KANDIDATS:
The Porting of an Image Processing System

Linda J. Lallement
B.5., Kansas State University
1975

A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

Approved by:

e

Major Professor

L35 TABLE OF CONTENTS

LIST OF FIGURES

ACKNOWLEDGEMENT

7.

INTRODUCTION

1.1 KANDIDATS
1.2 Extent of Project

STRUCTURE OF KANDIDATS

2.1 Data Structures
2.2 Hierarchy of Modules

CHANGES

3.1 Syntax Changes
3.2 Machine Related Changes
3.3 Structural Changes

KSU KANDIDATS USER'S GUIDE

k.1 Introduction

4.2 KANDIDATS Digital Images
4.3 Command String Interpreter
4.4 KANDIDATS Interactive Aids
4.5 Error Processing

4.6 Entering KANDIDATS

SYSTEM PROGRAMMING

Labeled Common Areas
Command String Interpreter
KANDIDATS Drivers
KANDIDATS Routines

Adding Commands

Image 1/0 Routines

Error Processing

Important System Routines

. s s s e
QO OV A N

Uiy

EXAMPLE
SUMMARY AND EVALUATION

7.1 Summary of the System
7.2 Evaluation of Portability

BIBL |OGRAPHY

105

106
108

110

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

(W)

w A€] Av L] W w
. . . . -

LIST OF FIGURES

N X M Image

Subimages of an Image
SIF File

Hierarchy of KANDOI

Hierarchy of EXSIF

Alternate Error Return

Nested Alternate Error Returns

Change for Nested Alternate Error Returns
Example of Packing

Example of Unpacking

Work Array

Display

Dot Patterns

Subimages of an Image

SIF File

Page

0o oo o~

15
15
15
26
27
27
- 33
34

38
38

ACKNOWLEDGEMENT

| would like to thank Dr. Linda Shapiro, my major professor, for
suggesting the topic of this report and her assistance in its writing
and final preparation. My thanks also to Dr. William Hankley and Dr.
Kenneth Conroe for their advice on this report. | would like to thank
Robert Young, Amrendra Singh, and Dr. Robert M. Haralick for their
technical assfstance. A special thanks goes to Barbara North and my

parents for their encouragement.

1. INTRODUCT | ON

1.1 KANDIDATS

- KANDIDATS (Eﬂﬂ;as Digital Image DAta §ystem) is an interactive
image processing package [1]. Through the use of KANDIDATS commands
the user can create, manipulate, and display multiple digitized images.
The package also allows the user to maintain information about an image
in a standarized format. |In general, KANDIDATS eases the interface
between the user and the machine.

KANDIDATS was deveioped by the Image Processing Group of the
Remote Sensing Laboratory, University of Kansas. It was developed in
1976 on a PDP-15 computer and is coded in FORTRAN. Images are obtained
from and dispiayed on the IDECS, a versatile analogue display device, or
they may be obtained from magnetic tape units on an IBM 7094 machine.

KANDIDATS was ported in part to the IBM-370 at Kansas State University.
On the 370, KANDIDATS executes under the Conversational Monitoring System
(cms).

This report describes the KANDIDATS system as it exists at Kansas
State University. Chapter 2 gives a general description of the system.
Chapter 3 describes the changes made to the system in transporting it to
the IBM-370. The KSU KANDIDATS User's Guide in Chapter 4 is a supplement
to the KANDIDATS User's Guide at the University of Kansas. Chapter 5 is
also a supplement to the User's Guide at the University of Kansas. Along
with Chapter 3, it provides the information necessary for adding to or
altering the KANDIDATS system. A brief example of the use of KANDIDATS

at KSU is given in Chapter 6. Finally, Chapter 7 summarizes the report.

1.2 Extent of Project

The version of KANDIDATS developed on the PDP-]S consists of three
major parts: KANDO! (image utility functions), spatial clustering, and
pattern discrimination. Of these three parts, only KANDOl was ported to
the IBM-370 and that only in part. The main driver, {/0 routines, and
command processing routines of KANDO! were altered to execute on the 370.
The routines that interface with the operating system were written for
the 370. The routines necessary to implement the commands listed below
were ported to the 370. One new command was added to KANDIDATS. DISPLY
was a command added to display images on the COMPUTEK {(a visual display

device).

KANDO1 Commands EXSIF Commands
BRIEF A MID
EXPL B MOD
EXSIF BLK NEXT
DISPLY BRIEF OPEN
LONG CIMG ouT
MESG CLOS PROT
STOP coL REPL
SVDC DONE ROW
TID . FIND sSvDC
VOCA FORM TOP
DONE I1MG VOCA
DLETE INFO

In general, four types of changes had to bé made to KANDIDATS to
transport KANDIDATS from the PDP-15 to the |IBM-370. First, any syntacti-
cal differences between the versions of FORTRAN on the two machines had
to be dealt with. Secondly, the routines that interfaced between KANDIDATS
and the operating system had to be written for the 370. Because some

functional capabilities are available on the PDP-15 that are not available

on the 370, some structural changes were necessary in the operating
system interfaces. Next, differences in the word length on the two
machines necessitated some changes. Finally, an additional module,
DISPLY, was added to KANDIDATS.

0f the 72 routines that are part of KANDOl as it curfent!y exists
on the IBM-370, 46 routines were altered. Twenty-two routines had to
be written in either FORTRAN or assembler for the 370. Four routines

already written for the 370 were also used. Below is a list of these

routines:
ADATE WF GDSC20 A REPL A
AND WA GETBLK A RFORMT WF
BDEX1 A GETCOR A RREAD A
BYTEFT WA GETDN A RWRITE A
BYTEST WA GETFLG A SCANZ A
COMIN2 A GETFN A SVOC A
CORE E GETNM A TID A
DATE E GETOKE A TIME E
DEFDA WA HDOT WF TTYID D
DEFILE WA HOME WF UNPACK A
DEFINE WF IBFCNT A VOCA A
DEVCHK A IBITNM A YESHO A
DISPLY WF IBVOCA A
DLETE WA ICEIL A
DOTTER WF |FORMT WF
ENCODE WF INUNIT WF WF - routine was written in
ERRPRC A JSRT2D A FORTRAN for the 370
EXMOD AC KDPUSH A
EXNEW AC LOG A WA - routine was written in
EXPL A MDOT WF Assembler for the 370
EXPL1 A MESG A
EXPRT AC MODE A A - routine was altered for
EXTSGN WA NRNC A the 370
FDOT WF NUMBAR A
FETCH A PACK A E - routine was an existing
FILCHK A PDOT WF 370 routine
FIND A RBKLS A
FLUSH A RCBKL A
FORM WF RDKINL A
FSTAT WA RDSC20 A

2. STRUCTURE OF KANDIDATS

2.1 Data Structures

IDENT Array

The IDENT array is the first record of any image used by KANDIDATS.
It contains the information necessary to process the image. The IDENT
array is twenty integer words of which only the first nineteen are used.
Twenty words is then the minimum record size for an image. The array

contains the following values: [1]

IDENT(1) Left coordinate of the image on the screen.

IDENT(2) Right coordinate of the image on the screen.

IDENT(3) Top coordinate of the image on the screen.

IDENT (&) Bottom coordinate of the image on the screen.

IDENT(5) Number of bits used to represent one point of
the image.

IDENT(6) Number of points per row in the image.

IDENT(7) Number of rows in the image.

IDENT{8) Relative size of the point in the horizontal
dimension.

IDENT(9) Relative size of the point in the vertical
dimension.

IDENT(10) Number of descriptor records in the file.

IDENT(11) Number of discrete levels from the minimum to the
maximum gray tone.

IDENT(12) Number of machine words per logical record in
the image.

IDENT(13) Number of columns of points per subimage or logical
record.

1DENT(14) Number of rows of points per subimage or loglcal
record,
IDENT(15) Minimum gray tone of all images on the file.
. IDENT(16) Maximum gray tone of all images on the file.
IDENT(17) Total number of images on a file.
IDENT(18) Number of symbolic images on the file.
IDENT(19) Data mode code:
=0 positive integer
= 1 negative and positive integers
= 2 real (floating point)
= 3 half integer (integer *2)
= 4 double precision

IDENT (20) Unused at present.

SIF - Standard Image Format

Images on KANDIDATS are of a standardized form ca}led SIF (Standard
Image Format) [1]. A SIF file is a file of fi*ed length records that con-
tain multiple digitized images and the information necessary to process
those images. The images may be one of five data modes: integer (posi-
tive/negative or strictly positive), real, half integer, or double
precision. |

The first record of a SIF is the |DENT record described previously.
The IDENT array is followed by N descriptor records. The value, N, is
the tenth element of the {DENT array. The descriptor records are followed
by the image data. There may be more than one image on a file.

The descriptor records of a SIF file are optional and provide
image processing history and other general image infermation. The
routines that process descriptor records were not implemented on the

IBM-370. Therefore, only a brief description of the descriptor records

is given here. One type of descriptor record is the processing history
records. These records maintain information as to what routines have
been used to process the image data, the date, and any input files or
parameters., The processing history records have nine different fixed
record types. Besides the processing history descriptor records are
free format descriptor records, which may be mixed with the processing
history records. The free format records may contain information as

to the ground characteristics of the area represented by an image.

Some terms that will be used in this paper to describe the image
data of a SIF file are: pixel, subimage, and image. A pixel or point
is the smallest part of an image or picture. It is represented by a
single numeric value. Pixels are combined together in rows and columns
to form an image. A particular point can be referenced by giving the
image number, row, and column numbers. An image may be divided up into
rectangular blocks of points called subimages. The subimages of an
image are non-overlapping.

An image of N x M points might appear as in Figure 2.1., where N,
the number of rows of points in the image, is determined by IDENT(7) and
M, the number of columns of points in the image, is determined by IDENT(6).
Note that each box represents one data point.

Figure 2.1 might also be used to represent a subimage which was
made of N x M points. In the case of a subimage, N is determined from
IDENT(14), the number of rows of points in the subimage. M is determined

from IDENT(13), the number of columns of points in the subimage.

Column 1
Column 2
Column M

Row 1

Row 2

Row N

N x M Image

Figure 2.1

Figure 2.2 shows how subiﬁages are arranged to cover an image.
The value of J, the number of rows of subimages, and the value of K,
the number of columns of subimages are determined from the number of
rows/columns per image and the number of rows/columns per subimage.

Finally, Figure 2.3 shows how images and subimages are arranged
on a multi-image SIF file. | (IDENT(17)) is the number of images on

the file. N is the number of subimages in each image.

Subimage 1 Subimage J+1 Subimage (K-1)*J+]
Subimage 2 .
Subimage J Subimage 2%J Subimage K*J

Subimages of an Image

Figure 2.2
Subimage 1 - Image |
Subimage 1 - Image 2
Subimage 1 - Image |
Subimage 2 - Image 2
Subimage 2 - Image |
Subimage N - Image 1
Subimage N - Image |

SIF File

Figure 2.3

Note that in Figure 2.3 each line represents a logical record.

Images may be stored in one of five data modes. On the 370 these
data modes are: positive integer, positive/negative integer, real,
half integer (integer *2), and double precision real. The data mode
of én image indicates the data type of the pixels of that image. The
data mode also determines the number of words necessary to represent
a data point for an image. For example, if an image is of data mode
integer, one word is needed to represent a pixel, whereas if an image

is double precision, two words are needed.

10

2.2 Hierarchy of Modules

The main driver of KANDIDATS is the routine KANDOl. KANDOl calls
the routines necessary to prompt the user for command input and parse
the resulting command. It then calls the routines necessary to execute
the command. There are two block data routines, IBFCNT and BDEX1, which
initialize values of common block variables used by KANDOl and its
subroutines.

Each of the commands has a driver which may or may not call other
routines to execute functions of that command. One command, EXSIF, acts
as the driver for a subsystem of KANDOl, Like KANDO1, EXSIF calls the
necessary routines to prompt the user for a subsystem command, parse and
validate the command and call the necessary routine to execute the
command.

Finally, there are several routines that are common to a large
number of the routines of KANDOl. These routines are largely 1/0 routin;s.
The roufines which parse commands and check the valid devices for the
commands are also shared among the routines.

Figure 2.4 shows the hierarchy of the modules comprising KANDOI.
Note that the routines called by EXSIF are shown in Figure 2.5. Figure
2.4 does not show all the modules called by KANDO1. It does show the
main routines implemented on the IBM-370. The same is true for Figure

2:5.

h'Z @4nb) 4
LOANYY 30 Aydaeasiy

_ Qv3yy 431100 N4139 974139 NOL39 300IN3 ZNYIS
| | | 1]
AHIT 14 : MHI114
ANIAQY AHIA3A WNL139 saullnoy 10d AHIAIA alisi ZNIW0D L7dX3 lv1s4
A1d4S 14 d1SX3 ail 1dX%3
AHITI4 AHIT 14
e
VI0ASI AHIAIA | Lvisd AHIADA MNHIT IS N4139 973139 NOL3D 3d0IN3 ZNV3S
YI0A 95S3NW 31310 AHIAIA JYdyy3 ¢NIWO0D ONS3A

|OONWA

12

Gz 24nby4

415X3 0 Ayodaeda)y

ONS3A ﬁuh_xzx av3iyy ERRRTut
STHey HSN1d HSN14 HJ134
AHDT LS M3INX3 143y AWHOANI 1v1s4 300K ONS3A
avayy EFRR-TL} avayy ENRETLY av3ayy
JLIUMY
HHITId HJ134 HsN4 HIl134 _ HSN1d HJ134 av3ayy
AHIA3A QOWX3 02350y antd ININQY ‘ 1ddX3 LINNNI HJ134 HsSN4 JOAS

318X3

13

3. CHANGES

3.1 Syntax Changes

" Differences between the FORTRAN used on the PDP-15 machine and that
used on the IBM-370 necessitated some changes in the syntax of KANDIDATS.

These changes are described below.

Alternate Return

The first syntactic change involved the use of the alternate return
in a subroutine call. The PDP-15 system allowed the use of variables in
the parameter list and after the RETURN statement to control the return
from a subroutine. A subroutine might return control to the calling
routine in different locations based upon some conditions established
within the subroutine.

For example, upon successful completion of its objective, the sub-
routine would return control to the statement following its call. Error
conditions would return control to other locations in the calling routine
where the errors would be dealt with. The subroutine would be coded as

follows:

SUBROUTINE EXONE(ERR1,ERR2)

successful completion
RETURN

first error condition
RETURN ERRI

second error condition
RETURN ERR2

The calling routine would be structured as follows:

14
CALL EXONE (@1000,82000)

1000 CONTINUE
first error processing

- 2000 CONTINUE
second error processing

The action of this code is shown in Figure 3.1.

To alter these functions so that they are compatible with IBM
FORTRAN, the character '@' in the call must be changed to a 's'. The

call then becomes:
CALL EXONE(&1000,£2000)

The alternate return variables in the subroutine's formal parameter

list are replaced with '*'s,
SUBROUTINE EXONE(*,%)

Finally, the RETURN variable is replaced with a digit indicating which
'*' and corresponding statement label to return control to. RETURN ERRI
becomes RETURN 1 and returns control to statement 1000 in the calling
routfne. Similarly, RETURN ERRZ becomes RETURN 2, returning control to
statement 2000.

In the PDP-15 system, the alternate returns may also be nested as
in Figure 3.2. The error return from SUBTWO causes an immediate return
from SUBONE to the calling routine. To obtain the same action from IBM
FORTRAN, a RETURN statement must be added to SUBONE. The result is shown

in Figure 3.3.

Calling Routine

EXONE (ERR1,ERR2)

CALL EXONE(@1000,82000) <

\

1000 CONTINUE <

2000 CONTINUE <

RETURN

RETURN ERRI1

RETURN ERR2

Calling Routine

Alternate Error Return

CALL SUBONE(@100)

100 CONTINUE <

Calling Routine

CALL SUBONE(&100)

Figure 3.1
SUBONE (ERR) _SUBTWO (ERR)
CALL SUBTWO(ERR

RETURN ERR

Nested Alternate Error Returns

Figure 3.2
SUBONE (*) SUBTWO (*)
CALL RETURN 1
SUBTWN (£900)

900 CONTINUE <
RETURN 1

100 CONTINUE <

Change for Nested Alternate Error Returns

Figure 3.3

15

16

Call By Address

Ancother change for the 370 in the formal parameters involved
enclosing each of the parameters in slashes. This caused the para-
meters to be passed by address rather than by value-return. Passing
by address was necessary since arrays of varying dimension and type
were often passed from the fnvoking routine to several levels of
subroutines, and previous experience had shown that the IBM value-
return passage could cause correct PDP-15 programs to run incorrectly.
The statement CALL EXTWO (PARAM1, PARAM2, etc. . . .) would be changed

to CALL EXTWO (/PARAM1/, /PARAM2/, etc. . . .).

Length of String Constants

Among the changes resulting from the difference in word Iengths on
‘the PDP-15 and IBM-370 machines is the change in the lengths of charac-
ter string constants. In the PDP-15 KANDIDATS, strings were usually
assigned to arrays in DATA statements. For example, a variable of
type DOUBLE INTEGER on the PDP-15 machine is-36 bits and can hold 5 7-bit
characters. On the IBM machine, an INTEGER variable is 32 bits and can
hold 4 8-bit characters. The statements:

DOUBLE INTEGER FNAME(2)
DATA FNAME/'FUNCN','AME'/

would be changed to

INTEGER FNAME (2)
DATA FNAME/'FUNC', "NAME'/

The change in the number of characters that can be associated with

an integer necessitated changes in FORMAT statements. -For example, the

17
- format statement for writing out FNAME as described above would be
changed from (2A5) to (2AL4).

Because of the changes in the length of the data types, the length
of fhe function names, file names, and device names all changed. This
caused the routines that scan the input commands to change. For example,

the routine GETFN which scans for a function name did the following:

c NO, IS SYMBOL LENGTH OK
IF (1L .GT. 6) GO TO 180
c BLANK OUT TEMP. STORAGE

199 T(1) = BLANK
c MOVE SYMBOL TO TEMP. STORAGE
DO 170 | = 1,IL
170 T(1) = LINE(I < 1 + IB)
where IL is the length of the string found during the scan and T is a

double integer array of nine elements. This code was altered for the

370 as follows:

c NO, IS SYMBOL LENGTH OK
IF (IL .GT. 8) GO To 180
C BLANK OUT TEMP. STORAGE
DO 199 1| = 1,8
199 T(I) = BLANK
C MOVE SYMBOL TO TEMP. STORAGE
DO 170 | = 1,IL
170 T(1) = LINE(I - 1 + IB)

where T is an integer array of eight elements. The original T had nine
elements for the six characters of the function name and the three charac-
ter extension. On the IBM machine T has eight elements for the eight

characters of the function name.

18

invalid Use of String Constants

The PDP version of KANDIDATS uses character string constants in
FORTRAN statements other than the DATA statement. The IBM FORTRAN
allows string constants in DATA statements or FORMAT statements.
Therefore, routines using string constants in the body of the routine
had to be altered. Variables were created and assigned the string
constant values in a DATA statement.

The PDP statements:

IF(FUNC .EQ. 'QUIT') GO TO 300
NAME = 'BBBEE'

would be changed to the following on the 1BM-370:
INTEGER QUIT, BLANK
DATA QUIT/'QUIT'/ ,BLANK/ BEBBEB'/
IF(FUNC .EQ. QUIT) GO TO 900

NAME = BLANK

Decrementing D0-LOOP

One difference between the instruction set of the PDP-15 and the IBM-370
FORTRANs involved a decrementing do-loop. The PDP code contained loops
with negative modifications of the loop index. Since IBM FORTRAN does
not allow this, the loop had to be altered.

For exaﬁple, in the routine EXPL1 there is a loop which searches
backward from the end of a card image for the first non-blank word.

Then the card image is printed out up to that last word.

19
DO 38 1 = 16,1,-1
IF(CARD (1) .NE. BLANK) GO TO 39
38 CONTINUE
=1
39 WRITE(OT,40) (CARD(J), J = 1,1)

Taking into consideration that because of a change in data type a card
on the IBM-370 consists of twenty words instead of sixteen as on the PDP,

the code above can be rewritten using an incrementing loop as follows:

DO 38 | = 1,20

K= 21-1

IF(CARD(K) .NE. BLANK) GO TO 39
38 CONTINUE

K=1

39 WRITE(OT,40) (CARD(J), J = 1,K)

Octal to Hex Constants

The PDP FORTRAN allows octal constants to be assigned to variables
in DATA statements. The syntax for these constants is the character A
followed by octal digits. For the 370, these constants needed to be
changed to hexadecimal constants. The syntax for the hexadecimal con-
stant is a 'Z' followed by hexadecimal digits. Additional changes were
necessary because of the change from ASCI| characters on the PDP-15 to
EBCDIC characters on the 370. These changes are described further

under the section Prompting and Position Control Characters.

20

3.2 Machine Related Changes

Prompting and Position Control Character

KAND[DATS on the PDP-15 machine uses octal constants to assign
prompting and carriage control characters to variables. The octal
representation of the ASCII characters are used to control the output
line position on the terminal and the line printer. The IBM-370 uses
EBCDIC characters and they must be represented in hexadecimal nota-
tion. The same sort of change was necessary for the characters used
as prompts.

For example, the bell character followed by the rpbout character
in ASCII would be #037760. The rubout character was not used on the
370, but the hexadecimal representation of the EBCDIC bell character

"is 22F000000.

1/0 Devices

The difference in the peripheral units between the two machines
necessitated some major changes in KANDIDATS. On the PDP-15 machine
there are multiple disk packs, IDECS channels, line printer channels,
tape units and a single teletype unit. The 370 does not have the IDECS,
Under CMS on the 370, the tapes and additional disk units are not easily
accessible from an executing program. The printer is a virtual printer.
Any output to the printer from KANDIDATS on the 370 is written to a
disk file. This disk file is placed in the user's virtual reader when
KANDIDATS terminates. On the 370, a virtual punch can be used as an

additional input/output device,

21

This change in the 1/0 devices had its largest effect on the module
DEVCHK. The word used to indicate the valid devices for a given command,

DEVMSK, was changed as shown below.

Bit Destination Source
0 Unused
1 None None
2 Disk None
3 Disk Disk
L Disk Punch
5 Disk Terminal
6 Unused
7 Punch None
8 Punch Disk
9 Punch Punch
10 Punch Terminal
11 Unused
12 Terminal None
13 Terminal Disk
14 Terminal Punch.
15 Terminal Teminal
16 Unused
17 Printer None
18 Printer Disk
19 Printer Punch
20 Printer Terminal

The values assigned to three variables in the common block, IBFCNT, also

were changed.

The device mnenomics and type codes were changed to:

Mnemonic Type Code
DPA Disk 1
DPB Disk (unused at this time)
PRTR Printer L]
PUN Punch 2
TERM Terminal 3

22

These changes will have some impact on the user of KANDIDATS.
First, the source and destination device mnemonics will change to
those described above. Secondly, those commands accessing tapes will

no longer be available.

Machine Dependent Constants

A number of the 1/0 routines of KANDIDATS contained calculations
which were dependent upon the number of words per data type, the number
of bytes per word, or the number of bits per wdrd. Since these values
can vary from one machine to the next, a common block, MACH, was created
to contain variables whose values are dependent on the machine on which
KANDIDATS is executing. Wherever a constant that was machine dependent
was used in calculations, it was replaced with a variable from this common
block. The values of these variables are set in the block data subroutine
IBFCNT. This common block should facilitate the transporting of KANDIDATS

to a third machine.

Below is a description of the common block, MACH, with the value of

each variable on the PDP-15 and IBM-370 machines.

Variable PDP-15 1BM-370 Description
NMBTPM 18 32 Number of bits per machine word
NWORDS Number of words per given data type
1 1 (1) - absolute integer
1 1 (2) - integer
2] (3) - real
2 5 (4) - double integer on PDP

half integer on IBM

3 2 (5) - double precision
NMWD !0 1 1 Number of machine words per 10 word
NMWMIN 20 20 Number of machine words necessary to

contain the IDENT array

23
Yariable Types

The number of words and thus bytes per data type is different on

the IBM-370 than on the PDP-15. The table below shows these differences.

Number of Words Number of Characters
TZEe PDP-15 IBM-370 PDP-15 1BM-370
Integer 1] Not used 4
Double integer 2 Not used 5 Not used
Half integer Not used .5 Not used 2
Real 2 1 5 4
Double Precision 3 2 Not used 8

A major change because of these differences in the data types was
the elimination of double integer variables on the 370. All variables
that were of type double integer in the original version of KANDIDATS
had to be changed. For the most part these variables were changed to
integer with some adjustment in the number of elements in arrays where
necessary. For example, device names which had been 5 characters long
became 4 characters long when changed from double integer to integer.

A side effect of changing the data type of some variables was the
necessity of changing some common blocks. Since double precision
variables must be aligned on double word boundaries in common blocks
and integer and real variables on full word boundaries, the variables
in a common block must be arranged in order from double word to full
word. Thus when variables in a common block changed type, they had to
be rearranged.

One final change in the data type of variables was the change in
one of the allowable data types of an image. Again, since on the PDP-15

an image could be of type double integer, any reference to that type of

24

image had to be changed to half integer. This change was partially
accomplished by the creation of the common block MACH as described in

the previous section.

Routines that Interface with the Operating System

Because the operating system on the PDP-15 is different from that
on the 370, any routines that interface with that operating system must
be altered. These routines are, for the most part, the routines that
manipulate files. These routines were often written in assembler and
therefore had to be written for the 370 rather than just being altered.

The routine, CTRLT, on the original version of KANDIDATS was used
to enable the user to interrupt the execution of a command and return
control to KANDOl, the main driver. On the 1BM machine under CMS, the
only means of interrupting the execution of a program is to strike the
attention key. However, when the attention key is struck, control
returns to CMS. Since the function of CTRLT could not be duplicated on
the 370 without changes to the operating system, that routine was dummied
out.

The routine DLETE locates a named file on disk and deletes that file.
Its parameters are the unit number, the file name, and a code indicating
whether the file was found or not. On the 370, the unit number is not
used. DLETE, as it is written on the 370, behaves the same as the CMS
ERASE command. |t was implemented in assembler using the system macro
instructions FSSTATE and FSERASE.

The routine ADATE returns the current data and time for use by

KANDIDATS. It returns the data and time in the format MM/DD/YYEBEHH:MM.

25

ADATE is a FORTRAN routine which calls two system routines, DATE and
TIME, and another FORTRAN routine, FORM. DATE returns the current date.
TIME returns the time of day in hundredths of seconds. FORM arranges
the time in the form described above. ADATE and FORM had to be written
for use on the 370.

FSTAT is another assembler routine written for KANDIDATS on the
370. It verifies the existence of a named file on the disk. The PDP-15
version of KANDIDATS passes the unit number, the name of a file, and a
variable indicating whether or not the file was found to FSTAT. The
unit number is not used on the IBM version of FSTAT. The file name is
set up for use by the expansion-of the FSSTATE macro instruction. An
additional function is performed by the IBM version of FSTAT. FSTAT
retrieves the record size in bytes and the number of records for a given
file and places those values in the common block FILSIZ for use in
opening a file.

Under the original KANDIDATS when a file was opened, it was opened
first for sequential access and the IDENT array was read in, The file
was then closed and the information from the IDENT array was used to
re-open the file for direct access. On the 370, however, a fife once
opened for sequential access could not be re-opened for direct access.
To solve this problem a file is always opened for direct access. The
record size and number of records used to open a file for direct access
were obtained from the common block, FILSIZ, described above. This change
in the opening of files eliminated the routines SEEK, ENTER, and CLOSE.
SEEK opened an input file for sequential access and ENTER opened an output

file for sequential access. CLOSE closed a sequential access file.

26

The routine DEFINE initializes a file for direct access input/output
operations. On the 370, this involves ; file définition, which associates
a unit number with a file and a DEFINE FILE, which associates a variable
with the file and indicates whether the file will be formatted or unfor-
matted. DEFINE is a FORTRAN routine that calls two assembler routines:
DEFILE and DEFDA.

DEFILE performs the functions of a FORTRAN DEFINE FILE statement.

A DEFINE FILE statement requires constants for the values of unit number,
number of records and record size. Since these values are dynamically
determined on KANDIDATS, however, a routine had to be written that would
use the values of variables to perform a DEFINE FILE, The routine
written to do this is DEFILE.

DEFDA performs a dynamic file definition. vThe file definition is
for a direct access file. DEFDA places the file name, unit number, and
record size into a command string. This command string is passed as a

parameter in a supervisor call macro.

PACK and UNPACK

Two FORTRAN routines written to handle packing and unpacking bytes
are PACK and UNPACK. PACK takes an array having bytes which are right
justified in a word and packs the bytes in an array. For example, given
an array UNPAC which contains the bytes right justified, they would be

packed into the array PAC as shown below:

UNPAC [FFFA[O12B [FFFC [FEFD[FFFE |

PAC [ABCDIEOGD]

Example of Packing

Figure 3.4

27

UNPACK does just the opposite, as shown below:

PAC ABCD
UNPAC ~ [FFFAIFFFB[FFFC [FFFD [FFFE |

Example of Unpacking
Figure 3.5

These two routines are generalized so that the packing and unpacking may

be done with any fixed number of bits rather than just eight-bit bytes.

Dynamic Dimensioning of Arrays

In KANDIDATS there are work arrays that need to be divided into

several arrays. Consider Figure 3.6:

-
WRK (1)K T
ARYA NCA
WRK(1 + NCA) *
ARYB NCE X HRB > WRKS 1 Z
WRK(1 + NCA '
+ NCB X NRB ARYC NCC
Work Array /
Figure 3.6

The work array, WRK, is a one-dimensional array of size, WRKSIZ. This
work array can be divided into three arrays: ARYA, ARYB, and ARYC.
ARYA and ARYC might each be one-dimensional arrays with NCA and NCC ele-
ments, respectively. Assume that the array, ARYB, has NCB columns and
NRB rows or NCB X NRB elements.

In the original version of KANDIDATS, three routines: ADJ1, ADJ2,
and ADJ3, handle adjustable dimensioning. The above arrays would initially

be dimensioned as follows:

28

DIMENSION WRK(512), ARYA(1), ARYB{(1,1), ARYC(1)

DATA WRKSIZ/512/
The dimension of 1 acts as a place holder and establishes the dope vec-
tors and dimensions for each of the arrays. Once the number of rows
have been determined for each of the arrays, the dimensions of the
arrays can be adjusted by doing the following:

CALL ADJ1(ARYA,WRK(1))

N =1+ NCA

CALL ADJ2(ARYB,WRK(N), NRB)

N = N + NCB*NRB
CALL ADJ1{ARYC,WRK(N))

The effect of this code is the same as:
DIMENSION ARYA(NCA), ARYB(NRB,NCB), ARYC(NCC)

The routines ADJ1, ADJ2, and ADJ3 alter the dope vectors for arrays
of one, two, and three dimensions respectively. The starting address of'
the array must be set and the number of elements in the various dimensions.
To get the same adjustable dimensioning in the IBM version of KANDIDATS,
the addresses of the arrays ARYA, ARYB, and ARYC must be passed to a
subroutine along with the dimensions of the arrays.

There are two cases of ar}ay adjustment in the original version of
KANDIDATS. Case one: the arrays are used in the same routine in which
they are dimensioned. Case two: the arrays are used in a subroutine
called by the routine in which the arrays are dimensioned.

To handle case one for the IBM version of KANDIDATS, a new subroutine
must be introduced. The code that uses an array is removed from the routine
where the arfay is adjusted to a new subroutine. For example, the original

version of KANDIDATS might have had a routine with the following code:

INTEGER WORK(512), ARY(1,1)

CALL ADJ2(ARY,WORK(N) ,NROWS)
-DO 10 1 = 1,NROWS
DO 20 J = 1,NCOLS
X = X + ARY(I,J)

20 CONTINUE
30 CONTINUE

For the 370, the original routine would become:

INTEGER WORK(512)

CALL NEW(WORK(N),NROWS,NCOLS,X)
The routine that is created, NEW, would be:

SUBROUTINE NEW(/ARY/,/NROWS/,/NCOLS/,/X/)
INTEGER ARY (NROWS,NCOLS)
DO 10 | = 1,NROWS
DO 20 J = 1,NCOLS
X =X+ ARY(1,J)
20 CONTINUE
10 CONTINUE
The starting address of the array ARY is established by passing the
element of the work array, WORK, where ARY is to start. The dimensions
of the array must also be passed to the subroutine.

Case two is handled in much the same way. In this case, however,

the subroutine already exists. Consider the following example:

29

30
INTEGER WORK(512), ARY(1,1)

-CALL ADJ2 (ARY,WORK({N) ,NROWS)

CALL SUB1(ARY)

For the 370, the calling routine would become:

INTEGER WORK(512)

.

CALL SUB1(WORK(N),NROWS,NCOLS)

and SUBl would become:

SUBROUTINE SUB!(/ARY/,/NROWS/,/NCOLS/)

INTEGER ARY (NROWS,NCOLS)

Note that the array ARY disappears completely from the calling routine

and that extra parameters must be added for the dimensions of the arrays.

31

3.3 Structural Changes

Unit Number Assignment

On the PDP-15 a file could be assigned to a given unit number,
deleted and a different file could be assigned to the same unit number.

On the 370, however, once a file has been assigned to a unit number, no
other file may be assigned to that same unit number. This necessitated
a change in the structure of KANDIDATS.

The routine RDKINL is called to initiate a file for input/output.
RDKINL was changed to call the routine, INUNIT, which maintains a 1-1
mapping of unit numbers to filenames. A common block, UNTS, was created
which contains an array, UTAB. UTAB is a double precision array of five
elements. UTAB is initialized to blanks. When a file is first initialized,
the file name is placed in the first blank element of UTAB. The index of
that element plus 10 is used as the unit number for the file. Thus the .
unit numbers for files range from 11 to 15. [If a file is deleted, the
name remains in the unit number table keeping that unit number from being
assigned to any other file name. Note that this limits the number of files
that can be used in any one KANDIDATS session to five. This limit can be
increased by increasing the number of elements in the array UTAB. Any
initializations of a file after the first will search the table UTAB for

the file name and return the corresponding unit number.

Visual Display Routines

To allow the user to display images on the COMPUTEK from KANDIDATS,

the command DISPLY was created. The general form of the command is:

DISPLY TERM <- DPA file name

32
This causes the named image to be displayed with five gray tone levels
on the COMPUTEK screen.

DISPLY initializes the file for input/output. This includes deter-
mining the number of image points per window to divide the image into
128 windows per row and 128 windows per column. The number 128 comes
from the 256 dots per row and column of the COMPUTEK screen divided by
two. It takes a 2 by 2 window of dots to represent‘one point of the
image. |If the number of points per image is not evenly divisible by
128, the image is extended in either the number of rows or the number
of columns such that it is evenly divisible.

Consider an image which is 128 points per row by 250 points per
column. Since 250 is not divisible by 128, the image is extended by 6
rows of the lowest gray tone of the image. Figure 3.7 shows this

extended area as a dashed line.

1 2 3 128

249 l

250 __J

251"

256 :

Display
Figure 3.7

Note that each window is highlighted. |In this image the windows are
2 rows by 1 column.

DISPLY calls a routine, based on the data type of the image,
which reads in the image and averages the gray levels of the windows.
The range of high to low gray tones is mapped onto the range 0 - 4.
For example, if an image has gray tones ranging from 11 - 30, they

would be mapped as follows:

33

34

Gray Tones Level
1 - 14 4
15 - 18 3
19 — 22 2
23 - 26 1
27 - 30 0

At this point, each window of the image has a gray level between
0 and 4. The routine, DOTTER, is called to translate the gray level
into a 2 by 2 pattern of dots. The translation is shown in Figure 3.8
where a dark point is represented by a solid dot and a light point by

an open dot.

® @ (O C @ o O c ©
¢ O o © ® O @ O O O
0 1 2 3 4
Dot Patterns
Figure 3.8
Subsystems

Subsystems on the original version of KANDIDATS were initiated
through the call of a routine KCALL. On the 370, the call to sub-
systems are direct. The only subsystem currently implemented on the

IBM-370 version of KANDIDATS is the module EXSIF.

35
LR KSU KANDIDATS USER'S GUIDE

4.1 Introduction

* KANDIDATS (KANsas Digital Image DATa System) is an image processing
package developed by the University of Kansas Center for Research, Inc.
KANDIDATS was partially altered so that it will execute on the IBM-370 at
Kansas State University. This document is intended to supplement the
Kansas University KANDIDATS user guide, KANDIDATS Il (Technical Report
0920-2, September 1976) [1] for the Kansas State user of KANDIDATS. it
documents only those parts of KANDIDATS that were implemented on the [BM-

370.

L.2 KANDIDATS Digital Images

Multi-Band Digital Images

KANDIDATS processes multi-band digital images. A digital image is
a numeric representation of an image. |If the two-dimensional image is
divided into rows and columns, then each row and column number pair
specifies a point of the image. The value at each point of the image is
a number that indicates light intensity of that point.

Images on KANDIDATS are maintained in files of a standardized form.
Files of this form are called Standard Image Format (SIF) files. SIF files
have three types of records: the identification record, the descriptor
records, and the image data records. On KANDIDATS as it is implemented
at Kansas State, the descriptor records are unused.

The first record on a SIF file is the identification record (IDENT).
This record is comprised of twenty integer words which provide the basic
information necessary to process the file. The values of the array,

IDENT, are:

IDENT(1)
IDENT (2)

IDENT(3)
| IDENT (4)

IDENT(5)

IDENT (6)
IDENT(7)

IDENT(8)
IDENT(9)

IDENT(10)

IDENT(11)
IDENT(12)
IDENT(13)
IDENT(14)

IDENT(15)
IDENT(16)
IDENT(17)
IDENT(18)

IDENT(19)

IDENT(20)

Left coordinate of the image on the screen.
Right coordinate of the image on the screen.
Top coordinate of the image on the screen.
Bottom coordinate of the image on the screen.

Number of bits used to represent one point of the
image.

Number of points per row in the image.
Number of rows in the image.

Relative size of the point in the horizontal
dimension.

Relative size of the point in the vertical
dimension.

Number of descriptor records in the file.

Number of discrete levels from the minimum to the
maximum gray tone.

Number of machine words per logical record in the
image.

Number of columns of points per subimage or logical
record.

Number of rows of points per subimage or logical
record.

Minimum gray tone of all images on the file.
Maximum gray tone of all images on the file.
Total number of images on the file.

Number of symbolic images on the file.

Data mode code:

0 positive integer

1 negative and positive integers

2 real (floating point)

3 half integer (integer *2)
L double precision

nnnunmn

Unused at present.

36

37

The descriptor records immediately follow the identification record.
Althéugh descriptor records may be present on a SIF file on the IBM-370,
they cannot be processed by the current system. The descriptor records
give-additional information about a file. They provide statistical infor-
mation, processing history, and ground characteristics of an image. The
descriptor records are optional.

Following the descriptor records are the image data records. An
image may be divided into non-overlapping rectangular regions called sub-
images. The subimages cover an image as shown in Figure 4.1, where the
image has J rows of subimages and K columns of subimages. Each subimage
would comprise a record of the image file.

Figure 2 shows the organization of the different records on the file.
Note that the SIF file consists of M images. Each image has N subimages.
The file has the first subimage of all images followed by the second

subimage for all the images, etc.

38

Subimage 1 Subimage J+! Subimage (K-1)J+]
Subimage 2
Subimage J Subimage 2%J Subimage K*J

Subimage of an Image

Figure 4.1
IDENT Record #1
Descriptor Records
Subimage 1 - Image | %
Subimage 1 - Image M
Subimage 2 - lImage |
Subimage 2 - Image M $ Image Data
Subimage N - Image 1
Subimage N - Image M o
SIF File

Figure 4.2

a9

4.3 CTommand String Interpreter

The user i
a standardized

#:

VERB DEST

#:

VERB

DEST

FILE]

(FLAGS)

SOURC

FILEZ,
FILE3

(FLG)

The function an

source and dest

Mnemonic

DPA

DPB

RDR

PRTR

PUN

TERM

nteracts with KANDIDATS by entering commands that follow

form. The form is:

FILE] (FLAGS) < SOURC FILE2,FILE3 (FLG)

are the prompting characters for KANDIDATS.
is the function to be executed.
is the optional device to which output is to be sent.

is the name of the file on this device which receives
the output (optional).

are letters of the alphabet in parenthesis which specify
options for the given command.

are the characters which delimit the source and destination
halves of the command.

is the optional device from which input is to be taken.

are the names of files from which input may be taken.
They are delimited by a comma.

is the same as the first set of flags.

d file names may be up to eight characters long. The

ination devices are one of the following:

Device Use
Disk Source and destination
Disk Source and destination
Virtual reader Source |

Virtual printer Destination
Virtual punch Destination

Terminal Source and destination

40

The KANDIDATS prompting characters are displayed at the user's

terminal. On the line following the prompt, the user may enter up to

72 characters. There may be one and only one command per line.

Utility Subsystem EXSIF

If the user enters the EXSIF subsystem by entering the command

EXSIF, the command form changes. The form of commands under the sub-

system is as follows:

VERB
VERBA
VERBB

PARMI
PARM2

PARMI PARM2

are the prompting characters. If the current file is
the A file, then A is the prompting character. |If B

is the current file, then B is the prompting character.
If there is no current file, the prompting character

is A,

is the function to be executed on the current file.
is the function to be executed on file A.
is the function to be executed on file B.

are values that may have to be specified for a given
command.

Two files may be opened for use at one time by the EXSIF subsystem.

These files are referred to as the A and B files. The prompt character

indicates which file is currently being worked with. As with the KANDIDATS

mainline, the function name may be up to eight characters. Some of the

commands may have the character A or B attached to the end of the function

name. The letter on the end of the function name indicates which file the

41
function is to be applied to. The parameters are dependent on the func-

tion. Some functions require no parameters, some one, and others two.

For example, to change the mode in the IDENT array of the image PICEXP
(whiﬁh is assumed to be file A) to absolute integer, the following
EXSIF commands would be entered:

MIDA 19,0

Optional Functions

In both the KANDIDATS main driver and the EXSIF subsystem, the
command entered causes execution to be transferred to the appropriate
subroutine to handle the processing of that function. If additional
information is required for the processing of a function, the routine
may query the user. The flags mentioned previously are used as part of
the command string input to control the optional functions of a command.

The meaning of the flag varies depending on the function.

Interaction Forms

Throughout KANDIDATS various messages are displayed prompting the
user for additional information. There are two forms in which these
messages may appear: a long form and a short form. The short form is
intended to speed interaction with the user who is experienced with
KANDIDATS. The experienced user may be familiar with what additional
information is required by a given command and not need a complete descrip-
tion of the requested input. An example of the long and short forms
occurs in the routine DISPLY.

The long form is:

42

IMAGE NUMBER TO DISPLAY (1 - n)
ENTER O TO STOP (13) -

The short form of the same message is:

DISPLAY IMAGE (1 - n) -

where n is an integer value blugged into the message.

The default form is the long message form. The user may change
the form of interaction by entering the commands LONG or BRIEF in the
main KANDIDATS routines. In the EXSIF subsystem, the form of the
message may be changed by entering the command, BRIEF, followed by the

parameter ON, for the short form and OFF, for the long form.

43

4.5 KANDIDATS Interactive Aids

There are four commands available to the KANDIDATS User that pro-

vide information as to available commands, their use, and system information.

1. MESG DEST

This command displays on the requested destination device, DEST,
the text of a file called KANMSG SIF. The destination device may be
either the terminal, TERM, or the virtual printer, PRTR. The text of
KANMSG gives the current status of the KANDIDATS system. Changes made to
the system will be noted in this file. It also provides the user with
information as to the general command string form, the devices available
and their mnemonics, and the unit numbers associated with the various

devices. The conventions for naming files are explained.

2. ‘SVOC DEST

This command lists on the destination device, DEST, all the avail-
able commands of KANDIDATS. The destination device may be the terminal
or the virtual printer. The commands are listed in reverse alphabetical
order. All possible commands are listed, not just those that are currently
implemented.

The SVOC command is also a command in the EXSIF subsystem. |[f the
SVOC command is entered in the EXSIF subsystem, the destination device
is not specified and defaulis tu the terminal. Only the valid EXSIF

commands are displayed.

3. VOCA DEST (FLAGS)

The VOCA command requires a destination device, DEST, which may be

either the terminal or the virtual printer. This command lists on that

n

device a short description (up to 32 characters) of the requested
command(s). The flags that the user may specify are A and M. An A
indicates that the user wishes to see a description of all the commands.
An M'stands for multiple descriptions. The user enters one command at a
time, that he or she wishes to have explained, in response to a '?'
prompt. When the user has finished, he or she may exit the VO0CA command

by entering QUIT.

k. EXPL DEST (FLAGS)

EXPL provides a more detailed description of the KANDIDATS commands.
The destination device and flags are the same as those described for the
VOCA command. The information provided for a command by the command EXPL

is as follows:

IMPLEMENTED - Yes, the command is currently implemented or no,

it is not.
ACTION - A description of the function performed by the
: command.
DEST - Gives the device types that may legally appear in

the destination field of the command string. Any
default values are given.

SOURCE - Gives the device types that may legally appear in
the source field of the command string. Any
default values are given.

FLAGS - Tells the valid characters that may be used as
flags for the command. The action that corresponds
to each flag is also given.

CTRLT - This section is carried over from the University of
Kansas version of KANDIDATS and is not used at
Kansas State,

COMMENTS - Any additional remarks or explanation of the use
of the commands are given in this section.

45

4.5 Error Processing

When an error occurs on the KANDIDATS system, a message is displayed
for the user. This message may be displayed by the routine in which the
error occurred and may give the user the opportunity to take corrective
action. |If the error is severe enough that no corrective action is possible,
the error code along with the sequence of routines leading to the routine
in which the error occurred are displayed to the user by the main driver
KANDO1. The user is then prompted for the next command input line.

The table below lists the error codes currently possible, the routine

in which the error code is set, and its meaning in that routine.

Code Routine Meaning
-2001 RDKINL I1legal file code
RDSC20
RREAD
RWRITE
-2002 RDKINL Number of bits/point has an illegal value
for the data mode
-2002 FDOT Average of gray tones within
HDOT Window not within the range
MDOT of gray tones .
PDOT
-2003 RDKINL Image size incorrectly specified
-2004 RDKINL I1legal request
-2005 KANDO1 File does not exist
RDKINL
-2006 RDKINL No available unit numbers
-2006 RWRITE 1/0 work area too small
-2007 DISPLY File does not exist
-2007 RDSC20 EOF (end of file)
RREAD

RWRITE

Code Routine
-2008 DISPLY
-2008 RDSC20

RWRITE
-2009 RREAD
=2010 RREAD
RWRITE
=-2011 RDKINL
-2012 MQDE
RDKINL
RREAD
RWRITE
-2013 RREAD
RWRITE
-2014 RREAD
RWRITE
-2015 RREAD
RWRITE

Meanling
Subimages are not full image rows

Write error

Read error

Image out of range
11legal min/max/ngl/nbits combination

I1legal data mode indicated
by IDENT(19)

Number of records to access less
than one
Subimage out of range

Number of images in the file
less than or equal to zero

46

L7
4.6 £ntering KANDIDATS

At KSU, KANDIDATS is executed from a CMS virtual machine running
under VM/370. The user should have some familiarity with the CMS
commands and VM/370 as described in the IBM CMS User's Guide [2], the IBM
CMS Command and Macro Reference [3], and the KSU CMS Guide [4]. After
having signed on to a CMS virtual machine, the user must perform the

following steps:

1. The KANDIDATS object files must be obtained and placed on
the user's A disk. These files may be obtained currently
from the account DPH3CMN3 data set DSMN3.VMMN3.CMSLIB2.
The files may be retrieved with a file type of TEXT as

follows:

OSRETR * TEXT

When the files are in the virtual reader, the user enters:

READ * TEXT

2. To load KANDO! the user's virtual machine must be at least

512 K. This can be accomplished by entering the command:

DEF STOR AS 512K

3. KANDOl is loaded by entering:

LOAD KANDO1 IBFCNT BDEX1 DUMMY

4. The load module is created by entering:

GENMOD KANDOI]

10.

To clear unnecessary files from the A disk, the commands
below must be used:

ERASE * TEXT

ERASE LOAD MAP

Other files that will be required to execute KANDIDATS may

be obtained from the file manager space of the account

DPH3CMN3. These files are:

KAN EXEC
KANMSG SIF
KANEXP SIF
TEK EXEC (if executing on the COMPUTEK)

Any image files that the user may need for processing must be
obtained. |If the files are large or numerous, the virtual

machine may have to be enlarged using the DEF STOR command.
Any files that are compressed must be'expanded:

EXPAND KANMSG SIF
EXPAND KANEXP SIF

To start the execution of KANDOl, the user enters:
KAN
The user must then respond to the following questions:

IS THE TERMINAL THE COMPUTEK? (YES/NO)
DO YOU WISH TO HAVE CHECKPOINTING? (YES/NO)

DO YOU WISH MESG TURNED OFF? (YES/NO)

L8

h9

If the COMPUTEK question is answered YES, then the TEK EXEC is
executed which changes the character and line delete characters for
the user's terminal to those used by the COMPUTEK. |If the second ques-
tion is answered NO, checkpointing is turned off for the user's machine.
Checkpointing attempts to automatically save the user's files onto his
file manager space every few minutes. |If the MESG question is answered
NO, the user will not receive any messages from other users' machines.
Turning messageé off will prevent the display of an image from being
interrupted by a message from another user.

If the files KANEXP SIFf, KANMSG SIF, or KANDOl1 MODULE are not avail-
able on the user's disk when KAN is executed, an error message will be
displayed and KAN will terminate. Similarly, if the file TEK EXEC is
not available when the user answers the COMPUTEK quest}on YES, an error

message will be displayed and execution will end.

50

5. SYSTEM PROGRAMMING

This chapter describes the KANDIDATS system as it currently exists
at Kansas State University and generally updates the University of Kansas
KAND}DATS User's Guide [1] for Kansas State. It describes the major
routine interfaces, documentation customs and some explanation of how

various routines accomplish their functions.

5.1 Labeled Common Areas

This section describes the labeled common areas used in KANDIDATS.
If variables within a labeled common area need to be initialized, they

are initialized in one of two block data routines: !BFCNT and BDEX!1.

COMAND
The labeled common area COMAND contains the information that is
needed by system routines,.

COMMON /COMAND/ IFC, OTDEVN, OTDEV, OTTYP, OTFIL(2), INDEVN,
INDEV, INTYP, INFIL(2,3), LFLAG(26)

IFC is a pointer to the current function code in the array
FNAME in labeled common IBFCNT

OTDEVN is a pointer to the destination device name in the array
DNAME in labeled common IBFNCT

OTDEV is the destination device unit
OTTYP is the destination device type:

no destination device given in command
disk pack

virtual punch

terminal

virtual printer

virtual reader

nnuneann

VIEWN—O

OTFIL eight character destination file name -

51

INDEVN is a pointer to the source device name in the
array DNAME in the labeled common IBFCNT

INDEV is the source device unit

INTYP is the source device type, see OTTYP

INFIL up to three input file names, eight characters each
LFLAG 26 logical flags, each flag corresponds to a letter

of the alphabet and is set true if this letter
appears in parenthesis in the last command input,

otherwise it is false

COMLIN

The labeled common area COMLIN is used by the command interpreter
to hold the last input line. This makes the input line available to

subroutines other than those that comprise the command interpreter.

COMMON /COMLIN/ LINE(72)

LINE contains the 72 characters of the command line, each
element of the array contains one character of the
command

ERROR

The labeled common area ERROR provides the information necessary to

process errors.

COMMON /ERROR/ IEV, STKPNT, STKSI1Z, STACK(2,20), DEBUG

IEV integer event variable containing error codes,

= 0 good status
< 0 error condition

STKPNT pointer to current position in stack

STKSI1Z number of elements in stack

52
STACK array of routine names that have been called

DEBUG Boolean that indicates whether the routine names
should be displayed as KDPUSH is called

EXSIF1 and EXSIF2

The labeled common areas EXSIF1 and EXSIF2 contain those variables

necessary for the operation of the subsystem EXSIF.

COMMON /EXSIF1/ FNAME(60), PTEMP, PTEMP1, FTEMP, FTEMP1, ACTION,
ALT, BIT, BLK, COL, CURBLK, CURCOL, CURFIL, CRUIMG,
CURROW, DEVMSK, DFIL, DPTR, I, IB, IMG, J, LSTCOL,
LSTROW, MCOL, MCOLHI, MCOLLO, MROW, MROWHI, MROWLO,
MTEMP, MTEMP1, NCHARS, NEWBLK, NEWIMG, NUM, RETI,
RET2, RETS, RETH, RET7, ROW, X, XU, Y, YU, CPARAM(49),
DEVTAB(4), LABEL(2), NUMBRS(10), STATUS(60), DNAMEI(5),
DNAME2 (3), DNAME3(3), SPARAM(49), LIMITS(2,4), PFORM(2,8),
TFILEY (2), TOKEN(9), BFLAG, BRFTAB(2), CHANGE, RENAME,
EXISTS, EXSIFN, BELLS

COMMON /EXSIF2/ HTEMP, HTEMPI

Only the most significant elements of these labeled common areas

are described here.

FNAME array of EXSIF subsystem command names

CPARAM parameter values for file currently being processed

STATUS number associated with the command which indicates
what files, if any, must be open to perform the
function

0 doesn't matter

1 current file must be open

2 file A must be open

3 file B must be open

4-7 illegal or unused at this time

nnnnan

SPARAM parameter values for secondary file

EXSWKA
The labeled common area EXSWKA contains the work array used in the

EXSIF subsystem and the size of that work array.

COMMON /EXSWKA/WRKSI1Z, WORK(1300)

IBCSI2Z

The common area IBCSIZ contains information necessary to logical

unit use.

COMMON /IBCSIZ/ BRIEF,'INTT, OTTT, LONG, SHORT, RUN, TTYIN,
TTYOT, IBMOT, RUNDAT, EXPDAT, SCDEV1, SCDEV2, SCDEV3,
CDRDAT, MSGDAT

BRIEF Boolean indicating whether messages to the user are
to be brief

INTT unit from which command input is to be taken

OTTT unit to which KANDIDATS Messages are to be displayed

LONG Boolean indicating whether messages to the user are
to be long

SHORT Boolean indicating messages are to be short

TTYIN logical unit from which terminal input is to be
taken

TTYOT logical unit to which terminal output is to be sent

IBMOT logical unit to which virtual printer output is to
be sent '

RUNDAT logical unit for batch command input, Unused at
this time

EXPDAT logical unit from which information for the EXPL
command is taken

SCDEVI scratch logical unit numbers for disk files.
SCDEV2 Unused at this time

SCDEV3

CDRDAT logical unit number used for virtual reader input
MSGDAT logical unit containing information used by the

MESG command

IBFCNT

54

The common area, [BFCNT, contains function names and device

information necessary to interpret KANDOl commands.

COMMON /IBFCNT/ FNAME(80), DNAME(20), DTYPE(21), DUNIT(21)

FNAME

DNAME

DTYPE

DUNIT

array containing the names of functions

array containing the mnemonics for the devices
available

array containing the code corresponding to the

device name indicating the type of that device.
Note that DTYPE(1) = 0, DTYPE(2) corresponds to
DNAME (1), etc.

no device

disk pack
virtual punch
terminal
virtual printer
virtual reader

VB by — O

array containing the unit numbers of the devices
named in DNAME. DUNIT(1) = 0 and DUNIT(1)
corresponds to DNAME(2), etc.

The labeled common area 10 contains the array work areas for

KANDO1.

COMMON /10/ IWORK(512), NSIZE

IWORK

NSIZE

the work area

size of the array IWORK

55

MACH is a common area which contains the variables that hold

values that are machine dependent.

COMMON /MACH/ NMBTPM, NWORDS(5), NMWDIO, NMWMIN

NMBTPM number of bits per machine word

NWORDS number of words for each type of data mode

NWORDS (1) - integer

NWORDS(2) - absolute integer
NWORDS(3) - real (floating point)
NWORDS(4) - alternate integer
NWORDS(5) - double precision

NMWDIO number of words per 10 word

NMWMIN number of machine words necessary to contain the
IDENT array
20*NWORDS (1)
NEWLNE

NEWLNE contains the variables that contain the hex representation

of characters that cause the terminal cursor to go to a new line.
COMMON /NEWLNE/ IALT, BELLS

IALT character to suppress carriage return, unused

BELLS bell character

UNTS
The labeled common area UNTS keeps track of which files are

assigned which unit numbers.

COMMON /UNTS/ UTAB(5)

UTAB table of file names
index + 10 is corresponding unit number

56

57

5.2 Command String Interpreter

The main driver of KANDIDATS, KANDO1, calls the routine COMIN2
which accepts the input commands for the system. COMIN2 prompts the
user.For input and parses that input. As the various parts of the
command are parsed, they are validated. The order in which the

various parts of the command are expected is as follows:

function destination destination (flags) < -

device file
source source source (flags)
device file 1 file 2
The function name is located in the table of function names. |If the

name is not found in the table, it is invalid. The index in the table
of a valid function name is used by KANDOl to determine the appropriate
command driver to call. The destination and source devices, if present,
must be located in the device table to be valid.

As the various parts of the command are recognized, values are
placed in the labeled common area, COMAND, for use by the individual
command drivers. These individual command drivers determine if the
necessary information was provided for the processing of that command.

If not the command driver may request additional information.

58
5.3 FKANDIDATS Drivers

The drivers of the individual commands have a standard format.
This format is as follows:

CALL KDPUSH{'PROG', 'NAME")

CALL DEVCHK (DEVMSK, NSFILS, NDPAIR, &3900)
CALL RDKINL (IDAT, FILNM, IDENT, IRDWRT, IEV, &900)

CALL Processing routines

CALL KDPOP
RETURN

900 CONTINUE
Error Routines

END

The routine KDPUSH places the program name (PROGNAME in the example)

on the stack used for error processing. DEVCHK validates the source

and destination devices for the command. |If files are required for use
by the command, the routine RDKINL is called to initialize the file for
access. The driver may do some processing or may call on other routines
to do the processing. Finally, if an error has not occurred, the routine

KDPOP is called to clear the program name from the stack.

5.4

59
KANDIDATS Routines

Internal Routine Documentation

Each of the routines of KANDIDATS Is internally documented to

facilitate alterations to the code. This documentation is as follows:

Vi.

Vil.

Identification

Version A Date mm/dd/yy Source - routine name
Program Name routine name

System machine

Source Language language

Author name

Purpose

A brief description of the main function of the routine should
occur here.

Operating Procedures

A description of the entry points of the routine and the argument
list of those entry points.

Hardware Required

Any hardware required by the routine is listed here.

Program Environment

A brief description of the software environment necessary for the
successful functioning of the routine.

Limitations

A brief description of any limitations in the functioning of

the routine.

Data Formats

A description of any formats used in the routine.-

VIIl. Internal Description

If further explanation of the workings of the routine is needed,
it is given here.
IX. Statement Numbers

The statement numbers used in the routine are listed.

X. Subroutines Called

Subroutines called by this routine are listed.

The first line of each routine is a comment with the name of the
routine left justified and also centered with the characters separated

by dashes. For the routine ERRPRC, this line would be:
EERRPRC E-R-R-P-R-C

Following this line would be the introductory documentation described
above. Throughout the code of the routine should be comments that
describe the action of the code. Blank comment cards should be used

to separate the various sections of code which may have different

functions.

Internal Routine Structure

Code in KANDIDATS should be kept as structured as possible.
Routines should be kept to one main function. The code should be
written in a top-down manner and should be readable. Following the

SUBROUTINE statement should be the type statements in the following

order:

60

61

INTEGER
INTEGER*2

REAL

DOUBLE PRECISION
LOGICAL
DIMENS | ON

COMMON
EQUIVALENCE

DATA

Variables of the same type should be defined together.

are:

The code follows the type statements. Five conventions for coding

1. The flow of control should be downward as much as
possible. When errors occur, control should be

transferred to a statement numbered 9000-9999.

2. CONTINUE statements should be used as statements
for control to be transferred to. As shown in the
example below, comment statements should be included
after each CONTINUE statement,
100 CONTINUE

comments on function that follows processing

This allows the reader to encounter the comments
before the code that it explains. Another convention

that aids reading the code is to indent the comments

from the code.

3. The terminating statement of a DO-loop should always
be a CONTINUE statement. The body of a DO-locop should

be indented to aid reading. For example:

OO0 [Nl]

OO0

100

DO 100 I = 1,K
T(1) = BLANK
CONTINUE

There should be only one point for normal return and

one point of return for each error return.

is shown below.

800

9000

9009

9999

GO TO 9000

GO TO 9009
60 TO 800

G0 TO 800
CONT INUE
NORMAL RETURN
RETURN
CONT I NUE
ERROR RETURNS

IEV = -1000
GO TO 9999

CONTINUE

SECOND ERROR RETURNS
IEV = -2000
CONTINUE

RETURN 1

An example

62

63
5. The format statements should come at the end of the
executable statements in a routine. Statement numbers
for input format statements should range 4000 - 4999

and output statement numbers from 6000 - 6999.

1/0

There are conventions concerning |1/0 that should be followed by
KANDIDATS routines. When a routine requests extra input, there are two
forms that this request may take: a long form and a brief form. The
long form gives the information necessary for the inexperienced user to
enter a response to the request. The request should include a descrip-
tion or name of the needed input, a range of possible values if available,
and the format that will be used to accept the input. The brief form of
requesting input is for the experienced user who is familiar with the
requests made by a command. All questions should be formulated with
both a long and brief form. The use of the two forms is controlled by
two logical variables LONG and BRIEF.

These two variables, along with others, are part of the common
block IBCSIZ. This common block is described in section 5.1. [IBCSIZ
also contains variables that contain the unit numbers of the input and
output devices. Currently 1/0 for question-response is to and from the
terminal.

Format statements for requests should be numbered 6000 - 6999, and
input formats should be numbered 4000 - 4999. These format statements

should be grouped together at the end of the routine. Integer values

64

to be entered should be read in with an 13 format where the possible
values do not exceed 999. An example of a possible request/response is

shown below.

(Long} 6000 FORMAT('IMAGE MUMBER TO DISPLAY (1 - ',13,
2 ')'/, 'ENTER O TO STOP (I13) - ')

(Short) 6001 FORMAT('DISPLAY IMAGE (1 - ', 13, ') - 1)

(Input) 4000 FORMAT(13)

Where possible, input should be checked for valid input values.
If the input was invalid, it may be possible to request the input

again using the long form of request.

65

5.5 Adding Commands

(1)

(2)

(3)

(4)

(5)

(6)

Add the name of the new command to the array FNAME in the

common block IBFCNT in the block data routine IBFCNT.

Add a brief 30 character description of the command to the
arrays VOC(1 - 8) in the subroutine VOCA in the corresponding

position of the name in FNAME.

In KANDO1 the computed GO TO that branches based on the
position of the command in FNAME should be altered. A
statement number should be added in the position corresponding

to the new command.

Add the new statement number to KANDOI and call the new

commands driver to that point.

Any altered or added routines should be recompiled. The
text (object) files of these routines should be saved with

the other text files.

Add an explanation of the command to the file KANEXP SIF
using the CMS editor. The command should be added in alpha-.

betical order to the file.

If the commands are to be ported from the original version of

KANDIDATS, the following should be done:

M

(2)

(3)

66
The original source of the routines that comprise the new
command must be obtained. Alterations must be made to

the code as described in Chapter 3.

Once the code has been tested, the text files of the routines

used by the command must be saved with the other text files.

Finally, the stub for the command driver must be removed

from the file DUMMY FORTRAN. DUMMY must be reassembled.

67

5.6 Image 1/0 Routines

There are three image disk 1/0 routines. RDKINL initializes files
for access, RREAD and RWRITE (read and write respectively), all or any
part of an image.

Before a file can be accessed, it mﬁst be initialized by calling
RDKINL. RDKINL can initialize an old or new file. For an old file
the disk is checked to see if the file exists. |If the file exists,
the record size and number of records‘for that file are obtained from
the operating system. The unit number of the file is found and a DEFINE
FILE is performed for that file. At this point the first record of the
file is read from disk. This record contains the IDENT array which
will provide the necessary information for file access. For a new file

.the IDENT array is provided and checked for validity. If the values
are valid, a unit number is assigned to the file and a DEFINE FILE is
performed. Finally, the IDENT array is written in the first record of
the file.

RREAD and RWRITE can read/write records of any of the five data
modes of an image. All files are random access files. These routines
may read/write any specific or all images of a file. The record to

begin accessing and the number of records to access must be specified.

68

5.7 Error Processing

Error processing in KANDIDATS uses an event variable (IEV) to
contain an error code. When an error occurs, the code associated with
that error is assigned to the event variable and an error return is
taken. When control returns to the driver KANDOl, the event variable
is checked for an error code (IEV < 0). If an error has occurred,
the routine ERRPRC is called to process the error. ERRPRC displays the
value of the event variable and the contents of the stack.

The stack is maintained by two routines, KDPUSH and KDPOP. KDPUSH
places the name passed to it on the stack. Each routine which may set
the error code when first entered calls KDPUSH passing its own name.

On normal return, the routine calls KDPOP which removes the name on
.the top of the stack. An error return does nét call KDPOP, leaving the
name on the stack. The stack, therefore, provides a trace of the routines

called leading up to the error.

63

5.8 d{mportant System Routines

This section documents the Interfaces to some important system
routines. These are common routines used for interpreting commands,

image 1/0 and operating system interface routines.

I. Command String Interpreter and Error Checking

A. COMIN2
B. DEVCHK
C. FILCHK
D. [IBVOCA

If. Image Access Routines

A. RDKINL
B. RREAD
C. RWRITE

111. Operating System Interface Routines

A. ADATE
B. DEFDA
C. DEFILE
D. DEFINE
E. DLETE
F. FORM
G. FSTAT
H. [INUNIT

The initial identification given here for these routines is for the
University of Kansas version of KANDIDATS. The date and author of the

changes for the IBM-370 is given following PORTED/DATE and PORTED/AUTHOR.

1. "Command String Interpreter and Error Checking

A,

COMIN2
Program Title:
Version:

Date:

Author:
Documented by:

Language:

Implemented on:

Ported/Date:
Ported/Author:
Ported/To:

Purpose:

This routine is the driver of the command string inter-
It accepts and partially decodes

It is set up so that command input may be
Currently

preter for KANDIDATS.
command strings.
taken from either the terminal or a disk run file.

COMIN2

B

1/20/74

Bruce J. Morgan
Bruce J. Morgan
FORTRAN 1V
PDP-15

7/27/77

Linda Lallement

1BM-370

the run files are not implemented.

Entry point:

COMIN2 (IN, PROMPT, FNAME, DNAME, IFC, OTDEVN, OTFIL,

INDEVN, INFIL, LFLAG, %)

Arguments:

IN

PROMPT

FNAME

Command input file code.

9 for the terminal.

A two character prompt left justified
These characters
are displayed at the terminal before the
command is accepted. (input)

in an integer word.

A double precision array of the valid

Unit number

70

function names. The array is terminated by

a blank name. (input)

DNAME

IFC

OTDEVN

71

Integer array of 4 character device names.
Array is terminated by a blank name.
(input)

Pointer to the function name in the
array FNAME. (output)

Pointer to the destination device name
in the array DNAME. |If no destination

~device was specified in the command,

OTFIL

INDEVN

INFIL

LFLAG

OTDEVN is zero. (output)

The destination file name if one was given.
If none was given, OTFIL is blank. (output)

Pointer to the source device name in the
array DNAME. |If source device name was
not given, then INDEVN is zero. (output)

An array of up to 3 source file names.
If none are specified, INFIL is blank.
(output)

Array of 26 logical flags corresponding

to the letters of the alphabet. An
element of the array is set to .TRUE,

if the letter occurs in the command string.
Otherwise the flag is .FALSE.

If an end-of-file is read from disk, this
error return is taken.

Subroutines required:

GETDN
SCAN2
ENCODE
GETFN
GETFLG

72

DEVCHK

Program Title: DEVCHK

Version: A

Date: 1/20/74

Author: Bruce J. Morgan
Documented by: " Bruce J. Morgan
Language: FORTRAN 1V
Implemented on: PDP-15
Ported/Date: 12/3/77
Ported/Author: Linda Lallement
Ported/To: IBM-370
Purpose:

This routine is used by the command string processor to
translate the device mnemonic into a device type and a unit
number. The device type is checked against the legal devices
for a command. |If the device type was disk and no file name
was specified in the command, a file name is requested.

Entry point:
DEVCHK (DEVMSK, NSFILS, NDPAIR, *)
Arguments:
DEVMSK An integer word used to define the valid
device pair combinations for a command.

The bit is on if the device pair is
valid and off if invalid. (input)

Bit Destination Source
0 Unused

1 None None

2 Disk None

3 Disk Disk

4 Disk Punch

5 Disk Terminal
6 Unused

7 Punch None

8 Punch Disk

73

Bit Destination Source
g Punch Punch

10 Punch Terminal
11 Unused

12 Terminal None

13 Terminal Disk

14 Terminal Punch

15 Terminal Terminal
16 Unused

17 Printer None

18 Printer Disk

19 Printer Punch
20 Printer Terminal

NSFILS The number of source disk file names

required by a command. (input)

NDPAIR The bit number in DEVMSK corresponding
to the device pair given in the command.
(output)

* The non-standard error return taken if

one of two conditions occur:

1. An illegal pair of devices is
given in the command. A message
is displayed at the terminal
prior to the return.

2. A null response is given to a file
name request.

The variables OTDEV, OTTYP, INDEVN, and INTYP in the labeled
common area COMAND are set to reflect input and output device
types and unit numbers.

Subroutines Called:

FILCHK

FILCHK

Program: FILCHK

Version: A

Date: 01/20/74
Author: Bruce J. Morgan
Documented by: Bruce J. Morgan
Language: FORTRAN [V
Implemented on: PDP-15
Ported/Date: 7/10/77
Ported/Author: Linda Lallement
Ported/To: 1BM-370
Purpose:

"This routine is part of the command string processor.
It is called by DEVCHK to verify the existance of the disk
file names when the disk was specified as a device type in
a command. For output files, a non-blank name must be
present. For input files, not only must a name be present,
but there must be a file with that name on the user's
disk. |If any names are missing, they are requested through
the terminal. The files are not initialized by this routine.

Entry point:
FILCHK (MODE, DAT, FILNAM, *)
Arguments:
MODE Indicates kind of checking to be done:

= 0 output file
=1 input file

(input)

DAT Unit number on which input files must be
found. (input)

74

FILNAM

Subroutines Called:

FSTAT

Array containing the name of the file to

be checked. |If a new name is requested,

FNAME will be changed on return. (input/
output)

Error return taken if no response
(carriage return) is given to a request
for a file name.

75

IBVOCA
Program:
Version:

Date:

Author:
Documented by:

Language:

Implemented on:

Ported/Date:
Ported/Author:
Ported/To:

Purpose:

76

IBVOCA

A

1/720/74

Bruce J. Morgan
Bruce J. Morgan
FORTRAN IV
PDP-15

8/21/77

Linda Lallement

1BM-370

This routine processes a VOCA or SVOC command. The
VOCA command function prints the command name a short
description of the command. SVOC lists all the available

commands .

Entry point:

1BVOCA (OTSLOT, VNAME, LONG, FNAME, FVOCA)

Arguments:

OTSLOT

VNAME

LONG

Unit number on which output is to be
displayed. (intput)

Program name whose vocabulary is to be
displayed. Currently VNAME is always
'KANDO1BB'. (input)

Logical switch indicating the type of
vocabulary listing that is desired:

= _TRUE. VOCA vocabulary
= ,FALSE. SVOC vocabulary

(input)

FNAME

FVOCA

Subroutines Called:

COMIN2

77

Array containing list of valid function
names. This array must be terminated
with a blank name. (input)

Array containing the descriptions of the
function names in FNAME. There is a one-
to-one correspondence between the commands
in FNAME and their description in FVOCA.

dds

A.

Image Access Routines

RDKINL
Program:
Version:

Date:

Author:
Documented by:
Language:
Implemented on:
Ported/Date:
Ported/Author:
Ported/To:

Purpose:

RDKINL

c

6/5/74

D. Johnson

D. Johnson
FORTRAN 1V
PDP-15

11/5/77

Linda Lallement

1BM=370

This routine initializes an image file for input or

output.

This includes assigning a unit number, performing

a DEFINE FILE and establishing the IDENT array.

Entry point:

RDKINL (IDAT, FILNM, IDENT, IRDWRT, [EV, *)

Arguments:

IDAT

FILRNM

IDENT

I RDWRT

Is the unit number of access the file
on. (output)

Name of the file to access. (input)

Array of 20 integers providing identifica-
tion information for an image. (input

for new image/output for old image).

See Chapter 2 for a complete description
of the IDENT array.

Indicates whether an old or new file is
being accessed. (input)

1 old file (read only)
2 new file (write only)

78

IEV

*

Subroutines Called:

FSTAT
DEFINE
KDPUSH
KDPOP
GETSIZ
DLETE
INUNIT

Integer event variable. (output)

1
-2001
-2002

-2003
-2004
-2005
-2006
-2011

nuwnunn

-2012

success

illegal file name

number of bits/point has an
illegal value for data mode
size incorrectly specified
illegal request

file does not exist

no available unit numbers
illegal min/max/nql/nbits
combination

illegal data mode

Error return

79

RREAD

Program:
Version:

Date:

Author:
Documented by:

Language:

Implemented on:

Ported/Date
Ported/Author
Ported/To

Purpose:

8o

RREAD

B

7/8/74

D. Johnson

D. Johnson
FORTRAN IV
PDP-15

11/5/77

Linda Lallement

IBM-370

This routine reads accesses SIF files in all five data

modes.

Entry point:

RREAD (IDAT, MARRAY, ND, NR, NC, IMG, LINE, IDY, IDENT,

IEV, *)

Arguments:
IDAT

MARRAY

ND

NR

Unit number to access the file on. (input)

3-D array. This array must be of the same
type as the file to be accessed. The
number of rows must equal the number of
lines to read for each image. The number
of columns must equal the number of points
per line. The depth must be the number of
images. For example: for 4 images, one
line for each image and 100 points per line
the dimension would be MARRAY (4,1,100).
{output)

Number deep for MARRAY. (input)

Number of rows for MARRAY. (input)

NC

I MG

LINE

1DY

IDENT

IEV

*

Subroutines Called:

UNPACK
FREAD
HREAD
PREAD
RDR
KDPUSH
KDPOP

81
Number of columns for MARRAY. (input)
Image number to access. (input)
=0 all images in the file determined by
IDENT(17)
= N where 0 < N < IDENT(17) only the

data for image N will be returned

Record number of the image to begin
access on. (input)

Number of records to access for each image.
(input)

Array of 20 integer words providing infor-
mation about the image. (input)

integer event variable. (output)

1 Success
-2001 |llegal file code
-2007 EOF

~2009 Read error

=2010 Image out of range

~2012 1Illegal data mode

-2013 IDY less than 1

-2014 Subimage out of range

-2015 MNumber of images in file less
than or equal to zero

nmuunnrnunnn

Alternate error return

RWRITE

Program: RWRITE
Version: B

Date: 7/10/74
Author: D. Johnson
Documented by: D. Johnson
Language: FORTRAN IV
Implemented on: PDP-15
Ported/Date: 10/8/77
Ported/Author: Linda Lallement
Ported/To: IBM-370
Purpose:

This routine allows the user to write SIF files in all
five data modes.

Entry point:

RWRITE (1DAT, MARRAY, ND, NR, NC, IMG, LINE, IDY, [DENT,

IEV, #)

Arguments:

IDAT Unit number to access file on. (input)

MARRAY 3-D array. This array must be of the
same type as the file to be accessed.
See RREAD for dimension information.
(input)

ND Number deep for MARRAY. (input)

NR Number of rows for MARRAY. (input)

NC Number of columns for MARRAY. (input)

MG Images to access. (input)

=0 write all images in the file
= N where 0 < N E_IDENT(TT), write image
N only

82

LINE

DY

IDENT

IEV

3
o

Subroutines Called:

PACK
FWRITE
HWRITE
PWRITE
WRTR
KDPUSH
KDPOP

83

Record number of the image to begin
writing to. (input)

Number of records to write for each image.
(input)

Array of 20 integers containing information
about the file. (input)

Integer event variable. (output)

1 Success

-2001 1Illegal file code

-2006 /10/ too small

-2007 EOF

-2008 Write error

-2010 Image out of range

~2012 Illegal data mode

=2013 IDY less than one

-2014 Subimage out of range

=2015 Number of images in files less
than or equal to zero

[T T (S | T I (A

Alternate error return

84

111. Operating System Interface Routines

A.

ADATE

Program Title: ADATE

Version: A |

Date: 7/7/77

Author: " Linda Lallement
Language: FORTRAN [V
Implemented on: |BM-370
Purpose:

This routine returns the current date and time in four
integer words. The format is: MM/DD/YYBBEHH : MM

Entry point:
ADATE (FDATE)
Arguments:
FDATE Formatted date as described above. (output)
Subroutines called:
DATE - FORTRAN system routine
FORM
TIME - FORTRAN system routine
Pseudo-Code:
Call DATE to get the numeric month, day, and year
Call TIME to get the time of day in seconds
Hours < seconds of day/360000

Minutes < (seconds - hour * 360000)/6000

Call FORM to convert the date, hours and minutes into
the proper form

Return

85

DEFDA

Program Title: DEFDA

Version: A

Date: 8/2/77

Author: Linda Lallement
Documented by: Linda Lallement
Language: 370 Assembler
Implemented on: IBM-370
Purpose:

This routine initializes a file for direct-access opera-
tions. It associates a logical unit number with a given file
name. The routine executes the FILEDEF command of CMS. The
unit number, record size, block size, and name are plugged into
a parameter list for a supervisor call (SvC).

Entry point:

DEFDA (UNIT, RECSIZ, NAME)

Arguments:

UNIT Logical unit number for the file. (input)
RECSI1Z Record length in bytes per record. (input)
NAME Name of the file. (8 characters) (input)

Subroutines called:
None
Pseudo Code:
Convert unit number to character representation.
Move into parameter list.
Convert record length to character representation.

Move into parameter list.

86

Move the record size into the parameter list for the block size.

Move the file name into the parameter list.

Execute the file definition by executing an SVC.

Return

Parameter List for SVC:

COMAND DS
DC
UNIT DC
DC
FN DC
FT DC
FM DC
DC
DC
DC
DC
DC
DC
DC
RECSIZ DC
DC
BLKSI1Z DC
DC

0D
CL8'FILEDEF!
CL8'FILEDEF'
CL8'DISK!
CL8'DISK'
CL8'SIF!
cL8'a!
cL8'c!
CLB'DSORG!
CL8'DA’
CL8'PERM!
CL8'RECFM'
CL8'F!
CL8'LRECL®
CL8'LRECL®
CL8'BLOCK®
CcL8

Command list for SVC
Unit number
File name

File type
File mode

Direct access

Fixed length records
Record length

Block size

X'FFFFFFFFFFFFFFFF!

87

DEFILE

Program Title: DEFILE

Version: A

Date: 9/3/77

Author: Linda Lallement
Documented by: Linda Lallement
Language: 370 Assembler
Implemented on: IBM-370
Purpose:

This routine performs the FORTRAN DEFINE FILE statement
for variable values of unit number and number of records in
the file for formatted and unformatted files. This is done
by plugging these values into a parameter list for the code

that performs the DEFINE FILE.
Entry point:

DEFILE (UNIT, RECN, RECSIZ, LETTER, ASSOC)

Arguments:

UNIT Unit number. (input)

RECN Maximum number of records in the file.
(input)

RECSIZ Size of records (input) bytes for formatted.
Words for unformatted.

LETTER The single letter 'E' or 'V'. (input)
E - formatted
V - unformatted

ASSOC Associated variable. (input)

Subroutines called:

None

Pseudo Code:

Move unit number into parameter list.

88

Move number of records into parameter list.

Move record size into parameter list.

Move letter into parameter list.

Move address of associated variable into parameter list.

Branch to define file code.

Return.
Parameter List:
UNIT
EU
AVAR

ASSOC

RECN

RECSIZ

DC

DC

DC

DS

DS

DS

CL1* ', AL3 (RECN)

c' ', AL3 (RECSI1Z)

X'80', AL3 (AssoC)

F

Address of associated
variable.

Number of records.

Size of records.

DEFINE
Program Title:
Version:

Date:

Author:
Documented by:

Language:

Implemented on:

Purpose:

89

DEFINE

A

9/4/77

Linda Lallement
Linda Lallement
FORTRAN 1V

IBM-370

This subroutine initializes a file for direct-access opera-
tions. It contains the DEFINE FILE statement for both formatted

and unformatted 1/0.

It also performs the FILEDEF to associate

the logical unit number with the file,

Entry point:

DEFINE (UNIT, RECSIZ, RECN, NAME, ASSOC, MODE, ADJ, DEL)

Arguments:
UNIT

RECSI1Z

RECN
NAME
ASSOC

MODE

ADJ

DEL

Logical unit number for the file. (input)

Record length in bytes per record for formatted
1/0 and in words per record for unformatted 1/0.
(input)

The number of records in the file. (input)

The name of the file. Eight characters. {input)
The associated variable for the file. (input)

1/0 mode. (input)

= 0 unformatted 1/0
0 formatted 1/0

File adjustment option. (unused)

File delete option. (unused)

Subroutines called:

DEFILE
DEFDA

Pseudo-Code:

if unformatted 1/0 (mode = 0)
then begin
SIZ « rec size in words * 4 bytes per word
call DEFILE to do DEFINE FILE for unformatted 1/0
end
else begin
SIZ « rec size in bytes
call DEFILE to do DEFINE FILE for formatted 1/0
end
call DEFDA to do file definition using SIZ
return

90

91

DLETE

Program Title: DLETE

Version: A

Date: 7/9/77

Author: Linda Lallement
Documented by: " Linda Lallement
Language: 370 Assembler
Implemented on: IBM-370
Purpose:

This subroutine searches for a file on the users disk.
If it is found, it is deleted. The search is performed by the
FSSTATE system macro instruction. The equivalent of the CMS
ERASE statement is performed by the FSERASE system macro instruc-
tion.

Entry point:

DLETE (N, NAME, FOUND)

Arguments:

N Device number on which to search for file.
(unused)

NAME Name of file to be deleted. Eight characters.
{input)

FOUND Completion code. (output)

0 file not found
1 file found and deleted

Subroutines called:
None

Pseudo Code:

92

load name of the file into the parameter list
if file exists
" then begin
delete the file
if successful
then begin
set return code to 1
return
end

—_—

end
set return code to 0

return

Parameter List:

ID

NAME

TYPE

DS 0D
DC cL8' ! File name
DC CLB'STF File type

DC CL8'A! File mode

33

FORM

Program Title: FORM

Version: A

Date: 1/1/77

Author: Linda Lallement
Documented by: Linda Lallement
Language: FORTRAN 1V
Implemented on: IBM-370
Purpose:

Given the numeric hour and minute of the day, this routine
returns a formatted version of the time of day. Format: BEBHH:MM

Entry point:
FORM (HOUR, MIN, LDATE, *)
Arguments:

HOUR Numerical representation of the hour of the
day. (input)

MIN Numerical representation of the minute of
the hour. (input)

LDATE Formatted version of the hour and minute of
the day. Format: BBBHH:MM. (output)

* Error return taken if hour or minute are not
valid numbers.

Subroutines called:
None
Pseudo Code:

if hour < 0 or hour > 24
then error return

HR « character representation of hour from the table

if minutes < 0 or minutes > 60
then error return

94
MN < character representation of minutes from the table
LDATE(1) < blank
LDATE(2) <« blank
LDATE(3) <« blank
LDATE(4) <« HR(1)
LDATE(5) <« HR(2)
LDATE(6) <« colon
LDATE(7) « MN(1)
LDATE(8) <« MN(2)

return

85

FSTAT

Program Title: FSTAT

Version: A

Date: 9/18/77

Author: Linda Lallement
Documented by: Linda Lallement
Language: 370 Assembler
Implemented on: iBM-370
Purpose:

This routine determines whether or not a file exists on the
user's disk. It assumes a file type of SIF. |If the file is
found, the record length and number of records in the file are
returned in the labeled common block FILSIZ.

COMMON /FILSIZ/RECLEN, NREC

The search is performed by the FSSTATE system macro
instruction.

Entry point:

FSTAT (N, NAME, FOUND)

Arguments:

N Device number. (unused)

NAME File to be found. Eight characters. (input)
FOUND Completion code. {output) |

0 file not found
1 file found

Subroutines called:

None

Pseudo Code:

load the name of the file into the parameter list
If the file exists
then begin
place the record length in the common block
place the number of records in the common block
completion code « 1
end
else completion code « 0
return

Parameter List:

1D DS 0D
NAME DC cL8' File name
TYPE DC CLB'SIF! File type

DC cL8'A! File mode

97

INUNIT

Program Title: INUNIT

Version: A

Date: 10/30/77
Author: Linda Lallement
Documented by: Linda Lallement
Language: FORTRAN IV
implemented on: IBM-370
Purpose:

This routine determines the unit number associated with a
particular file. |If no unit number is currently assigned to a
particular file, one is assigned. A maximum of 5 unit numbers
can be used in one program. Unit numbers will range from 11
to 15.

Entry point:
INUNIT (IDAT, FILNM, #*)

Arguments:

IDAT Unit number of file. (output)
FILNM File name. Eight characters. (input)
* Error return if table is full.

Subroutines called:

None

Pseudo Code:

for 1 =1 to5
~ begin
T if UTAB(I) = filename
~ then begin
unit < 1 + 10
return
end
end
for T=1to5
begin
T if UTAB(I) = blanks
" then begin

UTAB(1) <« filename

unit < 1 + 10
return
end

—

end

—

error return

98

6. EXAMPLE

29

This chapter presents an example of the use of KANDIDATS at Kansas

State University. The example assumes that the necessary files are

available on the user's file manager space or data set. The information

to be entered by the user will be typed in small letters. The prompts

or responses made by the machine will be typed in large letters. Comments

are to the side. 'R;' is the CMS prompt. Once the terminal has been

connected to the 370 through phone lines or turned on, the user strikes

the attention key (or the shift 0 on the COMPUTEK).

with:

VM/370 ONLINE LFJ359 QSYOSU

logon cms

ENTER ACCOUNT NUMBER
DD EDEE
ENTER PASSWORD

] 3] 51 1 (3 3 X E]

ENTER SS NUMBER

safcafcagafaycafcalcalc
LOGON AT 16:02:16 CST FRIDAY 02/26/7

CMS V2 PLC 13 - 2/13/76 20:36
FORMATTING DISK 'A'.

R;
osretr * text
R;
read *
"files read are listed"
R;

def stor as 512K
CP ENTERED; DISABLED WAIT PSW

cP
ipl cms
CMS V3 PLC

The machine responds

begins session

user types in
accounting information
in masked out

areas

Begin to retrieve
files that comprise
KANDIDATS. This may
take some time. The
user may wish to logoff
and logon again later
or put the machine to
sleep. Once a message
is received that the
files are in the
virtual reader:

Re-confiqure machine

"to at least 512K.

load kand01 ibfcnt bdexl dummy

'R;

genmod kandQ1

o’

erase * text

R;

erase load map

R;

fmretr kan exec
R;

fmretr kanmsg sif
R;

fmretr kanexp sif
R;

fmretr tek exec
R;

fmretr picexp sif
R;

expand kanmsg sif
R;

expand kanexp sif
R;

expand picexp sif
R;

kan

IS THE TERMINAL THE COMPUTEK?
yes

TEK EXEC

COMPUTEK LINE EDITING

DO YOU WISH TO HAVE CHECKPOINTING?

(YES/NO)
no

DO YOU WISH MESG TURNED OFF?
yes

100

The load module
should now

exist on the user's
disk.

Erase unnecessary
files.

Retrieve the
necessary files
from the user's
file manager space.

Retrieve any image
files to be worked with.
In this example, we
will use the image
file PICEXP.

Expand any files
that are compressed.

Execute EXEC file
that begins KANDIDATS.

Changes line and
character delete
characters.

KANEXP SIF
KANMSG SIF
KANDO1 MODULE

KANDIDATS -- 77DECEMBERL

#:

disply term <- dpa picexp

IMAGE NUMBER TO DISPLAY (1-3)
ENTER O TO STOP (13) -

B¥O

#:

exsif

R EXAMINE V2B 12/27/77

open dp picnew

-FILE PICNEW NOT FOUND-OPEN NEW FILE
(n\{nlnNn’) 7

IDENT(1)

1
]

IDENT(2)

IDENT(3)

IDENT (4)

IDENT(5)

IDENT (6)

101

If these files are
not on the user's
disk, an error will

. occur here.

Now under the control
of KANDIDATS

Prompt for command

Displaying example
picture.

PICEXP is assumed
to have 3 images

Enter examine
SIF file subsystem.

Subsystem prompt for
A file.

Open a new file
called PICNEW.

Values for the
IDENT array must
be entered.

20 pointers per row.

B20

10

51
20

20

10

60

0

0

IDENT(7) --
IDENT(8) --

IDENT(9) --

IDENT(10)
IDENT(11)}
IDENT(12)
IDENT(13)
IDENT(14)
IDENT(15)
IDENT(16)
IDENT(17)
(DENT(18)
IDENT(19)

IDENT(20)

IMAGE - 1

10

12

10

1 1 -

I MAGE - 1

60

54

1 -

BLOCK - 1

BLOCK - 2

102

10 rows per image.

20 points
1 row per

10 is the

gray tone.

60 is the

gray tone.

1 image.

Data mode
integer.

per subimage.
subimage.
minimum

minimum

is positive

Identify block.
Request values for
point at row 1 -

column 1.
Give that

peint a

value of 10,
User is prompted for
values for points of

the image

with row

and column numbers.

103

IMAGE - | BLOCK - 10
1 1 -
50
1 20 -
h5
A Subsystem prompt.
blk User requests to see
the values of the
ENTER FIRST<,LAST>? image as a check of
the input.
1,10 Blocks 1-10.
***F|LE PICNEW ##* |MAGE 1
*%% COLUMNS I - 20 *#*%
=== BLOCK 1 =~--
10 12
=== BLOCK 2 ~--
B0 & 54
--- BLOCK 10 ---
5 . ..
A
done Close the file and
return to KANDOI.
#:
stop Exit KANDIDATS.
R; CMS command prompt.
compress picnew sif Compress image file
Jjust created.
R;
fmsave picnew sif Save that file on

the file manager space.

104

R;

togoff User ends CMS
session.

CHECKPOINTING .

CONNECT = 00:17:05 TOTCPU = 000:00.75
CONNECT COST §. CPU COST $. 1/0 COST § .
TOTAL COST §. ACCOUNT BALANCE §$.
LOGOFF AT 16:19:22 CST FRIDAY 02/26/78

105
7. SUMMARY AND EVALUATION

This report has presented a description of the changes made to
KANDIDATS in transporting the system from the University of Kansas
PDP-15 to the Kansas State University IBM-370. A description of the
KANDIDATS image processing system as it was implemented on the 370 was
included in the form of a user's guide and a system programmer's guide.

This chapter will evaluate the KANDIDATS system as a tool for the
user wishing to work with digitized multi-image files. It will also
consider the KANDIDATS system from the aspect of the ease with which

the system can be ported to other machines and operating systems.

106

7.1 Summary of the System

KANDIDATS is a tool for the user wishing to work with digitized
multi-images. The KANDIDATS system provides the user with the ability
to perform standard functions on images without an extensive knowledge
of programming. In evaluating the adequacy of the system as a tool,
two characteristics must be considered: the functional completeness and
ease of use of the system.

The functional completeness of the system is its capability to
provide the needed functions for processing an image. Through KANDIDATS
an image can be created, displayed, combined with other images, and
broken down. The history of the processing performed on an image file
is automatically maintained for the file. Characteristics of the ground
represented by an image may also be kept in the file. The mode of the
image may be changed. The image may be quantized (the gray tones of
the image mapped onto a finite set of gray tones). KANDIDATS can expand.
or compress an image. Images may be transformed with gradient operations,
spatial clusterfhg and convoluted.

The inexperienced user of computers who has a need or desire to
work with digitized images may learn to use the KANDIDATS system. There
are several characteristics of the system which make it simple to use.
First, the system has a standardized command format. The name of the
function is given, followed by the destination if any, an arrow, and
finally any sources required. Any additional information needed to
process a function is requested from the user by the function. Secondly,
there are several commands that can be used by the inexperienced user to

gain more information about the use of the KANDIDATS system from the

system itself. These commands are: MESG, SVOC, VOCA, and EXPL.
MESG provides general information about the system. SVOC lists the
availlable commands. VOCA gives a brief description of each of these
comﬁands while EXPL provides a more detailed description. Finally,
KANDIDATS checks input from the user for valid values. |[If an error

does occur, the user is provided with possible correct values for

repeating the input.

107

108

7.2 Evaluation of Portability

Portability is the ability to move a software system from one
hardware system to another. Several characteristics of KANDIDATS make
it a portable system. First, KANDIDATS is written largely in FORTRAN.
FORTRAN is widely implemented on computer systems and is a highly
standardized language. The major differences between the FORTRAN
syntax on the PDP machine and on the IBM-370 are the decrementing
DO-loop, the DOUBLE INTEGER type, the use of character string constants
and alternate error returns. KANDIDATS does have a few routines which
must be written in assembler language. These routines had to be
rewritten for the 370. The assembler routines, for the most part,
interface with the operating system.

Secondly, KANDIDATS is a highly modular system which increases its
portability. Those parts of the system that will not be used on a
different machine may be eliminated from the system by stabbing out the
necessary routines. For example, the tape routines were not needed for
the 370.

The modularity of the system ties in with the third aspect of
KANDIDATS that increases the portability of the system. That is, the
general structure and readability of the code. Because the code is
generally well structured and documented, it is easier to follow and
alter. One notable exception to this was the subsystem EXSIF. EXSIF
used assigned GOTO's and was largely undocumented.

To make the system more portable, a labeled common area, MACH,
was added to KANDIDATS. MACH contains those variables that have

machine dependent values. For example, the number of bits per machine

109

word is in MACH. Calculations that require these values reference the
variable rather than the constant. When the system is ported to a new
machine, only the values assigned to the variables of MACH must be
changed in the block data routine. Another change that would improve
the portability of KANDIDATS is to put variables of different types in
different common blocks.

The scope of the project of porting KANDIDATS in volume and time
is as follows. Approximately 14,000 lines of code were ported to the
370. Of this, approximately 4,000 lines were written specifically for
the 370. About 4,000 lines of the remainder actually had to be changed.
The final object size of the system is almost 179,400 bytes. Learning
the system required about 100 man/hours. The actual changing and testing
.of the code required 900 man/hours. Documenting the porting of the
system encompassed 200 man/hours.

It is recommended that to make KANDIDATS more easily ported to
other systems, two things should be done. First, test procedures should
be written that can be used to verify the accuracy of the transported
routines. Secondly, the code shnuld be changed to ANSII| standard FORTRAN.
Mon-standard parts can be recognized by the PFORT verifier programs [9]

which is available at the University of Kansas and at Kansas State University.

(1]

[2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

BIBLIOGRAPHY

Bryant, William, Robert M. Haralick, Dale Johnson, Gary Minden,
Craig Paul, and Amrendra Singh, "KANDIDATS I1: KANsas
Digital Image DATa System,'" Technical Report 0920-2, The
University of Kansas Center for Research, Inc., September

1976.

IBM Virtual Machine Facility/370: CMS User's Guide, 1976,
C 20-1819.

IBM Virtual Machine Facility/370: CMS Command and Macro
Reference, 1976, C 20-1818.

Kansas State University Computing Center, CP/CMS Guide, January
1977.

Haralick, Robert M., '"Glossary and Index to Remote Sensed Image
Pattern Recognition Concepts,'' Pattern Recognition, Vol. §,

1973, pp. 391-403.

Kansas State University Computing Center, Technical Bulletin 22,
“"RREAD and Core for 0S/360 FORTRAN IV," July 26, 1971.

Kansas State University Computing Center, '"Program Descriptions:
DATE, GENDATE, GENGREG, INTIME, TIME," November 1972.

White, A.B., Video Imaging on the Plasma Display Panel, R-677,
Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign, April 1974.

Ryder, B., The PFORT Verifier, Software Practice and Experience,
1974, pp. 359-377.

110

KANDIDATS:
The Porting of an Image Processing System

Linda J. Lallement
B.S., Kansas State University
1975

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978

ABSTRACT

This report describes the transporting of the KANDIDATS system
from the PDP-15 at the University of Kansas to the IBM-370 at Kansas
State University. KANDIDATS is a computerized system that interacts
with the user to process digitized multi-images. |t was developed
by the Image Processing Group of the Remote Sensing Laboratory,
University of Kansas. KANDIDATS was transported to the IBM-370 and
runs under the Conversational Monitoring System (tMS). It is written
in FORTRAN and 370/Assembler. fncluded in this report are a user's
guide and programmer's guide for KANDIDATS as it exists at Kansas State
University and a description of the changes made to the system. The
changes made to KANDIDATS involve FORTRAHN syntactical changes, the
writing of the assembler routines, changes due to differences in the

two machines, and the addition of new routines.

