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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the ever increasing density of the electromagnetic signal

environment, especially in times of hostile activities, there has

evolved a need to be able to monitor wide instantaneous RF bandwidths.

This monitoring is usually accomplished with surveillance receivers.

The surveillance receiver detects the presence of signals and

determines the type of modulation and associated parameters. If the

signal is agile, the receiver also tracks it. Surveillance receivers

are made up of several components. The front end of the surveillance-

receiver is the intercept receiver. The intercept receiver is

primarily responsible for the instantaneous detection of

electromagnetic energy in a preselected bandwidth. Once a signal is

detected, an estimate of the signal's frequency is made.

Characteristics of a 'good' intercept receiver are that it should

maintain a high probability of detection, be able to discriminate

between multiple signals that are incident simultaneously, and cover a

wide range of frequencies with acceptable resolution.

The main concern of this thesis is to examine one type of

intercept receiver, the frequency compressive receiver (FCR) . The

frequency compressive receiver is also referred to as the microscan

receiver.

1.2 Objective and Overview

The objective of this thesis is to analyse the performance of the

frequency compressive receiver. The performance will be measured by



the receiver's probability of detection as a function of the signal-

to-noise density ratio. Receiver performance will be examined as the

parameters that characterize the receiver are varied.

The literature tends to support the notion that post filtering

does not improve the performance of the frequency compressive

receiver. This thesis examines the performance of the frequency

compressive receiver, with and without post filtering, in an attempt

to show empirical evidence in support of the above notion.

Chapter Two presents an introduction to the basic principles and

operation of the frequency compressive receiver. Current hardware

implementations are examined briefly. The remainder of Chapter Two

presents the frequency compressive receiver in block diagram form and

develops the equivalent lowpass representation of each element. By

combining the lowpass representations of each element, a mathematical

expression of the receiver output is developed.

Chapter Three is concerned with the development of the probabi-

lity density function of the output of the frequency compressive

receiver. The probability density functions for the cases of noise

only and signal plus noise are given. The determination of a

threshold voltage, which is directly related to the false alarm rate

(FAR) and the noise probability density function, is presented. The

chapter concludes with the development of a closed form integral

expression describing the probability of detection.

Chapter Four discusses the overall structure and possible appli-

cations of a FORTRAN computer program (Appendix B) used to numerically

evaluate the probability of detection. The program implements

numerical techniques to solve the previously defined expressions. All



Che interactively definable parameters are discussed as well as the

rationale associated with the default values. Three parameter

configurations are examined, subsequent plots of filter outputs,

probability density functions, and detection probabilities are

presented.

Chapter Five concludes the thesis with a summary of interesting

points observed throughout this research.



CHAPTER 2

The Frequency Compressive Receiver

2.1 Introduction

This chapter presents a discussion on the frequency compressive

receiver. Basic principles of operation and characteristics of the

frequency compressive receiver are examined. Current hardware imple-

mentations are also investigated. These include surface acoustic wave

(SAW) devices for frequencies in the RF band, and their counterparts

for frequencies in the microwave range, namely, magnetostatic wave

(MSW) devices.

The remainder of the chapter is devoted to examining a generic

block diagram of a frequency compressive receiver and investigating

each block individually. The lowpass equivalent representation for

each element is developed, as well as a mathematical representation of

both its input and output. The chapter concludes with the development

of a closed form expression for the overall output of the frequency

compressive receiver.

2.2 Operation and Implementation

This section explains the operation and examines various

characteristics of the frequency compressive receiver. Current

hardware implementations of the dispersive filter necessary in the

frequency compressive receiver are also examined.

The frequency compressive receiver is a transform receiver. The

receiver computes the magnitude of the Fourier transform of the input

signal. The theoretical basis for the frequency compressive receiver

is known as the Chirp transform. The Chirp transform is a three step



algorithm for computing a Fourier transform. There are two implemen-

tations of the Chirp transform. They are the Multiply-Convolve-

Multiply (MCM) and the Convolve-Multiply-Convolve (CMC) algorithms.

The input signal is either multiplied (M) or convolved (C) with a

'chirping' function, hence the name. A chirping function is a

periodic function whose frequency is a linear function of time. For a

more detailed explanation of the Chirp transform the reader is

referred to [18] and [2].

Figures (2.2-la and b) present the block diagrams of the RF model

and lowpass model, respectively, of the frequency compressive receiver

with post filtering. The frequency compressive receiver consists of a

scanning local oscillator (SLO) with output q(t), a dispersive filter

with transfer function H(f ) , and a square- law device. A post filter,

G(f), is considered in an attempt to examine its effect on the

probability of detection.

The pulse compression inherent in the FCR is a result of the

dispersive filter. The dispersive filter delays higher frequencies

longer than lower frequencies. Two parameters that characterize the

operation of the frequency compressive receiver are the compression

bandwidth, B, and the dispersion time, t. The compression bandwidth

is the range of frequencies for which the filter maintains a time

delay that is a linear function of frequency. The time delay for the

RF model is characterized in Figure (2.2-2a).

Before the signal is incident on the dispersive filter, it is

mixed with the output of the SLO. The SLO scans a range of

frequencies equal to twice the compression bandwidth in a time

interval equal to twice the dispersion time. This results in the
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Figure 2.2-2a: Time Delay versus Frequency Characteristics of the

Dispersive Filter for the RF Model.

-^ Frequency

Figure 2.2-2b: Time Delay versus Frequency Characteristics of the

Dispersive Filter for the Lowpass Model
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higher frequency components of the signal being incident on the

dispersive filter prior to lower frequency components. If the SLO and

the dispersive filter are matched, then the time delaying of the

signal components is such that all the signal energy arrives at the

output simultaneously. Thus, the output of the dispersive filter is

its impulse response.

The RF operation of the FCR is diagrammed in Figure (2.2-3). The

FCR monitors an RF bandwidth, 8, with center frequency f . It is

necessary for the SLO to scan a range equal to twice 8 so that signals

at the upper and lower range of the RF bandwidth experience full

compression. The earliest output, in the RF model, occurs at time t.

This corresponds to a signal present at a frequency of f - 3/2.

Output at time 2t corresponds to a signal present at a frequency of

f + 6/2. Output at times between x and 2t corresponds to signals

with frequency between f__ - 3/2 and f__ + 8/2, respectively. If a
Rr Kr

signal in the RF band is only present for a time less than the scan

time, it is possible that the signal will not experience full

compression. If an RF signal is present for a portion of the scan

time such that the difference frequencies at the output of the SLO do

not pass through the compression bandwidth, then no output will be

observed.

This thesis analyzes the FCR by examining the lowpass equivalent

model (recall Figure (2.2-lb)). The operation of the FCR in terms of

its lowpass model is diagrammed in Figure (2.2-4). An interesting

phenomenon in the lowpass model is the occurrence of both positive and

negative time delays. The lowpass output of the mixer, x(t), consists

of both positive and negative frequencies. The non-negative frequen-



Figure 2.2-3: Frequency-Time Diagram of Che RF Model of the Frequency
Compressive Receiver
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Figure 2.2-4: Frequency-Time Diagram of the Lowpass Model of the

Frequency Compressive Receiver
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cies experience a time delay that is proportional to their frequency.

The negative frequencies result in a negative time delay (see Figure

(2.2-2b)). A negative time delay implies that the output of the

filter is realized before the frequency component is incident on the

filter. This results in observing output prior to time T. Lowpass

representations of bandpass signals, i.e., pulses, with modulation at

-ill, 0, and 6/2 radians result in filter output at times t/2, t, and

3t/2 seconds, respectively.

The resolution of the frequency compressive receiver is an

important feature when considering its operation in a dense signal

environment. The resolution is a function of the dispersive filter's

impulse response, which is apparent from Figure (2.2-3 and 4), as well

as the duration of time that the signal is incident on the receiver.

If it is assumed that the dispersive filter has a rectangular

magnitude response with bandwidth, B, and compression bandwidth, 8,

then it can be shown [2] that the signals must be separated by

\ (B/T) Hz (2.2.1)

in order to be resolved. If the 3-dB bandwidth of the dispersive

filter is assumed to be the same as the compression bandwidth, then

resolution (2.2.1) is reduced to

Resolution = 1/t Hz. (2.2.2)

For a signal that is present for the entire scan time, 2t, the

gating effect of the SLO will make it appear as a T second pulse. The

output of the filter, the Fourier transform of a t second pulse, will

be a sine function with zeroes at integer multiples of 1/t. Thus,

resolution is again given as

Resolution = 1/t Hz. (2.2.3)
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The FCR has a Figure of merit associated with it. It is referred

to as the filter's compression factor, F. The compression factor is

defined as the ratio of the duration of an uncompressed pulse, x

seconds, to the duration of a compressed pulse, 1/B to 2/5 seconds

assuming that 6 B, which is given as

F-^-TS. (2.2.4)

Because of the form of equation (2.2.4), the compression factor is

commonly refered to as the filters time bandwidth product.

At this point, it is appropriate to briefly introduce current

hardware implementations for obtaining the dispersive characteristics

necessary in the frequency compressive receiver. Two resources for

implementing pulse compression are surface acoustic wave (SAW) devices

[8], [11], [12], [13], [16], [17], and [18] and magnetostatic wave

(MSW) devices [3], [4], and [5].

SAW devices, which are used for frequencies in the UHF/VHF band,

can be realized by two different approaches. In one approach, SAW

devices are based on interdigital electrode transducers (IDT) [18].

Dispersion is obtained by varying the electrode spacing across the

IDT, where the electrodes are interleaved and deposited on a

piezoelectric substrate. By varying the electrode overlap, it is

possible to vary the amplitude versus time and frequency versus time

relationships independently, thus providing a wide variety of chirping

functions. Figure (2.2-5a) shows an in-line interdigital transducer.

Figure (2.2-5b) shows an inclined IDT where the incline helps to

reduce spurious signal action.

SAW devices can also be realized by the reflective array

compressor (RAC) design, [18]. The RAC design separates the input and
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output transducers so as to allow Independent optimization of both of

these functions. Figure (2.2-6) shows an etched groove reflective

array device. The grooved arrays are etched into a piezoelectric

substrate. The filter's amplitude response is determined by the

variations in the groove depth. The filter's frequency response is a

function of the groove separation distance. A metalized phase plate

allows for the compensation of phase errors after fabrication. The

RAC devices are capable of achieving higher time bandwidth products

than devices based on IDT devices. The RAC devices are currently

obtaining time bandwidth products from 10 to 50,000, whereas the IDT

design are only achieving time bandwidth products of 4 to 2000, [18].

However, the IDT designs tend to be more stable.

At microwave frequencies, a new technology based on magnetostatic

wave (MSW) propagation in magnetically biased epitaxial films of

yttrium iron garnet (YIG) has evolved for the implementation of linear

dispersive delay lines. Magnetostatic waves are slow, dispersive,

magnetically dominated electromagnetic waves which propagate in

magnetically biased ferrite materials. Magnetostatic waves, which can

propagate in a ferromagnetic film, exhibit nonlinear dispersion. It

is possible to obtain linear dispersion by modifying the geometry of

the boundary conditions for the magnetostatic wave.

For example [4], the position of the ground plane relative to the

plane of the magnetic film significantly changes the group delay

versus frequency characteristics. A structure using one YIG film and

a ground plane is shown to yield the theoretically expected linear

delay of 50 to 230 ns/cm over a 16 GHz bandwidth at the X-band [4].
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Also, Bangianni [19] showed a way of obtaining a linear delay of

frequencies using a sandwich structure of two YIG films.

2.3 Signals Incident on the Receiver

The signal incident on the receiver is the sum of an RF bandpass

signal, s(t), and a stationary bandpass noise process, n(t) . It is

assumed that the noise process is white over the appropriate range of

frequencies. It is difficult to analyze data at such high frequencies

because the number of sample points required to accurately represent

the signal becomes to large for computer analysis. For our purposes,

the information of interest is in the envelope of the signal,

therefore, the lowpass representation of these signals will be used

in the model.

The complex envelopes [1] of the lowpass equivalent model are

related to the bandpass signals by

C
jw t*i

s(t) = Rejs(t)e
C

I (2.3.1)

n(t) = Rejn(t.)e
C

f

(2.3.2)

where

and

s(t), n(t) are the bandpass signals,

s(t), n(t) are the complex envelopes,

us is the center frequency of the bandpass signals.

The complex envelopes, s(t) and n(t) , are both represented by finite

series expansions. The complex envelope of the bandpass signal, s(t),

is represented by the Fourier series of its periodic extension,

N j2Tif t

i(t) - I s •
n

(2.3.3)
n—

N
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where
s(t) is the complex envelope of s(t),

s are Che DFT coefficients of s(t),
and

f are harmonically related frequencies.

The complex envelope of the stationary bandpass noise process, n(t),

is also represented by a finite series expansion,

K j2wf t

n(t) =
I n. e

k
(2.3.4)

k—K K

where
n(t) is the complex envelope of n(t)

,

n
k

= \ + *\>

n. * N(0, R.),
and

f, are frequencies not harmonically related.

It can be shown that the autocorrelation function of n(t) is as

follows,
K J2irf t

RMT) =
I R. e (2.3.5)
k—

K

The Gaussian quadrature rule may also be used to represent the

autocorrelation function as the inverse transform of the power

spectrum. Equating these two representations, the autocorrelation

function can be expressed in terms of the Gaussian quadrature rule [2]

coefficients, [y. , viJ » as

K j2irB v, t

R-v.(t) - T 2B N y, e (2.3.6)

k--K " ° k

where

and

B is the equivalent lowpass noise model bandwidth,

N is the noise density,
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[Y. , v, J

,

K correspond to a GQR on [-1,1] with unit

weighting function.

In conclusion, the lowpass representation of the signal incident

on the frequency compressive receiver is denoted as

s(t) + n(t). (2.3.7)

2.4 Scanning Local Oscillator

The scanning local oscillator (SLO) generates a chirping

function. A chirping function is a periodic function whose frequency

is a linear function of time, or equivalently, the function has

quadratic phase characteristics. The mixing operation results in a

down-chirp signal being present at the output. A down-chirp signal is

a periodic signal whose frequency is a linearly decreasing function of

time. The RF representation of this situation is illustrated in

Figure (2.4-1).

<x>
s(t) + n(t) { X )

* x(t) = s <Oq(t) + n(t)q(t)

q(t) = sin±<t>(t)]

where s(t),n(t) are the incident bandpass signals.

q(t) is an up-chirp local oscillator,

x(t) is the down-chirp output.

FIGURE 2.4-1: RF Model of a Scanning Local Oscillator

and
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It can be shown that the lowpass representation of the RF SLO,

q(t) , is given by

q[(t) = e^*
(t)

(2.4.1)

where

$(t) is quadratic in t.

For the frequency compressive receiver to operate correctly, the SLO

must be matched to the dispersive filter, i.e., the complex conjugate

of q(t) is used. The lowpass equivalent representation of Figure

(2.4-1) is shown in Figure (2.4-2).

s(t) + n(t) < Y ^(t)=s(t)q*(t) + n(t)q*(t)-®

q*(t) ,-j + (0

where

and

s(t), n(t) are lowpass incident signals,

q*(t) is the conjugate of the lowpass SLO,

x(t) is the lowpass down chirp signal.

FIGURE 2.4-2: Lowpass Model of the Scanning Local Oscillator

The instantaneous frequency of the scanning local oscillator is

given as

d4^- = 4- [at
2
+ bt + c] = 2at + b. (2.4.2)

at at

The scanning local oscillator must sweep a range of frequencies equal

to twice the compression bandwidth in a time period T, where T is the

period of the lowpass signal incident on the receiver. In the lowpass
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model, Figure (2.2-4), it follows that equation (2.4.2) must satisfy

the following

and

d<Ht)
dt

<$(t)
dt

d<KO
dt

t-0

t=T

2at + b

2at + b =

2at + b =

Solving equations (2.4.3a-c) yields the following

2tt B„ BHz a

T '

and
-2ti

(2.4.3a)

(2.4.3b)

(2.4.3c)

(2.4.4a)

(2.4.4b)
Hz a)

Substituting equations (2.4.4a-b) back into (2.4.2) yields the

following

d»(t) = 2 —
dt T

(2.4.5)

The phase, $(t), of the scanning local oscillator is obtained by

integrating equation (2.4.5) with respect to time, i.e.,

fot) - / (2 {» t - 6j dt

^t 2
t + c (2.4.6)

Rewrite equation (2.4.6) in terms of scanning rates; the phase is now

?(t) =ist 2 -Tst+c (2.4.7)

where

and

s is the radian scanning frequency,

t is the filter dispersion time,

c is a constant of integration.
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The lowpass output of the scanning local oscillator mixed with

the incident signal is

x(t) - s(t)q*(t) + n(t)q*(t)

Sf(t) e"J* (t)
+ 2(t) e-^ (t

p -j<t>(t) n
,

r -j*(t) k
(2.4.8)

n—N
"

k=-K

Since the incident signal and the scanning local oscillator are both

periodic with the same period, the signal component can still be

represented by the Fourier series of its periodic extension with its

DFT coefficients scaled appropriately.

The mixer introduces a phase shift in the noise process that is

incident on the receiver, (2.3.4). This is equivalent to a shift in

frequency of the power spectrum of the incident noise process. The

noise process at the input of the receiver is assumed to be white and

band-limited. The power spectrum is given as follows

SMf) (2.4.9)
2N If < B

o ' ' n

|f | > B .

Since the scanning local oscillator is periodic, the power spectrum of

the noise at the output of the scanning local oscillator is also

periodic. The power spectrum at times t = 0, T/2, and T, where T is

the period of the SLO, are given as

2N -B - B < f < B - B
o n — — n

otherwise,
S2r(f) (2.4.10a)

SMf)
2N -B < f < B

o n — — n

otherwise,
(2.4.10b)

and
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'2H -B + g < fn < B + 6

S
2
(f) H °

n n
(2.4.10c)

^ otherwise.

The value of the lowpass noise model bandwidth, B , is dependent on 8,

and must be choosen such that the noise power spectrum covers a band

of frequencies just wider than the noise bandwidth of the dispersive

filter. If the equivalent noise model bandwidth, B , is chosen

appropriately, then the mixing operation still results in a band

limited white noise process at the output of the scanning local

oscillator. Therefore, the mixer will not be taken into account in

terms of the noise component and equation (2.4.8) may be rewritten as

N j2nf t K j2irf. t

c(t) =
J"

s e
n + I n. e

k
(2.4.11)

a—N n
k=-K

k

where
s is the n

th DFT coefficient of s(t)e
_:3ct)(t)

,n

f is the n harmonic frequency,

and

\ + N <°> »k/2>

r^ \ N(0, Sj.),

f, are frequencies determined by the GQR.

The appropriate value of B is considered again in Chapter Four.

2.5 Dispersive Filter

This section develops the lowpass representation of the

dispersive filter and mathematically describes its output. The low-

pass dispersive filter, H(w) , is defined as
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H(u>) = H(w - 10 )
C

LP

= *(U ) e
j<Kw)

(2.5.1)

where

and

H(') is the RF dispersive filter transfer function,

H(") is the lowpass dispersive filter transfer function,

Y(0 is the lowpass magnitude response,

<Kw) is the lowpass phase response.

The dispersive filter has a Gaussian magnitude response and

quadratic phase. The Gaussian magnitude response is used in an effort

to obtain an impulse response with reduced sidelobes, thus resulting

in increased resolution for detecting signals close in frequency.

The magnitude response, Y (w) , is defined as

SW = A e"
au

(2.5.2)

where
A is the filter gain at DC,

a is determined by the cutoff frequency,

and
a are frequencies such that -8/2 < id < 6/2.

The filter is assumed to have unity gain at DC, i.e., A=l. The

exponential constant, a, is obtained as follows,

2

-»(—

]

= .7071.

Solving for the exponential constant yields the following for the

magnitude response,
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?<„) - e"-
34657"

2

. (2.5.3)

The dispersive filter has quadratic phase characteristics so as

to insure a time delay, both positive and negative, that is a linear

function of frequency. The instantaneous time delay is given as

Time Delay =
~d* ( '" ) = ~ [aj + bu + c] (2.5.4)

dw du

= -(2aw + b)

where

$ (co) is the phase response of H(u) .

To obtain the operation of the frequency compressive receiver as

depicted by Figure (2.4-4), equation (2.5.4) must satisfy the follow-

ing conditions

,

-d$(m)

dui

-d0(u)

du

and

-d|(ui)

-(2aoj + b) = t/2 , (2.5.5a)

u-B /2

= -(2au + b) = 0, (2.5.5b)

u-0

da)

L—6 II

-(2au) + b) = -t/2 . (2.5.5c)

Solving equations (2.5.5a-c) yields the coefficients

(2.5.6a)

and
b = 0. (2.5.6b)

Substituting equations (2.5.6a,b) back into (2.5.4) yields the

following expression for the time delay of the lowpass dispersive

filter, given by
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A graphical representation of equation (2.5.7) was shown previously in

Figure (2.2-2b).

The phase of the dispersive filter, $(u) is obtained by

integrating equation (2.5.7) with respect to frequency, i.e.,

Ui

-|-|- U
2 + C (2.5.8)

u

It should be noted that equation (2.5.7) is valid for positive

and negative values of ui. This implies the presence of both positive

and negative time delays, which was discussed previously with respect

to Figure (2.2-4).

The output of the dispersive filter is computed by modifying the

DFT coefficients. The output is given as

N j2if t K . j2Trf. t

frt) =
I s |(£ )e

n + I n»(f ) e
k

(2.5.9)

n=-N k=-K

where

and

= P
1 +£ .

S N
'

F is the lowpass signal component,

f„ is the lowpass noise component.

2.6 Square-Law Device

The output of the dispersive filter is the input to the

square-law device. The lowpass equivalent of a square-law device is

just the magnitude squared of the input signal. The output of the

square-law device is given as
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v(t) = |^(t)[
2

" (f + P ) (P* + P*)1
S NM S

r
N ;

N N j2ir(f -f )t

I I s e*S(f )S(f ) e
n m

n=-N m=-N

n m
n m n m

K K j2ir(f. -fjt
I l n. n*gt(f

k
)S(f*)«

k *'

k=-K Jt—

K

N K . . j2ir(f -f, )t

+ I I
K rf(vK)'

n k

n—N k=-K

+ conjugate of previous term. (2.6.1)

2 . 7 Pose Filter and Output

The last element considered in the frequency compressive receiver

model is the lowpass post filter. The output of this filter is

obtained by modifying Fourier series coefficients at the frequency

components present in the signal after passing thru the square-law

device. The expression for the receiver output is

N N . . j2if(f -f )t

y(t) =
I Is s*t((f )&(f )G(f -f )e

' ' L „ L
,, n m n' m n m'

n=-N m=-N

K K . j2ir(f.-f )t
+

kLK Xk vj»<vta><w

N K . « * j2ir(f -f, )t

n=-N k=-K

+ conjugate of previous term. (2.7.1)

With the use of matrices, equation (2.7.1) can be written as

y(t) = S%S = N
1*™ + N

H
SS + j^cA (2.7.2)

where

i - [s_
N

s
Q

s
N ] , (2.7.2a)

N - [n_
K

n
Q

i^]
1

, (2.7.2b)
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and

P - [p
k>i

- SCfpSCf^GCfj-f^e 1, (2. 7. 2d)

* J 2ll(f "V
a- i«k,«

= H(f
n
)H(f

k
)G < fn-V e i- < 2 - 7 - 2e)

H denotes heraltian transpose.
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CHAPTER 3

THE PROBABILITY OF DETECTION

3.1 Introduction

This chapter presents a mathematical development of the prob-

ability density function for the output of the FCR receiver. The

probability density functions for the cases of noise only and signal

plus noise are considered. The procedure of solving for a particular

threshold value, given an arbitrary false alarm rate is presented.

Lastly, a closed form integral expression for the probability of

detection, as a function of the previously defined threshold, is

presented.

3.2 Characteristic Function of the Output

Recall from chapter two that the output of the receiver, y(t) , is

expressed as

y(t) = j^TS + N
11™ + N

H
C£ + j^V^- (3.2.1)

The probability density function of y(t) is found by taking the

Fourier transform of the characteristic function of equation (3.2.1).

The characteristic function of the output, y(t), is defined as, M (v)

,

where

M
y
(v) = E[e

jVy
] = / e

JVy
f
y (y) dy . (3.2.2)

It can be observed that the exponent in (3.2.2) will be a

2
function of ru, n. , and the cross product terms. The presence of the

cross product terms will prevent factoring equation (3.2.2) into the

product of one dimensional characteristic functions. Therefore, an
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Eigensystem approach will be used in order to obtain a characteristic

function without any cross product terms.

Equation (3.2.2) is modified so as to eliminate the presence of

cross product terms in the exponent. First, the EJ vector is defined

to be

N = D V (3.2.3)

where

N ^ N(0, R. _I).

V ^ N(0, I),

and

D = Diag l\]-

Substituting (3.2.3) into (3.2.1) yields

y(t) = S^IS + s'^'W + V^QS + V^DV. (3.2.4)

Next, define the Gaussian random vector, U, by the following trans-

formation

U = M1^ (3.2.5)

where

M is a unitary matrix whose columns are the orthonormal

eigenvectors of DPP ,

V ^ N(0, I),

and

H denotes the hermitian transpose.

Solving for the vector V_ yields

V = MU. (3.2.6)

Substituting (3.2.6) into (3.2.4) results in the filter output being

expressed as
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JT(t) = S.
1^ + S

H
Q
H
DMU + uVdQS + uVdFDPMU . (3.2.7)

It can be shown that MTPDM is a similarity transformation, resulting

in a diagonal matrix whose nonzero elements are the eigenvalues of the

DPD matrix. Let this diagonal matrix be denoted as D , where
—a

D = APDM . (3.2.8)

The output of the receiver, y(t) , is now given as

y(t) = ^TS + £
H
^
H
DMU + uVpqS + U

8
!! U . (3.2.9)

- q + A +A + lft> U (3.2.10)

where

and

Aqs, (3.2.11)

q = ^TS. (3.2.12)

Equation (3.2.10) can be expanded into a series representation as

follows

K
,

y(t) = q +
I

(r*^ + u*r
k
+ c^lu^r) . (3.2.13)

k=-K

It can be shown that the imaginary part of equation (3.2.13) goes to

zero. This is expected since y(t) is the output of a lowpass filter

and is real and even in the equivalent lowpass model.

By completing the square in equation (3.2.13) it can be rewritten

K K

y(t) - *r + I \<\ + \ )

2 +
*i

+ I \<V + e
k/k=-K r r k=-K i 1

(3.2.14)

where
2

K
r
k

*r = « " I
—

'

r k—K a
k
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2

h--l„TT>k—K ~k

and

r k

r
k.

k
i

a
k

The characteristic function of y(t) , which is defined to be,

M (v) = E[eJvy] (3.2.15)

is expanded, by substituting (3.2.14) into (3.2.15), yielding

H (V) = EJexptj* v+j I a. (u
k

+e
fe

)

2
v+j*

i
v+j £ a

k (u
k

+6
k )

2
v][.

* I k r r k i i '

(3.2.16)

e e

K r
ja
k
(uk

+6
k >

V
-

n eU
k—

K

j\ (\. +6
k.'

v
~

[•
r r

]h E [.
1 1

]
k=-K

(3.2.17)

=J*v n M. (v) n tL (v)

k—K \
(3.2.18)

k—K k

where

»r
+ *V

\ m a
k<

uk
+ 6

k >

r r

u
k

x. N(0, 1/2),

and

u
k

-v. N(0, 1/2),

h m ak<V + 9
k >

1 1
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Evaluating the moment generating functions in equation (3.2.18)

gives the following results,

and

V \>) - Ele

jo
k
(u
k

+9
k > \

r r
J

j \ <
r

V

[u - ja
k

y
>J

(1 - i\ v)
1/2

Mj (v) = E^e
k

^k^k^k^ \

exp

"k "k,

(1 - ja
k

V)

(1 - j\ v)
"1/2 '

(3.2.19)

(3.2.20)

By substitution of equations (3.2.19) and (3.2.20) into (3.2.18),

the following expression for the characteristic function of the

output, y(t), is given as

where

and

M_(v) = eJT n

J °k
6
k

V

1 " j \ V

k-K X - 3 a
k

V

» - *
r
+ * ± ,

2 2 2

k k k.
r l

(3.2.21)

3 . 3 Probability Density Function for Noise Only

The probability density function of the output, y(t) , is obtained

by taking the Fourier transform of the characteristic function (3.2.21)
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of y(t). In considering the case when only noise is incident on the

receiver, equation (3.2.21) reduces to

M (v) = H {- 1 1 . (3.3.1)

For the case of distinct eigenvalues of the DPP matrix, equation

(3.3.1) may be expressed in terms of a partial fraction expansion

K K

M (V) = I -. r-^ (3.3.2)
y k=-K

x - ^ °k
U

where

and

< . (1-j a
k

v) M (v)

|jv=l/a
k

K
1

- n -. ±-r— , (3.3.3)

i=.K 1 " V*k
i*k

a. is the i eigenvalue of the DPP matrix.

The probability density function of the output, y(t), for the

case of noise only is the Fourier transform of equation (3.3.2),

expressed as

P (y) = Ij / M (V) e
_jVy

dv (3.3.4)
—00 '

where
M (v) is given by (3.3.2)

By applying residue theory, it can be shown that equation (3.3.4) is

equivalent to

g <
k -y/ok

P
Y (y) - I i^* (3.3.5)

k—K k
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It is straightforward to show that for equation (3.3.5) the

following holds

K

/ P (a) da =
I

< = 1. (3.3.6)
* k*-K

K

For the case of noise only, equation (3.2.12) reduces to the

following

y*
(t) =

JL ** W 2
»- 3 " 7 >

where

y (t) is the filter output with only noise present,

a is the k eigenvalue of the DPP matrix,

and
u % N(0, 1) and is- complex.

It follows that the mean and variance of the output for the case

of noise only are

K
E[y (t)] -

I a. (3.3.8)
n k—K *

and
,

VAR[y (t)] - I of • (3.3.9)
n

k=-K
*

3.4 Probability Density Function for Signal and Noise

The probability density function of the output, y(t), is the

Fourier transform of the characteristic function (3.2.18) given by

P
Y (y) / My (v)e-J^ £

K
-jvy^j+y

fj \ e
k

v

exp<
n

I

1 " i \ dv
/ e-^e^ n '

,
* ' % (3.4.1)

k=-K
X - J a

k
v 2lT
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The probability density function is real and even, therefore

equation (3.4.1) can be rewritten as

r r f
|rki

2v2
i

P (y) = / exp -
I .

I k—K (1 + aT v )>

I |2 3

r PV °k
V

-1 1
qv - yv -

I —5- - tan (a v)

k=-K L(l + <\ v )
J
.

where

and

(3.4.2)

For Che case of signal and noise present, equation (3.2.12) is

y(t) = q + I (r*u
k
+ r

k
u* + a

fe
|u
k |

2
) (3.4.3)

k=-K

y(t) is the output with both signal and noise present,

q is the signal portion of the output

r is the k element of the MTQS vector,

a, is the k eigenvalue of DPP ,

u, "v< N(0,1) and is complex.

It follows that the mean and variance of the output when both signal

and noise are present are

E[y(t)] - q + I a.

and

k=-K

K K
VAR[y(t)] = 2 I |r

|

2
+ I <V

k--K k=-K
R

(3.4.4)

(3.4.5)

3.5 Determination of Threshold

Detection is the occurrence of the output voltage, y(t)

,

exceeding a given threshold voltage, V . This threshold voltage is

determined by a user specified false alarm rate (FAR) . The FAS is the
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average number of times per second that the output exceeds threshold

with only noise incident on the receiver. The determination of the

threshold voltage for an arbitrary FAR will be the subject of this

section.

An approximation to the probability of a false alarm, P
f>

is

defined as the ratio of the number of false alarms per second, (FAR),

to the number of independent opportunities for the output noise

process to exceed threshold [2]. This relation is given by equations

(3.5.1) and (3.5.2),

which reduces to

when

where

P « ^^

—

(3.5.2)

'lV
'

and

FAR is the specified false alarm rate,

B is the noise bandwidth of the lowpass post filter,

B__ is the noise bandwidth of the RF prefilter.

The probability of a false alarm may be expressed as

P
f

= 1 - P (3.5.3)

where

and

P, is the probability of a false alarm,

P is the probability of not exceeding threshold for the

noise only case.

The probability of the output not exceeding threshold for the case of

noise only is defined as
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V
p -

J
pdf y (t) dy

/
'

I ^ e
k

dy

k—K k

I
"V

t
/a
k

I K. (1 - e
K

) . (3.5.4)
k—K

K

Substitution of (3.5.1) and (3.5.4) into (3.5.3) yields the

following expression,

i i
K -V°v

2 B
JLp

B
RF k=-K

k

which is equivalent to

i i
K ~Vav

' Up RF k=-K

which can be rewritten as a homogeneous function in V given by

i i
K -Va

k
F(V

f
) = FAR(-r-±— + ^-) -

I k e (3.5.6)
t 2 B

£p
B
RF k=-K

*

- 0.

Equation (3.5.6) is a transcendental equation in V , which can be

solved easily using numerical techniques.

3 . 6 Probability of Detection

The probability of detecting a signal incident upon the receiver

is developed in this section. The probability of detection, defined

as P.(V ) , is a function of the previously defined threshold voltage,
d t

V , and is expressed as
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P
d (V = P

Y (y -V " 1 " Vy < V (3.6.1)

where

and

y is the output of the receiver,

V is the threshold voltage associated with a specific FAR,

?„(•) is the probability density function for both signal

and noise incident on the receiver.

The probability density function of the output, when both signal

and noise are present was previously given as

Py (y) = jr / e(v) cos [yv+g(v>] dv (3.6.2)

e(v)

i k—Kki + \ o-iJ

n u + a
2

v
2

)

1/2

k—K K

(3.6.3)

and

g(v) - -qv + I
k=-K

I
i2 3

IV \ V ^ -1
, ,,r-TT ' tan (V

(1 + O
fc

V )

(3.6.4)

The probability of detection, p
d (v

t
)» is given to be

W * X " PY (y * V
V

1 - / P (a) da - / P„(a) da . (3.6.5)

Consider the first integral in equation (3.6.5). It is given as
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»

/ P (a) da - =- / / e(v) cos[yv + g(v)]dvdy
2r

= /"
« (VJ J°

cos
l
yv^-H S (v)

dyj dy 066)

Equation (3.6.6) can be reduced by using the results of Appendix A

which show that

J CO, IV *tW iy * S(v) + '^ft^ . (3.6.7)

Substitution of equation (3.6.7) into (3.6.6) reduces the first

integral in equation (3.6.5) to

/ P
T («) da = /" e(v) § «(v) +

Sl"
2
S (V

>) dv

= i /" .(v) l(v) dv +
fc

/"
e(v) a^t8(W ] dv

= l e(0)+ l_ f
^)sin

[s (v)
]. dv

—ee

11 .- e(v) sin[8 (v)]
jv _

The second integral in equation (3.6.5) is expanded by inter-

changing the order of integration and integrating over y, thus

yielding

/
C

P (a) da = /
Z
i- / e(v) cos[yv + g(v)] dvdy

Y —
(3.6.9)

> fe(v){sin[V v + q(v)] - sin[q(v)]}]» [e(v){sin[V V + q(v)] - sin[q(v)]}|

h s L ; J dv -
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Finally, substitution of equations (3.6.8) and (3.6.9) into

equation (3.6.5) yields the following expression for the probability

of detection,

W = 1
2 27 S

e(v) sin[g(v)] d\

h I

» e(v){sin[V v + g(v)] - sin[g(v)]}
dv

1 1
." e (v ) sin[V

t
v + g(v)] d\)

2
" 2? J v

» e(v) sin[V v + g(v)] dv
(3.6.10)

where

and

exp

" K |r,
|

2
v
2 >

-I k

k=-K (1 + a
2

v
2y

J(v)
J k

„ ., . 2 2.1/2
v n (1 + a v )

k—

K

g(v) = -qv + \ r
|r
k'

2
a
k

*

3

k—K Kl + a
2

v
2

)

-1
cv>]
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CHAPTER 4

THE COMPUTER ANALYSIS

4.1 Introduction

A computer program, implemented on a VAX 11/750, is used to

evaluate the previously defined equations in order to examine the

probability of detection for the frequency compressive receiver. This

chapter presents an overview of the computer program, examines the

operation of the FCR through graphical output, and compares the

performance of the FCR with the results that were obtained by modeling

the FCR with a different approach [2]. Optimization of the FCR by

varying dispersion time and/or prefilter bandwidth is presented.

Given an optimized receiver, the performance is examined with and

without lowpass post filtering.

4.2 Computer Program

The computer program is written in FORTRAN and designed to be

user friendly and menu driven. The menus allow the user to implement

different parameter configurations for the FCR. The following

discussion presents the menu structure of the computer program.

First, the user is prompted for the parameters of the scanning

local oscillator. These parameters are the compression bandwidth,

dispersion time, and number of sample data points. The user is free

to select the desired compression bandwidth and number of sample data

points. The program then computes the maximum allowable dispersion

time (4.2.1) so that the sampling theorem is not violated, thus

eliminating the possibility of aliasing. It can be shown that the
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following inequality (4.2.1) will prevent the sampled signal spectrum,

which is periodic, from overlapping, i.e., no aliasing,

-TIT > t (4.2.1)
4 S — max

u
where

N is the number of sample data points,

6 is the compression bandwidth,
and

T is the maximum dispersion time,
max

Figure (4.2-la) is the output of the scanning local oscillator, in the

time domain where its frequency is a linear function of time, with

equation (4.2.1) satisfied. The parameters of the SLO are a

compression bandwidth of 5MHz, a dispersion time of 40us and 1024

sample data points.

The sampling frequency in Figure (4.2-la) is 12.8 MHz, and the

Nyquist frequency is 6.4 MHz. Since the Nyquist frequency is larger

than the compression bandwidth no folding of frequencies occur. Thus,

the output in Figure (4.2-la) shows no evidence of aliasing. In an

attempt to reduce computation time later in the program, the number of

sampled data points was reduced from 1024 to 256. This reduction in

the number of sampled data points clearly violates equation (4.2.1).

Figure (4.2-lb) is the output of the scanning local oscillator with

the number of sampled data points equaling 256.

The sampling frequency for the case in Figure (4.2-lb) is 3.2

MHz, and the Nyquist frequency is 1.6 MHz. It follows that folding of

frequencies occur at integer multiples of the Nyquist frequency,

namely, 1.6, 3.2, and 4.8 MHz respectively. This is apparent from

Figure (4.2-lb). Thus, aliasing is present in Figure (2.4-lb). The

program uses equation (4.2.1) as the default value for the dispersion

time, t.
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After the SLO menu, the user is prompted for the type of lowpass

signal incident on the receiver. Options include a trapezoidal pulse,

Gaussian pulse, or data from an external file. There is also an

option to modulate the input pulse. This results in the observation

of output prior to or after time x/2 seconds, as explained in section

2.2.

The next step in the program is to define the type of prefilter

and its related parameters. The prefilter may be either compressive

or noncompressive. The compressive filter is the default and it is

automatically matched to the SLO as explained previously. Non-

compressive filters are also available to the user. They include

Butterworth, Chebyshev, Linear Phase, and Surface Acoustic Wave (SAW)

filters.

Following the prefilter definition, the user is prompted for

false alarm rate (FAR), and the lowpass noise model bandwidth, B .

The false alarm rate is arbitrarily set to one false alarm per second.

The value of B must be large enough so that the noise process is

accurately represented. The next section discusses the effect of

varying the value of B on the probability of detection. From this, a

default value of B is given.

Lastly, the post filter and its related parameters are defined.

The post filter may be any of the previously defined non-compressive

filters as well as the option of no post filtering.

The operation of the FCR is now investigated through the use of

graphical outputs. The FCR considered has a compression bandwidth of

5 MHz, an RF 3-dB frequency of 1.8 MHz, and a dispersion time of 40
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us. The signal incident on Che FCR is a 20 us pulse with a 5 us rise

time and a constant amplitude of 100 millivolts. The incident signal

(equivalent lowpass), described previously, is shown in Figure

(A. 2-2).

The noise density, N , is a function of the signal-to-noise

density ratio in decibels and is given as

"o = ndm (4 - 2 - 2)

where

N is the noise density,

A is the pulse amplitude,
and

SNDR is the signal-to-noise density ratio.

By changing the value of the SNDR, equation (4.2.2) effectively

modifies the noise model so as to make it appear that pulses with

different amounts of signal energy are incident, despite the constant

pulse amplitude of 100 millivolts.

Figure (4.2-3) is the output of the frequency compressive

receiver plotted on a time calibrated axis. Its form is that of the

magnitude of a sine function with minimal sidelobes. The dispersion

time is 40 us which is also the time of the output. This is expected

since the pulse was not modulated.

Figure (4.2-4) is the output of the frequency compressive

receiver plotted on a frequency calibrated axis. The frequency domain

output is indicative of a lowpass pulse incident with no modulation.

Figure (4.2-5a) shows the filter output when two pulses,

modulated at + 100 kHz respectively, are incident on the reciever

simultaneously. Figure (4.2-5b) shows the filter output when two
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incident pulses are modulated at + 50 kHz. Recalling that the

resolution of the FCR is approximately 1/t to 2/t, assuming certain

conditions, then a dispersion time of 40 us results in resolution of

25 kHz to 50 kHz. This agrees with the output displayed in Figures

(4.2-5a and b)

.

Figure (4.2-6) shows the output of the FCR when five pulses are

incident simultaneously. The pulses are modulated at offset

frequencies of 0, + 1 MHz, and + 2 MHz, respectively. The attenuation

of the output is a result of the 1.8 MHz RF 3-dB bandwidth.

Figure (4.2-7) shows the effect on the FCR output when the input

pulse width is varied. Longer pulse widths result in highly resolv-

able output. This is expected since the Fourier transform of a

continuous wave signal is an impulse. Smaller pulse widths result in

outputs that are more spread out, since their Fourier transforms are

also more spread out.

The probability density function for the case of noise only is

shown in Figure (4.2-8). The noise pdf resembles that of an

exponential distribution.

The probability density function for the case of signal plus

noise is shown in Figure (4.2-9).

Figure (4.2-10) shows the output of the receiver when a

noncompressive prefliter is used, thus modeling the conventional

spectrum analyzer type intercept receiver. A 4-pole Butterworth

filter with a 3-dB bandwidth of 1.8 MHz was used in place of the

compressive filter.
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A. 3 Computer Analysis

This section utilizes the previously defined computer program to

investigate the performance of the FCR under optimal conditions. In

order to evaluate the probability of detection correctly, the noise

process must be represented accurately. This section begins by

determining an appropriate value for the noise model bandwidth, B .

The FCR can be optimized, for a given pulse width, by modifying the

filter dispersion time, t, or the RF prefilter bandwidth, or possibly

both. Optimization is investigated by varying either the dispersion

time, T, or the RF prefilter bandwidth, while the other remains fixed.

The performance of the FCR is compared to results obtained previously

[2], where the FCR was modeled in a different manner. The effect of

post filtering the output of the FCR on the probability of detection

is also considered.

It was noted previously that the mixing operation resulted in a

shift in frequency of the noise power spectrum at the output of the

mixer. Since the noise process incident on the receiver was assumed

white, a shift in frequency still resulted in a white noise process.

This resulted in an argument that omitted the effect of the SLO and

defined the noise process incident on the dispersive filter as being

band- limited and white. A question that arose was how wide should

the bandwidth of the noise model be in order to accurately represent

the noise process. The usual way is to select the noise model

bandwidth, B , to be iust a little wider than the equivalent noise
n

bandwidth of the filter, NF3. The noise bandwidth of the dispersive

filter is defined as
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NF3 =

|h(0)

which can be shown Co be equal to

/ |&(f)|
2

df

, (4.3.1)

Recalling that the magnitude response of the dispersive filter was

Gaussian, one might intuitively suggest a value of B approximately

1.5 to 2.0 times the equivalent noise bandwidth, NF3, since Gaussian

filters do not have sharp 3-dB cutoff frequencies.

Figure (4.3-1) shows the effect of varying the noise model band-

width, B , on the probability of detection. The FCR used to generate

this plot has an RF-3dB frequency of 170 MHz, which is an 85 MHz low-

pass 3dB frequency, and an equivalent noiBe bandwidth of 90.45 MHz.

For B equal to 50 MHz the receiver's performance is better than
n

optimum. This is obviously an incorrect value for B . For B equal

to 100 MHz, we observe realistic detection probabilities, slightly

less than optimal, but it is still not large enough when considering

the tails of a Gaussian magnitude response.

The detection probabilities for B equal to 250 and 500 MHz are

identical. This implies that the detection probabilities converge as

B tends to infinity. This notion makes sense intuitively. We will
n

eventually be outside the pass band of the dispersive filter and thus

additional noise power will not be realized at the output of the

filter. Based on Figure (4.3-1), the noise model bandwidth, B , used

for the remainder of this chapter is 500 MHz.
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Given an accurate noise model representation, we can now begin to

analyze the performance of the FCR. Three different lowpass incident

signals are considered. They are pulses of widths 0.25, 0.50, 1.0 us

respectively. The FCR examined is one with a 500 MHz compression

bandwidth, a 170 MHz RF 3dB bandwidth, and a dispersion time, t, such

that the receiver is optimized for the previously mentioned three

cases. Resolution of the FCR, for the above cases, is determined

after the observation of the optimal dispersion time.

Figures (4.3-2,3, and 4) show the probability of detection versus

filter dispersion time at signal-to-noise density ratios of 81, 78,

and 75 dB respectively. The following table summarizes the optimal

dispersion time and resolution for the three cases considered.

Case Pulse Widths Dispersion Time Resolution

1 0.25 us 0.45 us 2.2 MHz

2 0.50 ys 0.90 us 1.1 MHz

3 1.00 ys 1.80 ys 555.5 kHz

An interesting point is that the FCR can also be optimized by

varying the RF prefilter bandwidth while the dispersion time remains

fixed. From Figure (4.3-2) it is noted that a dispersion time of 0.45

ys optimizes the receiver's performance for a pulsewidth of 0.25 ys.

The detection probability for this is observed to be 0.92. Now, con-

sider a 0.25 ys pulse incident on a FCR with a suboptimal dispersion

time of 0.30 ys. It was observed that this filter can be optimized by

setting its RF prefilter bandwidth to 240 MHz. The probability of

detection for this case is also 0.92. Similar results were obtained
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for a suboptimal dispersion time of 0.6 us. It was observed that this

filter can be optimized by setting its RF prefilter bandwidth to 120

MHz.

At this point it would seem appropriate to examine the relation-

ship between dispersion time and RF bandwidth in terms of filter

optimization. Figure 4.3-5 is a diagram of the RF model of the FCR

which shows the relationship between dispersion time and RF bandwidth.

The variables q , x , and f, are the SLO output, signal incident on
J
l

the dispersive filter, and the RF bandwidth respectively, for case

number one. For case two, the variables are q., x-, and f., . Case
2

number one represents an optimal parameter configuration, i.e. full

compression is realized, thus maximizing the signal energy at the

output of the dispersive filter. If the RF bandwidth in case one were

changed from f. to f, , this would represent the filter operating
1 2

under less than optimal conditions. By reducing the RF bandwidth, a

portion of the down-chirp signal, incident on the dispersive filter,

does not realize any compression, assuming an ideal filter. This

results in less than maximum signal energy at the output. Optimiza-

tion can be realized by increasing the filter dispersion, or equiva-

lently, reducing the scan rate. This results in the SLO operating as

given by q« rather than q.. in the Figure. This causes a change in the

slope of the down-chirp signal from that given by x. to that of x,.

Now the filter is operating under an optimal parameter configuration

(i.e., the entire pulse is compressed).

Consider the second case, which consists of signals x_, q_ and an

RF bandwidth of f- . If f_ were increased to f_ then the filter
2

J
2

J
l

would not be optimized. The filter would not be realizing any more
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Figure 4.3-5: Optimization of the FCR.
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compression, but rather just adding noise power at the output of the

dispersive filter. Optimization in this situation can be realized by

a reduction in the dispersion time, or equivalently, an increase in

the scanning rate. The increased scanning rate, results in changing

the form of the down-chirp signal incident on the dispersive filter

from that of x_ to that of x. . The filter is now optimized.

Figures (4.3-6,7, and 8) show the performance of the FCR in terms

of its probability of detection as a function signal-to-noise density

ratio in dB. Detection probabilities are also given for the optimal

receiver detecting a signal of unknown phase [2] . The important point

in these plots is that these probabilities are identical to results

obtained by modeling the FCR in a different manner [2]

.

Figures (4.3-9,10, and 11) show the effect of post filtering the

output of the FCR on the probability of detection. In the first two

cases, lowpass post filtering tends to degrade performance, where the

amount of degradation is proportional to the filter's bandwidth. The

last case indicates that the post filter has essentially no effect on

the probability of detection. The literature tended to support the

notion that post filtering does not improve performance. This is in

agreement with Figures (4.3-9,10, and 11) and thus, post filtering

should not be a design consideration when constructing a FCR.



66

P /N (d3)
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Figure 4.3-6: Receiver Performance for a Pulse Width of 0.25 us.
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Figure 4.3-7: Receiver Performance for a Pulse VJidth of 0.50 us.
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Figure 4.3-9: Performance of the FCR with Lowpass Filtering for

a 0.25 us Pulse.
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Figure 4.3-10: Performance of the FCR with Lowpass Filtering for
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CHAPTER 5

CONCLUSION

This chapter concludes this thesis with an overall summary of

interesting points observed throughout this research.

First, the frequency compressive receiver was successfully

modeled by a finite series representation of the signal and noise

incident on the receiver. The measures of the receiver's performance,

i.e. detection probabilities, were in very close agreement with those

observed from previous work [2]. This previous work did not consider

post filtering and showed that the output of the square-law device for

the noise had an exponential distribution and the signal plus noise

had a distribution corresponding to the sum of squares of two Gaussian

random variables. With such close agreement in the receiver's perfor-

mances, one might accept the notion that modeling a nonstationary

noise process (output of the mixer) by a stationary noise process does

not compromise the integrity of the overall model.

Secondly, optimization of the frequency compressive receiver,

given knowledge of the incident signal, was examined. It was shown

that optimization could be achieved by varying the filter's RF band-

width for a fixed dispersion time or by varying the filter's

dispersion time for a fixed RF bandwidth. Given a filter with a fixed

dispersion time, optimization may be realized by the addition of an RF

prefilter with a variable 3-dB passband, thus making the filter more

versatile.

Lastly, the effect of lowpass filtering the output of the

frequency compressive receiver on the probability of detection was

examined. Post filters considered were 2-pole and 4-pole Butterworth
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filters with different cutoff frequencies. For smaller pulses

incident on the receiver, post filtering resulted in a degradation of

the receiver's performance. As the pulse width increased, post

filtering did not alter the receiver's performance. At large values

of signal-to-noise density ratio, the required performance was

slightly improved. This improvement was not enough to warrant post

filtering considerations in the design of the FCR.
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APPENDIX A

SOLUTION TO A USEFUL INTEGRAL

This appendix presents a detailed solution of the following

integral

/
C0,H + > dV> . (A.l)

1 2tt

The solution to (A.l) was necessary in evaluating the probability

density function for the case of both signal and noise present. The

integral (A.l) is first partitioned as follows

f

°
eoafrst + j} m f*'

1
cos( ^t + J} r° cos (at + ») du

(A. 2)

Then, define x = (u> + 4>/t) so that dx du and substitute into the

first integral in (A. 2), thus yielding

J
C08(Me + » . f COs(xt)

dx + f° COS (.It + fr)
d(|)

—oo —oo ~9/t

. 1 /" eo.(xt? r° cos(ut + ) duj
2 -J 2,r

-*/t
2 "

= -| 6(t) + ^|S_±
. (A.3)

The result (A.3) is used in equation (3.6.7) in solving for the

probability of detection.
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APPENDIX B

FORTRAN SOURCE CODE



INTEGER

LOGICAL

76

DOUBLE COMPLEX

TYPEPRE , TYPEPOST , KPOINT , NPOINT , FILTNUM

RUN

SIGNAL(0:1024) , P(-31: 31, -31: 31)

,

EGVECT(-31:31, -31:31) ,TM(-512 : 512 , -512 : 512)

,

Q(-31:31, -512:512) ,SCOEF(-512:512) , RMAT(-31 : 31)
TEMP(-31:31)

FK(-31:31) ,RK(-31:31) , NO, PLENGTH, FAR,
TAU,SCANW,BETAW,A(12) ,B(12) ,NPREF3 , NP0STF3

,

PHI (0:1024) , DELTAT, Y (0:1024) , PREF3 , P0STF3

,

T,D(-31:31) ,EGVALS(-31:31) , TO , THETAO , YS

,

DELTAY,S(0:1024) ,PY(0:1024) ,S1,
YMEANN, YVARN , YMEANS , YVARS , PDFN (0:1024)
DPD(-31:31, -31:31)

DOUBLE PRECISION DPDR(-31: 31, -31: 31) , DPDI (-31: 31, -31: 31)

,

* EGVECR(-31:31, -31:31)

,

* EGVECI(-31:31, -31:31) , PDFND(0 : 1024)

DOUBLE PRECISION DEGVALS (-31: 31) ,KK(-31: 31) , VT, SUMK

CHARACTER*9 NAME1, NAME2 ,NAME3 , NAME4 ,NAME5

COMMON /PRE/TO, THETAO

975 SI - 0.0
PI - 3.1415926
KPOINT • 63
RUN - .TRUE.
TPDET «1.0
PDET 0.0

C
C Define the parameters of the scanning local oscillator
C

CALL SLO(SCANW, BETAW, PLENGTH, TAU, DELTAT, NPOINT)
C
C Define the signal that is incident on the receiver
C

CALL INCIDENT ( S IGNAL, S , RUN , NO , PLENGTH , NPOINT , DELTAF

)

IF (.NOT. RUN) THEN
GOTO 999

ENDIF
C
C Run the signal through the mixer

CALL SCALE (SIGNAL, PHI, DELTAT, NPOINT, SCANW, PLENGTH)
CALL DUMPYOUT ( S IGNAL , NPOINT , DELTAT , YMAX , TMAX , Y

)

Define the Prefilter, Postfilter, and the Noise parameters

CALL PREDEF ( A , PREF3 , NPREF3 , TYPEPRE , SCANW , TO , THETAO , TAU

)

CALL NOISE(FK,RK,NO,BN,FAR,NPREF3)
CALL POSTDEF ( B , POSTF3 , NPOSTF3 , TYPEPOST , FILTNUM)
CALL DFT (SIGNAL, NPOINT, 0)
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SCOEF(O) - SIGNAL(O)
DO I - l.NPOINT/2-1

SCOEF(I) = SIGNAL(I)
SCOEF(-I) = SIGNAL(NPOINT-I)

END DO
C
C Send the signal through the filter on the front end
C

CALL FILTER ( PREF3 , TYPEPRE , A , NPOINT .SIGNAL , SCANW , PLENGTH

)

CALL DFT(SIGNAL, NPOINT, 1)
C
C Send the Signal through the Square Law Device
C

CALL SQUARE (SIGNAL, NPOINT)

IF (FILTNUM.EQ.6) THEN
GOTO 135

END IF

CALL DFT(SIGNAL, NPOINT, 0)
C
C Send the Signal through the Low Pass Post filter
C

CALL FILTER ( POSTF3 , TYPEPOST , B , NPOINT , S IGNAL , SCANW , PLENGTH)
CALL DFT(SIGNAL, NPOINT, 1)

C
C Write the Time Domain output to an external file
C
135 CALL DUMPYOUT (SIGNAL, NPOINT, DELTAT , YMAX , TMAX , Y

)

CALL TIMEIND (NINDEP , NPOSTF3 , NPREF3 , TMAX , NI , FILTNUM , DELTAT

)

DO WHILE (NI.LE.NPOINT-1)

IF (Y(NI) .GT.YMAX/10) THEN
TYPE « ,

'
'

TYPE »,' OBS NUMBER:', NI

T - NI»DELTAT

TYPE *, ' TIME OF OBS :
'

, T
TYPE * ,

'
'

YS-Y(NI)
CALL PMATRIX ( KPOINT , P , FK , PREF3 , TYPEPRE , POSTF3

,

+ TYPEPOST, A, B, SCANW, T)
TYPE » ,

' P-MATRIX

'

CALL DIAGD(KPOINT,D,RK)
TYPE * ,

' DIAGD

'

CALL DPDX(KPOINT,DPD,D,P)
TYPE » ,

' DPDX

'

CALL EIGEN ( KPOINT ,DPDR,DPDI,DPD, DEGVALS , EGVECT

,

+ EGVALS.EGVECR.EGVECI)
TYPE *, 'EIGEN'

CALL QANDR ( KPOINT , NPOINT , D , Q , SCOEF , RMAT , R , EGVECT

,

+ PREF3, TYPEPRE, A, POSTF3 , TYPEPOST,
+ B,T,FK, SCANW, PLENGTH)
TYPE * ,

' QANDR

'

CALL STATS ( YMEANN , YVARN , YMEANS , YVARS , KPOINT , EGVAL5

,

+ RMAT.YS)
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DELTAY » ( YMEANN + 10 . *SQRT ( YVARN)
) /NPOINT

CALL NOISEPDF (KPOINT , NPOINT , DEGVALS , KK , PDFND

,

DELTAS , EGVALS , PDFN)
CALL QUERY (' COMPOTE SIGNAL NOISE PDF?

'
, IANS

)

IF (IANS.EQ.l) THEN
CALL SANDNPDF ( PY , YMEANS , YVAES , NAME4 , S I , YS , KPOINT , EGVALS

,

RMAT, YMEANN , NPOINT)
END IF
CALL THRESH (VT , FAR , NPOSTF3 , NPREF3 , KK , DEGVALS , KPOINT

,

YMEANN)

CALL PDETECT ( S 1 , PDET , YMEANN , YVARN , KPOINT , EGVALS

,

RMAT, YS,VT)

TPDET-TPDET* (

1

. -PDET)

END IF
NI - NI + NINDEP

TPDET-1 . -TPDET
TYPE *,'THE TOTAL PROBABILITY OF DETECT IS
CALL D0MPINFO ( OM

Do you want to run the program again?

CALL QUERY ( Do you want to PLAY again? ' , IANS

)

IF (IANS.EQ.l) THEN
GOTO 975

END IF

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

STOP
END

, 'THE RADIAN SCAN RATE IS
'

, SCANW
, 'THE COMPRESSION BW IN RADIANS IS ' , BE
, 'THE PULSE LENGTH IS

'
, PLENGTH

, 'THE DISPERSION TIME IS ' , TAU
, 'THE TIME INCREMENT IS ' , DELTAT
, 'THE NUMBER OF POINTS IS ', NPOINT
, 'THE NOISE DENSITY IS', NO
, 'THE SHIFT IN FREQUENCY IS

'
, DELTAF

, ' THE MAX OUTPUT VALUE IS ' , YMAX
,

' THE TIME OF MAX OUTPUT IS ' , TMAX
, 'THE PREFILTER BW IS',PREF3
, 'THE PREFILTER NOISE BW IS

'
, NPREF3

,
' THE TYPE OF PREFILTER IS '

, TYPEPRE
,

' TO IS
• , TO

,
' THETAO IS ' , THETAO

, 'THE NOISE BANDWIDTH IS ' , BN
,

' THE FALSE ALARM RATE IS
'

, FAR
, ' THE POST FILTER BW IS ' , POSTF3
, 'THE POSTFILTER NOISE BW IS ' , NPOSTF3
,

' THE TYPE OF POSTFILTER IS
' , TYPEPOST

, ' THE FILTER NUMBER IS * , FILTNUM

********
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SUBROUTINE INCIDENT ( S IGNAL , S , RUN , NO , PLENGTH , NPOINT , DELTAF

)

INTEGER IIN(20) ,IOUT(20) .ERROR, PNUM
CHARACTER*80 MENU , PAGENAME , COUT ( 2 ) ,CIN(20) ,STR(20)
COMPLEX SIGNAL(0:1024) , TSIGNAL(0 : 1024)
REAL ROUT(20) ,RIN(20) ,S(0:1024) .NO.NFIG,

+ NOl,NO2,NFIGl,NFIG2,TS(0:1024)
DOUBLE PRECISION DOUT{20) , DIN(20)
LOGICAL FALSE , RUN

COMMON /SCRDAT/MENU, FALSE, IOUT, COUT, ROUT, DOUT, UN, CIN.RIN, DIH

,

+ STR, ERROR

MENU-' MENU. TXT'
FALSE - .FALSE.
IIN(l) - 1

CALL SCRGEN (
' SIGNAL

'

)

IF (IIN(l) .EQ.1) THEN
DIN (1) -PLENGTH
DIN(2)-0.25E-6
DIN(3)-0.0
DIN(4)-0.325E-6
DIN(5)-80.0E0
DIN(6)-1.0
DIN(7)-1..E12
DIN(8)-O.E0

UN (1) -NPOINT

CALL SCRGEN (
' TRAPZOID '

)

PLENGTH-DIN(l)
PWIDTH-DIN(2)
PRISE-DIN ( 3

)

PDELAY-DIN ( 4

)

SNDRDB-DIN(S)
NFIG-DIN(6)
GAIN-DIN (7)
DELTAF-DIN(8)

NPOINT-IIN(l)

SNDR - 10."(SNDRDB/10.)
NO - 0.01/(2.«SNDR)
PAMP - 0.1

CALL TRAP ( PLENGTH , PWIDTH , PRISE , PDELAY , PAMP , NPOINT , S IGNAL , S

)

DELTAT-PLENGTH/NPOINT
IF(DELTAF.NE.O.O) THEN
CALL SHIFTF (SIGNAL, DELTAT, DELTAF, .NPOINT)

END IF

ELSE
IF (IIN(l) .10. 3) THEN

1-1
PNUM-2



IIN(1)«PNUM
DIN(1)-PLENGTH
DIN (2 ) -(0.25) "PLENGTH
DIN(3)-(0.05) *PLENGTH
DIN(4)-(0.35)*PLENGTH
DIN(5)-63.0+E0
DIN(6)-1.0
DIN(7)-1.E12
DIN(8)-0.0
I0UT(1)-I

CALL SCRGEN ( 'MULTIPLE'

PNUM=IIN(1)
PLENGTH-DIN(l)
PWIDTH-DIN ( 2

)

PRISE-DIN(3)
PDELA¥-DIN(4)
SNDRDB-DIN ( S

)

NFIG-DIN(6)
GAIN-DIN (7)
DELTAF-DIN ( 8

)

SNDR«10»«(SNDRDS/10.

)

NO - 0.01/(2*SNDR)
PAMP - 0.1

CALL TRAP (PLENGTH, PWIDTH , PRISE , PDELAY , PAMP , NPOINT
TSIGNAL.TS)

DELTAT-PLENGTH/NPOINT
IF (DELTAF.NE.0.0) THEN

CALL SHIFTF(TSIGNAL, DELTAT, DELTAF, , NPOINT)
END IF

DO J - O.NPOINT-1
SIGNAL(J)-SIGNAL(J) + TSIGNAL(J)

S(J) - S(J) + IS (J)
END DO

i - r+i
IF (I.LE.PNUM) THEN

GOTO 200
END IF

ELSE
IF (IIN(l) .EQ.3) THEN

CALL SCRGEN (
' GAUSS '

)

ELSE
IF (IIN(l) .E0..4) THEN

CALL SCRGEN (
' DISKIO

'

)

ELSE
IF (IIN(l) .EQ.5) THEN

RUN - .FALSE.
RETURN

ELSE
GOTO 100

END IF
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ENDIF
ENDIF

ENDIF
ENDIF

RETURN
END

C***********************************************+************

SUBROUTINE TRAP ( PL, PW , PR , PD , PA , NP , SIG , S

)

COMPLEX SIG(0:1024)
REAL S(0:1024) ,PL,PW,PR,PD,PA,DELTAT
INTEGER CODE
CHARACTER*9 NAME

DELTAT-PL/NP
1-0

DO WHILE (I«DELTAT.LT.PD)
SIG(I)-CMPLX(0.0,0.0)

S(I)«REAL(SIG(I)

)

I-I+l
END DO

DO WHILE (I*DELTAT.LT.PR+PD)
SIG(I)-CMPLX((PA/PR)*(I*DELTAT-PD) ,0.0)

S(I)-REAL(SIG(I))
I-I+l

END DO

DO WHILE (I*DELTAT.LT.PD+PW)
SIG(I)-CMPLX(PA,0.0)

S(I)»REAL(SIG(I)

)

I-I+l
END DO

DO WHILE (I*DELTAT.LT.PW+PR+PD)
5IG(I)-CMPLX( (PW+PR+PD-I*DELTAT) *(PA/PR) ,0.0)

S(I)-REAL(SIG(I)

)

I-I+l
END DO

DO WHILE (I«DELTAT.LT.PL)
SIG(I)-CMPLX(0. 0,0.0)

S(I)-REAL(SIG(I)

)

I-I+l
END DO

CALL SGOPEN(2, 'WRITE 1
, 'SIGNAL FILE ? ', NAME, 'REAL ', NP)

CALL SGTRAN(2, 'WRITE', 'REAL' ,S,NP)

RETURN
END

C************ ***************************************** ********

SUBROUTINE NOISE ( FK , RK , NO , BN , FAR , NPREF3

)
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COMMON/SCRDAT/MENU , FALSE , IOUT , COUT , ROUT , DOUT , UN , CIN , RIN , DIN

,

* STR, ERROR

REAL NUK(-31:31) , GAMX(-31: 31) ,GQR(126) ,RIN(20)

,

ROUT(20) ,FK(-31:31) ,RK(-31: 31) , NO, FAR, NPREF3
CHARACTER*9 NAME
CHARACTER*80 MENU , PAGENAME , COUT ( 2 ) ,CIN(20) ,5TR(20)
DOUBLE PRECISION DIN(20) , DOUT (20)
LOGICAL FALSE
INTEGER IIN(20) ,IOUT(20) .ERROR

PI 3.1415926
NAME 'GQR63.DAT'
NOBS - 126
CALL SGOPEN ( ,

' READ '

,
' NOPROMPT

'
, NAME ,

' REAL ' , NOBS

)

CALL SGTRAN(0, 'READ' , 'REAL 1 ,SQR, NOBS)

DO I - 1,63,1
NUK(I-32) - GQR(I)
GAMK(I-32) - GQR(I + 63)

END DO

RIN(l) - (3./2.)*NPREF3
RIN(2) - 1.0

CALL SCRGEN ( ' NOISE '

)

BN - RIN(l)
FAR - RIN(2)

DO I - -31,31,1
FK(I) - BN*NUK(I)
RK(I) - 2*BN*NO*GAMK(I)

END DO

RETURN

END
**************************************************************

SUBROUTINE SLO ( SCAHW , BETAW , PLENGTH , TAU , DELTAT , NPOINT)

REAL SCANW.SCANF, BETAW, PLENGTH, DELTAT,
+ ROUT(20) ,RIN(20)
INTEGER IIN(20) ,IOUT(20) .ERROR
CHARACTER*80 MENU , COUT ( 2 ) ,CIN(20) ,STR(20)
DOUBLE PRECISION DOUT(20) , DIN{20)
LOGICAL FALSE

COMMON /SCHDAT/MENU , FALSE , IOUT , COUT , ROUT , DOUT , UN , CIN , RIN , DIN

,

+ STR, ERROR

MENU-' MENU. TXT'
FALSE- . FALSE

.

PI-3. 1415926
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DIN(1)-500.0E6
IIN(1)«512

CALL SCRGEN (
' SCANNING

'

)

BETAF-DIN(l)
NPOINT-IIN(l)
I0UT(1) - NPOINT
DOUT(l) - BETAF
DOUT(2) - NPOINT/ (4»BETAF)
DIN(1)« NPOINT/ (4*BETAF)

CALL SCRGEN (
' SCANN

'

)

TAU-DIN(l)

BETAW"BETAF»2«PI
PLENGTH-2*TAO
DELTAT-PLENGTH/NPOINT
SCANF-BETAF/TAU
SCANW«2*PI*SCANF

RETURN

END
C***************************************************** *********

SUBROUTINE SCALE (SIGNAL, PHI , DELTAT, NPOINT, SCANW, PLENGTH)

COMPLEX SIGNAL(0:1024)
REAL PHI(0:1024) ,RL,IM, SCANW, PLENGTH

PI - 3.1415926
SCANF - SCANW/ (2*PI)

DO I 0,NPOINT-1,1

PHI (I) - -PI«PLENGTH*SCANF*(I*DELTAT) +
5 PI*SCANF*( (I*DELTAT)**2)

RL - COS(PHI(I)

)

IM - -SIN(PHI(I)

)

SIGNAL(I) - SIGNAL(I) *CMFLX (RL, IM)

END
C************************ ******************************* ************

SUBROUTINE PREDEF (A , PREF3 , NPREF3 , TYPE , SCANW , TO , THETAO , TAU)

INTEGER IIN(20) ,IOUT(20) .ERROR,
+ FILTNUM,NPOLE,NRIP,TYPE
CHARACTER*80 MENU , COUT ( 2 ) ,CIN(20) ,STR(20)
REAL ROUT(20) ,RIN(20) ,A(12) , NPREF3 , SCANW, PREF3
DOUBLE PRECISION DOUT(20) , DIN (20)
LOGICAL FALSE
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COMMON /SCRDAT/MENU , FALSE , IOUT , COUT , ROUT , DOUT ,118, CIN , RIN , DIN

,

+ STR , ERROR

PI -3.1415926

DO I - 1,12,1
A(I) - 0.0

END DO

IIN(1)-1
CALL SCRGEN (

' PREFILT
'

)

IF (IIN(l) .EQ.l) THEN
DIN(1)-170.0E6
DIN(2)=SCANW
DIN(3)-0.0
DIN ( 4 ) -0 .

CALL SCRGEN (
' COMPRESS

'

)

PREF3-DIN(l)/2.
SCANW-DIN(2)
TO-DIN(3)
THETAO-DIN ( 4

)

TYPE-0
NPREF3-(0.5) *PREF3*SQRT(PI/ALOG(2.0)

)

GOTO 600
ELSE

COUT ( 1 )
-

' NONCOMPRESS IVE RECEIVERS

'

COUT (2) '****************#**#****
IIN(1)-1
DIN(1)-3.E6
CALL SCRGEN (

' NONCMP
'

)

FILTNUM-IIN(l)
PREF3»DIN(1)
IF (FILTNUM.EQ.l) THEN

IIN(l)-2
CALL SCRGEN (

' POLES
'

)

NPOLE»IIN(l)
TYPE-1
NPREF3»(PREF3*PI)/(2*NPOLE*SIN(PI/(2«NPOLE)

)

)

ELSE
IF (FILTNUM.EQ.2) THEN

IIN(l)-2
CALL SCRGEN (

' POLES
'

)

NPOLE-IIN(l)
TYPE-1
NPREF3-PREF3
IIN(l)-2
CALL SCRGEN (

' RIPPLE
'

)

NRIP-IIN(l)
ELSE

IF (FILTNUM.EQ.3) THEN
IIN(l)-2
CALL SCRGEN (

' POLES
'

)

NPOLE"IIN(l)
TYPE-1
NPREF3-PREF3

ELSE
IF (FILTNUM.EQ.4) THEN

TYFE-2
NPREF3-PREF3

ELSE
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TYPE-3
NPREF3-PREF3

END IF
END IF

END IF
END IF

END IF

CALL DEFINE ( FILTNUM , NPOLE , NRIP , A , NPREF3 , PREF3

)

600 RETURN
END

C****************************************************************

SUBROUTINE POSTDEF ( B , POSTF3 , NPOSTF3 , TYPE , FILTNUM)

INTEGER IIN(20) ,IOUT(20) , ERROR, FILTNUM, NPOLE, NRIP, TYPE
CHARACTER*80 MENU , COUT ( 2 ) ,CIN(20) ,STR(20)
REAL ROUT(20) ,RIN(20) ,B(12) , NPOSTF3 , POSTF3
DOUBLE PRECISION DOUT (20) , DIN(20)
LOGICAL FALSE

COMMON /SCRDAT/MENU, FALSE, IOUT, COUT, ROUT, DOUT, UN, CIN.RIN, DIN
+ STR, ERROR

PI-3. 1415926

DO I - 1,12,1
B(I) - 0.0

END DO

COUT(l) - 'POST FILTER DEFINITION'
C0UT(2) ' **********************

'

IIN(l)-6
DIN(1)»1.0E6

CALL SCRGEN (
' NONCMP

'

)

FILTNUM-IIN(l)
POSTF3=DIN(l)

IF (FILTNUM. EQ.l) THEN
IIN(1)»2
CALL SCRGEN (

' POLES
'

)

NPOLE-IIN(l)
TYPE»1
NPOSTF3-(POSTF3*PI)/(2»NPOLE*SIN(PI/(2*NPOLE)

)

)

ELSE
IF ( FILTNUM. EQ. 2) THEN

IIN(l)-2
CALL SCRGEN (

' POLES
'

)

NPOLE-IIN(l)
TYPE-1
NPOSTF3»POSTF3
IIN(1)»2
CALL SCRGEN ('RIPPLE')
NRIP-IIN(l)

ELSE
IF ( FILTNUM. EQ. 3) THEN
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IIN(l)-2
CALL SCRGENf 'POLES')
NPOLE=IIN(l)
TYPE-1
NPOSTF3-POSTF3

ELSE
IF (FILTHUM.EQ.4) THEN

TYPE"2
NPOSTF3-POSTF3

ELSE
IF (FILTNUM. EQ. 5) THEN

TYPE»3
NPOSTF3-POSTF3

ELSE
TYPE - 1

POSTF3 = 5.E+9
NPOSTF3 - 5.E+9

END IF
END IF

END IF
END IF

END IF

CALL DEFINE (FILTNUM, NPOLE, NRIP, B, NPOSTF3 , POSTF3

)

RETURN
END

C*****************************************************

SUBROUTINE DEFINE ( FILTNUM , NPOLE , NRIP , A , NF3 , F3

)

REAL A(12),NF3,F3
INTEGER FILTNUM, NPOLE, NRIP

PI-3. 1415926
TYPE«1

GO TO (100,200,300,600,600,390) .FILTNUM
100 GOTO (110,120,130,140,150,160,170,180) , NPOLE
110 A(l)-1

A(4)«l
A(5)-l
GOTO 600

120 A(l)-1
A(4)»l
A(5)»l. 41421
A(6)-l
GOTO 600

130 A(l)-1
A(4)-l
A(5)-2
A(6)-2
A(7)-l
GOTO 600

140 A(l)-1
A(4)-l
A(5)»2.6131
A(6)«3.4142
A(7)»2.6131
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GOTO 600
150 A(l)-1

A(4)-l
A(5)-3.2361
A(6)«5.2361
A(7)-5.2361
A(8)-3.2361
A(9)«l
SOTO 600

160 A(l)-1

A(5)-3.8637
A(6)=7.4641
A(7)-9.1416
A(8)=7.4641
A(9)»3.8637
A(10)-l
GOTO 600

170 A(l)»l
A(4)-l
A(5)»4.494
A(6)-10.0978
A(7)»14.5918
A(8)-14.5918
A(9)»10.0978
A(10)-4.494
A<11)-1
GOTO 600

180 A(l)-1
A(4)-l
A(5)-5.1258
A(6)-13.1371
A(7)«21.8462
A(3)-25.6884
A(9)»21.8462
A(10)-13.1371
A(ll)-5.1258
A(12)-l
GOTO 600

200 GO TO(200, 220, 230, 240, 250, 260, 270, 280) , NPOLE

220 GO TO(221,222,223,224) ,NRIP
221 A(l)-. 50062

A(4)». 70715
A(5)-.6442
A(6)-l
GOTO 600

222 A(l)». 66276
A(4)-. 74363
A(5)». 90151
A(6)-l
GOTO 600

223 A(l)».8676
A(4)». 87765
A(5)-l. 22081
A(6)-l
GOTO 600

224 A(l)-.9542
A(4)-.9553



A(5)>1. 34868
A(6)-l
GOTO 600

230 GOTO (231,232,233,234) , NRIP
231 A(l)«. 25035

A(4)-. 25035
A(5)-. 92774
A(6)». 59706
A(7)-l
GOTO 600

232 A(l)=. 37429
A(4)-. 37429
A(S)»1. 03303
A(6)=. 90268
A(7)-l
GOTO 600

233 A(l)-. 61123
A(4)-. 61123
A(5)-l. 36286
A(6)«l. 39582
A(7)-l
GOTO 600

234 A(l)-1
A(4)«. 78718
A(5)-l. 64659
A(6)=l. 69337
A(7)»l
GOTO 600

240 GOTO (241,242,243,244) , NRIP
241 A(l)-.1252

A(4)-.1769
A(5)-.4046
A(6)-1.1689
A(7)-.5812
A(8)-l
GOTO 600

242 A(l)«.1998
A(4)".2242
A(5)-.636
A(6)-1.3112
A(7)-.9049
A(8)-l
GOTO 600

243 A(l)-.3782
A(4)-.3826
A(5)-1.1346
A(6)-1.785
A(7)-1.4869
A(8)-l
GOTO 600

244 A(1)«.S622
A(4)-.5629
A(5)-1.599
A(6)-2.2936
A(7)-1.9125
A(8)-l
GOTO 600

250 GOTO (251,252,253,254) , MRIP
251 A(l)-. 06261

A(4)-. 06261



A(5)».4078
A(6)«.54S8
A(7).1.4147
A(8)-.5745
A(9)-l
GOTO 600

252 A(l)-.104
A(4)-.104
A(5)-.5083
A(6)-.3820
A(7)»1.5803
A(S)».9062
A(9)-l
GOTO 600

253 A(l)-.2177
A(4)-.2177
A(5)-.866
A(6)-1.6407
A(7)-2.1520
A(8)-1.5369
A(9)-l
GOTO 600

254 A(l)-.3627
A(4)-.3627
A(5)«1.3347
A(6)»2.4383
A(7)-2.3469
A(8)-2.0480
A(9)-l
GOTO 600

260 GOTO (261,262,263,264) NRIP
261 A(l)-. 031305

A(4)-. 044219
A(5)«. 16335
A(6)». 698804
A(7)». 69044
A(8)-l. 66249
A(9)-. 57068
A(10)-l
GOTO 600

252 A(l)«. 053455
A(4)-. 059978
A(5)«. 27353
A(6)-. 85633
A(7)-l. 12151
A(3)-l. 84353
A(9)-. 90698
A(10)-l
GOTO 600

263 A(l)-. 12015
A(4)-. 12154
A(5)-. 57829
A(6)-l. 43530
A(7)»2. 12876
A(3)«2. 48288
A(9)-l. 56658
A(10)-l
GOTO 600

264 A(l)«. 21859
A(4)». 21884
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A(5)-. 99163
A(6)-2. 25965
A(7)=3. 25896
A(8)-3. 31983
A(9)-2. 13412
A(10)-l
SOTO 600

270 GOTO (271,272,273,274) ,NRIP
271 A(l)«. 015660

A(4)». 01566
A(5)«. 14614
A(6)=. 29999
A(7)»l. 05175
A(8)». 33139
A(9)-l. 91147
A(10)-.5684
A(ll)-1
GOTO 600

272 A(l)«. 027253
A(4)-. 027253
A(5)-. 19291
A(6)-. 50381
A(7)»l. 26811
A(8)-l. 35757
A(9)-2. 10317
A(10)*.90750
A<11)-1
GOTO 600

273 A(l)-. 064585
A(4)-. 064585
A(5)-. 37852
A(6)-l. 06716
A(7)»2. 07911
A(8)-2. 60152
A(9)-2. 79095
A(10)»l. 58543
A(ll)-1
GOTO 600

274 A(l)-. 12595
A(4)-. 12595
A(5)=. 68572
A(6)-l. 85737
A(7)-3. 29509
A(8)-4. 04874
A(9)-3. 73515
A(10)-2. 19127
A(ll)-1
GOTO 600

280 GOTO (281,282,283,284) ,NRIP
281 A(l)». 0078288

A(4)». 011058
A(5)-. 056474
A(6)-. 32070
A(7)-. 47185
A(8)-l. 46650
A(9)-. 97189
A(10)»2. 16057
A(ll)«. 56696
A(12)-l
GOTO 600
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282 A(l)». 013831
A(4)-. 015519
A(5)-. 097971
A(6)-. 41410
A(7)-. 79334
A(8)-l. 74349
A(9)-l. 59161
A(10)-2. 36061
A(ll)-. 90788
1(3.2)-!
GOTO 600

283 A(l)-. 034141
A(4)-. 034536
A(5)«. 22902
A(6)». 78720
A(7)-l. 67634
A(8)-2. 79177
A(9)-3. 06245
A(10)-3. 08426
A(ll)-1. 59803
A(12)-l
GOTO 600

284 A(l)-. 070308
A(4)». 070390
A(5)-. 44639
A(6)-l. 42188
A(7)-2. 93459
A(8)-4. 41480
A(9)-4. 80689
A(10)-4. 10960
A(ll)-2. 23073
A(12)-l
GOTO 600

300 GOTO (300,320,330,340,350,360,370,380) ,NPOLE
320 A(l)-1. 61804

A(4)-l. 61804
A(5)-2. 20321
A(6)-l
GOTO 600

330 A(l)-2.7718
A(4)-2.7718
A(5)-4. 86637
A(6)«3. 41750
A(7)-l
GOTO 600

340 A(l)-5. 25828
A(4)-5. 25828
A(5)-ll. 11552
A(6)-10. 07023
A(7)-4. 73057
A(8)-l
GOTO 600

350 A(l)-ll. 21331
A(4)-11.2131
A(5)-27. 21909
A(6)-29. 36504
A(7)-17. 82010
A(8)-6. 17943
A(9)-l
GOTO 600
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360 A(l)-26.6313
A(4)-26.6313
A(5)=71.9941
A(6)-88.4667
A(7)»63.7755
A(8)»28.7348
A(9)-7.7S81
A(10)-l
GOTO 600

370 A(l)»69.2265
A(4)-69.2265
A(5)-204.33S3
A(6)-278.3697
A(7)-228.2392
A(8)«122.4894
A(9)-43.3861
A(10)-9. 48609
A(ll)-1
GOTO 600

380 A(l)-194.054
A(4)-194.054
A(5)-6I7.007
A(6)-915.511
A(7)-831.692
A(8)-508.541
A(9)-215.592
A(10)-62.3170
A(ll)-11.3223
A(12)-l
GOTO 600

390 A(l)-1
A<4)-1

600 RETURN
END

C**********************************************************

SUBROUTINE SHIFTF (SIGNAL, DELTAT, DELTAF , NSTART , NPOINT]

REAL X, PI, DELTAT, DELTAF
COMPLEX SIGNAL(0:1024)
INTEGER NPOINT , NSTART

PI-3. 1415926
DELTAW-2*PI*DELTAF

DO I - NSTART, NPOINT-1,1
X - DELTAW*I*DELTAT
SIGNAL(I)-SIGNAL(I)*CMPLX(COS(X) ,SIN(X)

)

END DO

RETURN

END

C**********************************************************^

SUBROUTINE FILTER ( F3 , TYPE, C,NP, SIGNAL, SCANW, PLENGTH)

REAL FN, F3, C(12) , SCANW, PLENGTH
COMPLEX SIGNAL(0:1024) , FILT



93

INTEGER TYPE , NP

SIGNAL(0)-SIGNAL(0)«FILT(0,F3, TYPE, CSCANW)
SIGNAL (NP/2) "SIGNAL (NP/ 2) *FILT (NP/ (2*PLENGTH) , F3.TYPE,

+ CSCANW)

DO N * l,NP/2-l,l
FN-N/PLENGTH
SIGNAL(N) -SIGNAL (N)*FILT (FN, F3, TYPE, CSCANW)
SIGNAL(NP-N)»SIGNAL(NP-N)«FILT (-FN, F3 , TYPE, CSCANW)

END DO

RETURN

END

C**************************************«*******#*************#**«

COMPLEX FUNCTION FILT (F, F3 ,TYPE, A, SCANW)

REAL A (12) ,F,F3
INTEGER TYPE
COMPLEX JW

COMMON /PRE/TO.THETAO

PI - 3.1415926

JW - CMPLX(0.0,F/F3)

IF (TYPE. EO.. 0) THEN
W-2*PI»F

W3-2*PI*F3
FILT-EXP(-.346574*(W/W3) «*2)

*

+ CMPLX(COS(W**2/(-2*SCANW)+TO*W+THETAO)

,

+ SIN(W*»2/(-2*SCANW)+TO*W+THETAO)

)

ELSE
IF (TYPE.EQ.l) THEN

FILT-(A(1)+A(2)*JW + A(3)*JW**2)/
+ (A(4)+A(5)*JW+A(6) *JW**2+A(7)*JW**3+
+ A(8) *JW**4+A(9) *JW*»5+A(10) »JW**6t
+ A(ll) JW*«7+A(12)«JW**8)

ELSE
IF (TYPE.EQ.2) THEN

FILT«(1/.54)*SIN(.2264*PI*F/F3)/(.22S4*PI»F/F3)
+ «(.S4*SIN(.S66»PI*F/F3)/(.56S*PI*F/F3)
+ +.23»SIN(PI+.566«PI*F/F3)/(PI+.566*PI«F/F3)
+ +.23*SIN(.566*PI*F/F3-PI)/(.566*PI*F/F3-PI)

)

ELSE
IF (TYPE. EC 3) THEN

FILT"(SIN(PI*F*F3)/(PI*F*F3) ) «CMPLX

(

+ C0S(PI*F*F3) ,-l*SIN(PI*F*F3)

)

ENDIF
EHDIF

ENDIF
ENDIF

RETURN
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END

C****************************************************** **********

SUBROUTINE SQ.UARE(SIGNAL, NPOINT)

COMPLEX SIGNAL(0:1024)

DO I - 0,NPOINT-1,1

SIGNAL(I)=SIGNAL(I) *CONJG (SIGNAL(I)

)

END DO

RETURN

END

C********************************************** ******************

SUBROUTINE DUMPYOUT ( SIGNAL , NPOINT , DELTAT , VMAX , TMAX , Y

)

COMPLEX SIGNAL(0:1024)
REAL Y(0:1024)
CHARACTER* 80 NAMEY

DO N - 0,NPOINT-1,1
Y(N)«REAL(SIGNAL(N)

)

END DO

YMAX-0

DO I 0,NPOINT-1,1
IF (Y(I) .GT.YMAX) THEN

TMAX- 1*DELTAT
YMAX-MAX(YMAX,Y(I)

)

ENDIF
ENDDO

CALL SGOPEN ( 9 ,
' WRITE

•

,
' Y OUTPUT FILE ?', NAMEY, ' REAL' , NPOINT)

CALL SGTRAN(9, 'WRITE' , 'REAL' ,Y, NPOINT)

RETURN

END

C************************ ***************************************

SUBROUTINE TIMEIND (NINDEP , NPOSTF3 , NPREF3 , TMAX , NI , FILTNUM

,

+ DELTAT)

REAL NPOSTF3 , NPREF3

PI«3. 1415926

TINDEP - l./(2*NPREF3)
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IF (FILTNUM.EQ.5) THEN
TINDEP-NP0STF3

END IF

NINDEP-INT(TINDEP/DELTAT)

IF (NINDEP. EQ.O) THEN
NINDEP » 1

END IF

NMAX=INT (TMAX/DELTAT)
Nl-NMAX
TYPE * ,

' THE NUMBER OF INDEP . TIME INCREMENTS IS : '
, NINDEP

TYPE », 'THE TIME INCREMENT OF THE MAXIMUM OUTPUT IS: ',N1

DO WHILE ((Nl-NINDEP) .SE.O)
N1-N1-NINDEP

END DO

NI-N1
TYPE *,'THE STARTING POINT IN TIME IS:',NI

RETURN

END

C********************************#***********#*************** «„***„«*

SUBROUTINE PMATRIX(KPOINT, P, FK.PREF3 .TYPEPRE, POSTF3 , TYPEPOST A
+ B,SCANW,T)

INTEGER KPOINT, TYPEPRE, TYPEPOST
REAL PREF3,POSTF3,A(12) ,B(12) , SCANW, T, FK(-31: 3 1)
COMPLEX P(-31:31, -31:31) , FILT, XI, X2 ,X3 , X4

PI»3. 1415926

DO L -' -(KPOINT-D/2, (KPOINT-D/2

DO K - L, (KPOINT-D/2

X - 2«PI»(FK(K)-FK(L))»T

XI - FILT(FK(K) ,PREF3, TYPEPRE, A, SCANW)
X2 - CONJG(FILT(FK(L) , PREF3 , TYPEPRE, A, SCANW))
X3 - FILT(FK(K)-FK(L) , POSTF3 , TYPEPOST, B, SCANW)
X4 - CMPLX( COS(X), SIN(X) )

P(L,K) - X1»X2*X3*X4
P(K,L) - CONJG(P(L,K)

)

END DO

RETURN
END

C**********
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SUBROUTINE DIAGD(KPOINT, D, HK)

INTEGER KPOINT
REAL RK(-31:31) ,D(-31:31)

DO I - -(KPOINT-D/2, (KP0INT-1J/2
D(I) - SQRT(RK(I)

)

END DO

RETURN
END

SUBROUTINE DPDX(KPOINT, DPD, D, P)

INTEGER KPOINT
DOUBLE COMPLEX DPD (-31: 31, -31: 31)
REAL D(-31:31)
COMPLEX P(-31:31, -31:31)

DO L » -(KF0INT-l)/2, (KP0INT-l)/2
DO K - -(KPOINT-D/2, (KPOINT-D/2

DPD(L,K)-D(L) *DCMPLX(P(L,K) ) *D(K)
END DO

END DO

RETURN
END

C*******»***»**«**«»***««***..*».*.**«.*«**«..».,..»*»** 4 »•**...»•.„.

SUBROUTINE EIGEN ( KPOINT , DPDR , DPDI , DPD , DEGVALS , EGVECT , EGVALS

,

+ EGVECR,EGVECI)

INTEGER KPOINT
DOUBLE PRECISION DPDR(-31: 31, -31: 31) , DPDI (-31: 31, -31 31)

+ EGVECR(-31:31, -31:31)

,

+ EGVECI(-31:31, -31:31)
DOUBLE PRECISION DEGVALS (-31: 31)
DOUBLE COMPLEX DPD(-31: 31, -31: 31)
REAL EGVALS(-31:31)
COMPLEX EGVECT(-31:31, -31:31)

DO L - -(KPOINT-D/2, (KPOINT-D/2
DO K - -(KPOINT-D/2, (KPOINT-D/2

DPDR(K.L) - DREAL(DPD(K,L)

)

DPDI(K.L) • DIMAG(DPD(K,L)

)

END DO
END DO

CALL EISPAC (KPOINT, KPOINT, MATRIX ('COMPLEX' , DPDR, DPDI, 'HERMITIAH'
+ , 'POSITIVE DEFINITE '), VALUES ( DEGVALS

)

,

+ VECTOR(EGVECR,EGVECI)

)

DO K - -(KPOINT-D/2, (KPOINT-D/2
IE (DEGVALS(K) .GE.O.O) THEN

EGVALS (K)-REAL(DEGVALS(K)

)

ELSE
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EGVALS(K)«0.0
END IF

END DO

DO L » -(KPOINT-D/2, (KPOINT-l)/2
DO 8" -(KPOINT-D/2, (KPOINT-D/2

EGVECT(K.L) - CMPLX ( EGVECR ( K , L) , EGVECI (K, L)

)

END DO
END DO

RETURN
END

***************************************************************

SUBROUTINE QANDR ( KPOINT , NPOINT , D , Q , S , RMAT , R , EGVECT , PREF3

,

+ TYPEPRE, A, POSTF3, TYPEPOST, B,T,FK, SCANW, PLENGTH)

INTEGER NPOINT , KPOINT , TYPEPOST , TYPEPRE
REAL D(-31:31) ,PREF3,FK(-31:31) ,PI,A(12) ,8(12) ,SCANW,

+ POSTF3 , PLENGTH
COMPLEX Q(-31:31, -512:512) ,S(-512:512) ,R(-31:31)

,

+ TEMP(-31:31) ,RMAT(-31:31) , EGVECT (-31: 31, -31: 31)

,

+ FILT

PI«3. 1415926

DO N - -(NPOINT/2-1)
, (NPOINT/2-1)

FN - N/PLENGTH
DO K - -(KPOINT-D/2, (KPOINT-l)/2

X - 2*PI«(FN-FK(K))«T

Q(K,N) - FILT(FN,PREF3, TYPEPRE, A, SCANW)

*

+ CONJG ( FILT ( FK ( K) , PREF3 , TYPEPRE , A , SCANW
)

)

<

+ FILT(FN-FK(K) , POSTF3 .TYPEPOST, B, SCANW)

*

+ CMPLX( COS(X), SIN(X) )

END DO
END DO

DO K - -(KPOINT-D/2, (KPOINT-l)/2
TEMP(K)-0
DO N » -(NPOINT/2-1)

,
(NPOINT/2-1)

TEMP(K)-TEMP(K) + D(K) *Q (K,N) »S (N)
END DO

END DO

DO K - - (KPOINT-D/2, (KPOINT-l)/2
RMAT(K)-0.
DO L - -(KPOINT-D/2, (KPOINT-D/2

RMAT(K) - CONJG(EGVECT(L,K) )*TEMP(L) * RMAT(K)
END DO

END DO

RETURN
END

C*****************************************************************



SUBROUTINE STATS ( YMEANN , YVARN , YMEANS , YVARS , KPO INT , EGVALS
+ RMAT.YS)

REAL YMEANN, WARN, YMEANS, WARS, EGVALS (-31: 31) , YS
COMPLEX RMAT(-31:31)
INTEGER KPOINT

YMEANN-O.
YMEANS-O.

DO K - -(KPOINT-D/2, (KP0INT-l)/2
YMEANN - YMEANN * EGVALS (K)

END DO
YMEANS » YMEANN + YS

YVARN-0

.

WARS-0

.

DO K - -(KPOINT-D/2, (KPOINT-l)/2
WARS - WARS + 2*( RMAT(K) *CONJG(RMAT(K)

) ) EGVALS (K) "2
YVARN - WARN + 2 . *EGVALS (K) *»2

END DO
WARN - WARN -

( YMEANN ) »«2
THE MEAN OF THE NOISE IS ', YMEANN
THE NOISE VARIANCE IS '

, WARN

THE SIGNAL MEAN IS '
, YMEANS

THE SIGNAL VARIANCE IS '
, WARS

TYPE *

TYPE »

TYPE *

TYPE »

TYPE »

TYPE *

TYPE •

RETURN
END

*************************

SUBROUTINE NOISEPDF (KPOINT, NPOINT, DEGVALS , KK, PDFND, DELTAY EGVALS
+ PDFN)

INTEGER KPOINT , NPOINT
DOUBLE PRECISION DEGVALS (-31: 31) , KK(-31 : 31) , PDFND (0 : 1024) , DUM
CHARACTER*80 NAME3
REAL EGVALS(-31:31) , DELTAY, SUMK, PDFN(0 : 1024)

SUMK-0.
DUM » DEXP(-50.0D0)

DO K - -(KPOINT-D/2, (KPOINT-D/2
IF (DEGVALS(K) .LE.O) THEN

KX(K)-0.0
ELSE

KK(K)-1.0
DO I —(KPOINT-D/2, (KPOINT-D/2

IF (I.NE.K .AND. DEGVALS (I) . GT. 0) THEN
KK(K)-KX(K)/(1.- DEGVALS (I) /DEGVALS (K)

)

END IF
END DO
SUMK - SUMK + KK(K)

END IF
END DO
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TYPE », 'AREA UNDER NOISE ONLY PDF - ',SUMK

DO IY » 0, NPOINT-1
PDFND(IY)-0.
Y1-IY»DELTAY
DO K— (KPOINT-D/2, (KPOINT-D/2

IF (EGVALS(K) .OT.O .AND. KK(K).NE.O) THEN
PDFND(IY)-(KK(X)/(DEGVALS(K)

)
)*

+ EXP(-Y1/(DEGVALS(K)
)

)

+ + PDFND(IY)
END IF

END DO
END DO

DO IY - 0, NPOINT-1
PDFN(IY) - REAL(PDFND(IY)

)

END DO

CALL SGOPEN ( 9
,

' WHITE '

,
' PDF FOR NOISE ?

'
,NAME3 , 'REAL

'
, NPOINT-1)

CALL SGTRAN(9, 'WRITE' , 'REAL' , PDFN, NPOINT-1)

RETURN
END

************ ********************

SUBROUTINE SANDNPDF ( PY , YMEANS , YVARS , NAME4 , SI , YS

,

+ KPOINT, EGVALS, RMAT, YMEANN.NPOINT)

INTEGER IFLAG,KPOINT
R£AL YMEANS, PY(0:1024) , SI, PI ,NU1, SI , X2 ,X3 , YS,

+ EGVALS(-31:31) ,Y1
COMPLEX RMAT(-31:31)
CHARACTER* 9 NAME 4

PI - 3.1415926
YSTEP-( YMEANS + 10«SQRT (YVARS) )/(100)
COMP-.OOl
SUBI=10

DO IY-0, 100-1
Y1«IY*YSTEP
ZERO-PI/ABS (YS+YMEANN)
SS-ZERO/SUBI
IFLAG-0
NU1«0
SI»0
DO WHILE(ABS(S1) .GE.COMP .OR. IFLAG.LT.2)

X2-0
X3-0
DO I - l.SUBI-1

X2 - X2 + PINT(NU1 + I«SS, KPOINT, EGVALS, RMAT, YS.Y1)
END DO
DO I-l.SUBI

X3 -X3+PINT (NU1+ (I- . 5) *SS , KPOINT, EGVALS , RMAT , YS , Yl

)

END DO
Tl » PINT(NU1, KPOINT, EGVALS, RMAT, YS.Y1)
T2 - PINT(NUl+ZERO, KPOINT, EGVALS, RMAT, YS,Y1)

SI - (SS/6)»(T1 + T2 + 2*X2 + 4*X3)
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IF (ABS(Sl) .LT.COMP) THEN
IFLAG=IFLAG + 1

ELSE
IFLAG-0

ENDIF

nui - nui + ZERO
SI - SI + SI

END DO
IF ( SI.LT.0.0) THEN

SI-0.0
END IF
PY(IY)-SI
END DO
CALL SGOPEN(4,

'

WRITE ' ,

CALL SGTRAN(4, ' WRITE ' ,

PDF S+N FILE?' ,NAME4, 'REAL' ,100)
REAL' ,PY,100)

C*********************************************************************

SUBROUTINE THRESH (VT, FAR, NPOSTF3 .NPREF3 , KK, DEGVALS , KPOINT, YMEANN)

DOUBLE PRECISION KK(-31: 31) , DEGVALS (-31: 31) , X.DUM, PROB, FVT,
& FVT1 , FVT2 , FVT3 , PFA , PNA , VT , VT1 , VT2 , VT3 , TOL

,

4 TEMPI , TEMP2 , VTOLD
INTEGER PASS, KPOINT, II, 13
REAL NPOSTF3 , NPREF3 , FAR

,

+ EGVALS (-31:31)

DUM - DEXP(-50.0D0)
C TYPE * ,

' FAR IS : ' , FAR
C TYPE »,'NPREF3 IS: ',NPREF3

DUM - FAR/(2.D0*NPREF3)
C TYPE » ,

' DUM IS : ' , DUM
PROB - 1.0D0 - DUM

C TYPE * ,
' THE PROB IS : ' , PROB

VT1- 0.0D0
VT2- 50.0D0
TOL - ABS(0.5*(VT1-VT2)

)

DO WHILE (TOL .GE. 0.000001)
VT3 - (VT1+VT2)/2.0D0

C TYPE •, 'VT1 IS " ,VT1
FVT1 - FVT (KX,VT1, DEGVALS, KPOINT) - PROB

C TYPE * , 1

'

C TYPE *,'VT2 IS ',VT2
FVT2 - FVT (KK.VT2, DEGVALS, KPOINT) - PROB

C TYPE • , 2 •

C TYPE «,'VT3 IS ',VT3
FVT3 FVT(KK,VT3, DEGVALS, KPOINT) - PROB

C TYPE * ,
'
3

•

C TYPE *,
' '

C TYPE * , VT1 , VT3 , VT2
C TYPE •,FVT1,FVT3,FVT2
C TYPE » ,

' '

IF ( (FVT1.GT.0.0.AND.FVT3.GT.0.0) .OR. (FVT1 . LT. . . AND.
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FVT3 . LT . .
) ) THEN

VT1 - VT3
ELSZ

VT2 » VT3
END IF

TOL • ABS(0.5*(VTI-VT2)

)

VT - VT3
TYPE ,' THRESHOLD BY BISECTION IS: ',VT

C************************************* ***************„***«*,,
C LETS TRY NEWTON'S METHOD
C******************************** **************«***********,,

TOL-1.0D0
PFA-FAR/ ( 2 . D0*NPREF3

)

C TYPE * ,
' PFA IS ' , PFA

PNA-1.0D0-PFA
C TYPE « , ' PNA IS '

, PNA
VTOLD -3.D0*YMEANN

C TYPE » ,
' THRESHOLD IS ' , VTOLD

DO WHILE (TOL.GT.l.E-6)
TEMP1-0.D0
TEMP2»0 . DO
DOM - EXP(-50.D0)
DO K - -(KPOINT-1J/2, (KPOINT-D/2
IF (KK(K) .NE.0.0D0 .AND. DEGVALS (K) . GT. . 0D0) THEN
DUM • DUM + 1.D0
TEMPI - TEMPI + KK(K)*(1-EXP( -VTOLD/

+
( DEGVALS ( K) ))

)

TEMP2 - TEMP2 + (KK(K) / (DEGVALS (K) ))

*

+ EXP(-VTOLD/(DEGVALS(K)
)

)

END IF
END DO

VT « VTOLD + (PNA-TEMP1)/TEMP2
C TYPE *, 'VT IS ******** ',VT

IF (VT.GT.50.0D0) THEN
VT - 50.000

END IF

TOL=ABS(VT - VTOLD)
VTOLD-VT
END DO

TYPE »

TYPE *

TYPE *

TYPE *

TYPE *

RETURN
END

THRESHOLD VOLTAGE BY NEWTON-RAPHSON IS : ' , VT

**************
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SUBROUTINE PDETECT (SI, PDET , YMEANN , YVARN , KPOINT , EGVALS

,

+ RMAT,YS,VT)

DOUBLE PRECISION VT
REAL SI, PDET, VMEANN, YVARN, EGVALS (-31: 31) , YS

,

+ Tl , T2 , NU1 , NUINT (0:100)
INTEGER KPOINT
COMPLEX RMAT(-31:31)
CHARACTER'S NAME13

DO I - 0,100
NU1 - 1/4
NUINT (I) P1INT(NU1, KPOINT, EGVALS, RMAT.YS.VT)

END DO

CALL SGOPEN ( 13 ,' WRITE ',' PDET INT FILE? ', NAME13 , 'REAL' , 101)
CALL SGTRAN(13, 'WRITE' , 'REAL' , NUINT, 101)

PI-3. 1415926
COMP-1 . E-7
SUBI-10
ZERO-PI/ABS (YS+YMEANN)
SS-ZERO/SUBI
IFLAG«0
NU1-0.
SI-0.

DO WHILE(ABS(S1) -GE.COMP .OR. IFLAG.LT.2)
X2 -
X3 -
DO I«1,SUBI-1

X2 - X2 + P1INT(NU1+I*SS, KPOINT, EGVALS, RMAT.YS.VT)
END DO
DO I-l.SUBI

X3 - X3 + P1INT(NU1 (I-.5)*SS, KPOINT, EGVALS, RMAT.YS.VT)
END DO

Tl - P1INT(NU1, KPOINT, EGVALS, RMAT.YS.VT)
T2 - P1INT(NU1+ZER0, KPOINT, EGVALS, RMAT.YS.VT)

SI " (SS/6)*( Tl + T2 + 2*X2 + 4*X3)
IF (ABS(Sl) .LT.COMP) THEN

IFLAG-IFLAG+1
ELSE

IFLAG-0
END IF

NU1 - NU1 + ZERO
SI - SI + SI

END DO

PDET-.5-SI/PI
TYPE « ,

' PDET IS ' , PDET

RETURN
END
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REAL FUNCTION PINT (NU, KPOINT, EGVALS , RMAT, YS , '/I)

INTEGER KPOINT
REAL NU , TEMPI , TEMP2 , TEMP3 , TEMPA , YS

,

EGVALS(-31:31)
Y1,PI,

COMPLEX RMAT(-31:31)

PI - 3.1415926
TEMP1-0
TEMP2-1
TEMP3-0

DO K - -(KPOINT-D/2, (KPOINT-1J/2
TEMPA - 1 EGVALS (K)**2 * NU»«2
TEMPI - (ABS(RMAT(K) )**2 « NU**2)/TEMPA + TEMPI
TEMP2 - SQRT (TEMPA) *TEMP2
TEMP3 - ABS(RMAT(K) )**2 »EGVALS(K)» NU"3/TEMPA -

+ ATAN(EGVALS(K)*NU) + TEMP3
END DO

PINT - ( EXP ( -TEMPI J/TEMP2) » COS ( (YS-Y1) *NU - TEMP3)/PI

RETURN
END

C********************************************* ********* *********

REAL FUNCTION P1INT(NU, KPOINT, EGVALS ,RMAT, YS.VT)

INTEGER KPOINT
DOUBLE PRECISION VT
REAL NU, TEMPI, TEMP2.TEMP3, TEMPA, YS , PI,

+ EGVALS(-31:31) , SUM
COMPLEX RMAT(-31:31)

IF (NU.NE.O.) THEN
TEMPI «
TEMP2 - 1

TEMP3

DO K - -(KPOINT-D/2, (KPOINT-D/2
TEMPA 1 + EGVALS (K) **2 * NU«*2
TEMPI - (ABS(RMAT(K) )**2 » NU**2) /TEMPA + TEMPI
TEMP2 - SO.RT (TEMPA) »TEMP2
TEMP3 - ABS(RMAT(K) )«2 * EGVALS(K) NU*»3/TEMPA

+ ATAN( EGVALS (K) *NU) +TEMP3
END DO

PUNT - (EXP(-TEMP1)/(TEMP2*NU) ) *SIN ( (VT-YS) »NU+TEMP3

)

ELSE
SUM - 0.
DO K— (KPOINT-D/2, (KPOINT-D/2

SUM - SUM + EGVALS (K)
END DO

PUNT -VT-YS - SUM
END IF
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RETURN
END

REAL*S FUNCTION FVT (KX, VT, DEGVALS , KPOINT)

?S~^PRECISI0H KK(-31:31),DEGVALS(-31:31),DUM,VT,TEMP
INTEGER KPOINT
REAL EGVALS(-31:31)

TEMP » 0.0D0
DUM - DEXP(-50.0D0)

DO K - -(KPOINT-l)/2, (KPOINT-l)/2

IF (KK(K) .NE.0.DO .AND. DEGVALS (K) .ST. . 0D0) THEN
TEMP - KK(K)*( 1 - EXP (-VT/ ( DEGVALS (K)

+
) ) ) + TEMP

END IF
DUM - DUM + I. DO * TEMP

END DO

FVT = TEMP

RETURN
END
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ABSTRACT

This thesis investigates the probability of detecting an RF pulse

incident on a frequency compressive receiver (FCR) . The FCR is

considered with and without a lowpass post filter.

A mathematical series representation is used to characterize the

signal and the noise incident on the receiver. Then, a matrix

representation of the filter output is developed. The probability

density function of the output is obtained by taking the Fourier

transform of the characteristic function of the output. Given this

probability density function, the probability of detection is

numerically evaluated as a function of a specific threshold.

The probability of detection is examined for three configurations

of the parameters associated with the FCR. Optimization of the FCR in

terms of the filter's dispersion time and RF bandwidth is also

considered.


