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Abstract 

Two experiments were conducted to evaluate the effects of dietary vitamin A on growth, 

carcass characteristics, and meat quality of ruminants.  In Experiment 1, 40 crossbred wethers 

(BW = 28.7 kg) were assigned to 1 of 4 treatments:  backgrounding (BG) and finishing (FN) 

with no vitamin A (LL); BG with no vitamin A, FN with high vitamin A (6,600 IU·kg 
-1

 diet) 

(LH); BG with high vitamin A and FN with no vitamin A (HL); and BG and FN with high 

vitamin A (HH).  During BG (d 1 to 56), intake was restricted to achieve 0.22 kg ADG.  During 

FN (d 57 to 112), lambs consumed the same diet ad libitum.  Lambs were humanely slaughtered 

after 112 d.  There were no treatment differences (P > 0.05) in feed intake, ADG, or final BW.  

Carcasses from the HH group had higher (P < .05) marbling scores (514 vs. 459), and 25.8 % 

more extractable intramuscular lipid (IMF) than LL (3.88 vs. 3.08 % for HH and LL, 

respectively, P < .05); the LH and HL treatments were intermediate.  The was a negative 

correlation (r = -0.38) between serum fatty acid content and %IMF.   Experiment 1 data suggest 

that increased marbling may be achieved with high vitamin A for 112 d in lambs.  In Experiment 

2, Angus crossbred steers (n = 48), were either early-weaned (EW) at 137±26 d of age or weaned 

at a traditional age (TW) 199±26 d and allotted to either 42,180 IU vitamin Ahd
-1
d

-1
 (HA) or no 

vitamin A (NA).  Early- and TW steers consumed treatments for 235±17 and 175±18 d, 

respectively.  Serum and liver retinol content diverged dramatically (both, P < 0.01) by the end 

of the experiment and TW steers tended (P > 0.10) to have higher ADG than EW steers 

(1.31±0.2 and 1.48±0.2 kghd
-1
d

-1
, respectively).  Steers were humanely slaughtered at 1.02 cm 

fat.   Weights tended (P = 0.08) to be heavier and carcasses were fatter (P < 0.05) for HA than 

NA.  Marbling score and % IMF were higher (P < 0.05) for EW-NA than other treatments.  

Percentage of USDA Choice and Prime carcasses doubled (P < 0.05) for NA than HA.  Yield 

grades increased (P < 0.05) with EW-HA and were similar (P > 0.10) among other treatments.  

Feeding NA was effective for increasing marbling without increasing fat; EW enhanced these 

effects.  Reasons for the contradictory results in these 2 experiments are unclear.  Species 

differences in the ability to metabolize retinol are implicated.
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Abstract 

Two experiments were conducted to evaluate the effects of dietary vitamin A on growth, 

carcass characteristics, and meat quality of ruminants.  In Experiment 1, 40 crossbred wethers 

(BW = 28.7 kg) were assigned to 1 of 4 treatments:  backgrounding (BG) and finishing (FN) 

with no vitamin A (LL); BG with no vitamin A, FN with high vitamin A (6,600 IU·kg 
-1

 diet) 

(LH); BG with high vitamin A and FN with no vitamin A (HL); and BG and FN with high 

vitamin A (HH).  During BG (d 1 to 56), intake was restricted to achieve 0.22 kg ADG.  During 

FN (d 57 to 112), lambs consumed the same diet ad libitum.  Lambs were humanely slaughtered 

after 112 d.  There were no treatment differences (P > 0.05) in feed intake, ADG, or final BW.  

Carcasses from the HH group had higher (P < .05) marbling scores (514 vs. 459), and 25.8 % 

more extractable intramuscular lipid (IMF) than LL (3.88 vs. 3.08 % for HH and LL, 

respectively, P < .05); the LH and HL treatments were intermediate.  There was a negative 

correlation (r = -0.38) between serum fatty acid content and %IMF.  Lipid profiles were not 

affected by vitamin A treatments.    Experiment 1 data suggest that increased marbling may be 

achieved with high vitamin A for 112 d in lambs.  In Experiment 2, Angus crossbred steers (n = 

48), were either early-weaned (EW) at 137±26 d of age or weaned at a traditional age (TW) 

199±26 d and allotted to either 42,180 IU vitamin Ahd
-1
d

-1
 (HA) or no vitamin A (NA).  Early- 

and TW steers consumed treatments for 235±17 and 175±18 d, respectively.  Serum and liver 

retinol content diverged dramatically (both, P < 0.01) by the end of the experiment and TW 

steers tended (P > 0.10) to have higher ADG than EW steers (1.31±0.2 and 1.48±0.2 kghd
-1
d

-1
, 

respectively).  Steers were humanely slaughtered at 1.02 cm fat.   Weights tended (P = 0.08) to 

be heavier and carcasses were fatter (P < 0.05) for HA than NA.  Marbling score and %IMF 

were higher (P < 0.05) for EW-NA than other treatments.  Percentage of USDA Choice and 

Prime carcasses doubled (P < 0.05) for NA than HA.  Yield grades increased (P < 0.05) with 

EW-HA and were similar (P > 0.10) among other treatments.  Feeding NA is effective for 

increasing marbling without increasing fat; EW enhanced these effects.  Reasons for the 

opposing results in these 2 experiments are unclear at this time.  Species differences in the ability 

to metabolize retinol are implicated.
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CHAPTER 1 - Review of Literature 

Marbling  

Marbling, or intramuscular fat, has been associated with increases in palatability and 

consumer satisfaction of eating beef.  Although marbling appears to have only a low to moderate 

relationship to tenderness (Parrish, 1974; Tatum et al., 1980), marbling has been associated with 

juiciness and flavor intensity of beef when evaluated by trained sensory panels (May et al., 

1992).  Although there is a tendency in our society toward consumption of leaner meat products, 

it is apparent that many consumers are not willing to sacrifice the eating quality that is associated 

with well-marbled beef (Harrison et al., 1978; Savell et al., 1987).  Furthermore, marbling score 

is the most important trait in determining USDA quality grades of carcasses from cattle younger 

than 42 mo of age at harvest (Aberle et al., 2001).   In addition, many beef producers have 

shifted toward selling their cattle in a value-based marketing system where they are paid 

premiums for producing carcasses that meet USDA standards for marbling and receive severe 

discounts for carcasses that do not meet these standards.  In 2006, approximately half of all fed 

cattle in the U.S. were marketed through value-based systems where the price was determined 

for individual carcasses based on USDA quality and yield grade (Anderson and Gleghorn, 2007).  

A decade of increased consumer demand for beef coupled with increased use of value-based 

price determinations substantiates the importance for researchers to continue finding methods of 

increasing marbling of beef without increasing waste fat production.    

Methods to Increase Marbling in Cattle 

Genetic Selection  

 The last 10 years have seen an unprecedented effort by multiple segments of the beef 

production chain to optimize the quality and consistency of beef.  These production goals have 

been attained through application of research findings to the management decisions and genetic 

selections made on farms and ranches.  Inherent differences among beef breeds to attain high 

degrees of marbling have been well-documented (Jeremiah et al., 1970; Albrecht et al., 2006). In 

Asian countries, the Japanese Black, Hanwoo, and Wagyu breeds are capable of producing the 
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highest marbling scores of any known cattle breeds (Oka et al., 1998).  These breeds are not 

commonly used in U.S. beef production due to their inherent slow growth rate, inferior muscling, 

and high marbling that would generally be considered unhealthy by most American consumers.  

Among the beef breeds common to the U.S., British breeds of Angus, Red Angus, and Shorthorn 

are far more likely to produce carcasses with high marbling scores compared with Continental 

(European) and Brahman or Brahman-influenced breeds (Albrecht et al., 2006).  Branded 

marketing programs like Certified Angus Beef® were founded upon the relatively high 

propensity of Angus cattle to produce carcasses with high marbling scores compared to most 

other breeds.  In the mid-1990s, several beef cattle breed associations began using ultrasound 

images of the longissimus dorsi muscle (LM) in potential parent animals as a predictor of 

marbling potential of their progeny (Wilson, 1992; Baker et al., 2006).    Further, genetic 

selection for increased marbling and higher USDA quality grades within these breeds has 

increased the genetic merit of the commercial beef cowherd for marbling.   

Feeding Practices   

Increasing marbling through management practices, such as feeding cattle high-energy 

grain diets, has been demonstrated extensively.  Carcass marbling scores and USDA quality 

grades have been positively correlated to daily feed intake (Hicks et al., 1990), dietary energy 

density (Guenther et al., 1965; Prior et al., 1977; Burson et al., 1980) and time on feed (Moody et 

al., 1970; May et al., 1992; Duckett et al., 1993).  Increasing the daily feed intake, energy-

density, and days of feeding are practices that increase the caloric intake by cattle.  Intuitively, 

storage of excess energy as marbling and other fat depots would be expected to increase.  These 

feedlot management practices are common used standards in the U.S. cattle feeding industry to 

maximize genetic expression of marbling.      

Hormone Implants and β-adrenergic Agonists   

The use of growth-promoting metabolic modifiers, like steroid implants and β-adrenergic 

agonists, have been known to decrease marbling (Anderson and Gleghorn, 2007).   By making 

informed decisions about the effects of the implant ingredients on marbling development, 

understanding the biological type of cattle and marketing goals for the animals being treated, and 

by following recommended implant protocols, suppression of carcass marbling can be mitigated 

(Dikeman, 2007).  Under current market conditions, complete abandonment of growth-
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promoting compounds is not practical.  However, avoiding common application mistakes will 

certainly reduce the negative effects that many of these compounds have on marbling 

development.  

Early Weaning 

  Conventionally, beef calves born in the spring are weaned from their mothers in the fall 

of the same year, averaging 200 to 220 d of age.  Autumn is a logical time to wean calves for 

several reasons.  Primarily, pasture lands usually become dry and feed resources are scarce by 

late summer or early autumn.  In the fall months, spring-calving cows still nursing calves will be 

in their poorest body condition of the year and calves will have become largely dependent on 

forage rather than milk.  When cattle are gathered from vast pastures to more concentrated winter 

feeding, it is a logical time to wean the calves.  In Midwestern states, it is sometimes more 

convenient to wean calves in late fall, after crop harvest is completed and cows can graze crop 

residues during mid to late gestation.   

Beginning in the mid-ninety‟s, research confirmed some long-held assumptions about the 

beneficial aspects of early weaning, particularly the increases in marbling scores and USDA 

quality grades (Berger and Faulkner, 2003).  Early weaning is defined by most researchers and 

producers as the method of weaning calves between 75 and 150 d of age and placing them on a 

high-energy diet until slaughter (Wertz et al., 2001; Wertz et al., 2002; Berger and Faulkner, 

2003).  Compared to conventionally-weaned calves, early-weaned calves are equal to or heavier 

at 205 d of age, but have slightly lower average daily gain (ADG) in the feedlot, and slightly 

higher numeric USDA yield grades (Wertz et al., 2002).  The percentage of carcasses grading at 

least premium Choice (i.e., Modest
0
 or higher marbling) is increased when calves are early-

weaned (Pyatt et al., 2005).  Pyatt et al. (2005) also reported that early-weaned calves harvested 

at 16.5 mo were 20% more efficient on feed at any marbling endpoint than conventionally-

weaned calves harvested at 29 mo  The authors noted that total feed costs of early weaning will 

almost always be greater than for conventional weaning, but they are offset by reduced cow feed 

costs.  It is important to consider that these data were published in 2005, before the sharp 

increase in grain prices associated with the demand for corn in ethanol production.  Given that 

2007 corn and soybean prices were almost double the prices of 2005, the economic advantages 

of early-weaning definitely diminished and may have become unfavorable.     
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Health History and Disposition  

Greater communication among the production segments of the beef industry has enabled 

associations to be made among farm of origin, genetic makeup, age, vaccination status, sickness 

and treatment record, and carcass characteristics of cattle.  Without question, this communication 

has been facilitated by recent improvements in animal identification and record-keeping.  

Anderson and Gleghorn (2007) reported a strong negative correlation between death loss within 

a pen and USDA quality grades of surviving cattle from the same feedlot pen.   

Calm disposition has long been considered an important convenience trait in beef cattle.  

Recently, disposition has been associated with carcass grade.  Nkrumah et al. (2007) reported a 

direct correlation between docility scores of cattle in feedlot pens and USDA quality grades of 

the carcasses.  Increased selection for quiet disposition of cattle is mutually beneficial to all 

segments of the beef industry.      

Summary of Factors Involved in Marbling   

Feeding cattle with genetic potential for marbling is advantageous and can be 

accomplished using British breeds known for high marbling potential, and/or using lines of cattle 

that have been selected for increased marbling.   Management and environmental choices such as 

early-weaning, feeding high-energy diets, disease prevention and selecting for docile animals 

have all been associated with increased marbling development.  Proper use of hormone implants 

and/or β-adrenergic agonists can reduce the suppression in marbling development.  

Unfortunately, most of these management practices have at least one negative associative effect 

on beef production and profitability.  For instance, long-term genetic selection for increased 

marbling may result in reduced carcass muscling and meat yield.  Feeding high-energy diets and 

the use of early-weaning may be overshadowed by high costs of feed grains in response to the 

increased use of corn by the ethanol industry and will generally increase fat trim and decrease 

retail meat yields.  Using less aggressive metabolic modifiers may decrease feed efficiency, 

carcass muscling and leanness.  Ideal management solutions should cause little or now adverse 

side affects at the cost of improving marbling.  Recent reports of increased marbling and carcass 

quality associated with reduction of vitamin A in cattle diets appears to be a “free lunch” 

opportunity to beef producers to increase carcass quality with no apparent side affects.  This is 

the focus of my dissertation research. 
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Adipogenesis 

Introduction to Adipogenesis 

Fat deposited as marbling is metabolically unique from other fat storage depots.  In 

livestock, marbling can be attained through management and genetics that are associated with 

manipulating of the metabolic processes of adipocyte proliferation, differentiation, and 

maturation. Adipogenesis begins in the developing embryo with organization of cells arising 

from a pool of undifferentiated multipotent stem cells of mesodermal origin (Gerrard and Grant, 

2003).  Muscle and cartilage tissues also originate from this pool of mesenchymal cells.  The 

phenotypic fate of the mesenchymal cell depends largely upon the presence of signaling agents 

that are produced when either adipogenic or myogenic genes are expressed.  For instance, in the 

presence of steroid compounds, mesenchymal cells predominantly give rise to fibroblasts, the 

precursors of muscle fibers (Cossu and Biressi, 2005).  In the presence of insulin, cells typically 

follow the adipogenic pathway (Figure 1-1) (Dupont and LeRoith, 2001).   Preadipocyte 

differentiation marks a point of no return and commitment of a cell to an adipogenic fate.  

Greater understanding of the mechanisms that signal and mediate cell proliferation and 

differentiation into unique phenotypes would have tremendous implications for the livestock and 

meat industries.  This developmental “fork-in-the-road” is the focus of a great deal of research. 
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Figure 1.1. Adipocyte development from an undifferentiated, multipotent 

mesenchymal cell (adapted from Gerrard and Grant, 2003) 

 

 

Because adipose tissue is a storage depot for energy, it is highly vascular and contains 

vast capillary networks.  During early stages of adipose tissue development, there is an increase 

in connective tissue vascularization (Gerrard and Grant, 2003).  Collections of adipoblasts form 

lobules that become loosely associated in a loosely-held sheath of collagen.  Prenatal growth 

involves several proliferative divisions of adipoblasts. In cultures of stromal adipoblasts and 

preadipocytes, proliferation (hyperplasia) eventually ceases and the cells enter terminal 

differentiation.  A similar process was presumed to occur in vivo such that in the peri-natal 

period, preadipocytes exited proliferative divisions and entered into early differentiation, 

resulting in fixed numbers of fat cells at birth.  Under this theory, any postnatal increase in 

fatness was presumed to occur only through hypertrophy of existing adipocytes.  This 

assumption generally was disproven by Allen et al. (1976) who demonstrated monomodal, 

bimodal, and ultimately trimodal distributions of adipocyte diameters that were contained in 

porcine backfat samples harvested periodically as pigs were fattened from 3.86 to 7.42 cm of 

backfat.  The presence of cells with smaller diameters mixed with older cells having large 
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diameters indicated that both hyperplasia and hypertrophy were contributing to adiposity, 

particularly in fatter animals.  Similarly, May et al. (1994) used subcutaneous and intramuscular 

adipose tissue cell cultures from Angus and Wagyu steers to demonstrate that proliferation and 

lipid filing (i.e., hypertrophy) can occur concurrently, even in mature cattle.    

Maturation of the Adipocyte Phenotype 

Adipoblasts are < 20 μm in diameter when lipid begins to accumulate in the center of 

cells (Scanes, 1995).  Later, preadipocytes will contain several small intracellular lipid droplets 

known as multilocular lipid.  As lipid droplets increase in size, they coalesce to form one large 

lipid particle, known as unilocular lipid.  Interestingly, in cattle and sheep, most adipocytes have 

unilocular lipid at birth, whereas non-ruminants develop unilocular lipid during the first few 

postnatal weeks (Scanes, 1995).  Adipocyte maturation is associated with continued lipid 

accumulation and hypertrophy.  Ultimately, the lipid droplet may comprise > 95% of a cell‟s 

cytoplasmic volume (Gerrard and Grant, 2003).  Lipid crowds the inside of the cell to the extent 

that the cell nucleus is forced to the outer boundaries of the cell against the cell membrane.  

Mature adipocytes are 6 to 10 times larger than adipoblasts, averaging 120 μm in diameter and 

attaining diameters of up to 300 μm in obese animals (Rule et al., 1995).   

Transcription Factors Regulate Adipocyte Differentiation 

Most of what is known about early development and differentiation of adipose tissue has 

come from studies of secondary cell lines, such as 3T3-L1 preadipocytes (Cornelius et al., 1994).  

Generally, preadipocytes are plated in 10 % fetal bovine serum and incubated until they reach 

confluence.  Differentiation inducing factors can be added to the culture media causing 

commitment of cells to specific and predictable gene expression and phenotype development 

(Hwang et al., 1997).  One of the pitfalls of cultured lines of preadipocytes is the absence of 

paracrine factors that are present in vivo which might influence either the rate or extent of cell 

growth in a manner that might go undetected in cell culture.  Nonetheless, preadipocyte cell lines 

have enabled the recent discovery and continued understanding of the series of transcriptional 

events that control adipocyte development.  These transcriptional events are involved in 

coordinating the expression of genes responsible for creating and maintaining the adipocyte 

phenotype (Tontonoz et al., 1994).  Research has indicated that members of the CAAT/enhancer 

binding protein (C/EBP) and the peroxisome proliferator-activated receptor (PPAR) families are 
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highly expressed in adipose and act cooperatively to commit cells to an adipogenic program 

(Hwang et al., 1997). 

The CAAT/EBP Family 

The CAAT/EBP family of transcription factors plays a critical role in the induction and 

regulation of adipocyte differentiation.  These are proteins that belong to the “basic 

region/leucine zipper transcription factor” family of nuclear transcription factors (Gerrard and 

Grant, 2003).  These transcription factors mediate dimerization of other transcription factors and 

their binding at the promoter regions of DNA on adipose-relevant genes (Hurst, 1994).  

Expression of two isomers, C/EBPβ and C/EBPδ, is induced at the inception of differentiation 

and their expression decreases in the terminal phase of differentiation (Yeh et al., 1995).  These 

isomers are also known inducers of PPARγ and C/EBPα that are markers of intermediate and late 

stages of adipocyte differentiation.  Cells that lack the C/EBPβ and C/EBPδ isomers do not 

develop into adipocytes (Gerrard and Grant, 2003), clearly demonstrating the importance of 

C/EBPβ and C/EBPδ for affecting early differentiation of adipocytes.   

The C/EBPα isomer is an antimitotic factor that is expressed during the terminal phase of 

differentiation and immediately prior to the expression of many adipose-specific genes (Umek et 

al., 1991; Hwang et al., 1997).  It has been speculated that this isomer may cause the cessation of 

growth that ends the clonal expansion phase of differentiation (Freytag and Geddes, 1992).        

The PPAR Family 

Peroxisome proliferator-activated receptors (PPAR) are hormone receptors that were 

named based on their initial discovery as inducers of peroxisome proliferation.  Peroxisomes are 

membrane-bound organelles found in plants and animals, which contain enzymes that are used to 

break down fatty acids (Campbell, 1996).  Recently, their ubiquity and functional diversity in the 

cell has been recognized.  Expression of the PPAR family has caused adipose differentiation and 

lipid accumulation in preadipocytes (Chawla et al, 1994), myoblasts (Teboul et al., 1995), 

multipotent  C3H10T1/2 cells, and has induced adipocyte differentiation in NIH-3T3 fibroblasts 

(Forman et al., 1995).      

PPARs become active transcription factors by forming heterodimers with nuclear 

„retinoid X receptors‟ (RXR).  Once dimerized, these transcription factors attach to peroxisome 

proliferator response elements in the promoter regions of DNA.  The response elements are 
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direct repeats of the GGTCA base sequence separated by one random base (GGTCA-R-GGCTA) 

(Mangelsdorf and Evans, 1995).  These sequences are found in the promoter regions of most 

genes that have been implicated in adipogenesis, including genes for lipoprotein lipase, fatty 

acid-binding protein, and steroyl-CoA desaturase (Hwang et al., 1997).       

The gamma isomer is the most abundantly expressed isoform in adipose tissue (Zhu et 

al., 1995) and is described as the “master regulator of adipogenesis” by many writers (Pyatt and 

Berger, 2005).   The gamma isoform is expressed early in the differentiation phase of adipocyte 

development and is either coincident with or slightly proceeding C/EBPα expression (Tontonoz 

et al., 1994).  Currently, the mechanism behind the interaction among C/EBPβ, C/EBPα and 

PPARγ is poorly characterized and more research is needed to understand the regulatory roles of 

these proteins.  Brandebourg and Hu (2005) presented evidence that these transcription factors 

may not be interdependent for adipogenesis by demonstrating differences in the timing and 

sequence of transcriptional events between clonal cell lines and primary cultures of porcine 

preadipocytes.  These discrepancies could also be caused by differences in the developmental 

stages of the two cell types and/or because a more homogeneous population of cells would likely 

be used in cultured cell lines. 

Retinoid X Receptor (RXR) and Retinoic Acid Receptor (RAR)  

 Biological processes are regulated by intricate systems involving binding of a hormone 

or transcription factors to their receptors.  Activated receptors initiate gene transcription through 

a series of cell signals, such as a second messenger (i.e., protein hormones), or bind to the 

promoter region of target genes to initiate transcription.  These processes are exquisitely 

regulated by the binding kinetics of ligands to receptors.  When two or more substances capable 

of binding to the same receptor are present, selective or preferential binding of substrates become 

important considerations for understanding the extent of the transcription factor‟s ability to 

regulate gene expression.             

Nuclear receptors have been characterized into a phylogenic tree that consists of several 

subfamilies of receptors. These include thyroid hormone receptor-like, retinoid X receptor-like 

(RXR), estrogen receptor-like, and a few others.  The RXR is capable of binding with several 

members of the nuclear hormone receptor superfamily, including PPARγ, retinoic acid receptor 

(RAR), thyroid hormone receptor, vitamin D receptor, liver X receptor, and fatty acid-activated 
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receptor (Kawada et al., 1996).  When these ligands form dimers with RXR, they are capable of 

binding to cis-acting DNA elements in the promoter regions of DNA sequences, which is the 

first step in controlling gene expression.  Retinoic acid acts as a hormone by activating 

intracellular RAR.  For instance, the interactions of retinoic acid with genes that control 

adipocyte development are important for my dissertation research.   

Introduction to Vitamin A 

Vitamin A History 

Reports as early as 1906 indicated that factors other than carbohydrates, proteins, and fats 

were necessary to keep cattle healthy.  These were the first investigations that led to 

characterization of a class of nutrients known as vitamins.  Vitamin A was first reported in 1913 

by biochemists working independently; Elmer McCollum at the University of Wisconsin-

Madison and Lafayette Mendel at Yale University were researching fat-soluble nutrients 

contained in butterfat and cod liver oil (cited by Semba, 1999).  The Yale scientists chose to 

name this compound “fat-soluble factor A,” since “water-soluble factor B” (vitamin B) had 

recently been named (Wolf, 2001).  Vitamin A was first synthesized in laboratory conditions in 

1947 by Dutch chemists, David Adriaan van Dorp and Jozef Ferdinand Arens (Wolf, 2001).  In 

1967, George Wald won the Nobel Prize in Medicine for demonstrating the role of vitamin A in 

retina pigments, demonstrating the importance of vitamin A in vision.   

Pre-formed vitamin A is available from animal-derived sources, such as liver and eggs, 

and from a variety of pigmented vegetables in the form of carotenes, which must be converted to 

vitamin A by intestinal enzymes.  Although vitamin A deficiency is rarely implicated in sickness 

of humans and animals from developed countries, approximately 500,000 malnourished children 

go blind annually due to vitamin A deficiency (WHO, 2007).  In livestock, dietary vitamin A 

status has been correlated to the immune response, fertility, embryo survival, vision, growth 

performance, and overall health since the 1930‟s (NRC, 2001) and recently has been associated 

with carcass marbling (Oka, 1998; Arnett et al., 2007).  

Vitamin A Chemical Structure 

Vitamin A is a highly lipophilic, nonpolar, and polyunsaturated hydrocarbon that is 

important for many biological functions.  In animals, vitamin A activity is found predominately 
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in the form of retinol and its esters, retinal, and to a lesser extent, retinoic acid (Gregory, 1996).  

For a compound to have vitamin A activity, it must have certain structural properties that make it 

similar to retinol (Figure 5).  These include having at least one non-oxygenated β- ionone ring 

and having an isoprenoid (2-methyl-1,3-butadiene) side chain terminating in an alcohol, 

aldehyde, or carboxyl functional group (Gregory, 1996).  Nutritionally active sources of vitamin 

A are generally classified as derivatives of either retinoids or carotenoids.  Although there are 

many nutritionally active isomers of retinoids and carotenoids, the all-trans isomers of both 

compounds exhibit the greatest vitamin A activity and are the predominant naturally occurring 

forms (Gregory, 1996).    

Retinoids 

The term retinoid refers to a class of compounds, including retinol and its derivatives 

having four isoprenoid subunits.  Many different isomers of retinol, retinal, and retinoic acid 

exist as a result of either cis or trans configurations of the four double bonds in the polyene chain 

(Semba, 1999).  In addition, synthetic all-trans retinyl acetate and all-trans retinyl palmitate are 

widely used to fortify human and animal diets.   

Animal-derived vitamin A is usually ingested in precursor form as retinyl esters. Milk fat 

(butter), liver, and eggs are excellent sources of animal-derived vitamin A.  Hydrolysis of these 

esters in the small intestine yields the biologically active retinol.  Some animal-derived retinyl 

esters are hydrolyzed to retinal, which can be reversibly reduced to retinol or it can be 

irreversibly oxidized to produce retinoic acid (Gregory, 1996).  The 11-cis-retinal isomer is 

important because it is the chomophore of rhodopsin, the vertebrate photosensor molecule.  The 

process of vision relies on the light-induced isomerisation of the chromophore from 11-cis to all-

trans retinal, which results in a conformational change and activation of the photoreceptor 

(Semba, 1999).   

Carotenoids  

Carotenoids, sometimes known as provitamin A, contribute significantly to the vitamin A 

activity of both plant and animal-derived foods.  Of the approximately 600 known carotenoids, 

approximately 50 have some provitamin A activity in vivo (Gregory, 1996).  Because 

carotenoids are plant pigments that reflect a variety of colors, many fruits and vegetables with 

concentrated or dark colors are excellent sources of provitamin A.  Sweet potatoes, carrots, 
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tomatoes, apricots, and plums are a few examples.  Structurally, carotenes resemble 2 retinoid 

molecules joined as mirror images.   

 

Carotenes do not have vitamin A activity until they undergo cleavage of the C15 – C15‟ 

bond in the intestinal mucosa via two oxidative enzymatic steps (Gregory, 1996).  This cleavage 

potentially yields two molecules of retinol.  Conversion of β-carotene to active retinol is an 

inefficient process, but among the carotenoids, β-carotene has the greatest vitamin A activity.  

Although two molecules of active vitamin A are potentially produced from each molecule of β-

carotene consumed, the hydrolysis generally produces only one active vitamin A molecule, 

making the conversion of β-carotene only 50% efficient when compared to the activity of retinol 

by mass (Gregory, 1996). 

Quantifying Vitamin A  

Measures of vitamin A are expressed in different ways and these measures must be 

carefully interpreted because the bioavailability depends upon the dietary source.  For livestock, 

vitamin A requirements are traditionally referred to in international units (IU), which is a 

measure of the biological activity of a compound (NRC, 1996).  This system allows for accurate 

comparison among the various forms of retinoids and carotenoids that may be ingested through 

grazing and/or supplemented in a diet.  In 1974, the United States adopted the “retinol 

equivalent” to quantify vitamin A activity relative to retinol, the most biologically active form of 

vitamin A.  With this system, 1 RE = 1 μg of all-trans retinol (Table 1-1).     

 

Table 1-1. Conversions for various measures of vitamin A activity for cattle 

International 

Units (IU)

 Retinol Equivalents   (RE)                                    

mass of all-trans  retinol (μg)

 β-carotene for 

cattle (μg)

3.33 1 8.33

400 120 1000

1 0.3 2.5  

Consequently, regular use of mass equivalents (either mg or µg) of retinol became 

acceptable and allowed for easier measurement of vitamin supplements when mixing rations. For 

cattle, one IU of vitamin A corresponds to 0.3 µg (RE) of all-trans retinol (0.344 µg of all-trans 

retinyl acetate or 0.550 µg of all-trans retinyl palmitate), and to 2.5 µg of β-carotene (NRC, 
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2001).  Most requirements for livestock continue to be reported in either IU or mass equivalents 

of retinol. 

Vitamin A Solubilization and Digestion 

Intestinal Enzymes 

   Retinyl esters, which were the source of vitamin A used in my dissertation 

research, must be hydrolyzed prior to intestinal absorption.  Hydrolysis of these esters is 

catalyzed by lipases, located in the membranes of intestinal enterocytes.  Retinyl ester hydrolase 

has been characterized extensively and is considered the primary enzyme endogenous to the 

small intestine that has retinyl ester cleaving properties (Rigtrup et al., 1994). 

Pancreatic Enzymes  

 Recent data from studies of rats and mice suggest that pancreatic triglyceride lipase 

(PTL) is the enzyme primarily responsible for retinyl ester hydrolysis in the intestine. Rigtrup et 

al. (1994) ligated the common pancreatic ducts of rats for 48 h to prevent secretion of pancreatic 

enzymes into the intestinal lumen before obtaining brush border membranes from enterocytes 

comprising the villi of the small intestine.   

In the absence of pancreatic enzymes, there was a marked decrease in the hydrolysis of 

short-chain retinyl esters and a 30% decrease in hydrolysis of long-chain retinyl esters.  The 

authors concluded that hydrolysis of short-chain retinyl esters was likely carried out by the 

pancreatic lipases and that the majority (70%) of long-chain hydrolysis must be inherent to the 

brush border membranes of the enterocytes (i.e., retinyl ester hydrolase). 

Cellular Uptake of Vitamin A 

Defining the exact mechanisms of uptake of retinol by intestinal cells is difficult and 

complex because several mechanisms may be involved in a single cell.  Harrison (2005) 

suggested that the general perception that retinol is efficiently absorbed and quantitatively 

transported may need reevaluation.  Recovery of ingested retinol into lymph varies between 20 

and 60 % in humans (Goodman et al., 1966) and rats (Huang and Goodman, 1965).  Hollander 

(1980) demonstrated that approximately 60 and 30 % of absorbed retinol is secreted into lymph 

and portal circulation, respectively.  Much of the ingested retinol is secreted into lymph in 

esterified form, but considerable amounts of free retinol are likely secreted into the portal 
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circulation.  Studies of intestinal absorption of retinol by intestinal cells of cattle are not 

available, and published work in this specific area has been completed with the human intestinal 

cell line.   

Intracellular and Intercellular Transport of Vitamin A 

Two cellular retinol-binding proteins (CRBP) have been purified and extensively 

characterized (Harrison, 2005).  After absorption by enterocytes, free retinol is likely sequestered 

by CRBP(II), which is one of the most abundant proteins expressed in the absorptive cells of the 

small intestine (Harrison, 2005).  Harrison (2005) reported that CRBP(II) accounts for 

approximately 1 % of the total soluble proteins in the jejuna mucosa.  Cell culture studies have 

demonstrated that CRBP(II) is important for shuttling retinoids to various intracellular enzymes 

to modulate their metabolism.  Harrison (2005) speculated that CRBP(II) can bind to specific 

transporters on the brush border membrane and permit facilitated diffusion.  Interestingly, levels 

of CRBP(II) mRNA are increased in the small intestine of vitamin A–deficient rats (Rajan et al., 

1992).  Treatment of human-derived Caco-2 cells with retinoic acid results in a two-to-three- 

fold increase in CRBP(II) mRNA expression as well as increased absorption and intracellular 

radiolabeled retinol (Lissoos, et al., 1995).   

Incorporation of Vitamin A into Chylomicrons 

Studies in humans and rats have consistently indicated that once retinol is incorporated 

by enterocytes, it is largely reesterified with long-chain fatty acids, incorporated into 

chylomicrons, and secreted into the lymph system with other dietary lipids (Harrison, 2005).  

Levin (1993) demonstrated that Caco-2 cells derived from the human intestine secreted only free 

retinol when cell were not supplemented with fatty acids.  Retinol is primarily secreted into the 

lymph as retinyl palmitate that is present in small chylomicrons and is found in lesser amounts in 

large chylomicrons and very-low-density lipoproteins (Lemieux et al., 1998).  Unlike many other 

lipids, retinyl esters are not associated with either high- or low-density lipoproteins, suggesting 

they have chemical attributes somewhat different from other neutral lipids.  Secretion of retinyl 

esters with chylomicrons is independent of the rate of retinol uptake, and independent of the 

intracellular levels of free and esterified retinol (Harrison, 2005).  Rather, secretion of retinyl 

esters is dependent on the formation and secretion of chylomicrons through the villi of the small 

intestine.        
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Inhibition of Adipocyte Differentiation by Retinoic Acid 

Kawada et al. (1996) reported that RXR can be activated by binding with PPARγ, RAR, 

thyroid hormone receptor, vitamin D receptor, liver X receptor, and fatty acid-activated receptor.  

Each of these ligands possesses unique affinity for RXR.  Intuitively, when two or more RXR 

ligands are in the vicinity of RXR, the ligand with the highest binding affinity forms the dimer 

with RXR.  It has been suggested that RAR in the presence of RXR binds to RXR with high 

affinity, and inhibits PPARγ binding to the extent that adipocyte development is suppressed. 

Ohyama et al. (1998) cultured stromal vascular cells collected from the peri-renal tissue 

of 21-mo old Japanese Black steers.  The cell culture differentiation media contained 0, 0.4, 4.0, 

or 40 μg · 100 ml
-1

 retinol, which was presumed to convert to retinoic acid, and 

thiazolidinedione, a specific ligand that promotes adipogenesis by stimulating PPARγ.  Glycerol-

3-phosphate dehydrogenase (GPDH) activity was measured in this and several other studies as a 

marker of adipocyte differentiation because GPDH is expressed in terminally-differentiated 

adipocytes, but is not detected in undifferentiated stromal-vascular cells.   

Addition of the lowest concentration of retinol reduced GPDH activity to levels as low as 

the controls, and decreased the number of lipid-laden cells in a dose-dependant manner. This 

suggests that low concentrations of retinol virtually inhibit the ability of thiazolidinedione to 

stimulate adipogenic gene expression in cultured cells.   
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Figure 1.2. Photomicrographs of bovine preadipocytes cultured under different 

concentrations of retinol. (A) Without retinol, (B) 0.4 μg/100 ml retinol, (C) 4 μg/100 ml 

retinol, and (D) 40 μg/100 ml retinol (Ohyama et al., 1998). 

 

Figure 1-2 illustrates the dose-dependant response of bovine preadipocytes when cultured 

in different retinol concentrations. 

Suryawan and Hu (1997) examined the effects of retinoic acid on preadipocyte 

differentiation in primary culture of stromal-vascular cells removed from crossbred newborn 

pigs.  An inhibitory effect on GPDH activity was observed as concentrations of retinoic acid 

were increased in cultures.  This suppressive effect of retinoic acid was also confirmed by oil red 

O staining that showed a reduction in the number of cells accumulating lipid.   

Because of the evidence presented by Safonava et al. (1994) that retinoic acid acted as an 

adipogenic promoter at physiological concentrations (i.e., 1 to 10 nM), Suryawan and Hu (1997) 

also examined the effect of physiological concentrations of retinoic acid on cultured porcine 

preadipocytes.  They reported no concentration-dependant differences in preadipocyte 

differentiation and proposed that the results may indicate species differences in sensitivity to 

retinoids.  
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Figure 1.3 Effect of pharmacological doses of retinoic acid on glycerol-3-phosphate 

dehydrogenase activity of porcine preadipocytes in primary culture (Suryawan and Hu, 

1997). 

 

 

 

The inhibitory effect of retinoic acid on preadipocyte differentiation was time dependant.  

Exposure of cultures to retinoic acid early in the culture period was much more effective at 

inhibiting fat cell differentiation than when added several days into the culture period (Figure 1-

3); withdraw of retinoic acid from the culture did not reverse the inhibitory effect on cell 

differentiation.   
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Figure 1.4 Effect of retinoic acid administration at different times on glycerol-3-phosphate 

dehydrogenase activity of porcine preadipocytes in primary culture (Suryawan and Hu, 

1997). 

 

 

Furthermore, figure 1-4 shows that the maximum inhibitory effect of retinoic acid can be 

attained with only 24 h in culture and that exposure of preadipocytes to retinoic acid for either 48 

or 72 h did not further suppress GPDH activity.  This solidifies the hypothesis that retinoic acid 

interferes with fat cell growth during early stages of preadipocyte differentiation in culture.     
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Figure 1.5. Effect of exposure time of retinoic acid on glycerol-3-phosphate dehydrogenase 

activity of porcine preadipocytes in primary culture (Suryawan and Hu, 1997). 

 

 

Working in the same lab, Brandebourg and Hu (2005) examined the effect of retinoids on 

the expression of known adipogenic transcription factors such as C/EBPβ, PPARγ, and C/EBPα. 

Porcine preadipocytes were harvested and cultured as described in Suryawan and Hu (1997).  

Cultures were continuously treated from d 0 to 10 with 0 to 10 µM all-trans-retinoic acid (a 

nonspecific agonist for RAR and RXR), 10 nM to 10 µM 9-cis-retinoic acid,  10 nM to 10 µM 

methoprene acid (RXR-selective agonist), or 10 pM to 10 µM 4-(E-2-[5,6,7,8-tetrahydro-5,5,8,8-

tetramethyl-2-naphthalenyl]-1-propenyl) benzoic acid (TTNPB) (RAR-selective agonist).  

Treating the cultured stromal vascular cells with either all-trans-retinoic acid or 9-cis-retinoic 

acid decreased (P < 0.01) preadipocyte differentiation in an inverse concentration-dependant 

manner (Figure 1-14).   
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Figure 1.6. The effect of increasing doses of retinoids on glycerol-3-phosphate 

dehydrogenase activity in primary cultures of differentiating porcine preadipocytes at d 10 

(Brandebourg and Hu, 2005). 

 

 

 

Addition of only 100 pM TTNPB to cell cultures effectively decreased (P < 0.001) 

GPDH activity, whereas methoprene acid increased GPDH activity (Figure 1-6).  These data 

suggest that RXR may not be involved in regulating adipogenesis because the RXR agonist, 

methoprene acid increased GPDH activity.  Further evidence of the involvement of the RAR 

system in the suppression of adipogenesis was presented when the addition of Ro-61, a potent 

RAR-specific antagonist, prevented all-trans-retinoic acid and TTNPB from inhibiting adipocyte 

differentiation in a dose-dependant manner (Figure 1-7).  This demonstrated that when RAR 

receptors were down-regulated and unable to form heterodimers with the retinoid agonists, 

preadipocyte cell differentiation was allowed to proceed without inhibition.  The research 
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conducted by Brandebourg and Hu (2005) demonstrated the specific involvement of RAR in 

suppressing adipocyte development.  While the use of TTNPB was highly effective in generating 

the hypothesized response, it should be questioned whether this is an accurate representation of 

the in vivo response.  It is more likely that all-trans-retinoic acid and 9-cis-retinoic acid (i.e., the 

endogenous ligands) bind to receptors in a competitive environment with many paracrine factors 

affecting the affinity of retinoids to RAR and RXR.         

Figure 1.7. Effect of retinoic acid receptor agonist, Ro61, on the ability of all-trans-retinoic 

acid and 4-(E-2-[5,6,7,8-tetrahydro-5,5,8,8,-tetramethyl-2-naphthalenyl]-1-propenyl) 

benzoic acid to inhibit glycerol-3-phosphate dehydrogenase activity in primary cultures of 

differentiating porcine preadipocytes at d 10 (Brandebouorg an Hu, 2005). 

 

These effects have been reported in other species.  Decreased GPDH expression and 

suppressed adipogenesis has been associated with addition of retinol to ovine preadipocytes 

(Torii et al., 1996).  Studies involving murine 3T3-L1 cell lines have demonstrated that all-trans-

retinoic acid inhibits adipogenesis by down-regulating the genes expressing PPARγ and C/EBPα.  

Xue et al. (1996) reported a decrease in PPARγ mRNA and protein when mouse 3T3-L1 cells 

were treated with retinoic acid.      

The suppressive effects of retinoids on adipocyte differentiation of cultured cells from 

multiple species provides compelling evidence that livestock diets containing high levels of 

vitamin A activity may be inhibiting adipose tissue development.  The consequences of this 

could be beneficial for reducing excess fat and increasing retail yields of leaner beef, pork, and 

lamb.  Intramuscular fat increases juiciness and flavor (Dolezal et al., 1982) and, in the United 
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States, Australia, and Asia, the amount of intramuscular fat is an important criterion used to 

determine beef quality grade and prices paid by processors to producers.      

Vitamin A Biology in Cattle 

Dietary Requirement 

Dietary requirements for livestock are reported in the National Research Council‟s 

Handbook of Dietary Requirements (1996).  They are species specific and are usually indicated 

for specific growth or production stages of the animals being supplemented.  For beef feedlot 

cattle, the vitamin A requirement is 2,200 IU·kg
-1

 of dry feed (NRC, 1996).  This is the same 

value reported in the 1984 NRC and these values were determined from research published 

between 1935 and 1972.  No recent research has been conducted to re-evaluate or update the 

vitamin A requirements for cattle. 

Vitamin A Supplementation in U.S. Feedlots 

Feeding little or no supplemental vitamin A in attempt to increase marbling is in distinct 

contrast to common practice in U.S. beef production.  In a survey of feedlot nutritionists, most 

recommended levels of vitamin A supplementation far exceed NRC requirements.  The average 

recommendation was 8,053 IU/kg DM for receiving diets and 4,554 IU/kg DM for finishing diets 

(Galyean and Gleghorn, 2002), with ranges from 3,520 to 15,400 IU/kg DM for receiving diets 

and 3,300 to 7,260 IU/kg for finishing diets.  Because vitamin A fortification of cattle diets is an 

inexpensive and easy method for improving immune response, particularly in receiving cattle, it 

is likely that few have considered the potential negative consequences of such levels on marbling 

and quality grade.    

In a review of the effects of vitamins A and D on marbling deposition, Pyatt and Berger 

(2005) noted the relationship between the seasonality of carcasses that grade USDA Choice and 

the intake of vitamin A.  Cattle placed in feedlots in late spring and early summer are typically 

harvested in late summer or early fall, when quality grades are the lowest (Anderson and 

Gleghorn, 2007).  Pyatt and Berger (2005) pointed out that these cattle are commonly 

backgrounded on lush pastures, including wheat pastures, that contain 100,000 to 300,000 IU/kg 

of vitamin A activity derived from the high levels of carotene (NRC, 1996).  Because vitamin A 

is stored primarily in liver, it may take several months for circulating levels of vitamin A to be 
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depleted, even if vitamin A intake is quite low.  This is supported by Oka et al. (1998), who 

reported a strong relationship (r = .77) between serum and liver vitamin A concentrations in 

cattle.  In support of this theory, more heifers fed through the winter months graded USDA 

Prime and had higher marbling scores than heifers fed during the summer months (Kreikemeier 

and Mader, 2004).  Similarly, Pusillo et al. (1991) observed lower quality grades in yearling 

steers fed from May to October than yearling steers placed on feed for 140 to 180 d in 

November, January, March, or September.   While heat stress and reduced feed intake have been 

shown to reduce quality grade in summer-fed cattle, the suppressive effects of high vitamin A on 

marbling, either before or during the finishing period, is a real possibility for suppressing 

marbling deposition. 

Tissue Storage of Vitamin A in Cattle 

In cattle, 70 to 90 % of total vitamin A is stored in the liver (Sewell, 1993).  Carotenes 

that escape conversion to retinyl esters are also stored in the liver.  The remainder of carotenoids 

and retinoids are stored in fat and other fat-containing organs.  Bodily storage of vitamin A is 

low at birth and in young animals.  Riggs (1940) found a negative correlation between age and 

the number of days required to cause blindness when calves ranging from 3 to 16 mo of age were 

fed vitamin A deficient diets.  Sewell (1993) reported that no appreciable storage of vitamin A 

takes place in the liver until the dietary intake of vitamin A becomes 3 to 5 times (5 to 10 times 

for carotene) higher than the basal requirement.  Although the liver can prevent vitamin A 

deficiency for several months in older cattle, liver stores are highly variable and cannot be 

accurately assessed in live animals without biopsy samples (NRC, 1996).  

Seasonality of Quality Grade in the United States                   

 Seasonal variation in the percentage of beef carcasses grading USDA Choice or higher 

has been documented for decades.  Reduction in feed intake during hot summer months has been 

implicated in the reduction of marbling that follows when cattle are harvested in late summer and 

early fall (Pusillo et al., 1991; Kreikemeier et al., 1998; Anderson et al., 2007).  Pyatt and Berger 

(2005) suggested that cattle fed through the summer months and harvested in late summer and 

early fall represent a population of cattle that likely consumed extremely high levels of dietary 

vitamin A (via plant β-carotene).  Most cattle harvested during the months of lowest USDA 

quality grades coincide to time spent in lush pastures consuming high levels of β-carotene during 
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the months prior to entering the feedlot. Pyatt and Berger (2005) pointed out that cattle fed 

through the summer and harvested in autumn months are commonly backgrounded on lush 

pastures, including wheat pastures, that contain 100,000 to 300,000 IU/kg of vitamin A activity 

derived from the high levels of carotene (NRC, 1989).  Because vitamin A is stored primarily in 

liver, it may take several months for circulating levels of vitamin A to be depleted, even if 

vitamin A intake is quite low.  This is supported by Oka et al. (1998), who reported a strong 

relationship (r = .77) between serum and liver vitamin A concentrations in cattle.  Conversely, 

cattle harvested during intense grazing months likely consumed much lower levels of vitamin A 

during their growing phase.  Kreikemeier and Mader (2004) reported a greater percentage of 

carcasses grading USDA Prime in winter-fed heifers compared to summer-fed heifers.  Because 

depletion of vitamin A requires at least 100 days in cattle, pre-feedyard consumption of lush 

forage combined with heat stress presents a worst-case scenario for marbling development 

during the summer months.  The effects of dietary vitamin A level on carcass traits are reviewed 

extensively below. 

Cattle Feeding in Asia 

In Asian countries, such as Korea and Japan, beef with a high degree of marbling is 

desirable because of its palatability attributes.  Production of these highly-marbled carcasses 

involves the use of breeds with high genetic potential for marbling, such as Wagyu, Hanwoo, 

Angus, and crosses of these, harvested between 30 and 34 mo of age (Oka et al., 1998).  Because 

of the climate, infrastructure, and other historical differences, these cattle are fed diets that are 

different from typical US diets for feedlot cattle.  One of the most important considerations for 

beef producers in these countries to enhance marbling is to assure a low intake of vitamin A.  

Common feed ingredients include rice straw, Italian ryegrass hay, and timothy hay, which may 

contribute up to 20 % of the diet (Adachi et al., 1999).  Barley, flaked corn, wheat bran, rice 

bran, soybean meal, and soybean hulls are the typical grain products that are fed.  Interestingly, 

all of these ingredients are extremely low in carotene and vitamin A content (NRC, 1996). 

Oka et al. (1998) fed 15 mo old Waygu steers (n=57) diets low in carotene and vitamin A 

and created a divergence in vitamin A status by injecting half of the steers with 303 mg of retinol 

i.m. every 60 d until slaughter at 30 months.  Serum retinol concentrations at slaughter ranged 

from 3.8 to 39.7 μg dl
-1 

and marbling scores ranged from 3 to 11 (Japanese scale of 1 to 12).  
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From this study, Oka et al. (1998) reported a significant negative correlation (r = -0.38, P < 0.05) 

between serum retinol concentrations and carcass marbling scores.  They published a regression 

equation (Y = 29.9 – 1.7X; where Y is serum retinol concentration and X is marbling score) that 

continues to be frequently cited by animal scientists who are interested in methods of increasing 

marbling.  By contrast to the reports in cattle, a positive correlation between marbling and 

circulating vitamin A was established in market lambs in our lab at Kansas State University 

(Arnett et al., 2007). 

 

Adachi et al. (1999) obtained 13 Japanese Black steers from 6 different farms and 

finished them by Japanese standards until harvest at approximately 28 mo of age.  Blood was 

sampled at 12, 17, 22, and 28 mo of age.  Sixteen different blood parameters, including retinol, 

were analyzed to detect any correlations between carcass marbling scores and blood values.  

After marbling was evaluated by the Japanese Meat Grading Service, carcasses were classified as 

having either high (ranged 8 to 11) or low (ranged 4 to 5) marbling scores.  Although not 

statistically significant, steers with high marbling scores had lower serum retinol immediately 

before harvest than steers with low marbling scores (31±13 vs. 54±19 IU/dL).   

In an Australian study, Kruk et al. (2004) fed Angus steers (n = 20) with high Estimated 

Breeding Values for marbling, a standard feedlot ration for 10 mo  The basal diet consisted of 75 

% grain and was determined to contain only trace amounts of vitamin A and β-carotene.  Half of 

the steers were supplemented with 60,000 IU retinyl palmitate/100 kg/d while half received no 

supplemental vitamin A.  After 100 d on the feedlot rations, serum retinol levels diverged to 

significance and remained different for the balance of the feeding period.  Although no marbling 

scores were significantly different (P > 0.05) using either the Meat Standards Australia or USDA 

marbling standards, ether extractable lipid was  35% higher (P < 0.05) in the LM from cattle fed 

no supplemental vitamin A (13.0 vs. 9.6 % IMF for no and high supplemental vitamin A diets, 

respectively).  No treatment differences (P > 0.05) in marbling and % IMF were observed for the 

M. semitendinosis in this study.    

Vitamin A Studies in the U.S. Beef Industry 

The effects of dietary vitamin A level on early-weaned, feedlot backgrounded heifers (n = 

48) and steers (n = 144), and traditionally-weaned, pasture backgrounded yearling steers (n = 42) 
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were studied by Pyatt et al. (2005).  Cattle were fed either 2,300 (1X NRC) or 7,250 (3.3X NRC) 

IU vitamin A / kg DM during the feedlot period.  Heifers were early-weaned at 51 d of age, 

steers were early-weaned at 70 d of age, and traditional-weaned steers were weaned at 191 d of 

age.  Early-weaned cattle were harvested when 12
th

 rib fat thickness averaged 1.06 cm as 

determined by ultrasound.  This was attained with 163 and 140 d of finishing for heifers and 

steers, respectively.  Yearling steers were harvested after 105 d of finishing, regardless of backfat 

thickness.  For all 3 experiments, carcass marbling scores and USDA Quality Grades were 

numerically in favor of cattle fed low levels of vitamin A, although no statistical differences 

were observed (Table 1-2).  Interestingly, serum retinol became different between the low and 

high vitamin A groups by the end of the finishing period in both early-weaned experiments, but 

not in the yearling steer trial.  Three factors likely contributed to this discrepancy.  Obviously, 

the yearling steers were given fewer days in the feedlot to consume either the high or low 

vitamin A diets.  However, the yearling cattle had grazed carotene-containing forages for several 

months prior to entering the feedlot. Consequently, they likely had much higher tissue stores of 

vitamin A than the early-weaned cattle at the initiation of the finishing period.  Thirdly, because 

the yearling steers were older than the early-weaned cattle at the initiation of the feedlot finishing 

phase, they likely had accumulated more vitamin A stored in the liver simply as a function of age 

and maturity.  For instance, vitamin A deficiency is most common in cattle less than 1 yr of age 

because younger animals are growing rapidly and utilizing more nutrients for growth compared 

to a metabolism of nutrient storage by older cattle that are physiologically more mature.                
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Table 1-2. Summary of serum retinol and carcass traits compiled from experiments with 3 

classes of cattle fed either 2,300 or 7,250 IU vitamin A per kg DM during the feedlot period 

(Pyatt et al., 2005). 

Carcass Trait Treatment  Low Vitamin A High Vitamin A SEM P

Final Serum retinol, ng/ml Early-weaned 

Heifer
189.5 277.7 16.0 <0.01

Early-weaned 

Steer
267.5 322.2 7.5 <0.001

Yearling Steer 346.9 355.4 13.2 0.65

Marbling Score Early-weaned 

Heifer

555 526 21.4 0.18

Early-weaned 

Steer
449 449 7.8 0.96

Yearling Steer 460 453 14.1 0.97

≥ Avg. Choice, %
Early-weaned 

Heifer
70.8 52.2 NA 0.16

Early-weaned 

Steer
23.8 38.1 NA 0.32

Yearling Steer 23.8 38.1 NA 0.32

Yield Grade
Early-weaned 

Heifer
2.6 2.5 0.1 0.87

Early-weaned 

Steer
2.1 2.3 0.1 0.03

Yearling Steer 2.7 2.7 0.1 0.72  

 

 Gorocica-Buenfil et al. (2007a) investigated the effects of dietary vitamin A level 

in the feedlot diets of Angus cross steers (n = 168) on beef carcass characteristics.  Steers were 

backgrounded in the feedlot and fed to gain 1.1 kg / d for 84 d, then switched to a finishing 

program of an additional 84 d.  The vitamin A treatments were either no supplemental vitamin A 

or 2,700 IU vitamin A/kg DM; the basal diet contained < 1,300 IU vitamin A / kg DM.  Serum 

retinol at harvest was 44 % lower (P < 0.01) from steers fed no supplemental vitamin A (23.0 vs. 

41.1 µg/dL).  Quality grade tended to be higher (P = 0.07) in carcasses from steers fed no 

supplemental vitamin A.  Marbling score and percentage of carcasses grading Choice
-
 or higher 

were 10% higher in the carcasses from steers receiving no supplemental vitamin A, although not 

significant (P = 0.11 and 0.13, respectively).  Twelfth rib fat thickness and USDA yield grades 

were not different between treatments (P > 0.20).  Although feeding no supplemental vitamin A 

in this study tended to increase marbling scores and USDA quality grades, the magnitude of the 
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effect was minimal and agrees with the report by Pyatt et al. (2005).  There are many similarities 

between the designs, materials, and methods of these two studies.  Interestingly, Gorocica-

Buenfil et al. (2007a) used a treatment with no supplemental vitamin A, whereas Pyatt et al. 

(2005) used 2,300 IU vitamin A /kg DM as the “low” vitamin A treatment.  Based upon the 

results of these two studies, supplementing with either no vitamin A or the NRC recommended 

level (1X) of vitamin A does not significantly increase carcass marbling scores and quality 

grades in Angus cross cattle fed in Midwestern feedlots.  However, the trend for increased 

marbling and percentage of carcasses grading ≥ USDA Choice
-
 suggests some efficacy to this 

feeding strategy.  Longer periods of vitamin A depletion may be needed in order to realize a 

more drastic effect on marbling deposition.   

 Gorocica-Buenfil et al. (2007b) investigated the effects of the duration of vitamin A 

restriction on marbling development in Holstein steers (n = 60).  All steers received an adaption 

diet containing 2,700 IU vitamin A/kg DM for the first 45 d in the feedlot.  Thereafter, steers 

were randomly allotted to one of three treatments: 2,200 IU vitamin A/kg DM for 243 d (C); 

2,200 IU vitamin A/kg DM for 112 d, then no supplemental vitamin A for an additional 131 d 

(short restricted); or no supplemental vitamin A / kg DM for 243 d of feeding (long restricted).  

The basal diet was calculated to contain 950 IU vitamin A/kg DM.  Marbling scores were not 

affected by vitamin A treatment (P = 0.36), although a numerical advantage was observed for the 

percentage of carcasses grading USDA Choice
0
 or higher (28% in control to 50% in the long 

restricted).  The authors offered no explanation for why the carcasses from short restricted steers 

had the lowest percentage of premium Choice and Prime quality grades.  Percentage of ether 

extractable lipid from the LM was 33 % higher (P < 0.05) from long restricted steers than short 

restricted and controls (5.6 vs. 3.9 and 4.2 % ether extract, respectively).  The authors concluded 

that restricting vitamin A intake for 131 d or less was not sufficient to improve marbling 

development in Holstein steers.  However, restricting vitamin A intake for up to 243 d of feeding 

increased intramuscular fat deposition in the LM.  Therefore, feeding low vitamin A diets may 

be an economically feasible strategy for affecting fat deposition in a site-specific manner.                  

In summary, the positive effects of depleting market cattle of vitamin A may be most 

apparent in populations of cattle with high genetic merit for marbling that can be depleted of 

vitamin A stores for extended periods (i.e., >150 d).  Feed efficiency, average daily gain, general 

health and vision, and carcass cutability were not affected by feeding diets containing either no 



 29 

or low levels of vitamin A.   Plus, these reports suggest that the requirement for vitamin A in 

feedlot cattle may need to be re-evaluated since the NRC recommendation cites research 

published over 3 decades ago (Perry et al., 1965; Eaton et al., 1972) when modern techniques to 

analyze serum and liver vitamin A content (i.e., HPLC) were not available. 
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CHAPTER 2 - EFFECTS OF VITAMIN A 

SUPPLEMENTATION ON PERFORMANCE, SERUM 

LIPID, AND LONGISSIMUS MUSCLE LIPID 

COMPOSITION OF LAMBS 

ABSTRACT 

Forty crossbred wethers (BW = 28.7 kg) were used to evaluate the effects of diets 

containing high and low levels of vitamin A on LM lipid composition. Four treatments arranged 

as a 2 X 2 factorial with a completely random design were investigated:  backgrounding (BG) 

and finishing (FN) with no supplemental vitamin A (LL); BG with no supplemental vitamin A 

and FN with high vitamin A (6,600 IU·kg 
-1

 diet) supplementation (LH); BG with high vitamin 

A supplementation and FN with no vitamin A supplementation (HL); and BG and FN with high 

vitamin A (HH) supplementation.  Diets included cracked corn (62.4%), soybean meal (16.0%), 

cottonseed hull pellets (14.8%), and supplement (7%) and contained <100 IU vitamin A kg 
-1

 

from carotenes before vitamin A was added.  During the BG period (d 1 to 56), feed intake was 

restricted to achieve 0.22 kg ADG.  During the FN period (d 57 to 112), lambs consumed the 

same diet ad libitum.  Lambs were weighed every 14 d and blood sampled every 28 d to  map 

changes in serum fatty acids (FA) and vitamin A levels.  Lambs were humanely slaughtered after 

112 d.  Lipid composition was determined for liver and longissimus tissues.  There were no 

treatment differences (P > 0.05) in feed intake, ADG, or final BW.  Carcass weights were not 

affected by vitamin A treatment (P > 0.20), although backfat thickness tended to be different 

between HL and LL lambs (0.80 vs. 0.64 cm, respectively; P = 0.08).  Carcasses from the HH 

group had higher (P < .05) marbling scores (514 vs. 459), and 25.8 % more extractable 

intramuscular lipid than LL (3.88 vs. 3.08 % for HH and LL, respectively, P < .05); the LH and 

HL treatments were intermediate.  Interestingly, the LL group had the greatest increase in serum 

FA throughout the experimental period (change of 127 vs. 41 μg·g
-1

 for LL and HH, 

respectively; P < .01).  Degree of saturation of fatty acids was not affected by treatment (P = .18) 

in the serum but was affected in longissimus thoracis fat.  Oleic acid increased and linoleic acid 

decreased in the longissimus thoracis of HH-treated lambs (P < 0.02).  These data suggest that 
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increases in total intramuscular lipid may be achieved with high levels of vitamin A 

supplementation for 112 d in young lambs.   

INTRODUCTION 

Intramuscular fat (marbling) is a major indicator of consumer satisfaction associated with 

beef consumption in many developed countries, especially the United States and Japan.  

Marbling is also the major factor used to determine USDA Quality Grade and prices paid by 

processors to beef producers.  Currently, many producers sell their cattle based on carcass grade, 

where considerable premiums can be paid for carcasses with increased marbling (Schroeder et 

al., 2002).   

Recently, the relationship between vitamin A intake and marbling development has been 

investigated.  Increased marbling scores and chemically extractable intramuscular lipid (IMF) 

have been demonstrated in cattle (Oka et al., 1998; Nade et al., 2003; Kruk et al., 2004) and 

swine (D‟Souza et al., 2003) fed either no or very low supplemental levels of vitamin A.  

Furthermore, marbling scores have been negatively correlated with concentration of vitamin A 

(retinol) in cattle blood (Oka et al., 1998; Adachi et al., 1999) and liver (Oka et al., 1998; Chae et 

al., 2003).  Preadipocyte differentiation has been either suppressed or completely inhibited in the 

presence of retinoids in cultured porcine (Brandebourg and Hu, 2005), bovine (Ohyama et al., 

1998), and ovine (Torii et al., 1995) stromal-vascular cells.  Several authors have theorized that 

vitamin A and its metabolites inhibit preadipocyte differentiation by activating retinoic acid 

receptors (RAR) and down-regulating the expression of peroxisome proliferator-activated 

receptor gamma (PPARγ), a marker of preadipocyte differentiation (Xue et al., 1996; 

Brandebourg and Hu, 2005).   

 To minimize economic risks and to conduct a study with shorter duration, we used lambs 

as a „model species‟ to evaluate the effects of high and low vitamin A diets on growth 

performance, carcass traits, and lipid composition of market lambs using a combination of 

backgrounding (BG) and finishing (FN) periods.  Specifically, it sought to determine the 

relationships between vitamin A status and the content and composition of fatty acids (FA) in 

serum, liver, and carcass fat depots. 

MATERIALS AND METHODS 
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Animals 

 Forty crossbred wethers (Rambouillet X Finn ewes mated to Suffolk X Hampshire rams) 

were purchased at approximately 90 d of age (BW =  from a single source. and weaned the day 

of purchase.  Lambs had ad libitum access to creep feed from birth to weaning, which was on the 

day of purchase.   They were vaccinated and treated for internal parasites prior to weaning.  

Upon arrival at Kansas State University, lambs were managed in the care of trained university 

personnel using methods described in the experimental protocol that was approved by the 

Institutional Animal Care and Use Committee (IACUC) at Kansas State University.   

Experimental Design and Treatments 

A completely random design with a 2 X 2 factorial treatment structure was used for this 

research.  There were 4 pens (2 per treatment) each with either 10 or 11 lambs during the 56 d 

BG period.  During the 56 d FN period, 8 pens (2 per treatment) each contained either 5 or 6 

lambs.  This was accomplished by constructing a fence through the middle of each pen on the 

last d of BG, thus doubling the number of pens.  Consequently, pen size and number of animals 

per pen were halved for the FN period.  However, this method allowed the stocking rate and the 

amount of pen space per animal to remain the same throughout the experiment.  Lambs were 

weighed prior to assignment of treatments and initial pen weights were balanced by stratifying 

weights onto treatment.  Lambs were randomly assigned to one of 2 BG treatments: high vitamin 

A (H); low vitamin A (L).  After 56 d on the BG diets, a similar method of stratifying animal 

weight onto treatment created 4 treatment combinations for the combined feeding periods:  high 

vitamin A during the BG and FN periods (HH); high vitamin A during the BG period, then low 

vitamin A during the FN period (HL); low vitamin A during the BG period and high vitamin A 

during the FN period (LH); or low vitamin A during the BG and FN periods (LL).   

Diets 

  To examine the effect of level of vitamin A intake during the growing phase in lambs, a 

56-d BG period was included in this study immediately preceding the 56-d FN period.  Diets 

were mixed at the Kansas State University feed mill (Table 2-1) and the lambs were adjusted to a 

basal diet for 14 d prior to initiation of the trial.  The same diet formulation was used for the BG 

and FN periods.  Intake was restricted to produce an average daily gain of 0.22 kg/hd
 
per d 

during the BG period; roughly half of the estimated ad libitum growth rate potential.  During the 
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FN period which was initiated on d 57, the lambs had ad libitum access to feed.  Lambs were 

adjusted up to ad libitum access by increasing the amount of feed offered each day, in increments 

determined at the discretion of trained personnel, to the level that, at the end of a feeding event, 

some feed was left in the bunk.  This stepping up process was complete after approximately 4 d; 

thereafter, management was used for determining the appropriate amount of feed to be offered in 

each bunk daily, such that all of the feed was consumed each day.  A free-choice mineral 

containing no vitamin A (Vita-Ferm
®
 Custom Sheep Mineral, Biozyme Inc., St. Joseph, MO) 

was provided throughout the experiment. 

 

Table 2-1. Composition of the treatment diets as fed 

 

To create a large differential in circulating vitamin A levels, high vitamin A diets were 

supplemented with 6,600 IU retinol/kg of feed in wheat middling carrier and low vitamin A diets 

contained no supplemental vitamin A.  Although forages may be a considerable source of 

vitamin A in ruminant diets, lambs in the present study were allowed only dry prairie hay that 

was harvested during the previous year and were housed in a drylot with no access to growing 

forages.  Therefore, the lambs were considered to be provided no vitamin A from carotenes.  

Additionally, the grain diet contained either low or no detectable carotene and levels were 

confirmed by two private laboratories (Medallion Labs, Minneapolis, MN; NPAL, St. Louis, 

MO).  Lambs, especially those receiving diets low in vitamin A, were observed daily for signs of 
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blindness and other physical illness.  No negative effects on vision or general health condition 

were observed. The BG and FN diets were analyzed for retinoid and carotene activity by two 

private laboratories, both using HPLC, to verify the vitamin A levels.      

    

Sample Collection 

Lambs were weighed every 14 d and blood was collected every 28 d to document the 

onset and extent of the differences among treatments in vitamin A concentrations in circulation.  

Blood samples were also used to evaluate changes in circulating FA during the experiment.  

Blood was collected via jugular venipuncture into 10 ml red-topped, non-heprinized tubes 

(Kendall, Monoject 16 X 100 mm; Tyco Healthcare Group LP, Mansfield, MA).  Blood 

sampling was conducted in a dimly lighted room and care was taken to avoid exposing the tubes 

to light.  Filled tubes were immediately placed on ice in a cooler at the sheep unit.  When 

sampling was completed, blood tubes were returned to the laboratory on campus and allowed to 

cool in a dark refrigerator at 4
0
 C for 24 hr.  Tubes were then centrifuged (Beckman Coulter, 

Fullerton, CA) for 25 min at 2,200 x g and 4
0
 C.  Serum was pipetted into two 5ml plastic tubes 

under UV-filtered light conditions and frozen at -27
0
 C for no longer than 90 d before vitamin A 

analyses were conducted. 

 

Lambs were weighed off test on d 112 and were harvested at the Kansas State University 

abattoir over 2 consecutive d using humane procedures.  Liver samples were collected from the 

caudate lobe, quick frozen in liquid nitrogen, and then stored at -27
0
 C for no more than 90 d 

until chemical analyses were conducted. Carcasses were allowed to chill for 24 h before ribbing 

between the 12
th

 and 13
th

 ribs.  Marbling scores were determined by three experienced evaluators 

using the marbling score system that is utilized for USDA Beef Quality Grading where there are 

marbling picture standards.  The USDA Lamb Quality Grade standards use “flank fat streaking”, 

which is a very subjective system with no reference points.  Backfat thickness was measured 

midway over the longissimus dorsi muscle and then adjusted subjectively for body wall 

thickness.  Sections (2.54 cm thick) of the longissimus thoracis (LT) muscle and overlying 

subcutaneous fat were removed and stored at -27
0
 C before chemical analyses.     

 



 42 

Vitamin A Determination 

Blood serum and liver were analyzed for vitamin A content by HPLC using the methods 

described by Barua and Olson (1998).  Retinyl acetate was obtained from the Department of 

Human Nutrition at Kansas State University and used as the internal standard.  Because retinol 

comprised nearly 85% of the detected retinoids in our samples, vitamin A content was 

interpreted as the total of retinol esters present in each sample.  Likewise, retinol is metabolized 

to a number of metabolites, namely, retinoic acid (Barua and Olson, 1998).  Analyses were 

conducted under yellow light to minimize deterioration of retinol.  The mobile phase contained 

methanol with the flow rate set at 1.0 ml/min. The reverse phase was measured using a 25 cm, C-

18 column.  Vitamin A data were interpreted with chromatography software (Gold 

Chromatography Data System Version 1.6, licensed to Beckman Coulter, Fullerton, CA) using a 

320 nm spectrum with a 4 nm band.  All analyses were conducted in duplicates and the mean 

was reported as the value for each sample.       

 

Fatty Acid Analysis 

Blood serum, liver from the caudate lobe, and a section of the longissimus dorsi muscle 

obtained at the 12
th

/13th rib juncture, were analyzed for lipid content and FA profiles using a 

Shimadzu GC-17A (Shimadzu, Kyoto, Japan) gas chromatograph (GC).  After 500 µl samples 

were freeze dried overnight, 1 ml of benzene, containing the internal standard (1000 µg/ml, 

methyl-13:0) was added and the tubes were vortexed to break up the pellet.  Then, 4ml of boron 

trifluoride:methanol reagent (Supelco B1252, Supelco Inc., Bellefonte, PA) was added and the 

tubes were mixed gently.  The tubes were incubated at 60
0
 C for 60 min.  Tubes were cooled at 

room temperature, and 4ml of ddH2O and 1 ml of hexane were added and mixed vigorously.  

The tubes were centrifuged at 1,000 X g for 5 min and the upper layer (1 to 2 ml) from each was 

transferred to a GC vial.  Samples were injected at 260
0 

C through a Supelco SP-2560 capillary 

column and detected at 260
0 

C.  The detector temperature was 260
0
 C and the final oven 

temperature was 240
0
 C, which was held for 15 min.  Column flow rate was set at 1.1 ml/min 

with a split ratio of 48:1.  Supelco 37 FA methyl ester mix was used as the external standard.  All 

GC analyses were run in duplicate.  Individual FA were expressed as proportion of sample 

weight for liver and muscle, and as a proportion of the total fatty acid content for serum. 
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Statistical Analyses 

A completely random design with a 2 X 2 factorial arrangement of treatments was used.  

There were 2 pens per treatment, with either 10 or 11 lambs and either 5 or 6 lambs per pen for 

the BG and FN periods, respectively.  Differences in means were detected using the PROC 

MIXED procedure of SAS
®
, Cary, NC.  Differences in serum retinoids and FA measured over 

time were analyzed with the PROC MIXED procedure, using a repeated-measures model with an 

unstructured covariance, which allowed the data to determine the best correlation model.  The 

model contained vitamin A status as the main effects of the BG and FN periods and their 

interaction.  Additionally, Pearson correlation coefficients (PROC CORR of SAS) were 

determined for serum retinol, marbling score, % IMF in the LT, backfat thickness, liver FA 

concentration, and serum FA content.  Paired t-tests were used to compare individual fatty acid 

components in serum, muscle, backfat, and liver. 

 

RESULTS AND DISCUSSION 

Vitamin A in Tissues 

  Liver is the primary storage site for vitamin A, and its depletion from the liver is critical 

in establishing divergent treatment effects (Goodman, 1984).  Serum levels of retinol were used 

as an indicator of vitamin A status in the liver because a significant logarithmic relationship 

between serum and liver concentrations of vitamin A has been demonstrated in lambs (May et al. 

1987) and in steers (r = 0.77, P < 0.01; Oka et al. 1998).  Serum retinol was not different (P > 

0.10) between lambs from high and low vitamin A BG treatments on any sampling day during 

the BG period (18, 21, and 24 vs. 17, 20, and 18 ug·dl
-1

 serum on d 0, 28, and 56 for H and L 

vitamin A treatments, respectively; Figure 2-1).   
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Figure 2.1. Serum retinol content during the backgrounding period 

 

 

Serum levels differed (P < 0.10) by d 84 between the HH and LL lambs (25 vs. 15 ug·dl
-

1
, respectively; Figure 2-2).  This difference remained throughout the remainder of the 

experiment.  Divergence in serum levels of retinol is often delayed and levels in blood 

sometimes rise when dietary vitamin A sources are removed and hepatic stores are mobilized 

(McDowell, 1989).  Thus, disappearance of vitamin A from the blood tends to take longer in 

animals with greater stores of hepatic vitamin A, and hepatic stores are generally higher in 

animals with high dietary intake of vitamin A and/or older animals that may have accumulated 

significant reserves (Riggs, 1940).  There were no differences in serum retinol (P > 0.10) 

between HL and LH lambs throughout the FN period.  Because liver is the primary storage site, 

vitamin A was not measured in fat depots. 
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Figure 2.2. Serum retinol content during the last 28 d of the finishing period 

 

Growth Performance 

Average initial BW was 28.8 kg for all lambs (Table 2-2) and were not different (P > 

0.10) among treatments.  Although a divergence in circulating vitamin A was achieved by d 56, 

no negative effects on growth performance among treatments were detected (P > 0.10) for the 

BG, FN, or combined feeding periods.  Average final BW for all treatments was 60.9 kg (Table 

2-2).  Average daily gain for all treatments was 0.28 kg/hd over the entire experimental period 

and were not different among treatments (P > 0.10) for the BG, FN, or combined feeding 

periods.  These findings are consistent with those of May et al. (1987), who reported no 

significant linear or quadratic effects of vitamin A levels for live weight gain, feed intake, or feed 

efficiency when lambs received vitamin A supplementation ranging from 2 to 64 μg/kg
 
of BW 

per d  for 16 wk. 
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Table 2-2. Lamb weights, growth performance, backfat depth, marbling scores, liver fatty 

acids, and longissimus thoracis fatty acids 

 

 

  Bruns and Webb (1990) reported similar growth rates between vitamin A-deficient and 

vitamin A-sufficient lambs during initial feeding, but decreased growth performance in vitamin 

A-deficient lambs during later stages of growth.  A similar pattern of growth performance was 

reported by Oka et al. (1998) in cattle fed high or low vitamin A diets.  Also, feeding less than 

half the NRC recommended level of vitamin A to Angus cross steers for 168 d did not reduce 

DMI, ADG, or G/F (Gorocica-Buenfil et al., 2005).  However, retinoic acid, a form of vitamin A, 

regulates growth hormone gene expression (Bedo et al., 1989) and has increased growth rates of 

cattle (Perry et al., 1968).  Several factors, including the extent and duration of depletion, 

chronological age, phase of growth, specie, and other environmental conditions likely contribute 

to the discrepancies in growth performance reported in these studies.  Research is warranted to 

describe how vitamin A depletion over time affects growth performance of ruminants in US 

livestock production systems.   

 

Serum Retinol and Marbling 

 Several investigators in countries supplying Asian beef markets have associated serum 

retinol content with beef carcass marbling scores.  Oka et al. (1998) reported a correlation 

between serum vitamin A concentration and beef marbling score (Japanese scale) of - 0.38 (P < 
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0.05).  Similarly, Adachi et al. (1999) demonstrated a negative correlation between vitamin A 

level in cattle blood and marbling score.  Currently, there is little information available about the 

relationship between serum retinol status and marbling development in US lamb and beef 

production.  In our study however, serum retinol concentration was positively correlated to, and 

a moderate predictor of marbling score (r = 0.30; P = 0.07) and total extractable lipid (r = 0.31; P 

= 0.06) in lamb carcasses.    

Results from the Japanese studies likely differed partially due to feeding cattle much 

longer and to older chronological ages than is deemed ideal in most US beef production systems.  

Depletion of dietary vitamin A for extended periods in the Japanese studies would have likely 

have caused greater depletion of liver stores, thus increasing the correlation between serum 

vitamin A and marbling score in these studies.  Our data oppose the findings of Oka et al (1998) 

and Adachi et al. (1999) and tend not to support those of Pyatt et al. (2005), who studied the 

effects of dietary vitamin A level on marbling development in a US beef production model.  

Surprised by our findings, we suggest that the relationship between serum levels of vitamin A 

and marbling deposition in lambs are different than those reported in cattle.  The mechanism by 

which this relationship may be opposite in sheep is not clear, although differences in fat levels 

contained in the liver and IMF storage depots suggest a preferential effect related to blood 

retinol.  These fat differences are reported herein.      

 

Serum Fatty Acid Concentration 

Concentration of FA in serum increased with time throughout the BG period in both 

treatments (Figure 2-3).  On the last day of BG (d 56), serum FA had increased to 831 and 820 

ug/g for high and low vitamin A treatments, respectively.     
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Figure 2.3. Total serum fatty acid content during the backgrounding period 

 

 

Interestingly, serum FA concentration peaked on d 56 in all treatments, then decreased (P 

< 0.01) in all treatments 28 d into the FN period (d 84) (Figure 2-4).  Following the decrease in 

serum FA midway through the FN period (d 84), serum FA concentration increased in all 

treatments for the remainder of the FN period.  Serum FA concentrations were not different (P > 

0.10) by treatment on the last d of the FN period.  The magnitude of FA decline (d 56 to 84) was 

considerably higher (P < 0.05) in HL and LH treatments.  The reason for the decrease in these 

two treatments is not clear; however, the stress of co-mingling lambs from different BG 

treatments to new FN treatments and the establishment of new social hierarchies early in the FN 

period may be partly responsible.  Lambs that were switched from high to low, or low to high 

vitamin A treatments were also presented with more new pen mates than lambs remaining on the 

same treatment through the BG and FN periods.  Additionally, all of the lambs endured 

extremely hot days during the FN period that may have affected FA circulation and storage.  

These data are supported by Oka et al. (1998), who reported no differences in serum FA 

concentrations of Japanese black steers fed diets containing high or low vitamin A, despite 

differences in the FA content of liver and muscle.  Adachi et al. (1999) found no differences in 

non-esterified FA in serum of Japanese Black steers finished on diets containing either high or 

low levels of vitamin A. 
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Figure 2.4. Total serum fatty acid content during the last 28 d of the finishing period 

 

  

Although serum FA level did not differ by vitamin A treatment, a moderate negative 

correlation was observed between final serum FA and carcass fat deposition (Table 2-3).  The 

correlation of serum FA on the last day of the trial with12
th

 rib backfat depth was -0.36 (P = 

0.03), while it was -0.33 (P = 0.04) with marbling score and -0.38 (P = 0.01) with %IMF in the 

LT.  These data indicate a negative relationship between serum FA and fat deposition at two 

distinct anatomical locations, suggesting that serum FA content may be useful in predicting total 

FA content in the various tissues.   
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Table 2-3. Pearson correlations between final serum levels and content of fatty acids (FA) 

in several carcass depots 

 

 

 

Because of the moderate correlations reported here, more research would be useful in 

characterizing the relationship between serum and tissue FA concentrations as affected by 

vitamin A status.  Currently, there are no published data describing the effects of vitamin A level 

on serum or tissue FA content in lambs.   

 

Carcass Attributes 

Backfat Thickness 

Because genetic composition and live weights were similar, carcass weights and loin eye 

area were not considered in the analysis.  Fat depth was measured midway over the LT at the 

12th rib and then adjusted for differences in thickness of the body wall.  Average fat thickness 

was 0.71 cm for all treatments (Table 2-2). Carcasses from HL and LH treatments tended to be 

fatter (P = 0.08) than the LL and HH carcasses.  Fat thickness is an important consideration here 

because similar studies involving beef cattle reported that dietary vitamin A content may 

influence marbling deposition in the LM without increasing backfat thickness (Gorocica-Buenfil 

et al., 2005; Oka et al., 1998).  Determination of feeding practices such as these which have the 

potential to increase marbling without increasing deposition of backfat, are desirable for 

livestock producers, processors, and consumers. 
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Marbling Scores 

It is common practice in the U.S. to grow cattle, and sometimes lambs, on forage-based 

diets for several months (i.e., BG) before finishing on high-energy grain diets.  When BG is done 

on lush spring pastures, it is likely that these animals are consuming 100,000 to 300,000 IU/kg 

forage of vitamin A (Pyatt and Berger, 2005).   Large amounts of vitamin A may become stored 

in liver and fat tissues during this period.  The effect of high vitamin A intake, from either BG on 

lush green pastures or from high supplemental intake during the FN period, may be detrimental 

to carcass marbling deposition.  Consequently, to examine these effects in lambs, a BG period 

was included in our study immediately preceding the FN period.  Average marbling score for all 

treatments was 484 degrees (i.e., Small
84

).  Lambs fed high vitamin A diets during the FN period 

tended to have higher (P < 0.10) marbling scores than those fed low vitamin A diets (Table 2-2).  

The HH and LH treatments produced carcasses containing Modest degrees of marbling (514 and 

518 degrees, respectively); whereas carcasses from lambs fed HL and LL diets contained Small 

degrees of marbling (445 and 459 degrees, respectively).  Marbling score was higher (P < 0.05) 

in HH and LH lambs than HL lambs and LL lambs (531and 519 versus, 445, and 459 marbling 

degrees, respectively; Table 2-2).  These data suggest that feeding high vitamin A diets to lambs 

for 56 d prior to harvest will increase marbling scores.  Interestingly, when Japanese Black steers 

were fed either low or high vitamin A diets after 23 mo of age and slaughtered at 33 mo, there 

were no differences in marbling score using the Japanese scale.  However, when steers were 

placed on high or low vitamin A diets beginning at 15 mo of age and harvested at 31 mo, 

marbling score was higher in cattle fed low vitamin A diets (Oka et al., 1998).  When Angus 

steers (12 mo of age) were fed either high or low vitamin A diets for 10 mo, there were no 

differences in marbling scores when either the Australian or USDA grading system was used 

(Kruk et al., 2004).  Similarly, Pyatt et al., (2005) found no difference (P > 0.05) in marbling 

score or percentage of carcasses grading low or premium Choice between Angus X Simmental 

steers and heifers fed either low or high vitamin A (3.3x NRC) diets.  Gorocica-Buenfil et al. 

(2005) reported a trend for a 10% increase in marbling scores and percentage of carcasses graded 

USDA Choice from beef steers that were provided no supplemental vitamin A for 168 d versus 

those provided 2,700 IU vitamin A/kg diet DM (P = 0.11 for marbling score and P= 0.13 for 

percentage of Choice).  Vitamin A effects on cattle marbling scores are not consistent and 

generally contradict our findings in lambs. Clearly, the effects of age and time on feed are 
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important considerations in depleting vitamin A and altering marbling deposition.  These effects 

should be considered further in lambs to clarify the potential for high or low vitamin A diets to 

affect marbling deposition in different species of livestock.    

 

Tissue Fatty Acid Concentration 

Fatty Acid Concentration in the LT 

Content of fatty acids in the LT provided an objective measure of IMF deposition to 

evaluate the effects of vitamin A treatment.  This is arguably the most important determination 

made in this study because of being interested in extrapolating these differences to potential 

USDA Quality Grade differences in cattle that might be observed when cattle were treated 

similarly (i.e., no supplemental vitamin A and high vitamin A).  The percentage of IMF in the 

LT was assessed by GC, and was intended to substantiate the marbling scores by using an 

objective method.  Percent IMF is reported as total FA as a proportion of the LT sample weight 

(Table 2-2 and Figure 2-5).   

 

 

Figure 2.5. Total fatty acid content of the longissimus thoracis and liver at slaughter 
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The results of our study in lambs contradict the findings from similar research conducted 

using cattle.  In general, feeding lambs low levels of vitamin A decreased IMF, feeding high 

levels increased IMF, and feeding high and low levels in BG and F combinations resulted in 

intermediate IMF, regardless of the combination (HL or LH).  Lambs from the LL treatment 

produced carcasses with the lowest % IMF and were different (P < 0.05) from the HH treatment 

(3.1 vs. 3.9 % IMF for LL and HH, respectively).  The HL and LH treatments produced 

carcasses containing intermediate IMF (3.5 and 3.4 % IMF, respectively) compared to the LL or 

HH treatments and were not different compared to the LH and HL treatments (P > 0.10).  

Furthermore, this relationship suggests that a linear model may explain the relationship between 

vitamin A status and marbling deposition in lambs.     

 Interestingly, an almost opposite effect has been reported in cattle and swine.  When   

Angus steers (12 mo old) were fed either high or no supplemental vitamin A for 10 mo, non-

supplemented steers produced carcasses with 35% higher (P < 0.05) IMF in the LT than steers 

supplemented with high vitamin A (Kruk et al., 2004).  When Large White X Landrace X Duroc 

finisher gilts were fed diets containing no supplemental vitamin A, they had higher (P = 0.002) 

IMF content in the longissimus muscle than supplemented gilts (D‟Souza et al., 2003).   

Research reports describing the relationship between dietary vitamin A intake and IMF 

accumulation in the LT are inconsistent and further investigation is warranted to mitigate these 

discrepancies.       

 

Fatty Acid Composition of the LT 

Changes in unsaturated fatty acids were of particular interest because increased 

concentrations of these fatty acids in human diets have been associated with reduction of certain 

cancers and the risk of heart diseases, such as coronary artery disease (Simopoulos, 1991).  There 

were no differences (P > 0.10) in the unsaturated FA content in s.c. fat deposited over the LT 

among the 4 treatments, which includes all monounsaturated and polyunsaturated FA that were 

detected by GC.  Therefore, these data are not shown.  Oleic acid (C18:1n-9 cis) was higher (P < 

0.02) in the LT of carcasses from the HH lambs compared to LL lambs (Table 2-4).  This 

increase accounts for more than half of the increase in total FA observed in the HH carcasses. 
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Table 2-4. Individual fatty acid concentrations in the longissimus thoracis
1
 

 

 

  Interestingly, this advantage in IMF deposition in HH lambs did not come in the form of 

linoleic acid, which has been shown to be of potential benefit to human health (Scollan et al., 

2006).  Rather, linoleic acid was the lowest in HH lambs and highest in concentration in IMF 

from LL lambs (6.4 vs. 7.8 % for HH and LL, respectively; P < 0.05).  In retrospect, assays of 

desaturase enzyme activities would have strengthened our understanding of this relationship and 

may have explained how vitamin A affects the activity of these enzymes in vivo.  Concentrations 

of oleic and linoleic acids from the LT of both crossover treatments (HL and LH) were 

intermediate, substantiating the likelihood of a linear relationship between dietary vitamin A 

status and content of unsaturated FA content of lamb loin meat.  These data suggest that feeding 

diets high in vitamin A for at least 112 d will increase the concentration of monounsaturated fat, 

but will decrease the amount of polyunsaturated fat in the LT.  This feeding protocol may help 

characterize lamb meat as a source of heart-healthy protein.  This contradicts the findings of 

Daniel et al. (2004), who fed growing lambs vitamin A for 21 d and increased levels of 

palmitoleic and oleic acids in liver and adipose tissues, but concluded that manipulation of 

dietary vitamin A was not a suitable method of increasing unsaturated fat content in lamb meat.  

It is questionable whether feeding either high or low vitamin A for only 21 d in the study by 

Daniel et al. (2004) was enough time to create significant changes in tissue FA concentrations.  
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Fatty Acid Concentration in Liver 

Although the relationships between vitamin A treatment and IMF in our study do not 

concur with similar studies in cattle, our results do concur with a similar trend in the fatty acid 

concentrations in lamb liver.  Generally, feeding low vitamin A diets to lambs for 112 d (LL) 

reduced the concentration of FA in the liver, whereas feeding high levels of vitamin A (HH), 

particularly during the BG period (HL and HH), resulted in higher FA concentration in liver 

(Table 2-2 and Figure 2-5).  Lambs from the LL treatment had lower (P < 0.01) concentration of 

liver FA than other treatments (3.4 vs. 3.7, 3.8, and 3.6 for LL, HH, HL, and LH treatments, 

respectively).  Although total FA content from liver of HL lambs was numerically the highest, it 

was not different from the HH or LH treatments (P > 0.10).  Nonetheless, this trend of higher FA 

in HH lambs and lower FA in liver of LL lambs is consistent with the FA profiles of the LT 

muscle.  Coupled with the higher FA content of LL and lower FA content of HH serum of these 

lambs, vitamin A appears to be interacting with the mechanism of uptake of long-chain fatty 

acids from blood and subsequent storage.   

 

Fatty Acid Composition in the Liver 

Although lamb liver from the HH and HL treatments contained more total FA (P < 0.02) 

than liver from the LL treatment, concentration of monounsaturated FA was higher in the LL 

treatment.  Both isomers of oleic acid were higher (P < 0.05) in liver from LL lambs than HH 

(Table 2-5).  The cis isomer contributed more to the total FA content was higher in LH and LL 

than other treatments (P < 0.02).  By contrast the cis isomer for IMF was highest in the HH 

treatment.  High vitamin A is caused increased monounsaturation as fat became stored as 

marbling compared to those FA stored in liver.   
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Table 2-5. Concentration of individual fatty acids in the liver, caudal lobe
1
 

 

The mechanisms responsible for differences in FA saturation by storage depot are likely 

related to the desaturase enzymes, but the means by which they can be regulated at different 

depots in vivo remains unclear.  Concentration of linoleic acid was not different in the liver 

tissue (P > 0.20).  In our study, there is no clear relationship between the levels of linoleic acid in 

liver and IMF depots.   

 

CONCLUSIONS 

Feeding and management practices that effectively increase IMF accretion without 

increasing backfat and adversely affecting USDA Yield Grade are desirable for both lamb and 

beef production in the United States.  Japanese and Australian reports have indicated a negative 

association between vitamin A content in the diet and/or serum with IMF (marbling) scores in 

cattle.  This relationship in US lambs has not been demonstrated and only a weak or negligible 

relationship has been reported in US beef cattle.  In our study, the effects of vitamin A tended to 

oppose the findings of Australian and Asian studies conducted in cattle, suggesting that higher 

dietary levels of vitamin A promote increased marbling in the LT of lambs.  The effects of 

manipulating vitamin A levels are inconclusive in U.S. livestock production systems.  More 

work is justified to clarify the effects of feeding high or low vitamin A diets on marbling 

deposition in sheep.   
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CHAPTER 3 - EFFECTS OF VITAMIN A 

SUPPLEMENTATION AND WEANING AGE ON SERUM 

AND LIVER RETINOL CONCENTRATIONS, CARCASS 

COMPOSITION, AND MEAT QUALITY IN MARKET 

BEEF CATTLE 

ABSTRACT 

Angus crossbred steers (n = 48) were either early-weaned (EW) at 137±26 d of age or 

weaned at a traditional age (TW) of 199±26 d to determine the effects weaning age and dietary 

vitamin A on growth performance and carcass traits.  Steers from both weaning ages were 

allotted to receive either 42,180 IU vitamin Ahd
-1
d

-1
 (HA) or no supplemental vitamin A (NA).  

Early-weaned and TW steers consumed treatment levels of vitamin A for 235±17 and 175±18 d, 

respectively.  Serum and liver retinol contents diverged significantly (both, P < 0.01) by the end 

of the feeding period, and TW steers tended (P > 0.10) to have higher ADG than EW steers 

(1.31±0.2 and 1.48±0.2 kghd
-1
d

-1
, respectively).  When ultrasound12

th
 rib fat thickness 

averaged 1.02 cm, steers were humanely slaughtered and tissue samples and carcass data were 

collected following carcass chilling.  Live and hot carcass weights tended (P > 0.10) to be 

heavier and carcasses were fatter (P < 0.05) for HA than NA steers.  Marbling score and % 

intramuscular fat were higher (P < 0.05) for EW-NA steers than other treatments.  Percentage of 

USDA Choice and Prime carcasses was double (P < 0.05) for NA than HA carcasses.  Yield 

grade was numerically increased (P < 0.05) in EW-HA carcasses but was similar (P > 0.10) 

among other treatments.  Ratios of marbling to age at slaughter, d on finishing diet, USDA yield 

grade, 12
th

 rib fat thickness, and carcass weight favored NA regardless, of weaning age, but were 

higher (P < 0.05) for EW-NA than other treatments.  Proportion of individual fatty acids, 

including conjugated linoleic acid, of the IMF from the longissimus muscle were not affected (P 

> 0.10) by treatment.  Supplementing with HA tended to increase ADG and decrease carcass 

marbling, especially in the EW cattle.  Feeding NA to cattle was an effective method for 
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increasing carcass marbling deposition while tending to decrease waste fat; EW tended to 

enhance these effects.     

INTRODUCTION 

In the US, Asia, and other developed nations, beef with high degrees of intramuscular fat 

(marbling) is associated with consumer satisfaction, quality grade, and price of beef.  

Increasingly, beef producers market finished cattle in the U.S. via a value-based system where 

price is significantly influenced by the amount of marbling deposited in the longissimus muscle.  

Despite the efforts of researchers, producers, and processors to meet the beef quality demands of 

American consumers, the percentage of carcasses graded USDA Choice and Prime has not 

increased significantly over the past 2 decades.  

When carcasses with high degrees of marbling are produced, unsatisfactory yields of lean 

retail product due to excessive fat trim have been problematic.  Improved methods of cattle 

feeding and management that encourage increased deposition of intramuscular fat without 

increasing subcutaneous waste fat are desperately needed to protect the long-term sustainability 

of the U.S. beef industry.  In Asian countries, cattle diets comprised of rice straw, barley, and 

other commonly used feed ingredients retain virtually no β-carotene activity compared to grazed 

forages and Oka et al. (1998) was the first to associate the restricted levels of dietary vitamin A 

in cattle diets with high marbling scores of beef carcasses.  Investigation of vitamin A restriction 

under US production systems has been primarily at three land grant institutions in the Midwest 

(Pyatt et al., 2005; Arnett et al., 2007; Gorocica-Buenfil et al., 2007a,b).  These investigators 

have reported subtle increases in beef carcass marbling when dietary vitamin A was restricted.         

 

MATERIALS & METHODS 

Animals  

 Angus crossbred steers (n = 48), born March through May of 2006, from Kansas State 

University‟s commercial cowherd, were either early-weaned (EW) at an average of 137±26 d of 

age or weaned at a traditional age (TW) of 199±26 d.  All calves were vaccinated with 

Cattlemaster 4 + VL5 (Pfizer, Exton, PA) and Vision 7/Somnus (Bayer, Kansas City, MO) 14 d 

prior to and again on the d of maternal separation.  On the d of maternal separation, calves were 
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treated for internal and external parasites (Ivomec; Merck, Whitehouse Station, NJ) and placed in 

a drylot near the KSU Manhattan campus for 14 d where they were familiarized with bunk 

feeding and grain provided through a preconditioning diet, and closely monitored and treated 

accordingly for sickness that is commonly associated with weaning.  The EW calves were then 

transported approximately 260 km from Manhattan to the KSU Hays Experiment Station where 

they were weighed and randomly allotted to one of 2 pens (12 animals per pen) so that the mean 

initial pen weights were similar.  This weaning-management and allotment protocol was repeated 

60 d later for the TW calves.  Weights of the EW and TW calves upon arrival to the Hays 

Experiment Station were 191±31.7 and 234±37.8 kg, respectively.  Animals were continually 

managed under the care of trained university personnel according to the guidelines recommended 

in the Guide for the Care and Use of Agriculture Animals in Agriculture Research and Teaching 

(FASS, 1998), and all experimental procedures were approved by the Institutional Animal Care 

and Use Committee at Kansas State University.     

Diets 

The feeding period consisted of a preconditioning, growing and a finishing phase for the 

EW calves and a preconditioning and finishing phase for the TW calves.  The composition of the 

preconditioning and grower diets was the same (Table 3-1).   The preconditioning phase, as 

described previously by Olson et al. (2007), was designed to have EW calves consuming 2.0% of 

their BW (DM basis) of a 75 to 85% concentrate diet within 7 to 10 d of maternal separation.  

The preconditioning diet and the supplement (Table 3-1) were formulated by a collaborating 

ruminant nutritionist at Kansas State University.  Briefly, the preconditioning diet was placed 

into the bunk first and the hay was layered loosely over the concentrate diet.  This was done with 

the intent of attracting calves to a familiar feed, which allowed them to encounter the underlying 

concentrate as the hay was consumed.  The preconditioning diet was consumed by calves for 14 

d.  The additional 61 d on the preconditioning (i.e., “grower” diet for the EW calves) was 

intended to increase skeletal growth and maximize lean tissue growth while preventing 

premature and/or excess fat accretion in the EW calves.  Vitamin A treatments were initiated for 

all calves upon arrival at the Hays experiment station following the 14 d preconditioning period.  

For EW calves, this meant consuming either high or low vitamin A in the grower and finishing 

diets, whereas vitamin A treatments were initiated at the start of the finishing period for the TW 

calves.  Thus, EW calves consumed either high or low vitamin A diets for an additional 61 d than 
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the TW calves.  This decision was made to pattern what might commonly happen when EW 

calves are fed for extended periods in feedlots using varied levels of vitamin A supplementation.  

The low vitamin A diet (NA) contained no supplemental vitamin A because others who fed no 

supplemental vitamin A reported no detrimental effects on health or growth performance (Oka et 

al., 1998; Kruk et al., 2004).  No animals exhibited symptoms of deficiency during our study.  

The high vitamin A diet (HA) was supplemented to provide 42,180 IU vitamin Ahd
-1
d

-1
; or 7 

times the recommended level (NRC, 1996).  The vitamin A treatment levels were continued for 

the EW steers and initiated for the TW steers with the finishing diets.   

 

Table 3-1. Composition (DM basis) of the preconditioning diet 

Ingredient Percent (DM basis)

Ground Sorghum Grain 48.2

Corn Gluten Feed 24.2

Tallgrass Prairie Hay (chopped) 14.8

Whole Soybeans (raw) 9.6

Supplement
a 3.2

Total 100.0  
a
Provided NRC (1996) recommended levels of salt, trace minerals, and vitamin A.  

Bovatec 91 (Alpharma, Fort Lee, NJ) was included at 1.2% (DM) of the diet.  

 

 

 

The finishing phase (d 0) was initiated immediately following the last d of the growing 

(EW) and preconditioning (TW) phases using a diet that consisted of sorghum silage, ground 

sorghum, and supplement (Tables 3-2 and 3-3).  Feed intake was increased daily over a 3 wk 

period with the goal of averaging 2.8% of their BW (DM basis) for the entire finishing period.  

The finishing diet was placed into the bunk first and the supplement was top-dressed daily.  A 

feedbunk scoring system with a scale from 0 to 5 was used daily to monitor intake and to 

determine how much to feed.  A score of zero implied that the feedbunk was empty; score of 1 

meant something less than or equal to 2.54 cm of feed was left in the bottom of the bunk; score 

of 2 meant that approximately 5.08 cm of feed was left; etc.  
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Table 3-2. Average composition (DM basis) of the finishing diet 

Ingredient Percent (DM basis)

Ground Sorghum Grain 80.2

Sorghum Silage 15.9

Supplement
a 3.9

Total 100.0  
a
Composition of the supplement, including vitamin A treatments are located in Table 3-3. 

 

 

 

 

Table 3-3. Composition (DM basis) of the supplement for the finishing diet 

Ingredient

Low vitamin A High Vitamin A

Soybean Meal 53.6 53.2

Trace Mineral 0.645 0.645

Rumensin 80 0.074 0.074

Tylan 40 0.022 0.022

Calcium 24.7 24.7

Urea 14.8 14.8

Salt 6.2 6.2

Vitamin A (60,000 IU/g) 0.000 0.346

Total 100.0 100.0

Percent (DM basis)

       

Endpoint Determination and Harvest 

Steers were individually weighed every 28 d to monitor growth performance.  Finishing 

diets were continued until steers averaged 1.02 cm of 12
th

 rib fat thickness as determined by 

periodic ultrasound with a 3.5 MHz probe (Aloka 500V, Aloka America, Inc., Wallingford, CT).  

Ultrasound data were analyzed with software to predict days to a desired fat thickness, quality 

and yield grade (Cattle Performance Enhancement Company, Oakley, KS). To minimize 

variation in fat thickness and body composition, the steers were harvested in 2 groups, 35 d 

apart.  One-half of the steers from each of the 4 treatment combinations was harvested on each 

day.  Approximately 15 h prior to slaughter, steers were loaded and transported approximately 
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350 km to Tyson Fresh Meats
®
, Emporia, Kansas where they were held off feed and provided 

access to water until humane slaughter.           

Liver samples were removed from the caudal lobe within 15 min of exsanguination, 

packed in dry ice, and returned to Kansas State University‟s meat chemistry laboratory with 

minimal exposure to direct light.  Samples were cut into 2 pieces (approximately 100 g each), 

placed in a plastic bag, overwrapped with aluminum foil, and stored at -80
°
C prior to vitamin A 

and fatty acid analyses. 

Carcasses were chilled for 24 hr at 1 to 3
°
C before being ribbed between the 12

th
 and 13

th
 

ribs for USDA quality and yield grade determinations.  All carcass measurements and estimates 

were performed by experienced university faculty and graduate students.  Yield grade was 

calculated according to USDA standards.   Marbling scores were evaluated by 3 experienced 

university employees.  The mean of the 3 scores was used for the statistical analysis. 

Vacuum-packaged, boneless-strip loins were obtained upon carcass fabrication at Tyson 

Fresh Meats
®
 (Emporia, KS) approximately 72 hr postmortem.  They were packed in coolers 

with dry ice, and returned to the abattoir at Kansas State University where they were aged at 4
°
C 

until 14 d postmortem.  On d 15, samples of subcutaneous fat and of the LM were obtained when 

the strip loins were fabricated.  Samples were placed in plastic bags and stored at -80
°
C until 

fatty acid analyses were conducted.     

Fatty Acid Analysis 

  Blood was collected via jugular venipuncture at 60 d intervals.  Filled 10 ml red-topped, 

non-heprinized tubes (Kendall, Monoject 16 X 100 mm; Tyco Healthcare Group LP, Mansfield, 

MA) were immediately placed on ice in an insulated and covered container.  Samples were 

returned to the laboratory at the Manhattan campus and stored in dark refrigeration at 4
°
 C for 24 

hr.  Tubes were then centrifuged for 25 min. at 2,600 rpm and 4
°
C using a JA-10 rotor (Beckman 

Coulter, Fullerton, CA).  Serum was pipetted into two 5ml plastic tubes under dim lighting and 

stored at -80°C for no longer than 60 d before fatty acid analyses were conducted.  In addition, 

liver from the caudate lobe, and a section of the LM obtained at the 12
th

/13th rib juncture, were 

analyzed for lipid content and FA profiles using a Shimadzu GC-17A (Kyoto, Japan) gas 

chromatograph (GC).  After 500 µl samples were freeze dried overnight, 1 ml of benzene, 

containing the internal standard (1000 µg·ml
-1

 methyl-C13:0) was added and the tubes were 

vortexed to break up the pellet.  Then, 4ml of boron trifluoride:methanol reagent (Supelco 
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B1252, Supelco Inc., Bellefonte, PA) was added and the tubes were mixed gently.  The tubes 

were incubated at 60
°
 C for 60 min.  Tubes were cooled at room temperature and then 4ml of 

ddH2O and 1 ml of hexane were added and mixed vigorously.  Tubes were centrifuged at 1000 X 

g for 5 min and the upper layer (1 to 2 ml) from each was transferred to a GC vial.  Samples 

were injected at 260
° 
C through a Supelco SP-2560 capillary column and detected at 260

°
C.  The 

detector temperature was 260
°
 C and the final oven temperature was 240

°
 C held for 15 min.  

Column flow rate was set at 1.1 ml
.
min

-1
 with a split ratio of 48:1.  Supelco 37 FA methyl ester 

mix was used as the external standard.  All GC analyses were run in duplicates.  Individual FA 

were expressed as proportions of sample weight for liver and muscle, and as a proportion of the 

total fatty acid content in serum. 

Retinol Analysis 

     Blood and liver samples were collected as described above and retinol content was 

determined by HPLC using the methods described by Barua and Olson (1998), with slight 

modifications.  Retinyl acetate was obtained from the Department of Human Nutrition at Kansas 

State University and used as the internal standard.    Analyses were conducted under yellow light 

to minimize deterioration of retinol.  The samples
 
were extracted with hexane and dried

 
under N2 

gas at 37°C.  Samples were reconstituted with ethanol, and injected
 
into a HPLC equipped with a 

25 cm, C-18 reverse-phase column.  The mobile phase contained methanol, with the flow rate set 

at 1.0 ml·min
-1

.  Chromatographs were interpreted by calculating the area under the curve with 

specialized chromatography software (Gold Chromatography Data System Version 1.6, licensed 

to Beckman-Coulter, Fullerton, CA) using a 320 nm spectrum with a 4 nm band.  All analyses 

were conducted in duplicates and the mean was used as the value for each sample.  Because 

retinol comprised nearly 85% of the detected retinoids in our samples, vitamin A content was 

interpreted as the total of the retinol esters present in the sample.  Half of the liver samples (n = 

24) were analyzed by an independent laboratory to substantiate our results (Nestlé-Purina 

Analytical Laboratories, St. Louis, MO). 

Statistical Analysis 

A completely random design with a 2 X 2 factorial arrangement of treatments was used.  

There was 1 pen per treatment containing 12 steers per pen.  Differences in means were detected 

using the PROC MIXED procedure of SAS
®
, Cary, NC.  Differences in serum retinoids and fatty 
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acids measured over time were analyzed with the PROC MIXED procedure, using a repeated-

measures model with an unstructured covariance, which allowed the data to determine the best 

correlation model.  The model was tested using dietary vitamin A level and weaning method 

main effects as well as the vitamin A level X weaning method interaction.  Additionally, Pearson 

correlation coefficients (PROC CORR procedure of SAS
®
) were determined for liver and serum 

retinol and fatty acid concentrations, marbling score, % IMF, and 12
th

 rib fat thickness.  Animal 

was the experimental unit. 

 

RESULTS AND DISCUSSION 

Retinol Status 

Concentrations of serum retinol on three sampling days are presented in figure 3-1.  The 

initial sampling d was August 30
th

 and October 30
th

 for the EW and TW steers, respectively.  

Although these samples were collected on different days, they represent a baseline concentration 

of retinol on the d vitamin A treatments were initiated.  The other sampling days represented the 

middle and end of the finishing period.  As expected, serum retinol levels were similar among 

the four treatment groups on the first d of vitamin A treatments; levels were especially similar 

within vitamin A treatments.  Although not statistically different, initial serum retinol levels were 

higher for the TW calves; most likely because they consumed pasture-derived carotenes for 

approximately 2 mo longer than EW calves.  On the December 15
th

 sampling, steers had been 

consuming treatment levels of vitamin A for either 107 (EW) or 46 (TW) d.  Figure 3-1 

illustrates the divergence in serum retinol levels by treatment.  Although we did not collect 

antemortem liver samples, the serum data suggest that within 45 d of dietary vitamin A depletion 

(i.e., TW-NA), liver stores were depleted to an extent that circulating levels could not be 

maintained according to Blaner and Olson (1994) who reported that serum levels remain 

relatively constant unless hepatic stores are depleted.  Given the age classification of these 

calves, this result seems reasonable because younger animals generally have minimal stores of 

hepatic vitamin A (Blaner and Olson, 1994).  On the last sampling d, steers had consumed either 

very high or no supplemental vitamin A for either 213 (EW) or 153 (TW) d and serum retinol 

levels had diverged dramatically (P < 0.01) between high and no supplemental vitamin A 

treatments.  No effects of weaning age were detected for serum retinol on the last sampling d (P 
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> 0.10), and serum means for the steers that consumed high vitamin A were almost identical for 

both weaning ages on March 29th.  A maximum physiological level for blood may have been 

reached by feeding 7 times NRC levels for an extended period and large amounts of vitamin A 

must have been stored in the liver and other fat depots.  This theory is supported by the retinol 

content of the livers (Figure 3-2).     

 

Figure 3.1. Serum retinol concentrations on 3 sampling days 
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Figure 3.2. Liver retinol concentrations (log scale) 
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Liver retinol content was vastly different between vitamin A treatments (294±85 and 

1.3±0.63 IU/g for high and low vitamin A, respectively; Figure 3-2).  Although the vitamin A 

treatments were designed to represent extremes in supplementation scenarios, we were surprised 

that hepatic retinol from the high vitamin A steers was 226 times greater than the low vitamin A 

treatment.  Because liver is the primary storage tissue for vitamin A, these results provided a 

biological indicator that the dietary treatment levels were effective.       

 

Growth Performance 

Growth performance characteristics are reported in table 3-4.  Although the diet 

compositions were similar, we sometimes have referred to the preconditioning diet as the 

“grower diet” in the context of the EW steers for reasons explained in the Materials and Methods 

section.  Early-weaned steers weighed 191±31.7 kg at the initiation of the grower phase and 

gained 1.15 kg·hd
-1

·d
-1

 for 61 d before the finishing period was initiated.  Early-weaned steers 

that were fed  NA had slightly higher ADG and were 4 kg heavier at the end of the grower phase 

than steers fed high supplemental vitamin A (both; P > 0.10). 

Early-weaned steers were heavier (P < 0.01) than TW steers on d 0 of the finishing 

period as was expected because of increased BW gain achieved during the grower phase while 
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TW siblings remained on pastures with their dams during this time (Table 3-4).  Body weights 

were similar for both vitamin A treatment levels within weaning age at the beginning of the 

finishing period (P > 0.10).  The TW steers tended (P = 0.11) to have higher ADG than EW 

steers.  Compensatory gain is a common phenomenon in TW steers and was likely responsible 

for the advantage in ADG in our study.  Ideally, all of the steers should have been heavier at 

slaughter to have been more acceptable on a carcass pay weight basis. 

 

 

Table 3-4. Effects of weaning age and dietary vitamin A level on steer growth performance 

attributes 
Item SEM

Weaning age Early Traditional Early Traditional Vit. A Wean
Vit. A X 

Wean

Initial BW, grower, kg 193.2 NA 188.2 NA

Final BW, grower, kg 257.5 NA 260.7 NA

BW gain, grower, kg/d 1.10 NA 1.19 NA

Initial BW, finishing, kg (d0) 257.5 237.0 260.7 230.2 32.0 0.96 0.43 0.87

Final BW, finishing, kg 488.9 488.2 482.2 479.6 36.2 0.84 0.96 0.97

BW gain, finishing, kg/d 1.35 1.48 1.26 1.47 0.1 0.64 0.11 0.67

P valueNo Vitamin AHigh Vitamin A

 

 

Carcass Traits 

Treatment means for carcass traits are presented in table 3-5.  Because final live weights 

tended to be heavier in HA steers, hot carcass weights also tended to be heavier (P =0.08).  There 

were no differences in hot carcass weights due to weaning age (P > 0.10).  Average dressing 

percent was 62.5±1.28 for all steers and there were no treatment differences (data not presented).                   
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Table 3-5. Effects of vitamin A level and weaning age on carcass attributes of steers. 
a
For 

marbling score, 400= Small
00

, 410= Small
10

, …500=Modest
00

, etc. 

Item SEM

Weaning age Early Traditional Early Traditional
Vit. 

A
Wean

Vit. A X 

Wean

Hot carcass weight, kg 318 318 314 312 33.2 0.84 0.96 0.97

Ribeye area, sq. cm 72.7 78.1 76.8 75.5 5.0 0.88 0.69 0.50

12th rib fat, cm 1.17 1.08 0.92 0.85 0.2 0.33 0.74 0.98

KPH, % 2.3 2.2 2.2 2.2 0.2 0.79 0.79 0.62

USDA Yield Grade 3.2 2.8 2.7 2.7 0.4 0.40 0.57 0.64

Marbling score
a 430 440 480 450 64.9 0.63 0.88 0.77

Intramuscular fat, % 4.8 4.8 6.2 5.3 1.2 0.44 0.72 0.73

Premium Choice and Prime, % 17 18 36 36

High vitamin A No vitamin A P value

 

Twelfth-rib fat thickness of 1.02 cm was deemed as the target endpoint and market 

readiness for the steers, and was determined by periodic ultrasound evaluations.  The HA steers 

tended to be getting fatter than the NA steers, so the decision was made to harvest approximately 

half of the cattle of each treatment in two harvest groups, with the fattest half harvested in one 

group and the remainder in another group when they averaged 1.02 cm backfat thickness.  This 

meant that some steers from NA treatments were harvested at slightly less than desired fat 

thicknesses because we reasoned that it was more desirable to slaughter approximately equal 

numbers of steers from each treatment on each slaughter d, rather than waiting for all the pens to 

average 1.02 cm of backfat.  Because of this discrepancy in the live animals, carcasses from HA 

steers tended to be heavier and fatter than carcasses from NA steers.  Although mean fat 

thicknesses were within acceptable limits for all treatments, the EW-HA steers produced 

carcasses with the most (P < 0.05) 12th rib fat.  These results suggest that vitamin A may affect 

adipogenesis in a depot-specific manner because HA steers were fatter and than NA steers 

(Figure 3-3) and this effect was more pronounced when the vitamin A treatments were fed for a 

longer period (i.e., EW).    
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Figure 3.3. Twelfth -rib fat thickness (cm) of carcasses 
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Given the relatively light live and carcass weights of these steers, ribeye areas were 

generally acceptable among all treatments.  Ribeye area is presented in figure 3-4.  

Supplementing diets with HA may affect the extent of muscle accretion and/or the onset of 

signaling processes that cause nutrients to be partitioned to fat rather than muscle because 

carcasses from EW-HA steers tended to be fatter than EW-NA steers.  Likewise, within the TW 

treatment, carcasses from HA steers were fatter (P < 0.05)than carcasses from NA steers.  
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Figure 3.4. Ribeye area (cm
2
) of carcasses 
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Percentage of kidney, pelvic, and heart fat (KPH) was similar (P > 0.20) among 

treatments (Table 3-5).  Yield grades of the carcasses from all cattle were very desirable, ranging 

from 1.6 to 3.7.  Furthermore, the yield grades should be considered exceptional relative to the 

carcass marbling (Figures 3-9 and 3-11).  Yield grades were similar among TW-HA, TW-NA, 

and EW-NA treatments (P > 0.20).  The combination of smaller ribeyes in the fattest carcasses 

caused USDA yield grades to be numerically higher (i.e., lower cutability) in carcasses from 

EW-HA steers than other treatments (P < 0.05).   
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Figure 3.5. USDA Yield Grades of carcasses 

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

EW + 7X 

Vitamin A

EW + 0 

Vitamin A

TW + 7X 

Vitamin A

TW + 0 

Vitamin A

U
S

D
A

 Y
ie

ld
 G

ra
d

e

 

Marbling scores for all treatments were very acceptable and this research confirms that 

when steers with relatively high genetic potential for marbling are managed on a high plane of 

nutrition with little sickness, high degrees of marbling can be attained by 12 to 13 mo of age 

without sacrificing cutability.  Feeding NA increased (P < 0.05) marbling scores compared with 

feeding HA (Table 3-5; 435 for HA steers and 465 for NA steers), suggesting that feeding NA 

for at least 150 d increases marbling scores by 0.30 degree, regardless of weaning age.  However, 

the response was more pronounced with EW-NA steers (Figure 3-6).  Compared to HA steers at 

both weaning ages, EW-NA steers produced carcasses that averaged 0.45 degree higher (P < 

0.05) marbling scores (480 vs. 430 and 440 for EW-NA, EW-HA, and TW-HA steers, 

respectively).  Within the steers fed NA, EW steers produced carcasses with 0.30 degree higher 

(P < 0.05) marbling score than TW steers (480 vs. 450, respectively).  These data suggest that 

either weaning age and(or) longer periods of vitamin A depletion are beneficial for enhancing 

carcass marbling scores.  In a related study, Gorocica-Buenfil et al. (2007a) fed either NA or 

2,700 IU/kg DM to Angus-cross steers for 168 d but evaluated only TW.  They reported a trend 

(P = 0.11) for increased marbling scores in steers fed NA; a result similar to ours.  In another 

study using Holstein steers, Gorocica-Buenfil et al. (2007b) reported numerical increases in 

marbling scores (P = 0.36) and significant increases (P < 0.05) in % ether extract in the LM with 

243 d of vitamin A depletion.  The two studies by Gorocica-Buenfil et al. (2007a,b) did not 

evaluate EW as a factor.  Pyatt et al. (2005) evaluated the effects of vitamin A supplementation 

levels in the diets of EW steers but they used a “low” vitamin A treatment designed to meet NRC 
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recommended levels.  Thus, my study was the first to feed NA to EW cattle and, taken in 

summary with these other reports, suggests that EW is favorable for enhancing the effect of 

feeding NA on carcass marbling scores. 

      

 

Figure 3.6.  Marbling scores for carcasses from the four treatment combinations. 
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In my study, weaning age could be considered confounded with length of vitamin A 

treatment because treatment levels of dietary vitamin A were initiated with the growing period of 

EW steers and did not commence in TW steers until the beginning of the finishing period.  Oka 

et al. (1998) suggested that intramuscular adipose tissue is an immature depot during early stages 

of fattening and that adipocytes might still be capable of differentiation and proliferation in 

younger animals.  Pyatt et al. (2005) supplemented vitamin A to yearling Angus X Simmental 

steers to either meet or be 3.3 times greater than NRC recommended levels for 105 d and found 

no significant advantages to feeding low vitamin A on carcass marbling scores.  However, this 
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study differed from mine in that their steers were fed treatment levels of vitamin A for fewer 

days and had similar serum retinol levels at harvest.  Plus, the yearling steers used in that study 

had been pastured for 8 mo prior to initiation of the vitamin A treatments.  Additional research 

would be needed to determine if older cattle weaned at similar ages (i.e., yearlings coming off of 

grass into the feedlot) would respond to the same vitamin A treatments that were used in my 

research.  One obvious challenge would be that yearling cattle would be expected to complete 

the feedlot finishing period in much fewer days than the scenarios used in my study.   

Oka et al. (1998) reported increased carcass marbling scores when 15 mo old Tajima 

steers were either fed NA or injected i.m. with approximately 1 million IU of vitamin A every 60 

d for a 450 d feeding period.  In the same publication, Oka et al. (1998) conducted two other 

experiments and found no difference in carcass marbling scores when 23 and 25 mo old steers 

received the previous vitamin A treatments and were harvested after 300 and 180 d feeding 

periods, respectively.  It is not possible to determine from their research whether animal age, 

extent of the vitamin A depletion, or a combination of these factors caused the differentiation in 

marbling scores in the first experiment, although serum retinol concentrations were similar in the 

NA steers at harvest in all 3 experiments. 

 

A more objective measure of carcass quality, which is %IMF determined by gas 

chromatography, supported the marbling scores for the four treatment combinations.  Steers fed 

NA produced carcasses with more (P < 0.05) IMF than steers fed HA, regardless of weaning age 

(Table 3-5 and Figure 3-7).  This effect was most pronounced in EW-NA steers, which contained 

30% more (P < 0.05) lipid than the steers fed HA from both weaning ages.  Additionally, the 

%IMF in the LM of EW-NA steers tended to be higher (P > 0.10) than in TW-NA steers, and 

contained 17% more lipid.  These results substantiate the importance of EW in enhancing the 

effect of feeding NA.  My findings agree with those of Kruk et al. (2004) who reported increased 

IMF in the LM of Angus steers from 9.6 to 13.0% by feeding NA for 300 d, and Gorocica-

Buenfil et al. (2007b) who increased the % IMF in the LM of Holstein steers with 243 d of 

vitamin A depletion.  By contrast, Gorocica-Buenfil et al. (2007a) reported IMF values from LM 

samples that were almost identical between vitamin A treatments, but admitted that reducing the 

sample size to 2 animals per pen may have compromised their ability to detect differences.      

 



 76 

Figure 3.7. Percentage of intramuscular fat in the LM of carcasses as determined by gas 

chromatography 
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The percentage of carcasses that qualified for “premium Choice” brands (i.e., black hided 

cattle with marbling scores of Modest
00

 or higher, such as Certified Angus Beef
®
 and others) was 

doubled (P < 0.01) in carcasses from steers fed NA (Figure 3-8).  Based on current market 

premiums for these carcasses, this increase is clearly meaningful to producers and processors.  

Gorocica-Buenfil (2007a) pointed out that, although the proportion of carcasses that qualified for 

premium Choice brands was not statistically different due to feeding NA (52.4 vs. 45.7%, P = 

0.32), the implications to the beef industry were still important.  In the marketing system used in 

their study, carcasses that qualified for premium Choice brands were valued at $8.00/ 45.4 kg 

more on a carcass basis.  The differences in percent premium Choice and Prime in my study are 

even more dramatic than in the report by Gorocica-Buenfil et al. (2007a) and underscore that 

feeding NA is advantageous to carcass value, irrespective of the weaning age.    
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Figure 3.8. Percent of carcasses with Modest
00

 or higher degrees of marbling 
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Accounting for the cost of producing marbling 

Cattle enthusiasts at all levels seem to have forgotten, or perhaps have never understood, 

the basic biology of fattening.  Marbling is one of several depots used to store excess energy as 

fat.  Relative to protein (i.e., muscle), fat accretion requires approximately 2.25 times more 

energy per unit, making it a very inefficient process.  This explains the reduced gains and feed 

efficiencies that are usually associated with the fattening phase of any growth model.  Due to the 

increased demand for corn-derived ethanol, increases in the cost of feed ingredients for livestock 

have intensified the high cost of fattening cattle.   

Fortunately, the process of fat accretion (i.e., marbling) continues to be consumer driven 

and for the first time in history, cattlemen are being rewarded with considerable premiums paid 

by processors for carcasses with high degrees of marbling.  The beef industry should be praised 

for acting on these market signals and end-user requests (Smith et al., 2006).  For instance, 

expert researchers have developed, and progressive cattle breeders have adopted, objective 

comparisons of potential parent animals through expected progeny differences (EPD).  While 

these selection tools have propelled cattle breeding to far-reaching expectations, a considerable 

segment of the purebred and commercial beef industry has used EPD for single trait selection of 

marbling.  A hallmark in animal breeding is that intense selection for one trait will always come 

at the expense of other traits.  We live in a world with exponential population growth that needs 
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affordable, high-quality animal protein that is produced using water, fossil fuels, and other 

energy resources that are increasing in demand and decreasing in supply.  Frankly, the beef 

industry desperately needs to recognize the economic and biological costs of producing 

marbling.  Unchecked expenditure for marbling production is short-sighted and does nothing to 

protect the long-term sustainability of the U.S. beef industry.   

These concerns do not spell demise for the beef industry.  Every carcass that is evaluated 

for marbling by USDA graders is conveniently accompanied by a predictor of carcass cutability.  

The USDA Yield Grade system needs to become more highly regarded by all who are interested 

in the viability of beef production.  Yield grades should be used as a yardstick of the biologic and 

economic expenditures in the relentless quest for marbling.                 

The next several figures illustrate the relationships between both marbling score or % 

IMF and important measures of production, such as cutability or efficiency characteristics.  

These ratios are not commonly reported by researchers or understood by producers.  Yet, the 

general inverse relationship between marbling production and percent retail product from a 

carcass suggests that increases in marbling generally have a price or sacrifice that is paid through 

decreases in cutability (i.e., increased numeric yield grade).  Thus, production strategies that 

increase marbling without sacrificing carcass cutability are desirable and should be quantified.  

Feeding NA in the diets of finishing market steers is an example of a feeding practice that has 

been demonstrated to improve marbling deposition with no obvious sacrifice in USDA yield 

grade.         

Figures 3-9 through 3-13 illustrate that when marbling is expressed in ratios relative to 

animal age, days on the finishing diet, hot carcass weight, fat thickness, and yield grade, the 

resultant values support the aforementioned findings, but with an added element of 

accountability.  These ratios are very favorable for NA treatments and this is especially true for 

EW calves.  It is unlikely that these relationships are linear at the extremes of physiological 

possibilities; but within practical limits, measures such as marbling per yield grade and marbling 

per fat thickness fit a linear model and could be used as a more practical and effective measure of 

marbling production. 

Although there were no large differences in age at harvest in our study, the EW-NA 

steers produced the most (P < 0.05) marbling per d of age (Figure 3-9).  By contrast, EW-HA 

steers were the least (P < 0.05) desirable in marbling per d of age.  This is another measure that 
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substantiates the magnitude of the differential marbling response when either HA or NA is fed to 

EW steers.  The response was intermediate for TW steers at both levels of vitamin A.  This ratio 

may be particularly useful when EW or calf-fed steers are being fed.  In addition, tenderness of 

beef would benefit from selection pressure that promotes harvesting younger animals.   

 

Figure 3.9. Marbling deposition (degrees) per day of age for steers 
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An almost identical response pattern resulted for marbling deposition per d on the 

finishing diet (Figure 3-10).  However, when compared to marbling per d of age, the daily 

marbling deposition was more concentrated in the comparison of marbling per d on the finishing 

diet.  Intuitively, the high energy finishing diet produced marbling ratios more than double the 

marbling per d of age but the graphical response was similar for both ratios.  The EW-NA steers 

produced a ratio of over 0.0275 degress of marbling per d while consuming the finishing diet 

whereas EW-HA steers produced a ratio slightly more than 0.025 degrees of marbling per d 

during the finishing period.  As with marbling per d of age, TW steers were intermediate in 

marbling production per d on the finishing diet at both levels of vitamin A.  Currently, the high 

cost of gains make this ratio particularly useful and important. 
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Figure 3.10. Marbling deposition (degrees) per day on the finishing diet 
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Perhaps the most useful measure of overall efficiency of marbling deposition is the ratio 

of marbling deposition per USDA Yield Grade (Figure 3-11).  Astonishingly, marbling was 

produced most efficiently (i.e., lowest sacrifice of USDA yield grade) in EW-NA steers.  Based 

on traditional logic, the EW-NA steers might have been expected to produce fatter, lower 

yielding carcasses because they deposited higher amounts of marbling per d.  However, the 

opposite was true.  Not only did EW-NA steers produce more marbling per d of age and per d of 

finishing than other treatments, they also produced leaner, higher yielding carcasses.  Similar to 

the previous ratios, TW steers at both levels of vitamin A were intermediate in marbling per 

USDA Yield Grade.  Cumulatively, these 3 ratios reveal a synergy that is infrequent in the beef 

industry and solidifies the merit of EW-NA management of market steers.           
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Figure 3.11. Marbling deposition (degrees) per USDA Yield Grade 
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Marbling deposition with respect to USDA yield grade can be further evaluated in detail 

using ratios of marbling production to yield grade components, such as fat thickness (Figure 3-

12) and hot carcass weight (Figure 3-13).  Steers fed NA produced carcasses with more desirable 

combinations of marbling and leanness.  Consequently, marbling production per cm of fat was 

superior in both NA treatments.   This ratio suggests that high levels of vitamin A suppress the 

rate of marbling production and may result in more subcutaneous fat.  In contrast, feeding NA 

apparently allows intramuscular adipocytes to develop and fill with lipid at an accelerated rate 

that causes marbling to accrue faster than subcutaneous fat.  The manner by which dietary 

vitamin A, or the absence of vitamin A, directs the depots of fat deposition is poorly understood.  

Future research that measures the 12
th

 rib fat required by HA steers to produce marbling scores 

comparable to the NA steers in our study would expand our understanding of the relationship 

between marbling and fat thickness in beef cattle.  Regression analyses would likely be the most 

useful tool to determine if the relationship between marbling and fat thickness is affected by the 

level supplemental vitamin A and to determine the shape of the response curve as fat and 

marbling increase.  
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Figure 3.12. Marbling deposition (degrees) per cm of twelfth-rib fat 
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Live and carcass weights are the almost exclusive methods for the sale of beef in the U.S.  

Not surprisingly, EW-NA steers produced the most (P < 0.05) marbling in relation to carcass 

weight (Figure 3-13).  Similar to the previous ratios, EW-HA steers produced the least marbling 

per hot carcass weight.  Because profitability is largely determined by weight, this ratio has 

obvious implications for maximizing marbling production and saleable carcass weight.  This 

ratio may also be useful for measuring the efficiency of marbling production relative to live 

weight gains and feedlot efficiencies because the initial weights of steers in this study were 

similar.             
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Figure 3.13. Marbling deposition (degrees) per kg of hot carcass weight 
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Fatty Acid Composition of the LM 

Data on the effect of dietary vitamin A level of cattle on the fatty acid composition and 

conjugated linoleic acid (CLA) content of beef are very limited.  Means for selected fatty acids 

from the IMF of the LM are presented in table 3-6.  There were no important differences among 

treatments for any of the saturated or unsaturated fatty acids (P > 0.10).   
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Table 3-6. Selected fatty acids from the intramuscular fat of the longissimus muscle 

samples from the four treatment combinations. 

Item SEM

Vit. A Wean
Vit. A X 

Wean

Early Traditional Early Traditional

Fatty acid

14:0 3.4 3.3 3.4 3.2 0.09 0.68 0.87 0.53

16:0 26.9 26.1 26.3 27.0 0.38 0.57 0.31 0.91

16:1 4.5 4.4 4.2 4.1 0.11 0.19 0.36 0.99

17:0 1.6 1.6 1.6 1.6 0.02 0.15 0.22 0.48

18:0 13.3 13.3 14.0 14.0 0.26 0.26 0.54 0.61

18:1n-9 trans 1.9 2.5 2.4 2.2 0.06 0.89 0.65 0.81

18:1n-9 cis 38.3 38.2 38.4 37.8 0.35 0.29 0.72 0.37

18:2n-6 cis 2.7 2.9 2.7 2.8 0.08 0.77 0.84 0.12

18:2n-9 cis ,11trans  CLA 0.32 0.44 0.35 0.39 0.03 0.44 0.16 0.79

% of total fatty acids

Weaning age Weaning age

High vitamin A No vitamin A P value

 

Monounsaturated oleic acid is the most significant fatty acid found in beef fat (Table 3-

6).  Human diets rich in monounsaturated fats have been shown to be as effective as diets with 

high levels of polyunsaturated fats at reducing serum cholesterol levels (Mensick and Katan, 

1989).  Treatment means for oleic acid are presented graphically in Figure 3-14.  Although beef 

is an excellent source of monounsaturated fat, there were no differences in oleic acid content of 

the IMF due to vitamin A or weaning age in my study (P > 0.10).   

 

Figure 3.14. Relative contribution of oleic acid (C18:1n-9 cis) to the total intramuscular 

fatty acids in the LM 
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Gorocica-Buenfil et al. (2007,b) noted that because stearoyl co-A desaturase is required 

for the synthesis of CLA in ruminants, retinol might cause a reduction in CLA content of 

ruminant fat because Alam and Alam (1985) presented evidence that retinol reduces the 

enzymatic activity of stearoyl co-A desaturase.  Scollan et al. (2006) reported that the amount of 

CLA in beef is very small relative to the recommended daily intake for human health benefits.  

The CLA differences in our study are not likely to be of any practical significance and it is 

unlikely that feeding NA diets to market steers will alter the CLA content of IMF dramatically.  

With these data, it would be misleading to suggest that the vitamin A level of cattle diets results 

in a human health benefit from eating beef from these animals. 

 

CONCLUSIONS AND IMPLICATIONS 

There were no apparent negative consequences to health or growth performance from 

feeding NA to beef steers for up to 235 d (i.e., the duration that my EW steers were fed).  

Furthermore, there were no apparent toxic effects that resulted from feeding 7X NRC levels of 

vitamin A.  Because of the advantages of feeding NA on carcass marbling and carcass 

composition, the requirement for feeding vitamin A to cattle may need to be re-evaluated to 

account for differences in animal age and background.  For example, the research by Oka et al. 

(1998) indicates that older animals may require even longer depletion times to affect marbling 

deposition.              

Feeding no supplemental vitamin A is an effective method for optimizing carcass quality 

and cutability for either EW or TW management.  My results suggest that longer periods of 

vitamin A depletion (i.e., 235 vs. 175 d) tend to enhance these beneficial carcass outcomes; 

although the percentage of premium Choice carcasses was increased by feeding NA regardless of 

the length of vitamin A depletion (i.e., increased marbling for NA at both weaning ages).  

Similarly, supplementing high levels of vitamin A to cattle for extended periods may 

suppress marbling, even as cattle deposit more backfat.  On average, EW cattle were fed 60 d 

longer than TW cattle and supplementing vitamin A at 7 times the NRC-recommendation for 235 

d reduced carcass marbling scores and retail yields compared to feeding for 175 d.   

  Because of the experimental design, it is impossible to know for sure if the duration of 

vitamin A depletion/supplementation or the younger age when EW calves were started on diets 
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with treatment levels of vitamin A was responsible for the effects on carcass marbling 

deposition.  It is likely that both factors are important.  Vitamin A level has been demonstrated 

by other researchers to affect carcass marbling, especially when treatment levels were 

maintained for long periods (Oka et al., 1998).  Additionally, younger cattle (i.e., EW) usually 

have lower hepatic reserves of vitamin A, so creating a treatment-induced divergence in vitamin 

A status was more expedient and sustainable in EW calves, although this theory is not 

necessarily supported by the serum retinol data.  More research is needed to clarify the effects of 

vitamin A depletion when initiated at various ages.    

Like most management decisions in agriculture, EW of calves is a practice that has 

advantages and disadvantages.  In practice, the decision to EW calves must be weighed against 

the increased cost of gain in the feedlot and usually a decrease in endpoint live and carcass 

weights.  The recent increase in feed ingredient costs caused by growth of demand for corn-

derived ethanol and other novel uses for corn, soybeans, and their byproducts makes EW less 

appealing economically than ever before.  Even with the increase in carcass quality and yield that 

is associated with EW-NA, the practice of EW should most likely be used only to mitigate 

production constraints such as drought or other unforeseen shortages of forage for cows and 

calves.     

The use of marbling ratios in this dissertation was particularly useful to demonstrate 

marbling efficiencies compared to other important production costs.  The ratios of marbling 

versus animal age, d in the feedlot, carcass yield, fat thickness, and weight have fortified the 

value of practicing EW-NA management of market cattle.  If the beef industry must continue to 

reach for maximum marbling production, producers must be willing to recognize the metabolic, 

and therefore, economic costs that are associated.  Use of ratios give a measure of accountability 

to marbling that is produced with resources that tend to be increasing in cost and diminishing in 

supply.      

Although beef is an excellent source of monounsaturated fats in human diets, there is 

little contribution of CLA from beef.  The effect of vitamin A supplementation in cattle diets on 

fatty acid composition of beef is poorly understood at present and there were no significant 

modifications in proportion of saturated or unsaturated fatty acids due to vitamin A level in this 

study. 
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Preliminary research investigated the effect of dietary vitamin A level on marbling 

deposition in lambs and generally contradicts the results when cattle were used as the ruminant 

model.  Increases in marbling and %IMF in the LM of wether lambs were associated with high 

levels of dietary vitamin A supplementation.  The biological mechanism(s) responsible for these 

contrasting results in ruminants are not well-understood.  There seemed to be some disconnect 

between the higher circulating levels of fatty acids in lambs fed high vitamin A and the 

decreased deposition of IMF in the LM muscle.  I do not have an explanation for this.  Seibert et 

al. (2000) suggested that cattle might not metabolize retinoids and carotenoids in the same 

manner as sheep.  My study is the only report on the effect of vitamin A supplementation on 

carcass quality of lambs in the U.S.  In general, the effect of vitamin A on carcass traits of lambs 

remain poorly characterized and further investigation is needed to explain the differences that 

were found between cattle and lambs in our experiments.        
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Appendix A - Regression Analyses and Prediction Equations 

Regression of Carcass Marbling Score and % Intramuscular Fat on Liver 

Retinol Concentration 

 

This dissertation research has practical implications for adding value to beef and 

increasing profitability to producers.  Regression analyses provide unique opportunities for 

understanding the relationships between factors that were investigated in the experiment.  

Because the liver is the master depository and reservoir for retinol storage, the relationship 

between retinol status of the liver and carcass marbling scores provides an important contribution 

to scientific knowledge.  In addition, these regressions may have predictive value for marbling 

and can serve as models for future research.  Oka et al. (1998) was the first to regress marbling 

on serum retinol.   

 

Figure A- 1. Regression of carcass marbling score on liver retinol concentration 
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R² = 0.099
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Figure A- 2. Regression of % intramuscular fat in the longissimus muscle on liver retinol 

concentration 
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Appendix B - Effect of Supplementing either 1x or 7x NRC Levels of 

Dietary Vitamin A to Early-weaned Steers  

MATERIALS AND METHODS 

Animals and experimental procedures 

Early-weaned steers (n = 191) were used to evaluate the effects of dietary vitamin A level 

on carcass marbling development.  Calves were genetically similar to and were managed using 

the same procedures and locations described for experiment 1.  Upon arrival to the Hays 

experiment station, calves were randomly allotted to one of 10 pens (5 replications per treatment 

combination) to receive either 6,025 (1X) or 42,180 IU hdd
-1

 (7X the recommended level) of 

supplemental vitamin A in the preconditioning and finishing diets (NRC, 1996).  Calves in 

experiment 2 were managed and harvested according to the protocol described for experiment 1.  

The cattle in experiment 2 were harvested in 3 groups to minimize variation in fat thickness, 

although the first and second harvest days were the same day as for experiment 1.  While 

complete carcass data were collected as described for experiment1, muscle and fat samples were 

not collected in experiment 2.  Cattle in experiment 2 were covered under the same protocol 

approved by Kansas State University‟s IACUC.   

 

Statistical Analyses 

A completely random design with a single treatment structure was used.  There were 5 

pens per treatment containing either 19 or 20 animals per pen.  Differences in means were 

detected using the PROC MIXED procedure of SAS
®
,Cary, NC.   
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Results and Discussion 

Growth Performance 

Initial average BW on d 0 of the finishing period was (258±29.5 kg) and weights were 

not different (P > 0.10) between treatments.  Treatment levels of dietary vitamin A were initiated 

on October 20, 2006 and continued until harvest on April 3
rd

, May 8
th

, or June 12
th

, 2007.  Steers 

gained 1.4±0.3 kgd
-1

 during the finishing period when the experimental levels of vitamin A 

were fed.      

 

Table B- 1. Growth performance and carcass traits of early-weaned steers fed either 1X or 

7X recommended levels of vitamin A.  
a
For marbling score, 400= Small

00
, 410= 

Small
10

,...500=Modest
00

. 

Item 7X vitamin A 1X vitamin A SEM P value

Finishing period initial weight, kg 260 255

Finishing period final weight, kg 492 495

Body weight gain, kg/d 1.4 1.4

12th rib fat, cm 1.00 1.10

USDA Yield Grade 3.1 3.1

Marbling score
a 483 475

Premium Choice and Prime, % 34.0 33.7
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Carcass Traits 

In general, carcass yield and quality grades were very acceptable, and were not affected 

by the level of supplemental vitamin A in the diet.  Mean twelfth rib fat thickness was similar 

and USDA yield grades were identical for the two levels of vitamin A.   

Marbling scores tended to be higher (P = 0.13) in the carcasses from the HA steers, 

although this difference of only 0.08 degree is of little practical significance and would not affect 

carcass value.  The proportion of carcasses that qualified for premium Choice brands (i.e., 

Modest
00

 and higher marbling) were nearly identical and extremely favorable compared to 

industry averages.  When marbling deposition was measured in relation to yield grade and 
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external fatness of the carcasses, feeding 7X appears to be favorable to 1X vitamin A (Figures B-

1 and B-2). 

            

 

Figure B- 1. Marbling deposition per USDA Yield Grade for carcasses from steers in 

Experiment 2 
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Figure B- 2. Marbling production per cm of 12th rib fat for carcasses from steers in 

Experiment 2 
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SUMMARY AND CONCLUSIONS 

The importance of feeding NA vs. feeding at the published requirement is apparent in our 

data and is confirmed by the findings of others.  Because of the potential for reduced growth 

performance and possibly more serious health consequences, the decision was made to feed the 

larger group of EW cattle the published requirement of vitamin A as the “low” vitamin A 

treatment for experiment 2, rather than feeding NA as in experiment 1.  The HA diets were the 

same in experiments 1 and 2.  Similarly, Pyatt et al. (2005) used the published requirement for 

vitamin A as the “low” treatment level compared to feeding 3.3 times the published requirement 

fed to EW steers and heifers.  These authors found no difference in carcass marbling scores and 

our data support their findings.  Considering the more favorable outcomes of feeding NA as in 

experiment 1, Gorocica-Buenfil et al. (2007), and others, it appears that feeding only basal levels 

of supplemental vitamin A may be detrimental to carcass marbling production in cattle.    

 


