crop abandonment is estimated to increase by 18% by mid–century under RCP 4.5

(fig. 2.10). The impact from an increase in temperature through degree days and freeze

variables on crop abandonment are different. An increase in temperature through degree days

alone will increase crop abandonment by 74%, while exposure to freezing temperature will

reduce crop abandonment by 34%. The impact from the warming effects due to temperature

increase offsets the damage from exposure to freezing temperature, therefore reducing crop

abandonment by 40%. Precipitation is expected to reduce abandonment by 0.01%. This

result implies that the projected increase in crop abandonment will be induced by an increase

in temperature. it is also interesting that the damage from temperature increase through

degree days far outweighs the benefits gained in reducing damage from exposure to freezing

temperature.

Winter wheat yield is expected to reduce by 14.12% by mid–century under RCP 4.5

(Figure 2.11). Increase in temperature will reduce yield by 23% through degree days and

increase yield by 13% by offsetting damage from exposure to freezing temperature. Reduction

in precipitation will reduce yield by 3%. According to Tack et al. (2015), additional rainfall

in the spring can partially offset the negative effects of warming.

Next, I examine the relative change in crop abandonment and winter wheat yield across

counties in Kansas by mid-century. To calculate the relative change, I estimate the change
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in crop abandonment and yield between mid–century and the reference period, divided by

the average crop abandonment and yield from the reference period weighted by production

in each county. Figure 2.12 shows the relative change in crop abandonment by county under

RCP 4.5 in reference to the historical climate. The variation across counties can be attributed

to the spatial differences in soil characteristics and weather conditions across counties. Crop

abandonment is reduced in the northern counties of Kansas as the region is much colder and

warming impacts from the temperature increase offset the damage from the cold condition by

mid–century. This is different for counties in the south as the hot conditions are aggravated

by increases in temperature. Figure 2.13 shows the relative change in yield by the county

under RCP 4.5. Unlike crop abandonment, the distribution of yield impacts across counties

is more concentrated within regions. The counties within the Southwest and South–central

regions of Kansas are expected to have the highest relative change in yield with respect to

the historical climate.

2.5.3 Climate Change Impact on Production

I decompose the impact of climate change on production through yield and acreage response

by mid–century (Figure 2.14). I use equation 2.9 to estimate the total impact on produc-

tion as a sum of the relative change in yield and relative change in the proportion of the

acres harvested. Winter wheat production is expected to reduce by 16.3% and 24.1% by

mid–century under RCP 4.5 and 8.5 respectively. Crop abandonment is expected to lower

production by 13.17%, while the remaining 86.72% is explained by yield variability. Using

yield impacts alone to measure the climate change impact on production when there is crop

abandonment underestimates the impact by an average of 13.17% under RCP 4.5.

2.6 Conclusion

The primary contribution of this paper involves the decomposition of climate change impact

on production through yield and acreage. I use a fractional probit model that allows the
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control of unobserved heterogeneity. I use 18 general circulation models to project crop

abandonment and winter wheat yield for the mid–century, isolating the source of change in

crop abandonment and yield. I also examine the relative change in the spatial distribution

of crop abandonment and yield across counties in Kansas by mid–century (2034–2065).

I nd that freeze in the fall and spring, and extreme heat in spring are the major driver

of crop abandonment while freeze in the fall and extreme heat in the spring are the major

cause of decline in winter yield under the historical climate. By midcentury, increasing

temperature will cause most of the change in yield and abandonment. A uniform 2oC

increase in temperature will reduce yield by 15.48%. Increase in crop abandonment will

account for 13.17% reduction in winter wheat production. By midcentury, production is

projected to decrease by 16.3% under RCP 4.5.

There are some important caveats in my analysis. I do not factor yield improvement from

technological advancement in the future as I project the impacts from climate change. The

predicted impacts may be smaller with the adoption of heat–tolerant winter wheat varieties.

My analysis does not consider the fertilization effects of CO2 on winter wheat production.

Winter wheat water use efficiency is high under higher levels of CO2 (Eitzinger et al., 2003).

Another limitation is that I only analyze winter wheat production using Kansas information.

Abandonment could be less important for other crops with shorter duration compared to

winter wheat which has an almost a year production period with different temperature

thresholds for optimal production. One area of research interest is to examine the impact of

climate over a bigger study area, examining how crop insurance affects crop abandonment.
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Figure 2.1: The figure shows the distribution of winter wheat production and abandonment
in Kansas between 1981–2007. The upper panel shows the average production by county by
year while the second panel shows the distribution of winter wheat abandonment by year.
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Table 2.1: Descriptive Statistics of Production and Price Variables

Measures Mean Std. Dev. Min Max

Harvested Yield(bu./ac) 35.05 10.12 9 80.35
Planted Yield(bu./ac) 31.94 11.12 2.11 76.39
Harvested Area (,000 Acres) 90.62 68.15 0.20 505.60
Planted Area (,000 Acres) 101.58 73.84 0.20 524.00
Production (,000 bu.) 3,222.31 2,656.68 6.00 22000
Abandonment* 0.11 0.12 0.00 0.85
Expected Price ($) 3.68 0.68 2.55 5.01

Note: Crop abandonment has no unit. Planted and harvested yield
represent yield calculated from production divided by planted and har-
vested acres respectively over years. The data is from 105 counties in
Kansas between 1981–2007.

Table 2.2: Descriptive Statistics of Weather Variables

Tmin (oC) Tmax (oC) Aggregate Precipitation (mm)

Fall Winter Spring Fall Winter Spring Fall Winter Spring

6.10 -6.25 5.13 20.52 6.88 19.39 165.62 78.66 230.51
(1.87) (2.02) (1.93) (1.58) (2.33) (1.79) (98.35) (48.59) (95.34)

Note: Weather variables are aggregated over the growing season. Standard deviation is in
bracket.

Table 2.3: Optimal Thresholds from Piecewise Linear Models

Variables Threshold mean ± SD.
Degree Days low:Fall 0–10 oC 716.86 ± 49.74
Degree Days Medium:Fall 10–15 oC 243.47 ± 26.99
Degree Days High:Fall 15+ oC 277.57 ± 53.34
Degree Days low:Winter 0–5 oC 172.66 ± 38.54
Degree Days Medium:Winter 5–11 oC 95.48 ± 31.79
Degree Days High:Winter 11+ oC 30.71 ±18.71
Degree Days low:Spring 0–20 oC 1077.61 ± 113.24
Degree Days Medium:Spring 20–30 oC 75.77 ± 27.09
Degree Days High:Spring 30+ oC 2.02 ± 2.95

Note: The thresholds were estimated through piecewise regression
over all possible thresholds. The optimal thresholds for yield’ model
was selected from the models that maximize the r–squared. Seasons
are September-November (Fall), December-February (Winter), and
March-May (Spring).

27



Figure 2.2: The figure shows the average temperature by county in Kansas between
1981–2007. The first panel shows the average temperature for the fall season (September-
November), the second panel shows the average temperature in the winter( December–
February) and the last panel shows the average temperature spring (March–May).
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Figure 2.3: The figure shows the average precipitation by county in Kansas between
1981–2007. The first panel shows the average precipitation for the fall season (September-
November), the second panel shows the average precipitation in the winter( December–
February) and the last panel shows the average precipitation spring (March–May).
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Table 2.4: Descriptive Statistics of Soil Variables

Measures Mean Std. Dev. Min Max

Rootznaws (mm) 247.34 39.71 160.28 311.74
Soil organic carbon (kg/m3) 11.51 2.94 5.63 81.89
Bulk density 1.38 0.06 1.21 1.54
Electrical conductivity (EC) 0.39 0.32 0.00 1.19
pH less than 6 0.04 0.10 0.00 0.62
pH greater than 7.5 0.44 0.41 0.00 1.00

Figure 2.4: The figure shows the predicted impact of the combined effects from an increase
in temperature and decrease in precipitation on crop abandonment. The first bar (orange),
shows the predicted impact of an increase in temperature alone across different periods during
the growing season on crop abandonment. The second bar shows the added effects of tem-
perature increase and tenth-percentile of the average precipitation received. Tenth-percentile
of the average precipitation received is used to represent drought. Impacts are reported as
the percentage change point in crop abandonment relative to historical climate. Bars show
95% confidence intervals using the standard error clustered by county and obtained by 500
bootstraps.
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Table 2.5: Specification Measures of Weather Effects on Crop Abandonment

(1) (2)
Fractional probit Linear

Estimation Methods Pooled QMLE Fixed Effects

Variables Coefficient APE Coefficient

Freeze Days :Fall (oC) 0.0485∗∗∗ 0.0085∗∗∗ 0.0079∗∗∗

(0.0113) (0.0020) (0.0020)
Freeze Days:Winter (oC) 0.0053 0.0009 0.0006

(0.0100) (0.0017) (0.0022)
Freeze Days:Spring (oC) 0.0594∗∗∗ 0.0104∗∗∗ 0.0115∗∗∗

(0.0085) (0.0016) (0.0014)
Degree Days low:Fall (oC) 0.0007 0.0001 0.0000

(0.0015) (0.0003) (0.0003)
Degree Days Medium:Fall (oC) 0.0006 0.0001 0.0003

(0.0026) (0.0005) (0.0005)
Degree Days High:Fall (oC) 0.0007 0.0001 0.0001

(0.0005) (0.0001) (0.0001)
Degree Days low:Winter (oC) -0.0017 -0.0003 -0.0003

(0.0028) (0.0005) (0.0006)
Degree Days Medium:Winter(oC) 0.0018 0.0003 0.0003

(0.0020) (0.0004) (0.0004)
Degree Days High:Winter(oC) -0.0025 -0.0004 -0.0004

(0.0021) (0.0004) (0.0004)
Degree Days low:Spring(oC) 0.0024∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗

(0.0004) (0.0001) (0.0001)
Degree Days Medium:Spring(oC) -0.0075∗∗∗ -0.0013∗∗∗ -0.0014∗∗∗

(0.0011) (0.0002) (0.0002)
Degree Days High:Spring(oC) 0.0759∗∗∗ 0.0133∗∗∗ 0.0161∗∗∗

(0.0074) (0.0012) (0.0013)
Precipitation(mm):Fall -0.0044∗∗∗ -0.0008∗∗∗ -0.0009

∗∗∗

(0.0005) (0.0001) (0.0001)
Precipitation(mm) Squared:Fall 0.0000∗∗∗ 0.0000∗∗∗ 0.0000

∗∗∗

(0.0000) (0.0000) (0.0000)
Precipitation(mm):Winter -0.0010 -0.0002 -0.0002

(0.0007) (0.0001) (0.0002)
Precipitation(mm) Squared:Winter 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000)
Precipitation(mm):Spring -0.0021∗∗∗ -0.0004∗∗∗ -0.0004

∗∗∗

(0.0006) (0.0001) (0.0001)
Precipitation(mm) Squared:Spring 0.0000∗∗∗ 0.0000∗∗∗ 0.0000

∗∗∗

(0.0000) (0.0000) (0.0000)
Wheat price ($) -0.0323 -0.0057 -0.0032

(0.0284) (0.0050) (0.0064)
Soil Control Yes No
County Fixed effect No Yes
Quadratic Trend Yes Yes

Note: *,** and *** indicate significance at 0.1 and 0.05 and 0.01 level. Figures in the parenthesis

are standard errors clustered by county. The standard errors for the APEs are obtained from 500

bootstrap replications.
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Table 2.6: Specification Measures of Weather Effects on Yield

(1)
Variables Coefficient

Freeze Days :Fall (oC) -0.0354∗∗∗

(0.0045)
Freeze Days:Winter (oC) -0.0003

(0.0038)
Freeze Days:Spring (oC) -0.0166∗∗∗

(0.0030)
Degree Days low:Fall (oC) -0.0046∗∗∗

(0.0007)
Degree Days Medium:Fall (oC) 0.0040∗∗∗

(0.0009)
Degree Days High:Fall (oC) -0.0001

(0.0001)
Degree Days low:Winter (oC) -0.0025∗∗

(0.0011)
Degree Days Medium:Winter(oC) 0.0069∗∗∗

(0.0007)
Degree Days High:Winter(oC) -0.0079∗∗∗

(0.0009)
Degree Days low:Spring(oC) -0.0015∗∗∗

(0.0002)
Degree Days Medium:Spring(oC) 0.0041∗∗∗

(0.0005)
Degree Days High:Spring(oC) -0.0453∗∗∗

(0.0028)
Precipitation(mm):Fall 0.0025∗∗∗

(0.0002)
Precipitation(mm) Squared:Fall -0.0000∗∗∗

(0.0000)
Precipitation(mm):Winter 0.0031∗∗∗

(0.0004)
Precipitation(mm) Squared:Winter -0.0000∗∗∗

(0.0000)
Precipitation(mm):Spring 0.0032∗∗∗

(0.0004)
Precipitation(mm) Squared:Spring -0.0000∗∗∗

(0.0000)
Wheat price ($) 0.0088

(0.0115)
Soil Control No
County Fixed effect Yes
Quadratic Trend Yes

Note: *,** and *** indicate significance at 0.1 and 0.05 and 0.01 level.

Figures in the parenthesis are standard errors clustered by county.
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Figure 2.5: The figure shows the predicted impact of an increase in temperature across
different periods during the growing season on yield. Impacts are reported as the percentage
change in yield relative to historical climate. Bars show 95% confidence intervals using
standard error clustered by county.
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Figure 2.6: The graph shows the projected winter wheat abandonment by year under sce-
narios RCP 4.5 and RCP 8.5. The dashed green line is the average crop abandonment under
the historical climate between 1981–2007.
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Figure 2.7: The graph shows the projected winter wheat yield by year under scenarios RCP
4.5 and RCP 8.5. The dashed green line is the average yield under historical climate between
1981–2007.
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Figure 2.8: The graph shows the projected winter wheat abandonment by each of the 18
climate models by year under scenarios RCP 4.5 and RCP 8.5. The horizontal line is the
average crop abandonment under the historical climate between 1981–2007.
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Figure 2.9: The graph shows the projected winter wheat yield by each of the 18 climate
models by year under scenarios RCP 4.5 and RCP 8.5. The horizontal line is the average
yield under historical climate between 1981–2007.
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Figure 2.10: The graph shows the source of change in crop abandonment under RCP 4.5
and 8.5 respectively. The dot indicates the point estimates, and whiskers show the 95%
confidence interval after adjusting for spatial correlation. This is an ensemble average from
18 different climate models.
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Figure 2.11: The graph shows the source of change in winter wheat yield under RCP 4.5 and
8.5 respectively. A dot indicates the point estimates and whiskers show the 95% confidence
interval after adjusting for spatial correlation.
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Figure 2.12: The figure shows the percentage change in an ensemble average of crop aban-
donment by mid–century from the historical abandonment (1981-2007) under RCP 4.5.
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Figure 2.13: The figure shows the percentage change in ensemble average harvested yield
by mid–century from the historical yield(1981-2007) under RCP 4.5.
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Figure 2.14: The graph shows the source of change in production under RCP 4.5 and 8.5
respectively. The dot in the error bar represents the point estimates while the bars represent
the 95% confidence interval generated from 500 bootstrap replications.
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Figure 2.15: The figure shows the percent change in crop abandonment across 18 general
circulation models under RCP 4.5 and 8.5 respectively.
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Figure 2.16: The figure shows the percent change in winter wheat yield across 18 general
circulation models under RCP 4.5 and 8.5 respectively.
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Chapter 3

Impact of Climate Change on

Groundwater Extraction for Corn

Production in Kansas

3.1 Introduction

Irrigated agriculture has expanded over the last 50 years especially in Western Kansas due

to continuous improvement in technology, high crop prices and drought (Blanc et al., 2014;

Clark, 2009; Rogers et al., 2008; Sampson and Perry, 2018). The survival of this billion

dollar industry is being threatened mainly by the continuous depletion of the High Plains

Aquifer (HPA) that provides supplementary water to mitigate adverse effects from weather

shocks. The aquifer continues to decline as the estimated average annual natural recharge

to the aquifer in Kansas is less than one–quarter of the total water pumped to irrigated

acres (Buchanan et al., 2015; Lanning-Rush, 2016; McGuire, 2017; Steward et al., 2013).

Extrapolation of the current depletion rate suggests that 35% of the southern High Plains

will be unable to support irrigation within the next 30 years (Scanlon et al., 2012). The

survival of the aquifer itself is linked to its use and climate change.1 While climate change

1 Irrigation intensity and expansion of irrigated acres due to improved technology and higher economic
return. Climate change is change in average weather over long periods of time.
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impacts on crop production have received substantial attention in the literature (Fischer

et al., 2007; Howden et al., 2007; Nelson et al., 2009; Rosenberg et al., 1999; Schlenker and

Roberts, 2009; Steward et al., 2013), the impact of climate change on irrigation withdrawals

has received less attention. More than 40% of the crops produced come from irrigated

acres (Döll, 2002), while more than 70% of freshwater use is for agriculture (?). Climate

change affects water demand and use in two ways: (i) increasing temperatures increase the

crop water requirement thus increasing pressure on irrigation resources (Döll, 2002; Gondim

et al., 2012; Watson et al., 2017) and (ii) changing the amount of precipitation and the

pattern of precipitation during the growing season (Luckey et al., 2000; Miller et al., 1997;

Rosenberg et al., 1999; Trenberth, 2014).

I provide new evidence that shows how farmers react to increasing irrigation water de-

mand when climate changes. As there are numerous studies on how irrigation water demand

or requirement will increase as the temperature becomes warmer (Döll, 2002; Fischer et al.,

2007), there are limited studies on how farmers will respond to these irrigation demands.

I show that farmers are less responsive to changing irrigation water use than an irrigation

schedule would predict due to changes in the weather. Gondim et al. (2012), Döll (2002)

and Fischer et al. (2007) all projected an increase in irrigation water requirement. Woznicki

et al. (2015) projected a decrease in irrigation demand as there will likely be less water avail-

able during the growing season in the future, or evapotranspiration will be hindered due to

temperature stress in peak development periods for corn. De Silva et al. (2007) shows that a

3.5% increase in potential evapotranspiration will increase irrigation water use by 23% due

to rain ending earlier. Nkemdirim and Purves (1994) predict an increase in precipitation

and temperature with the predicted increases in precipitation not enough to compensate for

increased evaporation and evapotranspiration.

Majority of the existing water–related economic studies focus mainly on the economic

impacts of price elasticity of water demand, pumping cost, and energy price on irrigation

water use (Hendricks and Peterson, 2012; Mieno, 2014; Pfeiffer and Lin, 2014b; Schoengold

et al., 2006) while the few climate–related studies are limited due to incomplete weather

information (Irmak et al., 2012) or use of crop growth models (Elliott et al., 2013; Steduto
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et al., 2009; Williams et al., 1989). Models of irrigation water demand can be divided

into two broad groups; crop growth model and econometric based analysis. Crop growth

models are limited due to many reasons ranging from the inability to incorporate the actual

farmer’s behavior, to under or overestimation of irrigation water use (Fischer et al., 2007;

Guerra et al., 2005; Mieno, 2014; Wriedt et al., 2009). The econometric analysis is different

from a model–based approach as econometric analysis uses observed irrigation use data and

implicitly embeds farmer’s behavior into the model (Mieno, 2014).

I use an econometric approach that exploits variability in weather variables to explain

how precipitation variability and warming effects of temperature impacts irrigation water use.

Water use by a crop is through evapotranspiration, which is the combination of evaporation

and transpiration occurring simultaneously (Allen et al., 1998). The rate of evapotranspira-

tion depends on the weather (Allen et al., 1998; Hess, 1998; Snyder, 1985; Yu et al., 2002),

crop type and growth stages (Salter et al., 1967), and irrigation system used (Savva and

Frenken, 2002). I use crop evapotranspiration (ET c) instead of reference evapotranspiration

(ET r) (Hendricks and Peterson, 2012; Pfeiffer and Lin, 2014a,b) or temperature (Mieno and

Brozović, 2016; Schoengold et al., 2006) to measure atmospheric water demand. Hendricks

and Peterson (2012) find that a 1 inch per acre increase in atmospheric water demand will

increase irrigation water use by 0.07 inches per acre.

There are two problems with using Hendricks and Peterson (2012) to project the impacts

of climate change on irrigation water use. First, Hendricks and Peterson (2012) use weather

at the nearest weather station, inducing measurement error bias. In contrast, I use a high

resolution gridded weather data, and secondly, Hendricks and Peterson include year fixed

effects which absorb much of the variation in weather over time and may bias the coefficients

on ET r and precipitation. Mieno (2014) use a non-parametric method to analyze the impact

of climate change on irrigation water use in Nebraska, comparing farmer’s actual response

with that of a hypothetical farmer using Aquacrop (Steduto et al., 2009). This study differs

from Mieno (2014) as Mieno (2014) only covers three counties in Nebraska while this study

covers the major groundwater management districts in Kansas. I use different global circu-

lation models to project irrigation water use by mid–century and how this projected changes
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in irrigation water use will affect the rate of aquifer depletion.

Like most previous studies (Mieno, 2014; Ortiz-Bobea and Just, 2013; Schlenker and

Roberts, 2009; Tack et al., 2015), I assume that temperature and precipitation are additively

separable. I incorporate time separability through corn stages of growth to explore the

sensitivity of irrigation water use and timing of precipitation at different stages of growth

to changes in weather variables (Mieno, 2014). Ortiz-Bobea and Just (2013) and Tack et al.

(2015) implemented time separability using crop yields and degree days to explain weather

effects at different periods during production. I implement time separability by dividing

corn stages of growth into three based on Kranz et al. (2008). An initial contribution by

Robins and Domingo (1953), Shipley and Regier (1976) and recently by Peterson and Ding

(2005) find that crop yield is more sensitive to changes in ETc at certain times in the growing

season.

Crop meets its water requirement through precipitation, irrigation and soil water. I inter-

act available water storage (AWS) with atmospheric water demand and precipitation for two

main reasons. First, soil moisture is a function of precipitation and evapotranspiration, and

secondly, it reflects the impact of soil properties that may affect soil water holding capacity,

root depth, percolation and water runoff (Wehner et al., 2017). The decision to irrigate are

commonly driven by target soil moisture levels during the growing season that minimizes

crop yield losses (Jones, 2004). Climate change impacts soil moisture available by lowering

soil water content through increased evaporation and lower water input. Savva and Frenken

(2002) and NRCS (1997) included available water storage in their water balance model while

Foster et al. (2014) used soil moisture management to formulate different irrigation strategies

in response to total seasonal irrigation.

I also include an irrigation system and its interaction with atmospheric water demand as

irrigation system used can alter the micro-climate, affect the crop characteristics, and the

wetting of the soil and crop surface (Savva and Frenken, 2002). According to Kisekka et al.

(2017), the use of low energy spray irrigation reduces evaporation loss. There has been a

shift in the adoption of more efficient irrigation systems in Kansas over the years (Pfeiffer

and Lin, 2014a). Over 32% of the farms in this study use standard center pivot, while less

48



than 9% still use furrow irrigation. Application efficiency of each irrigation system use differs

as it affects the net amount of irrigation water applied (Amosson et al., 2002).

As reported by Wehner et al. (2017), climate change is projected to further increase the

duration and intensity of drought over the Southern Great Plains, impacting the way water

is used and demanded. I project how precipitation variability and increasing temperature

through evapotranspiration will affect irrigation water use by using 18 different climate

models by mid–century (2034-2065) under Representative Concentration Pathways (RCPs)

4.5 and 8.5. I combine my estimates from my historical estimation with the climate change

models to project how irrigation water use will change by mid-century by assuming that the

short–run response from weather variations are representative of how farmers will respond to

climate change in the future (Burke and Emerick, 2016). Temperature is expected to rise in

the Southern Great Plains between 2oC (3.6oF) and 2.83oC (5.1oF) by the mid–21st century

and by 2.4oC (4.4oF) and 4.67oC (8.4oF) by the late 21st century, with the occurrence of

temperature similar to that of 2011 (Reidmiller et al., 2018). According to Wuebbles et al.

(2017), the Southern Great Plains is projected to experience an additional 30–60 days per

year above 100oF than it does now by late 21st century if there are no reductions in emissions.

Projected changes in summer and fall precipitation are small.

I simulate the proportion of water that will be saved if the authorized water quantity

is fully enforced by assuming that authorized water quantity is binding. A water right’s

authorized quantity is how much water is appropriated annually. Water use during drought

is different from the normal year as farmers tend to use more than usual during drought.

Kansas has a prior appropriation water right system where maximum authorized annual

quantity is set after farmers apply for a water right and have perfected their water right.

Water right groups are water rights grouped together based on point of diversion or place of

use, and the total water use by the group is summarized and compared to the total authorized

quantity (KGS, 2000). During dry years, the number of water right groups exceeding their

limit are higher as there are different programs that allow farmers to borrow water from next

year to complete current year production.

I assess the impact of climate change on change in the rate of depletion of the HPA for
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the major Groundwater Management Districts in Kansas (GMDs). According to McGuire

(2017), water–level has changed from the predevelopment level to 2015, by well, ranging from

a rise of 84 feet to a decline of 234 feet. Since water depletion and recharge is localized, I use

the percentage change in water use by GMD and the linearized model by Butler et al. (2016)

to estimate the change in the rate of depletion for each GMD by mid–century. Butler et al.

(2016) used the regional correlations between average annual water level change and annual

water use to determine how water use affects the water level in the High Plains aquifer in

Kansas. For example, water use and depletion rate in GMD 5 is different from GMD 3

which is semi-arid and directly underlying the aquifer in term of depletion rate and water

use (Whittemore et al., 2016).

My key result is that farmers are less responsive to increasing irrigation water demand

when the temperature becomes warmer than is predicted by the change in ET c demand. A

1–inch increase in atmospheric water demand will increase irrigation water use by 0.29 inches

per acre. I also find that precipitation is not a perfect substitute for irrigation. Uncertainty

in determining the level of irrigation water that will maximize yield for a given year due

to weather variability, limits on the authorized water use, runoff and deep percolation are

some of the reasons that can explain why farmers are less responsive to change in increasing

ET c demand. Li and Zhao (2018) highlighted the desire to keep water rights as the reason

farmers use a small amount of water even when irrigation is not profit–maximizing under the

use or lose it policy. I also found that the adoption of improved technology and management

practices over the past 24–years has saved over an inch per acre of irrigation water. Araya

et al. (2017) found early planting to improve irrigation water productivity for grain compared

to late or normal planting while, Zhao et al. (2018) found the adoption of drought–tolerant

corn as an adaptation strategy under limiting water condition. The water saved is different

from the water saved from the adoption of the efficient irrigation system.

Increasing temperature by 2oC while holding other variables constant will increase irriga-

tion water use by 4.8%. Using long–run projections, atmospheric water demand is expected

to increase by ensemble average of 16.7% under RCP 4.5 and 22% under RCP8.5 annually

by mid-century with an expected reduction in the amount of precipitation received by 6%.
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Irrigation water use will increase by 9.62 and 12.65 % under RCP 4.5 and 8.5 respectively.

Historically the average water rights that exceeded authorized limit is 9%, by mid 19.24%

to 23.1% of the water rights will exceed their authorized quantity under RCP4.5 and 8.5

respectively. There is a huge degree of uncertainty in irrigation water use estimated with

the climate change projections expected to increase for all climate models. The change in

water use will have varying effects across GMDs. The water level decreases at the rate of

2.43 ft per year in GMD 3 compared to a historical rate of depletion of 1.69 ft. per year,

while in GMD 5, the rate of deletion will increase to 1 ft/year compared to a historical rate

of depletion of 0.19 ft/year. GMD 5 will be most affected in terms of depletion rate due to

an increase in crop water demand and a reduction in precipitation.

3.2 Data

The objective of this study is to exploit variability in weather variables to explain irrigation

water use. This analysis combines data from different sources.

3.2.1 Water Data

Data about water use on each irrigated field, type of crop grown and irrigated area, and

the delivery system were obtained from the Water Information Management and Analysis

System (WIMAS) of the Kansas Department of Agriculture from 1991–2014. The point of

diversion represents wells for groundwater irrigation, henceforth, each point of diversion will

be referred to as a field for the rest of this paper. A field is defined as the area irrigated

by a single well. The dependent variable is the applied water per acre defined as the total

amount of water pumped divided by the acres of corn irrigated. Only fields with corn are

considered as I can only determine water use on corn if the entire field is planted to corn.

Another important point is that I relate crop-specific evapotranspiration to the water on that

crop. Extending the model to other crops is possible but would require evapotranspiration

crop coefficients for those models. More than two–thirds of irrigated acres in Kansas is used
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to produce irrigated corn. The corn fields used in this study are within the Groundwater

Management Districts (GMDs) 1, 3, 4 and 5. Fields less than 40 acres or greater than 400

acres are excluded from the analysis.2 The location of corn fields is shown in figure 3.1 with

the majority of the fields located in the southwest region of Kansas. More than two-thirds

of the irrigated acres in Kansas is located in the south-west region because the region has

the largest groundwater reservoirs (Rogers and Aguilar, 2017).

3.2.2 Weather Information

I use the historical daily weather data from PRISM3 to calculate the reference evapotran-

spiration based on grass using the Modified Penman equation (Bos et al., 2008; Doorenbos,

1977). The Modified Penman method was considered to offer the best results with a mini-

mum possible error in relation to a living grass reference crop (Allen et al., 1998). Reference

evapotranspiration was calculated between May and September. Crop–specific coefficient

(Kcd) based on Kincaid and Heerman (1974) is used to adjust reference evapotranspiration

at different stages of growth to crop evapotranspiration (figure 3.2). This study differs from

previous studies like Oehninger et al. (2016) and Mieno and Brozović (2016) that use temper-

ature and degree days instead of crop evapotranspiration (ET cit) to measure weather effects

on water use. Crop evapotranspiration is defined by Equation 3.1. Estimation without crop

coefficient will not be scaled and for corn ET c, I expect β < 1 and the coefficient on ET r to

be smaller. Since K is just a scaling factor, the predicted impact of climate change may not

be much different if ET r is used instead of ET c.

ET cit =
149∑
d=1

(Kcd × ET ridt) (3.1)

Precipitation data received during the growing season (May–September) is used as the ef-

fective precipitation at each field. Both crop evapotranspiration and precipitation are in

2 Hendricks and Peterson (2012) and Pfeiffer and Lin (2014a) limit the size of fields used in their estimation
to prevent outliers from skewing their results. My sample size was reduced by 7%. 3 PRISM Climate
Group, Oregon State University– http://prism.oregonstate.edu/. Note that PRISM was merged to the
water use data at section level (roughly 1 mile by 1 mile).
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inches.

Figure 3.3 shows the distribution of precipitation (inches), average temperature (oC), at-

mospheric water demand (inches), and irrigation water applied (inches) for corn production

across the study area over time in Kansas. Atmospheric water demand and irrigation water

applied are high in years with low precipitation and increased average temperature. For ex-

ample, the drought of 2011 and 2012 in Kansas show how an increase in average temperature

and low precipitation resulted in an increase in atmospheric water demand and irrigation

water applied.

3.2.3 Irrigation system Information

The information about the irrigation system use is obtained together with the water informa-

tion WIMAS. The three most common irrigation systems used are furrow, standard center

pivot and center pivot with low nozzles as more than 96% of the fields in this study are irri-

gated by these systems. Furrow irrigation uses gravity to deliver water to the crops through

ditches in the field rows. Furrow irrigation has low application efficiency when compared to

other methods of irrigation like a center pivot with a low nozzle that has 88% application

efficiency (Amosson et al., 2002). I divide the irrigation systems into three based on their

application efficiency and create discrete variables representing each of the systems.4

3.2.4 Soil and Price information

I use information from the Web Soil Survey of the USDA Natural Resources Conservation

Service about root zone available water storage. Root zone available water storage is the

volume of plant available water that the soil can store within the root zone based on all

map unit earthy major components. I use root zone available water storage as a proxy for

available water storage (AWS). I use the Chicago Mercantile Exchange (CME) expected price

for corn futures which is the average daily settled price in April and May for the December

CME Group corn contract.

4 Less than 0.43% of the fields use drip irrigation. Other fields are irrigated by the combination of one or
two of the systems.
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3.2.5 Descriptive Statistics

The summary statistics for the different variables used in the analysis are presented in

table 3.1. The average irrigation water use is 16.17 inches. This could be as high as 20

inches during dry years. The average atmospheric water demand and precipitation are 28.10

and 13.62 inches respectively. There is a spatial variation in atmospheric water demand and

precipitation across the groundwater management districts in Kansas. There is an increase

in precipitation as I move from Southwest and Northwest to the Southcentral part of Kansas.

GMD 3 receives less precipitation when compare with GMD 5. As shown in table 3.1, 60%

of the irrigated fields are irrigated by a center pivot with low nozzles and less than 9% of the

fields apply water through furrow irrigation. The average expected price for corn futures is

$3.34/bushel.

3.3 Empirical Method

I expressed irrigation water use ”Wit” for a field i at year t as

Wit = Xitβ + ci + τ(t) + γCpricet + ρ0CP + ρ1CPN + εit (3.2)

where Xit is the vector of ET cit, and precipitation, β is the vector of parameters to be

estimated, ci is the county fixed effects used to control for time-invariant heterogeneity like

soil quality, τ(t) is the time trend which can be specified as linear or quadratic depending

on the functional form, γ is the coefficient of corn price, ρ0 and ρ1 are the coefficients of

the standard center pivot and the center pivot with nozzle respectively,and εit is the error

term. I cluster the standard errors in all the analyses by the county to allow the error to

be spatially correlated within each county. In some of the alternate specifications, I interact

ET cit and precipitation with available water storage and irrigation systems. Although AWS

is a time–invariant variable controlled for using field level fixed effects, its interaction with

precipitation and ET cit account for spatial variation in available water storage within each

county. This reflects soil properties and how it may affect soil water holding capacity, root
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depth, and amount of water available to crop. I also estimate a model including a quadratic

term of precipitation and trend to control for technological change.

Time separability is incorporated by dividing the duration of growth into 3 periods based

on corn growth physiological stages (Kranz et al., 2008): (i) vegetative, (ii) reproductive, and

(ii) maturity. The reproductive stage begins when the corn tassels and ends when the corn is

in full dent. In the last stage, the crop has reached full maturity and crop water requirements

are minimal. Different studies have shown how corn response to water requirement during

different phenological stages. Water deficit during the reproductive period (after tasseling)

can delay silking, the interval between silking to pollen shed (Herrero and Johnson, 1981)

and shorten the grain filling period (Kefale and Ranamukhaarachchi, 2004; Westgate, 1994),

therefore resulting in reduced yield. I explore the sensitivity of atmospheric water demand

at different stages of growth to changes in weather variables. The corn growing season is

fixed to the month of May through September. The variables are similar to equation 3.2

except that the subscripts s represents the stages of growth.

Wit =
3∑

s=1

Xistβs + ci + τ(t) + γCpricet + ρ0CPi + ρ1CPNi + εit (3.3)

3.3.1 Warming Scenarios

The marginal impact of warming on irrigated water use is simulated for each 1oC increase in

temperature up to 5oC by increasing the observed daily maximum and minimum tempera-

tures and then recalculating the appropriate weather variables for the whole growing season.

Simulated impacts are obtained by predicting the change in water use due to the change in

ET cit while other factors are held constant.

3.3.2 Climate Change Projection

I use 18 different global climate models (GCMs) to project change in atmospheric water

demand, precipitation by mid–century (2034–2065), and use these changes in atmospheric

water demand and precipitation to simulate how irrigation water use will change. I use
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the downscaled Coupled Model Intercomparison Project (CMIP5) daily climate projections

for two main reasons. Downscaled CMIP5 was used to inform the IPCC (Intergovernmental

Panel on Climate Change) Fifth Assessment and secondly, the data are downscaled. The use

of downscaled data resolve the issues of aggregation bias raised by Auffhammer et al. (2013).

I make a bias correction to the GCM projections to correct for possible error in relation to the

historical information. Bias–corrected projections are obtained by using the mean difference

between variables constructed from historical simulated data through climate models and

the observed data from the PRISM (equation 3.4) to adjust the future data projections

(equation 3.5) (Hawkins et al., 2013). Data between 1991–2005 are used to estimate the

bias:

Biasc =
1

T

∑
t

(ETMH
ct − ETOct ) (3.4)

Biasc is the mean difference between historical–climate constructed variables (H ) from cli-

mate model M and the actual observed climate variables (O) at the county level (c). Climate

projections are adjusted by using Biasc to shift the projection. Climate Projection
′

mct is the

uncorrected climate projection.

Climate Projectionmct = Climate Projection
′

mct −Biasc (3.5)

Other challenges involved with the use of a single projection of future climate is resolved

by using an ensemble average from 18 different models (Auffhammer et al., 2013; Burke

et al., 2015). I report a simulation with an ensemble average by averaging the predicted

change in each variable across all models. I also report simulation results for each climate

change models to show the level of uncertainty across different climate models under RCP

4.5 and RCP 8.5 respectively. The list of the 18 climate models and institutions are listed in

table A. The use of ensemble average smooths out the uncertainty and extreme projections

from different models.

The ensemble average bias for the atmospheric water demand is ±0.09 inches while the

ensemble average of precipitation is ±3.4 inches. Atmospheric water demand is expected to
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increase annually by 5 inches under RCP 4.5 and 7 inches under RCP8.5 by mid-century with

an expected reduction of 0.6 inches in the amount of precipitation received (figure 3.4). Under

both scenarios, the ACCESS1-0 climate model simulated the largest change in atmospheric

water demand, 34.97% and 45.4% under RCP 4.5 and 8.5 respectively, and MRI-CGCM3

indicates the smallest changes in atmospheric water demand, 7.6% and 12.9% under RCP

4.5 and 8.5 respectively (figure 3.13). The projected change in precipitation range between

-25.6% and 9.6% under RCP 4.5 and -33.3% and 9.8% under RCP 8.5. ACCESS1-0 model

projects the largest decrease in precipitation while MRI-CGCM3 projects an increase in

precipitation under both RCP4.5 and RCP8.5 respectively (figure 3.14).

3.3.3 Climate Change Impact on the Aquifer through Water Use

I use the aquifer balance model from Butler et al. (2016)5 to calculate how an increase in

irrigation water use will change the rate of depletion of the Ogallala aquifer. The model

is based on the relationship between water–level changes and reported pumping for each of

the GMDs (Whittemore et al., 2016). Butler et al. (2016) fitted a line between the average

annual water–level change and the annual water use for each of the groundwater districts

using well measurements between 1996–20136 and the reported total water pumped. To

adopt this model, I assume the same rate of increase in water use for all irrigated crops in

each GMD as my model predicts for corn, no change in irrigated acres as my model predicts

for corn, and there is no switching of crops from high water use to low water use and climate

change has no effect on aquifer recharge. or vice versa. I use equation 3.6 to calculate the

rate of depletion of the aquifer for each of the GMD by mid-century.

4WLi = αi − ρiQi where i is GMDs = 1, 3, 4, 5 (3.6)

4WLi is the average water level change over an aquifer area in GMD i for a given time

interval and Qi is the total water pumped from the aquifer area for the given time interval.

5 See Butler et al. (2016) for more details about the model. 6 2006 and 2007 were not included as heavy
snows delayed the 2007 water-level measurements in northwest Kansas, which affected the 2006 and 2007
water–level change values.
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α, ρ and the average historical water Qi are estimated as an inverse of product between

the specific yield and the area of the aquifer used in normalizing the net inflow, and the

total water pumped from the aquifer for each of the GMDs respectively. I multiplied the

average water used for each GMD between 1996–2017 with the predicted change in water

use between 2034–2065 from my econometric projections to calculate the rate of depletion.

3.4 Results

The parameter estimates from equation 3.2 are shown in table 3.2 column (1). The second

and third column of table 3.2 shows the results of interactions between ET cit and precipitation

with available soil water and irrigation system. The fourth column shows the result of the

estimation that includes the quadratic precipitation and trend terms. The signs and the

significant effects of ET cit and precipitation on irrigation water use are robust across all

specifications and the coefficients are all significant at 1%. Using the linear specification

in table 3.2, column (1), an additional 1–inch increase in atmospheric water demand will

increase irrigation water use by 0.29 inches per acre. Irrigation water use is more responsive

to ET cit than precipitation. This shows farmers are more responsive to increasing irrigation

water use when atmospheric water demand increases than when less precipitation is received.

This means ET cit has a larger impact on irrigation water use than precipitation.

The coefficients of precipitation in all the specifications are less than one in absolute

value. This shows that precipitation is not a perfect substitute for irrigation water use.

From the second column in table 3.2, the coefficients of interaction between precipitation

and ET cit with AWS are not significantly different from zero. In the nonlinear model, the

coefficients of precipitation are both negative. This indicates an inverted U-shaped effect

on the relationship between precipitation and irrigation. At sample mean using model 4, a

1–inch increase in precipitation will reduce irrigation water use by 0.23 inches per acre.

A plausible explanation for the farmer’s less responsiveness to the use of irrigation water

could be attributed to uncertainty in determining the level of irrigation water that will max-

imize yield for a given year due to weather variability and policy limitations on water use.

58



The limitation may be due to policy constraints like limits on authorized water quantity, use

it or lose it policy, and reductions in well yield due to declining water tables. Precipitation is

less responsive to irrigation due to possible high variability in the frequency of precipitation,

and the amount of water lost from surface runoff and deep percolation. There is also a possi-

bility of measurement error when calculating effective precipitation and soil water condition,

and atmospheric water demand that goes into irrigation scheduling (?). The measurement

error of ET cit is likely minimal because the temperature does not vary sharply over the study

region. Measurement error in precipitation is more likely due to isolated storms causing

highly variable precipitation. Mun et al. (2015) highlighted that accurate measurement of

irrigation and rainfall are critical to minimizing errors when using irrigation scheduling tools.

The coefficients of the irrigation systems in column (1) of table 3.2 show the effect of using

an efficient irrigation system. The amount of water saved is larger when furrow irrigation

is converted to more efficient systems. Converting from furrow irrigation to standard center

pivot (CP) will reduce water applied by 2.63 inches per acre. This result is consistent with

the result of Hendricks and Peterson (2012). Converting standard center pivot to center

pivot with drop nozzles will only reduce an additional 0.19 inches per acre. This result

is consistent with (Pfeiffer and Lin, 2014a) about the adoption of more efficient irrigation

technology. The interaction between atmospheric water demand and irrigation system is

significant for both the standard center pivot and standard center pivot with low nozzles

(column (3) of table 3.2). This means that a one–inch increase in atmospheric water demand

will increase water use by 0.16 for furrow irrigation, 0.33 inches for the standard center pivot

and 0.29 inches for the center pivot with drop nozzles. The result shows that farmers using

an efficient irrigation system are more responsive to changes in atmospheric water demand

than when furrow irrigation is used as it gives the farmer better control of water use.

The coefficient of corn price is significant and positive but not robust in all specifications

especially in the nonlinear model where I added the quadratic time trend and precipitation

to the model. In the nonlinear model (column (4)), the size of the corn price coefficient

drops substantially to almost half of the coefficient from other specifications. An increase in

expected corn price will result in an increase in irrigation water use. Using the coefficient
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from the linear estimation, a $1 increase in the expected corn price will increase irrigation

water use by 0.28 inches per acre.

The coefficient of the trend which captures technological advancement is negative, sta-

tistically significant and robust in all specifications. Even after controlling for the irrigation

system, technological progress has reduced water use by 0.05 inches per acre per year (column

(1)). These changes could be from the adoption of improved seed and improved management

practices that save water. This is an addition to the water saved from the adoption of the

more efficient irrigation systems.

I incorporate time separability by dividing growth periods into three stages. The result

of the estimation using equation 3.3 is shown in table 3.3. Using the linear specification

(column (1)), the F–statistic (41.78 & 8.43) against the null hypotheses that the atmospheric

water demand and precipitation effects from all the three stages are the same are rejected.

This is different when the nonlinear model is used as I fail to reject the null hypothesis

for precipitation with or without stage 3. The coefficient estimates of atmospheric water

demand from column (1) of table 3.3 for stage 1 and stage 2 are both positive and significant

with irrigation water more responsive to atmospheric water demand from stage 1 than stage

2.

The reverse is the case with precipitation as irrigation water use is more responsive to

precipitation in stage 2 than stage 1. The difference in irrigation water use between these two

stages can be attributed to the minimal development of canopy to reduce water evaporation

from soil and not fully developed root systems in stage 1 to extract of water from the soil

for plant use when compared to stage 2.

The third stage is different from the other two stages (column (1) and (3)) as an increase

in atmospheric water demand does not transform into an increase in irrigation water use.

The coefficient of ET cit for stage 3 has a negative sign, the standard error larger than the

first two stages, and the coefficient on precipitation in stage 3 in the linear model is not

significant. In reality, irrigation water use at this stage is almost zero as the crop would

have reached maturity at this stage. I found no statistical difference in the results in term of

coefficient size and R-squared when I used the first two stages (column (2) and (4)) alone.
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3.4.1 Warming Scenarios

I used equation 3.2 to simulate the impact of an increase in temperature through ET cit on

irrigation water use while holding precipitation and other variables constant. Atmospheric

water demand was recalculated under each warming scenario. Simulated impacts are ob-

tained by multiplying estimated parameters from the preferred specification (model I in

table 3.2) by the projected mean change on the ET cit. A 2oC increase temperature will in-

crease atmospheric water demand by 10.4% and irrigation water use by 4.8% (figure 3.5).

This result is consistent when reference evapotranspiration is used instead of crop evapo-

transpiration. Table 3.4 shows the result when reference evapotranspiration is used instead

of crop evapotranspiration. The coefficient of ET rit is downward biased toward zero.

3.4.2 Climate Change Projections

I simulate the relative change in irrigation water use by pairing the climate projections with

my preferred econometric model (Equation 3.2). Since the climate projections output is at

the county level, I predict the irrigation water use at the county level by using the projected

climate data from the 18 different climate models and scenarios using 2014 technology.

The ensemble average which is the average of all climate model projections of irrigation

water use under different scenarios is compared with the average historical irrigation water

use. The ensemble average of irrigation water use under both RCP scenarios is projected to

exceed the historical average water use by mid–century above the historical average water use

(figure 3.6). The yearly variation in the projected irrigation water use reflects the impact

of variability in weather conditions by mid–century. The ensemble average of irrigation

water use is expected to increase by 1.56 (9.62%) and 2.04 (12.65%) inches per acre by mid–

century under RCP 4.5 and 8.5 respectively from the historical average water use (figure 3.7).

Figure 3.12 shows the prediction from each of the 18 climate models.

Next, I decompose the source of change in irrigation water use: precipitation, and tem-

perature through atmospheric water demand. To estimate the source of change, I simulate

by using the ensemble average of the projected atmospheric water demand alone to project
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irrigation water use while holding precipitation and other variables in the model constant. I

repeat the same procedure for precipitation. The middle dot from the error bar represents

the mean estimates and the bars represent the 95% confidence interval generated using 1500

bootstrap replications. Summing the relative change in irrigation water use across sources

equal the total effect. 93% of the change in irrigation water use is due to the change in atmo-

spheric water demand arising from an increase in temperature while the remaining percent

can be attributed to the reduction in precipitation (figure 3.7).

There is large uncertainty in the projected irrigation water use across the climate models.

The projected change in irrigation water use ranges between 0.8% to 20.7% under RCP 4.5

and between 3.1% to 27.1% under RCP8.5 (figure 3.8). Under both scenarios, the ACCESS1-

0 climate model indicates the biggest change in irrigation water use, and CESM1.0-BGC

indicates the smallest changes in irrigation water use (see table A.1 for the list of climate

models).

I combine the water use projections with the authorized water quantity to determine the

proportion of water right groups that will probably use more than their annual authorized

quantity. Figure 3.9 illustrates the proportion of groups that used more than the authorized

water quality between 1991–2014 and 2034–2065. According to certain climate models in

figure 3.9, close to 40% of water rights will violate their authorized quantity in some years by

mid–century. Historically, on average, about 9.8% of water rights exceeded their authorized

quantity while by mid–century this will increase to 19.3% and 23.1% under RCP 4.5 and 8.5

respectively.

Next, I calculate the projected water use if I assume that the authorized quantity is

binding and farmers are not allowed to use more than their authorized water quantity. I

assume that there is no drought-relief program that will allow farmers to borrow water.

I used the authorized water quantity to constraint water use for groups that exceed their

authorized quantity, assuming no change in irrigated area and no switch in crops cultivated.

I used the maximum allowable water to replace the projected water use if the predicted water

use exceeds what is allowed per acre. Historical, enforcing the authorized water quantity on

average would have saved almost 13% of the irrigation water used for corn. If the authorized
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quality is fully enforced by mid–century, the irrigation water use on average would be reduced

by 13.2% and 15.5% under RCP 4.5 and 8.5 respectively. This means farmers will be using

on average less than what is needed at the expense of corn yield.

3.4.3 Climate Change Impact on Water Level

I used the percent change in water use in each of the GMD (Table 3.5) to calculate the

rate at which the aquifer will decline by mid–century assuming no constraint in authorized

quantity. The result shows how a change in water level and spatial impact from an increase

in total water pumped varies across all the GMDs. GMD 3 has the highest change in water

level at 2.43 ft per year under RCP 4.5. GMD 5 which has the smallest change in water level

historically will have the biggest change in the rate of depletion by mid-century at the rate

of 412.9 and 518.4% under RCP 4.5 and 8.5 respectively. GMD 5 has a higher rate of aquifer

recharge so depletion has been slowest in GMD 5 historically. However, my projections

indicate that by mid-century GMD 5 will have the second-fastest rate of depletion across

the four GMDs.7

3.5 Conclusion

I examine how climate change will affect groundwater extraction by exploiting variability in

weather variables to explain change in irrigation water use. The result shows that farmers

are less responsive in increasing irrigation water use than irrigation schedule would predict

when atmospheric water demand increases. One of the possible explanation for the less

responsiveness can be attributed to risk and uncertainty associated with farmer’s behavior

in making decision about irrigation water use. I also incorporate the stages of growth into

the model by looking at how the timing of precipitation and warming can impact irrigation

water use. The result shows that corn is more responsive to irrigation water use during the

first stage and least responsive to precipitation in comparison to other stages. Although the

7 The average water use per acre for GMD 1, 3, 4,5 between 1991-2014 for corn is 15.58, 18.89,15.08, and
13.92 inches respectively

63



coefficient on reference evapotranspiration is biased toward zero, there is no significant differ-

ence in impact when reference evapotranspiration is used instead of crop evapotranspiration

to model climate change impacts on irrigation water use.

I find that irrigation water use for corn will increase by an average of 1.5 and 1.9 inches

per acre by mid-century under RCP 4.5 and 8.5 respectively. I also found that 93% of the

increase in irrigation water use is attributed to an increase in atmospheric water demand

through temperature. More water right groups will exceed their allowable limit by 18.1% by

mid–century under RCP 4.5. The spatial impacts from an increase in irrigation water use

vary across all the GMDs. GMD 3 will deplete at an average of 2.43 ft per year, while GMD

5 will have the second-fastest rate of depletion across the four GMDs.

My results provide key implications for policymakers. Policymakers and districts man-

agers have to decide on the best ways to slow the rate of depletion of the aquifer through

the way water resources are being allocated and used. One of the ways to lower water use

and save for the future is by enforcing already existing policies to reduce the current rate of

water use. Enforcing the authorized water quantity policy may have the potential of reduc-

ing water use for corn by 13.2% under RCP 4.5 by mid–century. I also find that increasing

temperature is the main driver of an increase in irrigation water use through evapotranspi-

ration. Increasing investment in the development of heat–tolerant corn varieties that can

maximize yield under limited irrigation may be another way of reducing water usage. Only

40% of corn planted in Kansas in 2019 are drought–tolerant (McFadden et al., 2019). In-

vestment in water–related research and crop water management practices, development and

adoption of more efficient irrigation technology. The use of improved technology like seed

and management practices has already saved almost an inch of water per acre over the last

24 years.

There are several important limitations to my analysis. My projection estimates ig-

nore any potential adaptation through the adoption of improved technology and change in

management practices. I may overestimate the projected irrigation water use if there is an

adoption of improved technology or management practices that may adapt to the impact of

temperature increases. My estimates do not consider the effect of CO2 fertilization on corn.

64



? shows that young corn plants use water more efficiently at elevated CO2.

There are many important areas for future research. One important area of research is

to examine the impact of enforcing the authorized water quantity policy in term of water

saved, the difference in return as a result of the policy and water saved when farmers switch

crops. Another area of research is to estimate the effectiveness of these conservation policies

to determine if these policies actually reduce water use, and if they do reduce water, along

which margins could these reductions come from?
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Figure 3.1: Location of wells in the study region

Table 3.1: Summary Statistics of all Variables

Variables Mean Std Dev. Min. Max.
Applied water per acre (Inches) 16.17 5.89 1.00 39.97
Area Irrigated (acres) 132.95 47.81 40.00 400.00
Rootznaws (Inches) 9.85 2.22 1.54 13.19
Precipitation (Inches) 13.62 4.58 2.46 32.17
Crop Evapotranspiration (Inches) 28.10 3.47 19.75 39.40
Reference Evapotranspiration (Inches) 40.66 4.83 28.61 56.30
Corn price ($) 3.34 1.55 1.97 7.52
Proportion of Furrow .084 0.28 0 1
Proportion of Standard Center Pivot (CP) 0.32 0.47 0 1
Proportion of CP low nozzles 0.60 0.49 0 1

The weather variables are calculated between May and August of each year.
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Figure 3.2: Corn water demand and the corn coefficient

Figure 3.3: Annual box-plots showing distribution and variability of water and weather
variables over time. The county and field measures were used to construct boxplots for
each year. Each box is defined by the upper and lower quartile, with the median depicted
as a horizontal line within the box. The endpoints for the whiskers are the upper and lower
adjacent values, which are defined as the relevant quartile +/- three-halves of the interquartile
range, and circles represent data points outside of the adjacent values.
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Figure 3.4: The projected precipitation and crop evapotranspiration for Kansas by mid–
century. The crop ET c and precipitation are an ensemble average from the 18 different
climate models.
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Table 3.2: Parameter Estimates for Water Use Using Different Specifications

(1) (2) (3) (4)
Estimates Model I Model II Model III Model IV

Trend -0.055∗∗∗ -0.057∗∗∗ -0.059∗∗∗ -0.219∗∗∗

(0.016) (0.016) (0.015) (0.013)
Trend2 — — — 0.004∗∗∗

(0.000)
Precipitation -0.232∗∗∗ -0.153∗ -0.257∗∗∗ -0.106∗∗∗

(0.022) (0.081) (0.040) (0.016)
Precipitation2 — — — -0.004∗∗∗

(0.000)
ET cit 0.288∗∗∗ 0.238∗ 0.161∗∗ 0.305∗∗∗

(0.019) (0.119) (0.064) (0.006)
Corn price 0.281∗∗∗ 0.290∗∗∗ 0.291∗∗∗ 0.175∗∗∗

(0.059) (0.061) (0.052) (0.016)
Standard CP -2.629∗∗∗ -2.669∗∗∗ -7.398∗∗∗ -2.536∗∗∗

(0.264) (0.254) (2.021) (0.143)
CP with Nozzle -2.815∗∗∗ -2.845∗∗∗ -6.764∗∗ -2.579∗∗∗

(0.255) (0.252) (2.782) (0.147)
ET cit×AWS — 0.005 — —

(0.012)
Precipitation×AWS — -0.009 — —

(0.010)
ET cit×Standard CP — — 0.170∗∗∗ —

(0.061)
ET cit×CP with Nozzle — — 0.130∗ —

(0.077)
Precipitation×Standard CP — — 0.020 —

(0.036)
Precipitation×CP with Nozzle — — 0.039 —

(0.056)

N 116,273 116,273 116,273 116,273
R2 0.152 0.152 0.152 0.155
Fixed effect Yes Yes Yes Yes

Note: The dependent variable is the water applied per acre. Figures in the
parenthesis are standard errors clustered by county. *, ** and *** indicate
significance at 10, 5, and 1 percent levels.
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Table 3.3: Water Use Estimation Result–Time separability

(1) (2) (3) (4)
linear Quadratic linear Quadratic

Estimates With Stage 3 With Stage 3 Without Stage 3 Without Stage 3
Trend -0.071∗∗∗ -0.291∗∗∗ -0.084∗∗∗ -0.281∗∗∗

(0.021) (0.048) (0.020) (0.046)
Trend2 — 0.008∗∗∗ — 0.009∗∗∗

(0.002) (0.002)
Precipitation (Stage 1) -0.143∗∗∗ -0.289∗∗∗ -0.126∗∗∗ -0.179∗∗∗

(0.024) (0.058) (0.024) (0.056)
Precipitation2 (Stage 1) — 0.008∗∗ — 0.002

(0.003) (0.003)
Precipitation (Stage 2) -0.016∗∗∗ -0.102 -0.374∗∗∗ -0.168∗

(0.041) (0.081) (0.040) (0.087)
Precipitation2 (Stage 2) — -0.016∗∗∗ — -0.012∗∗∗

(0.003) (0.004)
Precipitation (Stage 3) -0.082 -0.126 —

(0.053) (0.094)
Precipitation2 (Stage 3) — 0.025 — —

(0.016)
ET cit (Stage 1) 0.893∗∗∗ 0.792∗∗∗ 0.802∗∗∗ 0.734∗∗∗

(0.070) (0.057) (0.061) (0.054)
ET cit (Stage 2) 0.197∗∗∗ 0.239∗∗∗ 0.210∗∗∗ 0.237∗∗∗

(0.030) (0.030) (0.032) (0.033)
ET cit (Stage 3) -0.690∗∗∗ -0.834∗∗∗ — —

(0.156) (0.151)
corn price 0.110 -0.096 0.206∗∗∗ 0.050

(0.083) (0.091) (0.071) (0.077)
Standard CP -2.710∗∗∗ -2.661∗∗∗ -2.703∗∗∗ -2.632∗∗∗

(0.255) (0.250) (0.256) (0.249)
CP with Nozzle -2.798∗∗∗ -2.543∗∗∗ -2.801∗∗∗ -2.560∗∗∗

(0.252) (0.250) (0.254) (0.248)
N 116,273 116,273 116,273 116,273
R2 0.171 0.177 0.168 0.172
Fixed effect Yes Yes Yes Yes

Note: The dependent variable is the water applied per acre. Figures in the parenthesis are
standard errors clustered by county. *, ** and *** indicate significance at 10, 5, and 1 percent
levels.
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Table 3.4: Water Use Estimation
Result Using Reference Evapotran-
spiration

(1)
Estimates linear
Trend –0.045∗∗∗

(0.016)
Precipitation –0.252∗∗∗

(0.022)
ET rit 0.175∗∗∗

(0.011)
Corn price 0.232∗∗∗

(0.058)
Standard CP –2.624∗∗∗

(0.267)
CP with Nozzle –2.812∗∗∗

(0.256)
N 116,273
R-squared 0.148
Fixed effect Yes

Note: The dependent variable is the
water applied per acre. Figures in
the parenthesis are standard errors
clustered by county. *, ** and ***
indicate significance at 10, 5, and 1
percent levels.

Table 3.5: Impact of Climate Change on the High Plain Aquifer through Increase in Water Use

(1) (2) (3)
Historical RCP 4.5 RCP 8.5

1996–2017 2034–2065 Depletion 2034–2065 Depletion

GMD 4WL(ft.) 4Q 4WL(ft) Rate 4Q 4WL(ft) Rate

1 -0.598 9.09% -0.771 28.8% 12.20% -0.830 38.7%
3 -2.047 6.14% -2.431 18.79% 8.57% -2.583 26.2%
4 -0.592 10.60% -0.864 46.1% 13.83% -0.947 60.0%
5 -0.194 12.30% -0.996 412.9% 15.44% -1.201 518.4%

Note: 4WL is the change in water level. 4Q is the percentage change in water use from 1991–
2014 to 2034–2065 for each GMD. GMD 1, 3, 4 and 5 is located in West Central, Southwest,
Northwest and South Central respectively.
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Figure 3.5: The figure shows the predicted impact of an increase in temperature through
atmospheric water demand on irrigation water use while precipitation and other variables
are held constant. Atmospheric water demand was recalculated under each scenario to model
the effect of temperature increase on irrigation water use. The bars show the warming impact
on irrigation water use for each of the scenarios. Bars show 95% confidence intervals using
the standard error clustered by county.
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Figure 3.6: The figure shows the ensemble average of the projected irrigation water use
between 2034–2065 under RCP 4.5 and 8.5 respectively. The black dashed horizontal line
that indicates the average water use between 1991-2014 weather and 2014 technology.
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Figure 3.7: The figure shows the percent change in irrigation water use and the sources of
change under RCP 4.5 and 8.5. The dot represents the point estimates and the bar represents
the 95% confidence interval obtained by 1500 bootstraps.

Figure 3.8: The figure shows the percent change in irrigation water use from the baseline.
The baseline is the average irrigation water use between 1991-2014.
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Figure 3.9: The figure shows the proportion of water right groups that will exceed their
authorized water quantity by mid–century. The left portion of the graph shows the proportion
of water rights that exceeded their authorized limit between 1991–2014 and the right side shows
the projected number of groups that will exceed their authorized quantity by mid–century.
Each line represents a different climate model.
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Figure 3.10: The figure shows the percent change in atmospheric water use from the base-
line. The baseline is the average irrigation water use between 1991-2014. The ensemble
average is the projected average of crop water requirement from 18 different climate models.

Figure 3.11: The figure shows the percent change in average precipitation between 2034–
2065 and 1991-2014 from 18 different climate models using 1991–2014 as the baseline. The
ensemble average is the projected average of precipitation from 18 different climate models.
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Figure 3.12: The figure shows the projected irrigation water use between 2034–2065 under
RCP 4.5 and 8.5 respectively by the 18 different climate models. The black dashed horizontal
line indicates the average water use between 1991-2014 weather.

Figure 3.13: The figure shows the projected crop evapotranspiration between 2034–2065
under RCP 4.5 and 8.5 respectively by the 18 different climate models.

77



Figure 3.14: Figure shows the projected precipitation between 2034–2065 under RCP 4.5
and 8.5 respectively by the 18 different climate models.
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Chapter 4

Marginal Cost of Carbon

Sequestration through Forest

Restoration of Agricultural Land in

the Southeast United States

4.1 Introduction

There are numerous reasons for land use change in the last century as the world population

and economy continue to grow rapidly. These changes continue to lead to more deforestation

on forestland 1 and demand for more cropland as the world population is expected to reach

9 billion by 2050 (Alig et al., 2010; Byerlee et al., 2014; Colby and Ortman, 2017; Mu et al.,

2017). These changes come with more emission of greenhouse gases (GHGs) from fossil

burning, deforestation, and change in land use. Greenhouse gases cause climate change and

the impact of climate change on the environment has been well documented especially in

agriculture (Deschenes and Greenstone, 2007; IPCC, 2013; Mendelsohn et al., 1994; Schlenker

and Roberts, 2009). Following the Kyoto protocol, there have been numerous programs

1 Deforestation will take place on more than 50 million acres as U.S. by 2051 as the population reaches 400
million
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and studies on how afforestation and forest restoration of agricultural land can be used to

sequester CO2 (Alig et al., 2010; Lubowski et al., 2006; Newell and Stavins, 2000; Plantinga

et al., 1999; Stavins, 1999). Enticing private landowners to plant trees on their retired and

marginal lands may be a cost–effective way to offset carbon emission.

I examine the impact of the increase in the Conservation Reserve Program (CRP) pay-

ments on land use change. The Conservation Reserve Program (CRP), one of the USDA

programs established by the Food Security Act of 1985, provides annual rental payments

to farmers and landowners to voluntarily retire environmentally sensitive land from agricul-

tural production for the duration of 10 to 15 year. CRP pays farmers to implement practices

designed to perform different functions such as the establishment of permanent grasses and

legumes or planting trees. CRP payments generate land use change and corresponding flows

of carbon from terrestrial sinks and sources by incentivizing farmers to convert land from

cropland into CRP in order to receive the payment. Apart from carbon sequestration, refor-

estation of CRP land has a potential of reducing carbon emission, soil erosion and improving

water quality (Goodwin and Smith, 2003; Gorte, 2009). I examine how cost–effective is the

use of tree–planting on CRP parcels in reducing carbon emission through sequestration.

Agricultural activities play both roles in emitting carbon and reducing it by trapping

carbon soil and plant biomass (Birdsey, 1992; Canadell et al., 2007; Dale, 1997; Guo and

Gifford, 2002; Karl and Trenberth, 2003; Lal, 2004). Major land use change in agriculture

involves the conversion of land from its initial use to another. The transition of land and its

use is dynamic. Between 2007 and 2012, cropland is expanded by 4.7 million acres from the

CRP land, while cropland abandonment for pastureland increased by 200,000 acres. In 2015,

agriculture was directly responsible for 8.5% of the total GHG emitted in the USA while

land conversion to cropland release 23.2 MMT CO2e.2 While the abandonment of CRP

could result in loss of benefits accrue to the land (Wu, 2000), the conversion of cropland

to CRP has been attributed with improved water quality (Frisvold, 2004; Osborn et al.,

1990; Ribaudo and Hellerstein, 1992), reduction in erosion (Gilley et al., 1997; Goodwin and

2 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016 at
https://www.epa.gov/sites/production/files/2018-01/documents/2018_complete_report.pdf.
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Smith, 2003; Pimentel et al., 1995), increased carbon sink (Gebhart et al., 1994; ?), and land

value (Wu and Lin, 2010; Young and Osborn, 1990).

I estimate the correlated random effects probit model using a repeated point–level data

on land use change, land quality and returns to alternative land use from 2000 to 2012 in the

Southeast region of the United States. The use of the correlated random effects probit model

(CRE) allows the use of panel data and controls for time–invariant variables by including

the mean returns of the point as additional controls (Wooldridge, 2010). Parcels may have

unobserved characteristics that can influence land use decisions, and be correlated spatially.

Ignoring unobserved heterogeneity results in biased estimates—counties with smaller CRP

rental rates are likely to be counties with lower returns to crop production and higher rates

of enrollment in CRP. Fixed effects estimates can also correct the omitted variable bias, but

the use of the fixed effect in nonlinear estimations gives rise to the incidental parameter

problem (Wooldridge, 2010). The use of the CRE model allows us to exploit changes in

returns over time rather than the pure cross-sectional variation in returns in most of the

existing literature.

Rashford et al. (2011) used a pooled National Reserve Inventory (NRI) data between

1979–1997 and failed to control for unobserved effects that may influence grassland conversion

to cropland. Lubowski et al. (2006) also using NRI data did not control for unobserved

heterogeneity, but reduced the concern for spatial dependence in the random error term by

removing observations close to one another. Claassen et al. (2005) examining changes in land

use due to an increase in crop insurance premium subsidies controlled for the unobserved

heterogeneity by using a spatial polynomial surface trend estimated from longitudes and

latitudes. Alig et al. (2010) used U.S. Geological Survey Land Cover Trends to control

for between block and not within block spatially correlated unobserved characteristics by

including landscape block random effects in their random parameters logit.

I consider the historical crop rotation and carbon level of a parcel transitioning to CRP

or abandoning tree–planting for cropland when calculating the net carbon sequestered. This

research is different from Plantinga et al. (1999) as this study takes into consideration the

carbon storage of cropland transitioning to CRP and the amount of carbon that can be
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emitted when CRP parcel is abandoned. Plantinga et al. (1999) assume the absence of

afforestation of cropland, net carbon sequestered on cropland transiting to afforested CRP

is zero. Accounting for carbon storage during transition and loss during abandonment im-

pacts marginal cost as it matters on the amount paid to sequester carbon. Historical land

management practices and crop rotations have been shown to impact the amount of carbon

sequestered and emitted on a land parcel (Peterson et al., 1998). Popp et al. (2011) showed

that there are differences in carbon sequestered/emitted from different crop production sys-

tem. Rice production emits around 4.92 tons carbon equivalent, while corn can sequester

around 1 ton per acre (Popp et al., 2011).

I calculate the transition probabilities of a parcel moving from cropland to tree–planting,

and the abandonment of tree–planting for cropland. I express land use choice as a function of

returns to crop production, returns to CRP, and land quality. Lubowski et al. (2008) identify

return to land use and land quality as the drivers of land use change. I use the transition

probabilities to calculate the net land gained by the tree–planting program. I converted

the land transition to carbon units by using the annualized carbon sequestered per acre

estimated from Stavins (1999). I estimate the marginal cost of abatement of atmospheric

CO2 from the return and carbon sequestered in tree-planting acres.

Richards et al. (1993) used a bottom-up-engineering approach to estimate the marginal

cost of sequestration through tree–planting and modified forest services. Bottom–up–engineering

involves the construction of carbon fixation cost from revenue and cost associated with an

alternate land use or type, and sorting these in ascending order of cost. The marginal cost

for Delta states ranges between from $10 and to $21.8 per ton. They found that tree–

planting and management programs can reduce carbon emission by 56.4%. Newell and

Stavins (2000) developed an econometric model that is derived based on the shares of land

devoted to forestry and agriculture. The land use share model is estimated as a function of

agricultural rents, farm production costs, the average cost of conversion per acre, and net re-

turns to forestry. The result shows that the marginal costs of carbon increase monotonically

as crop prices increase.

I compare my estimated marginal cost function with various social costs in the literature
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to estimate how much additional carbon can be sequestered if CRP rent is matched up

to these social costs. There is no general social cost for carbon due to differences in the

discount factor used in discounting damage, the type of Integrated Assessment Model use

and joint agreement on the atmospheric lifetime of greenhouse gases. Nordhaus (2011) using

Rice (2011) estimated the social cost of carbon to be $44 per ton for the year 2015, while

Auffhammer (2018) mentioned $42 as the central and the most cited social cost of carbon

in 2007 dollars. Nordhaus (2017) revisited the social cost of carbon using the DICE model3

and the result shows that the social cost of carbon is $31 per ton of CO2 in dollars.

4.2 Econometric Model

I assume that a profit maximizing farmer is faced with a choice of allocating parcel i among Q

alternatives. Assuming land use decisions are made by landowner by comparing returns from

an alternate land use, a farmer will choose a land use that maximizes the present discounted

value of an infinite stream of net returns less conversion costs. Suppose a landowner can

allocate parcel i to Q potential land uses {j, k = 1, 2...Q}, then a landowner will choose a

condition that satisfies the allocation of parcel i to land use k from j at time t if

arg max
k

(Rkt − rCjkt) > Rjt

Rkt represents the expected net return to parcel i on land use k at time t, r is the interest

rate and Cjkt is the one time expected marginal conversion cost of transitioning from land

use j to k. The marginal conversion cost of transitioning is zero if there is no transition from

one land use to another. Based on Train (2009), landowner utility can be specified as Uijk

for the allocation of parcel i initially in land use j to k at time t, βjk is the vector of the

coefficient returns of the landowners and εijkt is specified as the unobserved error component

(idiosyncratic error). Then:

Uijk = βjkXijkt + εijkt (4.1)

3 The Dynamic Integrated Climate-Economy
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A landowner will choose to transition from alternative cropland(j ) to tree–planting k if

Uijkt > Uikjt ∀ j 6= k. The probability that a landowner will transition parcel i from cropland

(k) to tree–planting (j ) at time t is

Prijkt = P (βjkXijkt − βkjXikjt > εikjt − εijkt) (4.2)

If εikjt is normally distributed, the probability can be estimated using a probit model. The

notation Φ(.) denotes the cumulative normal distribution. Prijkt measures the probability

that a parcel i with given characteristics would transition to alternative use k from j at time

t. The transition probability is defined as a function of returns to crop production, returns

to CRP, and land quality.

Prijkt = Φ(α0
jk + αjkLcci + βrRrct + βqrLcciRrct + δi) (4.3)

α0
jk is the alternative specific intercept, αqjk, βr, and βqr are vectors, Rrct is the county–level

return to each land use in county c given r=j, k , and Lccqi represents the land quality q of

parcel i. I estimate equation 4.3 for each transition. βr can be estimated consistently with

a standard probit model if Rrct is strictly exogenous conditional on unobserved heterogene-

ity (δi) (Wooldridge, 2010). If Rrct is not strictly exogenous conditional on δi, estimating

equation 4.3 without controlling for δi leads to omitted variable bias.

I control for δi by adding the average return (Rr
i ≡ T−1

∑T
t=1Rrct) of each the land use.

This specification is called correlated random effects probit (CRE) model and I allow for

correlation between δi and Rrct by assuming a conditional normal distribution with linear

expectation and constant variance (Chamberlain, 1980; Wooldridge, 2010). Adding Rr
i means

I can consistently estimate βr as well as the average partial effects (APEs). I can only exploit

changes in Rrct on land use choice over time. The transition probability of tree-planting from
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cropland is estimated as

Prob(luit = Tree–Planting|lui,t−1 = cropland)

= Φ(α0+%0Lcc12+β
CRP
0 RCRP

ct +θcrop0 Rcrop
ct +γ0Lcc12R

CRP
ct +γ0Lcc12R

crop
ct +ρcrop0 Ri

crop
+ρCRP0 Ri

CRP
)

if t ∈ General signup (4.4)

where Prob(lunt = Tree–Planting|lun,t−1 = cropland) is defined as the probability that an

NRI point n has a land use of cropland in t−1 and this probability is a function of returns to

cropland (Rcrop
ct ) in county c, returns to CRP (RCRP

ct ) and Lcc12. Lcc12 is the land capacity

class 1 and 2 and ρCRP0 and ρCRP0 are added as controls for average returns to control for

unobserved heterogeneity and should not be interpreted as causal parameters.

The probability of abandonment of tree–planting program to cropland is estimated sim-

ilarly as

Prob(lunt = cropland|lun,t−1 = Tree–Planting)

= Φ(α1+ρ1Lcc12+βCRP1 RCRP
ct +θcrop1 Rcrop

ct +γ1Lcc12R
CRP
ct +γ1Lcc12R

crop
ct +ρ1R

crop
i +ρ1RCRP

i )

if nt ∈ Contract expires. (4.5)

where nt is the year that contract expires for each specific field.

I compare my APEs from CRE model with marginal effects from fixed effects linear prob-

ability model and pool probit model. The pooled probit assumes the returns are exogenous

from the unobserved heterogeneity. According to Wooldridge (2010), first differencing or the

use of fixed effects with linear probability model can control for δi. I use Equations (4.4)

and (4.5) to model the land use transition or abandonment of parcels to tree–planting or out

of under tree–planting. The results from this fixed effect and pool probit are compared with

the CRE model
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4.2.1 Simulation of CRP Payments

I use the acres of land that transition to and abandon tree–planting as the basis for simulating

carbon sequestered/emitted, and the marginal cost of carbon abatement as CRP payment

increases. A uniform percent increase and decrease in CRP rent are used to simulate land

transition from cropland to tree–planting and retention of parcels under tree–planting pro-

gram. Increase in the net return to tree-planting increases conversion to tree-planting and

retention of tree-planting acres. Existing acres rents are increased to discourage exit from

the program and to prevent loss of benefits accrue to the land when their contract expires.

This is different from Lubowski et al. (2006) and Stavins (1999) that paid a subsidy to newly

transition parcels to forestry and tax on landowners trying to exist and renter to benefit from

the subsidy payments. I simulate land use change for a uniform percent increase in CRP

return between -30% to +70%.

I predict the transition probability using eqs. (4.4) and (4.5) at each point under differ-

ent CRP payments. Acres of land that transitions to and from tree–planting is estimated

by multiplying the transition probability at each point by the number of acres the point

represents. I limit exit to 10% of the land under contract based on an assumption of a

10-year contract. This means a parcel can only exit the program after 10 years. I simulate

the differences in the tree–planting acres under each percent change in payment by taking

the difference between acres of land that transitions to and from tree–planting. Each pay-

ment level is associated with a change in carbon stored, measured by the carbon sequestered

following the conversion to tree–planting. I used Equation (4.6) to calculate the net land

gained. Net change in CRP is the difference between the acres transitioning to and acres

abandoning tree–planting.

Net change in CRP = Transition to CRP + Abandon CRP (4.6)

I consider the carbon level of the land transition or abandoning tree-planting into consid-

eration when estimating the total carbon sequestered. If a land transitioning to tree–planting
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from cropland has a positive carbon storage, the carbon is subtracted from the expected an-

nualized carbon sequestered. The same thing is done for a parcel abandoning tree–planting

by subtracting carbon stored from the expected carbon storage of the expected cropland

parcel. More carbon is sequestered when a parcel with deficit carbon emissions transitions

to CRP tree–planting than when a land with positive carbon storage transitions.

I use 1.5 ton as the annualized carbon sequestered per acre which I adjusted by using

the net carbon sequestered/emitted on the land transitioning from cropland or abandoning

tree-planting (Stavins, 1999). I used the carbon sequestration and emission information from

Popp et al. (2011) to calculate the net carbon sequestrated on cropland as the carbon storage

of a parcel under different crop rotation that abandons cropland or transitions into cropland.

I used Equation (4.7) to calculate the net carbon sequestrated in a tree–planting program

as the product of net lands under tree–planting and carbon sequestered on these lands.

Net amount of carbon sequestered =∑
i

Net change in CRP × (1.5− Net carbon sequestered on croplandi)

+ current lands under CRP contract× 1.5 (4.7)

The most common crop rotation practice in the study area is corn-soybean-cotton and rice-

soybean rotations. A land transitioning to tree–planting comes from either rotation, and

a land retiring from tree–planting returns to either of the rotations. I use the carbon in-

formation from Popp et al. (2011) to calculate the average carbon storage on each possible

rotation. Corn, wheat and sorghum sequester 1, 0.49, 0.73 tons of carbon per acre while rice,

cotton and soybean emit 4.92, 0.71 and 0.01 tons per acre of carbon (Popp et al., 2011).

I calculate the marginal cost of carbon sequestered as the cost of CRP payments divided

by the net amount of carbon sequestered for the payments, where all changes are calculated
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relative to a 2011 baseline (Equation 4.8).

Marginal cost =
CRP payment × (Net change in CRP + current land under CRP contract)

Net amount of carbon sequestered
(4.8)

I also tested the sensitivity of carbon sequestered by increasing crop prices between 10 and

100% between 2000 and 2012. This helps to gauge the sensitivity of carbon sequestration to

crop price increases.

4.3 Data and Variable Construction

The study area is restricted to the land resource regions area (LRRs) O, N, and P which

cover many states along the South–East region of the USA. While only 4.9% of the total CRP

acres are used for tree–planting, more than 78% of these acres are located in LRRs O, N,

and P (Figure 4.1). More than 55% of CRP acres in these LRRs are used for tree–planting.

I combined parcel–level data on land use choice and quality from (NRI) with the county–

level estimates of annual net returns (per acre) for six major crops and CRP returns. I

restrict the analysis between 2000 and 2012 after the 1996 Farm Bill since farm bills prior

to 1996 had acreage set–aside programs that substantially distorted cropland area from year

to year. I estimate the model using a repeated annual parcel–level data of the NRI between

2000 and 2012.

Two major land use decisions take place during CRP general sign–up. The transition

of other land use (cropland) to CRP programs, and exit of expiring CRP acres back to

other land use. For a land to be eligible for CRP sign–up, the land must be under cropland

production at time t prior to CRP general sign–up at time t+1. During general sign–up,

landowners can enroll the whole field or whole farm for a period of 10–15 years. Between

2000 and 2012, more than 80% of the land enrolled in CRP is through general sign–up

(USDA-FSA, 2009). The general CRP sign–ups are for land use transitions in the years

2001, 2004–2007, and 2011. NRI data does not have information about the continuous

sign–up CRP acres, therefore, I only model the decision for general CRP. For tree–planting
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abandonment for cropland, only lands initially in tree–planting that were previously enrolled

during general sign–up, and with possible expiration between 2000 and 2012 are considered.

I don’t know when these acres expired, but I know the sign-up year for each CRP parcel and

I tabulate how often land exited CRP for each sign–up year to determine the most common

exit years between 2000 and 2012. I only estimate the probability of a parcel exiting CRP

in the years with significant exits for the respective sign-up year.

The NRI data have information on the general sign–up and the type of CRP program

a land is enrolled. I create two different dummy variables to represent possible sign–up

and exit years. The sign–up/exiting variable is set to equal one or zero otherwise if a year

is a general sign–up year, or the year a CRP contract will possibly expire. I defined my

dependent variable for each parcel to equal one at time t+1 if it was initially in alternate

land use at time t when sign–up or exiting equals one. My dependent variables are explained

as a function of land quality and expected return to these land use at time t.

I used the land capability class (LCC) from the NRI data to create dummy variables that

measure soil suitability to produce a crop. LCC is time–invariant and ranges between 1 and

8. Land in LCC class 1 and 2 have few limitations for crop production but still suitable for

agriculture while land in classes between 3 to 8 have different limitations to crop production.

I divided the LCC into two binary variables: classes 1 and 2, and classes 3 and above. The

dummy variable with LCC 3 and above is used as the base to avoid perfect multicollinearity.

These dummy variables are interacted with expected returns to capture the possibility that

different types of land may respond differently to changes in returns. The coefficient of βr

in equation 4.4 measures the effect of return when LCC is between 3 to 8.

The estimated cropland return is constructed as an acre–weighted county gross revenue

less variable cost of corn, rice, winter and spring wheat, cotton, soybean, and sorghum.

Figure 4.2 shows the average cropland return for the LLR O, N, and P which fall under the

Mississippi portal, Southern Seaboard, Eastern Uplands and Heartland of the farm resource

regions. The revenue is a product of future expected price from the Chicago Mercantile

Exchange (CME) contract and county level trend yield. For corn, I use the average of the

daily settled price between January and February for the December corn contract. For wheat,
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the expected price is the average daily settled price between January and March for December

contract. For the soybean and rice, I used the average settled price between January and

March for the contract ending in November. For Cotton, I used the average settled price

between January and March for the contract ending in October. State marketing year price

is used as the price for sorghum. The trend yields are estimated from county-specific linear

trend regressions using the National Agricultural Statistics Service (NASS) data from 2000

to 2012.

The return to cotton is calculated using the return from cotton lint and cottonseed. The

revenue for cotton lint is calculated in the same way as revenue for other crops. The revenue

to cottonseed is calculated as the product of trend cotton yield, an adjustment factor of

1.62 and state level marketing year price. The total return to cotton is the sum of return

to cotton lint and cottonseed. The acreage weight for crop i at time t is derived by using

the rolling average of county acreage in the four most recent years. The use of a rolling

average reduces the impact of temporary departures from a typical mix of crops on expected

returns (Claassen et al., 2017). The variable cost information is obtained from the Economic

Research Service (ERS) cost estimates for Farm Resource Regions. I include the cost of seed,

fertilizer, chemicals and custom operation expenses for each crop.

CRP returns data are obtained through a Freedom of Information Act request. CRP

returns are the county level average rental rate for the newly enrolled contracts which differs

from the CRP rental rate available online as the online data represent the rental rate for an

average enrolled acre. The missing rental information is replaced by the predicted rental rate

where the rental rate for the newly enrolled acres is expressed as a function of the average

CRP rent for all enrolled acres per county for a given year. The predicted value from this

regression is used to replace the missing data. The average CRP rental rate in LRRs O, N,

and P is shown in figure 4.3.
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4.4 Result and Discussion

The results of the estimation are shown in tables 4.1 and 4.2. Table 4.1 shows the parameters

for land use transition from cropland to CRP while table 4.2 shows the parameter estimates

of land use abandonment of CRP for cropland.

4.4.1 Marginal Effects of the Preferred Model

Table 4.1 shows the result for land use transition from cropland to tree–planting under CRP.

The coefficients on economic returns and land quality are all statistically significant with the

expected sign (Table 4.1, column (1)). The average partial effects (APE) of CRP return is

positive and significant while the coefficient of cropland return is significant and negative.

The APE of CRP return is very small but shows that a $10/acre change in CRP rental rate

will increase the probability of cropland moving to tree-planting by 0.028 percentage points.

A $10 acre increase in cropland return will decrease the probability of cropland moving

to tree-planting by 0.001 percentage points. The average transition probability of a parcel

moving from cropland to tree–planting is 0.097%. Even though the average partial effects

look small, the number of lands transiting is small and returns have a significant impact on

the number of transitions.

Also, in table 4.1, the coefficients of average CRP and cropland returns indicate that

counties with lower CRP rent and larger cropland returns are less likely to enroll in CRP.

This is likely because higher productive land is less likely to enroll in CRP and this cross–

sectional variation is not the type of variation we want to exploit to estimate the causal

impact of changes in returns.

The coefficient of land quality of class 1 and 2 is significant and parcels within these

classes are less likely to transition to tree–planting as cropland return increases. LCC 1 and

2 are more suitable for agriculture than those with land quality ranging between 3 to 8. The

interaction between land quality and returns reflects how a return to a parcel varies with

land quality, and the parcel’s degree of responsiveness to transition when returns to these

parcel changes. The coefficients are significant, but the APEs are not. Parcels with LCC 1
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and 2 are more responsive to CRP return than the other land quality classes. With cropland

return, parcels with land quality 1 and 2 are more responsive to changes in cropland returns,

and more likely to stay in cropland as cropland return increases. Therefore, a higher quality

land (LCC 1 and 2) is less likely to transition to CRP on average but is more responsive to

changes in returns.

Table 4.2 shows the result for land use transition from tree planting under CRP to crop-

land. The coefficient of returns to CRP has the right sign but is not significant. Therefore,

Increasing return to CRP has a stronger impact on the decision to enroll in CRP than the

decision to exit CRP. Increasing CRP rental rate by $10/acre will reduce the probability of

tree-planting moving to cropland by 0.44 percentage points. The coefficient of returns to crop

is significant and with a positive sign. The probability that a parcel abandons tree–planting

program increases as returns to cropland increases. The average transition probability of

abandoning tree–planting is 0.62%. Higher quality land is not significantly more or less

likely to exit CRP and is not significantly different in the response to changes in returns.

4.4.2 Comparison to Alternative Methods

Next, I compare the parameter estimates from the CRE model, linear probability model

(LPM) and pooled probit model. The CRE model allows the control of unobserved hetero-

geneity and inclusion of time–invariant variable like land quality in the model and avoids

any problem related to the incidental parameters problem of the linear fixed effects model.

The statistical significance of the coefficients of average returns is the evidence that ignoring

the unobserved heterogeneity results in biased coefficients (table 4.1). The marginal effects

of the fixed effects linear probability model (LPM) are similar to the average partial effects

(APEs) from the CRE model. This is different for the pooled probit model as the sign and

size of the APEs are different from the other two models. Using the pooled probit, the APE

for CRP return in table 4.1 is significant with the wrong sign. In table 4.2, although with

the APE of cropland return having the right sign as that of CRE, the APE of cropland re-

turn is biased downwards toward zero. The difference can be attributed to the uncontrolled
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unobserved heterogeneity in the pooled model.

4.4.3 Simulations

Using the transition probabilities estimated in tables 4.1 and 4.2, I simulate the additional

land gained for tree–planting by increasing payment to the CRP (Figure 4.4). Figure 4.4

illustrates the different number of acres converted and abandoned at different levels of CRP

payments. The average CRP rental rate paid between 2000 and 2012 is $71.21 per acre,

and Panel A and B of figure 4.4 show how a 10% increase in CRP payment will expand

tree-planting by 37,400 acres and reduces exit by 450 acres while Panel C shows a net gain

of 41,000 acres to tree–planting program. The increase in tree–planting acres is due to higher

return induced by increased CRP rent. When CRP rent is reduced at a percent rate, more

tree–planting acres are abandoned, and net acres added to tree–planting is less. At 30%

reduction in CRP rent, 4,300 acres of tree–planting acres is gained by cropland (Panel C

of Figure 4.4). Land transition to tree–planting program increases at an increasing rate as

the CRP rent increases. At 30%, tree–planting acres will be expanded by 277,782 which is

around 13% of acres under tree–planting in LLRs O, N, P.

I combine both the tree–planting parcels and carbon flow to produce a marginal cost

function for tree–planting which is summarized in figure 4.5. The marginal cost function is

concave and more elastic at higher carbon prices. Carbon flow increases as the CRP return

increases. At the average CRP rental rate of $71.20, 2.1 million tons of carbon is sequestered

at a marginal cost of $24.47 per year. A 30% increase in CRP rent will increase the marginal

cost of carbon to $33.52 with an additional 0.24 million tons of carbon sequestered per year.

This is equivalent to emissions from 460,000 typical passenger vehicles per year. For the

same amount of carbon sequestered, the marginal cost of sequestration is roughly 93% larger

if I ignore the carbon emissions from crop production before transitioning to CRP or when

a parcel leaves CRP.

I compare the amount of carbon sequestered to the equivalent emissions from an average

passenger travel car. A typical passenger vehicle emits about 4.6 metric tons of carbon
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dioxide per year (EPA, 2018). 4 A 30% increase in CRP rent will sequester emissions from

about 460,000 typical passenger vehicles per year.

I compare my estimated marginal cost function with various social costs in the literature

to estimate how much additional carbon can be sequestered if CRP rent is increased to these

social costs. Figure 4.5 illustrates the different levels of additional carbon sequestered at

different social costs. Using $42, the common social cost of carbon (Auffhammer, 2018), an

additional 0.65 million tons of carbon is sequestered per year, a 31.23% increase above the

carbon sequestered at the average CRP rental rate. I also compare my marginal cost with

the social cost estimated by Nordhaus (2011) using the RICE model. At $44, an additional

0.78 million tons of carbon is sequestered per year.

I simulate the impact of crop prices increase on cropland and tree–planting program by

increasing crop prices between 10 and 100%. Increase in crop prices do not only increase

conversions to cropland from CRP but also reduces the amount of land transitioning to

the tree–planting program. If the crop prices are increased by 50%, the number of parcels

transition to CRP tree–planting program at the baseline will reduce by 22,000 acres, while

the number of parcels abandoning the program will increase by 9000 acres. At 50% increase

in crop prices, the amount of carbon sequester decreases by 27%. Increase in crop prices

lead to increased deforestation and loss of carbon on CRP acres as these parcels exit tree–

planting. A 100% increase in crop prices result in an expansion of cropland by 43,000 acres

and sequestration of 0.05 million tons of carbon per year (Panel D of Figure 4.6).

4.5 Conclusion

In this study, I estimate the marginal cost of sequestering CO2 through forest restoration

using the CRP. I used the correlated random probit model that allows us to control for

unobserved heterogeneity that may be correlated with land use return. Estimation without

the control of unobserved heterogeneity produces a biased estimate. The marginal cost

4 This assumes the average gasoline vehicle on the road today has a fuel economy of about 22.0 miles per
gallon and drives around 11,500 miles per year. Every gallon of gasoline burned creates about 8,887 grams
of CO2. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf
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function is concave and more elastic at higher carbon prices. Carbon flow increases as

the CRP return increases. At the average CRP return between 2000–2011, 2.1 million

tons of carbon is sequestered per year at a marginal cost of $24.6. Increasing CRP rent

by 30% expands tree–planting acres by 277,782, sequestrating 2.3 million tons of carbon.

Increasing CRP rent to the social cost of carbon to $42 will increase the amount of carbon

sequestered by 0.385 million tons. This provides further evidence that afforestation of CRP

acres is a cost–effective method of reducing carbon emission. Increase in crop prices increases

crop abandonment and emission of carbon sequestered on CRP parcels. There are fewer

transitions to CRP and an increase in abandonment of CRP as crop prices increase. More

than 0.5 million tons of carbon is emitted at a 50% increase in crop prices.
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Figure 4.1: Share of the CRP that is afforested per county in 2017. Data source: USDA-
FSA (2015)

Figure 4.2: Average Cropland Return per County in LRRs O, N, P (2000–2012)
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Figure 4.3: Average CRP Rent per County in LRRs O, N, P (2000–2012)
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Figure 4.5: Marginal costs of carbon from tree planting program when the subsidy is in-
creased at a percent rate. The figure shows how much carbon is sequestered at a marginal
cost
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Chapter 5

Conclusion

Climate change and agriculture are both connected. Climate change impacts agriculture by

lowering yield, area of the planted field harvested and crop water use. In another direction,

agriculture plays both roles in emission and sequestration of greenhouse gases. The general

objectives of this dissertation are to examine the impact of climate change on yield, land

and water use and, how land use change can be used to mitigate some of these effects.

In the first essay, I show that yield variability is not the same as production variability. I

find that the use of yield variability for a crop like winter wheat will underestimate impacts

from weather. The results show that the main driver of change in production by mid–century

is temperature. By mid–century, production is projected to decrease by 16.3% under RCP

4.5 with crop abandonment accounting for 13.17% and yield reduction accounting for 86.72%

of the change in production.

In the second essay, I estimate the impact of weather variability on irrigation water

use for corn. I provide new evidence that shows how farmers react to increasing irrigation

water demand when climate changes. My result shows that farmers are less responsive to

increasing irrigation water demand when the temperature becomes warmer than is predicted

by the change in ET c demand. A 1–inch increase in atmospheric water demand will increase

irrigation water use by 0.29 inches per acre. I also find that precipitation is not a perfect

substitute for irrigation. Uncertainty in determining the level of irrigation water that will
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maximize yield for a given year due to weather variability, limits on the authorized water use

are some of the reasons explains why farmers are less responsive to change in increasing ET c

demand. By mid–century, Irrigation water use will increase by 9 and 12 % under RCP 4.5

and 8.5 respectively. Also, increasing water use by mid–century will have different spatial

impacts across the GMDs.

The third essay shows the cost–effectiveness of using tree–planting program of the CRP

to sequester carbon. I use a correlated random effects probit model (CRE) to estimate the

impact of an increase in the Conservation Reserve Program (CRP) payments on land use

change. The CRE model allows us to control for unobserved heterogeneity and exploit vari-

ation in returns to land over time. Estimation without control for unobserved heterogeneity

produces biased estimates with coefficients of the wrong sign. Afforestation of CRP lands

may be another cost–effective way to sequester carbon. Carbon flow increases as the CRP

return increases. Increasing CRP rent to the social cost of carbon at $42 will increase the

amount of carbon sequestered by 0.65 million tons.
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