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CHAPTER I

INTRODUCTION

In an industrial organization the objective of the manage-

ment is to optimize the system. The problem of scheduling is

encountered in many spheres of the organization. Hence this

problem forms a significant part of the cost controlling

mechanism.

The scheduling problem may be classified as: (1) schedul-

ing arrivals or demands, that is determining the timing of the

arrivals, (2) scheduling activities of large complex projects,

and (3) determining the sequence in which a number of jobs are

to be processed on various machines.

The first type of these scheduling problems consists of

obtaining an optimum balance between costs resulting from idle

machines, and that of the arrivals waiting for service. Queuing

theory is mostly utilized to solve this dynamic situation of

scheduling problem. This Is because, queuing theory deals with

random demands (arrivals).

The second type of these problems deals with analyzing,

planning and scheduling complex projects. The problems are

represented by means of networks, where each network represents

the possible sequences to complete the project. The most com-

mon techniques available for solving these networks are

Project Evaluation and Review Technique (PERT) and Critical



Path Method (CPM) . The latter technique determines the expected

completion times of the subprojects where as the former goes a

step further and estimates the variances associated with these

completion times.

Finally, the third type of these problems is referred to

as the sequencing problem. In this problem, determining the

optimal sequence of a number of tasks is difficult to resolve.

Analytical solutions obtained for this type of problems are

restricted to very simple cases. The assembly line balancing,

the travelling-salesman, and the machine scheduling problem

are special cases of this general category.

The machine scheduling problem arises whenever a number of

Jobs has to be processed on various machines. The problem in

essence consists of determining a sequence in which the jobs

are to be processed on the machines to achieve an objective.

Because of the diversity and complexity of the problem, it is

almost impractical to account for every factor in any single

analysis. The problem becomes complicated when more than one

machine of a given type exists, machine times and/or costs are

of probabilistic nature, machines are subjected to breakdown

and operators get injured. So far, several simplifications have

been restricted on to the problem.

In the machine scheduling problem, the optimal sequence of

operations for a job may be a function of the sequence of opera-

tions for other jobs. Hence in such case, it is usually neces-



sary to determine the optimal sequence for all jobs simultaneously.

As a result, this problem can become one of considerable size

and complexity. For example, consider a problem of six jobs to

be processed on each of the three different machines. The pos-

M 3
sible number of sequences is (J!) or (6!) 373,248,000. A

complete enumeration of these sequences would require years

even on a high speed computer. Many of these sequences are

technologically non-feasible. An exhaustive enumeration must

consider all feasible sequences and eliminate the non-feasible.

The next step is to select the optimal sequence. This report

will present different approaches to the machine scheduling

problem. The efficiency of the various techniques for solving

this problem will also be reported.

1,1 Measure of Effectiveness

Once the scheduling problem is solved, the schedule is

evaluated" with respect to one of the various measures of effect-

iveness. The optimal solution is a function of the objective

function. For an industry, the ultimate goal, in general, is

to optimize profits. Beenhakker (11) has listed 27 system

goals but many of them are redundancies. Researchers have

agreed to the difficulties of measuring the effectiveness of

a sequence when there is no common measure of value for the

various desirable properties. Hence, for research work the

most common objective has been minimization of the schedule
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tine. This is a simple measure and is also related to other

criteria such as minimizing idle time of the machines and

minimizing cost. In dynamic situations the effectiveness is

also measured in terms of work-in-process inventory costs,

meeting due dates, over-all flow time of jobs, and minimizing

waiting time. The schedule time, T, which is to be minimized,

can be expressed mathematically as

Z Z t + Z

m=l j-1
3m

m=l j=l

J

£ I
.

where

,

t> processing time of job j on machine m, and

I. idle time immediately prior to processing job j

on machine m.

The over all flow time of job j, f., may be expressed

M
Z t

n=l

M
Z

m=l
. + . I I . .

Lateness, tardiness and earliness are three different means

of comparing the actual completion time with the desired com-

pletion time. Lateness considers the algebraic difference for

each job regardless of the sign of difference. Tardiness con-

siders only positive differences jobs which are completed

after their due dates, and earliness considers only negative



differences — jobs completed ahead of their due dates,

"he lateness for job j, L., may be expressed as

L. - c.
J J

where
,

c. is the scheduled completion time of job j, and

d is the due date.

Therefore the tardiness, T , is defined as

i . » max[0 ,L . ]

and accordingly, the earliness, E , is defined as

E = max[0 (-L ] .

The interdependence of measure of effectiveness is important

in comparison of scheduling procedures. It may be observed that

for any given situation, mean flow time is directly proportional

to the mean work-in-process inventory (as measured by the number

of jobs); a scheduling method which minimizes mean flow-time

also minimizes mean lateness, mean waiting-time and the mean

number of jobs in the system.

1.2 Formulation of the Machine Scheduling Problem *

The machine scheduling problem consists of a number of jobs

to be performed by a number of machines. Each job has to be

*Adapted from Ashour, 5., "A Decomposition Approach for the
Machine Scheduling Problem" The International Journal of
Production Research . Vol. 6, No. 2, 19 67.





J

j I"

x y

M*
J

M*

S*
m

S*

T*

sequence of jobs through machine m, x 1, 2 J

order of machines for job j , y ™ 1, 2 M

a specific operation

processing time of job j on machine m

processing time matrix of the original problem

machine ordering vector for job j

machine ordering matrix of the original problem

job sequencing vector through machine m

job sequencing matrix of the original problem

schedule time

The numbering of jobs and machines is arbitrary and it does

not necessarily correspond to the sequence in which the jobs

are processed on each machine or the order in which the machines

process each job. Therefore, the sequence of jobs on each

machine will be designated as J,, J 2
, .... J x> ...> jj with

respect to a preconceived sequence while the machines will be

designated as m , m m m when considering a

permutation of machines with respect to the preconceived order.

The various sets of job sequencings on each machine for a

given sequence are designated as:

S* { j jTO j; i™ jjm} , m = 1, 2 , . . , , M,
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The above sets, one for each machine, may be combined in a

(MxJ) matrix called the job sequencing matrix and denoted by

S*. For the problem of J jobs and M machines, one of the pos-

sible sequencing matrices can be shown as

s*

h 1 h 1 — Jx 1 ••• V
j
x
2 j 2

2 ... j
x
2 ... jj2

S* =

s
s

• • • •

• • • •

h* j 2
M ••• V ••• j J

M

The above job sequencing matrix shows that all the J jobs

are processed on all the M machines in the same order.

/• Next, the various sets of machine orderings for each job

are designated as:

M* tjm, jm
2

... jm ... jm
M

> , j = 1, 2, ..., J.

The above sets one for each job, may be combined in a (JxM)

matrix called the machine ordering matrix and denoted by M*.

This matrix for the above problem will become:

M* lm lm ... Im ... Im

M* 2»j 2m
2

... 2m
y

... 2»
M

M* =

•

= • • • •

. • • •

• • • •

"3 Jm, Jm. ... Jm •*• J™.,12 y M

f>



For example, consider a problem of three jobs and two

machines. The job sequencing matrix can be shown as:

11 31 21

S*

J
x
l J 2

1 j
3
l

J
l
2 V j

3
2 22 32 12

This indicates that machine 1 processes jobs in the sequence

{1 3 2} and machine 2 processes jobs in the sequence {2 3 1}.

It should be noted that j.l means the job j, on machine 1, which

may or may not be the same job as j,2.

The machine ordering matrix becomes:

M* »

H* lm.. lm 11 12

M* = 2m
1

2m
2

= 22 21

"S
3m 3m„ 31 32

This matrix indicates that jobs 1 and 3 are processed on machine

1 first and on machine 2 last. Job 2 is processed on machine 2

first and on machine 1 last. Again lm means job 1 on machine

m_ which is not necessarily the same as 2m or 3m,

Since the machine ordering is specified, the processing

time for each job on each machine must be given. These pro-

cessing times are placed in a matrix form which is called the

processing matrix and is denoted by
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11 12 In

t t
21 22

'il *tZ

• «

2 m

"1M

2M

t jm •" £ jM

Jn "' J M

The machine scheduling problem may now be stated as:

given t* and M* , find the optimal sequence S* which gives the

minimum schedule time T.

Research workers usually specify their own models. The

principal assumptions made on the models may be stated as fol-

lows :

l a Assumptions regarding jobs:

lal A job may not be processed by more than one

machine at a time,

la2 Each job must follow a specified machine ordering,

1.3 A job is processed as soon as possible, subject

to the machine ordering.

1.4 All jobs are equally important.

2 a Assumptions regarding machines:

2.1 No machine may process more than one job at a

time

.

2.2 Once started, each operation must be completed.
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2.3 There is only one machine at each station.

2.4 No job is processed

machine.

more than once by any

3. Assumptions regarding processing times:

3.1 The processing time

does not depend on

jobs are processed.

of each job on each machine

the sequence in which the

3.2 The processing time

is determinate and

of each job on each machine

is integer.

3.3 Set up and transportation times between machines

are included in the processing time.

It is not that all available techniques need all of the

above assumptions. In fact some of the assumptions are not

requ ired in certain techniques.

1.3 Literature Review:

Research in the machine sche duling problem has increased

recently. This indicates the imp ortance this problem has gained.

The ob je ct ive of the research has been to develop computationally

effi cient . algorithms for arriving at optimal solutions. Except

for very small size problems a practical procedure has not yet

been deve : loped

,

The approaches available to solve the machine scheduling

prob lem are : 1) Combinatorial Analysis, 2) Integer-Linear Pro-

gramming

,

3) CIraphical, 4) Graphi cal-Dynamic Programming,

5) S chedu le Al gebras, 6) Heuristi cs, and 7) Simulation.
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The most simple scheduling problem consists of J jobs and

only one. machine. For example, an integrated production line

forms one machine problem. The trend towards automation will

integrate all processes and hence may be considered as one

machine problem. Smith (107), Jackson (57) and (58) have worked

independently on this case. The criteria considered are mini-

mizing maximum tardiness by obtaining a sequence based on due-

dates; and minimizing sum of all waiting lines, . Jackson has con-

sidered the cases where the machine may be left idle and also

where a job, if any, must be placed on the machine. The compu-

tation procedure, however, is not efficient. Held and Karp (47)

have developed dynamic programing approach for this case.

For flow shop problem having J jobs and two machines, John-

son (63) has developed a simple algorithm with the criterion of

minimizing the schedule time. He has also extended the above

algorithm to cover a special case of three machines, Jackson

(59), Mitten (80) and Johnson (64) have generalized the results

to some extent, Jackson (59) has considered the case when jobs

have different machine orderings. Mitten (80) has dealt with

some arbitrary time lags between the operations, Johnson (64)

has considered the case with lags, where different job sequences

are allowed • He has derived some rules wh ich reduces the

2problem size from (J!) to (J!) sequences,

Dudek and Teuton (30) have extended Johnson ' s algorithm

to solve the flow shop problem of J jobs and M machines. The

procedure involves minimization of the cumulative idle time
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An approach that has proved computationally more efficient

is that of generating a small subset of complete set of feasible

sequences. The Branch-and-Bound technique of Little et. al. (73)

developed to solve the travelling-salesman problem has been

used for solving the machine scheduling problem. Ignall and

Schrage (56) have applied this technique to the two-and three-

machine flow shop problem.

Lomnicki (74) has also applied this technique to three-

machine flow shop problem. Brown and Lomnicki (20) have

extended this to an arbitrary number of machines. McMahon and

Burton (76) have also worked with this technique. Their

computational experience involves up to 45 jobs and three machines.

Gifflei' and Thompson (40) have developed an algorithm for i

generating the subset of feasible sequences, which contain the
'

optimal sequence. In practice, however due to computations,

only a sample of this subset is generated.

Brooks and White (19) have modified Glffler and Thompson's

algorithm by using lower bound as a decision rule. Computational

experience shows that computer time increases rapidly with the

problem size. This technique is also applicable to job shop

problem.

Palmer (87) has presented a slope order method to obtain

an approximate solution for the scheduling flow shop problem.

His approach is based on heuristic arguments.

An approach which seems to be promising for the machine

scheduling problem of J jobs and M machines is that of Integer
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programing approach. This is made possible by Gomary's (43)

integer programing algorithm. Presently, there are three

published formulations to this problem. Bowman (18) estimates

that formulating a simple problem involving three jobs and four

machines, in his terms, would require an integer programing

problem containing 300 to 600 variables, and many more con-

straints depending on the schedule time T. Wagner's formulation

(111) is also of the same magnitude. The most compact one,

that of Manne. (75) requires 31 variables and 94 constraints.

This appears to be a reasonable formulation. None of these

authors claim practicality of their formulations.

Giglio and Wagner (42) have reported on computational

experience with several methods. They have concluded that

integer-linear programing approach does not converge fast

enough to make it practical. This difficulty is likely to

increase as problem size increases.

Dantzig (27) and (28) has proposed rounding linear program-

ing solutions and also developed a shortest route subroutine

for reducing the number of variables to use the simplex method.

But it has been reported by Giglio and Wagner (42) that the

solution is far from the optimal.

Heller (52) has done some work on developing a graph-

theoretic approach to the scheduling problem. The problem

is expressed in graph-theory term. Heller and Logemann (53)

have developed an algorithm which is based on linear graph

properties. This algorithm evaluates the feasible sequences.



16

An operation of processing job j on machine m for the return i

is referred to as a node (mji). The nodes are linked as per the

machine ordering. One of the J nodes is picked by the algorithm

and is scheduled,, The process is repeated until all operations

are scheduled.

Heller (49) has done some experimentation on flow shop

problem. He has shown that the limit distribution of the

schedule times is asymptotically normal as the number of jobs

increases

,

Ashour (6) and (7) has developed a decomposition approach

for the machine scheduling problem of J jobs and M machines.

The approach consists of decomposing the original problem into

a number of smaller, more manageable subproblems, which minimizes

the computational effort. He has found that the mean of the

schedule times obtained by complete or partial enumeration is

greater than that obtained by decomposition. This mean increases

as the number of jobs in each subgroup decreases. His computa-

tional experiments consist of six to 40 jobs and three to ten

machines.

Another approach is that of Heuristic rules, priority

rules and combinations of these. Many of these rules have

been compared by simulating their performances on computers.

For the "due-date criterion", Gere (34) has experimented a

heuristic approach. Conway (24), Dudek and Ghare (29), and

Burstall (21) have also studied some heuristic rules.
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A Monte Carlo version of Giffler and Thompson's (40)

algorithm has also been studied. Although it does not

guarantee an optimal schedule, but it does permit rapid compu-

tations for fairly large problems encountered in industry. It

selects fairly large number of feasible sequences at random,

and the shortest one can then be used. Giffler, et, al. (41)

have reported on numerical experience with linear and Monte

Carlo algorithm. They have found that a Monte Carlo process,

that uses rules as guides in its random choices are considerable

superior to a purely random choice device. Fisher and Thompson

(33) have reported on a study in which they have devised some

learning strategies to guide the program in its use of rules.

Simulation makes it possible to find a sequencing procedure

which is better than the rule of thumb techniques now used

in practice. It also provides a useful laboratory for the

further investigation of scheduling.

It is intended to illustrate some of the different techniques

available for solving the machine scheduling problem, by sample

problems.



CHAPTER II

COMBINATORIAL APPROACH

The combinatorial analysis approach for solving the machine

scheduling problem represents quasi-enumerat ion techniques, and

their efficiency depends on how effectively enumeration is cur-

tailed. Several techniques within the concept of the combina-

torial approach have been developed for solving the problem.

Each technique has its own advantages and limitations. The

various techniques considered in this paper are, Direct,

Extended Direct, Br anch-and-Bound , Lower Bound, and Boolean

Algebra Techniques.

2.1 Direct Technique

The Direct technique has been developed by Johnson (63)

and is applicable for the flow shop problem. In flow shop prob-

lem, the sequence that minimizes the cumulative idle time on

the last machine, becomes the optimal sequence. Johnson's approach

proceeds so that the cumulative idle time on the last machine is

minimized. Hence, it is referred to as Direct Technique. How-

ever, this technique is feasible for flow shop problem of J jobs

and two machines. A special case of three machines problem may

be solved by this technique.

For solving the problem, the algorithm is based on two

lemmas and one theorem. These are mentioned below without

proof. For their proofs, see Appendix A.
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Lemma 1: The sequence on either machine can be made

the same as that of the other machine without

loss of time.

Theorem 1: An optimal sequence is given by the following

rule :

The job j precedes the job j ,. if

min[t, ,,t. ,] < min[t -,t ] (2.1)
^x

1
^x+l 3 x+l 3 x

Lemma 2

:

Inequality (2,1) is transitive.

The algorithm may be summarized in the following steps.

Step 1: Arrange the processing times of the jobs on machines

as folic3ws :

Job

r

Designation Machine 1 Machine 2

1 hi 'l2
2 en £

22

1 • •

• • •

t • •

i 'ji *ja

* • •

• • •

• • •

J 'jl
e
j2

Step 2: Examine

value

.

all processing times, t. , for the minimum

2.1 If the minimum processing time is t.., schedule

thi2 corresponding job first on machine 1,

2.2 If the minimum processing time is t.,, schedule

th.3 corresponding job last on machine 1.
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Step 3: Cross off the job just assigned and repeat step 2

on the reduced set of processing times.

Step 4: Check the ties.

4,1 If the tie is among the processing times on one

of the machines, schedule the job with the

smallest designation first.

4.2 If the tie is for the same job on both machines,

consider it as in step 2,1.

- A flow shop problem of six jobs and two machines is presented

to illustrate the algorithm. The processing time and machine

ordering matrices are given below:

<

T*

6 7

12 2

4 6

3 11
6 8

2 14

, M* =

11 12"

21 22
31 32

41 42
51 52
61 62

•

Applying the above algorithm step by step, computations are

carried out.

Step 1: Arrange the above processing time matrix as follows:

J tn tu16 7

2 12 2

3 4 6

4 3 11
5 6 8

6 2 14

Step 2: The minimum processing time is 2 units for job 6

on machine 1 and job 2 on machine 2. Therefore, job

6 is scheduled first on machine 1, and job 2 is

scheduled last on machine 2.
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Step 3: Jobs 6 and 2 are crossed off.

Repeating step 2 on the reduced set of processing times,

the optimal sequence {6 4 3 1 5 2} is obtained. The schedule

time is obtained as 50. This may be shown in the Gantt Chart,

Figure 2,1

m = l

6
_
4

|
3_

" .""<

2 5

m = 2

tt

15

16

21

, _3 , :

2 7 3 3 4

, 2

A

48 50

Figure 2.1 Gantt Chart for a Flow Shop Problem of Size (6x2).

The above algorithm has been extended for a special case

of three machines problem when the inequality

min[t
x

) > max[t
2

)

min[t
3

] > max[t ,]

,

3X J x

'

holds, a solution similar to that of the two machines problem can

be found. Again, two lemmas and one theorem supporting the

algorithm for this special case are presented below without

proof. For their proofs, see Appendix A.

Lemma 3: An optimal sequence can be reached if the

same ordering is assumed for all the jobs.

Theorem 2: An optimal sequence is given by the following

rule

:
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The job j precedes the job j . if

min [ t . , + t

,

.t + t ]

'x+1 -'x+l

< min[t + t t +t ] (2.2)
3 x+l J x+1 3 x 3 x

In case of an equality either job is permissible.

Lemma 4: The inequality (2.2) is transitive.

In this special case, the processing times of the three

machines are reduced to that of a two machines problem such

that

t. . is replaced by (t. . + t. ,) ,

x -"x -"x

and

t. , is replaced by (t. , + t. .)

,

A sample problem of six jobs and three machines is

presented below to illustrate the algorithm. The processing

time and machine ordering matrices are:

4 5 8

9 6 10

8 2 6

6 3 7

5 4 11
7 3 6

H* -

11 12 13
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63

From the above processing time matrix

min [ t
1

] 4,

and

nax[t
2

] = 6,

min[t .] = 6.

-x
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Since max[t.
2

] _< min[t ,), the special condition is satisfied.
x -'x

Hence, the three machines problem can be reduced to an equivalent

two machines problem. The processing times of this reduced

problem are (t ^ + t
2

) and (t + t ) .

x J x •'x •'x

Now, applying the above algorithm, the processing times

are arranged as follows:

J (t + t ) (t + t )

IX J x J x J x

9

15
10
9

9

10

13
16
8

10
15

9

Proceeding step by step as described in solving the two

machines problem the optimal sequence is {1 4 5 2 6 3} with

schedule time of 57. This may be shown in Gantt Chart, Figure

2.2.

m=i [r

—

;
'....._,: '

4 10 15

= 2 t
4

m=3 t

^^r
9 13

1

11

24 31

. 2 , , fi
,

19 21 30 34

i ._ 5 ,_

24 35

39

41

2„_ . „6 .3
45 51

Figure 2.2 Gantt Chart for a Flow Shop Problem of Size 6x3
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2.2 Extended Direct Techni que

Dudek and Teuton (30) have developed an algorithm for

solving the flow shop problem of J jobs and M machines. This

algorithm is an extension to that of Johnson (63). Therefore,

it is referred to as Extended Direct Technique.

In this technique, the first x-1 sequence-positions are

assumed to be filled. The sequence-position x has to be filled.

However, in solving a new problem, there are no presequen ces

.

To fill the sequence-position x, two partial sequences S and

S are compared by M-l conditions discussed later. These two

partial sequences differ in sequence-positions x and x+1 as

shown below:

5
1

= {j
l' J

2 3 x-l' j x* d x+l }

5
2

" {j l* j
2 j x-l' j x+l> j x

}

The decision rule for scheduling is that the job in the sequence-

position x will precede the job in the sequence-position x+1 if

M-l conditions are satisfied.

It has been claimed that this algorithm would generate an

optimal solution, but Karush (65) has developed a counterexample.

The reason is that in the partial sequence S , job j . is neces-

sarily followed by job j . This does not consider the case

where, in an optimal sequence, job j . is followed by a job

other than j . Because of this difficulty, the basic algorithm

has been modified by Smith and Dudek (105). It consists of com-

paring the two partial sequences S and S :



„

s
l ^1' j 2 i K-l' J X ' j

x-!-l
}

S
3

=
**1 J i 2 j x-l' J x+1 }

As in th e basic algorithm, x-1 sequence-positions are assumed to

be fille d. However, S„ has one less job in the sequence.

Hence, j ob j , 1
is not necessarily followed by job j but,

that position is open for any of the unscheduled jobs

J x' J x+2 , . .., j.. This modified approach guarantees an optimal

solution • The following notation is considered:

s a presequence consisting of x-1 scheduled jobs

V a jobs competing for the sequence-position x and

are taken from the unscheduled subset.

I(m ,s) idle time on machine m through all jobs included

f
in the presequence s.

In order to facilitate the description of the algorithm,

some definitions are considered:

1. Candidate sequences are those partial sequences

generated through any sequence-position except

the last.

2. Dominated jobs are those jobs eliminated from con-

sideration as a possible candidate for a sequence-

position.

3. Dominated sequences are the partial sequences elim-

inated from consideration.

A. A candidate set of jobs are those jobs which

4.1 are not in the presequence

A, 2 have not been dominated
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4.3 have not been used for dominance check.

The algorithm is based on two dominance checks: one is

for a job and the other is for a sequence. Dominance of a job

or a sequence is checked by M-l conditions such that

ll(m,sa ) 21 max[H(m,sa ) ,H(m,sa a ) ]

,

(2.3)

m = 2, 3 M
where

H(m,sa
2

) K(m,sa
2 ) + £ t - t t..,

jcs
Jra

jcs 3

m 2, 3, . . .
, M

H(m,sa,)=K(m,sa,)+ Z t . - Z t . ,

jes J jes J

m " 2 , 3 , . . . , M

H(m, sa
1
a
2

) = K(m,sa a
2

> + Z t - Z t ,

jes J jes -1

m = 2, 3, M

(2.4)

(2.5)

(2.6)

and

K(m,sa )

jesa j.ni-l
Z t, +

jmJ"

max[I(m-l ,s) , K(m-l,sa..)]

m 2 , 3 , . . . , M

(2.7)

Note that K(0,sa ) = 1(0, sa) = 0.

The expressions (2.4), (2.5), and (2.6) may be simplified

for computational purposes as follows:

H(m,sa ) =Et. , + t . - E t. +
2

j£s it*-l -
2
»-l

jes J">

max[I(m-l,s), K(m,sa
2
)]

'""
Oft

= Z t . -, + t ,-It. +
, j ,m-l a„m-l , jm
jes J * 2 jes J

max[R(m-l, s) , H(m-l,sa.)] -

£
j, m-l

+ l
*jl

jesjes
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t - + max[U(m-l,s) , H(m-l,sa
2
);

m • 2 , 3 M

.

Similarly

,

H(m,sa ) » t . + rnax[R(m-l,s) , lltm-l.saj) ]

1 m = 2 , 3 M

and

(2.8)

(2.9)

<"»*%LV
= S 1"" 1

+ ta
2
m" 1 " '"l"

+

max[R(m-l,s) , ll(m-l,sa , H (m-1 , sa^) ] (2.10)

B - 2 , 3 , .... M

where

R(m,sa ) - I(m,sa ) + I t - I E.,, » 2, 3,

j e s J
j e s

J

For simplicity, the M-1 conditions appearing in (2.3),

may now be expressed in terms of processing times.

Condition 1:

(2.11)

H(2,sa ) > max[H(2,sa
1
) , H(2, li^)], (2.12)

, > maxft . , (t . + t . - t ,)

]

,1 - ijl* a
x
l a

2
l a

2
2

(2.13)

which is obtained by substituting

H(2,sa,) ° K(2,sa ) + S t., - % t
2 2

jcs
jZ

jes 31

E t., + t , - £ t + 2: t ,
- Z t

jcs 31 «2 1 jes J2 JES i 2 jes I 1

"«,1

Similarly

,

««!> " *. x«
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and

H(2 ,sa a ) = t + t - t . .12 a 1 a.l a.j2

Each of conditions 2 through M-l may be expressed in terms

of the previous condition as follows:

Condition 2:

H(3,sa
2

) > max[H(3,sa
1

) , HO.sa^j);

t
a 2

+ max[R(2,s) , H(2,sa
2

)

]

> max{t
2
+ max[R(2,s), H(2,sa )], t

2
+

t
a 2

- t
a j

+ max[R(2,s), *&,*/*£,

H(2,aa
1
a
2
) ]} (2.14)

Similarly, the other conditions may be obtained. However, the

last condition will appear as follows:

Condition M-l:

H(M,sa
2

) > maxlH(M,sa.) , H(H,sa a
2
)]

t , + max[R(m-l ,s) , H(m-l,sa )]

_> max{t
a

. + max[R(M-l,s) , H(M-l,sa )], t , +

'a M-l "
'a M

+ »»*f*(M~l», IKM-I.sa^,

H(M-l,sa
1
a
2

) ]} (2.15)

The algorithm may now be summarized in the following steps.

Step 1: Calculate R(m,s) for the presequence such that

R(m,s)=I(m,sa
1
)+ I t. - Z t

. , , m = 2 , 3 , ...M
1 • J m . J 1

j es J
j cs J
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Step 2: Select job a., from the unscheduled subset of jobs,

such that

t , is rain [ t .
, 1 .

"l
1

j*s ^
Step 3: Check t^

2
:

.

3.1 if t . > t ,, condition 1 is satisfied. Go
a
l
2 " 'l

1

to step 4.

3.2 if t
a 2

< t
g 2 , go to step 7.

Step 4: Select other job a from the unscheduled subset and

check conditions 2 through M-l such that

H(m,sa ) >^ max[H(m,sa ), H (m, sa.. a. ) ] ,

m = 2 , 3 , . . . , M

r
4.1 if all conditions are satisfied job a is

dominated, go to step 5.

4,2 if one condition is not satisfied, stop checking

further and retain job a in the candidate subset.

Step 5: Repeat step 4 on all other jobs as job a„ in the

candidate subset.

Step 6: Repeat step 2 for all jobs in the candidate subset

using each other job as a .

Step 7: If more than one presequence exists, repeat steps 1

through 7 for each of these presequences

.

Step 8: Develop candidate sequences, those partial sequences

generated through any sequence-position except the J-l,

by placing each undominated job in the sequence-position
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x, and arrange the sequences that are permutations of

the same jobs as s i» s o» •••» s
i
c

»

Step 9: Calculate I(m, »
±>.

m = 2, 3 M
1 X( ' j . . « s

i. <

Step 10: Check the foil owing inequality:

ICm.s^ _< I(m, ij), m 2, 3 M.

10.1 If it is satisfied for all m, this means that

sequen ce s is dominated. Go to step 11.

10.2 If it is not satisfied for all m, this indicates

that the sequence s .. is dominated. Go to step

12.

10.3 If it is satisfied for only some m, neither

sequence s .. or s,. is dominated. Go to step 11.

Step III Repeat step 10 using sequences s, through s. in place

r of s~.

Step 12: Repeat step 10 using the next sequence that has not

been dominated in place of s .

Step 13: Repeat steps 1 through 12 until the first J-2 sequence

positions are filled.

Step 14: For each candi

l(M,sa
2
a
1

) .

date sequence, compare I(M,sa a ) and

14.1 If I(M,sa a < I(M,sa,a.) then, the sequence

sa
l
a
2

iS feasible

.

14.2 If I(M,sa a > 1(11, sa a ) then, the sequence

sa„a.. is feasible.

Step 15: Select the seq uence(s) from the set of feasible sequences

that has the m tnimum schedule time T*. This is one

of the optimal sequences.
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A sample flow shop problem of six jobs and three machines

is solved to illustrate the technique. The processing time and

machine ordering matrices are:

6 7 3

12 2 3

4 6 8

3 11 7

6 8 10
2 14 12

Mi-

ll 12 13
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63

The number of conditions for job and sequence dominance

checks is M-l or 2.

Condition 1 :

t . > max[t ,,(t ,+t . - t „)]a.l — a^l' a^l a.l a
i
2

Condition 2 :

t , + max[R(2,s), t .] > max{t „ + max[R(2,s), t .],
*2 a

2 "" a
l

3
1

t „ + t „
a
x
2 a

2
2 *.

x
s

+ »«*t*<*.«>. t
mj, t

a^ ^r^ ]}

min. 6., is = 2 for job 6. Hence a Now . as t , „ > t r .

,

62 61

The presequence is empty. Therefore R(2,s)

6.

condition 1 is satisfied. According to step 3,1, condition 2 re-

mains to be checked for job 6 versus each of the remaining jobs.

Considering a = 1 according to step 4 and checking job 6

versus job 1.

Condition 2 :

7 + max[ 6] >^ max{14 + max[0 2]; 14 + 7 - 12 +

max[0 2 2 + 6 - 14]

}

13 _> max[16 11],
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This condition is not satisfied for job 6 versus job 1. There-

fore, check job 6 versus job 2.

Condition 2 :

2 + max[0 12] > max {14 + max[0 2J; 14 + 2 - 12 +

max[0 2 2 + 12 - 14]

}

or

14 > max [16 8] .

This condition is also not satisfied for job 6 versus job 2.

Therefore, check job 6 versus job 3.

Condition 2 :

6 + max[0 4] _> max {14 + max[0 2]; 14 + 6-12 +

max[0 2 2 + 4 - 14 ] }

oi-

lO > max[16 10]

This also is not satisfied. Thus, check job 6 versus job 4:

Condition 2 :

11 + max[0 3] > max {14 + max[0 2]; 14 + 11 - 12 +

max[0 2 2 + 3 - 14]

}

14 > max[16 15].

This condition is not satisfied for job 6 versus job" 4. There-

fore, check job 6 versus job 5.

Condition 2 :

8 + max[0 6] > max {14 + max[0 2]; 14 + 8 - 12 +

max[0 2 2 + 6 - 14]

}

or
14 > max[16 12].
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It is also not satisfied.

At this point, as none of the conditions are satisif ied , all

johs are still candidates for sequence-position 1. Hence, we

repeat step 2 such that for job 4

min [ t ] = 3,
3 '

Hence a = 4. Again, as t,„ > t,., condition 1 is satisfied
;

and condition 2 remains to be checked for job 4 versus each of

the remaining jobs for sequence-position 1. Repeating the above

procedure, the results are summarized be low .

Job 4 versus job j Condition 2 Result

4 vs . 1 13 >^ max [ 14 14] not satisfied.

4 vs. 2 14 _> max[l4 10] not satisfied.

4 vs. 3 10 _> max[14 13] not satisfied

.

4 vs. 5 14 >^ max [14 15] not satisfied.

4 vs. 6 16 _> max[14 21] not satisfied.

Again, none of the conditions are satisfied. This means

that job 4 does not dominate any job for first sequence -position.

Returning to step 2, next job to be checked f or fi rst

sequence-position is job 3. As t„„ > t

,

1
, condition 1 is satis-

fied. Checking condition 2 for job 3 versus all j obs in succession,

the results are summarized below.

Job 3 versus job j Condition 2 Result

3 vs. 1 13 2. max [10 9] Sati sf ied

.

3 vs. 2 H ^ max[10 10] Satisfied.

3 vs , 4 14 >_ max [ .1.0 13] Sati sf ied.

3 vs. 5 14 > m3x[10 10] Satisfied.

3 vs, 6 16 ^ max[ 10 16] Sati s f ied.



34

Job 3 dominates all jobs for first sequence position. At

this point, sequence dominance check cannot be made as the pre-

sequence. is empty. To fill the second sequence-position, steps

1 and 2 are repeated.

Now, the presequence, s = {3}. From equation (2.11)

R(2,3) - 1(2,3) + t
32

- t
31

f 31
+ C

32 " C
31

or

R(2,3.) =4 + 6-4

Excluding job 3 from consideration,

min [ t . , ] = 2
,

-i
J*

J * 3

for job 6. As t,„ > f , , , condition 1 is satisfied. Job 6 is
62 61

to be checked against jobs 1, 2, 4, and 5 for dominance. Check

first job 6 versus job L

Condition 2 :

7 + max[6 6] _> max{14 + max[6 2]; 14 + 7 - 12] +

max[6 2 2 + 6 - 14])

,

or

13 > max[20 15]

This is not satisfied. Check job 6 versus job 2*

Condition 2 :

2 + raax[6 12] >_ max{14 + tnax[6 2]; 4 + 2 - 12 +

max[6 2 2 + 12 - 14]}

14 > max[20 10]
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Thi a is not sati sfied Checl : job 6 versus j ob 4.

Con dition 2:

11 + max [6 3] ^> max{14 + max [6 2]; 14 + 11 - 12 +

max [6 2 2 +
.3 - 14]

or

17 > max[20 19]

Thi s is not sati:sfied. Checl : job 6 versus j ob 5.

Con dition 2:

8 + max[6 6] > max[14 + max [6 2] j 14 + 8-12 +

max [6 2 2 + 6 - 4]}

or

14 > max[20 16]

Thi s is also not satisfied. Job 6 does not dominate. Hence

,

, as before

,

,
job 4 is selected. AS r

41 * '42 condition '.

L is

sat isf led, For i;ondition 2, the results are summarized as

bel ow

Job 4 versus 1 ob i C ondition 2 Result

4 vs

«

1 13 > max [ 17 17] Not satisfied.

4 vs

.

2 14 > max[ 17 12] Not satisfied.

4 vs

.

5 14 > max[ 17 18) Not satisfied.

4 vs . 6 20 > max[ 17 24] Not satisfied.

As none are satis f ied , f ol lowing step 6 , the next jobs are

1 and 5, each with processing time of 6. Bo th the jobs compete

for sequence-posit ion 2. Doic inance cl"leeks will be made for

botl i j obs . Selecting first j ob 1, condition 1 is sati."ified as
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t
.
, > t... Summarizing the results for job 1 against jobs 2, 4

,

5, and 6 for condition 2, we obtain,

Job 1 versus job j Condition 2 Result

1 vs. 2

1 vs

.

4

1 vs. 5

1 vs. 6

14 > max[13 17]

17 > max[13 21]

14 _> max[13 18]

20 > max[13 24]

Not satisfied.

Not satisfied.

Not satisfied.

Not satisfied.

Job 1 does not dominate over any of the jobs 2, 4, 5, and 6.

Selecting job 5, condition 1 is satisfied as t._ > t,.. Sum-

marizing the results for job 5 against jobs 1, 2, 4, and 6, for

condition 2, we get

Job 5 versus job j Condition 2 Result

5 vs. 1

5 vs. 2

5 vs. 4

5 vs

.

6

13 >, max[13 11]

14 > max[14 10]

17 > max[14 15]

20 > max [14 18]

Satisfied.

Satisfied.

Satisfied.

Satisfied.

As condition 2 is satisfied for all jobs, job 5 dominates the

second sequence-position.

Following step 8, the candidate sequences are

s
n

= 35 and s„ = 53.

I(m,s.) , i = 1, 2, are now calculated for machines 2 and 3

such that

1(2 , 35) = t
31

A,

K3, 21) = t
31

+ t
32
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and

= 4 + 6

10,

1(2, 5J) - t
51

" 6.

1(3, 53) = t
51

+ tjj

= 6 + 8

= 14 .

It is observed that

Hm.Sj) < I(m,s
2

) , 2, 3.

Hence, according to step 10.1, the partial sequence s. dominates

the partial sequence s .

At this point, the partial sequence is s = {3 5}. Following

the step 13, the steps 1 through 12 are repeated till the first

four sequence-positions are filled. The candidate sequences

obtained are

{3564}, {3541}, {3512},

{3 5 6 1}, {3 5 6 2}, {3 5 4 2}.

Following the step 14, the idle times on machine M, I(M,sa^a„)

,

may be obtained by drawing Gantt Charts.

The Gantt Chart for the sequence {3 5 6 4 2 1} is given in

Figure 2.3 and 1(3, 3564 21) is 14. Repeating this step, the

following undominated sequences may be optimal.
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{356412}, {356421},

{351264}, {356124},

{356241}, {354261},

{354126}.

3 5 .6.4,

4 12 15

m=2 1 1 , — ,

—

4 10 18

= 3 t
10

27
I

33

32

20 32

43 45 52

, .4 .2.1

44 51 54 57

Figure 2.3 Gantt Chart for a Flow Shop Problem of Size (6x3)

The processing times of jobs 6 and 4 on machine 1 are less

than that of job 3. Hence, jobs 6 and 4 are candidates for the

sequence-position 1. Repeating steps 1 through 15 by placing

jobs 6 and 4 in the first sequence-position, some more undominated

sequences are obtained.

According to step 15, the sequence(s) with minimum schedule

time are the optimal sequence(s). Referring to Table 2.1, the

sequence numbersl, 2, and 5 are optimal with schedule time of 57.
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I<Jble 2,.1

Table of Feasible Sequences

Sequence Number Sequence Schedule Time

1 3 5 6 4 1 2 57

2 3 5 6 4 2 1 57

3 3 5 1 2 6 4 63

4 3 5 6 1 2 4 59

5 3 5 6 2 4 1 57

6 3 5 4 2 6 1 60

7 3 5 4 1 2 6 64

8 4 3 1 2 5 6 65

9 4 3 5 1 2 6 63

10 4 3 5 2 6 1 59

11 6 4 3 1 2 5 60

12 6 3 1 5 2 4 59

13 6 3 5 2 1 4 59

14 6 4 3 5 1 2 59

15 6 4 3 2 5 1 59

16 6 3 1 2 5 4 59

The number of sequences generated by the algorithm is 16.

The algorithm guarantees an optimal solution. However, it should

be noted that the procedure involves an excessive amount of

computation.

2.3 Branch-and-B ound Technique

The Branch- and-Bound technique which is used to solve the

flow shop schedul ing problem of J jobs and M machines has been

originally develo ped by Little, et. al. (73) for solving the

travelling salesman problem, Ignall and Schrage (56) have
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Lomnicki (74) has defined lower bound for the node n on

machine m as,

M

and

tn tn

M M

J

+ I t . . + rain I t . ,

j'-l. *> j' m'-nrt-l
jni

J'*}

+ I t.,
j'-l J

1, 2, .... J,
1, 2 M,

(2.16)

A

(2.17)

where the first term on right hand side of equation (2.16) is

the completion time of the sequence of a number of jobs represented

by node n on machine m; the second term is the processing time

for the remaining jobs on the machine m; and the third term is

the minimum processing time to process the last job on the re-

maining machines.

The algorithm may now be stated as follows:

Step 1: Let L 1.

Step 2: Calculate the lower bounds at level L, for all nodes on

all machines such that

J H

g
m

- c
m

+ E t., + min I t. , , j = 1, 2, ... , J,

j =1, J
j m -m+1 J m 1, 2, ..., M,

j'*n

and

g
M

= e
M + \ t., ,

jVn

where c is the completion time of the partial sequence, n on
n

machine m.
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Step 3: Find g for each node such that

.12 M,
gn

- BaX [gn> gn , .... gn
] .

Step 4: Find the nodes which have g* such that

g* min[g
n ] .

n

Step 5: If L = 1 go to step 6. Otherwise, check the lower

b ounds .

5.1 If g*'s are greater than that of the branched node,

terminate search in this direction. Branch at the

node which has the second lowest lower bound. Go

to step 2

.

5.2 If g>': 's are not greater than that of the branched

node , go to step 6.

Step 6: Branch off at the nodes which have g*.

Step 7: Check L.

7.1 If 1 < J-l, let L I.+ l and go to step 2.

7.2 If L > J-l, go to step 8.

Step 8: Select the node which represents the minimum g*.

This is the schedule time of the optimal sequence shown

in the node.

To illustrate the above algorithm, the same problem pre-

sented in subsection 2.2 is solved. For convenience, the process-

ing time and machine ordering matrices of this problem are

reproduced below:
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6 7 3

12 2 3

4 6 8

3 11 7

6 8 10
2 14. 12

M"

11 12 13
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63

In solving the problem, the steps of the above algorithm

are followed.

Following step 2, the lower bounds are found by computing

the completion times such that, for node 1,

and

C
l * C 12>

c
l

+ h3-

and

c' = 6+7

6,

13,

c" = 13 + 3 = 16.

Hence, the lower bounds are computed as follows.

g* » 6 + (12 + 4 + 3 + 6 + 2) + min[ 5 14 18 18 26] = 38,

g^ = 13 + (2 + 6 + 11 + 8 + 14) + min[3 8 7 10 12] = 57,

and

Z
x

= 16 + (3 + 8 + 7 + 10 + 12) 56.
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According to step 3, find g for each node such that

12 3
gn

= maxlgj^ gj, g
x

]

or

g = max[38 57 56]

- 57.

Proceeding as above for nodes 2, 3, 4, 5 and 6 at level 1, the

results are summarized in Table 2.2.

Following step 4, the least lower bound is for node 3. As

L " 1, step 5 has to be skipped and branching is done at node

3. As in step 7, L is increased by 1 and returning to step 1,

completion times of nodes on all three machines are determined

at level 2 as follows:

For node 31,

C
31

= C
3

+ *11»

c
31 " maxtc 31' C

3 ]
+ 'U'

and

and

3
'31

"31

2
= 31

3
= 31

2 3
max[c

31 , c
3

) + t
13 ,

/
4+6 =10,

max[10 10] + 7 = 17,

max[17 18] + 3 = 21.

The lower bounds are:

g 3
- 10 + (12 + 3 + 6 + 2) + min[5 18 18 26] = 38,
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Ta ble 2.2

Table ! Of Lower ;Bounds

Node Completion Times Lower Bounds

n
1

c
n

2
c
n

3
c
n

1
gn

2
gn

3
8n 8n

Level 1

1 6 13 16 38 5 7 56 57
2 12 14 17 43 63 58 63

3 4 10 18 38 55 53 55*
4 3 14 21 38 54 57 57

5 6 14 24 38 57 57 57

6 2 16 2 8 38 53 59 54

Level 2

31 10 17 21 38 55 53 55
32 16 18 2i 43 61 53 61

34 7 18 25 38 52 56, 56

35 10 18 28 . 38 55 5 3 55*
36 6 2 32 38 51 59 59

Level 3

351 16 25 31 38 55 53 55

352 22 24 31 43 59 53 59
, 354 13 29 36 38 55 54 55

356 12 32 44 38 55 5 7 5 7*

Level 4

3561 18 39 4 7 38 55 57 57

3562 24 34 47 43 55 57 57

3564 15 43 51 38 57 54 57*

Level 5

35641 21 50 54 38 55 57 57

35642 27 45 74 43 55 57 57

* indicates the node at which branch! n g is d one to 6b tain the
optinal se quence

•

It should be noted that in following
the algorithms steps the resu lClng sequence is not optimal.
Therefore

,

one conclu des that most of the nodes must be
branched regax"dless o f the value of the lower bound

,

Figure 2.4 shows' most of the branch es in the sche du ling tree.

'
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g^ - 17 + (2 + 11 + 8 + 14) + inin[3 7 10 12] = 55,

and

gj = 21 + (3 + 7 + 10 + 12) 53.

For node 32 at level 2, the completion times are:

1 1
c
32

c
3 21*

c
32

= maxtc 32» C
3

]
+ t 22'

and

c
32

= max I c32'
C
3

] + E23'

1
:
32

4+12 16,

and

c - max[16 10] + 2 - 18,

c * max[18 18] + 3 21.

The lower bounds are:

'32 16 + (6 + 3 + 6 + 2) + min[10 18 18 26] = 43,

z = 18 + (7 + 11 + 8 + 14) + min[3 7 10 12] - 61,

and

g32
21 + (3 + 7 + 10 + 12) 53.

Proceeding as above for remaining nodes under level 2, the results

are summarized in Table 2.2. Here, nodes 31 and 35 both have the

same lower bounds of 55. Referring to the scheduling tree, it

is observed that branching at the node 31 produced minimum lower
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bound of 57 at level 3. This is greater than that of node 31.

Hence, the search in this direction is terminated. The remain-

ing results are summarized in Table 2.2.

In solving the above problem, some points have been noted.

From the scheduling tree, it is observed that if the algorithm

is strictly followed and one concentrates only on minimum lower

bounds, optimal solution may not be obtained. For instance, at

level 3, node 354 leads to final node 354261. This has schedule

time of 60. There is no way to check whether the final solution

is optimal or not. Sub-section 2,2 has generated an optimal

sequence {35642 1}. Based on this information, the node 356

was explored. However, this did produce optimal sequences

{356412} and {35642 1}. Hence, one is led to conclude

that the algorithm does not guarantee optimality without branching

the whole scheduling tree.

This technique is computationally efficient and is compe-

titive with the Extended Direct Technique.

Brown and Lomnicki (20) have conducted computational

experiments on ICT 1301 computer. The problems solved, have up

to ten jobs and seven machines. They have found that, as the

number of machines increases (number of jobs remaining constant),

the number of nodes to be explored also increases; the computa-

tional effort had to be doubled to obtain all the solutions in-

stead of onej and for the same J with the increasing number of

machines, the additional effort in obtaining all the solutions

Instead of one, should decrease. They have found that the appli-
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cation of the algorithm to the reversed order of machines in some

cases reduces about 33 percent of computational effort. In such

cases the order of jobs in the solution is reversed. This is

made possible due to the fact that the scheduling problems are

symmetrical with respect to time reversed.

Ignall and Schrage (56) have also developed Branch-and-

Bound algorithm similar to that of Lomnicki (74). Their compu-

tation experience on CDC 1604 was up to ten jobs and three

machines. These authors have introduced concept of "dominated

nodes". This concept has reduced the number of nodes to be ex-

plored by about 13 percent as no more branching is done from the

dominated nodes.

Mcllahon and Burton (76) have developed reversed approach to

some of the flow shop problems by applying Branch and Bound

technique. The decision rule is that, reverse the machine order

if the total processing time for the first machine is larger

than the last machine. The approach of these authors consists

of dividing the set of all sequences of jobs into smaller and

smaller subsets, and to calculate for each of them a lower bound

on the lowest schedule time of all permutations in the set.

Their computational experience on CDC 3600 computer involves up

to 45 jobs and three machines. They have found that the use of

composite bound (machine based bound and job based bound) deci-

sion rule is more efficient.
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2.4 Lower Bound Technique

Giffler and Thompson (40) have developed an algorithm for

generating the subset of feasible sequences. They have defined

these sequences as active feasible schedules. These schedules

have the following properties: (1) no machine is idle for a

length of time sufficient to process an idle job completely;

and (2) each operation starts as .soon as both, job and the

machine are available. In obtaining these schedules they

have suggested to resolve randomly, the conflicts among jobs

overlapping on a machine.

Brooks and White (19) have modified the above algorithm by

introducing the concept of lower bound. Lower bound is defined

as the time required to process all jobs on the last machine

without conflict. In the modified algorithm the conflict is

resolved in favor of the job which produces the least lower

bound. White (113) has found that the lower bound concept pro-

duces better results than either Monte Carlo, developed by

Giffler and Thompson (40), or Shortest Imminent Time (SIT)

and Longest Remaining Time (LRT) criteria devised by Fisher

and Thompson (33).

The modified algorithm is feasible for job shop' problems

of J jobs and M machines. The solution is developed in a Table

called Work Array, It consists of M blocks. Each block has

J columns. A variable X is considered to indicate the time

prior to which the schedule is complete and fixed without

conflicts; and the time at and after which conflicts may exist
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at the corresponding level, L. The algorithm may be summarized

as follows*

Step 1: Set L = 1.

Step 2: Enter the completion timeg of first operation of

all jobs in the work array and set X equal to the

smallest of these times.

Step 3: Check for conflicts among jobs ending at and after

time X within each machine block.

Step 4: Calculate the lower bound for each job in conflict.

Step 5: Find the job(s) which have the least lower bounds.

Step 6: If L 1, go to step 7, otherwise,, check the lower

bounds

:

6.1 If the least lower bound(s) are higher than

that of the previous level in the same machine

block, terminate search in this direction. Select

another job, from level L-l, which has the second

lowest lower bound. Go to step 3,

6.2 If the lower bound(s) are equal to that of the

previous level, go to step 7.

Step 7: Resolve the conflict in favor of the job which has

the least lower bound. If a tie exists, select a job

randomly

,

Step 8: For each X, in the array find the next machine, if

any, to process the job and enter X plus the processing

time for this next operation in the corresponding

block.
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Step 9: Check X, in the array.

9.1 If X is the largest entry, the corresponding

level gives the optimal sequence on each

machine.

9.2 If X is not the largest entry, set it equal to

the next higher value X' in the array. Go to

step 3

.

It should be noted that step 6 is modified in this report

because lower bounds at lower levels may bo equal to or greater

than that of the previous levels. In no case the lower bound

decreases in lower levels. White (113) has suggested to check

lower bounds after conflicts on all machines are cleared. How-

ever, this involves unnecessary computations.

In job shop problems, any of the M machines may perform the

last operations on the jobs. Therefore, in order to evaluate

the lower bound for job j, it is necessary to calculate the

completion times on all M machines. The lower bound will be

the maximum of the above times,

A sample job shop problem of three jobs and three machines

is presented to illustrate the above algorithm. The processing

time and machine ordering matrices are as follows:

2 3 4

5 4 2

6 3 5

M* =
12 13 11
21 22 23
33 32 31

Note that job 1 is processed first on machine 2, second

on machine 3, and finally on machine 1. Job 2 is processed

first on machine 1, second on machine 2, and finally on machine
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3, Job 3 is processed first on machine 3, second on machine 2

and lastly on machine 1.

According to step 2, completion times 5, 3, and 5 of the

first operations of all jobs are entered in appropriate blocks

at level 1, as shown in Table 2.3.

Table 2.3

Work Array For a Job Shop Problem of Size (3x3)

3 ob
Machine 1

Level 1 2 3

1 5

2 5

3 11
C

5 1

4 16 5 1

Machine 2

12 3

3 9° 8
C

3 9
C

8
C

3 12 8

3 12 8

Machine 3

12 3

7
C

5
C

9 5

9 14 5

9 14 5

denotes the jobs in conflict.

At level 1, the values of X at machines 1, 2, and 3 are 5,

3, and 5, respectively. Therefore, conflicts do not exist, since

the value of X corresponds to different jobs in each machine

block.

Following step 8, processing times of next operations of

the three jobs are added to X. For job 1, the next operation

is on machine 3 and takes 4 units of time. Adding this to

the value of X in machine block 2, the value 3+4 or 7 is

entered in machine block 3. Similarly, the values 9 and 8

are entered in machine block 2 at level 2,
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It Is observed that X with a value of 5 is still the

largest entry in machine block 1. But X with the value of 3

is not largest entry in block 2. Hence, according to step 9,

X is increased to X 1 with a value of 8; and X which has a value

of 5 in block 3 :remains without change. It is observed that

jobs 1 and 3 are in conflict on machine 3 and jobs 2 and 3

are in conflict ijn machine 2, Job 3 is in conflict for its

first operation iDn machine 3 and for its second operation on

machine 2. Therefore, the conflict will be resolved first on

machine 3,
-

Resolving conflict in favor of job 1, the completion

time of all operations on machine 1 is

hi +
'l3

+ £
11

+ C
31

+ fc

32
+ C

33

or

3 + 4 + 2 + 6 + 3 + 5 23,

on machine 2

*12 * 6
33

+ t + t
32 22

or
-

;

3 + 5 + 3 + 4 - 15,

and on machine 3
.

'l2
+ £

13
+ =33 + C

23

or

3 + 4 + 5 + 2 = 14.

Thus, the lower Iiound is

max[23 15 14] = 23.
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By resolving conflict in favor of job 3, the completion

time of all operations on machine 1 is

'32
+ fc

33
+ C

31
+ fc

ll

or

3 + 5 + 6 + 2-16,

on machine 2

'33 + S
32

+ '22

or

5 + 3 + 4 = 12,

and on machine 3

42 +
*33

+ fc

13
+ S

23

4 + 5 + * +2- 15.

Thus, the lower bound is

max[16 12 15] = 16.

As the lower bound is less for job 3, conflict is resolved in

favor of this job. The completion time of job 1 on machine 3

then becomes 5+4 or 9. This value is entered in level 2.

Next, conflicts are resolved for machine 2 at level 2.

By resolving the conflict in favor of job 2, completion time of

all operations on machine 1 is

'21 + C
22

+ t
32

+ '31

5+4+3+6= 18,
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on machine 2

t
21

+ t
ll

+ S
32

5 + 4 + 3 - 12,

and on machine 3

'33 + <13 * S
23

or

5 + 4 + 2-11,

Thus, the lower bound is

max[18 12 11] = 18.

By resolving conflict in favor of job 3, completion time

of all operations on machine 1 is

'33 + £
13

+ hi + hi

or

5+4+2+6= 17,

on machine 2

'33 + '32 + '22

or

5 + 3 + 4 = 12,

and on machine 3

t
33

+ t„
2

+ t
22

+ t
23

5 + 3 + 4 + 2 = 14.

Thus, the lower bound is

max[17 12 14] = 17
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The lower bound is less for job 3. Hence, conflict is resolved

in favor of this job. Completion time of job 2 on machine 2

is 8+4 or 12. This value is entered In level 3. The value of

X is 12 in machine block 2. As this is the largest entry,

all conflicts are cleared for operation of all jobs on machine

2.

Following step 8, the next operation of job 3 is on

machine li Hence, 8+6 or 14 is entered in machine block 1.

Similarly for job 1, the value 9+2 or 11 is entered in machine

block 1. These two jobs are in conflict.

Repeating step 4, lower bound for job 1 is 17 and for job

3 is 16. Therefore, conflict should be resolved in favor of

job 3. The completion time of job 1 becomes 14+2 or 16. From

Table 2.3 the value 16 is the largest entry in the array at

level 4. This level then gives the optimal sequence on each

machine

.

In flow shop problems, all jobs have the same machine

ordering. Therefore, a sequence of jobs which is optimal for

machine 1, i
will also be optimal for all other machines. More-

over, the last machine is also the same for all jobs. Hence,

it is not necessary to resolve conflicts of jobs on all machines.

Second, an expression for lower bound can be derived as the

last machine is known. Based on this reasoning, the above

algorithm is modified which reduces the computations and may

be easily programed on computer.



The following notation is considered.

L level of the scheduling tree.

n node consisting of a partial sequence of jobs

C column vector where its elements represent completionn r

time of the jobs on machine M-l for node n.

A column vector where its elements are the same as

those in vector C arranged in ascending order.

B column vector where its elements represent the corres-

ponding processing times of jobs on machine M to

the elements of vector A.

The modified algorithm may be summarized as follows:

Step 1: Let L = 1.

Step 2: For each node n, where n consists of a partial

sequence (J,., j ,,, ..., j J compute C such that

M-l
I t .

m=l J m
for j

=
j
l

'

M-l
= t. , + Z

^l
1

m-l

L-l
I t, ,

K-l V

> for j j 2 »

M-l
E t .

m=l j m
for j =

j L '

L M-l
I t. , + I t,

x=l K X
m=l Jm

for j 4 J 1> j.

Step 3: Arrange the elements of C in ascending order and call

them k., A
2

, . . . , A .



Step 4: Calculate the lower bound G ' for each node such

that

G
L,n

= D,

wh ere

D
j " »a*tDj-i'

ajJ + B
j

D
J-1

= max[D
J-2'

A
J-1 ] + B

J-1

D
2

= max[D
1

, A
2

] + B
2

D
l

A
l
+ B

l

Step 5: Find the job(s) which have the least lower bounds,

G such that

G
L

- min[G
L,n

]
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Step 6: If L = 1, go to step 7, otherwise, check the lower

bounds

:

6.1 If the least lower bound(s) are higher than

that of the previous level, terminate search

in this direction. Select another job which

has the second least lower bound. Go to step 2.

6.2 If the lower bound(s) are equal to that of the

previous level, go to step 7.

Step 7: Resolve the conflict in favor of the job(s) which

have the least lower bound(s).

Step 8: Check L:

8.1 If 1 £ J-l, set L » L+l and go to step 2.

8.2 If L > J-l go to step 9.
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Step 9: Select the node(s) having the least lower bounds.

Determine the schedule time or all nodes and select

the one which gives the minimum schedule time.

It should be pointed out that step 5 is not always true,

however it is better to branch all nodes regardless of the

value of the lower bound, in order to obtain the optimal solu-

tion.

The sample flow shop problem of six jobs and three machines

presented in subsection 2.3, is solved to illustrate this

technique. The processing time and machine ordering matrices

are reproduced for convenience.

6 7 3

12 2 3

4 6 8

3 11 7

6 8 10

2 14 12

M*

11 12 13
21 22 23
31 32 33
41 42 43
51 52 53
1 62 63

According to step 2, at level 1, the number of jobs in

each node is 1. Then

M-l
T.

m=l J- '
for j = 1,

and

M-l
I

m=l
t,, + I t

.

11 __i jm
for j - 2, 3, , 6.

13 = 13,

6 + 14 = 20,

6 + 10 « 16,

6 + 14 - 20,

j 1,

j - 2,

j 3,

j - 4,
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- 6 + 14 =20, i - 5,

- 6 + 16 " 22, j = 6.

Arranging the C 's in ascending order according to step 3,

13 3

16 8

A =
20
20
20
22

and B = 3

7

10
12

•

To calcu Late the lower bound,

D
l

A
l

+ B
l '

D
2

max[D
1

, A
2

] + B - ,

• •

i •

• *

D
6

« max[D
5

, A
6

) + B
g

,

or

D
l

= 13+3 =16,

D
2

max [16 16] + 8 - 24,

D
3

" max[24 20] + 3 = 27,

• .

•

' •

D
6

= max[44 22] + 12 = 56.

Thus, the low sr bound is

G
1 '

= 56.

•



62

Next , the computation for node 2 at level 1 is

C
2 "

M-l
E t, ,

i J ram=l J
for J ' 2

=
M-l

t,, + I t . ,21 , jm 3 " 1. 3 6

or

C
2 " 12 + 13 - 25, J 1,

= 14 - 14, J " 2,

= 12 -!• 10 = 22
, 3 3,

= 12 + 14 - 26, i 4.

= 12 + 14 - 26, j - 5,

- 12 + 16 - 28, j - 6.

Arranging the above C
9
's in ascending order

A »

14
22
25
26
2 6

28

and B =

3
8

3

7

10
12

Then,

D
l " 14+3 17,

D
2 " max[17 22] + 8 » 30,

•

• •

• •

• i

D
6 " max [50 28] + 12 » 62.

Thus, the lower bound is

G
1 ' 2 - 62.

»

.
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Repeating the above procedure, lower bounds for the nodes

3, 4, 5, and 6 at level 1 are 53, 56, 59, and 55 respectively.

The least lower bound is that of node 3. Hence, the conflict

is resolved in favor of node 3, i.e., job 3,

For level 2, compute the lower bounds for all nodes

encountered such that

M-l
C
31 " \m=l Jm !

M-l
+ I

;

31 m=l 6
ji

i = 3

'31 + B
ll

M-l
+ I t.

m-l
jI

2, 4, 5, 6

'31 4 + 13 - 17.

4 + 6 + 14 - 24,

10 - 10,

and

4 + 6 + 14 - 24,

4 + 6 + 14 = 24,

4 + 6 J- 16 - 26,

J = 1,

J = 2,

J 3,

i - *,

J = 5,

J - 6.

Arranging the C, 's in ascending order,

10

17
24
2 4

24
26

B

3

3

7

10
12
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Then,

D » 10 + 18,

D - max[18 17] + 3 = 21,

D c = max[44 26] + 12 = 56.
u

Thus, the lower bound is

2 31
G ' « 56.

Repeating the above procedure, lower bounds for the nodes

32, 34, 35, and 36 are 61, 53, 53, and 54, respectively. Accor-

ding to step 7, branching should be done at two nodes 34 and 35

because each has the least lower bound of 53. Returning to

step 2 and repeating the same procedure, it is noted that a

set of 20 sequences are generated by the algorithm. These

sequences are evaluated to obtain the corresponding schedule

times. The sequences with their schedule times are shown in

Table 2.4. Note that sequences 11, 12 and 17 yield the minimum

schedule time which is 57. Therefore, the sequences are optimal.
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Table 2. A

Table of Feas .ble Sequences

Sequence Number Sequence Schedule Time

1 3 A 1 5 6 2 65

2 3 A 6 1 6 2 65

3 3 A 5 6 1 2 61

A 3 A 5 6 2 1 61

5 3 A 6 1 2 5 63

6 3 A 6 2 5 1 63

7 3 A 6 1 5 2 63

8 3 A 6 5 1 2 63

9 3 A 6 5 2 1 63

10 3 A 6 2 1 5 63

11 3 5 6 A 2 1 57

12 3 5 6 4 1 2 57

13 3 5 A 6 2 1 61

14 3 5 6 1 4 2 60

15 3 5 1 4 6 2 65

16 3 5 6 1 2 4 59

17 3 5 6 2 A 1 57 •

18 3 5 6 2 1 A 59

19 3 5 A 6 1 2 61

20 3 5 A 1 6 2 65
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2.5 Boo 1

e

an Algebra Technique

A non-numerical approach to the job shop scheduling

problem has been devised by Akers and Friedman (5) employing

methods of Boolean Algebra. The job shop is characterized by

a different machine ordering for each job. The sequences

which do not follow the specified machine ordering are called

the technologically non-feasible sequences. The non-numeric

technique does not require to specify the processing times of

jobs on the machine, to arrive at the feasible sequences. How-

ever, these feasible sequences must be evaluated in order to

find the optimal sequence(s). This technique is feasible for

the problem of two jobs and H machines.

The following notation is considered to present the

technique

:

m - the decision that job 1 is processed first on the'

machine m, m = 1, 2 M,

m •= the decision that job 2 is performed first on

machine m, m = 1, 2, ..., M.

The technique consists of eliminating non-feasible and

non-optimal sequences. This is done by applying certain

decision rules formulated by Akers and Friedman (5). The

decision rules are based on two theorems which are stated below

without proof. For their proof, reference is made to the

paper of Akers and Friedman (5).



68

Theorem 1: A necessary and sufficient, condition that a sequence

be feasible is that for the two machines, m and n,

where ra precedes n for job 1 and n precedes m for

job 2, then, the sequence which includes the

term mn is non-feasible.

Theorem 2: A necessary and sufficient condition that a feasible

sequence belong to the set of optimal sequences

is that it contains no free machines.

By the term free machine, it is meant that a machine is

idle for a length of time, sufficient to process a job completely.

The decision rules are given in Tabic 2.5.

Rule No.

1

2

3

5

6

7

Job 1

Table 2.5

Table of Decision Rules

Machine Orderings
Job 2

m n . . .

m n . . . k . . .

m . . . n k

m n

m n

n

m n k .

m n • • • k .

Delete sequences
containing

m

m

mn

mn

mn

mn

mnk

mnk

The approach is illustrated by solving a sample job shop

problem of two jobs, to be processed on three machines, The

processing time and machine ordering matrices of the sample

problem are presented below:



[6 7
3~

12 2 3^
M*

11 12 13
23 22 21

Note that job 1 is to be processed on machine 1 first,

machine 2 second, and machine 3 last. Job 2 is to be performed

by machine 3 first, machine 2 second, and machine 1 last.

The problem is solved in two steps. The first step is to

eliminate non-feasible sequences and the second step is to elim-

inate the non-optimal sequences. The total number of possible

In order to eliminate non-

feasible sequences, all the eight sequences are generated and

represented as follows.

Sequence Number12 3 4 5 6 7 8

M 3
sequences is (J!) or (2!)

1 1

I 1

3 3

A systematic procedure to fill the above table is to fill

k-1
the first 2 spaces on row k with barred numbers, and completing

k-1
the row with alternate blocks of 2 numbers without and with

2-1
bars. For example row 2 starts with 2 or two barred numbers,

2 2, followed by two numbers without bars, 2 2, and so forth.

In the present example, note that first, machine 1 precedes

machine 3 for job 1 and machine 3 precedes machine 1 for job 2.

Second, machine 2 precedes machine 3 for job 1 and machine 3

precedes machine 2 for job 2. Finally, machine 1 precedes
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machine 2 for job 1 and machine 2 precedes machine 1 for job 2.

Hence-, applying theorem 1 it is observed that the sequences

including the terms 13,2 3, and 1 2 are non-feasible. Thus,

the sequences 3, 5, 6, and 7 are eliminated and the remaining

four sequences 1, 2, 4, and 8 are feasible.

The second step is to eliminate those feasible sequences

that cannot be optimal. These sequences are eliminated by the

decision rules obtained from theorem 2 and described in Table

2.5. The remaining set of feasible sequences is such that; for

any assignment of processing times the optimal sequence is in-

cluded in the set and every sequence in the set is optimal for

some assignment of processing times.

Referring to Table 2.5 it is observed that rule 3 is

applicable in present case. Note that the jobs 1 and 2 are

processed on machines 1, 2, 3 and 3, 2, 1 respectively. There-

fore, the sequence containing the term 13 cannot be optimal.

The sequences 8 and 1 are thus eliminated. The remaining two

sequences are 2 and 4.

These two sequences are feasible as well as each can be

optimal for some processing times. For the sample problem,

Gantt charts are drawn to determine the optimal sequence. The

schedule time for the sequence 2 from the Figure 2.6 is 18 and

that of sequence 4 from the Figure 2.7 is 27. Hence, the

sequence 2, {1 2 3} is optimal. It indicates that job 2 has to

be processed first on machines 2 and 3; and job 1 has to be pro-

cessed first on machine 1.
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2 1

m=2 1 r-T| ^ J
3 56 13

= 3 t=H
3 13 16

Figure 2.6 Gantt Chart for a Job Shop Problem of Size (2x3)

m=l t=t
15

, __, 1 , 2 .

n=2 |z=pzzz::^i
6 13 15

-3 t-4 '!

3 13 16

i

27

Figure 2.7 Gantt Chart for a Job Shop Problem of Size (2x3)

It is observed that this is a very efficient method for

solving job shop problems consisting of two jobs and M machines.
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CHAPTER III

INTEGER-LINEAR PROGRAMING APPROACH

The machine scheduling problem has been formulated as

integer-linear programing problem. Some computational experience

has been gained by using the integer-linear programing algorithm

of Gomory (43), Presently, there are three published formula-

tions to the problem, those of Bowman (18) , Wagner (111) , and

Manne (75). Manne's formulation is the most compact; however,

none of the authors claim practicality of their formulations.

Neglecting the integer constraints, Dantzlg (27) and (28)

has formulated this problem as an ordinary linear programing

problem. The weakness of this model is that it may lead to a

fractional optimal solution. The solution may call for non-

integer number of jobs to be processed on the machines. One way

to overcome this, would be to round off the fractional solution.

Following this procedure, Giglio and Wagner (42) have solved 100

flow shop problems of six jobs and three machines. They have

found that the results are not encouraging.

It is evident that any job cannot be scheduled to start on

any machine until its predecessors have finished on that machine.

Thus, a variable which is set equal to or 1, depending on

whether the job is scheduled or not, is the basic idea in the

linear programing formulations. The three formulations are

presented below:
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3.1 Bowman's Formulation

This formulation is feasible for the job shop problem of J

job s and M machines. It requires an estimate of the schedu le

time, T, of the problem. Thus, the number of constraints and

variables is a function of I

.

In constructing the constraints, the basic variables in the

formulation are of the form [j m 1 which indicates that th
x y t

e

operation j m is taking place during the unit
x y

time period t

(t = 1, 2, ..., T) . All variables will have a value either or 1

in the solution, i.e., the operation has or has not occured during

the unit time period t. These constraints are such that

£ [j x
m
v ] < 1, x = 1, 2
y

y = i, 2

J, (3.1)

t = 1, 2 T.

Since all individual operations must be performed, the cons traints

T

t=l ' J m,y = 1, 2, ..

., J, (3.2)

are constructed. To ensure that two or more jobs are not p ro-

cessed by the same machine at the same time, i •e. , to avoid over-

lap;ping, the constraints

J

1 [j x
m
v ] t - *• V - 1. 2. •••.

x=l
X y

t = 1, 2

M,
T

(3.3)

hold.

Some other constraints are constructed to ensure proper

sequencing of the jobs. No operation may not take place un til

the previous operation on the same job in the specified seq uence

has been completed in a previous unit time period. The constraints

are ;
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t . [ j m ]jm lJ x y
J
t

t-1
£ [J v

"> 1 . , j ,x = 1, 2 J,
i-1 y m,y = 1, 2 M,

C - 1, 2, ..., T.

(3.4)

According to the above constraints, any operation may be

interrupted. Therefore, the following set of constraints are

required to eliminate such possibility:

T

H m 1 . < I
.

t. [j n ] - t. [j m J + I [j m J < t.jm x y t jm J x y t+ 1 1=t+2
x v x ~

1
(3.5)

j , X 1, 2, •• • i J»
m.y " 1. 2 M,

t - 1, 2 T.

This does not allow a variable with value 1, to be followed

by a variable with a value 0, and yet be followed by variables,

each of which has value of 1.

The objective function is constructed such that a sequence for

which the schedule time is minimum, is obtained. In other words,

the objective is to have final operations on all jobs performed

as early as possible. Thus, the objective function is expressed

as

Minimize

:

T-F
t-1,

z = ^ (m) {[j^,]^. + [j 2v-ilm +

(3.6)

where

F = maximum of, the total processing times of the J jobs

on all machines,

M M M 11

jm'
•"max[ I t , T, t ,

, lm . 2mm=l m=l

M
Z i

.

m=l
I t. ]

m=l
Jm



75

The rationale of the objective function is that it makes

operations (the last ones on each job) towards the en d of the

time periods, costly. The number of unit time period s estimated

in advance of solution, may certainly be equal to or less than

the total processing times of all jobs on all machine s , i.e.,
J M
£ It., and cannot be less than F. Bowman, however does

. t 1 3 m
j = l m=l J

not recommend how to estimate T, whether it should be near to
J M

F or near to I T. t. . Selection of T makes a significant
j i i J mj=l m=l J

difference in the number of constraints and variables involved

in solution. Hence, for estimation of T, the formula developed

by Heller (49) for flow shop problems is presented. '

J m-1 M
T > max l t., + min Z t. , + min I t*. .—

i\ i J m . , , -i m * , , , ,, im
m j'=l J

j m'=l J j^j m'=m+l J
(3.7)

where m in the second and third sum is that m giving the maximum

in the first sum, and j in the third term is that j giving the

minimum in the second sum. The above formula states that the

optimal schedule time cannot be shorter than the total processing

time for all jobs on machine m plus the shortest time of process-

ing, say, job j, on machines 1, 2 m-1 plus the shortest

time of processing, say, job J on machines m+1, m+2

,

.-., M,

where clearly the job j must be different from the jo b J .

The cost associated with any operation in a time period is

a synthetic one equal to the sum of all prior costs p lus one.

This exploding cost function thus forces operations toward the

beginning for economic reasons. No later time period w i 1 1 be

ultimately used than the minimum (optimal), as this one cost is
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larger than the sum of all prior costs. That is, given some

feasible solution, the latest operation would be moved earlier

by one time period, and all other operations could be moved later

by any number of time periods and the exchange would be favorable.

The formulation involves a large number of variables, depen-

ding on the estimated schedule time, T, [the number equals (jobs)

x (machines) x (time periods)]. The number of constraints is

substantially larger than this.

The sample problem of six jobs and three machines, solved

in Chapter II, will be formulated. The processing time and ma-

chine ordering matrices are:

6 7 3

12 2 3

4 6 3

3 117
6 8 10
2 14 12

11 12 13
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63

The estimate of T is evaluated according to Heller (49)

as this is a flow shop problem,

J m-1 M
T > max Z t., + min I t. . + min I t*. .' m j'-l J ra

j a'-l J m 3Vj m'=m+l ^ m

_> 48 + 2 + 3

> 53 .

Note that F is the maximum of the total processing times of the

J jobs on all machines. Thus,

F = max[16 17 18 21 24 28] ,

- 28.
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The problem is formulated as follows:

Minimize

Z - lU.i
1
m
3

] 2g +[J 2
m
3

] 29 +[.i
3
m
?

] 29+[J A
m
2

] 2g+[J 5
m
1

] 2Cj+[J 6
m
1

] 29
}+

3{ tJl m 3
] 30+t3 2

m
3

1 30+lj 3
n,

2
1 30+U 4

r',

2
) 30 +[;i 5

m
l

1 30
+[j

6
m
l

] 30
}+

3
2A{[j ^3)53+1 j

2
m
3

] 53+[j 3
m
2 ] 53

+[j
4
m
2

] 53
+[j

5
m
1

] 53+ [j
6
m
1

] 53
}

(3.8)

Subject to

< lJAl t « 1 . x - 1, 2 6,

y - 1, 2, 3,
t - 1, 2 53.

(3.9)

53
E [j m ] tj ,

t = 1
x y

J
t jm '

j ,x 1, 2, ..., 6,
*>,y - 1, 2, 3.

(3.10)

B U »„L < 1 .

x=l x y t
y = 1, 2, 3,
t = 1, 2, .... 53.

(3.11)

t-1

^xVn^t - * [j x
m
y

]
t '

3,x = l
«

z 6 '"

jm x y+ i=l m,y = 1, 2, 3,

t = 1, 2 53.

(3.12)

53
t, [j m ] - t. [j m J... + I [j m ]. < t.jm lJ x y't jm lJ x y't+1 i-t+2 y ~ JI

j ,x = 1, 2, ..., 6

m,y = 1, 2, 3

t - 1, 2 53.

(3.13)

The- number of constraints are shown below:
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Equation Number

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Number of Constraints

6x3x53 = 95';

6x3 » 18

3x53 = 159

6x3x53 - 954

6x3x53 - 954

As a result, the total number of constraints is (954 + 18 +

159 + 954 + 954) or 3039. The total number of variables is

6x3x53 or 954. It is evident that the formulation involving

such a large number of constraints and variables is not practical.

Further, it will be observed that expressing the processing

times in hours, instead of in minutes (if possible) will make a

significant difference in the total number of constraints and

variables encountered.

3.2 W agne r's Formulation

The formulation is based on defining a variable which takes

value one or zero depending on whether a job is or is not

scheduled in a specific sequence-position on a machine. In order

to present Wagner's formulation (111) of the machine scheduling

problem, the following notation is considered:

«. -fj mJ x y I.

1 if job j is scheduled in sequence-position x on
machine m

y

otherwise

S .

j m - starting time of job j in sequence-position x on

machine m ,

y
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3 m
x y

J x y

J m
x y

idle time after finishing job j on machine m .
'' J x y

This is the difference between the finishing time

of job j and the starting time of job j^

the machine m •

'x+1

idle time after finishing job i on machine m and6 J J x y

starting of job j on machine "y+1- This is the

difference between the finishing time of job j

on machine m and the starting time of job i

y
6 J J

x

on the machine in .,.y+1

processing time of job j on machine m .

The formulation of the job shop problem is presented by

developing the following constraints:

To ensure that all jobs are processed on all machines, the

constraints

J

I X.

x=l -"x y

j " 1, 2 J, (3.14)
1, 2, . M

hold.

A second set of constraints is required to ensure that not

more than one job is assigned to the sequence-position x on the

machine m , Thus, the set of equations
y

I »

I X.

j=l J x y

x = 1, 2, ..., J,
m
y

- 1, 2, .... M
(3.15)

holds <

The operation precedence constraints are developed so

that all jobs are not started on next machines until the previous
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operations are finished. The constraints are

S, + t. m X, < S. + C(l-X. ) + C(l-X
4 ), (3.16)

j m j m j m — 1 m
, , i m i m ' '

J x y x y
J x y

J x y+1 J x y
J x y+1

j x
- 1, 2 J,

B
y

" l, 2 M

where C is a large positive integer.

To ensure that two or more jobs are not processed by the

same machine at the same time, i.e., to avoid overlapping, the

constraints

) (3.17)S . + t . X, < s,
j m j n 1 m — i .xy Jxyxy J x+1 y

+ Cd-X, ) + C(l-X.
x y J x+ 1 y

i%
" li 2, • • • , J

">
v " 1 . 2 M

hold.

In job shop problem, it is not possible to predict which

of the machines will perform the last operation. As in the

previous formulation, an estimate of the schedule time is required.

Let this estimate be T. Then, the following constraints allow

for the possibility of any machine being the last in operation.

S
J B

+tJ»i T
'

m = 1. 2
> •••• M < 3 - 18 >

The objective is to minimize T. However, Wagner (111) does

not present an explicit expression for the objective function.

The total number of constraints and variables required for the

job shop problem of J jobs and M machines may be summarized

as follows

!
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Equation Number Number of Constraints Number of Variables

3.14

3.15

3.16

3.17

3.18

JM

JM

JM

JM

M

(JM) + AJM + M

The formulation of the flow shop problem involves less

number of constraints and variables. This is because all jobs

have the same machine ordering. Hence, the set of constraints

of the form (3.16) through (3.18) are not required. In order

to ensure the conditions: (1) a job may not be processed on

more than one machine at a time; and (2) a machine may not per-

form more than one job at a time, a set of constraints may be

developed. Condition (1) may be expressed as

S. = S, + t .
+ I. (3.19)

J ji m Ji m j,"iJ x y x-1 y
J x-1 y J x-1 y

and, the condition (2) may be expressed as

S, = S, + t .
+ D

J
J 10 J ra

i J m , J m iJ x y x y-1 J x y-1 x y-1
(3.20)

Subtracting (3.20) from (3.19), the following equation is obtained.

= S . +t. + I. -S. -t. - D.Ji m J. m 1-.ro "im, 1 m ., -i m _J x-ly x-ly x-ly J x y-1 J x y-1 J x y-1

. (3.21)

Equation (3.21) expresses a specific operation. Hence,

the operation which follows on the same machine may be expressed

S, +t. + I

.

-S. -t.
1 m jm 1 m i , , m ., ~i . ., m -,J xy J xy J xy J x+ly-l J x+ly-l 'x+1 y-1

(3.22)
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Subtracting (3.21) from (3.22) and utilizing (.3.19), the following

equation is obtained.

0=tjm-t. + I. -I, +D. -D
x y j.i m i J m J m T i n i i., m ,' J x+1 y-1 J x y

J x y-1 J x y-1 J x+1 y-1

^x+1 2> 3
' ' " *

J
'

(3.23)

<"

y
= 2, 3 H.

Note that (3.23) forms a single set of constraints to meet both

conditions (1) and (2). The starting times in (3.21) and (3.22)

are converted into processing times in (3.23).

The objective is to minimize the schedule time. This means

that the objective function may be expressed as minimizing the

idle time on the last machine. For this, all jobs should be

started as early as possible on the last machine. Thus, the

objective function is,

Minimize

J J J-l
Z =

t l,
[t
JM ',

X
j M 1 + Z

n
X
j M (3.24)j=l x=l J x x=0 J x

Wagner (111) includes the sum of the idle times in the

objective function; however, it is not required because the idle

time variables are slack ones.

The number of constraints and variables required for flow

shop problem of J jobs and M machines are shown below:

Equation Number Number of Constraints Number of Variables

3.14 JM (JM)
2

+ 2(M-1)(J--1)

3.15 JM

3.16 (M-1)(J-1)
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An interesting case of the above formulation is the three-

machine problem. It has been shown by Johnson (63) that for

H <_ 3, optimality of the schedu le is not lost if all jobs are

assumed to have the same machine ordering. Hence, in formulation

of this problem, the number of variables and constraints, are

reduced considerably.

The f o 1 1 ov/ i n g notation is considered to present the formula-

tion.

, 1 if job j is sche duled in sequence-pos ition x,

otherwise.

J x
1 ' ^2 ' • ' • » ^Axx -

1

, .... Xj ]

X X

Q
l

row vector of processing times for jobs 1 through

r
J on machine 1,

Q 2
row vector of processing times for jobs 1 through

J on machine 2

,

*3 row vector of processing times for jobs 1 through

J on machine 3.

The constraints, to ensure that all jobs are processed on

all machines , and not more than one job is assigned the sequence

position x, may be expressed as the standard assignment problem.

Thus
,

J

IX. =1 j = 1, 2 J, (3.25)
x=l J x
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and

I X.

1-1 J x

X— J-j Z
i Mt I «J« (3.26)

hold.

The timing restrictions among machines 1 and 2 may be

expressed as

[Q,][X. ] - EQ.HX, ] 1 0, x = 1, 2 J-l (3.27)
3 x

X 3 x+l

[Q,][X. ] - [Q ][X ] <. 0, x - 1, 2 J-l (3.28)
J J x

l J x+1

The objective is to start job in sequence-position 1, on

machines 1 and 2, as early as possible. Remaining jobs follow

this job. Therefore, the objective function is

Minimize

Z " [Q, + Q,][X, ] . (3.29)
1 J l

The number of constraints and variables required for flow

shop problem of J jobs and three machines may be summarized as

b e 1 ow i

Equation Number Number of Constraints Number of Variables

3.25

3.26

3.27

3.28

J

J

J-l

J-l

J + 4(3-1)

The same sample problem of six jobs and three machines is

formulated according to Wagner. The objective function and

constraints are:



Minimize

85

Z = 13X, + 14X„ + 10X, + 14X, + 14X C + 16X £
X
l h 3

1 *1 5
1

6
1

(3.30)

subject to

EX = 1,

j=l 3 x

x » 1, 2 6 (3.31)

I X = 1, i - 1, 4, .... 6 (3.32)

3X, + 3X„ + 8X_ + 7X. + 10X C + 12X^ - 7X, -

l
l

2
1

3
1 *1 5

1
6
1

X
2

2X„ - 6X_ -11X. - 8X C - 14X, <
2
2

3
2

4
2

5
2

6
2
-

3X, + 3X„ + 8X, + 7X. + 10X C + 12X, - 7X, -

h 2
5

3
5

4
5

5
5

6
5

X
6

2X„ - 6X, - 11X, - 8X, - 14x, <
2, 3, 4, 5, 6,—
6 6 6 6 6

(3.33)

7X, + 2X. + 6X„ + 11X. + 8X C + 14X, - 6X, -

h 2
i

3
i

4
i

5
i

6
i

1
z

12X„ - 4X, - 3X, - 6X C
- 2X, <

2
2

3
2

4
2

5
2

6
2
-

7X, + 2X„ + 6X_ + 11X, + 8X e + 14X £ - 6X, -

l
3

2
5

3
5

4
5

5
5

6
5

1
6

12X, - 4X, - 3X, - 6X C - 2X, <
2
6

3
6 \ 5

6
6
6
_ (3.34)

Story and Wagner (108) have solved various problems of nine

jobs and three machines using the above model by Gomory's



86

integer-linea r programing algorithm. This was done on IBM 7090

integer programing package IP03. They have found that in many

cases the number of iterations exceeded 1000. Thus, it has been

concluded that practical method by integer programing has not

yet been deve!Loped.

3.3 Manne's Formulation

The formulation of the machine scheduling problem of J jobs

and M machines as an integer-linear programing problem developed

by Manne (75) , is presented. The following notation is required

for developin]» the different constraints.

X. -{ L if job j is scheduled on machine m for operation r

) otherwise

S. starting time of job j on machine m,
jm *

/l if job i precedes job j (not necessari ly directly)
Y.. =1 on machine m.

^ otherwise.

C a constant.

To construct the required constraints, consider two arbitrary

j obs i and j . To avoid the overlapping of these two j obs on the

s ame machine at the same time it is required that job i or job j

must precede the other by sufficient time so that the first

job be completed before the second starts. Therefore , either

S .lm
- S . > t

.

jm — ]Ti

or

S .jm
- S . > t.

im — im
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must hold. Note that, the above two inequalities indicate that

job j precedes job i, and job i precedes job j respectively.

Such inequalities cannot be handled by ordinary linear program-

ing. Hence, the above condition is converted into two independent

linear inequalities in integer variables such that

(3.35)

and

( C + t . ) Y . . +(S. -S. )>t.jm ijd in jm — j in

(C + t, ) (1 - Y. . ) + (S, - S. ) > t.
im ijm jm im — in (3.36)

It is evident that if the variable Y. , equals to zero then the
xjm

first term in left hand side of inequality (3.35) vanishes. How-

ever, if Y . equals to one, the first term in inequality (3.36)

vanishes. Note that C is sufficiently large constant and it may

be set such that

J M
C = Z It.

j=l m=l J

This set of non-overlapping constraints leads directly to a non

convex set of constraints upon the variables.

Operation precedence constraints are developed so that all

jobs are not started on next machines until the previous opera-

tions are finished. For all, but the last operation of a job,

the constraints are

M M
Z X., (S, + t. ) < Z X,

,
,s,

B=1
jmr jm jm -

m=1
jm,r+l jm (3.37)

r = 1, 2, ... , M-l,
j = 1, 2, .... J
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Now, the objective function may be expressed as,

Minimi ze
J M

Z = I I X . „S .

. . -j mM j mj=l m=l J J

This will minimize the sum of the starting times of the last

operations on all jobs, which means minimizing the schedule time.

It should be pointed out that a variety of objective functions,

other than the above, may be considered. Some of these are the

minimization of the maximum flow time and the minimization of

the mean tardiness.

Again, the same problem presented in the subsections 3.1 and

3.2 is formulated as follows:

Minimize
6 3

Z = I I X. ,S J
j i , 1m3 jmj=l m=l J J

(3.38)

subject to

and

(C + t, )Y,, + (S.
jm ijm im

1, 2, 3

(C + t. HI - Y ) + (S, - S. ) > t ,im iim jm im — im'

1. 2 6,
1, 2, .... 6,
1, 2, 3

(3.39)

(3.40)

EX J (S. +t.)< EX. S

r = 1, 2

j 1, 2 6

(3.41)
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where
6 3

I E t

1-1 m=l

124.

ji»

Mannc has suggested that if the starting times S. are
jm

permitted to take continuous values rather than integer, the

result might be more efficient and realistic. However, the

computational time involved in Gomory's mixed integer programing

algorithm (45) has also to be taken into account.

In summary, a comparison among the three formulations

regarding the number of constraints and variables required, is

made in Table 3.1.
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CHAPTER IV

FURTHER APPROACHES

In this chapter, some other techniques are presented and

illustrated by suitable sample problems according to their limi-

tations. These are Graphical, Graphical-Dynamic Programing,

and Heuristics techniques.

4.1 Graphical Approach

Sasieni et. al. (99) have presented the graphical approach

to the job shop problem of two jobs and M machines. This

technique is approximate but simple and easy to apply. Hardgrave

and Nemhauser (46) have developed a geometric model and the cor-

responding computational algorithm. This is an extension to the

approach presented in (99) . The theoretical analysis has been

extended to the case of J jobs and M machines. The concept of

the technique is to interpret the sequencing problem geometrically.

The feasible sequences are represented by paths in J-dimensional

rectangle. However, it is difficult to visualize higher than two

dimensional geometric presentation. Hence, this technique is

most suitable for the job shop problem of two jobs and M machines.

The technique is also feasible for situations where a machine may

process more than one job at a time; more than one machine of the

same type exists; or a machine has to discontinue processing of

a j ob .

A two dimensional coordinate system represents a problem

of two jobs and M machines. The abscissa and the ordinate repre-
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sent processing times of job 1 and job 2, respectively. The

processing times for each operation on the jobs, in the pre-

scribed machine ordering are determined on the axes. If the

total processing times for jobs 1 and 2 are given by N
1

and N
? ,

then the closed rectangle of width N and length N determine

a region in which any point represents a degree of completion for

each job. The two points (0,0) and (N ,N ) are called the

origin and destination nodes, respectively. It is possible to

construct a finite network, with these two nodes as extremes

and the shortest path becomes the optimal. Some points in this

rectangle are non-feasible. This means that the path should

not pass through these points. Points which represent a degree

of completion such that both jobs are being processed simultan-

eously on the same machine are non-feasible. Cartesian product

of processing times of jobs on the two axes is taken and repre-

sented as rectangles. There will be as many rectangles as the

number of machines. All the rectangles represent non-feasible

regions and hence diagonal movement through them is forbidden.

Hence, all the paths between the origin and destination nodes

that do not pass through non-feasible regions form feasible se-

quences. A feasible path is represented by a continuous line

consisting of vertical, horizontal and diagonal segments. The

horizontal segment corresponds to the processing of job 1,

vertical segment to the processing of job 2, and the diagonal

segment to the processing of both jobs simultaneously.
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It is evident that the feasible path which has the minimum

of horizontal and vertical movements is the optimal. It should

be noted that a diagonal movement over a unit of time is equiva-

lent, in the sense of completing job, to a vertical movement of

one time unit plus a horizontal movement of one time unit.

Sasieni et. al. (99) have suggested to pick up the optimal

path by eye, but Hardgrave and Hemhauser (46) have formulated

rules to determine rigorously and efficiently the shortest path.

Their algorithm may be presented as follows:

Step 1: Set up the axes, one for each job.

Step 2: Enter the cumulative processing times for each

operation on the jobs in their prescribed machine

ordering.

Step 3: Represent the non-feasible regions by rectangles,

sides of which show the processing times of jobs

on those machines.

Step 4: Starting at the node (0,0) move diagonally towards the

destination node until a region of non-feasibility is

hit.

Step 5: Check where the path hits non-feasible region.

5.1 If it hits at left side of the rectangle as in

Figure 4.1, return to the point Q and branch

off horizontally, FQX, and vertically, PQRS . Go

to step 4 with the new points S and X.

5.2 If it hits at the bottom of the rectangle as in

Figure 4.2, return to the point Q and branch off
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horizontally, PQRX, and vertically, PWS , Go to

step 4 with the new points S and X,

5,3 If the top or right edge of the rectangle is hit,

move along that edge to the destination node

(N 1( N
2
).

Step 6: The problem is solved when all paths reach the destina-

tion nodes (N , N ). The path(s) with minimum length,

lie,, summation of horizontal, vertical, and diagonal

segments, corresponds to the best sequence(s).

The above algorithm is illustrated by a sample job shop

problem of two jobs and three machines. The same problem which

was handled by Boolean algebra in subsection 2.5 is solved.

For convenience, the processing time and machine ordering matrices

r~ are reproduced.

T* =
"e 73"

12 2 3

, M* =
11 12 13"

23 22 21

A reference is made to the Figure 4.3. The cumulative pro-

cessing times of jobs 1 and 2 are entered on abscissa and ordinate,

respectively. The times during which the same machine is re-

quired by both jobs are noted and rectangular non-feasible regions

are drawn. For example, machine 1 is required by job 1 from time

zero to six, and by job 2 from time five to 17. Hence the rec-

tangle formed by the points (0,5), (6,5), (6,17), and (0,17)

represent non-feasible region for machine 1. Similar non-

feasible regions are drawn for machines 2 and 3 according to step

3.
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Following step 4 and moving diagonally, it is observed that

the path hits non-feasibility region of machine 1. According

to step 5.2, returning to node (0,0) and branching horizontally

and vertically, two paths are obtained. Returning to step 4 at

the two new points (6,5) and (0,17), the destination node is

reached.

The two paths are shown as broken and continuous paths in

Figure 4,3. The length of the broken path is

17 + 16 = 33,

and that of the continuous path is

5 + 1 + 10 + 2 = 18.

According to step 6, the best path is that represented by the

continuous line. This path indicates that the job 2 is pro-

cessed first on machines 2 and 3, and job 1 is processed first

on machine 1. The schedule time is 18.

It is seen that the technique is quite simple for problems

having not more than two jobs, otherwise, it is difficult to

visualize the geometrical structure. It should be pointed out

that this technique does not always produce optimal solution.

As the number of machines increases, the accuracy diminishes.

If a machine processes more than one job at a time or if

there is more than one machine of a given type, the non-feasible

region corresponding to that machine vanishes. Also, if a job is

permitted to be removed from a machine before completion allows

vertical or horizontal movement through the corresponding non-

feasible region.
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Hardgrave and Neraliauser (46) have considered their approach

as a geometric interpretation of Griffler and Thompson's approach

(40) in the sense that the idea of "active schedule" is closely

related to "paths in the network"; "conflict" is related to "hit-

ting a non-feasible region"; and, "resolving a conflict in all

possible ways" is related to a "branching around a non-feasible

region.

"

4.2 Graph ical-Dynamic Programming Approach

Held and Karp (47) have presented the dynamic programming

formulations for J jobs and one machine problem. They have dis-

cussed the inclusion of precedence constraints. However, the

technique is computationally effective for one machine problem,

Szwarc (109) has presented a solution to the problem of

two jobs and M machines by combination of dynamic programing

and graphical methods. The dynamic programming technique is based

on the principle of optimality. This principle states that "an

optimal policy has the property that whatever the initial state

and initial decisions are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the

first decision." Szwarc (109) has extended his technique to the

case of J jobs and H machines. However, it is not guaranteed

that the sequence obtained is feasible and the feasible sequence

is optimal.

This graph-dynamic programming technique is based on certain

properties of a feasible path. The process of setting the set of

two axes; entering cumulative processing times for each operation
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on the j obs in the prescribed technological ordering; and setting

up of th e rectangles comprising non-feasible regions, is the isame

as in th e graphical technique.

Szwarc has defined a feasible path as one that satisfies

the foil owing conditions:

1. It is a continuous and consists of straight line

segments, starting at the origin node (0,0) and ter-

minating at the destination node (N
1

, N ).

2. All the segments of the line must be either

horizontal, vertical or diagonal.

3. It does not intersect any non-feasible region.

The paths that satisfy the above conditions constitute

f easib le paths and the shortest one is the optimal sequence.

All northwest and southeast corners of the non-feasible rec-

tangles, along with the origin and the destination points are

called nodes. The feasible path passes through these nodes. A

node W '«rith ordinates (X., Y.) is said to be adjacent to the

node W •»ith ordinates (X , Y.) if:

1. X. <X. and Y. <Y. ,

2. there exists at least one continuous path consisting of

one or more straight lines with the following proper-

ties:

2.1 the line links the nodes H. and H.,
i J

2 ..2 the line satisfies the conditions 2 and 3 of

feasible path,

2.3 no other node lies on the path.
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The distance between two adjacent nodes W. and W is given

by

d(U , W ) - mnx[(Y - Y ) - (X, - X
. ) , ]

.

The. technique consists of drawing a set of axes. As in the

graphics 1 technique the cumulative processing times of both jobs

are entered on the axes. Regions of non-feasibility are also

drawn. [wo boundary paths, upper and lower are drawn. The

boundary paths are such that all feasible paths will lie on or

within them. The shortest distance, of a path through the origin

and destination is calculated by applying dynamic programing.
M

This shortest distance plus max[ I t, ] will give the optimal
. , in ° '

J m=l J

schedule time and the corresponding path gives optimal schedule.

The algorithm may now be stated as follows:

Step 1: Set up the axes, one for each job.

Step 2: Enter the cumulative processing times for each operation

on the jobs in their prescribed machine ordering.

Step 3: Represent the non-feasible regions by rectangles, sides

of which show the processing times of jobs on those

machines

.

Step l>: Label all the nodes, i.e., all northwest and southeast

corners, origin and destination points as, W,, W , .,., W
,

in decreasing order of coordinates with priority of

abscissa.

Step 5: Determine the set of nodes n(W.) in which W is adjacent

to every node in the set.
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Step 6: Determine the distance of each node of the set n(H.)

from the node W. such that
3

d(K , W.) - max[(Y. - Y ) - (X
j

,
- X ), 0]

Step 7: Determine the minimum distance between the destination

node and all other nodes, f(W ), such that

f(W ) = [d(W W ) + f(W )], j = 2, 3 k
3 3

i 4 t,
where

f(W.) = Distance of node W from the destination node.

Step 8: Select the path(s) through the nodes having minimum

distance between the origin and the destination nodes.

This is the optimal path and the optimal schedule time

T* is given by:

M

f

T* = max[ I t. ] + optimal distance between the origin
j m :=l J and destination nodes.

Step 9: Draw the upper and lower boundary paths.

Step 10 s'Starting at the origin node, move diagonally till the

boundary path is hit.

Step 11 : Move along the boundary path upwards or to the right

until a node is reached.

Step 12: : Starting again at this node move diagonally until the

boundary path is hit.

Step 13: i Repeat steps 11 and 12 till the destination node is

reached. The path so obtained gives the optimal

schedule •

To illustrate the technique, the sample problem solved by

the graphical technique in subsection 4,1, is solved. For
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convenience, the processing time and machine ordering matrices are

reproduced as follows:

T* =
6 7 3

12 2 3

8* =
11 12 13

23 22 21
•

Referring to Figure 4.4, the cumulative processing times of

jobs 1 and 2 are entered on ordinate and abscissa respectively.

Regions of non-feasibility for all three machines are also

drawn as in graphical technique.

Following step 4, the nodes are labelled as W,, W„ , ..., W,
;12 6

in decreasing order of coordinates with priority of abscissa.

Therefore, the origin node is W, and the destination node is W„.
o 1

Next, following step 5 the set of nodes n(W.) is determined,

in which K is adjacent to all nodes of the set. For example,

the node If- is adjacent to each of the nodes W, , W,, W ,, and W .

Hence n(H ) will contain the set of nodes W , W , W. , and W .

Table 4.1 contains this set for all nodes.

The distances of each node of the set n(W ) from the node

W is calculated and entered in Table 4.1.

'•

Table 4.1
Table of Nodes

"
i

nCW^ d(W
1

, .W..) f (l^)

Hj W
2

, B,, W
4

, W 16, 0, 0,

W
2

W
6 ° U

W
3

W
6

X
°

W
4

W
6

10 °

W
5

W
fe

16

W
6 1
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Nodes

18

1^(17,16) W
4

( 3,13)

»
5

( 0,16)

W
3

( 5, 6) H ( 0, 0)

W
2
(17, 0)

Processing Times of Job 2, Units

Figure 4 . 4 Graphical-Dynamic Programing
Solution for a Three Machines
Job Shop Problem of Size (2x3)
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The distances between adjacent nodes are calculated as follows:

d(W
2

, Wj) - maxKYj - ?
2
) - (X

1
- X

2
) , 0]

= max [(16 - 0) - (17 - 17) 0]

= max[16 0]

- 16,

d(H
3

, W
1

)
= maxKYj - Y g) - (X

x
- X

3
> , 0]

= max [(16 - 6) - (17-5) 0]

= max [-2 0]

0,

d(H
6

, H
5

) = max[(Y
5

- Y
fe

) - (X,. - X
fc
) , 0]

- max [(16 - 0) - (0 - 0) 0]

= max[16 0]

= 16.

All the distances are entered In Table 4.1.

According to step 7, shortest path between any node and the

destination node is determined. Let f(W.) denote the cumulative

distance of the node H. from the node W,. Then, it follows that
J 1

f(W
x

) = ,

f(w
2

) = [d(w 2> KjJ + f(w
x
)] ,

f(W
3

) = [d(H
3

, W
1
) -h f(U

1
) ] ,

f(W
4
) = [d(w

A
, w

1
) + ftWj)] ,
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f(w
5

) = [d(w
5

, w
x

) + £<»!_)] ,

and

f(W
6

) - min[d(U
6

,
W
2
) + f(K

2
), d(W6> Wg) + f(K'

3
) ,

d<w
6

, w
4

) + f(w
4
), d(v;

6
, w

5
) + f(w

5
)].

Note that the path W to W may be through W„ , W, , W , , and W

and the shortest of the four paths is desired. Hence on sub-

stitution of numerical values.

f(W
2

) =16+0
= 16,

f(H
3

) =0+0
- 0,

f("
4

) =0+0
- o,

f(w
5

) =0+0
o,

and

f(W ) = min[0 +16 1+0 10+0 16+0],

= min[ 16 1 10 16] ,

= 1.

This indicates that the shortest path lies along the nodes

W, , W , and W and the distance between the nodes W. and W , is 1,
1 j o lb

The optimal schedule time, T*, is

3

T* = max[ £ t, ] + 1
, 1mm=l J

= max [ 16 17] + 1

= 17 + 1

18.
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To obtain the optimal schedule, a path is drawn through the

nodes W, , W , , and W , To do so, the upper and lower boundary

paths are drawn according to step 9, Starting from the origin

and moving diagonally, the non-feasibility region is hit. Hence,

moving vertically till the node U_ is reached and again moving

diagonally, upper boundary path is hit. On moving horizontally

to the right, the destination node is reached according to step

13. This path gives the optimal schedule which indicates that

process job 2 on machines 2 and 3 first, and job 1 on machine 1

first. The optimal schedule time I* is given by length of the

path Thus

,

T* =5+1+ 10 +2

18 .

It should be noted that the above solution is the same as

that obtained by graphical and boolean algebra techniques. Note

also that the optimal schedule time can be checked by the

graphical-dynamic programing technique.

It has been found that this technique is quite simple and

the solution is obtained very quickly. The problem involves at

most 2M + 2 nodes.

4.3 Heuristic Techniques

The machine scheduling problem appearing most commonly in

industry is dynamic in nature. It becomes complicated because

of many variables such as variability in factory performance due

to fluctuating demand, unpredictable labor performance, unexpected
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machine delays, variable product quality, and queuing effects.

One of the most practical techniques to solve such problems is

simulation and then imposing heuristics, i.e., rules of thumb

and priority rules.

Simulation has been defined as the process of simulating

the behavior of a system to study its effects to specific

changes. The results help gain insights, test hypotheses, demon-

strate or verify new ideas, establish feasibility, and compare

alternatives. Computer simulation however, is seldom an exact

analogue of the operation of an actual system. To simulate

factory operations, it is necessary to have a model which provides

a formal statement of the system behavior. Simulation study can

be exploratory in that, new design will result from information

obtained by simulation. The second type is a form of statistical

sampling. This is referred to as Monte Carlo sampling in which

a given design is subject to many conditions in order to deter-

mine its suitability.

Eilon and Hodgson (31) have developed a simulation model for

job shop consisting of two identical machines operating in

parallel. It is assumed that the jobs arrive according to Poisson

distribution; form a single queue and may be processed on either

machine. Experimenting with 2000 arriving jobs for various

loading rules, it has been found that loading the job in the

queue with the shortest processing time first, yields best

results in terms of minimizing job waiting times, flow time,

machine idle times, delay factors and queue length.
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Conway et. al. (25) have conducted an experiment on priority

rules using a five machines job shop problem with 100 arriving

jobs. The investigation led them to conclude that a general

statement regarding effectiveness of a particular priority rule

is not obvious. Priority rules can differ with respect to the

mean lateness of all jobs. It can accelerate one or more jobs

at the expense of others. However, simple priority rules can do

an effective job of reducing weighed average completion time,

as compared to the selection of jobs at random,

Gere (3A) has developed computer simulation program to study

the effects of various priority rules and heuristics individually,

as well as combinations of them. The objective function considered

has been that of meeting due-dates, or failing this, minimizing

the sum of lateness. The experiments include static and dynamic

situations. In the dynamic situation, arriving jobs were assumed

to be governed by Poission distribution. One experiment involves

25 static problems of six to 20 jobs, one to 16 operations per

job, and four to 16 machines. Other experiment includes 16

dynamic problems involving 20 to 60 jobs, one to 16 operations

per job and four to 16 machines. It has been concluded that:

1. The selection of priority rule for discriminating between

jobs for competing on the machines is not as important as the

selection of a set of heuristics.

2. There is little difference in effectiveness of the priority

rules after they are combined with two or more heuristics.
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3. On comparing the sequences obtained by heuristics, with the

3000 sequences generated by Monte Carlo technique for flow shop

problems of up to 100 jobs and 10 machines reported by Heller

(51), Gere (34) has found that heuristics are more effective

In handling the problem of finding the minimum schedule time.

Regarding the priority rules, Gere has concluded that:

1. Non-random rules are significantly more effective than

random rules.

2. There is little choice between rules based in some reasonable

way upon job slack (idle time available before due-date).

3. The shortest imminent operation (SIO) rule is less effective

than a job slack based rule.

4. The alternate operation and look ahead heuristics are

effective, both individually and collectively.

5. There, lies a real difference in results obtained with the

use of different priority rules. A poor rule augmented by the

heuristics is better than a good rule without them.

Priority rule consists of assigning a scalar value to each

of the waiting jobs. The job having the minimum scalar value

is scheduled first. In case of a tie, the job with smaller job

number is scheduled. The priority rules used for job assign-

ments in the experiments conducted by Conway et. al. (25), Eilon

and Hodgson (31) , Gere (34) , and Rowe (93) are summarized as

follows. The priority is:

1. random. (25), (31), (34), and (93).

2. first come first served. (25), (31), (34), and (93).
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As described earlier, Gere (34) has experimented on some

heuristics. These are actually tailor made approaches. If

the immediate situation calls for action extraneous to the

priority rule, then exception to the general rule is taken.

This, then becomes the heuristic. The heuristics employed by

Gere are as follows:

1. Alternate Operation: Scheduling job according to some rule

it is checked if some other job becomes critical (slack becoming

negative). If it does, schedule is changed, otherwise the pre-

vious one is followed.

2. Look Ahead: After scheduling, it is checked if there Is a

critical (late or nearly late) job due to reach the particular

machine at some future time, yet before the scheduled job is

completed. If so, that job is scheduled. Effect of thin job on

other jobs is checked. Depending on this effect, the schedule

is retained or replaced.

3. Insert: Once "look ahead" job is scheduled and there is

idle time, and if there is a job in the queue whose operation

can be completed in this idle time, it is scheduled.

4. Subset of Critical Jobs: In this, a subset of critical jobs

is selected. These jobs are scheduled according to a priority

rule and remaining jobs are scheduled around these jobs. An

advantage of this heuristic is that it points out conflicts with-

in the subset.

5. Re-do with Adjusted Due Dates: When a schedule is completed

and if at least one job is late, decrease the due-date of each
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late job by the time it was late and lay out the schedule again.

This will tighten the jobs previously late. It is not advisable

to repeat this process more than twice or thrice as it might

degenerate.

6. Flexibility: Flexibility in scheduling means an operation

could be "squeezed into" the available time without much delay-

ing other jobs. If time-transcending mode is employed, then

opportunities of squeezing in do appear. But if time-progression

scheduling is employed, then there is no need for flexible

s chcduling,

7. Manipulation: This refers to shifting to "tailor-made"

approach, attacking the problem as a unique instead of following

the rules the second time. This heuristic has not been tested but

Gere has recommended as future step in research.

In order to make comparisons among the various priority rules

and heuristics, the following criteria have been recorded in

simulation

:

1. Job waiting time.

2. Queue length (the number of jobs waiting to be processed at

the time when a machine is free to accept next job).

3. Flow time (the time taken from the arrival of a job to its

completion)

.

4. Delay factor (a ratio of flow time to processing time).

5. Facility idle time.

6. Missed due-date time.
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7« Total number of jobs late.

It appears that especially for dynamic scheduling situations

heuristics is a powerful tool.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The machine scheduling problem is one of the most challeng-

ing problems posed in operations research. The problem arises

whenever a number of jobs has to be processed on various

machines in order to achieve an objective. The problem is of

special interest because of the large number of computational

effort required in its solution.

Attempts have been made by researchers to develop efficient

procedure to find an optimal sequence of jobs from a considerably

large set of feasible sequences. The aim has been, to curtail

the number of sequences in searching for the optimal. All

algorithms developed so far, are based on several assumptions.

The most common measure of effectiveness has been the schedule

time.

In order to study the merits of various techniques with

regard to the computational effort and optimality of the solution,

a sample problem has been solved by some of the available tech-

niques. Table 5.1 shows a summary of research made in solving

the machine scheduling problem.

The most simple procedure to solve a flow shop problem of

J jobs and two machines is the Direct Technique. It guarantees

an optimal solution. A six jobs and two machines flow shop

problem has been solved by this technique, which is also feasible

for a special case of J jobs and three machines flow shop problem.
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Extended Direct Technique also guarantees an optimal

solution for flow shop problems of J jobs and M machines. In

solving a six jobs and three machines problem, it has been ob-

served that the technique requires excessive amount, of compu-

tation.

Branch-and-I5ound Technique for flow shop problems of J

jobs and M machines is computationally efficient when compared

to the previous one. However, it has been found that an optimal

solution is not guaranteed. This is because, in solving the

sample problem, it has been observed that branching at the node

having the least lower bound does not generate an optimal solu-

tion. It has been reported that the concept of dominated nodes

and reversed approach reduces the search by 13 and 33 percent,

respe ctive ly

The Lower Bound Technique when applied to flow shop problems

of J jobs and M machines is simpler than the Branch-and-Bound

Technique. However, an optimal solution is also not guaranteed.

The Boolean Algebra Technique is efficient for job shop

problem. It generates a set of feasible sequences each of which

may be optimal for some set of processing times. The technique is

limited to job shop problems having two jobs and M machines.

The Decomposition Technique reduces the problem of con-

structing and evaluating feasible sequences to a limited number

of arrangements. It produces at least a near-optimal solution.

Results of experiments conducted by various researchers

are summarized in Table 5.2. Since the computers used are not

the same, their speeds, for comparison purpose, are listed in
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Appendix B, Table B.l.

Integer-linear programing formulations do not appear

attractive. The main reasons are: first, the formulations

involve a large number of constraints and variables even for

small size problems. Second, the integer-linear programing

algorithm is not computationally efficient.

The Graphical Technique for job shop problems of two jobs

and M machines is a simple technique. However, as the number of

machines increases, the solution moves away from the optimal.

It is not possible to check whether the solution is optimal or

not. This difficulty is eliminated in the following technique.

The combination of Graphical and Dynamic Programing Techniques

guarantees an optimal solution. However, this technique is also

feasible for job shop problem of two jobs and M machines. When

applied to large problems, it is not guaranteed th£t the solution

is optimal.

The above discussions relate to static situation studied in

this report. Mostly, the situations encountered in industry are

dynamic in nature. Moreover the problem becomes complicated

because of the machine breakdown, possibility of alternative

routes for jobs, and probabilistic nature of processing times.

The most promising approach for such situations appears to be

simulation, and utilizing priority rules, heuristics and/or

combinations of them. Researchers have found that combination

of priority and heuristic rules produce better results than

pure Monte Carlo simulations.
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APPENDIX A

In this appendix, proofs of the lemmas and theorems of the

Direct Technique presen ted in subsection 2.1 arc given.

Lemma 1 : The sequence on either machine can he made the

same ay that of the oth cr machine without loss o f time

.

This means that for an optical sequence, it is s uf f icien t

to consider the case in which the jobs are processed in the

same order through hoth the machines

.

Proof : The J jobs can be arranged in J! ways on machine

1. A problem of three jobs and two machines is considered. Let

the sequence be {3 2 1} for machine 1 and {1 2 3} for machine

2. Then it is clear that jobs 1 and 3 can be interchanged with-

out loss of time as shown below:

, Si ,

fc

2l.
t
ll

m = l -\

~ j

t t t
, 12, 22, 32

m=2 i .... \

MM 3 i

• * • i

C
32 .

C
22

t
12.

a -
J_

Figure A.l Gantt Chart

3 ,
—_,—:4

for a Job Shop Problem of Size (3x2)

It is observed that the sequences are the same for both the

machines. Similarly it follows that if needed , one can make

sucessive interchanges without loss of time in order to make
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sequences the same on both Che machines.

Since both jobs have the same ordering the schedule time

will consist of iciletime and processing times of all jobs on

machine 2. ^n expression for total idle time on machine 2 is

derived.

Let I = idle time on machine m immediately prior to
J"

processing job j on it.

„ = 1
J
—
"11 21 "31

I
12 '12 I

22
C
22

I
32

S
32

m=2

Figure A. 2 Gant.t Chart for a Flow Shop Problem of Size (3x2)

In the Figure A. 2,

1
12

t
ll

2 11
I,, = MX { I t,, - It.,- II., , 0]
22 . . 1

1

.,j2 -ij23=1 J j«l J 3=1

Hence

,

II.,
j-1 J2

I
12

+ T
22

I + max [It - It - II , 0:

3 = 1J j-1 >
j = l
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max [I
12

+ ^ tjl - X^j - I
12 , + I

12 ]

max [ I t.. - I t . ~ , t. . .

j-1 J 1
j-l J* J"L

32

Therefore,

3 2 2

x. [It.,- I t . n - II
3=1 J J-l J j-l

I I .„ I,, + I,, + I.

.1
= 1

max [ I I.. + It.,- I t., - I I., , + I I.,]
. , 1 2 . , 1 1 . , i2 . , 1 2 . , 12
J-l J J-l J J-l

J
J-l

J J=l

- max [ It..- I t .„ , II.,]
. i ] 1 . i J 2

• i J 2
3 = 1 J

3 = 1 J
j = l

max { I t., - I t. n ,
max[ I t., - I t. 0) t ,]}

. ,ll i J 2 -ill • i J 2 11
J-l J 1=1 j=l J-l

max [It., - It.., It., - It.., It.'
J-i

Jl
J-l

j2
J-l

Jl
J-l

j2
3-1

3l

Extending this to the case of J jobs,

J J J-l J-l J-2 J-2 J-3
EX..'- max[ I t^, - I t . , It.,- It.., It..- It.

J-l ^ j=1 n j=1 J2 j=1
3I j=1 J2

s
_j Jl ;

, It.,- It.„, It..,]
J-l J] J-l J2 J-l

Jl
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J-l
D, - It..- It.

._- 3 1

J
I

3 = 1 1 = 1

Total time idle on machine 2 may be expressed as.

II, = max [D 1> , .... D
x ]

j = l

and the schedule time

T= I t .„ + SI.,
J-l J2 3=1

]2

It + max [D D ij, .... D
x

]

j = l

It is observed that the total idle time on machine 2 has been

expressed in terms of the processing times. The schedule time
J

T has two components. The first, E t.„ is constant. Hence it

j-l I 2

follows that the optimal sequence will be one, that has minimum

of idle time on machine 2. Consider two sequences S and S', the

latter formed by interchanging job j and job j .. in the former.

S = 1, 2,

S'= 1, 2,

'x-1' i X ' j x+l
J

'

• J x-1' j x+l* j x'
- ••

'

J "
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Let

F(S) » max [D ] ,

•' X

l£x<J

and

F(S') = max (0* ]

-1 X

1_<X<J

where

J J-l
d: - i x *

, - r. t\
2

•'x x«l -'x X=1'I X
' V = V 1

,
for x 5* x, x+1

For X X , x+1

,

^x 1
=

^x+1 1
'

'jx
2 "

tj

x+l
2

V = tji

and

*W =
^ 2

Hence

-1 X X

x+1
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Thus

F(S') - F(S) unless possibly If

max[D. , B . ] t* max[B'
3 x J x+1 J

: 'x+1

Theorem 1: An optimal policy is given by the following

rule. The job j precedes the job j if

nax[D .

'x+1
] < max[D! , B. ]

J x J x+1
(A.l)

If there is an equality either sequence is optimal provided

it is consistent with all the definite preferences (refer case

IV in lemma 2 )

.

x+1 x-1
from each term in the

x+1 x-1
By subtracting I ti ,

E t . „

x=l -1 x x=l -"x

inequality (A.l),

nax[-t. , , -t. ,] < max[-t
? , -t .]

J x+1 J x+1

in[t .. , t . ,] < min[t. . , t ,]
'3,1 J x+1

2 Jx+1 1
(A. 2)

The inequality (A. 2) is transitive leading to a unique sequence

S* except for indifferent elements. Hence F(S*) < F ( S ) v;here

S-. is any other sequence.

Lemma 2: The inequality (A. 2) is transitive.

The proof depends on the condition that if

mikt'iit t
22-' - mJLn ' t 21' '12' '

and
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c

min [t
21 , t

32
] < min I'm.' ' h2 ]

•

then

min [t^j , t
3? ] £ min [t

31 ,
t
12

] .

Proof:

Case I

:

If

hi - '22' hi" '12'

and
fc

21 - '32 t 31' S
22

then

hi ^ hi i hi'

hi < ha

so that

hi £ min [t,, , t
12 ] .

Case II: If

l
22

< tjj, t
21 , t

1? ,

and -

fc

32 - hi' hi' '22'

then
t
32 i S

22 i h2> h2 -<- hi'

so that

'32 £ min [£», *
12 ] .
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Case III: If

and

fc

ll - t
Z2 •

fc

12 '
fc

21

t
32 - C21' t

Sl* '23'

then

f
ll i C 12'

so that

min [ t , t _
2

] < mill [ t 3i> t
i2^

Case IV: If

and

'22 - 'll'
t 21' '12

'21 - S 32 '
'31' '22'

then

and job 2 will be indifferent to jobs 1 and 3. In this, case' I

may or may not precede case III. But, there is no contradiction

to transitivity as long as jobs 1 and 3 are scheduled first and

job 2 , anywhere

.

lemma 3: An optimal sequence can be reached if the same

machine ordering is assumed for all the jobs.
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Proof: By lemma 1, Che sequence of jobs on Che first and

the third machines can be made the same as that of the second.

Therefore, the first two machines have the same job orders and

the last two machines have the same job orders. Hence all the

three machines can have the same job ordering without loss of

time .

Now, as all the three machines have the same job sequence

the schedule time again is af unction of the total idle time of the

last machine. An expression for this is developed.

= 1 E-

"11 21 31

12
m = 2 C

t
12

X
22 *22 *32 "32

m=3
13

t
13

I
23 '23 r

33 '33

Figure A. 3 Gantt Chart for a Flow Shop Problem of Size (3x3)

In Figure A . 3

,

I
13

I
12

+ £
12

C
ll

+ C
12

I,» = max [It.,- I t . , + EI., ......" • i I 2
• i J 3 . , J 2 . n j3

1 : ^> °]
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E I„, - I, - + I,,
j.j 33 13 2 3

2 12 1

I, - + max[ E t .

.

- E t, , + E I.- - I I,,.
13 -ij2 .i]3 .,12 1 -i

13'
3=1 J j=l J»l J j=l J

= max [1,-4 It.. - Z t.» + I I., - I I.,, I,.]" j= i I 2
j=1 J 3

j=X J2 j3 13

max[ Z t, n - E t . , + £ I.,, I,,]•iJ 2 .iJ 3 ,,j2' 13
j-1 3 = 1 J

3 = 1

I,, = max [It.. - E t . , + EI., - E I._, 0]
33 .,i2 .,j3 -iJ 2 ._. j3j-1 1=1 j-1 1=1

Hence

,

3 2

• 1 1

3

, , 13 33
j=l j=l

E I,- + max[ E t,„ - E t.» + I I., - I I.„ *J•il3 -i3 2 . 1 1

3

. 1 J 2 -ij3

ux [ X I., E t,„ - E t, „ + E I ., - t I,„ El..]
j-1 J 3

j-1 ^ j-1 1
3

j-1 ^ 2
J-1

-13 j-1 * 3

3 2 3 2

[It., - E t,, + E I,,. EI,-.
3=1 J j-1 j»l j-1

r.ax J t., E t . , + EI,,, It.-- E t . - + EI.,, I,-]
• 1 I 2 . 1

3

. , i2' . , 1

2

. , 1

3

,l2 13
j-1 J j=l J j-1 j=l J 3=1 J j=l J
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This is for three jobs. Extending for J jobs,

j-l
j3 j-x j2 j-l

J-l J-2 J-l J-2
t I.„ St

j-l
JZ

j-l J - j-l
E I., = max[ St.,- E t., + EI.,, St.,- E t., + SI.,,

j3 ._i J 2
4 _i J2 . , j3 ,_, j2

2

j = l

2 12
It.,- E

J-l
j2 j-l J - J-l

.... It., - S t . - + t !,,, I„
l 2 ,_i j3 ,_i l l 13

If,
J J-l

E = E t ., - E t .,
J

j-l j2
J-l ^

and
J J-l

D, = Et.. - Et.,,
J

j-l ^ j-l J 2

the total idle time on machine 3 becomes

E I, , = max [E. + D.

]

l<j<J

and the schedule time,

T= Et.,+ EI.,

= E t ., + max [E. + D.

]

j-l i3 J J

1U«J

As in the two-job case, considering two sequences S and S'

(S ' is formed by interchanging jobsj^nd j , in S), the E's



and D's are unchanged except possibly those with subscripts

j and j , n .J x J x+1

On comparing

131

max[E. + D , 1 <_ j

'x+1 J x
'x - J x+1' j

x

E
, + », .1 < i v < 3

J

with

max[E' + D! , 1 < j < j ; E' + D' 1 < 1 < j

'x+1 J x
x — x+1 ' 1 i x — J x

It is observed that these terms no longer involve just the sub-

scripts 1 and j ,, , and hence the decision is not independentJ x x+

1

r

of what precedes the interchanged elements.

Special case when min [ t .

1
^ max[t. 2]: Unlike in the

-'x ^ x

previous case there are fewer terms to compare. Hence job j

precedes job j ,
, if

1 J J x+1

max[E. + D. , E + D. ] < max[E' + D' , E J + B] ] (A. 3)
i 1J x+1 x J x J x 'x+1 1 1 iJ x+1 X x

In case of an equality ordering of the indifferent jobs is made

consistent with the ordering given by definite inequalities.

Then, by subtracting

x+1 x-1 x+1 x-1

x=l -1 x x=l J x" X=l J X

I t . „ + E t . , E t . , from both sides of
x=l

'j 3

inequality (A . 3)
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Bax["V - V' fcw "
£w ]

< max[-t. i - t. i > ~ t • 'i
~ t . i 1

Jx+1 2 J x+1
3 V ^x

1

min [t . , + t . - , t . , + t . „)

^x
1 V J x+1

3 J x+1
2

< min [t + t e + t ;

J x+1 J x+1 J x J x
(A. 4)

Lemma 4: The inequality (A. 4) is transitive.

Proof: This is the same as for lemma 2. The above results

may be stated as the following theorem.

Theorem 2: An optimal sequence is given by the following

rule. The i ob 1 precedes the iob i , ., ifJ J x r J x+1

min [ t . . + t . „ , t . ,+t. .]

^x
1 j x

2 J x+1
3 J x+1

2

< min [t. ,+t. ,t.„+t.„'
^x+1

1 j x+l
2 3 x

3 V
In case of an equality either job is permissible.
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APPENDIX B

Computer Speeds

In this appendix the speeds of various computers for add,

multiply and divide operations are given. * These computers

have been used by researchers in their experimentations. The

following table might help in comparing various techniques on

the basis of computer time required.

*Taken from "The Reference Day Book 1967", The Library of
Computer and Information Sciences, pp. 26-34.
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APPENDIX C

Notation

The notation used by various researchers is different.

For reference, Table C»l lists the various notation which has

been used. It is hoped that the notation used throughout this

report is more clear.
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The machine scheduling problem involves the scheduling of

J jobs on M machines such that a criterion is optimized. The

criterion considered in this report is the minimization of the

schedule time. The number of possible sequences is very large

even, for small size problems. Thus, the solution by complete

enumeration is not practical.

Several algorithms have been developed to solve this

problem. The objective of these algorithms have been to con-

fine the search to a subset of the complete set of feasible

sequences and then evaluating them to select the sequence(s)

which minimize the schedule time.

A flow shop problem of six jobs and two machines is solved

by Direct Technique. Another flow shop problem having six jobs

and three machines is solved by Extended Direct, Branch-and-

Eourd, and Lower Bound Techniques. This problem is also solved

by Direct Technique, but after the processing times are changed

to meet the specific restrictions imposed in this technique.

Further, a job shop problem of two jobs and three machines is

solved by Boolean Algebra, Graphical, and Graphical-Dynamic

Programing Techniques. Three Integer-Linear Programing formula-

tions of a sample flow shop problem are presented but none are

solved, since it requires a prohibitive amount of computer time.

In solving the above sample problems, it is observed that

these techniques are only feasible for very small size problems.

Computational difficulties are involved in solving large size



problems. In using the above techniques, it is observed that

the optimality can be attained but with excessive amount of

computation time.


