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Abstract. Electromagnetic (EM) waves, scattered by a small impedance
particle of arbitrary shape, embedded in a homogeneous medium, are calculated
by a new analytic formula. The range of applicability and the accuracy of this
formula are illustrated by numerical results. The formula was derived in (*)
A.G.Ramm, Optics Communications, 284,(2011), 3872-3877. The accuracy of
the new formula is estimated by a comparison with the Mie-type solution for
an impedance sphere.

The novelty of our paper is in the demonstration of the range of applica-
bility of the new formula and its practical value, by the numerical results and
their comparison with the exact solution for EM wave scattering by impedance
spheres. The exact solution is obtained in the form of Mie-type series, and is
new. Estimate of the error of this series, in which five terms are kept, shows
that the relative error of this solution is less than 10−3 for the parameters’ range
considered. The numerical results obtained are of interest to a wide audience,
and the novelty of the formula from (*) is in its appicability to wave scattering
by small particles of arbitrary shapes, when Mie-type solution is not applicable.

Key words: Electromagnetic wave scattering; small impedance particles;
particles of arbitrary shapes.

1 Introduction

Electromagnetic (EM) wave scattering by small bodies has a long history, start-
ing from Rayleigh (1871), see [1], [2] [9]. In [2] analytic formulas for the
S−matrix for acoustic and EM wave scattering by small bodies of arbitrary
shapes are derived. In particular, analytic formulas for the polarizability ten-
sors for homogeneous bodies of arbitrary shapes are obtained. Analytic solution
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of the EM wave scattering problem for perfectly conducting and dielectric ho-
mogeneous spheres was given by Mie in 1908 (see [3]). It was used and developed
by Bruning and Lo [4], [5], Mackowski [6], Xu [7], and others.

The aim of this paper is to test numerically asymptotic formulas (1)-(3) from
the paper [8] to compare the accuracy of these formulas with Mie-type solution
for an impedance sphere, and to find numerically the range of applicability of
formulas derived in [8].

The results of this paper are new. They show that the formulas, derived in
[8], can be used in many applications.

In this paper theoretical and numerical results for EM wave scattering by a
small impedance particle D of an arbitrary shape, embedded in a homogeneous
medium, are obtained. The medium is described by a constant permittivity
ε0 > 0, permeability µ0 > 0 and, possibly, constant conductivity σ0 ≥ 0.
The theory and analytic formulas (21)-(24) (see below) for the solution to this
problem are derived in [8].

The scattering problem is formulated and studied in Sections 2 and 3. In
Section 2 analytic formulas from [8] for the scattered EM field are given and
explained. The distance d from the small scatterer D, of the characteristic size
a, (where a = 0.5diamD, and diamD stands for the diameter of the domain
D), till the far zone is of the order 10a, and this is very small distance if a
is very small. In particular, d ≪ λ, if a is sufficiently small. The practical
conclusion is: if the scatterer is small, i.e., ka ≪ 1, then the far zone for this
scatterer starts very close to the scatterer, at the distances of the order O(10a)
from the scatterer. So, formula (24) (see below) is valid everywhere except a
neighborhood of the scatterer of the order O(10a).

In section 3 explicit analytic formulas for EM field, scattered by an impedance
sphere, are derived. This derivation is similar to the derivations in Mie’s theory,
which treated perfectly conducting or homogeneous dielectric spheres.

Section 4 contains numerical results that demonstrate accuracy of the asymp-
totic formulas from [8] in a wide range of values ka and ζ, where ζ is the bound-
ary impedance of the small scatterer. The explicit analytic solution, obtained in
Section 3, is used for comparison with the asymptotic solution from [8]. These
results show the accuracy of formula (24) and give its applicability limits.

In Section 5 the conclusions are formulated.

2 EM wave scattering by one small impedance
particle of arbitrary shape

Let a = 0.5diamD be the radius of small particle D, k > 0 be a wavenumber,
k = 2π

λ , ka ≪ 1, λ be the wavelength of the incident EM wave. The particle
D is embedded in a homogeneous medium with constant parameters ε0, µ0.
Let k2 = ω2ε0µ0, where ω is the frequency. Our arguments remain valid if one
assumes that the medium has a constant conductivity σ0 > 0. In this case ε0 is
replaced by ε0 + iσ0

ω
. Let S denote the boundary of D, [E,H ] = E ×H denote
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the cross product of two vectors, and (E,H) = E · H the dot product of two
vectors.

EM wave scattering problem consists of finding vectors E and H satisfying
the Maxwell equations:

∇× E = iωµ0H, ∇×H = −iωε0E in D′ = R
3\D, (1)

the impedance boundary condition:

[N, [E,N ]] = ζ[H,N ] on S, (2)

and the radiation condition:

E = E0 + vE , H = H0 + vH , (3)

where ζ is the boundary impedance of the particle, N is the unit normal to S
pointing out of D, E0, H0 are the incident fields satisfying equations (1) in all
of R

3, vE and vH are the scattered fields, satisfying the Sommerfeld radiation
condition, r(∂v

∂r
− ikv) = o(1) as r := |x| → ∞. We assume that the incident

wave is a plane wave, i.e., E0 = Υeikα·x, Υ is a constant vector, α ∈ S2 is a unit
vector, S2 is the unit sphere in R

3, α ·Υ = 0.
In general, the impedance ζ can be a constant, Reζ ≥ 0, or a 2 × 2 matrix

function acting on the tangential to S vector fields, such that

Re(ζEt, Et) ≥ 0 ∀Et ∈ T. (4)

We assume in this paper that ζ is a constant. This simplifies numerical calcu-
lations.

In formula (4), T is the set of all tangential to S continuous vector fields such
that DivEt = 0, where Div is the surface divergence, and Et is the tangential
component of E.

We define the tangential component Et by the formula:

Et = E −N(E,N) = [N, [E,N ]]. (5)

This definition corresponds to the geometrical meaning of the tangential com-
ponent of E.

In the literature (see, for example, [17], p. 11) one may find [N,E] as the
definition of the tangential component of E. Such a definition is somewhat
misleading: it gives a vector, rotated from Et by an angle π/2 in the plane,
tangential to the surface.

Problem (1)-(4) is equivalent to problem (6), (7), (3), (4), where

∇×∇× E = k2E in D′, H =
∇×E

iωµ0
, (6)

[N, [E,N ]] =
ζ

iωµ0
[∇× E,N ] on S. (7)
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We have reduced our problem to finding one vector E(x). If E(x) is found, then
H is found by the formula H = ∇×E

iωµ0

, and the pair E and H solves the Maxwell
equations and satisfies the impedance boundary condition.

Let us look for E of the form

E = E0 + ∇×

∫

S

g(x, t)σ(t)dt, g(x, y) =
eik|x−y|

4π|x− y|
, (8)

where g is the standard Green’s function, t ∈ S and dt is an element of the area
of S, σ(t) is a tangential vector field on S. This E solves equation (6) in D for
any continuous σ(t) because E0 solves (6). To check this statement one uses the
identity ∇ ·∇ × E = 0, valid for any smooth vector field E, and the formula

−∇2g(x, y) = k2g(x, y) + δ(x− y). (9)

The integral
∫

S
g(x, t)σ(t)dt satisfies the radiation condition. Thus, formula

(8) solves problem (6), (7), (3), (4), provided that σ(t) is chosen so that bound-
ary condition (7) is satisfied.

Let O ∈ R
3 be a point inside D, the origin. To derive an integral equation

for σ = σ(t), substitute E(x) from (8) into impedance boundary condition (7),
follow the argument in [8], and get the following equation:

σ(t) = Aσ + f, Aσ = −2[Ns, Bσ]. (10)

Here A is a linear Fredholm-type integral operator. Formulas for the oper-
ators A,B and function f were derived in [8]. Equation (10) can be rewritten
as

σ(s) = 2[fe(s), Ns] − 2[Ns, Bσ] := Aσ + f. (11)

The operator A is linear and compact in the space C(S), so that equation (11)
is of Fredholm type. Therefore, equation (11) is solvable for any f ∈ T if its
homogeneous version has only the trivial solution σ = 0. In this case the solution
σ to equation (11) is of the order of the right-hand side f , that is, O(a−κ) as
a → 0.

We assume that

ζ =
h

aκ
, (12)

where Reh ≥ 0, and κ ∈ [0, 1) is a constant.
Let us rewrite (8) as

E(x) = E0(x) + [∇xg(x, O), Q] + ∇×

∫

S

(g(x, t) − g(x, O))σ(t)dt, (13)

where

Q :=

∫

S

σ(t)dt. (14)
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Consequently, the scattering problem is solved if vector Q is found. This simpli-
fies the solution drastically, compared with the standard approach in which one
solves numerically boundary integral equations (BIE) for the unknown vector-
function σ.

Since σ = O(a−κ), one has Q = O(a2−κ). In [8], it was explained that
the third term on the right of (13) is negligible compared with the second one.
Therefore, equation (13) can be written in form

E(x) = E0(x) + [∇xg(x, O), Q]. (15)

with an error that tends to zero as a→ 0 under our assumptions.
Note that the relation |x| ≫ ka2, that holds in far zone, is satisfied for

d = O(a) if ka ≪ 1. Thus, formula (15) is applicable in a wide region.
Let us estimate Q asymptotically, as a → 0. Integrating equation (11) over

S, we get

Q = 2

∫

S

[fe(s), Ns]ds− 2

∫

S

[Ns, Bσ]ds. (16)

It was shown in [8] that the second term in the right-hand side of the above
equation is equal to −Q plus terms negligible compared with |Q| as a → 0.
Thus,

Q =

∫

S

[fe(s), Ns]ds, a → 0. (17)

Let us estimate the integral in the right-hand side of (17). The expression
[Ns, fe] one can rewrite as (see formula (33) in [8]):

[Ns, fe] = [Ns, E0] −
ζ

iωµ0
[Ns, [∇× E0, Ns]]. (18)

If E0 tends to a finite limit as a → 0, then formula (18) implies that

[Ns, fe] = O(ζ) = O(
1

aκ
), a→ 0. (19)

By Lemma 2 from [8], the operator (I − A)−1 is bounded, so σ = O( 1
aκ ), and

Q = O(a2−κ), a → 0, (20)

because the integration over S adds factor O(a2). It follows from our arguments
that Q does not vanish.

The Q can be expressed in terms of E0. If S is a sphere of radius a then
(see [8])

Q = −
8πia2−κ

3ωµ0
h∇×E0(O). (21)

The factor 8π
3 appears if D is a sphere. Otherwise a tensorial factor τjp appears:
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Qj := (Q, ej) = −
iζ|S|

ωµ0
τjp(∇× E0(O))p, (22)

where over repeated indices p summation from 1 to 3 is understood, and

τ := τjp = δjp − bjp, bjp :=
1

|S|

∫

S

NjNpdS, (23)

where δjp is the Kronecker delta, and bjp depends on the shape of S. If S
is a sphere, then bjp = 1

3
δjp. In this case one gets formula (21), where ζ is

calculated by (12).
From equations (22) and (23) one obtains

E(x) = E0(x) −
iζ|S|

ωµ0
[∇xg(x, O), τ∇×E0(O)]. (24)

Formula (24) gives representation for the field E(x) in the region r ≫ a, i.e., in
the far zone. As we have already argued, if a is sufficiently small, then the far
zone starts very close to the small scatterer, say, at a distance 10a.

3 EM wave scattering by impedance sphere

In this section, we present the explicit analytic formulas for EM field scattered on
the impedance sphere, based on the Mie theory [3], [7]. The governing equations
for the EM wave scattering problem similarly to Section 2, are (1)-(3). Define
a ball B:

B := {y ∈ R
3 : |y − x0| < a}, (25)

where x0 is the origin O, the notation used in Section 2.
The boundary condition (2) is:

Et = ζ[Ht, N ] on S := ∂B, (26)

where

Et = [N, [E,N ]] = E −N(E,N), Ht = [N, [H,N ]] = H −N(H,N), (27)

N is the unit normal to S, pointing out of B, and ζ is the impedance. Here Et

and Ht are the tangential component of the vector fields E and H , respectively.
We look for a solution of the form:

E = E0 + Es, H = H0 +Hs, (28)

where E0, H0 are the initial incident fields satisfying (1), and Es and Hs are
the scattered fields satisfying the radiation condition. From (27), we obtain the
relations
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[N,Et] = [N,E] (29)

The boundary condition (26) can be rewritten as

[N,E] = ζ[N, [H,N ]], (30)

Substituting (28) into (30), one gets

[N,Es]− ζ[N, [Hs, N ] = ζ[N, [H0, N ]]− [N,E0], (31)

We use boundary condition (31) for finding the expansion coefficients an and
bn in series (43) and (44) below.

The assumption ka ≪ 1 holds, and E0 = eikx3e1, where k is the wave number
with k2 = ω2µ0ε0, and ej , j = 1, 2, 3, are unit vectors along the coordinate axes
xj .

Let us assume that the particle D is a sphere centered at the origin, of radius
a, and define

ψemn = cos(mϕ)Pnm(cos(θ))zn(kr), (32)

and

ψomn = sin(mϕ)Pnm(cos(θ))zn(kr), (33)

where Pnm are the associated Legendre functions, zn(kr) is the spherical Bessel
function, which can be jn(ρ) or h(1)(ρ), ρ := kr, r := |x|, and

jn(ρ) =

√
π

2ρ
Jn+1/2(ρ), yn(ρ) =

√
π

2ρ
Yn+1/2(ρ), h

(1)
n = jn + iyn, (34)

where Jν and Yν are the Bessel functions of the first and second kind, respec-
tively. Let us denote by hat over a vector the corresponding unit vector x̂ := x

|x| .

Define the following vector spherical harmonics:

Memn = ∇× (rx̂ψemn), Momn = ∇× (rx̂ψomn), (35)

Nemn =
∇×Memn

k
, Nomn =

∇×Momn

k
. (36)

The plane wave E0 can be represented as a spherical harmonics expansion
(cf [10]):

E0 =

∞∑

n=1

En(M
(1)
o1n − iN

(1)
e1n), (37)

where En = in 2n+1
n(n+1) , and

Me1n = −πn(cos(θ)) sin(ϕ)zn(ρ)êθ − τn(cos(θ)) cos(ϕ)zn(ρ)êϕ, (38)
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Mo1n = πn(cos(θ)) cos)zn(ρ)êθ − τn(cos(θ)) sin(ϕ)zn(ρ)êϕ, (39)

Ne1n = zn(ρ)
ρ n(n+ 1)πn(cos(θ)) sin(θ) cos(ϕ)êr + [ρzn(ρ)]′

ρ τn(cos(θ)) cos(ϕ)êθ

− [ρzn(ρ)]′

ρ πn(cos(θ)) sin(ϕ)êϕ,

(40)

No1n = zn(ρ)
ρ n(n+ 1)πn(cos(θ)) sin(θ) sin(ϕ)êr + [ρzn(ρ)]′

ρ τn(cos(θ)) sin(ϕ)êθ

+ [ρzn(ρ)]′

ρ πn(cos(θ)) cos(ϕ)êϕ,

(41)
the prime indicates differentiation with respect to the argument in parentheses,

πn =
P1

n

sin(θ)
and τn =

dP1

n

dθ
. In formulas (38)-(41), êr , êθ, and êϕ are unit vectors

in the spherical coordinate system.
In (37) we have attached the superscript (1) to vector spherical harmonics for

which the radial dependence of the generating functions is specified by zn = jn.
Applying the operator ∇× to (37), one gets

H0 = −
k

ωµ0

∞∑

n=1

En(N
(1)
o1n +M

(1)
e1n). (42)

From the boundary condition, formula (37), orthogonality property of the func-
tions Menm, Momn , Nemn and Nomn , one obtains that the scattered fields Es

and Hs can be expressed by the formulas:

Es =

∞∑

n=1

En(ianN
(2)
e1n − bnM

(2)
o1n), (43)

Hs =
k

ωµ0

∞∑

n=1

En(anM
(2)
e1n + ibnN

(2)
o1n), (44)

where an and bn are the unknown coefficients which will be obtained later, and
we attach the superscript (2) to vector spherical harmonics for which the radial

dependence of the generating functions is specified by zn = h
(1)
n . We refer to

the general terms in the series (43) and (44) as sn (see Tables 3 and 4 below).
Let us derive the formulas for the unknown coefficients an and bn used in (43)

and (44). In the spherical coordinates the boundary condition can be written
as

[êr, Es] − ζa[êr, [Hs, êr]] = aζ[êr , [H0, êr] − [êr, E0], (45)

where we have used the identity Ns = aêr .
Let

ψn(ρ) = ρjn(ρ) and ξn(ρ) = iρyn(ρ), (46)
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where ρ = kr. Then calculating the cross products [êr , Es], [êr, [Hs, êr]], [êr , Ei],
[êr , [Hi, êr]] and substituting these values into (45), one can get the following
linear algebraic system (LAS) with respect to coefficients an and bn:

anG1(a, ρ, θ, ϕ) + bnG2(a, ρ, θ, ϕ) = F1(a, ρ, θ, ϕ), (47)

anG3(a, ρ, θ, ϕ) + bnG4(a, ρ, θ, ϕ) = F2(a, ρ, θ, ϕ), (48)

where the functionsG1, G2, F1, G3, G4, F2 are expressed via the known functions
of the parameters a, ρ, θ, ϕ, and ζ (see [7]).

Using the above expressions, one finds the coefficients an and bn:

an = −En

iψ′
n(ρ) + ρζ

ωµ0

ψn(ρ)
ρζ

ωµ0

(ψn(ρ) + ξn(ρ)) + i(ψ′
n(ρ) + ξ′n(ρ))

, (49)

bn = En

ψn(ρ) + iρζ
ωµ0

ψ′
n(ρ)

iρζ
ωµ0

(ψ′
n(ρ) + ξ′n(ρ)) + (ψn(ρ) + ξn(ρ))

, (50)

where En = in 2n+1
n(n+1) .

Let us derive a formula for the EM field in far zone. One has (see [11])

h
(1)
1 (ρ) ≈

−eiρ

ρ
, ρ≫ 1, and

dh
(1)
1 (ρ)

dρ
≈

−ieiρ

ρ
, ρ≫ 1. (51)

Let ρ = kr and ρ ≫ ka. Using (51) and the identities P 1
1 (cos θ) = − sin θ,

π1(cos θ) = −1 and τ1(cos θ) = − cos θ, one gets

E(ρ) = eiρ cos(θ)e1 + 2ia1
eiρ

ρ2 sin(θ) cos(ϕ)êr

+(−b1
eiρ

ρ cos(ϕ) + ia1
eρ(1+iρ)

ρ2 cos(θ) cos(ϕ))êθ

+(b1
eiρ

ρ cos(θ) sin(ϕ) − ia1
eiρ(1+iρ)

ρ2 sin(ϕ))êϕ,

(52)

where e1 is the unit vector along x1-axis, e1 = sin(θ) cos(ϕ)êr +cos(θ) cos(ϕ)êθ−
sin(ϕ)êϕ. Formula (52) will be used in the next Section for numerical comparison
with asymptotic formula (24).

4 Numerical Simulation

In this section, we deal with the numerical calculations for comparison of the
asymptotic formula (24) from Section 2 and analytic formula (52) from Section
3. The general approach to numerical solution of the wave scattering problem by
many small particles was developed in [14],[15], [16], and illustrated by numerical
results in [12]. We will use a series of algorithms developed in [12] and apply
them for numerical modeling in this Section. Let us assume that the small
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particle D is a sphere of radius a. In this case, formula (24) for component
E(x) of EM field in far zone can be written as

E(x) = E0(x) −
8a2πkζ

3ωµ0
[∇xg(x, O),∇× E0(O)]. (53)

Using the relations

∇xg(x, O) = ∇x
eik|x|

4π|x|
=

eik|x|

4π|x|2
(ik −

1

|x|
)x (54)

and

∇×E0(O) = ∇×




eikx3

0
0





|x=0

=




0
ik
0



 (55)

one can rewrite (53) as follows

E(x) = eikx3




1
0
0



 +
8a2πkζ

3ωµ0

eik|x|

4π|x|2
(ik −

1

|x|
)




−x3

0
x1



 , (56)

where O is origin. Formula (56) gives the representation of components for
electrical field E in the Carthesian coordinates. In order to compare (56) with
(52), we should rewrite it in the spherical coordinates, using the know formulas
for transformation of cartesian coordinates of vector E(x) into spherical ones
[13]

Er = E1 sin(θ) cos(ϕ) + E2 sin(θ) sin(ϕ) + E3 cos(θ),
Eθ = E1 cos(θ) cos(ϕ) +E2 cos(θ) sin(ϕ) −E3 sin(θ),

Eϕ = −E1 sin(ϕ) + E2 cos(ϕ),
(57)

where x = (x1, x2, x3).
The following numerical expertiments are of practical importance:
a) checking the accuracy of series (43) and (44) for representation of com-

ponents of the scattered field Es and Hs;
b) investigation of the limits of applicability of the asymptotic formula (56)

for various values of the radius a of the sphere, by comparing it with the Mie-
type solution, given by formula (52);

c) determination of the optimal values of ζ which provide the smallest relative
error of the new asymptotic solution (56).

4.1 Checking the accuracy of series (43) and (44)

Investigating convergence of the series (43) and (44), we calculate the coefficients
an and bn for a wide range of parameter ka. The dependence of |a1| and |b1|
on the value of k is shown in Fig. 1 and Fig 2 at a = 0.1. The values of these
coefficients grow at k → 1, and at the same time, their maximal amplitude does
not exceed 10 at ka = 1 in the considered range of ζ.
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Figure 1: Modulus of a1 versus k.
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Figure 2: Modulus of b1 versus k.
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The numerical results show that the coefficients an and bn in series (43), (44)
decay quickly. The values of a3 and b3 are two orders smaller than these of a1

and b1. The moduli of the coefficients an and bn for n ≥ 4 have order less than
10−8. The values of |a5| and |b5|, presented in Table 1 and Table 2, show that no
more than 5 coefficients an and bn are needed in order to calculate the scattered
field with high accuracy. The relative error does not exceed 10−3 − 10−4 in the
range of considered parameters ka and ζ.

Table 1. Moduli of coefficient a5 for various ζ, a = 0.1.

ζ = 10 ζ = 50 ζ = 100 ζ = 300
k = 0.5 2.141× 10−11 2.141× 10−11 2.141× 10−11 2.139× 10−11

k = 1.0 4.115× 10−8 4.115× 10−8 4.113× 10−8 4.098× 10−8

Table 2. Moduli of coefficient b5 for various ζ, a = 0.1.

ζ = 10 ζ = 50 ζ = 100 ζ = 300
k = 0.5 1.806× 10−11 2.017× 10−11 2.099× 10−11 2.136× 10−11

k = 1.0 3.409× 10−8 3.642× 10−8 3.862× 10−8 4.074× 10−8

Convergence rate of the above series depends on the modulus of the coef-
ficients an and bn in the series. The ”general term” sn in the series (43) is

sn = En(ianN
(2)
e1n − bnM

(2)
o1n). Because the function h1

n(ρ) increases rapidly as

ρ → 0, the convergence rate depends on the values of anN
(2)
e1n and bnM

(2)
o1n in

(43), and on the values of anM
(2)
e1n and bnN

(2)
o1n in (44). The results, presented

in Tables 3 and 4, show that the general terms sn in series (43), (44) decay very
fast for the considered range of ka. These results are presented for a = 0.1. It
can be seen that terms with the index n+1 are by two or three orders less than
the previous ones. Numerical results show that this rapid convergence holds,
e.g., when ρ ≤ 2: in this case the maximal relative error for Er, calculated by
formula (43) with 5 terms, is not more than 0.6 × 10−3, and for Eθ and Eϕ

this error is not more than 0.2× 10−3, for any ζ between 5 and 300. The series
(43) and (44) converge rapidly and yield high accuracy in calculations of the
EM fields. Therefore, one can use the values Es and Hs, calculated by series
(43)-(44), as ”exact” values of the scattered fields when comparing these values
with the ones calculated by the asymptotic formula (56).

Table 3. Moduli of general terms sn in series (43) for Er component.

Table 3.
s1 s2 s3 s4 s5

k = 0.1 0.2516 0.0047 0.0001 4.819× 10−7 7.408× 10−9

k = 0.05 0.2514 0.0023 1.405× 10−5 6.016× 10−8 4.625× 10−10

k = 0.01 0.2501 0.0005 5.617× 10−7 4.811× 10−10 7.398× 10−13
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Figure 3: Relative error for Er, Eθ and Eϕ components at ka ≤ 1.0.

Table 4. Moduli of general terms sn in series (43) for Eϕ component.

s1 s2 s3 s4 s5
k = 0.1 0.3445 0.0087 0.0001 1.043× 10−6 6.954× 10−9

k = 0.05 0.4933 0.0001 5.424× 10−7 1.163× 10−9 2.027× 10−11

k = 0.01 1.1076 0.0028 3.698× 10−6 3.287× 10−9 2.198× 10−12

The numerical results confirm the high accuracy of series (43) and (44) in a
wide range of parameter ka. We carry out the calculations in order to establish
the relative error of the solution calculated by using the above series for different
value of impedance ζ (see Figure 3). Because the exact values S∗ of the sums of
series (43) and (44) are unknown, we use the following formula for calculating
the relative error

RE = |
Sn+1 − Sn

Sn+1
|, (58)

instead of generally used

RE = |
S∗ − Sn

S∗
|, (59)

where Sn and Sn+1 are the n-th and n + 1-st partial sums of the series (43),
(44).
The relative error for 0.01 ≤ ka ≤ 1.0 does not exceed 0.8×10−3 for Eθ and Eϕ

components, and it does not exceed 0.16× 10−3 for Er component. This error
is obtained when n = 5 terms of series (43) are kept for calculations. Further
increase of n does not reduce the error practically. The optimal value of ζ, which
provide minimal relative error, is ∼ 100. The error grows when ζ > 100.7.

The numerical results for values 1, 4 ≤ ka ≤ 3.0 are given in Table 5. The
results are presented for ζ = 100.0, the value of ζ which yields minimal error
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in the considered range of ka. Apparently, the relative error for Er component
increases more than for Eθ and Eϕ components and attains its maximal value
1.7% at ka = 3.0. The error for Eθ and Eϕ components does not exceed 1.15%.
These errors stabilize at n = 20 terms in series (43).

Table 5. Relative error for series (43) at ka > 1.

ka 1.4 1.8 2.2 2.6 3.0
Er 0.05 % 0.06 % 0.59 % 0.93 % 1.72 %
Eθ, Eϕ 0.12 % 0.25 % 0.43 % 0.71 % 1.15 %

The relative error for H , i.e., the error for the series (44), is of the same
order as for the series (43). Numerical results show that the relative errors of
series (43) and (44) do not exceed 4.5% for ka ≤ 5.

4.2 Error of the asymptotic formula (56)

The numerical results in this Section give the range of applicability of the asymp-
totic formula (56) for various values of parameters ka and ζ. The calculations
were carried out not only for the ka ≪ 1 but also for ka = O(1). At ka = 2.0
the relative error exceeds 20% for all considered ζ. Analytic solution, given by
formula (52), was considered as the exact solution, because its relative error was
less than 10−3.

In Fig. 4, the relative error of solution (56) for Er component is shown for
different values of a at ζ = 10. One can see that at a = 0.1 the error decreases
three times if a decreases five times (from 0.05 to 0.01). For small k at a = 0.1
the relative error is less than for a = 0.05, but for k > 0.5 this error is rapidly
increasing. For example, at k = 1 for this a relative error exceeds 15%, It does
not exceed 7% and 2% for a = 0.05 and a = 0.01 respectively. The curves
presented in Fig. 5 show that the relative error diminishes if ζ increases, and
at greater ζ it is less sensitive to change of a. For the considered range of a,
the error does not change practically. The minimal relative error is attained at
a = 0.01 and it is equal to 0.2% (see solid line in Fig. 5).

The numerical results show that formula (56) at ka = 1.0 yields the values
of the EM fields with an error that does not exceed 15% for ζ = 10 and 10% for
ζ = 100. This error decays slowly to 13 % and 9 % respectively if ζ increases
up to 300, and it grows at ζ > 300. The relative error for the components Eθ

and Eϕ is less than the one for Er in all these cases.

4.3 Finding optimal values of ζ at fixed a

Numerical results presented in the previous section show that relative error of
the asymptotic solution (56) depends on the value of impedance ζ. We found
the optimal values of ζ that yield minimal error at some fixed values of ka. In
Fig. 6 and Fig. 7 the relative error of the solution, calculated by formula (56),
is shown for small and intermediate values of ζ, respectively. One can see that
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Figure 4: Relative error of solution to (56) (Er component) for ζ = 10.
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Figure 5: Relative error of solution to (56) (Er component) for ζ = 100.

the relative error decays when ζ increases. This error does not exceed 18 %
for small ζ, and 13 % for the intermediate values of ζ. The error depends on a
stronger at the smaller values of ζ. This dependence does not appear so strongly
at the intermediate and big values of ζ. The error grows for ζ < 5 and ζ > 300.
A local minimum of the relative error was found at ζ = 32.7. This shows that
the dependence of the relative error on the values of ζ is not monotone, and
should be checked for each ka.

The amplitude and the radiation pattern of the scattered field depend on
the values of k and ζ. Typical amplitudes of the components Er, Eθ, and
Eϕ of the electric field are shown in the Figs. 8, 9, and 10 at ka = 0.001,
ζ = 100.0, a = 1.0, r = 20, where r is distance to far zone. These results are
calculated by formula (56). The relative error of the numerical values calculated
by formula (56) for this case is 3.1%, 3.6%, and 1.0% for components Er, Eθ,
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Figure 6: Relative error at small ζ for different a.
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Figure 7: Relative error at middle ζ for different a.

and Eϕ respectively. The error can be decreased to 0.1%− 0.05% by increasing
r up to 50. Further increasing of r does not influence practically the decreasing
of the error. The error of the same order is obtained also for the components
Hr, Hθ, and Hϕ.

5 Conclusions

Simple explicit analytic formula for calculation of EM waves, scattered by small
impedance particle of arbitrary shape, is derived and tested numerically. The
solution for a spherical particle can be obtained easily using our general formula,
valid for small particles of arbitrary shapes.

To establish the limits of the applicability of the new formula, it is com-
pared numerically with the results, obtained by Mie-type theory for spherical
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Figure 8: Typical amplitude of Er component.
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Figure 9: Typical amplitude of Eθ component.

impedance particle. The numerical results show that the Mie-type series for the
solution converge rapidly: it is sufficient to use not more than 5 terms in order
to obtain the solution with a relative error of the order 10−3. We call the solu-
tion, obtained by Mie-type series, an analytic solution, and we use this solution
as an ”exact” solution when comparing with the numerical results obtained by
the new asymptotic formula (56).

The comparison of asymptotic and analytic solutions show that relative error
of asymptotic solution depends on the values of parameters ka and ζ. It is shown
for the component Er that the error less than 3.1 % is obtained for ka = 0.001
at ζ = 100.0. The error grows slowly when ka grows, it is equal to 7.5 % at
ka = 1.0, and it grows up to 13.6 %. at ka = 2.0. These results were obtained
at r/a = 20.0.

Numerical results show that relative error of asymptotical solution can be
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Figure 10: Typical amplitude of Eϕ component.

reduced significantly by changing ζ at a fixed ka. For example, the relative error
of Er equal to 2.2% for ka = 2.0 is obtained at ζ = 300.0. This relative error is
larger for Eθ and smaller for Eϕ.

The numerical results show that the range of optimal values of ζ is between
ζ = 5.0 and ζ = 300.0. In this large range there exist several local minima
of relative error as a function of ζ at a fixed ka. The values of these local
minimums depend on ka considerably. In summary, one can concludes that the
relative error of the new asymptotic formula (56) is in range 0.2% to 20.0% as ka
varies in the range 0, 001−2.0 and ζ varies from 5.0 to 300.0. Thus, asymptotic
formula (56) is applicable in a wide range of parameters.

References

[1] L. Landau, L. Lifshitz, Electromagnetics of continuous media, Pergamon
Press, London, 1982.

[2] A. G. Ramm, Wave scattering by small bodies of arbitrary shapes. World
Sci. Publisher, Singapore, 2005.

[3] G. Mie, Beitrage zur Optic Truber Medien speziell kolloidaler Metallo-
sungen, Ann. Phys., 25, 377-452, 1908.

[4] J. H. Bruning and Y. T. Lo, Multiple Scattering of EM waves by spheres,
part I - Multiple expansion and ray-optical solutions, IEEE Trans. Antennas

Propag. AP-19, 378-390, 1971.
[5] J. H. Bruning and Y. T. Lo, Multiple Scattering of EM waves by spheres,

part II - Numerical and experimental results, IEEE Trans. Antennas Propag.
AP-19, 391-400, 1971.

[6] D. W. Mackowski, Analysis of radiative scattering for multiple sphere
configuration, Proc. R. Soc. Ser. A, London, 433, 599-614, 1991.

[7] Yu-Lin Xu, Electromagnetic scattering by an aggregate of spheres, Ap-

plied Optics, 34, No 21, 4573-4588, 1995.

18



[8] A. G. Ramm, Electromagnetic wave scattering by a small impedance
particle of arbitrary shape, Optics Communications, 284, No. 16-17, (2011),
3872-3877.

[9] A. G. Ramm, Scattering by obstacles, D. Reidel, Dordrecht, 1986.
[10] C. F. Bohren and D.R. Huffman, Absorption and scattering of light by

small particles, John Wiley and Sons, 1983.
[11] M. Abramowitz and R. A. Stegun, Handbook of Mathematical Functions,

National Bureau of Standards, 1964.
[12] M. I. Andriychuk and A. G. Ramm, Scattering by many small particles

and creating materials with a desired refraction coefcient, Int. J. Computing

Science and Mathematics, Vol.3, Nos.1/2, pp.102-121, 2010.
[13] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and

Engineers, McGraw-Hill Book Company, 1968.
[14] A. G. Ramm, Wave scattering by many small particles embedded in a

medium, Phys. Lett. A, 372/17, (2008), 3064-3070.
[15] A. G. Ramm, Wave scattering by many small bodies and creating ma-

terials with a desired refraction coefficient, Afrika Matematika, 22, N1, (2011),
33-55.

[16] A. G. Ramm, Scattering of scalar waves by many small particles, AIP

Advances, 1, 022135, (2011).
[17] G. Markov, E. Vasiliev, Mathematical methods of applied electrodynam-

ics, Sov. Radio, Moscow, 1970.

19


	Copy of K-RExCoverPage MASTER - published manuscript.MASTER
	Electromagnetic wave...theory - author's MS

