
DESIGN OF A PROFESSIONAL
GENEALOGICAL INFORMATION SYSTEM:

INCLUDING NAVIGATION FROM AN
UNSTRUCTURED DATABASE TO A

STRUCTURED DATABASE

by

ELLEN J. BAILEY

B.S., East Tennessee State University, 1980

A MASTERS THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

AllSOfl 151S32

6><ofe?

cmsc
/9P<? Table of Contents

Chapter 1 - Overview 1

1.1 Introduction 1

1 .

2

User Community 2

1 . 3 Literature Review - Overview 6

1 . 4 Genealogy Literature 7

1.5 Database Design Literature - Overview 8

1.6 Database Design Methodology - Unger/Fisher 9

1.6.1 Predesign Evaluation 9

1.6.2 Information Modeling 10

1.6.3 Semantic Modeling 11

1.6.4 Logical Database Design 12

1.6.5 Data-Base Management System Selection 13

1.6.6 Cost Benifit Analysis 13

1.6.7 Physical Design and Implementation 14

1.7 Classical Database Design Models 14

1.7.1 Hierarchical Model 14

1.7.2 Network Model 15

1.7.3 Relational Model 16

1.8 Null Value Literature 19

1.9 Text Manipulation Literature 21

1.10 Rule_Based Expert Systems Literature 23

1.11 Summary of the Professional Genealogical

Information System Project As It Relates

to the Literature 26

Chapter 2 - Genealogical Processes 28

2.1 Introduction 28

2 . 2 Amateurs 28

2 . 3 Professionals 30

2 . 4 Summary 3 6

Chapter 3 - Requirements 37

3 . 1 Introduction 37

3 . 2 General Overview 38

3.3 Specific Details 40

3.3.1 Data-Base Control Subsystem 42

3.3.2 Text Manipulation Subsystem 43

Chapter 4 - Design 44

4 . 1 Introduction 44

4 . 2 General Overview 4 6

4 . 3 Data-Base Control Subsystem 49

4.3.1 Genealogy Database Design 51

4.3.2 Data-Base Front End 64

4.3.3 Data-Base Management System (DBMS) 77

4 . 4 Text Manipulation Subsystem 78

4.4.1 Family Chronicle Model 81

4.4.2 Text Management Syntax 83

4.4.3 Text Management System - Text Database.... 85

iii

4 . 5 Summary 9

Chapter 5 - Implementation 91

5 . 1 Introduction 91

5 . 2 Genealogy Database Structure 92

5 . 3 Data-Base Management System - PIGS 95

5.3.1 User Interface 96

5.3.2 Add Function 96

5.3.3 Delete Function 98

5.3.4 Update Function 99

5.3.5 Query/Report Function 100

5.4 Summary 103

Chapter 6 - Conclusions and Extensions 105

6.

1

Introduction 105

6.2 Conclusions and Extensions for

Requirements and Design 105

6.3 Conclusions and Extensions

for the Implementation 108

6.3.1 Activation of Multiple Index Files 109

6.3.2 Relating Multiple Database Files 109

6.3.3 Non-Character Key Attributes 110

6.3.4 Summary of Conclusions and Extensions

for the Implementation 112

6.4 Summary 113

References 114

Appendix A: Bernstein Algorithm 116

IV

Appendix B: Pedigree and Family Unit Charts 117

Appendix C Implementation Code 121

LIST OF FIGURES

Figure 3_1. Professional Genealogical Information

System 41

Figure 4_1. Professional Genealogical Information

System: Expanded View 45

Figure 4_2 . Data-Base Control Subsystem 50

Figure 4_3 . Entity-Relationship Diagram 52

Figure 4_4 . E-R Source Entity 53

Figure 4_5. E-R Person Entity 53

Figure 4-6. E-R Birth and Death Relationships 55

Figure 4_7

.

E-R Marriage and Military Relationships. .. 56

Figure 4_8. E-R Religion and Residence Relationships. . 57

Figure 4_9

.

E-R Occupation and Land Relationships 58

Figure 4_10. E-R Tax and Relation Relationships 59

Figure 4_11. E-R Qualifying Relationship 60

Figure 4_12. Text Manipulation Subsystem Components. .. .79

Figure 4_13 . Family Chronicle Model 82

Figure 4_14. Text Management Syntax 84

vi

LIST OF TABLES

Table 4_1 Relations 62

Table 4_2 DBFE Pseudo-Code Add Description 67

Table 4_3 DBFE Pseudo-Code Delete Description 74

Table 4_4 DBFE Pseudo-Code Update Description 75

Table 4_5 DBFE Pseudo-Code Query Description 7 6

Table 5_1 Database File Structure 92

Table 5 2 Index File Structure 94

CHAPTER 1 - OVERVIEW

1.1 Introduction

This thesis addresses the design of a professional

genealogical information system. This paper presents the

requirements, design and implementation of such a system.

Genealogy was chosen as the subject for this research

since it readily presents itself with problems that are of

interest in the computer industry.

Upon initial review of the prevalent genealogical

processes it was apparent that a computerized system would

require an extensive database design effort involving:

1) the incorporation of theories associated with

null values,

2) a technique for providing user friendly

search, comparison and extrapolation

capabilities,

3) a method for navigating from text to a

database

4) the incorporation of technologies associated

with rule-based expert systems.

This paper addresses areas one, two and three in detail.

Discussion about rule-based expert system technology will

be limited to the degree that it impacts the database

design effort. However, the rule-based expert system

portion of the overall genealogical system is being

addressed in another Master's thesis at Kansas State

University (BSP88)

.

The remainder of this chapter presents a discussion on the

user community and a review of the current literature.

The literature review discusses Database Design, Null

Values, Text Manipulation and Expert Systems to the degree

that they apply to the genealogical information system.

Additional genealogical literature is also reviewed for

the purpose of providing background information and

because there is no literature currently available that

addresses the areas specified above in direct relation to

genealogy.

The remainder of the paper will address prevalent

genealogical processes (Chapter 2) , the requirements of

the system (Chapter 3) , the design of the system (Chapter

4), the implementation of the system (Chapter 5) and

conclusions and extensions (Chapter 6)

.

1.2 User Community

At this point it is important to emphasize that this

system design effort is directed toward the development of

a tool that can be used not only by amateur genealogists

but also by professional genealogists. The overall tasks

and needs of the two groups differ tremendously. This

section is devoted to explaining those differences and

emphasizing why the professional system is more

challenging.

The obvious distinction between the two groups of

genealogists is that one receives monetary compensation

for their efforts while the other doesn't. From this

perspective, one could assume that amateurs could simply

extend their experience into a money-making venture if

they so choose. This assumption is valid and introduces

another important distinguishing issue. There are

professional genealogists and there are certified

professional genealogists. There are several

certification levels associated with genealogy and each

requires extensive testing before the certification is

granted. The certification levels are as follows:

1) Certified Genealogical Researcher - this

certification requires the genealogist to

exhibit the capability to find, interpret and

report records.

2) Certified American Lineage Specialist - this

certification requires the genealogist to

exhibit the capability to document family

lineages acceptable to lineage societies.

3) Certified American Indian Lineage Specialist-

this certification is identical to # 2 except

that it requires the genealogist to have an

extensive knowledge of the American Indian.

4) Certified Genealogist - this certification

requires the genealogist to exhibit the

capability to research, document and prove

family genealogies.

5) Certified Genealogical Lecturer - this certi-

fication is an extension of # 4 but requires

The genealogist to exhibit lecturing

capabilities in all areas of genealogy.

6) Certified Genealogical Instructor - this

certification is also an extension of # 4 but

requires the genealogist to exhibit

instructional capabilities in all areas of

genealogy.

In this light, it is important to clarify that the

genealogical database system is actually directed toward

the amateur, professional and certified professional

genealogical communities. For the purpose of

simplification the term professional genealogist will be

used to mean certified professional genealogist.

Other distinguishing characteristics between the amateurs

and professionals include the amount and type of research

performed, the accuracy level of the research and the

final results produced. The amateur, in most cases, does

not perform as thorough an investigation as does the

professional. In some cases, this could be due to lack of

knowledge, i.e., not knowing what types of records, beyond

the obvious, are actually available or not knowing the

laws that impact the records involved. The professional

genealogist must have or obtain an understanding of the

state, county and local laws as well as where legal

records are kept and how they pertain to the research at

hand. Additional legal knowledge required by the

professional genealogist consist of knowing the pertinent

laws associated with the time period and place of an

individual being investigated. For example, knowing that

in 1807 in Guilford County, North Carolina a man could not

obtain a land deed until he was at least 18 years of age

could become a significant fact when trying to determine

the age of an individual. In other cases, when documented

proof of accurate research is not required and/or

available records provide sufficient information, amateurs

may not perform as thorough an investigation. The

professional genealogist must at all times have documented

proof of the results obtained or must denote that some

doubt still exists and explain the reason for that doubt.

The most distinguishing characteristic between the two

groups, is probably the final results of the

genealogist's effort. Amateurs are normally concerned

only with their families; therefore, the production of

pedigree, descendant or family charts is sufficient as a

final output. These type of outputs provide brief vital

facts about each ancestor or descendant discovered but do

not provide any additional detailed information. The

final results of the professional genealogist's effort,

however, is a compiled chronicle of a family's history.

This type of output not only documents the vital facts but

also provides information regarding the economic, social

and religious environments at the time of each ancestor's

or descendant's life. This is important because knowing

more about the history of the surroundings provides a

better understanding of the importance of each fact

obtained.

1.3 Literature Review - Overview

Most of the current literature on Genealogical Computer

Systems is written from either a genealogy perspective or

a computer systems perspective, but to this date it has

been impossible to find literature written by an author

knowledgeable in both areas. Therefore, the following

literature review is divided into five sections

concentrating on the research performed in the areas of

Genealogy, Database Design, Null Values, Text/Data

Manipulation and Rule-Based Expert Systems.

1.4 Genealogy Literature

The predominant request of the computer industry by

genealogists is to provide a system that: performs all

the required genealogical functions; makes it simple to

use for the computer novice; can be used on a personal

computer at home and is reasonably priced (LA86)

.

Now that personal computers are more affordable,

genealogists are eager to be saved from the reams of pulp

under which they are currently suffocating. Therefore,

the problem becomes finding the software that meets the

needs specified above. Currently the types of products

being utilized by genealogists include: 1) Data-Base

Management Systems (DBMS) , 2) word processing systems and

3) specialized genealogical packages. Each of these

product types have features that are better suited for

certain functions (RP83) . Since the genealogical process

involves researching information; collecting descriptive

information, in the format of brief facts or text; storing

infomation; linking all associated information;

manipulating information and retrieving information to

produce desired outputs (HFML86) , it is easy to understand

8

why any one of the three product types listed above appear

appropriate to the user. However, each one of the product

types presents problems for the genealogist. The DBMS and

WP systems require some computer skills in order for them

to be truly useful tools; therefore, those genealogists

that have an overwhelming fear of computers shy away from

these tools. The available tailored genealogical packages,

though sometimes easy to use, tend to limit the

flexibility of the user due to their Preformatted design.

The biggest problem of all, however, is that there isn't a

tool that combines the capabilities of all three of the

software types mentioned above.

1.5 Database Design Literature - Overview

In the development of computer software systems today, in

particular a database system, there are many criteria that

must be addressed before proceeding with development

activities. It is necessary to reduce data redundancy,

provide stable data structures that can be readily changed

upon users' requirements changing, allow users the

capability of making ad hoc requests for data, maintain

complex relationships between data elements, and support a

wide variety of decision needs (ITH84) . To effectively

address these criteria requires proper design techniques

and procedures. The techniques are tools used by the

9

database designer while the procedures are rules for

determining the sequence in which the techniques are

applied. The combination of the techniques and procedures

used is often referred to as a design methodology. The

design methodology chosen for design of the professional

genealogical database system is the Unger/Fisher

Methodology. Section 1.6 will describe the methodology

and section 1.7 will present an overview of the three

classical, logical database models.

1.6 Database Design Methodology - Unger/Fisher

The Unger/Fisher Database Design Methodology was created

by Dr. Elizabeth A. Unger and Dr. Paul Fisher, professors

at Kansas State University. This section will present the

seven phases of their methodology.

1.6.1 Predesign Evaluation

The predesign evaluation phase involves an organizational

survey, assessment of the functions (in terms of data

support) and assessment of the potential for a database

system. The organizational survey involves determination

of:

10

1) the functions performed by the user

organization,

2) the types of forms currently processed,

3) the types of problems that exist in the

organization's current environment.

The assessment of the functions involves a preliminary

analysis of the functions performed. The functions must

first be identified. Details regarding the inputs,

outputs and data needed must then be obtained for each

function. A functional assessment should also determine

the volume and frequency of use, availability, security

and integrity characteristics. After completing the

organizational survey and the functional assessment, the

potential for a database system can be assessed.

The basic tool used in this phase is interviews with users

in the organization. The products of the predesign

evaluation should include a preliminary functional

analysis (which may change over time) , a compendium of

forms used and processed and a documented evaluation of

potential for effective database usage.

1.6.2 Information Modeling

The information modeling phase involves data collection

and analysis, requirements analysis, relationship analysis

11

and entity analysis. Data collection and analysis

involves defining the data elements and collecting the

associated records, files and forms. Requirements

analysis involves defining the users' views and

identifying the outputs, the users of the outputs and the

functions of the outputs. The relationship analysis

determines the data attributes and defines dependencies.

At this point the designer should also determine how data

are identified, filed and retrieved. In the entity

analysis, dependencies are normalized to form entities and

the relationship between the entities is derived (one to

one, one to many, many to many)

.

The tools normally used in the information modeling phase

include Requirement Analysis Methodologies and an

automated Data Dictionary System. The products of this

phase then become a data dictionary, a formal definition

of relationships and a functional requirement

specification.

1.6.3 Semantic Modeling

The semantic modeling phase puts emphasis on the object

level rather than the data element level of information.

This phase involves the creation of a semantic data model

(SDM) or conceptual graph model. A SDM provides, in a

programming language type syntax, a meaning and semantic

12

description of the entities in a database. A conceptual

graph displays the same type of information only in

graphical form.

The tools used during the semantic modeling phase are

popular SDM Methodologies or Conceptual Graph Techniques

and in particular those developed by Hammer and McLeod or

Sowa, respectively. The obvious product of this phase is

an accurate SDM or conceptual graph.

1.6.4 Logical Database Design

At this point in the design life cycle, the designer

should have tools available that the user can understand.

This phase involves using the entities and relationships

developed in the previous phases and translating them into

a logical database model. As of this date, the

translation process is entirely manual. There are three

classical, logical database models which are discussed in

more detail in section 1.7.

The tools used in the logical database design phase

normally include SDM's or conceptual graphs and Enterprise

Methodologies. The products of this step should be a

conceptual representation of the database in the form of

an Entity/Relationship (E/R) diagram and model schema.

13

1.6.5 Data Base Management System (DBMS) Selection

Based on the logical model chosen in the previous phase

and the hardware that is going to be used, a selection of

a DBMS must occur at this point. This step is often

dependent on available products or organizational

standards.

The major tools used during this step are the logical

database model , available DBMS documentation and

organizational standards. The product of this step should

obviously be an appropriate DBMS.

1.6.6 Cost Benefit Analysis

At this stage of the design life cycle it is appropriate

to determine the cost benefits of a database system.

After performing the five previous steps, the designer

should have a good understanding of the overall system

requirements

.

The tools used during this phase are less rigid than those

of previous phases but could include things such as a cash

flow and analysis program. The product of this phase

should be a documented final analysis including detailed

cost information.

14

1.6.7 Physical Design and Implementation

The final phase of the design process involves translating

the logical design to a DBMS model and external schema,

designing the storage and access methods, coding the

schema and subschema, testing the product and implementing

the product.

The tools used in the physical design and implementation

phase could include popular Design Methodologies and

appropriate programming tools. The obvious product of

this final step is a tested and functional database

system.

1.7 Classical Database Design Models

When considering an extensive database design, such as the

professional genealogical system, it is appropriate to

understand the three classical design models of logical

databases. This section will describe those classical

design models.

1.7.1 Hierarchical Model

The hierarchical model organizes data in simple tree

structures and a collection of these structures represents

a hierarchical database. A tree is composed of a

hierarchy of elements (object classes) referred to as

15

nodes. The uppermost level of the hierarchy has one node

which is called the root. Each node (or object class) is

restricted to having only one parent node but each parent

node can have multiple child nodes. This type of model

obviously requires that some nodes be subordinate to

others

.

Hierarchical databases are normally presented with

structure diagrams representing the nodes as rectangular

boxes and the parent-child relationships as one

directional links from parent to child. Hierarchical

databases are usually implemented, or data is accessible,

by either tree traversal or general selection. In a

hierarchical database a given node can only take on its

full meaning when viewed in the context of the entire

hierarchy (JDU82, LB&JPG86, ITH84, CJD86, JM76)

.

1.7.2 Network Model

The network model was proposed by the Data Base Task Group

(DBTG) of the Conference On Data Systems Languages

(CODASYL) in 1971. This model was the first attempt at

implementing a database standard.

The network model can be regarded as an extension of the

hierarchical model with the major difference being that

the network model allows a child object class to have zero

16

or more parents. The network model defines a set concept

often referred to as owner-coupled set. This concept

defines a set as a group of objects each of which consists

of one owner (parent) object and zero or more member

(child) objects. In the network model, like the

hierarchical model, a given object class can only take on

its full meaning when viewed in the context of the entire

network (JDU82, LB&JPG8 6, ITH84, CDJ8 6, JM76)

.

1.7.3 Relational Model

The relational model was first proposed by Dr. E. F. Codd

in a seminal paper in 1970. The relational model

represents data in the simple form of a two dimensional

table referred to as a relation. Each column of the table

is referred to as an attribute and each attribute must

have a unique name. The order of the attributes has no

signifigance. The entries in any column are all of the

same kind, i.e. an attribute has a defined set of values

known as its domain. Different attributes can, however,

have the same domain; this is why unique attribute names

are so crucial. Each row of the table is known as a

tuple. There can be no duplicate tuples. In a relation

with n columns, each row is referred to as a n-tuple.

Also, this relation is of degree n.

One of the most important aspects of the relational model

17

is that of a key. A key is the attribute or set of

attributes that uniquely identifies tuples in a relation.

There are basically two properties that a key should

possess: 1) Uniqueness - the set of attributes takes on a

unique value in the relation for each tuple, 2)

Nonredundancy - if an attribute is removed from the set of

attributes, the remaininq attributes do not possess the

uniqueness property (ITH84) . A prime attribute is then

defined as an attribute that is part of at least one

relational key and a nonprime attribute is not part of any

key.

To represent user information by relations that do not

create anomalies followinq tuple operations (add, delete,

update) , the relation must be in normal form.

Normalization is a process of alterinq structures of

relations so that new relations have desirable properties

for particular manipulations. There are six widely

accepted normal forms: First, second, third, fourth and

fifth normal forms (INF, 2NF, 3NF, 4NF and 5NF,

respectively) and Boyce Codd Normal Form (BCNF)

.

Normalization is related to the loqical description of the

data and not to the physical description. This allows the

user's views of data to be kept independent from the

physical representation of data; therefore, the physical

representation and the hardware can be changed without

18

changing the logical or user's view.

To completely understand normalization it is important to

first understand data dependency. Data dependency is a

semantic constraint which describes the possible tuples

which can occur in a relation. There are approximately 15

types of dependencies but the three most common ones are

functional (FD) , multivalued (MVD) and join (JD)

.

Functional dependency is the most appropriate to discuss

at this point. An attribute set X is said to be

functionally dependent on an attribute set Y if when given

a value for every attribute in Y, a unique value for the

set of attributes in X is determined. This is represented

as Y -> X and is read as Y functionally determines X.

Functional dependencies must be derived by the database

designer and are dependent on real world situations. The

set of FDs that describes a database completely is called

a cover and more FDs can be derived from the cover using

Armstrong's Axioms (Reflexivity, Augmentation,

Transitivity, Union, Pseudotransitivity and

Decomposition) . The closure is then known as the minimum

set of dependencies that can be derived from Armstrong's

Axioms.

With most of the discussion on relational terminology

completed, it is appropriate to discuss normalization

19

methods. There are two basic normalization methods:

1) Synthesis - start with functional

dependencies and derive relational database,

2) Decomposition - start with relational

database and derive a better relational

database.

The decomposition algorithms are normally complex;

therefore, the synthesis algorithms are more popular.

Perhaps the best known synthesis algorithm is the one

derived by P. A. Bernstein (PAB76) . Appendix A contains

the six steps defined in Bernstein's final algorithm (Bern

2) . Bern 2 is automated, always derives 3NF and always

provides the minimal number of relations. There are two

important assumptions associated with Bernstein's

algorithm:

1) All connections among attributes in a

database description can be represented by

FDs.

2) Any given FD has but one meaning; the

assumption behind this is that for any two

sets of attributes X and Y there is at most

one FD, X -> Y (Unigueness Assumption)

.

1.8 Null Value Literature

Since genealogists are constantly confronted with unknown

20

or incomplete data, null values need to be addressed.

There are two types of null values that are relevant to

the genealogical problem: no currently known value and no

value is valid for this attribute.

Information published by Ms. Maria Wilson presents an

approach for the inclusion of null values in relational

databases (MW85) . Wilson defines a representation of two

distinct null values that exhibit desired processing and

behavior qualities. A description of modified truth tables

that ensure the integrity of results when nulls are

allowed in the evaluation of conditions is also presented.

Logical and algebraic operators are defined for data

extraction and manipulation capabilities. Wilson's

approach relaxes functional dependency constraints on

nulls by defining restrictions which allow flexibility and

at the same time prevent semantic contradictions.

The inclusion of null values in a database, in particular

a relational database, introduces three types of integrity

problems. The first problem involves keys. If null

values are allowed as keys, distinguishing between tuples

or records of the database is a problem. The next problem

involves the evaluation of conditions. If null values are

allowed in the evaluation of conditions, ambiguous results

could occur. Desired records may or may not be included.

21

The third problem involves relational join operations. If

null values are allowed in join operations, surprising

results can occur. Desired tuples may be excluded, while

extra tuples with incorrect semantics could result.

1.9 Text Manipulation Literature

In a genealogical system, the ability to incorporate data

values from the structured genealogical database into an

unstructured text database would be a useful asset.

Professional genealogists' basic form of output is a

family history book which consists of the vital facts

about an individual embedded in text. Some genealogists

use word processing systems to create this text output.

To use a word processing system, however, the genealogist

must have ready access to all the pertinent data about

each individual discussed in order to embed it into the

document. If the genealogist could produce such a

document and automatically draw the pertinent data from an

existing genealogy database, the procedure for creating

the final document would be less cumbersome. It would not

require manually searching through files of data collected

to compile the final document.

This concept lead to research in the area of personal

computer products that supposedly integrate database and

22

text manipulation capabilities. One product that stood

out above others was Lotus 1-2-3. The Lotus 1-2-3 product

initially claimed to have triple functionality

(spreadsheet, database and graphics) , hence its name 1-2-

3 . Later Lotus announced its new Lotus Report Writer

software for text manipulation capabilities.

It is important to explain at this point that the Lotus

definition of database only incorporates the ability to

sort, search and link data within one spreadsheet (table)

.

The important fact to understand here, however, is that

Lotus 1-2-3 does not provide the capability to relate

multiple spreadsheets (tables) or extract information

based on a variety of criteria. It may be possible to

write macros to link tables in Lotus but even Alexander

Crosett, III, a marketing manager at Lotus Development

admits, "It is not a simple operation" (MA86) . With this

thought in mind, review of Lotus' Report Writer was

undertaken. The Report Writer package basically allows a

user to specify a spreadsheet and print out all or some of

the fields at a specific point within a document (GM86)

.

Since Lotus 1-2-3 was actually introduced for its

financial spreadsheet capabilities, Report Writer becomes

more a tool for producing management reports with

condensed versions of the spreadsheets included. Although

this is a powerful and useful tool in the financial

23

community, it does not quiet address the needs of

genealogists. The genealogists need to embed particular

facts into their sentence structures instead of just

providing facts as a table or chart within a document.

1.10 Rule-Based Expert Systems Literature

In the field of genealogy, there is a massive amount of

research that must be undertaken which correspondingly

produces a massive amount of data. Once the data is

available, genealogists must constantly query the data and

evaluate the facts associated with an investigation. The

techniques and degrees of performing research and

evaluation are varied due to individually differing

approaches (e.g., that of amateurs and professionals).

There are, however, some basic rules of thumb that are

used when performing evaluations and analyses. Even rules

as simple as John Adams Sr. cannot be the father of John

Adams Jr unless he is older are pertinent. If a

computerized system could help the genealogist analyze the

data and realize information of this sort a lot of time

and effort could be saved. In addition, there are also

rules that are applicable to the problem of unknown or

incomplete data (null values) . The realization that basic

rules are used throughout the genealogical process

introduces the need for integration of a rule-based expert

24

system into the overall professional genealogical database

system. When developing the database design for the

genealogical system, this integration must be considered.

Since the rule-based expert system portion of the

genealogical system is beyond the scope of this paper,

the literature search presented below only addresses the

extent to which it effects the database design effort.

A rule-based expert system involves acquiring the

knowledge needed and structuring it into a usable form.

To obtain the knowledge, requires interaction with experts

of the field. There are basically two approaches being

researched today for the integration of expert system

capabilities into a database system. Before discussing

these, it is appropriate to present how the Artificial

Intelligence (AI) community is differentiating between a

database and a knowledge base. A database is a collection

of facts (data) . The amount of data is usually large, it

can change over time and updates can be made routinely.

The correctness of the data can be objectively determined

by comparing the values with real-world observations. A

knowledge base, on the other hand, contains information at

a higher level of abstraction. Knowledge bases become

feasible in areas where problems are difficult to address

by algorithmic methods. These systems describe classes of

objects rather than individual objects. The objective of

25

a database is to effectively manage the data needed in the

user environment, while the objective of a knowledge base

is to produce information suitable for decision making

processes (GW84)

.

The first approach commonly discussed for providing

integration of database and knowledge base (in particular

rule-based) technologies involves keeping the knowledge

base entirely separate from the database. This allows

the rule-based system to be designed at a higher level of

abstraction. The rule-based system will then have an

interface to the database in order to perform its decision

making processes. The two most critical issues in this

type of system approach become the query language

interface and the knowledge flow. Most queries to

databases are not phrased in a user language but instead

they are executed by providing parameters to a transaction

program that typically limits flexibility. In today's

Data Base Management Systems (DBMS) realistic queries are

difficult to achieve. The flow of knowledge on the other

hand comes from the experts or the rule-base. The rules

must be in machine processible form in order for the

system to interact with the objects that the knowledge is

about, or in other words, the database (GW84)

.

The second approach discussed in the literature involves

26

integrating the knowledge base directly into the database.

In order to have an intelligent database, a more semantic

view of the data is needed. In addition, the need for a

natural language as a user interface becomes more

prominent (LB&JPG86)

.

Studies along these lines are showing that there is great

promise for future application of artificial intelligence

techniques into database technology. As the development

of new database models concentrates more and more on the

semantics of the data, this type of integration becomes

even more feasible (LB&JPG86)

.

1.11 Summary Of The Professional Genealogical Information
System Project As It Relates To The Literature

The objectives of this project, as specified in the

introduction, are to design and implement a Professional

Genealogical Information System that incorporates:

1) theories associated with null values,

2) techniques for providing user friendly

search, comparison and extrapolation

capabilities,

3) methods for navigation from text to data,

4) technologies associated with rule-based

expert systems.

The literature revealed that no genealogical systems

27

address the areas of concern for this project. The goal

of the literature search then became determination of the

most predominant technologies and theories in the areas of

concern. The areas investigated were Genealogy, Database

Design, Null Values, Text Manipulation, and Rule-Based

Expert Systems, with extra emphasis on the database design

literature.

In summary, this thesis establishes a genealogical

information base and solves the problem of navigating from

the unstructured text database to the structured genealogy

database.

28

CHAPTER 2 - GENEALOGICAL PROCESSES

2 .

1

introduction

Chapter one briefly introduced and explained some key

differences between the amateur and professional

genealogists. Some terms regarding data, sources and

final outputs were mentioned . The pupose of this chapter

is to expand on some of those terms in the hopes of

creating an appreciation for the genealogical processes

and the complexities associated with them. This chapter

will divide the processes into two categories; one for the

amateurs and one for the professionals.

2 . 2 Amateurs

Two important distinguishing characteristics between the

amatuers and professionals are: 1) the amount and type of

research performed and 2) the accuracy level of the

research performed. Both of these characteristics involve

the research process and the records used. Since these

are areas of more significance to the professionals, they

will be discussed in more detail in the next section.

This section will, therefore, concentrate on a third

distinguishing characteristic, the final results produced.

Amateurs are generally interested in only their families

and being able to establish links as far back as possible.

29

This typically means that the production of pedigree,

descendant or family unit charts is sufficient as output

for their efforts. The pedigree chart, or line-of-ascent,

begins with the most recent descendant (who is usually the

amateur or person performing the research) and traces the

ancestors as far back as can be found. The descendant

chart is basically the same except that it begins with a

forefather and builds up to the most recent descendants.

Since both of these charts are similar except for the

order of presentation, this discussion will concentrate on

the pedigree chart. The ancestors represented on the

pedigree chart are only the father-mother pairs (family

units) and do not include children of those pairs. This

is why a pedigree chart is usually followed by a family

unit chart. A family unit chart is made for each male

ancestor that appears on the pedigree chart. The family

unit chart contains the names and facts of the father,

mother, wife and children of the male ancestor in

question. In order to associate pedigree charts with

family unit charts and therefore establish family

linkages, it is essential to use some type of numbering

scheme for the charts and their association as well as the

individuals and their linkages. The numbering scheme for

the association of charts is usually fairly simplistic.

Each pedigree chart is given a number (beginning at one)

30

and each family unit chart will denote the corresponding

number based on the male ancestor being documented. The

family unit charts, likewise, have numbers associated with

them that are denoted at the appropriate place on the

appropriate pedigree chart. The numbering schemes for

individuals are somewhat more difficult. There are three

widely acceptable numbering schemes for individuals: 1)

Personal, 2) Family Unit and 3) Continuation (HMFL80)

.

Some genealogists elect to use these number schemes while

others choose to create their own. For this reason it is

not important to understand details on the numbering

schemes but instead to understand that this type of

linking is not a simple task when several generations are

spanned. Appendix B contains copies of two pedigree and

two family unit charts with fictional data included. By

reviewing these charts, the type and extent of data

important to the amateurs should be apparent.

2.3 Professionals

Professional Genealogists also make use of pedigree,

descendant and family unit charts. However, these charts

are not the end of the effort, but instead only a means to

the end. Professional Genealogists, like the amateurs,

also have to have an orderly means of indexing or linking

the data found. Therefore, the use of the charts usually

31

serves this purpose in the professional community. The

actual end (or result) of their overall effort is a

historical family chronicle or genealogy. There are

actually some specific differences between a family

chronicle and a genealogy (HMFL80) , however, they are not

of grave importance to this discussion. The important

point to remember here is that a more detailed output is

produced by the professional

.

The professionals not only want to document the vital

facts (names, ages, dates, etc.) but also the minute

details regarding the economic, social and religious

environments surrounding the facts. In order to produce

detailed and accurate family chronicles, the professional

must pay careful attention to the records researched. The

remainder of this section will present some of the

important types of records available, the information

ascertained from the records and the complexities

associated with the research of these records.

The first type of records is Vital Records. Vital records

can include marriage certificates, birth certificates,

death certificates, divorce proceedings, newspapers,

Family Bibles, cemeteries, and word of mouth. These

records are where amateurs spend a great deal of their

research effort and is an important starting point for

32

professional genealogists. Some of the important data

that can be ascertained from these records are names,

birth dates, parents' names, dates of marriages, spouses'

names, marriage witnesses, dates of deaths, ages at

deaths, places of burials, previous spouses' names, etc.

These data not only provide important facts but also

provide leads to other records that can be researched.

The genealogist normally starts with one individual and

builds up to other individuals based on information

discovered. For example, in this case an individual's

parents ' names can possibly be obtained from a birth

certificate and then research into their vital records can

follow. As vital records of various individuals are

collected, the genealogist can denote discrepancies in

dates, names, etc. and possibly gather clues for

additional research. For example, the detection of a

difference in an individual ' s given name and the name he

goes by could indicate a legal name change and therefore

require research based on the new name. If discrepancies

are detected among the vital records of one individual,

e.g. date of birth varying between a birth certificate and

Family Bible, the genealogist must make a decision as to

which record takes precedence. The type of activity

described here, beyond the simple collection of facts, is

where professionals tend to excel beyond the amateurs.

33

Another type of records is Census Records. The type of

information that can be obtained from census records

includes places of residence, dates of residence, people

living in households, occupations, ages, educational data

(literate or not) , etc. From this data a genealogist

could possibly detect an indication of a second marriage

due to gaps in the ages of the husband and wife. Census

records are important for determining migration patterns

which are of significance to the professional genealogist

because it aids in telling a family's history.

Information such as grandparents or in-laws resident in a

household also helps complete the story.

A third type of records is Wills. Wills can provide names

of children, grandchildren, parents, etc. which are

helpful for future research. Information regarding the

economic status of individuals can be ascertained,

another important "story telling" fact. Wills can be

compared with marriage records for possible determination

of ages of sons or unmarried daughters. Wills can provide

information such as children being omitted from an estate.

Wills can be compared to other wills for determining

possible family traditions or chains of inheritance.

A fourth type of records is Estate Records. Estate

Records can include bonds, inventories, bills, receipts,

3 4

estate sales, etc. These records can provide dates,

economic lifestyle, occupation, educational level, names

of widows, children, neighbors, business partners, etc.

These records can be used in comparison with deeds to help

the genealogist determine if one individual is actually

the same as another individual discovered with the same

name. For example, if an individual signed his name to

all of his bills, he is probably not the same individual

that signed a deed with an X.

A fifth type of records is Land Records. Land records can

provide data regarding the locations of landmarks and

adjoining properties and the owners. Land records in

conjunction with laws could possibly be used in narrowing

down the ages of individuals. For example, in Russell

County, VA a man could buy or be granted land before the

age of 21, but he could not sell land before the age of

21.

A sixth type of records is Tax Records. Tax records can

provide names of slaves, ages of slaves, number of cattle

owned, number of gold watches owned, etc. This type of

data is helpful in ascertaining the socio-economic status

of an individual . Another piece of information that can

be uniquely obtained is that of adjoining land owners.

Often times tax records were listed by person's name and

35

the order of the names (if not alphabetical) indicated

adjoining land owners.

A seventh and final type of records is Court Records.

Court records normally include lists of petitioners,

jurymen, road workers, etc. When using these types of

records, the professional genealogist will look at all

names on the lists retrieved because they can provide

hints toward business partners or neighbors. For example,

if a man helped maintain a road it was normally the road

he lived on; therefore, any other people listed as workers

on that road could be neighbors.

The information presented in this chapter was provided by

Ms. Helen Leary, a North Carolina Certified Professional

Genealogist Instructor, via interviews and a book that she

helped write and edit (HFML8 0)

.

It should be apparent at this point that genealogy is not

only an art but also a science. This section has

attempted to present the major types of records available,

some of the data that can be obtained from the records and

the complexities associated with the research of these

records. Most of the information discussed beyond the

vital records presents the efforts of the professional

genealogist as opposed to the amateur.

36

2.4 Summary

The need for a computerized system to assist genealogists

in their record collection, decision making processes and

production of final results should be evident after

understanding even the brief examples presented in this

chapter. A database is needed to provide a data storage

mechanism and to manage the linking of associated data.

If techniques can be developed to provide user friendly

search, compare and extrapolation capabilities,

genealogists could at a minimum avoid the manual linking

of associated data. A computerized system with built in

intelligence could help genealogists in their decision

making processes and also possibly provide information to

amateurs that is currently beyond their scope of

knowledge.

37

CHAPTER 3 - REQUIREMENTS

3.1 Introduction

The objective of this project is to design and implement a

professional genealogical information system. According

to genealogists, to have a useful system it must be able

to : 1) provide easy to use store, search and

extrapolation capabilities, 2) handle unknown or

incomplete information, 3) store and manipulate text

interchangeably with data and 4) assist in the decision

making process. In order to address these needs, it is

helpful to think of the system as four separate

subsystems: 1) the user front end subsystem which will

address the ease of use requirement, 2) the data-base

control subsystem which will address the data storage,

query and extrapolation requirement, 3) the text

manipulation subsystem which will address the text

handling requirement and 4) the rule-based expert

subsystem which will address the decision making

requirement as well as the handling of unknown or

incomplete information.

This chapter will present the requirements of the system

with concentration on the data-base control and text

manipulation subsystems. The user front end and rule-

based expert subsystems are being addressed in another

38

Master's thesis at Kansas State University (BSP88)

.

Section 3.2 will give a general overview of the

requirements and section 3 .

3

will present more details on

specific functions.

3.2 General Overview

The Professional Genealogical Information System must be

suitable for use on a personal computer since this system

will be used, for the most part, by genealogists at home

or in small offices. The system must provide soft-fail

capability and provide easy to use diagnostics. A Data

Base Management System (DBMS) suitable for the personal

computer will be required to manage the storing, linking,

searching and extrapolation of data. An easy to use

external interface will be required to allow genealogists

(non-programming types) simple access to the system. The

user front end subsystem will provide this capability.

The system must allow the user the capability to add,

delete, update, query and report the data. The system

must provide preformatted input screens for all standard

record types used by genealogists. The genealogist must

be able to select the record type needed from an online

command menu. The system must allow the genealogist the

capability to change the standard record formats, i.e. add

or delete fields, to suit their needs. The system will

39

not, however, allow the online addition of new record

types. All standard types of genealogical outputs

(reports, charts, documents, etc.) must be available from

the system.

The system must provide text manipulation capabilities and

support navigation between text and data. The system must

allow the user the capability to create free-form

documents and it must also automatically provide data for

insertion into documents.

The system must be able to establish a dialogue between

the data-base control subsystem and the rule-based expert

subsystem when decisions regarding adds, deletes, updates

or queries must be processed. The rule-based expert

subsystem must also be invoked when the data-base control

subsystem encounters null values.

The system must allow the user the capability to add and

delete rules from the rule-base. The user must also have

the capability to override a decision made by the system.

The system will provide explanations about all decisions

made. The users will have the capability to establish a

dialogue with the rule-based expert subsystem to aid in

their research processes.

40

3.3 Specific Details

This section will present the specific details on the

functional requirements of the Professional Genealogical

Information System. The specific requirements can be

subdivided into two categories corresponding with the two

subsystems, data-base control and text manipulation, being

addressed in this paper. Figure 3.1 depicts the

integration between the subsystems of the Professional

Genealogical Information System.

41

USER
FRONT-END
SUBSYSTEM

RULE-BASED
EXPERT

SUBSYSTEM

TEXT
MANIPULATION
SUBSYSTEM

DATA-BASE
CONTROL
SUBSYSTEM

FIGURE 3-1. PROFESSIONAL GENEALOGICAL
INFORMATION SYSTEM

42

3.3.1 Data-Base Control Subsystem

The Data-Base Control Subsystem as a whole will require a

relational Data Base Management System (DBMS) suitable for

use on a personal computer. A relational database

approach has been chosen because it facilitates the

formulation of nonprocedural, high-level queries, and this

separates the user from the internal organization of the

data. A hierarchical or network approach would involve

more procedure oriented operations and would require the

user to be familiar with the internal organization of the

data. Even though the user will not be interfacing

directly with the DBMS but instead with a user front end,

it is still essential that the DBMS be as nonprocedural as

possible in order to simplify the translation process

between the user front end and the DBMS.

The data-base control subsystem will have to provide an

Add capability so that the user can create and include new

data in the database. The data that will be included in

the database will be that which is collected regarding

individuals being researched. The system will accept data

from all types of source records. The DBMS will handle

the insertion of the data as well as the establishment of

any required links. If a decision is required before the

Add can be completed the data-base control subsystem will

43

interface with the rule-based expert subsystem before

completing the operation. Delete, Update and Query

capabilities will also be required and their processing

will need to be handled in the same manner as the Add.

Reporting capability will need to be provided by the

system. The system must be capable of producing pedigree,

descendant and family unit charts as output.

3.3.2 Text Manipulation Subsystem

The text manipulation subsystem must allow the user the

capability of Creating, Deleting, Copying and Editing

text. The system should provide Footnote capability to

support the genealogist's historical documentation needs.

Online command menus should be provided to support ease of

use. The text manipulation subsystem should also allow

the user the capability to create different formats such

as lists, outlines, etc. Dictionary functions should also

be provided to assist the user with spelling problems.

The text manipulation subsystem will need to allow the

user the capability to navigate to the database so that

data can be embedded directly into the text. This

capability will require the text subsystem to interface

with the data-base control subsystem.

44

CHAPTER 4 - DESIGN

4 . 1 Introduction

The Professional Genealogical Information System has been

designed as four subsystems (as depicted in Figure 3_1) :

1) the User Front End Subsystem (UFES) , 2) the Rule-Based

Expert Subsystem (RBES) , 3) the Data-Base Control

Subsystem (DBCS) , and 4) the Text Manipulation Subsystem

(TXMS) . Figure 4_1 depicts an expansion of the four

subsystems. This chapter will address the design of the

DBCS and the TXMS; however, a general overview of the

entire system will be presented first.

45

DATA-BASE
MANAGEMENT

SYSTEM

FIGURE 4 1. PROFESSIONAL GENEALOGICAL INFORMATION

SYSTEM: EXPANDED VIEW

46

4.2 General Overview

Each of the four subsystems was designed to provide

specific non-overlapping capabilities. The User Front End

Subsystem was designed to provide a single interface to

the system users. The User Front End Subsystem will

provide command menus and preformatted screens to

accomplish a dialogue with the users. The User Front End

Subsystem will store the screen templates into a frame in

memory so that the user entered data can be accessed by

any of the other subsystems upon their invocation. The

User Front End is responsible for determining which

subsystem needs to be invoked based on the user's reguest.

A user can request to add, delete or update rules from the

rule base , as well as to establish a dialogue for

research hypothesizing. These capabilities will be

provided via the interface to the Rule-Based Expert

Subsystem. The user can also reguest to add, delete,

update or query data from the genealogy database. This

capability will be provided via the Data-Base Control

Subsystem interface. Finally, the user can reguest to

create or edit text information associated with the

development of family chronicles. This capability is

provided via the Text Manipulation Subsystem interface.

47

The Rule-Based Expert Subsystem was designed to provide

the Professional Genealogy Information System with a

decision making capability. A rule base consisting of a

set of packetized rules was developed with the aid of

genealogy experts. These rules will be used each time a

decision must be made. The design of the Rule-Based

Expert Subsystem will not be presented in this paper since

it is being addressed in another Master's thesis (BSP88)

at Kansas State University. However, in discussing the

design of the other subsystems the need to invoke the Rule

Based Expert Subsystem for a particular decision will be

presented. This should provide a clear understanding of

the types of decisions that can be made by the

Professional Genealogy Information System.

The Data-Base Control Subsystem was designed to provide

the capability of storing, searching, comparing or

extrapolating genealogy data. Genealogy data usually

consist of a source record that provides descriptive

information about a person or persons. A structured

relational database has been designed as the storage

mechanism for the genealogy data. The Data-Base Control

Subsystem will be responsible for managing and controlling

any processes that involve accessing the genealogy

database.

48

The Text Manipulation Subsystem was designed to provide

the capability of creating family chronicles. An

unstructured text database has been designed as the

storage mechanism for the family chronicles. Family

chronicles are the major form of output produced by

professional genealogists. In creating family chronicles,

the genealogist must have readily available all

information associated with each person within a family so

that it can be included in the document. To provide

simple access to the information stored about each person,

the Text Manipulation Subsystem was designed to provide

navigation capability from the unstructured text database

to the structured genealogy database. This navigation

capability will allow information obtained from the

genealogy database to be directly embedded in the family

chronicle. This will prevent the genealogist from having

to access the database separately and then create the

family chronicle. As far as can be determined from the

research performed in this area, there are no other

systems available on the market that provide a navigation

capability from an unstructured database to a structured

database. Although this capability is being designed for

a genealogy application within this paper, it is a

capability that is needed within various other

applications.

49

4.3 Data-Base Control Subsystem (DBCS)

The Data-Base Control Subsystem (DBCS) has been designed

with three components, the Data-Base Front End (DBFE) , the

Data-Base Management System (DBMS) and the Genealogy

Database. Figure 4_2 depicts this design.

50

DATA-BASE
FRONT
END

DATA-BASE
MANAGEMENT

SYSTEM

GENEALOGY
DATA-BASE

FIGURE 4_2. DATA-BASE CONTROL SYSTEM (DBCS)

51

4.3.1 Genealogy Database Design

Before discussing the Data-Base Front End and the Data-

Base Management System, it is important to first discuss

the design of the genealogy database. The Unger/Fisher

design methodology, as described in Section 1.6 was used

in this design process. This section will not depict the

outputs from each phase of the design process but instead

only those that help present an understanding of the

database requirements.

Analysis of the source records used by genealogists to

obtain information about individuals was performed and the

required data elements were defined. Functional

dependencies between the data elements were also defined.

Entities (distinct objects within the enterprise)

,

relationships (meaningful interactions between objects)

and attributes (descriptive information about entities and

relationships) were then derived for the genealogical

enterprise. The Entity-Relationship diagram in Figure 43

depicts a semantic view of the genealogy enterprise.

52

FIGURE 4_3. ENTITY-RELATIONSHIP DIAGRAM

53

Figures 4_4 and 4_5 show an expansion of the Source and

Person entities including their associated attributes.

(SRC-NO
J f PERS_No)

f SRC-TYPEV
S
O
U
R
C
E

-Tpers-statJ

(DATE \
VSRC-FOUNty

(PLACE \
\SRC-FOUNq/

FIGURE 4_4. E-R SOURCE ENTITY

(PERS-NO V
P
E
R
S
O
N

/pERS-NAMEJ

FIGURE 4_5. E-R PERSON ENTITY

54

All information collected about a person is obtained from

a source record of one type or another. It is possible

for each person to have multiple source records and for

each source record to provide information about multiple

people, hence the N-M relationship depicted in Figure 4_3

.

When analyzing the "Provides Info" relationship depicted

in Figure 4_3 , it became apparent that there were actually

different types of information that could be grouped

together. Therefore, the "Provides Info" relationship

should be expanded into multiple relationships. Figures

4_6 through 4_11 depict some examples of the actual

relationship groupings. These groupings become extremely

important to the genealogist when trying to determine

precedence of one source record over another. For

example, a person could have birth information provided

from two or more sources and that information may differ

somewhat. Therefore, the genealogist must know which

source record takes precedence in order to determine

accurate birth information.

55

FIGURE 4_6. BIRTH AND DEATH RELATIONSHIPS

56

FIGURE 4_7. E-R MARRIAGE AND MILITARY RELATIONSHIPS

57

FIGURE4.8. E-R RELIGION AND RESIDENCE RELATIONSHIPS

58

FIGURE 4_9. E-R OCCUPATION AND LAND RELATIONSHIPS

59

FIGURE 4_10. E-R TAX AND RELATION RELATIONSHIPS

6

s /\ P/ X. E
u
R
C

/ QUALIFYING \ R
S
O^N. INFO yS~~

E

SRC-NO

N

PERS-NO
ATTRIBUTE-NAME
TEXT-ADDR
PREC-FLAG

FIGURE 4_11. E-R QUALIFYING RELATIONSHIP

61

A relational schema was then developed from the E-R

diagram. Basically each entity and each relationship were

transformed into a relation in the genealogical database.

Table 4_1 presents the resulting relations.

62

Table 4_1 Relations

(SOURCE) Src_No, Pers_No, Src_Type, Pers_Stat,
Date_Src_Found, Place_Src_Found Key = Src_No,
Pers_No

(PERSON) PersNo, PersName Key = PersNo

(PROVIDES BIRTH INFO) SrcNo, Pers_No, Birth_Date,
Birth_Place, Birth_Facility, Birth_Sex, Father_Age,
Mother_Age Key = Src_No, Pers_No

(PROVIDES DEATH INFO) Src_No, PersNo, DeathDate,
Death_Place, Death_Cause, Burial_Date, BurialPlace,
Burial_Facility Key = Src_No, Pers_No

(PROVIDES MARRIAGE INFO) SrcNo, PersNo, Marr_Date,
Marr_Place, Marr_Facility, Key = Src_No, Pers_No

(PROVIDES MILITARY INFO) SrcNo, PersNo,
Milt_Branch, Milt_Entry_Date, Milt_Entry_Place,
Milt_Discharge_Date, Milt_Discharge_Place
Key = SrcNo, Pers_No

(PROVIDES RELIGIOUS INFO) SrcNo, PersNo

,

Rel_Affiliation, Rel_Begin_Date, Rel_Place,
Rel_End_Date, Rel_End_Date, Key = Src_No, Pers_No

(PROVIDES RESIDENCE INFO) Src_No, Pers_No, Res_Date,
Res_Place, Res_Facility, Key = Src_No, Pers_No

(PROVIDES OCCUPATION INFO) Src_No, Pers_No,
Occ_Start_Date, Occ_Place, Occ_End_Date , Occ Company,
OccJTitle, Key = Src_No, Pers_No

(PROVIDES LAND INFO) Src_No, Pers_No,
Land_Acquisition_Date, Land_Acquisition_Place
Key = Src_No, Pers_No

(PROVIDES TAX INFO) Src_No, Pers_No, Tax_Value,
Tax_Date , Tax_Place Key = Src_No, Pers No

(PROVIDES RELATIONSHIP INFO) SrcNo, PersNo,
Rel_Pers_No, Relationship Key = Src No, Pers No
Rel_Pers_No _ _

(PROVIDES QUALIFYING INFO) SrcNo, Pers_No,
Attribute_Name , Text_Addr, Prec_Flag Key = Src No
Pers_No, Attribute_Name _

63

Most of the relations defined in Table 4_1 are fairly easy

to understand; however, the "Provides Qualifying Info"

relation should probably be discussed in more detail.

This relation was designed to establish the capability to

link unstructured text information with a structured data

attribute value for which it is associated. This relation

will also provide a means for denoting precedent data

values for each data attribute defined in the genealogy

database.

It is possible for each data value in the genealogy

database to have additional qualifying text information

for which it is associated. For example, if a birthdate

is obtained from a source record on which the ink was

smudged and the value was unclear, the genealogist may

want to denote this situation in text format. The

Text_Addr attribute will contain a file name (address)

where the text information is stored and not the actual

text itself. The need for this type of storage is

discussed in more detail in section 4.3.2.

In addition, it is also possible for genealogists to

obtain multiple data values for each data attribute.

These data values can be identical or conflicting since

they are normally obtained from different sources. Due to

this type of situation, the "Qualifying Info" relation was

64

also designed to provide a means of denoting precedent

values. The Prec_Flag attribute is simply a flag. If the

attribute value is P, the associated tuple will provide

the values needed to link to the actual precedent value.

The attribute name and not the attribute value is stored

in the "Qualifying Info" relation.

4.3.2 Data-Base Front End (DBFE)

One of the major objectives of the Professional

Genealogical Information System is to provide simple to

use storage, search and extrapolation capabilities. In

order to meet this objective, it is necessary for the

system to establish all identification numbers (person

numbers, source numbers) and links between all related

data. The user should be able to add, delete, update or

query information for an individual based on the

individual ' s name or a combination of name and other

attributes that may be readily known. If users have this

capability they do not necessarily have to worry with

numbering schemes as is the case in the manual process.

The system can always provide an indexed list of family

linkages upon request. Since it is possible for there to

be multiple people with the same name, the system must aid

the genealogist in determining which person is needed.

65

The Data-Base Front End is needed to manage the invoking

of the Rule-Based Expert Subsystem, the Text Manipulation

Subsystem, and the Data-Base Management System as adds,

deletes, updates and queries are received. The Data-Base

Front End will receive add, delete and update requests

directly from the User Front End. Query requests can be

received from the User Front End, the Text Manipulation

Subsystem or the Rule-Based Expert Subsystem, but each

query is processed in the same fashion. When a user is

requesting any of the database functions, the User Front

End will provide preformatted screens to obtain any

information needed. The screens will always be stored in

a frame in memory so that the user entered data is readily

accessible to the Data-Base Front End.

Since genealogists obtain all of their information from

one source type or another, a request to add data to the

genealogy database is equivalent to adding a source

record. Therefore, when a user makes a request to add

data, the User Front End always asks for the source record

type to be entered. When the record type is selected, the

User Front End provides a screen containing the standard

fields for the record type chosen. The source owner's

name from the source record is the minimum information the

user must enter. The source owner is the person for which

the record is primarily about. Secondary names can also

66

be obtained from a source record when the record type

identifies relationships of secondary people to the source

owner. For example, from John Doe's birth certificate, he

is the source owner (primary person) and his father and

mother are secondary people related to him. Once the user

has entered all the fields for which values were

available, the User Front End stores the screen in a frame

in memory and then invokes the Data-Base Front End. A

pseudo-code description of the processes performed by the

Data-Base Front End when an add function is requested is

contained in Table 4 2

.

Table 4_2 DBFE Pseudo-Code Add Description

1. Obtain primary name from the UFES memory frame.

2. Generate a unique source number.

3

.

Invoke DBMS for query on NAME

.

4. If match occurs, Then:

4_a. Invoke RBES for decision on appropriate
person.

4_b. If person exists, Then:
4_b_l. obtain person number from RBES.

4_c. Else:
4_c_l. Generate unique person number.

5. Else:

5_a. Generate unique person number.

6. Wait on Expert permission to Add.

7. If permission is not granted, Then:

7_a. Reestablish any numbers generated as
available for use.

7_b. Terminate DBFE session.

8. Else:

8_a. Invoke DBMS for Add
8_b. Determine if secondary name exists in

UFES memory frame.
8_c. If secondary name exists, Then:

8_c_l . Return to Step 3

.

8_d. Else:
8_d 1. Terminate DBFE session.

68

The Data-Base Front End begins the add process by

obtaining the primary name from the memory frame. The

Data-Base Front End knows which attributes provide primary

and secondary names for each source record type by

accessing a table where these definitions are stored.

Step two of the add process requires the Data-Base Front

End to generate a unique source number to be associated

with the source record being entered. The Data-Base Front

End is responsible for assigning and keeping track of all

identification numbers.

Step three of the add process requires invoking the Data-

Base Management System (DBMS) for a query on the primary

name. The Data-Base Front End is responsible for

establishing a query in the appropriate DBMS syntax. This

query is issued to establish whether a person(s) with a

name identical to the primary name already exists in the

genealogy database. The DBMS query will request selection

of the person number for any match on the primary name.

If one or more matches results from the query, step four

of the process begins. step four first involves invoking

the Rule-Based Expert Subsystem for a decision as to

which, if any, is the appropriate person. Upon receipt of

the decision request, the Rule-Based Expert Subsystem may

require more data about each person in question. The

69

Rule-Based Expert Subsystem can therefore request the

Data-Base Front End to supply the data needed. The Data-

Base Front End will issue appropriate queries (in DBMS

syntax) to the DBMS to obtain any data needed by the Rule-

Based Expert Subsystem. The Rule-Based Expert Subsystem

will eventually return a decision. The decision will

either indicate which person is appropriate or that none

is appropriate and a new person should be created. If the

appropriate person already exists in the database, the

Rule-Based Expert Subsystem returns the associated person

number. If the Rule-Based Expert Subsystem indicates a

new person, the Data-Base Front End must generate a unique

person number.

If no matches resulted following step three of the add

process, the Data-Base Front End automatically assumes

that a new person is to be created. This also results in

the generation of a unique person number

The next step of the add process (step six) , involves a

wait state. Each time a user tries to add, delete or

update a data attribute value, "demon-like" experts are

activated. These experts check validity, integrity and

precedence of the data values. It is possible for these

experts to be active concurrent with the Data-Base Front

End processing. Before the Data-Base Front End can

70

initiate a physical addition of any data to the genealogy

database, the experts must complete their processing.

Therefore, it is possible that the addition of data will

be put on hold until permission to continue is either

granted or not by the experts. The actual functions of

the experts are not discussed in this paper but are

explained in another Kansas State University Master's

thesis (BSP88)

.

If permission from the experts is not granted, the Data-

Base Front End performs step seven. This step involves

reestablishing any identification numbers generated as

available for use and then the Data-Base Front End session

is terminated.

If permission from the experts is granted, the Data-Base

Front End begins step eight. The DBMS will be invoked for

an add (in the DBMS syntax) of all non-relationship type

attribute values supplied by the user. Relationship type

values are actually secondary people (such as, father and

mother on a birth certificate) and links to the

appropriate person numbers from the primary person number

must be established when these type of values exist.

Therefore, after addition of the non-relationship data is

completed, the Data-Base Front End must determine if a

secondary person has been specified. If there is a

71

secondary person, the Data-Base Front End returns to step

three and begins the process again. The only difference

in the processing of primary and secondary people is in

the actual data added to the database. When processing a

secondary person, the Data-Base Front End will invoke the

DBMS for an add of a relationship between the primary and

secondary people. The add for a secondary person does not

result in linking all of the source data to the secondary

person; however, the secondary person's relationship will

be linked to the source number. This link is established

so that it can always be determined from where the

relationship information was obtained.

When the Data-Base Front End determines that all secondary

people have been processed, the Data-Base Front End

session is terminated.

Once the process for adding data values from a source

record is complete, the User Front End Subsystem will ask

the user if any qualifying text information associated

with a data value needs to be added. If the user

responds positively, the User Front End requests the user

to highlight the data attribute involved. The user will

then be asked to enter the qualifying text and to supply a

file name for this text. This screen will once again be

stored in a memory frame and the Data-Base Front End will

72

be invoked requesting a text add for the source record

just processed. The Data-Base Front End will issue an add

(in DBMS syntax) to the DBMS providing all linkage

information as well as the file name under which the text

is to be stored. The file name is inserted in the

TEXT_ADDR attribute of the "Qualifying Info" relation

described in Section 4.3.1. The Data-Base Front End will

then invoke the Text Manipulation Subsystem to transfer

the text from the memory frame to an available block of

memory. The Text Manipulation Subsystem is responsible

for managing the blocks of memory where qualifying text

information is stored and labeling the beginning addresses

with the file name provided. The capability to store text

information outside of the database is provided to allow

for variable length text information. If the text were

stored directly in the TEXT_ADDR attribute, a maximum

length would need to be defined. By storing a file name

in the TEXT_ADDR attribute, the information can always be

retrieved and the method of retrieval is transparent to

the user. Handling qualifying text in this manner will

also allow the user the capability to edit the text by

providing the file name to the Text Manipulation Subsystem

via the User Front End. If the user decides to delete

this text, the User Front End will invoke the Data Base

Front End requesting a delete of text information. The

73

Data-Base Front end will then in turn invoke the DBMS to

delete the qualifying text link. The Text Manipulation

Subsystem will then be invoked requesting a delete of the

file name.

The key point here is that designing the system in this

fashion provides the capability to navigate from a

structured database to an unstructured database, which

gives the user much more needed flexibility.

The procedures for processing deletes, updates and queries

are basically the same as for the add. Therefore, a walk

through of these processes will not be presented. The

reader should be able to understand the processes by

referencing the pseudo-code descriptions in Tables 4_3

,

4_4 , and 4_5 and by reviewing the add process.

74

Table 4_3 DBFE Pseudo-Code Delete Description

1. Obtain primary name from the UFES memory frame.

2. Invoke DBMS for query on NAME.

3. If match occurs, Then:

3_a. Invoke RBES for decision on appropriate

person.

3_b. If person exists, Then:

3_b_l. Obtain person number from RBES.

3_c. Else:

3_c_l. Generate error message to UFES.

3_c_2 . Terminate DBFE session.

4. Else:

4_a. Generate error message to UFES.

4_b. Terminate DBFE session.

5. Wait on Expert permission to Delete.

6. If permission in not granted, Then:

6_a. Terminate DBFE session.

7. Else:

7_a. Invoke DBMS for Delete.

7_b. Terminate DBFE session.

75

Table 4_4 DBFE Pseudo-Code Update Description

1. Obtain primary name from the UFES memory frame.

2. Invoke DBMS for query on NAME.

3. If match occurs, Then:

3_a. Invoke RBES for decision on appropriate

person.

3_b. If person exists. Then:

3_b_l. Obtain person number from RBES.

3_c. Else:

3_c_l. Generate error message to UFES.

3_c_2. Terminate DBFE session.

4. Else:

4_a. Generate error message to UFES.

4_b. Terminate DBFE session.

5. Wait on Expert permission to Update.

6. If permission in not granted, Then:

6_a. Terminate DBFE session.

7. Else:

7_a. Invoke DBMS for Update.

7_b. Terminate DBFE session.

76

Table 45 DBFE Pseudo-Code Query Description

1. Obtain primary name and attributes in question

from the UFES memory frame.

2. Invoke DBMS for query on NAME.

3. If match occurs, Then:

3_a. Invoke RBES for decision on appropriate

person.

3_b. If person exists. Then:

3_b_l. Obtain person number from RBES.

3_c. Else:

3_c_l. Generate error message to UFES.

3_c_2 . Terminate DBFE session.

4. Else:

4_a. Generate error message to UFES.

4_b. Terminate DBFE session.

5. Invoke DBMS for query on attributes of person

number supplied.

6. Return results to UFES.

7. Terminate DBFE session.

A delete request will involve the deletion of either a

person, an entire source record for a person or individual

data attributes for a person. At any time a delete is

encountered the DBMS must "clean-up" all affected links.

An update request will involve changing the value of a

particular data attribute(s) for a person. An update

should not involve changing an entire source record, this

should be accomplished with a delete and a subsequent add.

As with the add and delete any changes that affect links

will have to be "cleaned-up" by the DBMS. A query request

will involve obtaining any data that matches that of the

attribute (s) specified by the user.

4.3.3 Data-Base Management System (DBMS)

A relational model DBMS has been chosen in which to

implement the Professional Genealogical Information

System. It is important that the DBMS have a user exit in

order to provide the capability of interfacing with other

application programs such as the Data-Base Front End. The

DBMS would have to be programmed to provide insertion,

deletion, update, query and linkage capabilities for the

data attributes in the Genealogy Database.

78

4.4 Text Manipulation Subsystem (TXMS)

One of the objectives of the Professional Genealogical

Information System is to provide text manipulation

capability. This capability is needed to aid genealogists

in the creation of family chronicles. The creation of

family chronicles is currently a difficult process because

it requires genealogists to have readily available the

descriptive information about each individual being

documented. The Text Manipulation Subsystem will address

this problem by providing the capability to navigate from

an unstructured text database, where the family chronicle

is stored, to a structured genealogy database where the

descriptive information is stored. By having this

navigation capability, descriptive information can then be

embedded directly into a family chronicle upon its

creation. To provide this type of capability, the Text

Manipulation Subsystem has been designed with four major

components: 1) A Family Chronicle Model, 2) A Text

Management Syntax, 3) A Text Management System and 4) A

Text Database. Figure 4_12 depicts the interfaces between

these components.

79

FIGURE 4_12. TEXT MANIPULATION SUBSYSTEM
COMPONENTS

80

4.4.1 Family Chronicle Model

A model of the typical structure of a family chronicle

must be developed to provide a basis for determining where

descriptive information should be embedded. The

development of such a model would require extensive

communication with genealogy experts, which exceeds the

scope of this paper. However, a general design

recommendation will be presented and used when discussing

the other components of the Text Manipulation Subsystem.

The Family chronicle Model should define some feasible

structure, such as a paragraph, for each type of

descriptive information possible for any person. The

types of descriptive information should basically

correspond to the relations (Birth Info, Religious Info,

Death Info, etc.) defined in Table 4_1. The model should

also define an order for the information type structures,

i.e., birth information about a person is first, religious

information is second, occupation information is third and

so on until all information types are presented in a

reasonable order.

Within the information type structure another structure,

such as a sentence, should also be defined. Within the

sentence structure an order and position of descriptive

81

keywords should be defined. The position of the keywords

will eventually determine the position for embedding data

values obtained from the genealogy database. Keywords

used in the model could basically correspond to the data

attributes defined in the information relations in the

genealogy database. An overall structure, such as a

chapter, that encompasses the paragraph and sentence

structures should be defined for each person being

documented in the family chronicle. To clarify this

design even further, Figure 4_13 provides a representation

of the model.

82

Chapter 1 - NAME

Paragraph 1 - Birth Information

NAME was born on BIRTHDATE in BIRTHPLACE.
The birth occurred at BIRTHTIME in
BIRTHFACILITY. FATHERNAME was the father
at age FATHERAGE and MOTHERNAME was the
mother at MOTHERAGE.

Paragraph N - Death Information

NAME died on DEATHDATE at DEATHPLACE.

Chapter N - NAME

Figure 4_13 Family Chronicle Model

83

The model depicted in Figure 4_13 shows Birth Information

with its descriptive keywords as the first type of

information presented and Death Information with its

descriptive keywords as the last type of information

presented for each person being documented. An order such

as this should be established and each person documented

would use this overall structure.

4.4.2 Text Management Syntax

In order to use the Family Chronicle Model, a Text

Management Syntax that can translate the structure types

defined in the model must be developed . The syntax would

have to define the keywords needed and the positioning of

those keywords within each of the structure types. That

is, the keywords defined would have to occur in a certain

position within a certain sentence within a certain

paragraph for each chapter created for a person. The

number and order of the chapters would be totally

dependent on the number of people the user wants to

document within one family chronicle. Figure 4_14 depicts

an informal syntax description that corresponds to the

model in figure 4_13.

84

Chapter N - Title = NAME(5,50c) {PERS_N0(6, 6a)

}

Paragraph 1 - Title = Birth Information

Sentence 1 = Keyword 1 = NAME (1,50c)
Keyword 2 = BIRTHDATE(5,dd/mm/yy)
Keyword 3 = BIRTHPLACE (7 , 50c)

End Sentence 1

Sentence 2 = Keyword 1 = BIRTHTIME(5,hh:mm:ss)
Keyword 2 = BIRTHFACILITY(7 , 20c)

End Sentence 2

Sentence 3 = Keyword 1 = FATHERNAME (1 , 50c)
Keyword 2 = FATHERAGE(7, 2a)
Keyword 3 = MOTHERNAME (9 , 50c)
Keyword 4 = MOTHERAGE (15, 2a)

End Sentence 3

End Paragraph 1

Paragraph N - Title = Death Information

End Paragraph N

End Chapter N

* Underlined words represent structure types.
* Words in all capital letters are keyword names
which correspond to attribute names in the
genealogy database

* Information inside parenthesis represents
(position, format)

.

* Information inside braces indicates that it is not
visible to the user and is for system use only.

* The "N" will have to be maintained by the system.

Figure 414 Text Management Syntax

85

The development of a formal syntax, like the creation of

the model, is beyond the scope of this paper; however, it

is important to understand the design philosophy so that

the functions of the Text Management System can be better

understood.

4.4.3 Text Management System - Text Database

The overall purpose of the text management system is to

allow the user to create family chronicles in which the

system will insert descriptive data values from the

genealogy database.

When the Text Management System is invoked by the User

Front End, a user has made a request to establish a text

session and has identified the type of session preferred.

There are basically four types of text sessions available

to the user: 1) create a new family chronicle, 2) create

a new person within an existing family chronicle, 3)

create a new information structure for an existing person

within an existing family chronicle or 4) edit an existing

family chronicle.

When session type one is specified, the User Front End

will request that the user supply a unique file name for

the chronicle and the name of the first individual the

user wants to document. When the User Front End invokes

the Text Management System, the user entered data is

86

available from a frame in memory where the screen was

stored by the User Front End. The Text Management System

must then invoke the Data Base Front End requesting a

person number for the NAME obtained from the memory frame.

After receipt of that number, the Text Management System

will access the Family Chronicle Model to determine the

first structure type needed.

The first structure at the beginning of any chronicle will

be a chapter. The defined syntax will then have to be

used to determine the keywords, their positions and their

formats within this structure. In the case of the

chapter, there are only two keywords, NAME and PERS_NO,

and those values are already available to the Text

Management System. Therefore, the Text Management System

will copy the chapter structure from the model into the

text database and label the beginning address with the

filename specified by the user. The Text Management

System will then replace the keyword NAME, at the

appropriate position in the chapter structure, with the

person's name. The name will be stored in the format

specified by the syntax. The person's number obtained

from the Data-Base Front End will also be stored with the

name but this value will not be visible to the user.

87

At this point, each of the following structures must be

obtained one at a time from the Family Chronicle Model.

For each structure obtained, the syntax must be used to

determine the associated keywords. The keyword names

defined in the syntax will correspond directly to the

attribute names used in the genealogy database so that no

translation is necessary to obtain values. When the

values for the keywords are not readily available, unlike

the case with NAME and PERS_NO, the Text Management System

must invoke the Data-Base Front End requesting the

precedent values for the attributes involved. Once the

values are obtained the structure in question must be

copied into the text database. The values obtained will

then replace their associated keywords in the format

specified by the syntax. If no value is obtained for a

particular attribute, the keyword name will remain in the

text. If no values exist for any of the attributes, the

structure in question will not be copied to the text

database. After this process is complete, the Data-Base

Front End must be invoked again to obtain any qualifying

text data and all non-precedent values and their

associated record. All this type of information will be

appended in free form style immediately following the

structure type just created. This information is included

to provide the user with additional crucial facts.

The process of obtaining each structure one at a time,

obtaining the data values for the associated keywords and

inserting the structure and values in the text database is

repeated until the end of the Family Chronicle Model is

reached. At this point, the Text Management System

returns control to the User Front End. The User Front End

is then responsible for accessing the family chronicle

file just created and transferring it to the user's screen

for viewing. The user can then choose to exit the text

session or choose another session type.

When a user elects to add a person to an exiting family

chronicle (session type two) , the processes specified

above are followed and the text created is appended to the

existing chronicle - beginning a new chapter. The Text

Management System is responsible for recording the number

of people in a chronicle so that appropriate chapter

numbers can be determined. Data of this nature will be

stored at the beginning of each family chronicle file

within the text database, but it will only be accessible

by the system.

If a user realizes that a new type of information was

entered into the genealogy database after the creation of

a person's structure within a family chronicle, the user

may want to establish a text session to add an information

89

structure to an existing person in an existing family

chronicle (session type three) . Upon receiving a request

like this, the User Front End will once again request that

a filename and an individual's name be supplied. In

addition the user will also be requested to select the

information type to be added. Once this information is

obtained and stored in the memory frame, the Text

Management System is invoked. The Text Management System

will retrieve the filename specified and search each

chapter structure for the name specified. This search

capability will have to be performed with the aid of the

syntax. If multiple names are found that match the name

provided by the user, the Text Management System will have

to return control to the User Front End requesting

identification of the appropriate person. The User Front

End will then transfer the file to the user's screen and

request the user to select the appropriate chapter number.

Once this selection occurs, it is stored in the memory

frame and control is returned to the Text Management

System. From this point, the Text Management System must

find the user specified information structure in the

Family Chronicle Model. After the structure is obtained,

the process followed is identical to that described for

the two previous session types. The text that is created

90

is inserted in its appropriate position within the file

according to the model's established order.

Once a family chronicle has been created, a user will more

than likely want to edit the structure (session type

four) . This editing capability will allow the user to

add, delete, move, expand, etc. any portion of the file

specified. Basically the user can use this capability to

mold the family chronicle into a format he/she prefers.

For example, the qualifying information provided for each

paragraph structure could be formatted as footnotes for

its associated data value in the text, or the user could

elect to delete the information entirely.

4 . 5 Summary

The major goal of the design effort described in this

chapter was to provide the capability to navigate from an

unstructured database to a structured database and vice-

versa. This capability was presented for a genealogy

application in this paper; however, it is a capability

that could be incorporated into other applications. The

development of such a navigation design could well further

the integration of Office Information Systems and Database

Management Systems.

91

CHAPTER 5 - IMPLEMENTATION

5 . l introduction

The implementation presented in this chapter concentrates

on one subsystem of the overall design discussed in

Chapter Four. The implementation addresses a portion of

the Data-Base Control Subsystem and more accurately the

Genealogy Database and the Data-Base Management System.

The system, PIGS (Professional Information Genealogical

System) , was implemented using dBASE III PLUS on an AT&T

6300 personal computer. dBASE III PLUS was chosen due to

the requirement to provide a relational database

management system capable of running on a personal

computer. Also, dBASE III PLUS provided the capability to

have multiple attributes as a key expression for an index

file, to have multiple index files active at one time, and

to establish relations between multiple database files.

These characteristics are important due to the

complexities associated with Genealogy. Facts such as,

multiple people can have the exact same name, one person

can have multiple source records of the same type and

multiple people can be identified from one source record

are just a few of the reasons for the complexities. These

complexities were taken into account in the design process

of the Genealogy Database.

92

5.2 Genealogy Database structure

The Genealogy Database consists of multiple database and

index files. Each entity and relationship defined in

Chapter Four was transformed into a database file

(relation) . The structures of the database and index

files implemented for PIGS are depicted in Tables 5_1 and

5_2.

Table 5 1 Database File Structures

Database File Field Name Type Kid

PERSON PERS NO Character 6
PR F NAME Character 15
PR M NAME Character 15
PR_L_NAME Character 20

SOURCE SRC NO Character 6
PERS NO Character 6
SRC TYPE Character 2
DATE SR FD Date 8
CITY SR FD Character 20
COUNTY SR FD Character 20
ST SR FD Character 2
INT FD Character 3

DATE_SR_ET Date 8

RELATION SRC NO Character 6
PERS NO Character 6
REL PERS NO Character 6
RELATION Character 10

93

Table 5-1 Database File Structures (Cont.)

Database File Field Name Type Wid

BIRTH_IN SRC NO Character 6

PERS NO Character 6
BIRTH DATE Date 8

BIRTH CITY Character 20
BIRTH CNTY Character 20
BIRTH ST Character 2

BIRTH FAC Character 10
BIRTH RACE Character 10
BIRTH_SEX Character 1

DEATH_IN SRC NO Character 6
PERS NO Character 6
DEATH DATE Date 8
DEATH CITY Character 20
DEATH CNTY Character 20
DEATH ST Character 2
DEATH CADS Character 15
DEATH RACE Character 10
DEATH SEX Character 1
BURY DATE Date 8
BURY CITY Character 20
BURY CNTY Character 20
BURY ST Character 2
BURY_FAC Character 10

MARRIAGE_IN SRC NO Character 6
PERS NO Character 6
MARRY DATE Date 8
MARRY CITY Character 20
MARRY CNTY Character 20
MARRY ST Character 2
MARRY FAC Character 10
MARRY RACE Character 10
MARRY SEX Character 1
MARRY_AGE Character 3

SRCNO KEY Character 7
NO Character 6

PRSNO KEY Character 7
NO Character 6

94

Table 5 2 Index File Structures

Database File

PERSON

Index File Key Expression

NAME
NAME2
NAME 3

PERS

PR_L_NAME+PR_F_NAME+PR_M_NAME
PR_L_NAME+PR_F_NAME
PR_L_NAME+PR_M_NAME
PERS NO

SOURCE PERSTYPE
SRC
SPERS

PERS_NO+SRC_TYPE
SRC_N0
PERS NO

RELATION

BIRTH IN

RSRC

BSRC
SRCPERS

SRC NO

SRC_NO
SRC NO+PERS NO

DEATH IN DSRC
DSRCPERS

SRC_NO
SRC NO+PERS NO

MARRIAGE IN MSRC
MSRCPERS

SRC_NO
SRC NO+PERS NO

95

The database files created follow the design with the

exception of the PRSNO and the SRCNO. database files.

These database files were never directly discussed but

were established to provide a means for creating, storing

and re-utilizing identification numbers for people and

source documents.

The index files were created based on the type of access

required for manipulating the data stored in these files.

That is, the index files are simply a means of efficiently

accessing data in a database file by particular data

attributes (key expressions) based on the data values most

commonly used by the PIG System.

5.3 Data-Base Management System - PIGS

The PIG System provides the functionality for genealogists

to add, delete, update, link, query and report data. The

system is source record driven. All functions performed

by the system are done via a particular source record,

with a source record being a Birth Certificate, Marriage

Certificate or Death Certificate. The system insures this

type of performance by providing a simplistic user

interface to guide the genealogist in activating any of

the functions mentioned.

96

5.3.1 User Interface

The User Interface consists of menu driven screens that

allow the user to select particular options. The Main

Menu screen requires the user to select which function

(add, delete, update, query or report) they want to

perform. This then activates the Source Record Screen

which requires the user to select the source record upon

which they want the function to be performed. Next the

Data Screen is activated which requires the user to

specify particular data values associated with the

function and source record previously selected. The

actual screen information can be obtained from the code

provided in Appendix C.

5.3.2 Add Function

The Add Function allows qenealogists to add source

records. When a source record is added in association

with a person (s) that does not already exist in the

database, the person (s) is also added. The addition or

existence of a person is determined by the user with

guidance from the system. The system provides information

to the user about every person (s) that has the same

name(s) as entered in any name field in the source

document. The user is then asked to select the

appropriate existing person (s) or to establish a new

97

person(s) . If a new person is specified, a unique person

identification number is generated and associated with

that person. Since, typically there is always information

about a primary and one or more secondary people on each

source record, multiple people can be added from the

addition of one source record. When a secondary person is

entered on a source record, the system will insure that

all appropriate links between the primary and secondary

people are established.

The addition of a source record requires that the user

supply a minimum of a name and date associated with the

primary person. The values acceptable for the name are:

last and first names; last and middle names; or last,

first and middle names. The values acceptable for date

are any birth, marriage or death dates prior to the

current date. The system checks the validity of these

entries.

A record is entered in the Source Database File for each

primary and secondary person specified. This allows the

user to track where information was obtained about each

person. For every source record added, the system

generates and associates a unique source identification

number. If new people were added, an entry into the

Person Database File for each individual also occurs.

Entries in the Relation Database File are recorded to

establish links and types of relationships between primary

and secondary people. Finally, entries into the

appropriate information database (Birth_In, Marriage_In or

Death_In) are also recorded to store pertinent birth,

marriage or death data.

5.3.3 Delete Function

The delete function allows the user to delete a source

record. The user is required to specify the name of the

primary person on the source record. The system will

supply information about each person in the database with

the same name as specified. The user then must select the

appropriate person and source record to be deleted.

If the primary person specified does not have any other

source records (besides the one being deleted) , then the

person is also deleted from the database. The deletion of

a source record will always result in the deletion of the

Source Database entries, the Relation Database entries and

the BirthJEn, Marriage_In or Death_in Database entries.

This insures that all information and links obtained from

the source record are eliminated. When the data is

deleted, the source record identification number is re-

established as available for use. If a person was also

deleted as a result of the source record deletion, then

99

the person identification number is also re-established as

available for use.

In order to provide efficient access to all data

associated with a source record being deleted, the system

has four work areas established with a different database

file and its appropriate index file(s) active in each. In

dBASE III PLUS with this type of implementation, it is

then possible to establish relations between the different

database files. The relations are established using key

expressions. What this provides is an efficient way to

access all related data once a value for the key

expression has been found in one database file. This

avoids the need to search for the key value in each

database file separately since a pointer is moved to the

appropriate record matching the key expression value in

each active database file for which a relation was

established. The only limitation here is that only one

relation can be established between any one active

database file to another.

5.3.4 Update Function

The update function allows the user to update a source

record. This function is provided so that additional

values for fields that were not previously entered can be

included and typing errors can be corrected. Once again,

100

this function also requires the user to supply the name of

the primary person for which the source record is about.

The update function then performs as did the delete except

that it will supply the user with the source record and

values that were included when it was added. The final

result will be replacing fields that are changed by the

user with the new values entered. The same techniques for

relating active database files and their index files were

used in implementing the update function.

5.3.5 Query/Report Function

The query function allows the user to query information in

the database. The queries that have been implemented are

the Source Record Query and the Lineage Query. The source

record query provides the user with a particular source

record for a particular individual. This does not differ

from the update function except that the user is not

allowed to change any data during a query request.

The lineage query provides the user with either an

ancestral or descendant lineage. In implementing this

function there was a need to establish precedence rules.

These rules were needed since it is possible, for example,

for a person to have a different Mother's name on their

Birth Certificate than is on their Marriage Certificate.

There are legitimate reasons for situations like this to

101

occur, for example, a person's biological mother could

have died and by the time the person was married, they had

been adopted and the adopting mother's name was included

on the Marriage Certificate. Since the biological lineage

is the one of importance in genealogy, it was decided that

a Birth Certificate would take higher precedence over the

other two. The remaining order is Marriage Certificate

then Death Certificate. This final order was decided

based on the fact that if a person does get married they

normally do it before they die, therefore, the likelihood

that the Marriage Certificate would be more accurate.

Since people can be included in the database as a result

of being a primary or secondary person on a source record,

it was also essential to create some intelligence in the

SourceJType value that was entered when the record was

added. The system, therefore, depicts the source record

type for a primary person as XC and for a secondary person

as XR, where X is either B (Birth) , M (Marriage) or D

(Death)

.

When creating an ancestral lineage, the system searches

for the XC source record types, looking for the BC first.

If there are multiple BCs for the person, the system

chooses the first one in the index list. There is no

predetermined precedence established for multiple entries

of the same source record type since this would reguire

102

some detailed analysis and intelligence to be built into

the system. In chapter four, this intelligence was

included as part of the Rule-Based Expert Subsystem

design. Once the appropriate source record is found for

the primary person, the Relation Database File is used to

find the identification numbers for the father and mother

(secondary people) . Then the father and mother are

processed in the same manner as was the primary person

until no more links can be found.

When creating a descendant lineage, the system searches

for the XR source record types, looking for the BR first.

Once the source record is found, for the secondary person

in this case, the Relation Database is used to fine the

identification number for the child (primary person)

.

This information is stored and all other XR source records

are evaluated looking for multiple children. Each child's

identification number is stored and when all children are

found, each child is processed as was the parent.

The two queries discussed above are also available as

reports. The user is allowed to request that the query

information be transported to a printer. No additional

reports were developed for this implementation.

103

5 . 4 Summary

The implementation presented in this chapter is that of a

prototype-type of the Professional Information

Genealogical System (PIGS) . This system is a relational

genealogy database system developed for use on a personal

computer. The system is source record driven since a

source record is always required by genealogists to derive

information. Three major types of source records, Birth

Certificate; Marriage Certificate and Death Certificate,

were provided in this implementation.

The system has a simplified user interface to guide even

the novice computer user through the appropriate steps.

The user interface system is menu screen driven and allows

the user to select particular options or supply specified

data values.

The system allows the user to add, delete, query and

report data based on individuals ' names instead of on

identification numbers. The system does generate and use

identification numbers, but the user is not required to

remember or track these numbers. The identification

numbers are a necessity to provide uniqueness and

normalized databases. The system also automatically

establishes the appropriate linkage of people and source

information so that genealogists can obtain detailed

104

lineage information.

PIGS is a prototype-type system since limited source

records and reports were actually implemented. The system

did involve detailed design and development work due to

the complexities associated with genealogy itself. The

code was written in dBASE III PLUS and is contained in

Appendix C.

105

CHAPTER 6 - CONCLUSIONS AND EXTENSIONS

6 .

1

introduction

The conclusions and extensions presented in this chapter

will be discussed in two separate sections. The first

section, 6.2, will discuss conclusions and extensions

associated with the requirements (Chapter 3) and design

(Chapter 4) of the overall Professional Information

Genealogical System. The second section, 6.3, will

discuss conclusions and extensions associated with the

implementation (Chapter 5) of the Genealogy Database and

the Data-Base Management System.

6.2 Conclusions and Extensions for
the Requirements and Design

The requirements and design discussed in this thesis are

of a very complex nature and would require some

sophisticated personal computer tools to implement. An

Artificial Intelligence Tool would be needed to develop

the Rule-Based Expert Subsystem, a Word Processing Tool

would be needed to develop the Text Manipulation

Subsystem, a High Level Programming Language would be

needed to develop the User Front-End Subsystem and a

relational Data-Base Management Tool would be needed to

develop the Data-Base Control Subsystem. To find the

tools needed to develop the four subsystems and also

106

provide interfacing between all four would prove to be a

difficult task on a personal computer

The Text Manipulation Subsystem could probably be

developed using a Word Processing System for a personal

computer. There are several word processing products

available today that provide exits to user written

applications. The Word Processing System itself could be

used to manipulate the Text Database while the user

written application (Text Management System) would have to

control manipulation between the Family Chronicle Model

,

the Text Management Syntax and the Word Processing System

(Text Database) . In addition the user written application

would have to interface with the other three subsystems.

This indicates that it would probably be more effective if

the Text Management System and the other three subsystem

interfaces were developed jointly and in the same

programming language. The possibility of finding existing

personal computer tools that would address the needs of

each subsystem is not unlikely; however, the possibility

of having all of these tools interface with each other is

a different story. It seems that to develop the overall

system it would be more practical and efficient to develop

each tool and all of the interfaces in a high level

language, possibly even C Language. In order to perform

this development task several man years would have to be

107

spent in developing the artificial intelligence techniques

and the unstructured to structured database navigation

techniques, let alone the overall interfacing required

between each subsystem. It would be more effective to

develop such a system using existing relational database

management, artificial intelligence and word processing

tools so as to avoid re-inventing of the wheel. But once

again ,the practicality seems extreme.

In summary, it appears that the design is solid but the

problem comes in attempting to develop such a product on a

personal computer. Each subsystem in itself would require

a massive amount of memory and processing time not to

mention what would be required if all four subsystems were

running together as an overall system. Any development of

such a system for a personal computer would have to be

efficient in all areas in order to provide its users with

reasonable response times. The development of a system to

address only the navigation between unstructured and

structured databases could probably be accomplished with

the aid of word processing and data-base management

products that provide user exits. As personal computer

products (hardware and software) become more and more

advanced, the task of developing the design discussed in

this thesis may become trivial; but, with the products

available on the market today, it does not appear to be a

108

trivial task.

Extensions associated with the requirements and design

specified in this thesis could include more research on

existing personal computer hardware and software tools.

The requirements and design could then be re-established

based on the capabilities and limitations of the tools.

As they were written in this thesis, however, thought was

only given to the general types of tools needed but not to

the specific tools themselves.

6.3 Conclusions and Extensions
for the Implementation

The implementation presented in this thesis is a prototype

of the Genealogy Database and the Data-Base Management

System. The system was developed on an personal computer

using dBase III Plus, a relational database management

system. Some limitations associated with dBase III Plus

made the implementation more cumbersome than would have

been necessary if another tool had been available.

Although dBase III Plus is a fairly advanced relational

database management tool for personal computers, it does

not provide the capability to: l) have more than seven

index files active at on time, 2) have multiple relations

established simultaneously between two database files or

3) have simplistic use of non-character attributes as key

109

expressions for index files

6.3.1 Activation of Multiple Index Files

In order to provide the capability to efficiently search

on more than just a name attribute provided by the user
,

would require that more index files be established and

active for each database file. It proved difficult to

limit the number of index files to seven in the prototype

implementation, and it only allows for the use of a name

attribute for searching. This situation occurred since

the prototype did allow for one of three combinations of

names to be provided.

6.3.2 Relating Multiple Database Files

Only one relation can be defined or active from one

database file to any other database file. Relations are

established using key expressions of index files. This

requires the database files to be indexed on key

attributes needed to establish relations. This presents a

need for active index files beyond the search

requirements. Once again, the limitation of only seven

active index files makes this implementation more

cumbersome

.

Since only one relation can be defined or active between

any one database file and another, it becomes necessary to

110

chain relations between database files. For example, to

relate the Source Database File with the Birth_In Database

File and the Relation Database File using a key expression

of SRC_NO+PERS_NO would require that a relation be

established from Source to Birth_In and that a relation

then be established from Birth_In to Relation, with both

relations using the same key expression. If another key

expression (index file), besides the one needed to

establish the relations, is required to find the correct

record, as is the case in the prototype system, then

multiple seeks must be performed before the appropriate

linkage between the database files can be accomplished.

6.3.3 Non-Character Key Expressions

A key expression for an index file can be one database

field or a combination of fields. When a combination of

fields is used, the concatenation is denoted by means of a

plus (+) sign. If concatenation were truly the meaning of

this denotation, there would be no problem using different

field types to establish key expressions. However, the

actual interruption of this denotation by dBase III Plus

is somewhat different. If the key expression consists of

multiple character type fields, dBase III Plus does

present what is expected in the index file. However, if

the key expression consists of multiple numeric type

Ill

fields, dBase III Plus actually adds the values of the

fields and then establishes the index file. Obviously,

this can and will present anomalies in the database. In

order to avoid these anomalies, the system must be

developed using only character type key expressions or

conversion of all key fields to character must occur.

There are functions available in dBase III Plus that

provide simplistic conversion, but the problem arises when

trying to use those fields in a search process throughout

the system. Each time it is required to search for a

value that is numeric, the conversion function must be

performed so that the value matches that of the converted

key expression in the index file. This type of

implementation leaves open the possibility for error and

cumbersome debugging. Therefore, it is recommended that

all fields used as key expression be of the character

type. This type of implementation is not always possible,

since often numeric values are required to perform

arithmetic operations. If this is the case, then a

conversion from character to numeric must occur and once

again leaving open the possibility of error and anomalies.

Another limitation associated with key expressions for

index files is that of multiple field types. dBase III

Plus does not allow key expressions to consist of

different field types. That is, a key expression cannot

112

consist of a character and a numeric field. Once again,

in order to provide this type of implementation, a

conversion on one of the field types would have to be

performed and remembered when using that field throughout

the system.

6.3.4 Summary of Conclusions and Extensions
for the Implementation

Based on the limitations discussed in the previous

sections, it is obvious that one extension would be to

develop the prototype system with another database

management tool. Future releases of dBase III Plus are

suppose to relieve some of these limitations and would

provide for a more extensive implementation. The

prototype, as a result of the limitations encountered,

only addressed three modified source records. An

extension to the system would allow for more information

to be collected from each source record as well as for

more source records to be included. Another extension

could involve providing the capability to search for

information based on fields other than name or in

combination with name. If the limitations were corrected,

more effort could be concentrated on developing complex

precedence rules which would in turn supply users with

more built-in intelligence and assistance in their

decision making processes.

113

6 . 4 Summary

Based on the facts presented in this chapter, the overall

conclusions and extensions reside in finding advanced

personal computer hardware and software tools capable of

implementing such a complex design. The availability of

more advanced tools may require re-design but would

provide the capability of implementing a more effective

system.

114

REFERENCES

[LA85]

[LA&FML80]

[PAB7 6

]

Albright, L.
1985.

Personal interview. 10, November,

Albright, L. and Leary, F. H. M. "Research
Strategies." in North Carolin Research
Genealogy And Local History , eds.

,

H. F. M. Leary and M. R. Stirewalt, Saline,
M.I.: McNaughton and Gunn, 1980, pp. 1-39

Berstein, P. A. "Synthesizing Third
Normal Form Relations From Functional
Dependencies. ACM Transaction on Database
Systems 1(1976): 277-298

[LB&JPG86] Bic, L. and Gilbert, J. P. "Learning From AI:
New Trends In Database Technology."
Computer, (March 1986):44-54

[CJD8 6]

[ITH84]

[DK83]

[FMHL86]

[JM76]

[CM]

[MA86]

[MA85]

Date, C. J. An Introduction In Database Systems
Reading, M.S.: Addison Wesley Publishing
Company, 198 6

Hawryszkiewycz, I. T. Database Analysis
And Design Chicago, I.L.: Science Research
Associates, Inc., 1984

Kroenke, D. Database Processing Chicago, I.L.:
Science Research Associates, Inc. , 1983

Leary,
May,

F. H. M.
1986

Personal interview. 19,

Martin, J. Principles of Data-Base Management
Englewood Cliffs, N.J.: Prentice - Hall, Inc.,
1976

Moody, G. "Lotus Report Writer, Add On For
1-2-3 And Symphony." Personal Computing

Anthony, M. "When You Should Switch To A Data
Base?" Personal Computing . (February, 1986) :7l

Anthony, M. "Merging Spreadsheet Data And
Text." Personal Computing . (October, 1985) :71-
73

115

[BSP88]

[RP83]

[JDU82]

[EAU85]

[DAW8 6]

[GW84]

[MW85]

Parker, B. S. "Incoporating Expert System
Technology into a Professional Genealogical
Information System." Master's Thesis, Kansas
State University, 1988

Parker, R. "Computing Your Family Tree."
Personal Computing . (January, 1983) : 112-118

Ullman, J. D. Principles of Database Systems
Rockville, M.A. : Computer Science Press, Inc.,
1982

Unger, E. A.
June, 1985

Personal interview. 12,

Waterman, D. A. A Guide To Expert Systems
Reading, M.S.: Addison - Wesley Publishing
Company, Inc., 1986

Wiederhold, G. "Knowledge and Database
Management." IEEE Software (January, 1984):
63-73

Wilson, M. "A Study of Null Values." Masters 's
Thesis, Kansas State University, 1985

116

APPENDIX A - BERNSTEIN'S ALGORITHM

INPUT TO ALGORITHM IS A SET OF ATTRIBUTES, A AND A SET OF
FUNCTIONAL DEPENDECIES, F.

STEPS IN ALGORITHM:

1. Eliminate extraneous attributes in each FD of F,
producing a new set of FDs, Fl.

2. Remove redundant FDs from Fl. To do this, find
a minimal covering F2 of Fl.

3. Partition F2 into groups, where each group has an
identical determinant.

4. Find all equivalent keys in F2 by using FD rules.

5a. For each pair of equivalent keys X -> Y, Y -> X,
remove X -> Y or Y -> X or both from F2 if they
exist in F2 , and add X -> Y and Y -> X to H.
The new set of FDs, F3 now is the same as F2,
with all FDs between equivalent keys removed; H
contains the FDs between equivalent keys.

5b. Find a minimal covering, F4 of (F3 + H) . F4 must
include all FDs in H (i.e., all equivalent keys),
together with the required FDs in F3 (which may be
a subset of F3) , to make a minimal covering of F3
+ H. Thus F4 = F3' + H where F3 is a subset of F3.
The important point here is that F4 must explicitly
contain all FDs between equivalent keys.

6a. Partition F4 into groups, where each group has an
identical determinant.

6b. Merge groups with determinants that are equivalent
keys.

6c. Contruct a relation for each group in 6b.

117

APPENDIX B

gijlli: is?:

°£~

a;<!

<o >,>,3

-23 5

I

ill]

a 2

i I 1 o c —

llifll a i 1 1

1

i i

CO O m <U a,

o- « (J-
|- 3Z a

S J I •• J 1

CM

fill

? }~
<

u=i?s r —

^2^
5*>a 2

111 ;l i

2

—5

i
~. 3

_ ©OOu->

32* Z
3-J
illl

>s>^l Z <M

en o o
: — o >*j

i >.c£c

M
111121

3
! ° -

illl

JJ

118

APPENDIX B

jiliiljlijii ilmiiil iiii I ulijl ijij ii

"4i I
o ° X 5 °

J 1 1 1 J i ? ~ all lili

U t_> (J

• OCO OfflO

S ijljj i

sSs

silfc
siliii
• Miol

>s *J i CTS| ma
*> VOX)0»3

! H

119

APPENDIX B

120

APPENDIX B

121

APPENDIX C

a**

P I G . P K G

TYPE: program library

CALLED FROM: This is the starting program

PROGRAMS INVOKED: INITVAR
INITSCRV
INITSC
MMENU

LOGIC: This is the initial program executed when
entering the PIG system. Global variables
are initialized and control is passed over
to the main driver, MMENU. prg

•••••A***

SET STATUS OFF
set bell off
SET SCOREBOARD OFF
RELEASE ALL
SET ECHO OFF
SET TALK OFF
t 4,4 TO 18,75 DOUBLE
« 6,8 TO 16,71 DOUBLE
t 10,18 SAY "PROFESSIONAL INFORMATION GENEALOGICAL"
« 12,32 SAY "SYSTEM"
CLEAR GETS
store " " to CONTVAR
I 23,10 SAY "Type 'C to continue ..." get CONTVAR
read
do while CONTVAR <> "C"

store " " to CONTVAR
-" clear gets
§23,10 say "Type 'C to continue ..." get CONTVAR
read

enddo
*

* set variables i give control to main menu program

DO initvar
DO initscrv
DO initsc
DO mmenu.prg

ft***
* *

* MMENU.PRG *
* *
* TYPE: program library *

* *

» ftT.im BY: PIG *

* *

* PROGRAM INVOKED: HELPINFO »

« ENTERSRC «

* DELTSRC *

« RPTS »

« UPDATREC *

* ADHOC *

* *

« GLOBAL VARIABLES: none •

* *
« LOGIC: THIS IS THE MAIN DRIVER PROGRAM. THE MAIN •
* MENU IS DISPLAYED. DEPENDING ON THE FUNCTION *

* CHOSEN, THE CORRESPONDING PROCEDURE IS CALLED.*
* *
ft***
set talk off
SET ECHO OFF
STORE SPACE (1) TO OPT
DO WHILE OPT <> "6"
•

* draw master menu on screen
*

clear
set bell off
STORE SPACE (1) TO OPT
C 2,19 to 6,60
C 7,19 to 20,60
e 4,21 say "PROFESSIONAL INFORMATION GENEALOGICAL"
§ 5,37 say "SYSTEM"
e 9,30 say "** Main Menu **"
C 12,26 say "(1) Help Information"
« 13,28 say "(2) Add Source Records"
$ 14,28 say "(3) Delete Source Records"
i 15,28 say "(4) Update Source Records"
S 16,28 say "(5) Query/Reports "

§ 17,28 say "(6) Exit "

clear gets
§ 23,28 eay "Enter Selection get OPT
read
do while opt < "1" .or. OPT > "6"

store " n to OPT
clear gets
§ 23,28 say "Enter Selection " get OPT
read

enddo
*

* CALL APPROPRIATE PROCEDURE BASED ON OPTION SELECTED
*

do case
case OPT - "1"

*** Help Information Procedure **
do helpinfo

case OPT "2"

*** Enter Source Record Procedure
do entersrc

case OPT « **3"

*** Delete Source Record Procedure
do deltsrc

case OPT - "A"
*** Update Records

do updatrec
case OPT « "5 n

*** Generate Reports
do rpts

case OPT » "6"
*** Exit from PIG system

exit
endcase

enddo

*

* INITVAR.PRG *

* TYPE: Program Library
*

* CALLED FROM: PIG, bthcert, mrgcert, dthcert

* GLOBAL VARIABLES: This routine establiBhes the *

* global variables used in PIG *

*
*

* LOGIC: This routine initializes and establishes *

* the type, of the variables associated with *

* PERSON data base fields, as well as the *

* source number variable associated with the *

* SOURCE data base file. Global variables *

* declared here also. *

********** fc * ***

PUBLIC dte, city, cnty, st, fac, sex, race, prsno

PUBLIC fname, mname,lname,age
PUBLIC srcno, src, sfdte, sedte, sfcity, sfcnty, intfd

PUBLIC sfst, sprsno, rel, prsno, srcno
PUBLIC inerr, person, cnt, opt, birthdate
PUBLIC bdte, bcity, bcnty, bst, caus, bfac, ddte, deity

PUBLIC denty, dst, sfname, surname, slname, mfname, mmname

PUBLIC mlname, ffname, fmname, flname, bage, bsex, brace

PUBLIC prsno2, prsno3 , prsno4 ,
prsno5, prsno6, prsno7

PUBLIC prsnoS, f, m , flname, fmname, ffname, mlname

PUBLIC mfname, mmname, bfname, bmname, blname, fbfname

PUBLIC fbmname, fblname, mbfname, mbmname, mblname, mdte
**

use PERSON. dbf
append BLANK
store PERS_NO to prsno
store PERS_NO to prsno2
store PERS_NO to prsno3
store PERS_NO to prsno4
store PERS_NO to prsno5
store PERS_NO to prsno6
store PERS_NO to prsno7
store PERS_NO to prsnoS

use SOURCE. dbf
append BLANK
store SRC_NO to srcno

use
return

.««***«*•****»**«***«*«*****************************

INITSCRV. PEG

TYPE: Program Library *

CALLED FROM: PIG, bthcert, mrgcert, dthcert *

GLOBAL VARIABLES: dte, city, cnty, Bt, fac, Bex, •

race, fname, mname, lname, *

ddte, deity, denty, dst, *

caus, bdate, bcity, benty, bst, *

bfac, mate, age, bage, bsex, *

brace, bfname, bmname, blname, *

ffname, fmname, flname, mfname, *

, mmname, mlname, fbfname, fbmname, *

t fblname, mbfname, mbmname, *

i mblname *

*

LOGIC: This routine initializes and establishes *

t the type, of the variables associated with *

. BIRTH_IN, PERSON, DEATH_IN, and MARRIAGE •

i data base files. *

k
*

t******* ***

use BIRTH_IN.dbf
append BLANK
store BIRTH_DATE to dte
store BIRTH_CITY to city
store BIRTH_CNTY to cnty
store BIRTH_ST to st
store BIRTHFAC to fac
store BIRTH_SEX to sex
store BIRTH_RACE to race

use PERSON. dbf
append BLANK
store PR t NAME to fname
store PRMNAME to mname
store PR_L_NAME to lname
store PRFNAME to bfname
store PR_M_NAME to bmname
store PR_L_NAME to blname
store PR_F_NAME to ffname
store PR_M_NAME to fmname
store PR L_NAME to flname
store PR~F_NAME to mfname
store PR« 1MB to mmname
store FRLHAME to mlname
store PRFNAME to fbfname
store PR_M_NAME to fbmname
store PRLNAME to fblname
store PR_F_NAME to mbfname
store PR_M_NAME to mbmname
store PR_L_NAME to mblname

use DEATH_IR.dbf
append BLANK
store DEATH DATE to ddte

store DEATH_CITY to deity
store DEATH_CNTY to denty
store DEATH_ST to dst
store DEATH_CAUS to caus
store BURY_DATE to bdate
store BURY_CITY to bcity
store BURY_CNTY to benty
store BURY_ST to bst
store BURY_FAC to bfac

use MARRIAGE. dbf
append BLANK
store MARRY_DATE to mdte
store MARRYRACE to brace
store HARRYAGE to age
store MARRY_AGE to bage
store MARRY_SEX to bsex
store MARRY_RACE to brace

se
return

*
* INITSC.PRG *
.

* .
* TYPE: Program Library *
* *
* CALLED FROM: pig, bthcert, mrgcert, dthcert •

GLOBAL VARIABLES: src, sfdte, intfd, sedte,
sfcity, sfenty, sfst

« LOGIC: This routine initializes and establishes *
the type, of the variables associated with *

* SOURCE data base fields. *

use SOURCE. dbf
append BLANK
store SRCTYPE to src
store DATE_SR_FD to sfdte
store INT_FD to intfd
store DATE SR_ET to sedte
store CITy~SR_FD to sfcity
store CNTY_SR_FD to sfenty
store ST_SR_FD to sfst

use
return

HELPINFO. PRG

TYPE: Program Library

CALLED FROM: KMENU

PROGRAMS INVOKED: none

GLOBAL VARIABLES: none

LOGIC. This procedure will provide an on-line

!en«^i <

f
°f !

he ProfeB«°™l information

t?Sn i??! k
1 £*ste,n

- * detailed descrip-tion will be provided.

"clear*""*"*"*""""""*"*"" *«»»«««

turn'
5 "y "helpinfo Program not implemented yet-return

*** A**^ i^ 41titi

ENTERSRC.PRG
TYPE: program library

CALLED BY: MMENU

PROGRAM INVOKED: BTHCERT
MRGCERT
DTHCERT
INFCERT

GLOBAL VARIABLES: opt

*

*

*

*

*

*

*

*

*

* LOGIC: The user is prompted to select the source *
document type to be entered. The possible *
source types for this prototype are: *
birth, death, and marriage certificates. *
Informal source types will be an *
extension to be added later. *

clear
store " " to srctyp
do while srctyp <> "5"

clear
set bell off
store space (l) to srctyp
@ 3,19 to 6,60
@ 7,19 to 19,60
@ 5,30 say "SOURCE RECORD ENTRY"
@ 9,2 6 say "Primary Source Record Types-"
§ 12,26 say »(i) Birth Certificate"
8 13,26 say "(2) Marriage Certificate"
8 14,26 say "(3) Death Certificate"
6 15,2 6 say "(4) Informal Source"

clear
2

ge?s
y " (5) EXit " retUr" t0 min menu "

@ 21,28 say ;

read"
Enter S°UrCe Rec°*<* Type: » get srctyp

do while srctyp < "1" .or. srctyp > "5"
store " » to srctyp
clear gets
@ 23,28 say ;

read
Enter S°Urce Record Type: " get srctyp

enddo

*

* call appropriate procedure based on source
* type selected.
*

do case
case srctyp = "1"

do bthcert
case srctyp = "2"

do mrgcert
case srctyp = "3"

do dthcert
case srctyp = "4"

**
*

* BCFMT
* -
*

* TYPE: program library
*

* CALLED BY: BTHCERT

* GLOBAL VARIABLES: lname, fname , mname, dte, race,
* sex, fac, city, cnty, st

* LOGIC: This is the screen format for the birth
* certificate.
*
********* ********************************* **************

§ 5,4 say "Name at birth:"
§ 6,4 say "Last " get lname
§ 6,29 say "First " get fname
I 6,50 say "Middle " get mname
6 7,4 say "Birth Date (MM/DD/YY) " get dte
§ 7,36 say "Race " get race
% 7,53 say "Sex " get sex
€ 8,4 say "Place of birth:"
§ 9,4 say "Facility get fac
§ 10,4 say "City " get city
§ 10,31 say "County " get cnty
§ 10,60 say "State get st

. SRCFMT *

.
*

«
t

* TYPE: program library

* CALLED BY: BTHCERT, DTHCERT, MCCERT *

GLOBAL VARIABLES: initfd, sedte, sfdte, sfcity,
sfcnty, sfBt

* LOGIC: This is the screen format for the source *

* record information.

§ 13,2 say "Source Information:"
@ 14,2 say

"Person entering source document (initials) " :

get intfd
5 15,2 say "Date entered (MM/DD/YY) " get sedte

« 15,36 say "Date source found (MM/DD/YY) " get sfdte

§ 16,2 say "Place source was found :"

8 17,2 say "City " get sfcity
6 17,29 say "County " get Bfcnty
e 17,58 say "State " get sfst

"""*»»»««..««.«««„„.„,„„„,.„.„,MM
M C F M T 1

TYPE: program library

CALLED BY: MRGCERT

GLOBAL VARIABLES: l„ame tna*e, mname. sex, race,
.*

Wnane, bmname, bfname, flname .

mlnaZl' ST**' nlnM"*. ofname .

5?E£j
fbl"»»e, fbfname, fbmname,.

brace, bage, age'

"GIC!
Se

6
dea^er?^afr" - ' -«- -

»»»•......„„„„„„„„
-roo:

6,2 say "Last " get
| 4,2 say "Grooa-i^au"""""**'
e 6.2 sav "urn* « ««*. .

on: :"

• 6,28 say "F?rst S
1^ "" '"""""«« lllll-

« 6, 50 say «MidSle
P
»
C
g:r."

!MM,!! " !1! ' !
"

?;!£ s
s
:y
y :£.-.- & »~ Sa» ,

.„„ IIIIM .
1 8,2 say "Groom's Father:"
I 9,2 say "Last " get »

» 9,28 say "F^VgS"" "" ' ' ' " " ' ' '
' " ' ' '

' '
"

? 9,50 say -SddKrte """"Mlllllll.

ijO.2 .ay"G
f
^:%P^r:"i ! " M1!IU """

11,2 say "Last " get ;

• 11,28 say "?i?S
e
"
P
gIt

U" ""'"""I'llltUlM.

* 11,50 say "SfSdll
Pi=^ "'"" " """"-

§ 13 2 =»„ hS™??" Plcture 'il!l!l|l!!|iMi.
,}j'j *** ;?

ride Information:"
'«'"«'

15,2 say "Last " get ;

« 15,28 say -mESVJS"?" """ " "'
' »» ' »' ' »"

• ",50 say "KiaX ffe """"""Hi.-
« 16,2 say »25"5"»&C£f; "! !! -'iil!Ilillt...

« 16 10 say "Race -'£* k" picture *«"

1 U.'u sly "A
R
gr- «* ba

r
ge

E PiCtU" '''"'"'I"

III',
"Y

;
Bride '= Fathe?:-

18,2 say "Last " get ;

I 18.28 say "£rsT* glf?" ">««IIIU|||l||„|,.

t 18, 5o say -Mi^V^6 """illlUIIIIJ.

« 19.2 say -IrSe"! EeS'V'i ! " " U ! ! , i , , n

* 20,2 say «££? « m^*r <,naiden """»="

8 20,28 say *£?! »**« ><lllllll|||||| ll ,„.

« 20,50 say -j££XV£*™- " ,!!!!! "!!!!!M-
abum. picture "IIIIIIIIIIIH,,.

a***
*

M C F M T 2 »

TYPE: program library

CALLED BY: MRGCERT

GLOBAL VARIABLES: mdte, fac, city, cnty, st,
wllname, vlfname, vlmname,
v21name, v2fname, s2mname

LOGIC: This is the second screen format of the
marriage certificate entry screen routine.

§ 2,2 say "Date of Marriage (MH/DD/YY) "
;

get mdte
8 4,2 say "Place of Marriage:"
8 5,8 say "Facility " get ;

fac picture " 1 1 1 1! 1 1 1 1 1

1

I 6,8 say "City " get ;

city picture "III11I1III
I 6,36 say "County " get ;

cnty picture " 1 11 1 1 1 1 1 1

1

e 6,69 say "state " get st " 1
!

"

f 8,2 say "Witnesses:"
§ 9,2 say "Last " get ;

vl Inane picture " 1 1 I 1 1 1

1

§ 9,28 say "First " get ;

vlfname picture "1111111
I 9,50 say "Middle " get ;

vlmname picture "
1 1 1 1 1 1

1

§ 9,2 say "Last " get ;

v21name picture "II Mill
• 9,28 say "First " get ;

V2fname picture "1111111
8 9,50 say "Middle " get ,•

V2mname picture " 1 1 1 1 1 1

1

nun"
iiiiiiiiiii"

111111IIM!"

lllllllllllll!

111111111"

U1M1111"

lllllllllllll]

lllllllll"

lllllllll"

***************,m******
"*••••*••**•**.**********,»

D C F K T 1

TYPE: program library

CALLED BY: DTHCERT

* GLOBAL VARIABLES: Inane ft,.. *

dcn?y,' Is?
n
%erSce

ddte
'
dclt^ *

ij.,J '
.

' Bex
* race, caus. *

: c£y .' £**• bst
' '«. <*e,'city, :

IOG1C!

Se^a^erln^Ie™" «* ' ~"- ~

• 6,28 Bay -FirBt
1
"
a
get

P
;

CtUre """"""HlUll,,,.
• 6 , 50 say -Miadir-°ge^fUre "'""11111 M ! II =•

« 8,2 say -Date ^T fi
oture "" 1 1 1 II ! ! 1 1 ! ! I I

-

• 9-<3 say- co^tyi?
iC

ger
" U!!!?U!i """"""

• t.1l say - s
a
a^y-P^U-

t
""""i«M.M ! n J ,M-

• 10,2 say "Sex » „.? ,
Picture "!!»

6 10,10 say -Race - til
"* Pict«™ -!-

« 10,28 S.J -£«e oPSJSV.JS™ """""""
« 12,2 say n,Stf1

1S?f? I'"""""!!!!'
* 13,2 say -SS^siSJIl^9:*Jf?
• 13,41 say -Co™ty

y
-
P
g|t

U" """"'""""HIM.

»as 3a£-S%SJft^';
I 17,44 say -CoSnty

Pl
|et"

"'
'
" ' """'"" 1 1 II"

<l 7 . 72say.sta?e
y
.
Pl

gerst

" !!

p
|--^:;;."ii J! .

D C F M T 2 »

TYPE: program library

CALLED BY: DTHCEET

GLOBAL VARIABLES: lname, fname, mname, ddte, deity, «
denty, det, sex, race, caua, *
bdte, bcity, bst, fac, dte, city, •
cnty, st .

LOGIC: This is the screen format for a portion of *
the death certificate. *

8 1,1 clear
§ 1,2 say "Deceased:"
I 2,3 say "Last «, ,•

lname picture "1 1 ! ! 1 II 1 1 1 J ! 1 1 ! 1 1 1 1
i"

6 2,28 say "First ", fname picture "1 1 1 1 1 1 1 J 1 1 1 1 1 1
1"

» 2,50 say "Kiddle ", mname picture "1 1 1 1 1 ! 1 1 1 1 1 ! i I !•
e 4,2 say "Spouse: "

S 5,2 say "Last " get ;

slnane picture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
]

•

« 5,28 say "First " get ;

sfname picture " 1 1 ! ! ! 1 1 1 ! ! ! ! ! 1
1

"

§ 5,50 say "Middle " get ;

surname picture "1] 1 U II 1 11 1 i 1 1
1"

e 7,2 say "Father: «
5 8,2 say "Last " get ;

a a ,=
«naae picture • 1 1 11 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1

1

"

« 8,28 say "First » get ;

«T o *„ .£f
n
?
De Picture "iiliiiiiiiiiiii"

§ 8,50 say "Middle " get ;

fmname picture " 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

"

« 10,2 say "Mother: "
e 11,2 say "Last " get ;

a ,, •>„
mlname picture ! I III 11 1 II ill I III II !•

6 11,28 say "First " get ;

mfname picture "1 1 1 11 M 1 1 1U 1 1 1"
« 11,50 say "Middle " get ;

mmname picture " 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

»

* *
* DTHCERT.PRG *
. „
* *
* TYPE: Program Library *
* .
* CALLED FROM: ENTERSRC *

PROGRAMS INVOKED: DCFMT1, DCFMT2 , SRCFMT,
VALDC, VALSRC, CRTSRCNO,
CRTPRSHO, ADDSRC, ADDDC,
ADDBC, ADDPRS, ADDMC,
INITSC, INITSCRV

GLOBAL VARIABLES: cnt, inerr, rel, opt, sex,
fname , mname , 1name , mfname

,

mmname, ml name, sfname, emname,
slname

* LOGIC: The death certificate screen(s) is printed. •
* The user is prompted to enter the death •
* certificate data. The data is validated. *
* If errors are ;ound, the user is prompted *
* to reenter the fields in error. If no *
* errors, the source data is added to the *
* appropriate data base files. *
* *

clear
src "DC"
cnt - 1
loopcntl « "Y"
opt » * «

S.1,32 say "ENTER DEATH CERTIFICATE"

do while loopcntl - "Y"
do dcfmtl
e 20,1 say " "

wait
11,1 clear
do dcfmt2
do srcfmt
8 21,2 say ;

"Type X to Exit, any other key to Enter Data";
get opt picture "!"

read
if opt - "X"

return
endif
do valdc
do valsrc
if inerr - "Y"

* 22,2 say "Reenter the field (s) in error"
endif
loopcntl - inerr

§ 1,1 clear
enddo
*

* Is this a new person, or does this person exist?
*

* »»»» code goes here

* Enter death certificate information into db's
* Assumption for this section of code is that the
* people are new. This section will have to be
* modified.
*

cnt 1
do while cnt < 5

* Add deceased

case cnt * 1 .and. Iname o *

do crtsrcno
do crtprsno
do addprs
do addsrc
do adddc
if birthdate - "Y"

do addbc
endif

** add deceased spouse

case cnt 2 .and. slname <> "

do crtprsno
do addsrc
do addmc
fname sfname
mname - surname
lname = slname
do addprs
if sex « "F"

rel - "HUSBAND"
else

rel - "WIFE "

endif
do addrel

** add deceased father

case cnt - 3 .and. flname <> " "

do crtprsno
do addsrc
fname ffname
mname = fmname
lname * flname
do addprs
rel - "FATHER"
do addrel

** add deceased's mother

case cnt - 4 .and. mlname <> " "

do crtprsno

do addsrc
fname * nfname
mname * mmname
Inane ml name
do addprs
rel - "MOTHER"
do addel

endcase
cnt « cnt + l

enddo
use
do initsc
do initscrv
return

•***••*•**.••,»*,**„»,»M »«**««»*»»»„,,*****************

BTHCERT.PRG I

* TYPE: Program Library

* CALLED FROM: ENTERSRC

PROGRAMS INVOKED: BCFMT, SRCFMT,
VALBC, VALSRC, CRTSRCNO,
CRTPRSNO, ADDSRC, ADDPRS,
ADDBC, INITSC, INITSCRV

global VARIABLES: cnt, inerr, rel, opt,
birthdate, person

.
L°GIC:

Hj
e birth certificate screen(s) is printed. *The user is prompted to enter the birth *

• certificate data. The data is validated. «
errors are found, the usei i„ prompted *

to reenter the fields in error. If no .
errors, the source data is added to the *
appropriate data base files. *

"clear*"""***"**""***""**""**""""""""*
src « *bc"
cnt 1
loopcntl "y"
opt « " "

(1,32 say "ENTER BIRTH CERTIFICATE"

do while cnt < 4
§ 3,2 clear
do while loopcntl - "y"

' do case
case cnt - a

6 3,2 say ;

case cnt"i
n
!
ant "^ Certificate Information:"

« 3,2 say ;

case cnt"^3
her "^ Certificate Information:"

i 3,2 say i

endcase
"Mother "^h Certificate Information:"

do bcfmt
if cnt - l

do srcfmt
endif
t 21,2 say ;

"Type X to Exit, any other key to enter data";
get opt

read
if opt - "X"

return

endif
do valbc
if inerr - "y"

§ 22,2 say "Reenter the field(s) in error"
endif
loopcntl inerr

enddo

» Is this a new person, or does this person exist?
This code will be added later. First testing assumes
that all individuals are new. The following code
will have to be modified when this new code is added.

if cnt - 1
do crtsrcno

endif
if person "y"

do crtprsno
if cnt <> 1

src - "BR"
endif
do addsrc
do addprs
if birthdate e »y"

do addbc
endif
do case

case cnt - 1
rel - "self"

case cnt « 2

rel - "father"
case cnt 3

rel - "mother"
endcase
do addrel

endif
cnt cnt + 1
loopcntl - "y"
do initscrv

enddo
do initsc
use
return

*

* MRGCERT.PRG

TYPE: Program Library

CALLED FROM: ENTERSRC

PROGRAMS INVOKED: MCFMT1 , MCFMT2 , SRCFMT,
VALMC, VALSRC, CRTSRCNO,
CRTPRSNO, ADDSRC, ADDMC,
ADDPRS, INITSC, INITSCRV
INITSC, INITSCRV

GLOBAL VARIABLES: cnt, inerr, rel, opt, sex, bsex,
fname, mnaine, lname, bfname,
bmname, blname, mfname, mmname,
ml name, ffname, fmname, fInane,
fbfnane, fbrcname, fblname,
mbfnane , mbraname , mb 1name

,

wlfname, wlnname, wllname,
v2fnane, w2nnane, w2Inane

LOGIC: The marriage certificate screen is printed.
The usar is pronpted to enter the marriage
certificate data. The data is validated.
If errors are found, the user is pronpted
to reenter the fields in error. If no
errors, the source data is added to the
appropriate data base files.

'**
clear
src - "MC"
cnt - 1
loopcntl - "Y"
opt " "

* 1,30 say "ENTER MARRIAGE DEATH CERTIFICATE"

do while loopcntl • "Y"
do mcfmtl
20,1 say " •

wait
(1,1 clear
do ncfnt2
do srcfnt
« 21,2 say ;

"Type X to Exit, any other key to Enter Data";
get opt picture "!"

read
if opt - "X"

return
endif
do valnc
do valsrc

if inerr - "y"

§ 22,2 say "Reenter the field (s) in error"
endif
loopcntl = inerr
£ 1,1 clear

enddo
*

* Is this a new person, or does this person exist?

* »»»» code goes here

* Enter death certificate information into db's
* This code assumes that all of the individual's are
!

ne?'
«
IX

-
Vl11 ta B°dified when the "does this person* exist" code is added.

***.»««

*

cnt • l
do while cnt < 9

do case

** Add groom

case cnt - l .and. lname <> " «

do crtsrcno
do crtprsno
do addprs
do addsre
do addmc
rel - "SELF"
do addrel

** Add bride

case cnt - 2 .and. blnaae <> H
do crtprsno
do addsrc
fname « bfname
mname = bmname
lname blname
addprs
do addmc
rel - "WIFE"
do addrel

** Add groom's father

case cnt - 3 .and. flname <> »
do crtprsno
do addsrc
fname « ffname
mname fmname
lname - flname
addprs
do addmc
rel - "FATHER"
do addrel

** Add groom's mother

case cnt - 4 .and. mlname <>" «

do crtprsno
do addsrc
fname - mfname
inane = mmname
lname * Kinase
addprs
do addmc
rel - "MOTHER"
do addrel

** Add Bride's father

case cnt 5 .and. fblname
prsno prsno2
do crtprsno
do addsrc
fname - fbfname
mname - fbmname
lname - fblname
addprs
do addmc
rel "FATHER"
do addrel

** Add Bride's mother

case cnt 6 .and. mblname
prsno « prsno2
do crtprsno
do addsrc
fname * mbfname
mname = mbmname
." name * mblname
do addprs
do addmc
rel - "MOTHER"
do addrel

. ** Add Witness 1

case cnt - 7 .and. wllname i

do crtprsno
do addsrc
fname - wlfname
mname wlmname
lname - wllname
addprs
do addmc
rel * "WITNESS"
do addrel

** Add Witness 2

case cnt - 8 .and. v2 lname «

do crtprsno
do addsrc
fname = w2fname
mname v2mname
lname = v2lname
addprs
do addmc
rel - "WIFE"
do addrel

endcase
cnt = cnt + l

enddo
use
do initsc
do initscrv
return

.....«....,,„„„„„„„„„4((llM((1*************

DELTSEC. PRG

TYPE: Command Library

CALLED FROM: Bmenu.pgm

PROGRAMS INVOKED: dbthcert
dmrgcert
ddthcert
dinfcert

GLOBAL VARIABLES: opt,inerr

LOGIC: The user is prompted to eeleot the typeof source record to be deleted. The
«^2?riate Pr?cedure based on the sourcerecord type selected is given control.

clear"""""***""""""**""""""*"""*
store " " to srctyp
do while srctyp <> "5"

clear
set bell off
store space (1) to srctyp
« 3,19 to 6,60
» 7,19 to 19,60
§ 5,30 say "SOURCE RECORD ENTRY"

I ?;
2L"y "KJ*"*5' Sour=e Record Types:"

|
12,26 say "(1) Birth certificate"

I H'll
"y

r
(2) Marri»ge Certificate"

I \i'll
S"y (3) Death Certificate"

I 15,26 say "(4) Informal Source"

: clear"e"y <SJ **" " retUrn to "™ »«>u«
* « 21,28 say i

rea?"*"
S°Ur°e ReCOrd "*»" " get srctyp

do while srctyp < *i» . or . srctyp > «5»
store » " to srctyp W
clear gets
i 23,28 say ;

read
E"ter S°UrCe ReCOrd Type: " »** »"*yP

enddo
*

* fype SScSJ"" PrOC6du« *>—< - source

do case
case srctyp *%*

do dbthcert
case srctyp - »2"

do dmrgcert
case srctyp - "3**

do ddthcert
case srctyp « 4"

do dinfcert
case srctyp » "5»

exit
endcase

enddo
return

**
* *

* VALNAME.PRG *

TYPE: program library *

*

CALLED BY: mrgcert, bthcert, dthcert

GLOBAL VARIABLES: f, m, fname, mname, lnmame,
inerr

* LOGIC: This routine validates the name fields. *

* Required: Last name and first and/or *

* middle name. *

**
*

f = "N"
m = "N"
if lname <> " "

if fname = " "

if mname " "

@ 13,4 say "No First or Middle Name Given, "
;

"Reenter the field(s)"
else

inerr = "N"
m = "Y"

endif
else

inerr = "N"
f = »y"

endif
else @ 13,4 say "No Last Name Provided, Reenter field"
endif
return

* *

* VALSRC *

* TYPE: program library *

* *

* CALLED BY: DTHCERT, BTHCERT, MRGCERT *

* *

* *

* *

* GLOBAL VARIABLES: sedte, intfd, inerr *

* *

* *

* *

* LOGIC: This routine validates the source descrip- *

* tion information. The initials of the *

* person entering the document must be given. *

* The date of the document must be typed in. *

* If an error is found, inerr is set to "Y". *

* *

*

inerr = "N"
if intfd = ' •

@ 18,2 say
"initials of person entering source required"

inerr = "Y"
endif
if sedte = " / / "

@ 20,2 say "Date source entered required."
inerr = "Y"

endif
return

*** i4tiJ, 4
*

* V A L D C *

* TYPE: program library *

* CALLED BY: DTHCERT *

* GLOBAL VARIABLES: ddte, inerr, birthdate, *
lname, mname, fname *

*
*

*
* LOGIC: This routine validates the death certificate.*

A death certificate, must have a death *
date. The names on the certificate must be *
verified. If an error is found, the inerr *

* is set to "Y" *
*

** 4i^^ it4^
inerr = "n"
birthdate = "Y"
* a loop needs added here to check for all names.
do valname
if ddte = " / / "

f 20,2 say "Date of death is required for death cert "
inerr — "Y"

endif
return

*

* V A L B C *

* TYPE: program library
*

* CALLED BY: BTHCERT
*

*

*

* GLOBAL VARIABLES: dte, inerr, birthdate, person

* LOGIC: This routine validates the birth certificate.*
* A birth certificate, must have a birth *

* date. The names on the certificate must be *

* verified. If an error is found, the inerr *

* is set to MY" *

*

*

* This code needs expanded. It only has the bare
* minimum amount of checking at this point. It will
* be expanded.
*

inerr - "n"
person = "y"

birthdate = "y"
* a loop needs added here to check for all names.

do valname
if dte = " / / "

@ 20,2 say "Date of birth is required for birth cert."

inerr = "Y"
endif
return

**
* *

* VALMC.PRG *
* *

* *

* TYPE: program library *
* *
* CALLED FROM: MRGCERT *

*

PROGRAMS INVOKED: VALNAME *

* LOGIC: This program validates the marriage certi- *

* ficate. The Last name + combination of *
* middle and/or first name is required. *
* *

**
* >» it has to be expanded

*************** *******«*«***«******«»»*.«..,,**»»,**,*»,„*,
DBTHCERT . PRG

CALLED FROM: DELTSRC.PRG

LOGIC: THIS IS THE PROGRAM THAT HANDLES THE LOGIC
REQUIRED TO DELETE A BIRTH CERTIFICATE.
THE USER SUPPLIES THE NAME FOR THE PRIMARY
PERSON ON THE BC THEN THE PROGRAM VALIDATES
THE NAME AND SEARCHES FOR THE APPROPRIATE
NAME COMBINATION. THE PROGRAM PROVIDES A
LIST OF ALL NAMES AND THEIR ASSOCIATED
PERSON NUMBERS AND SOURCE NUMBERS THAT
MATCH WHAT THE USER SPECIFIED. THE USER
THEN SELECTS THE APPROPRIATE PERSON AND
SOURCE. THIS PROGRAM THEN INVOKES THE
PROGRAMS REQUIRED TO DELETE DATA FROM ALL
DATABASE FILES REQUIRED.

PROGRAMS INVOKED: VALNAME.PRG, DELTPERS, DELTSRCE
DELTBC, DELTREL, INITSCRV, INITSC

ACTIVE DATABASE FILES: BIRTH_IN.DBF, SOURCE. DBF
PERSON . DBF

ACTIVE INDEX FILES: BIRTH_IN -> SRCPERS.NDX
SOURCE -> PERSTYPE.NDX, SPERS.
PERSON -> NAME.NDX, NAME2.NDX,

NAME3.NDX

********************* r***********************, *****************

INITIALIZE VARIABLES

clear
opt = K H

pno * •'

match = ityti

stype = »BC»

ESTABLISH ACTIVE WORK AREAS
WITH APPROPRIATE DATABASE FILES
AND THE REQUIRED INDEX FILES

ALSO, ESTABLISH RELATIONS

select 3
use BIRTH_IN index SRCPERS alias BIRTH
select 2
use SOURCE index PERSTYPE, SPERS alias SRCEset relation to SRCNO+PERS NO into BIRTH
select 1

—

use PERSON index NAME , NAME2 , NAME3 alias PEOPTFset relation to PERS_NO+»BC» into SRcl
*

« GET PRIMARY PERSON'S NAME AND VALIDATE t
*

loopcntl = "Y«
do while loopcntl = "Y"

inerr = "Y"
do while inerr = "Y"

1 5:,
2
7

S
s
a

a
y
y"SL

te
t
r
o
N
DrDeLt

P
e^

0n "h°" Bi"h ^tificate"

I ?;* til '^dlfL^f *vr+:
Fi

?st and/or Hidaie "

a -7 I, ' ..
t Name ls a11 that is Known Please"

!
7
'*t

sa* 'Perform Query Instead of Delete^
| 11,2 say "LAST » get lname
|

11,27 say "FIRST " get fname
|

11,48 say "MIDDLE " get mname
I 21,2 say "TYPE X to Exit, Any other Key to Enter Data ";

read
if opt "X"

return
endif
do valname

enddo while inerr

*

* Search For Name In Format Provided By User *
*

if f = "Y" .and. n - »Y"
set order to 1

else"*
ltrlffl (tri*<lname,) +ltri» (trim(fname)

)
+ltrim(trin (,nna»e)

,

if f - »y« .and. n - »N»

set order to 2

else
6** ltrim

' tril°(lnaae))+ltrim (trim (fname)

)

set order to 3

end"**
ltrim (triB

< ln»»«)) +ltrim (trim (mname)

)

endif
if eof()

l^cntH :?
atch Can Not «* "ound For Name Entered-

else

CHECK TO SEE IF PERSON ENTERED HAS A BC

loopcntl * "n"
prtcnt = o
do while match - "Y"

select 2
if .not. eof()

PRINT ALL PERTINENT DATA TO SCREEN

clear
€ prtcnt+1,1 say PERS_NO->PERSON, PR_L_NAME->PERSON,

;

PR_F_NAME->PERSON , PR_M_NAME->PERSON
6 prtcnt+1,60 say BIRTH_DATE->BIRTH_IN,SRC_NO, INT_FD,

ST_SR_FD
prtcnt = prtcnt + 1

endif

SEARCH FOR ANOTHER PERSON WITH
SAME NAME AS ENTERED BY THE USER

select 1

skip
person "Y"

* DETERMINE WHICH NAME COMBINATION
* USER PROVIDED

if .not. eof()
if f="Y" .and. m="Y"

if ltrim(trim(PR_L_NAME))<>ltrim(trim(lname)) .or. ;

ltrim(trim(PR_F_NAME))<>ltriin(triB(fnaine)) .or. ;

ltrim(trim(PR_M_NAME))<>ltrin(trim(mnane)

)

person "N"
endif

else
if f-"Y" .and. n="N°

set order to 2

if ltrim(triB(PR_L_NAME))<>ltrim(triln(lnaine)) .or.
ltrim(trim(PR_F_NAME)) <>ltrim(trim(fname)

)

person = "N"
endif

else
set order to 3
if ltrim(trim{PR_L_NAME) Joltrim (trim (Inane)) .or.

ltrim(trim(PR_M_NAME))<>ltrim(trim(innaine)

)

person « "N"
endif

endif
endif

else
person - "N"

endif

CHECK FOR LAST PERSON THAT
MATCHES NAME ENTERED

if person

CHECK TO SEE IF ANY LEGAL
ENTRIES WERE ENCOUNTERED

if prtcnt =

f! 10,2 say "Person Does Not Have A Birth "

§ 10,31 say "Certificate Entry"
§ 21,4 say "Type Any Key to Return" get opt
read
return

else

HAVE ALL MATCHES - ASK USER
TO CHOOSE APPRORIATE ONE

20,4 say "Enter: Person # " ,get prsno, " Source #"
get srcno
read
match = "N"

endif
endif

enddo while match
endif

DOES THE PERSON SELECTED HAVE OTHER
SOURCE RECORDS? IF SO, DON'T DELETE
PERSON; IF NOT, DELETE PERSON

select 2

set order to 2

seek prsno
if SRC_NO = srcno

skip
if eof() .or. PERS_NO - pno

use
do DELTPERS

endif
endif
use
* *

* DELETE SOURCE INFO *
* *

do DELTSRCE

* *

* DELETE BIRTH INFO *
* *

do DELTBC

* *

* DELETE RELATION INFO *
* *

do DELTREL

* CLEAR SCREENS AND VARIABLES *

do INITSCRV
do INITSC
return

DMRGCERT . PRG •

CALLED FROM: DELTSRC.PRG

THIS IS THE PROGRAM THAT HANDLES THE LOGIC
REQUIRED TO DELETE A MARRIAGE CERTIFICATE.
THE USER SUPPLIES THE NAME FOR THE PRIMARY
PERSON ON THE MC THEN THE PROGRAM VALIDATES
THE NAME AND SEARCHES FOR THE APPROPRIATE
NAME COMBINATION. THE PROGRAM PROVIDES A
LIST OF ALL NAMES AND THEIR ASSOCIATED
PERSON NUMBERS AND SOURCE NUMBERS THAT
MATCH WHAT THE USER SPECIFIED. THE USER
THEN SELECTS THE APPROPRIATE PERSON AND
SOURCE. THIS PROGRAM THEN INVOKES THE
PROGRAMS REQUIRED TO DELETE DATA FROM ALL
DATABASE FILES REQUIRED.

PROGRAMS INVOKED: VALNAME.PRG, DELTPERS , DELTSRCE,
DELTMC, DELTREL, INITSCRV, INITSC

ACTIVE DATABASE FILES:

ACTIVE INDEX FILES:

MARRIAGE. DBF,
PERSON. DBF

SOURCE. DBF,

MARRIAGE -> MSRCPERS.NDX *

* SOURCE -> PERSTYPE . NDX , SPERS.NDX *
* PERSON -> NAME. NDX, NAME2.NDX, *
* NAME3 . NDX •
*

* *
» INITIALIZE VARIABLES *

clear
opt = " "

pno = "

match »Y"
stype - "MC"

ESTABLISH ACTIVE WORK AREAS
WITH APPROPRIATE DATABASE FILES
AND THE REQUIRED INDEX FILES

ALSO, ESTABLISH RELATIONS

select 3
use MARRIAGE index MSRCPERS alias MARRY
select 2
use SOURCE index PERSTYPE , SPERS alias SRCE
set relation to SRC_NO+PERS_NO into MARRY
select 1

use PERSON index NAME ,NAME2 , NAME3 alias PEOPLE
set relation to PERS NO+"MC" into SRCE

* GET PRIMARY PERSON'S NAME AND VALIDATE *
* *

loopcntl = "Y"
do while loopcntl = "Y"

inerr = "Y"
do while inerr "Y"

@ 5,2 say "Enter Name of Person Whose Marriage"
§ 5,47 say "Certificate is to be Deleted"
@ 6,2 say "Required : Last Name + First and/or Middle"
§ 7,2 say "If Last Name is all that is Known, Please"
§ 7,44 say "Perform Query Instead of Delete."
£ 11,2 say "LAST " get lname
£ 11,27 say "FIRST " get fnarae
e 11,48 say "MIDDLE " get mname
@ 21,2 say "TYPE X to Exit, Any Other Key to Enter Data "

;

get opt
read
if opt = "X"

return
endif
do valname

enddo while inerr

* *

* Search For Name In Format Provided By User *
* *

if f = "Y" .and. m = "Y"
set order to 1
seek ltrim(trim(lname))+ltrim(trim(fname))+ltrim(trim(mname)

)

else
if f = "Y" .and. m = "N"

set order to 2
seek ltrim(trim (lname)) +ltrim(trim(fname)

)

else
set order to 3
seek ltrim(trim(lname))+ltrim (trim (mname)

)

endif
endif
if eof()

e 14,4 say "Match Can Not Be Found For Name Entered"
loopcntl « "Y"

else

CHECK TO SEE IF PERSON ENTERED HAS A MC

loopcntl - "N"
prtcnt
do while match = r

select 2
if .not. eof()

PRINT ALL PERTINENT DATA TO SCREEN

clear
6 prtcnt+1,1 say PERS_NO->PERSON , PR_L_NAME->PERSON ,

;

PR_F_NAME->PERSON , PR_M_NAME->PERSON
6 prtcnt+1,60 say MARRY_DATE->MARRIAGE,SRC_NO, INT_FD,

ST_SR_FD
prtcnt = prtcnt + 1

endif

SEARCH FOR ANOTHER PERSON WITH
SAME NAME AS ENTERED BY THE USER

select 1

skip
person = "Y"

» DETERMINE WHICH NAME COMBINATION
* USER PROVIDED

if .not. eof()
if f="Y" .and. m="Y"

if ltrim(trim(PR_L_NAME))oltrim(trim(lname)) .or.;
ltrim(trim(PR_F_NAME)) oltrim (trim (fname)) .or.
ltrim(trim(PR_M_NAME)) oltrim (trim (mname))
person "N"

endif
else

if f-"Y" .and. m="N"
set order to 2
if ltrim(trim(PR_L_NAME))<>ltrim(trim(lnaine)) .<

ltrim (trim (PR_F_NAME)) oltrim (trim (fname)

)

person = "N"
endif

else
set order to 3

if ltrim(trim(PR_L_NAME)) oltrim (trim (lname)) .<

ltrim(trim(PR_M_NAME))oltrim(trim(mname))

person nN"
endif

endif
endif

else
person « "H"

endif

CHECK FOR LAST PERSON THAT
MATCHES NAME ENTERED

if person

CHECK TO SEE IF ANY LEGAL
ENTRIES WERE ENCOUNTERED

" VlTl say "Person Does Not Have A Marriage"

e 10 31 say "Certificate Entry"

I 2l! 4 say "Type Any Key to Return" get opt

read
return

else
*

*
HAVE ALL MATCHES - ASK USER *

* TO CHOOSE APPRORIATE ONE

*

« 20,4 say "Enter: Person # ",get prsno," Source #"

get srcno
read
match - "N"

endif
endif

enddo while match
endif

*

'
DOES THE PERSON SELECTED HAVE OTHER *

. SOURCE RECORDS? IF SO, DON'T DELETE »

* PERSON; IF NOT, DELETE PERSON
J

*

select 2

set order to 2

seek prsno
if SRC_NO = srcno

skip
if eof() .or. PERS_N0 - prsno

use
do DELTPERS

endif
endif
use
*

*

« DELETE SOURCE INFO *

do DELTSRCE

« DELETE MARRIAGE INFO *

do DELTMC

*

* DELETE RELATION INFO *

do DELTREL

* CLEAR SCREENS AND VARIABLES *
*

do INITSCRV
do INITSC
return

* DDTHCERT.PRG *

* *

* CALLED FROM: DELTSRC.PRG «
* *

* LOGIC: THIS IS THE PROGRAM THAT HANDLES THE LOGIC
.

*
* REQUIRED TO DELETE A DEATH CERTIFICATE. *

* THE USER SUPPLIES THE NAME FOR THE PRIMARY *

* PERSON ON THE DC THEN THE PROGRAM VALIDATES *

* THE NAME AND SEARCHES FOR THE APPROPRIATE *

* NAME COMBINATION. THE PROGRAM PROVIDES A *
* LIST OF ALL NAMES AND THEIR ASSOCIATED *

* PERSON NUMBERS AND SOURCE NUMBERS THAT *

* MATCH WHAT THE USER SPECIFIED. THE USER *

* THEN SELECTS THE APPROPRIATE PERSON AND *

* SOURCE. THIS PROGRAM THEN INVOKES THE *

* PROGRAMS REQUIRED TO DELETE DATA FROM ALL *

* DATABASE FILES REQUIRED. *

PROGRAMS INVOKED: VALNAME.PRG, DELTPERS , DELTSRCE,
DELTDC, DELTREL, INITSCRV, INITSC

* ACTIVE DATABASE FILES: DEATH_IN. DBF, SOURCE. DBF,
* PERSON. DBF *

* *

* ACTIVE INDEX FILES: DEATH_IN -> DSRCPERS.NDX *

* SOURCE -> PERSTYPE.NDX, SPERS.NDX *

* PERSON -> NAME.NDX, NAME2.NDX, *
* NAME3.NDX *
* *

INITIALIZE VARIABLES

clear
opt = " "

pno = "

match "Y"
stype = "DC"

ESTABLISH ACTIVE WORK AREAS
WITH APPROPRIATE DATABASE FILES
AND THE REQUIRED INDEX FILES

ALSO, ESTABLISH RELATIONS

select 3

use DEATH_IN index DSRCPERS alias DEATH
select 2
use SOURCE index PERSTYPE.SPERS alias SRCE
set relation to SRC_NO+PERS_NO into DEATH
select 1

use PERSON index NAME , NAME2 , NAME3 alias PEOPLE
set relation to PEES_NO+"DC" into SRCE

* *

* GET PRIMARY PERSON'S NAME AND VALIDATE *
* *

loopcntl = "Y"
do while loopcntl * "Y"

inerr «° "Y"
do while inerr = "Y"

§ 5,2 say "Enter Name of Person Whose Death"
e 5,47 say "Certificate is to be Deleted"
§ 6,2 say "Required: Last Name + First and/or Middle"
e 7,2 say "If Last Name is all that is Known, Please"
$ 7,44 say "Perform Query Instead of Delete."
I 11,2 say "LAST " get lname
§ 11,27 say "FIRST » get fname
8 11,48 say "MIDDLE " get mname
§ 21,2 say "TYPE X to Exit, Any Other Key to Enter Data

;

get opt
read
if opt "X"

return
endif
do valname

enddo while inerr

*

* Search For Name In Format Provided By User *
*

«

if f = "Y" .and. m - "Y"
set order to 1

else
66 "5 ltri"

'

tlia (lnaine)
*
+ltrim (tri» (fname)

) +ltrim (trim (mname))

if f - "Y" .and. m - "N"
set order to 2
seek ltrim(trim(lname))+ltrim(trim(fname))

else
set order to 3
seek ltrim (trim (lname)) +ltrim (trim (mname)

)

endif '

endif
if eof()

§ 14,4 say "Match Can Not Be Found For Name Entered"
loopcntl = "Y"

else

*
*

* CHECK TO SEE IF PERSON ENTERED HAS A DC *

*

loopcntl = "N"
prtcnt =
do while match "Y"

select 2
if .not. eof()

PRINT ALL PERTINENT DATA TO SCREEN

clear
§ prtcnt+1,1 say PERS_NO->PERSON,PR_L_NAME->PERSON,

;

PR_F_NAME->PERSON, PR_M_NAME->PERSON
? prtcnt+1,60 say DEATH_DATE->DEATH_IN,SRC_NO,INT_FD,

ST_SR_FD
prtcnt - prtcnt + 1

endif

SEARCH FOR ANOTHER PERSON WITH
SAME NAME AS ENTERED BY THE USER

select 1

skip
person =

DETERMINE WHICH NAME COMBINATION
USER PROVIDED

if .not. eof(J
if f="Y" .and. m="Y"

if ltrin(triii(PR_L_NAME))<>ltrim(trim(lname)) .or.;
1trim (trim (PR_F_NAME)) <> ltrim (trim (fname)) . or

.

ltrim(trim(PR_M_NAME))<>ltrin(trim(mname)

)

person = "N"
endif

else
if f="Y" .and. m="N"

set order to 2
if ltrim(trim(PR_L_NAME))<>ltrim(trim(lname)) .c

ltrim(trim(PR_F_NAME))<>ltrim(trim(fname)

)

person " "N"
endif

else
set order to 3

if ltrim(trim(PR_L_NAME))oltrim(trim(lname)) .c
ltrim(trim(PR_M_NAME))<>ltrim(trim(mname)

)

person * "N"
endif

endif
endif

else
person "N"

endif

CHECK FOR LAST PERSON THAT
MATCHES NAME ENTERED

if person - "N"

CHECK TO SEE IF ANY LEGAL
ENTRIES WERE ENCOUNTERED

if prtcnt »
§ 10,2 say "Person Does Not Have A Death"
§ 10,31 say "Certificate Entry"
#21,4 say "Type Any Key to Return" get opt
read
return

else

* HAVE ALL HATCHES - ASK USER *
* TO CHOOSE APPRORIATE ONE *
* *

6 20,4 say "Enter: Person t ",get prsno," Source #"
get srcno
read
natch » "N"

endif
endif

enddo while match
endif

DOES THE PERSON SELECTED HAVE OTHER
SOURCE RECORDS? IF SO, DON'T DELETE
PERSON; IF NOT, DELETE PERSON

select 2

set order to 2
seek prsno
if SRC_NO = srcno

skip
if eof() .or. PERS_NO prsn<

use
do DELTPERS

endif
endif
use
* »

* DELETE SOURCE INFO *
* *

do DELTSRCE

* •

* DELETE DEATH INFO *
* *

do DELTDC

* *
* DELETE RELATION INFO *
* *

do DELTREL

* CLEAR SCREENS AND VARIABLES

do INITSCRV
do INITSC
return

DELTPERS . PRG *

INVOKED BY:

LOGIC:

DBTHCERT . PRG , DMRGCERT . PRG

,

DDTHCERT.PRG

THIS PROGRAM PROVIDES FOR THE DELETE
OF A PERSON FROM THE PERSON DATABASE

ALL INDEX FILES ASSOCIATED WITH
PERSON ARE RE-INDEXED TO ENSURE
DATA INTEGRITY,

* PROGRAMS INVOKED: NONE
*

* GLOBAL VARIABLES: prsno

* ACTIVE DATABASE FILES: PERSON. DBF *

* ACTIVE INDEX FILES: PERS.NDX, NAME.NDX, I

t
NAME2.NDX, NAME3.NDX *

use PERSON index PERS, NAME, NAME2, NAME

3

delete for PERS_NO = prsno
pack
reindex
use
return

t
DELTSRCE.PRG

,
* *

* INVOKED BY: DBTHCERT . PRG , DMRGCERT . PRG , DDTHCERT.PRG I
* LOGIC: THIS PROGRAM PROVIDES THE ACTUAL DELETP *

g» «£ SOURCE RECORD ENTRIES FOR A IPARTICULAR SOURCE RECORD. ENTRIES FOR *PRIMARY AND SECONDARY PEOPLE A^E DELVED 1
*

ALL ACTIVE INDEX FILES ARE RE-INDEXED TO **

_
E^"RE DATA INTEGRITY.

^UEXED TO

* *

* PROGRAMS INVOKED: NONE
*

* *

* GLOBAL VARIABLES: srcno
*

* *

* ACTIVE DATABASE FILES: SOURCE. DBF
*

* ACTIVE INDEX FILES: SRC.NDX, PERSTYPE . NDX

,

t SPERS.NDX
,

use SOURCE index SRC, PERSTYPE, SPERSdelete for SRC NO = srcno
pack
reindex
use
return

DELTREL.PRG *

INVOKED BY:

LOGIC:

DBTHCERT . PRG , DMRGCERT . PRG
DDTHCERT . PRG

THIS PROGRAM PROVIDES THE ACTUAL
DELETE OF ALL RELATIONSHIPS
CREATED FROM A PARTICULAR SOURCE
RECORD.

ALL ACTIVE INDEX FILES ARE ALSO
RE-INDEXED TO ENSURE DATA INTEGRITY

*

*

*

*

*

*

*

*

*

PROGRAMS INVOKED: NONE

GOLBAL VARIABLES: srcno

* ACTIVE DATABASE FILES: RELATION. DBF *

* ACTIVE INDEX FILES: RSRC.NDX
*

use RELATION index RSRC
delete for SRC NO = srcno
pack
reindex
use
return

**
* DELTBC.PRG *

INVOKED BY: DBTHCERT.PRG, *

*

LOGIC: THIS PROGRAM PROVIDES THE ACTUAL DELETE*
OF ALL BIRTH INFORMATION ASSOCIATED *

WITH A PARTICULAR SOURCE RECORD *

* PROGRAMS INVOKED: NONE *

* *

* GLOBAL VARIABLES: srcno *

* *

* *

* *

* ACTIVE DATABASE FILES: BIRTH_IN.DBF *

* *

* ACTIVE INDEX FILES: BSRC.NDX, SRCPERS.NDX *
* *

**

use BIRTH_IN index BSRC,SRCPERS
delete for SRC_NO = srcno
pack
reindex
use
return

**
* DELTMC . PRG *

INVOKED BY: DMRGCERT.PRG

LOGIC: THIS PROGRAM PROVIDES THE ACTUAL
DELETE OF MARRIAGE INFORAMTION
ASSOCIATED WITH A PARTICULAR
SOURCE RECORD.

ALSO, ALL ACTIVE INDEX FILES ARE
REINDEXED TO ENSURE DATA INTEGRITY

* PROGRAMS INVOKED: NONE
*

* GLOBAL VARIABLES: srcno

* ACTIVE DATABASE FILES: MARRIAGE. DBF *

*
*

* ACTIVE INDEX FILES: MSRC.NDX, MSRCPERS.NDX *

*
*

**

use MARRIAGE index MSRC , MSRCPERS
delete for SRC_NO = srcno
pack
re index
use
return

DELTDC.PRG *

INVOKED BY: DDTHCERT.PRG

LOGIC: THIS PROGRAM PROVIDES THE ACTUAL *
DELETE OF DEATH INFORMATION *
ASSOCIATED WITH A PARTICULAR *
SOURCE RECORD *

*
ALSO, ALL ACTIVE INDEX FILES ARE *
RE-INDEXED TO ENSURE DATA INTEGRITY *

* PROGRAMS INVOKED: NONE

* GLOBAL VARIABLES: srcno

* ACTIVE DATABASE FILES: DEATH_IN.DBF *

* ACTIVE INDEX FILES: DSRC.NDX, DSRCPERS.NDX *

use DEATH_IN index DSRC , DSRCPERS
delete for SRC_NO = srcno
pack
reindex
use
return

**
* ADDPRS *

INVOKED BY: BTHCERT.PRG, MRGCERT.PRG
DTHCERT . PRG

LOGIC: THIS PROGRAMS PROVIDES THE
ACTUAL ADDITION OF A PERSON
TO THE PERSON DATABASE.

*

*

*

*

*

*

*

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: prsno, prsno2, prsno3,
prsno4 ,

prsno5, prsno6
prsno7, prsno8, fname,
mname, lname

* ACTIVE DATABASE FILES: PERSON. DBF
*

*

* ACTIVE INDEX FILES: PERS.NDX, NAME.NDX, *

* NAME2.NDX, NAME3.NDX *

*
*

**

use PERSON. DBF index PERS,NAME,NAME2 ,NAME3

append blank
do case

case cnt = 1

replace PERS_NO with prsno
case cnt = 2

replace PERS_NO with prsno2
case cnt = 3

replace PERS_NO with prsno3
case cnt = 4

replace PERS_NO with prsno4
case cnt = 5

replace PERS_NO with prsno5
case cnt = 6

replace PERS_NO with prsno6
case cnt = 7

replace PERS_NO with prsno7
case cnt = 8

replace PERS_NO with prsno8

endcase
replace PR_F_NAME with fname
replace PR_M_NAME with mname
replace PR_L_NAME with lname
use

**
* ADDSRC *

INVOKED BY: BTHCERT.PRG, DTHCERT.PRG,
MRGCERT . PRG

LOGIC: THIS PROGRAM PROVIDES THE
ACTUAL ADDITION OF A SOURCE
ENTRY INTO THE SOURCE DATABASE

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES srcno, prsno, prsno2, *

prsno3, prsno4 , prsno5, *

prsno6, prsno7, prsno8, *

src, sfdte, sfcity, *

sfcnty, sfst, intfd, sedte*
*

* ACTIVE DATABASE FILES: SOURCE. DBF *

* *

* ACTIVE INDEX FILES: SRC.NDX, SPERS.NDX, *

* PERSTYPE.NDX *

* *

**

use SOURCE. DBF index SRC, PERSTYPE,SPERS
append blank
replace SRC_NO with srcno
do case

case cnt = 1

replace PERS_NO with prsno
case cnt = 2

replace PERS_NO with prsno2
case cnt = 3

replace PERS_NO with prsno3
case cnt = 4

replace PERS_NO with prsno4
case cnt = 5

replace PERS_NO with prsno5
case cnt = 6

replace PERS_NO with prsno6
case cnt = 7

replace PERS_NO with prsno7
case cnt = 8

replace PERS_NO with prsno8
endcase

replace SRC_TYPE with src

replace DATE_SR_FD with sfdte

replace CITY_SR_FD with sfcity

replace CNTY_SR_FD with sfcnty

replace ST_SR_FD with sfst

replace INT_FD with intfd

replace DATE_SR_ET with sedte

use

**
* ADDREL *

INVOKED BY: BTHCERT.PRG, MRGCERT.PRG, *

DTHCERT.PRG *

*

LOGIC: THIS PROGRAM PROVIDES THE *

ACTUAL ADDITION OF RELATIONSIPS *

INTO THE RELATION DATABASE. *
*

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: srcno, prsno, prsno2,
prsno3 , prsno4 , prsno5,
prsno6, prsno7, prsno8,
rel

*
ACTIVE DATABASE FILES: RELATION. DBF

ACTIVE INDEX FILES: RSRC.NDX
* *

**

use RELATION. DBF index RSRC.NDX
append blank
replace SRC_NO with srcno
replace PERS_NO with prsno
do case

case cnt = 1

replace REL_PRS_NO with prsno
case cnt = 2

replace RELPRSNO with prsno2
case cnt = 3

replace REL_PRS_NO with prsno3
case cnt = 4

replace REL_PRS_NO with prsno4
case cnt = 5

replace REL_PRS_NO with prsno5
case cnt = 6

replace REL_PRS_NO with prsno6
case cnt = 7

replace REL_PRS_NO with prsno7
case cnt = 8

replace REL_PRS_NO with prsno8
endcase
replace RELATION with rel
use

*************** *********************************
ADDBC *

INVOKED BY: BTHCERT.PRG

LOGIC: THIS PROGRAM PROVIDES THE
ACTUAL ADDITION OF BIRTH INFO
INTO THE BIRTH DATABASE.

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: srcno, prsno, prsno2,
prsno3, prsno4, prsno5,
prsno6, prsno7, prsnoS,
dte, city, cnty, st,
fac, race, sex

ACTIVE DATABASE FILES:

ACTIVE INDEX FILES:

BIRTH_IN.DBF

BSRC.NDX,
SRCPERS . NDX

use BIRTH_IN.DBF index BSRC, SRCPERS
append blank
replace SRC_NO with srcno
do case

case cnt = l

replace PERS NO with prsno
case cnt = 2

replace PERS NO with prsno2
case cnt =3

replace PERS_NO with prsno3
case cnt =4

replace PERS NO with prsno4
case cnt = 5 ~

replace PERS NO with prsno5case cnt =6
replace PERS NO with prsno6case cnt =7
replace PERS NO with prsno7

case cnt =8
replace PERS_NO with prsnoSenacase

replace BIRTH_DATE with dte
replace BIRTH_CITY with city
replace BIRTH_CNTY with cnty
replace BIRTH_ST with st
replace BIRTH_FAC with fac
replace BIRTH_RACE with race
replace BIRTH_SEX with sex
use

* ADDMC *

INVOKED BY: MRGCERT . PRG

LOGIC: THIS PROGRAM PROVIDES THE *

ACTUAL ADDITION OF MARRIAGE *

INFO INTO THE MARRIAGE DATABASE*

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: srcno, prsno, prsno2 , *

prsno3 , prsno4 , prsno5, *

prsno6, prsno7, prsno8, *

dte, city, cnty, st, fac,*
race, sex, age *

ACTIVE DATABASE FILES: MARRIAGE. DBF

ACTIVE INDEX FILES: MSRC.NDX,
MSRCPERS . NDX

use MARRIAGE. DBF index MSRC , MSRCPERS
append blank
replace SRC_NO with srcno
do case

case cnt = 1

replace PERS_NO with prsno
case cnt = 2

replace PERS_NO with prsno2
case cnt = 3

replace PERS_NO with prsno3
case cnt = 4

replace PERSNO with prsno4
case cnt = 5

replace PERS_NO with prsno5
case cnt = 6

replace PERS_NO with prsno6
case cnt = 7

replace PERS_NO with prsno7
case cnt = 8

replace PERS_NO with prsno8
endcase

replace MARRY_DATE with dte
replace MARRY_CITY with city-

replace MARRY_CNTY with cnty
replace MARRY_ST with st
replace MARRY_FAC with fac
replace MARRY_RACE with race
replace MARRY_SEX with sex
replace MARRY_AGE with age

* ADDDC *

INVOKED BY: DTHCERT.PRG

LOGIC: THIS PROGRAM PROVIDES THE *

ACTUAL ADDITION OF DEATH INFO *

INTO THE DEATH DATABASE. *

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: srcno, prsno, prsno2,
prsno3, prsno4, prsno5,
prsno6, prsno7, prsno8,
dte, city, cnty, st,
caus, race, sex, bdate,
bcity, bcnty, bst, fac

* ACTIVE DATABASE FILES: DEATH IN. DBF *
* *
* ACTIVE INDEX FILES: DSRC.NDX *
* DSRCPERS . NDX *
* *

use DEATH_IN.DBF index DSRC, DSRCPERS
append blank
replace SRC_NO with srcno
do case

case cnt = 1
replace PERS_NO with prsno

case cnt = 2

replace PERS_NO with prsno2
case cnt = 3

replace PERS_NO with prsno3
case cnt = 4

replace PERS_NO with prsno4
case cnt = 5

replace PERS_NO with prsno5
case cnt = 6

replace PERS_NO with prsno6
case cnt = 7

replace PERS_NO with prsno7
case cnt = 8

replace PERS_NO with prsno8
endcase

replace DEATH_DATE with dte
replace DEATH_CITY with city
replace DEATH_CNTY with cnty
replace DEATH_ST with st
replace DEATH_CAUS with caus
replace DEATH_RACE with race
replace DEATH_SEX with sex
replace BURY_DATE with bdate
replace BURY_CITY with bcity

replace BURY_CNTY with bcnty
replace BURY_ST with bst
replace BURY_FAC with fac
use

**
* CRTSRCNO *

INVOKED BY: BTHCERT.PRG, MRGCERT.PRG, *

DTHCERT . PRG *

*

LOGIC: THIS PROGRAM CREATES A SOURCE *

IDENTIFICATION NUMBER FOR EACH NEW*
SOURCE RECORD ENTERED AND PROVIDES*
THE NUMBER BACK TO THE INVOKING *

PROGRAM. *

PROGRAMS INVOKED: NONE *

*

GLOBAL VARIABLES: srcno *

* ACTIVE DATABASE FILES: SRCNO. DBF *

* *

* ACTIVE INDEX FILES: NONE *

* *

**

SINCE THE IDENTIFICATION NUMBER CREATED IS
EVENTUALLY STORED IN THE SRC_NO FIELD OF THE
DATABASE FILES, IT IS REQUIRED THAT THE RESULT
OF THIS NUMBER CREATION BE OF CHARACTER TYPE.
THE str FUNCTION CONVERTS THE NUMERIC VALUE TO
CHARACTER, WHILE THE val FUNCTION CONVERTS THE
CHARACTER VALUE TO NUMERIC SO THAT ARITHMETIC
CAN BE PERFORMED.

use SRCNO. DBF
locate for NO » "0"

srcno = str(val(KEY)/10,6)
replace NO with srcno
use

**
* CRTPRSNO *

INVOKED BY: BTHCERT.PRG, MRGCERT.PRG,
DTHCERT.PRG

LOGIC: THIS PROGRAM CREATES A PERSON
IDENTIFICATION NUMBER FOR A NEW
PERSON AND PROVIDES THE NUMBER
BACK TO THE INVOKING PROGRAM

PROGRAMS INVOKED: NONE

GLOBAL VARIABLES: cnt, prsno, prsno2, prsno3,
prsno4, prsno5, prsno6,
prsno7, prsno8

ACTIVE DATABASE FILES: PRSNO. DBF

ACTIVE INDEX FILES: NONE

**

SINCE THE IDENTIFICATION NUMBER CREATED IS
EVENTUALLY STORED IN THE PERS_NO FIELD OF THE
DATABASE FILES, IT IS REQUIRED THAT THE RESULT
OF THIS NUMBER CREATION BE OF CHARACTER TYPE.
THE str FUNCTION CONVERTS THE NUMERIC VALUE TO
CHARACTER, WHILE THE val FUNCTION CONVERTS THE
CHARACTER VALUE TO NUMERIC SO THAT ARITHEMTIC
CAN BE PERFORMED.

use PRSNO. DBF
locate for NO =
if cnt > 1

do case
case cnt =

"0"

prsno2 =str(val(KEY)/10,6)
replace NO with prsno2

case cnt » 3

prsno3 = str (val (KEYJ/10, 6)
replace NO with prsno3

case cnt = 4

prsno4 = str(val(KEY)/10,6)
replace NO with prsno4

case cnt = 5
prsno5 = str (val (KEYJ/10, 6)
replace NO with prsno5

case cnt = 6

prsno6 = str(val(KEY)/10,6)
replace NO with prsno6

case cnt = 7

prsno7 = str(val(KEY)/10,6)

replace NO with prsno7
case cnt = 8

prsno8 = str (val (KEY)/10, 6)
replace NO with prsno8

endcase
else

prsno = str(val(KEY)/10,6)
replace NO with prsno

endif

DESIGN OF A PROFESSIONAL

GENEALOGICAL INFORMATION SYSTEM:

INCLUDING NAVIGATION FROM AN

UNSTRUCTURED DATABASE TO A

STRUCTURED DATABASE

by

ELLEN J. BAILEY

B.S., East Tennessee State University, 1980

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan. Kansas

1988

Genealogy involves the comprehensive compilation and research of informa-

tion on a group of people related by blood or marriage. The genealogist

researches a vast amount of data in order to unravel the family lineage.

Decisions based upon the data must be made, requiring a great deal of time

and expert knowledge. This effort would be greatly enhanced by a database

system that incorporates expert system technology. The expert system

would facilitate the storage, linkage and manipulation of the data, and also

assisting in the genealogical analysis and decision process.

This thesis documents a project whose objective was to design and imple-

ment a genealogical database system incorporating expert system technology

for the professional genealogist. The thesis includes a discussion of a the

genealogical process, the design and implementation of a relational database

to support the information system.

The information systems has been designed as four subsystems, the user

front end, the rule-based expert system, the data base control system and

the text manipulation systems. The implementation system was d-Base

III+.

