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Chapter 1
INTRODUCTION

The relatively new field of reliasbility engineering has been de-
veloped primarily due to the complexity, sophistication and automation
which characterizes large scale systems for both military and commercial
operations. The problems of field failures, repair and maintenance,
became critical for military equipment used in World War II. The study
of reliability in the sense we know it today began in military, indus-
trial and space flight applications in the late 1940s and early 1950s.
Reliability studies and practices were first applied as a result of the
complexity of electronics and control systems in the fields of communi-
cation and transportation. The low percentage of success for the first
guided missile, the NIKE, in late 1951 was an example of where the con-
cepts of reliability were required. The Radio Electronic and Television
Manufacturers Association (now known as Electronic Industries Associ-
ation define reliability as follows, "Reliability is the probability of
a device performing its purpose adequately for the period of time in-
tended under the operating conditions encountered".

Now it has been reported that it costs the armed services in the US
about $2 per year to maintain every dollar spent on electronic equip-
ment. These figures may well be typical of commercial operations as
well. It is only in recent years that attention has been directed to
the branch of reliability which deals with the design and implementation
of proper maintenance policies. The literature available on mainten-

ance policies is neither cohesive nor standardized and hence a unified



presentation would serve a great need.

One principle area of interest in this work is to study the de-
sign, control, synthesis and improvement of corrective and preventive
maintenance policies from a systems viewpoint. According to an old ad-
age ''you can't test or inspect reliability into a product; it has to be
designed in". So a cradle to the grave responsibility for reliability
needs to be assumed starting from the design stage through the operational
stage. When maintenance is available, an appropriate measure of relia-
bility is needed which takes into account the duration of repairs as well
as the frequency of failures, this is called "availability". Other
measures of reliability exist but availability seems to incorporate the
most important considerations into a single measure.

A procedure is described where availability is used to determine an
optimum system. A model is developed for the availability of a system
consisting of stages, where each stage has identical units in parallel.
The policy considered is one where corrective maintenance is performed
when the system fails and preventive maintenance is performed after a
fixed period of time. The exponential distribution is assumed for failure
and repair times, The parameters for the model include the failure and
repair rates for the units in each stage, the mission time, and the pre-
ventive maintenance period. The same approach can be used to develop
availability models for systems with different configurations. The costs
included in the model are:

a. The cost for designing failure and repair rates

b. The cost for corrective maintenance

c. The cost for preventive maintenance



The optimum availability problem is basically a nonlinear programming
one and the optimization method used for solving it is the Sequential
Unconstrained Minimization Technique (SUMT). The difficulties in using
the first order and second order derivatives of the complex expression
for availability was bypassed by the use of the modified method of SUMT
developed by Lai [42]. The program is used to determine the value of
parameters which will minimize total cost of the system subject to an
availability constraint. Additional constraints are included to keep
the parameters within specified upper and lower bounds. The mission

times are preselected.



Chapter 2
BASIC CONCEPTS

2.1 INTRODUCTION

Reliability engineering is concerned with the study of random or
chance and wearout failures and the prevention, reduction, or complete
elimination of them. Reliability is defined as the probability that a
system will perform satisfactorily for a given period of time when used

under stated conditions. The simplest and most common failure proba-

bility density function used is the exponential distribution f£(t) =le-lt
where A is the failure rate in failures per hour. The reliability
function R(t) is given by
o
R(t) = I f(x)dx = e_At (2.1)
t

According to Rohn [56], when maintenance is always obtainable, an
appropriate measure of reliability should take into account the dura-
tion of repairs as well as the frequency of failures. Consider the
probability that at least one of the channels of a multichannel piece
of equipment will operate for a specified period of time, If the dis-
tribution of repair times is not included, the usual reliability expres-
sion does not account for the fact that both channels could fail during
the period and yet with short repair times the channel down times might
not overlap. Also, the fraction of time during which at least one channel
is expected to operate is dependent upon both the operating time and re-
pair time. Hence one or more measures of system effectiveness seems ap-

propriate., The principal measures of system reliability and effectiveness



are
1. Availability
2. Probability of Survival
3. Mean Time To Failure
4. Duration of Single Downtimes
5. Maintainability
6. Dependability
7. Mission Availability
Sometime these measures are combined with other system measures into

a single measure of system effectiveness.

2.2 AVAILABILITY

This is the measure of primary concern to us and is applicable to
maintained systems. By definition, "availability" is the probability
that the system is operational at any time during the mission period.
There are several categories of measures of availability-which are used
today. These are

a. Instantaneous Availability, A(t): the probability that the
system will be operational at any random time t.

b. Average Up Time or Average Availability, A(T): the probability
that the system is operational over a specified interval and
is computed as the proportion of time in that interval that
the system is operational.

c. Steady State Availability, A(=): the probability that the
system is operational when the time interval considered is
very large and is computed as the proportion of time that the

system is operational.



These three availability measures are shown in Figure 2.1 and are
defined as

a. Instantaneous availability, A(t)

T

b. Average Uptime, A(T) =-% f A(t)de (2.2)
0

-¢c. Steady State Availgbility, A(~) = lim A(T). (2.3)

T

If the time to failure and repair times are exponentially distributed
with parameters A and p respectively for a single component, then

A(®) = T']-:-]J_ : (2.4)
The total mission time usually includes the operating time, the active
repair time, the administrative time and the logistic time. If the ad-
ministrative time and the logistic time are excluded, ARINC [70] refers
to this as intrinsic availability.

For definitions of the other measures of system reliability fffective-
ness see Appendix I. Also covered there is, a discussion of failure rate

and the choice of the distribution for failure and repair time.

2.3 CORRECTIVE AND PREVENTIVE MAINTENANCE

At one time or another all recoverable systems are subject to some
form of maintenance. In general, there are two categories of maintenance
actions. The first is off-schedule or corrective maintenance and is per-
formed whenever there is an inservice failure or malfunction. The system
operation is restored by replacing, repairing or adjusting the component

or components which caused the interruption of service. The second category
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Figure 2.1,

Availability versus time graph showing the three availability

measures.



is the scheduled or preventive maintenance and is performed at regular
intervals to keep the system in a condition consistant with its built in
levels of performance reliability and safety. According to Bazovsky [11],
during preventive maintenance, servicing, inspection, minor and major over-
hauls are done such that
"l. regular care is provided to normally operating subsystems and
components which require such attention (lubrication, refueling,
cleaning, adjustment, alignment ete,)
2, failed redundant components are checked, replaced, or repaired
if the system contains redundancy, and
3. components which are nearing a wearout condition are replaced
or overhauled."
Though it appears that overhauls should be scheduled and accomplished to
achieve the desired system reliability effectiveness, other factors affect
the establishment of proper times between overhauls as pointed out by
Riddick [55]. Briefly these factors are
«1l. the age, mission and performance requirements of the system,
-2, the cost of overhauls in comparison with available budget
funding,
3. the moderization program to update capabilities,
~ 4. the availability of supplementary repair forces and spare

parts.

2.4 _RELIABILITY MODELS OF SYSTEMS WITH CORRECTIVE MAINTENANCE
Corrective maintenance is concerned with putting the system back

into operation after it has failed either through random or wearout



failure. Let us consider the problem of developing mathematical models

for the reliability of systems that can be maintained while in use. We
shall employ a Markovian approach for describing stochastic behavior under
a variety of failure and repair conditions. To generalize the situation,
let us assume that the outcome on any trial depends upon the outcome of the
directly preceding trial so that a conditional probability needs to be as-
sociated with every pair of outcomes. We also introduce space and time
concepts. A space of possible states for example need to be defined and
how transitions are made over a sequence of trials. We are interested in
processes that are continuous in time and discrete in space. This approach
was developed by Barlow and Hunter [6,7] and Epstein and Hosford [22].

Let us assume that an individual piece of equipment fails in accor-
dance with the exponential distribution and that the times to repair are
also exponentially distributed with parameters A and p respectively. The
reason for selecting the exponential distribution for failure and repair
tiges is that the lack of memory property is inherent and hence is a
Markovian Process. A non Markovian approach would be needed if the con-
ditional transition probabilities vary with time. Sandler [59] mentions
that a full description of the reliability of a given system which can
be maintained requires the following to be specified,

"l. the equipment failure process

2. the system configuration
3. the repair policy

4. the state in which the system is defined to be failed".

A System with a Single Unit.

Suppose that we have a one unit system with a constant failure rate
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A and a constant repair rate i, Let us define the following mutually
exclusive states

State 0: The system is operating.

State 1: The system has failed aﬁd repairs have begun.
Let Pi(t) for 1 = 0,1 denote the prob;bility that at time t the system is

in state i. The expression for availability A(t) is given by

- _ A=At
A(t) = Po(t) ~ +_—_l+u e (2.5)
and
_ A A =0+t
Pl(t) = x;;— pvo e {(2.6)

Complete details of the derivation may be seen in Rau [54] and Sandler
[59].

The initial condition for this system was that at time 0 the system
was in perfect condition, that is, PO(O) = 1 and Pl(O) = 0. Somewhat dif-
ferent expressions for availability would be obtained if the initial con-
ditions were different. Figure 2.1 shows a graph of A(t) versus time t.
With increasing time, the second term in the expression for availability
becomes smaller and A(t) approaches a steady state. For example for
A = .01 failures per hour, and u = 1.0 repairs per hour, the system
reaches steady state in about 20 hours of continuous operatiom.

For the single unit system, if we are interested in the average up-
time for a definite period of time T, we simply sum A(t) over the time
interval of interest and divide by the total time T (equation 2.2), 1In

this instance we have
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AT = o A - A g~ (MHWIT (2.7)
O+)"T ()T
To determine the long term or steady state availability of the system
we can let T + « and find that

R v (2.8)

In reliability literature one frequently finds availability defined as

follows

MITF

= MTTF + MRT (2.9)

A

where MITF = Mean Time To Failure. For a single unit this is also
sometimes called MIBF, Mean Time Between Failures
MRT = Mean Repair Time
Expressions (2.8) and (2.9) are the same since
1/ = MTITF

1/u = MRT.

The availability expression for a single unit having Weibull distributed

times to failure and repair can be seen in Appendix 1.

2.5 RELIABILITY MODELS OF SYSTEMS WITH PERIODIC MAINTENANCE

Preventive maintenance 1s usually associated with wearout failures.
It is a particular category of maintenance designed to optimize the re-
lated concepts of reliability effectiveness and the costs that accrue
when a system needs to be repaired. Preventive maintenance policies
consist of some action depending upon either the operating age of certain

components in the system, the state of system degradation or the system
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configuration. In the first case a preventive maintenance policy is
usually some program for the planned replacement or repair of certain
critical components after they have accumulated a given number of oper-
ating hours. In the second case the preventive maintenance policies are
designed to minimize the time the system will spend in the degraded state.
In the third case the preventive maintenance policies consist of periodic
inspection and repair to increase the mean life of the system.

Planned replacements or maintenance actions are advantageous for
systems and parts whose failure rate increase with time, or are less costly

o

to replace or repair when operating than after failure. 'Planned replace-
ments or maintenance actions are also advantageous for systems whose con-
figurations are such that the probability density function exhibits a
variability of failure times less than that of the exponential distribution.__
Under preventive maintenance policies it may be possible either to in-
crease a piece of equipment's availability or reliability or to minimize
the total cost of replacement and repairs. To replace an item before it
has aged too much may be wise on one hand, but on the other hand excessive
costs will be incurred if too frequent replacements are planned. Thus one
of the most important maintenance problems is that of specifying a main-
tenance policy which balances the cost of failures against the cost of
preventive maintenance actions in order to minimize total maintenance
cost. Of course, some reliability effectiveness criterion will have to be
sgpisfied.

To realize the maximum of trouble free life, the ideal preventive

maintenance policy would be to replace or repair a unit just prior to



failure but this is next to impossiﬁle in practice. It is only in recent
years that a concerted effort has been made to develop a general mathe-
matical theory of optimal preventive maintenance procedures when the com-
ponents and systems are subject to failures. T?gt;,-veral factors must be
weighed simultaneously to achieve a balance between the related concepts
of reliabi;ity, availability and maintenance costs for any piece of equip-
ment. The various factors that need to be considered are mentioned in
ARINC [70] and are the following
"1, Reliability and availability index and time duration desired;
2, the cost of an inservice failure;
3. the cost of preventive maintenance before failure;
4. the most economical point in the equipments life to effect
this replacement; and
5. the predictability of the failure pattern of the equipment
under consideration."

Zelen [81] has outlined the different type of preventive maintenance
policies. 1In a strictly periodic policy we may replace or take a main-
tenance action exactly at the time of failure and after every fixed T
hours. Or we may choose to perform preventive maintenance only T hours
after the last failure was repaired or preventive maintenance performed
which ever comes later. Again there could be a random periodic policy in
which T is a random variable. A sequentially determined replacement or
repair policy is one in which the replacement or repair interval is de-
termined at each replacement or repair in accordance with the time re-
mgin}ng in the total mission time. The words replacement and repair are

both used in context of a failed equipment on which a maintenance action

13
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is done to restore it to a normally operating state.
A relationship was developed by Weisshaun {Z4] that gives the average

hourly costs in terms of two costs Kl and K2 and the failure probability

distribution, of the item. The model is as follows

K, - (& - K,) G(r)
T
[ &) at SR
0 =

A(T) = (2.10)

where A(T) the average hourly cost

the expected cost of an inservice failure

.

-~
n

2 the expected cost for preventive maintenance

[p]
~
—
~
]

the probability that a repaired unit will last at

least T hours before failure

4
]

the fixed period for a preventive maintenance action.

The cricial factor in arriving at a decision regarding preventive main-

tenance is the ratio of K, to K,. Let K = K1/K2. As K increases the

lowest average hourly cost is realized by performing preventive maintenance

as shown in Figure 2.2. The family of curves for various ratios of Kl to

KZ is shown for a component exhibiting normal wearout. When K = 1 there

is no advantage of preventive maintenance and the equipment should be

allowed to run to failure. Preventive maintenance is advantageous when

K> 1. £ s
It may be mentioned that if there is no information regarding the

failure distribution then the optimal policy is not to consider any pre-

ventive maintenance.

2.6 Variability of Failure Times and Preventive Maintenance.

Equipment failure distributions were studied by Cho [18] and he found
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COST UNDER POLICY OF

REPAIR OR REPLACEMENT
AT FAILURE ONLY

AVERAGE HOURLY COST A(Tr) —

k=10

HOURS OF OPERATION v —

Figure 2.2, Average hourly cost of scheduled maintenance after ¢ hours of

operation for a component exhibiting normal wear-out.



that profitability of preventive maintenance depends on one of the most

important parameters which characterize any demsity function; namely vari-

ability, Var(t). More specifically, the preventive maintenance schedule

is worthwhile for that type of equipment which exhibits a probability

density function of failure times with variability less than that of the .

exponential distribution. The variability of the exponential demsity

function is 1/12 where A is the equipment failure rate.

Let f(t) = re"AE

E(t) = [ t £(t) dt -
0
1 -1
=5 T'(2) __. - (2.11)
Ee?) = [ t? £(t) a
0
1 2
=L pigy = 2 (2.12)
2 2
Var(t) = e - [E(0)1°
= (2.13)

2__1 _1
a2 a2 2

Next consider two identical units in parallel with each unit having an
exponential failure distribution with parameter A. If Rs(t) is the re-
liability distribution of the system and Rl(t) and Rz(t) the reliability

distributions for units 1 and 2, then
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RL(E) = Ry (£) + Ry(t) - R (£) + Ry(t)

= 2e_lt - e-ZAt (2.14)
dRS(t)
fs(t) =T dt
= e VF = ghe 2AC (2.15)
E(t) = [ t(2e - e ae
0
sl L .3
YT (2.16)
Et?) = [ 2@ - 2e7 %) ae
0
=_4_2_,L2=L2 (2.17)
Y G
2 2
Var(t) = E(t") - [E(t)]
-l _ 32 _.3 (2.18)

For purpose of comparison of variability, let us assume we have a single

unit with the same mean 1ife as that of the system having two identical

(qu'u&‘u)
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units in parallel, then the variability of the single unit with a failure

rate Z% is
Var(e) = —4— = 2, (2.19)
&y @
3
Since —25 > —éz the variability of the system is less than the vari-
42 4 -

ability of the one with the exponential failure distribution, hence pre-
ventive maintenance is worthwhile.

Let us next consider another system consisting of eight functional
subsystems connected in series. Each subsystem has approximately the
same failure rate and is individually characterized by the exponential
failure distribution. Since the subsystems are in series, each of them
needs to operate satisfactorily in order for the system to operate sat-
isfactorily. Let us assume that failure can occur only at one subsystem
at any random instant of time. The system can be described by an Erlang
(K = 8) density function composed of K = 8 exponential subfunctions. The

Erlang density function is given by

K K-1 -Kit
£(r) = EA_A8)__e (2.20)

Further it can be proved that

K-1 n

R(t) = e F ] &3 (2.21)
@=0 ]

E(t) =% (2.22)
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Var(t) = —— = &5, (2.23)
(X)) KA ’ .
Since 12 < li for K= 8
KA X

the system variability of times to failure is less than that of the
equivalent exponential case with the same mean time to failure; preven-
tive maintenance is worth considering.

Three curves which are markedly different in their shapes are con-
sidered in Figure 2.3. The significance of their variability upon the
shape of the curves is revealed:. Density functions a, b, and ¢, repre-
sent hyperexponential, exponential and Erlang K > 1 respectively. Var-
iability in times to equipment failure is the greatest for the case of

curve a, then b and ¢ in descending order. Variability is also closely

related to failure rates. When the equipment failure rate is known to be

decreasing over some period, preventive maintenance is not worthwhile
since this corresponds to the case of greater variability than that of
the exponential function. Table 2.1 outlines cases where preventive

maintenance is advisable and is taken from Cho [18].
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Chapter 3
LITERATURE SURVEY

The Markovian approach in the formulation of reliability models for
systems with repair was developed by Barlow and Hunter [6,7] and Epstein
and Hosford [22]; Laplace transforms are used to solve the set of dif-
ferential difference equations. Systems with repair indicate that cor-
rective maintenance actions upon failed components are possible. The
system are assumed to have a stochastic behavior under a variety of re-
pair and failure conditions. This means that repair times and failure
times are exponentially distributed in order to have the Markovian no
memory property. Davis [19] shows that under the usual conditions of
operation oflequipmeut composed of many component parts of various types,
the operating time between failures are ordinarily found to be exponen-
tially distributed. Hall et. al. [32] have shown that after long periods
of time all redundant systems behave as if their individual components
had exponential failure and repair times. Rohn [56], on the assumption
of exponential repair times, developed models for availability. Later
on he conducted Monte Carlo simulation studies with repair times having
non exponential distributions and found that the tests agreed closely
with the desired expressions in which an exponential repair time was
considered. Most reliability analysis permits the use of exponential
distributions for repair and failure times for reasons mentioned earlier.
Subsequently a variety of models utilizing a Markovian approach and

having availability as the measure of system reliability effectiveness
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were developed for various system configurations. Models for systems
with a single unit, units in parallel and standby, and units in series
under different repair policies may be seen in Sandler [59], Shooman [62]
and Rau [54]. Rau has pointed out that series systems with repair offer
gg(igq;ggﬁgJin reliability, however if the objective is to keep operating

as much as possible during a specified interval then repair is valuable.

Adt 1 - Adt Rohn [56] presented a

Based on the approximation e
different approach in the derivation of expressions for availability of
a system with channels in parallel. Since standby channels are often
operated at reduced stress levels and are not completely shut down, he
introduced a factor k to be assoéiated with the transition probabilities.
k ordinarily has a value between 0 and 1; when k = 1 it is assumed that
the standby channel is operated exactly as the operating channel but the
output is not used; when k = 0 the standby channel is shut down. Feller
[25] derived an exPréssion for an r-channel system with individual k
factors employed for the standby channels. In this expression, only the
average effect of overlapping repair periods were predicted but Stein
and Johnsen [63] determined the distribution of these periods. It was
shown that if switching time was considered, then degradation due to in-
creased switching time overshadows the gain from the increased lifetime
of the standby channel which does not operate. Even though the switching
time is considerably less than the repair time, the probability that any
instant will fall during a switching period is of the same magnitude as

the probability that the system has failed since the occurence of switching

is more frequent than that for simultaneous repair periocds. Kneale [40]
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also has done some work in developing expressions for reliability of
parallel systems with repair and switching.

McGregor [46] has developed good approximation formulas for avail-
ability of systems with repair and Arms and Goodfriend [3] have provided
graphs and tables to obtain quick estimates of reliability measures.
Gaver [30], Muth [50]randra_host of others have doneregtensive research
in Ehg analysis of models for systems with repair. Henry [35] has studied
the same problem with em%ﬁasis on weapon sysgém;: Lewis and Gray [44)
have put confidence intervals on availability. Garg [29], Finkelstein
and Schafer ]28)], and Wohl [79] have preferred to develop models for
systems with repair using dependability as a measure of system reliabil-
ity effectiveness instead of the more usual availability. Weinstock [71]
and Heenan [34] have elaborated on the use of matrix algebra in the_de-_
vg}gggent of these type of models. Since availability is composed of
two factors reliability and maintainability, Westland and Hanifax [77]
have shown trade off procedures between these two to determine optimum
combination which (a) maximizes availability for a given dollar outlay
or (b) minimizes cost for given levels of availability. The model de-
veloped in this thesis is capable of doing both and the outlock is more
general in nature as will be seen later.

Due to the complexities involved, not much work has been done where
the failure and repair times of the system are non-exponential. Hall
et. al. [32] have investigated the development of reliability formulas
for redundant configurations when failure and repair times follow com-

binations of the exponential, Weibull and Log normal distributions. As an
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alternative to evaluating the inverse Laplace transformation needed to
solve the set of difference-diffeéential equation, the half-range Fourier
cosine series was_used. This method is used in computer programs.
Leibowitz [43] has developed a model for a two element redundant system
with generalized repair times. Wohl [79] has developed expressions for
availability of a single unit system when times to failure and repair
have a @gihglluq;gggékgtion.

By incorporating an appropriate blend of engineering and mathematical
analysis, Faragher and Watson [24] have developed highly flexible simu-
EEEEQQHFEEEEQSHEE for availability analysis of a number of complex systems.
Earlier analysis utilizing Monte Carlo simulation techniques had revealed
varyipg degrees of lack of realism. TFor example the simulation was in-
flexible with respect to, say, configuration changes thus making it un-
suitable for study of optimization of availability through equipment re-
dundancy. Others had concentrated on mathematical aspects of the simu-
lation and neglected the engineering aspects that are essential to ob-
taining a realistic evaluation of availability. An important aspect of
computer simulation of models is that it yields the range of values that
would occur with any desired confidence.

Up to this point, the discussion has centered on reliability models
for systems with corrective maintenance. The effects of preventive
maintenance along with corrective maintenance on reliability models will
now be discussed. The earliest documented approach to planned replace-

ment problem was made by Campbell [16] although previous investigations

in inventory theory had posed similar questions. Campbell was concerned



26

with the problem of replacement of light bulbs either en masse, or as
they failed. Since the treatment did not include some of the general
results of renewal theory it does not have wide applicability. Campbell's
problem differs from most problems of current interest in that he does
not require immediate replacement to be made when failure occurs. Welker
[75, 76] developed a method for determining optimum replacement intervals
for certain vacuum tubes. He too was concerned with mass replacement

and it was not possible to use interpolation with the plotted results.
Kolner [41] developed a working method for determining optimum mandatory
overhaul ages for aircraft engines; in this method, the life character-
istics are introduced through the failure rate and mean life of the failed
engines both as functions of mandatory overhaul age. However his assump-
tion that repaired engines run to overhaul age is contradicted by exper-
ience. He also assumes that life characteristics are linear so that the
method is useful for an extremely limited range of the overhaul age,
Taylor [64] has suggested a criteria for determining whether a specific
small increase in mandatory overhaul age is economically justified.

Zelen [81] has given a description of how this regenerative maintenance
problem was treated by Savage. Savage supposes that it is desired to re-
place a set of elements at a sequence of times {ti}, that the cost of re-
placing these elements is A and that F(T) is a loss function if the time
between two successive replacements is T. The cost function is expressed
in units of cost and is related to the probability of failure, or deter-

ioration of the elements during the operating interval. The average loss

per unit time defined by
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n
121 A+F (ty =t )]

C = Lim -y
n-o n

is used to find an optimal sequence to minimize C. Under the assumption
that F(x) is continuous, non-negative, non-decreasing and F(0) = 0O he
has shown that C assumes its minimum value. A relationship developed by
Weissbaum [74], giving the average hourly cost in temms of the expected
costs for scheduled and unscheduled maintenance actions, has been de-
scribed in the previous chapter. The optimal preventive maintenance
policy for a model consisting of the same factors was treated by Barlow
and Proschan [8] for the case of finite and infinite time horizons. The
finite time horizon is appropriate for items which become obsolete.
Welker [75,76] has developed a model along similar lines for a normal
failure density function with a small coefficient of variation. The coef-
ficient of variation is the standard deviation divided by the mean and
the range of interest is between 0.2 and 1.0. Due to the complexity of
the equation he has employed a graphical solution. The nature of the
curve for average hourly cost obtained by Welker, Barlow and Proschan,
and Weissbaum are similar.

Most theoretical work to date has been done on periodic maintenance
policies assuming an infinite usage horizon. The general form of the

expected cost as a function of time is as follows
c(t,n) = C, E {Nl(t,A)} +C, E {Nz(t,A)}

where C1 is the cost of preventive maintenance or replacement, C2 the
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cost of corrective maintenance, (Cl j_Cz), Nl(t,A) is the number of pre-
ventive maintenance actions in time t, Nz(t,A) is the number of failures
in time t, and A is the maintenance period which must be determined.
Barlow and Proschen [9] have outlined a theory of sequential replacement
policies for the case of a finite time horizon. Policies that required,
after each preventive maintenance action, the selection of the subsequent
interval to minimize expected expenditure during the remaining time were
more effective than a fixed period policy. They have further shown that
for an infinite time horizon there always exists a strictly periodic
maintenance policy which is superior to a random policy. Bell, Kamins

and McCall [12] have conducted similar studies and have obtained specific
replacement policies for parts which fail according to one of the following
distributions: the normal, log normal, and Weibull. In almost all these
replacement studies only deterministic models have been developéd for
which it is assumed that the performance of the machine can be exactly
predicted before it is placed in operation. Eisen and Leibowitz [21] con-
sidered the performance as a_random function of time which is more real-
istic since every machine has its own individual characteristic which to
a large degree depends on the treatment it has received and the way it has
been employed. One of the shoftcomings of approaches of these types is

that repair times are not taken into explicit consideration. Consequently

the availability of the system has not been considered and cost is the
only criteria for determining the optimum time period for preventive
maintenance.

Barlow and Hunter [4] have also considered maintenance down time and

derived an integral equation leading to the planned maintenance interval
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which minimizes this time. The minimization of some combination of cost

and down time has been analyzed by Weiss [73]. Rosenheim [57] has de-

veloped an expression for mean life under periodic maintenance which is

—

as follows
T
[ R&) dx
0

Mean life 8 = -]."_R(TS-

where T is the periodic maintenance interval and R(x) is the reliability

function for the system. He has shown that even when elements have con-

stant failure rates an increase in mean life and reliability can be
achieved by a preventive maintenance policy if redundancy exists. This
is the basis for the development of the mathematical model for avail-

ability in this thesis.
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The effects of scheduled maintenance on availability have been studied

by Meyers and Dick [ﬁ%;ffor a system with a number of pieces of equipment.

For at least '"n" out of "a" pieces of equipment required for the
system to be functioning
a-j a
- i -j-1i i -1
I Ehelam®* ™+ a0t Gela-n®™

i=n i=n
T

Availability A = t l

where T = the time period between scheduled maintenance
j = the number of pieces of equipment taken down simultaneously
t = the number of hours with j pieces of equipment taken down
P = the availability of a single unit.

A similar problem, dealing with weapon systems where a major element of
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effectiveness is the number of deployed systems which can be expected to
perform their functions at any time has been treated by Althaus and
Voegtlen [%l. The essential characferistics are a continuous alert status
for a number of systems in which some equipment in each system need not be
working, and an integral self test feature whigh monitors the status of
some portion of all equipment.

Cho [1§%§has introduced the concept of difffi?PEféﬁ_Qf_Pr?lfngation

and, based on it, formulated a preventive maintenance objective function

and obtained solutions to maximizqueqpipment avai;gbility.

if Tf = the mean time to failure of equipment
Tm = the expected time to repair, Repair may also consist of re-

placing the defective component by a statistically identical

component.,
Tp = the hours of preventive maintenance
Ta = the fixed time at which preventive maintenance is instituted

after the last failure or the last preventive maintenance,

then the distribution of prolongation

[ R(t") dt!

U(x) = =
[ R(") at'
0

1f

a=T/T, b=T/T

and R(t) = the reliability function.
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a R(T,) 1 - R(T) =L
then the availability, A(Ta) = [1 + -i-—_—U(T—a) +5b [ma—)]]

Morse [49] has further shown that Ta* which optimizes availability is

P

the solution of the following equation

R(Ta)

»
T=1.—
m

21 [ RGN - ur)) + [R(T )1

He has also tabulated values for f(t), R(t) and U(t) necessary for plotting
the curve of the right hand side of the above equation, with Tp/Tm along
the Y axis and Ta/Tf along the X axis. This curve is used for obtaining
the optimal mean time between preventive maintenance Ta* which maximizes
equipment availability. Using the same parameters Truelove [69] has de-
veloped an expression for operational readiness which is a simil;¥ measure
as the average up time ratio defined earlier.

In all formulations considered so far the only information obtained
from an inspection was whether or not the equipment was operative and a
further condition was that a repair or replacement decision always returns
the system to the same "as new" state. Klein [%EJ has departed from this
and assumed that the deterioration of the system can be described as a
discrete time, finite Markov chain and that the inspection procedure is
capable of detecting which state the system is in at the time it takes
place. His second assumption is that repairs, if made, can put the system

in one of many possible states, the "as new'" state being only one of man
g y ¥y

possible states. He has shown that for an average cost per unit time
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criterion function, the problem of finding an optimal inspection - repair -
replacement policy can be formulated in linear programming terms. In a
similar situation Derman [20] has considered a system observed periodi-
cally and classified into one of a finite number of states. On the basis
of these observations certain maintenance or replacement decisions are
made. The problem is that of finding the decision rule which maximizes

thg expected length of time between replacements subject to the side
coqditions that the probabilities of replacement through certain unde-

sirable states are bounded by prescribed numbers.

Optimal Availability for Redundant Systems

No one in the literature surveyed has developed a mathemati;al model
to determine the maximum availability for a system consisting of two
identical units in parallel, with the failure rate, repair rate, and time
period for preventive maintenance, givgg. In addition no one has included
the total cost for designing these failure and repair raées, the cost for
preventive maintenance and the cost for corrective maintenance in a single
mgggl. A model which permits the inclusion of all the above has been de-
veloped in this thesis. The time between preventive maintenance actions
is considered to be fixed since this is the case most often encountered
in practice. The failure and repair distributions are both assumed ex-
ponential since the approach is basically Markovian. Though this limits
the model to some extent, exponential failure and repair distributions
are very common and also serve as good approximation for other distri-
butions. The techniques and logic used in developing this model may

easily be extended to models for systems with different configurations.
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So much so for the development of models for reliability and avail-
ability of systems with corrective and preventive maintenance. To know
values of system reliability effectiveness given the various parameters
is not the real problem. The real problem consists of determining the
parameters from a design, redesign or operating point of view such that
some measure like cost, weight etc., is minimized and at the same time
the system reliability effectiveness requirements are also satisfied.
Tillman and Liittschwager [68] solved the problem of optimizing systems
reliability subject to constraints by using integer programming. When
the subsystem and the components within the same subsystem are subject
to more than two modes of failure Tillman [65] has again used integer
programming to obtain the optimum number and location of redundant com-
ponents., Tillman et. al.[66] has used the Sequential Unconstrained
Minimization Technique (SUMTL) for optimizing reliability of a complex
system with nonlinear constraints. In the complex system, redundant
units could not be reduced to a purely parallel or series configuration
and Bayes' theorem was used to obtain the overall reliability. Shershin
[61] has dealt with optimizing the simultaneous apportionment of the
failure rate and repair rate by means of two techniques: Lagrange multi-
pliers and Dynamic Programming; and indicated that computer usage is pos-
sible. For more details on the Lagrange multiplier methods the reader
is referred to the paper of Everett [23]. On dynamic programming, a
number of books and papers are available but the books written by Bellman
and Dreyfus [13] and Nemhauser [51] adequately cover the subject. Wilkinson
and Walvekar [78] have also used a dynamic programming formulation for al-

locating availability optimally to a multi component system.



Example Problem and Solution Technique

The example used in this thesis to reflect the proposed model con-
sists of three subsystems having two identical units in parallel. The
objective is to minimize the total system cost while maintaining a given
level of availability and keeping all parameters within upper and lower

bounds. This is a nonlinear programming problem and the technique used

34

to solve it is the Sequential Unconstrained Minimization Technique (SUMT).

Due to difficulties in taking first and second order derivatives of the
objective function and constraints when gradient search techniques are
used to solve the problem, another approach suggested by Hooke and Jeeves
[37] is used. This second method has been incorporated into the SUMT
technique by Lai [42] and this combined approach has been used in this

thesis.
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Chapter 4
DEVELOPMENT OF THE MODEL

4,1 MARKOVIAN MODELS OF MAINTAINED SYSTEMS

Equipment connected in parallel redundant configurations simultane-
ously perform the same function, and generally the system will operate
if at least one of the n units in parallel operate. Using less reliable
units in redundant configurations is one of the methods of coping with
the problem of designing reliable systems. For non maintained systems,
redundancy is best applied at a component level rather than at a systems'
level. Thus, in Figure 4.1, (b) is the best level of redundancy. How-
ever for systems whose components can be repaired as they fail, to have
redundancy at the component level may not be the best policy. The reason
is that if component redundancy is employed, repairs may not be possible
while the system is éperating whereas a failure of system redundancy,
Figure 4.1 (a), could be repaired.

Let us consider a two component redundant system with two repairmen.
The individual components fail according to the exponential distribution
and the times to repair are also exponentially distributed with parame-
ters_lij and My respectively, where i is the state it starts in and j
is the state in which it ends. The four possible states for the system
shown in Figure 4.2 when the status of individual components is monitored

is as follows:



Figure 4.1.

Redundancy levels.

redundancy.

(a)

(a)

(b)

System redundancy;

(b) Component
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Figure 4.2,

A system comprising of two units in parallel
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State 0: both units operational

SEEEe: 12 } one unit failed and under repair
State 2: and the other operating

State 3: both units failed and under repair.

This is a continuous time discrete state model and for each unit the trans-

ition probabilities obey the following rules

1.

The probabilities of transition in the interval t, t + dt are Ai dt

3

in the case of failure and uijdt in the case of repair where i and j
are the two states in question. Since kij and "ij are constant and
are not functions of time, the model is called homogeneous.

The probabilities of more than one transition in time dt are of a

higher order and hence can be neglected. The transition matrix is

"shown below and the Markov graph with transition probabilities is

shown in Figure 4.3

The transition matrix is

State
0 1 2 3
0 l—()\01+1\02)dt Agpdt :\ozdt 0
1 umdt 1-(u10+113)dt 0 A13dt
2 "zodt 0 1- (“20'”‘23)‘1': )L23dt
3 0 u3ldt ‘"32“ 1—(u32+u31)dt

(4.1)

For example if the system is in state 0 at a time t, it will remain there
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if neither units fail in the interval t, t+dt. The probability is

(- AOldt)(l - Aozdt) =1 - ( Aoz)dt + 0 dt.

AOl +
Again if the system is in state 1 at time t it will remain there at the

end of the interval t, t+dt if x, does not fail or x, does not get re-

1
paired. The probability is

(1 dt) (1 - 113dt) =1 - (“10 + Ala)dt + 0 dt

~ 10
and similarly for the rest.
I1f we now assume that both the units are identical and that the

transition probabilities are independent of the state of the system then

A, ™ Bgg =A™ App A
Aoy *+ Agp = 22
H10 ¥ VY20 T H31 T M3z T M
Mgy tugy = 2

The model is then collapsed as shown in Figure 4.4 and the new states

are
State 0:  both units operating
State 1: one unit failed and under repair,the other operating
State 2: both units failed and under repair,

The transition matrix is as follows

40
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State
0 1 2
0 (1 - 2xdt 2)dt 0
State 1 ndt 1 - (p+r)de . adt (4.2)
2 0 2udt 1 - 2udt

The transition matrix leads directly to the system of linear homogenous
differential equations which describe the stochastic behavior of this

system and are as follows .
Pé(t’ = - ZAPO(t) + pPl(t)
RI(E) = 2ABG(E) = (i), () + 2uP,(£) (4.3)
Pi(t) = APl(t) - ZuPz(t)

where Pi(t) is the probability of being in state i at time t and Pi(t)

is the first order derivative with respect to t. Shooman [62] has de-
scribed a simple algorithm for writing the above equations (4.3) and it

is to equate the derivative of the probability at any node to the sum of
transitions coming into the node. Any unity gain factor of the self loops
must first be set to zero and the dt factors are dropped from the branch

gains. Let the system be in state 0 at time 0, then

P,(0) = 1, P, (0) = 0, P,(0) = 0.

Taking Laplace transforms of equations (4.3)

SPo(S) - By(0) = -2xP(S) + uPy(S)

SPl(S) - Pl(O) = ZAPO(S) - (A+u) Pl(S) + ZpPZ(S) (4.4)

[}

SPZ(S) - Pz(O) APl(S) - ZuPz(S)



Using the initial conditions we obtain

(S+22) PO(S) - uPl(S) =1
—2AP0(S) + (S+a+u) Pl(S) - 2uP2(S) =0
- AP, (S) + (S+20)P,(S)= 0
and
S+2) - 0
=2 S+x+u 0
P,(S) = L o2
S+2) -u 0
=2\ S+Au -2y
0 - S+2u
where the numerator = =-2X(-}) = 212 and

the denominator

s[s2 + 3s(xHp) + 2(l+u)2]

1

S(S + 22 + 2p) (S +A+u) .

Thus

2A2

Pz(s) T 5(S ¥ 21 + 2p) (shAh)

(S+21) [(S+A+u) (S+2u) = 2uA] + u(=21) (S+2u)
(S42)) [S24+2uS+AS + uS +2u2] = 2uA(S+2u)

s(sz+2us+ AS + uS + 228 + 2u2 + 4Au + 2X

(4.5)

(4.6)

.

(4.7)
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Breaking this expression into partial fractions we obtain

2A2

S(S+2A+2u) (S+r+u)

B + C
S+2x+2p S+i+y

= B
2 &

(Let a = A+u)

2 2

2

AS” + 3aSA + ZazA 4+ BS™ + BSa + CS™ + 2aSC

S(S + 2a)(S+a)

2
Equating constant terms we have A = A __.

(Jl+u)2

Equating coefficients of S and 82 we obtain

AZ
B = 2 ]
(A+u)
2A2
c = - 2 .
(A+u)
2 2 2
A 1 A 1 22 1
Hence P, (S) = ———— « < + . - .
2 2 S 2 +22+2 2 +A+
() Oiy? D 42 (SH)
Taking inverse Laplace transforms,
3% 3 2040t 232 et
Pz(t) = 3 + 5 e - e
(M) (A+u) (A+n)
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(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Since Pz(t) is the probability of being in the failed state at time t,

the availability at time t is given by
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A(t) = 1 - P,(t) = Py(t) + P, (t) (4.14)
ALE) = p2 s 2 a2T2ME N 232~ (M)t e 155
()2 () Oty 2

From equation (4.15) we can obtain the steady state expression

T 2
A(®) = Lim [ A(t) d¢ = L3200 (4.16)
T+ 0 ()

Instead of the parallel configuration, if we had the same two units in a
series configuration and it was possible that while one failed component
was being repaired, the remaining unit could fail, then we would have the
same transition matrix and set of differential equations. It might be
noted that in the series configuration if one unit failed then the system
failed, but in the parallel configuration both units would have to be in
the failed state for‘the system to fail. |

In the two equipment parallel system with two repairmen, we might
expect both of them to work together if one unit failed. However they
would work independently if both units are failed. Thus we may have the
case that if a single repairman services a failed unit, the repair rate
is p, but if two repairmen service the same failed equipment, the repair
rate is mu. Sandler [59] assumes that two repairmen yield m = 1.5. If
we further assume that when both repairmen are servicing a single unit
and the second one fails, the second repairman immediately returns to

service his own unit, then the transition matrix is as follows
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State
0 1
0 (1-2Adt 2)xdt 0
State 1 (1l.5udt 1-(1.5p+2)dt  Adt (4.17)
2 0 2udt 1-2udt

If there are n elements in parallel and k < n repairmen, a waiting line
of failed components may build up if there are many failures in a brief
period. Further details may be seen in Messinger [47]. 1In the previous
two unit parallel system with two repairmen, failure of any unit was de-
tected the instant it occured. Very often this is not the case and the
repair operation starts only when the entire system has failed. Let us
consider the model in which only one unit is repaired if the system of
two units in parallel fail due to failure of both units. It is only when
preventive maintenance is undertaken that the system is restored to the
state where both units are operating. There is only one repairman. The

Markov graph is shown in Figure 4.5 and the transition matrix is

State
0 1 2
0| 1-2)dt 2xdt 0
Statel 0 1-2dt Adt (4.18)
2 0 pdt l-pdt

The differential equations are

Pé(t) =—2AP0(t)

[l

Pi(t) ZAPO(t) -lPl(t) +uP2(t) (4.19)

it

P (t) AP (£)  -uP,(t)
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Taking Laplace transforms and using the initial conditions

Py(0) = 1, P,(0) = 0, P,(0) = 0,
(s + 21) Py(s) =1
- ZAPO(S) + (5+)) Pl(S) - uPZ(S) =0 (4.20)
- lPl(S) + (S+u) Pz(S) =0
and
s#2y 0 1
-2» S+2 O
P,(s) = 0 ol O (4.21)
s+2, 0 O
2% (S+\) -u
0 -1 (S+)
or
2
_ 2
B,(8) = sTEran) GG
A1 A 1 22 1
" STy T Grn Y77 2, GG i+ wm (4.22)
: (™ =29
Taking inverse Laplace transforms we obtain
P CEY = s o sl gm2AE - S c U LI (4.23)
2\ T3 T 7 .2 ’ :

B o=A
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2
A(t) =1 - P,(t) = TN W2 I W 05 1) 1

prmivey (4.24)

u2_)\2
Now if in the system with two units in parallel and two repairmen, the
status of the individual units is not monitored, repair will not begin
until the system is in state 2 where both units have failed. We can de-
fine the four states with reference to the Markov graph shown in Figure
4.6 as follows:

State 0: both units are operating

State 1: one unit is operating, one failed and has not been detected
State 2: both units failed and under repair

State 3: one unit operating, one failed which is under repair.

The transition matrix is

State
0 1 2 3
0 1-2)dt 2)dt 0 0
1 0 1-Adt dt 0
State 2 0 0 1-2pdt 2pdt (4.25)
3 pdt 0 adt  1-(p+r)de

The system of differential equations are

P6(t) =*2AP0(t) + UP3(t)

Pi(t) ZAPO(t) =AP1(t)

(4.26)

Pé(t) APl(t) -2uP2(t) + APB(t)

[}

Pa(t) ZuPz(t) - (u+A)P3(t).
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Taking the inverse Laplace transforms with the initial condition

Py(0) =1, P,(0) =0, P,(0) =0, P (0) =0, we have

(s+23) By (5) - WP,(s) =1
—ZAPO(S) + (S+0) Pl(S) =0
-APl(S) - (5+2y) PZ(S) —AP3(S) =0
- 2u P2(S) + (S+u+A)P3(S) =0
and
S+2) 0 1 -u
-2\ S+ 0 0
0 =X 0 =i
Py(S) = — 82 Rl (4.28)
S422 0 0 -u
=2 S+ 0 4}
0 -\ S4+2u -\
0 0 =2u SHuti
where the numerator = 2A2(S+u+l) and (4.29)
the denominator = S({S+31) {S2 + S(3p+r) + 2u2 . (4.30)

The solution for the roots of 82 + S(3u+r) + Zuz yields

- @) +V Gun? - a2

r, = 5 (4.31)
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2;&2(S+;1+A) (4.32)

hence PE(S) = S(S+3?t)(3"r1) (S—rz)

Breaking this expression into partial fractions

A, B c D
PZ(S) “stsan t S-r1 i s-r, (4.33)

The values of A, B, C, and D maybe obtained from the following four

equations:

3z, A = 2% ()
(r)r,-3A(r 4 ) A +rrB -3hr,C -3r,D =22 (4.3
(3A-rl—r2)A - (r1+r2)B +(3l—r2)C +(3A—r1)D =0

A + B + ¢ + D =0
By taking the inverse Laplace transforms, we obtain

P,(t) = A+ g OF Cerlt + nerzt (4.35)
and the availability is given by

A(t) =1 - Pz(t). ' (4.36)

Inspection of the quadratic equation for Tys T, shows that . and r,
are always negative real numbers since A and p are always positive;
therefore all the time functions are decaying exponentials and the in-

stantaneous availability A(t) rapidly comverges to a steady state value.
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Equation (4.35) is complex in nature due to . and r, not having simple
forms and consequently it is not easy to obtain the steady state avail-
ability from equation (4.36). But the steady state availability may be
obtained by studying the steady state behavior.

Over a long period of time where it is possible to go from one state
to another it can be shown for all cases that the limit of Pi(t)

Pi = 1lim Pi(t) (4.37)

Lo

always exists. This means that the stea te i can b un

by setting t i s ual to zero. Then the system of dif-
ferential equations reduces to a system of algebric equations. The ad-
ditional fact that Pi's are a probability distribution and hence

n

Pi = 1 needs to be used where n is the number of possible states.
i=0

So the same set of equations with the derivatives at each of the nodes
set. equal to zero need to be solved to obtain the steady state availability.

The set of equations are

0= -ZAPO ; +uP3

0 = 2B, =P,

0= AP} -2uP, © AP, (4.38)
0= 2uP, -( ) Py

1= P _+P + P + P :
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Solving for P2 using the last four equations,

b 111 1 1 a2 )

. - 2 3, 6aul
22 - 0 0 RHA~ 2 2R u
0 A =2y A
0 0 2u =(x+u)
1 1 1 1
2

"+

AT+ 3ux + 3u2

Likewise the steady state availability is

2
N _ _ 2u) + 3u
A(x) = 1 - PZ P0 + Pl + P3 =3

7 - (4.40)
AT+ 3px + 3p

Many complex problems can similarly be solved in the steady state without
much difficulty.

It is interesting to note that if the number of repairmeny is equal
to the number of pieces of equipment in a parallel configuration and a
unit starts getting repaired the instant it fails, then each piece of
equipment has a steady state availability which is independent of the
others. Since the system is down when all the units are in failed states,
if we let the steady state availability be p/(M+u), then for a two unit

system
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A=) + P, =1 - (Probability both are unavailable)

N
)

e [ =iy

u+k

2
- H__i_ZA% (4.41)
(M)

And in general when the independency condition is valid, the steady state
availability that at least m out of n pieces of equipment will be avail-
able is

n-i

A=) =Py + P + ... Z O ) e S (4.42)

When the number of repairmen is less than the number of components in
parallel in the system, the independency condition is not true anymore.
For example in the system with two units in parallel and a single re-

pairmen the availability is given by

2
+
A =2t 2 | (4.43)
W+ 2hp + 22

It has been shown by Saaty [58] for any n-equipment parallel redundant

system with single repairmen

(4.44)
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and A(») =1 - Pn'

u/Ax is called the dependability ratio and is the inverse of A/u which is
called service factor in queuing theory. It might be mentioned that in
queuing theory this is called the one server problem with finite queue
length.

When there is standby redundancy, the off-line equipment either
cannot fail or have failure rates less than the on-line equipment, and
hence we may assume that the system would have availability greater than
that for a similar parallel redundant system. For a n-equipment standby
redundant system with n-1 components off-line and assuming perfect switch-
ing reliability and that off-line equipment cannot fail until it is switched
to an on-line position, we have the following expression for availability

for a single repairmen

A(®) =1 = —— , (4.45)

where X = u/x.

In the case where there are n repairmen

Afed = 1 = —E——l——— i (4.46)

] Sy

3=0 ¥

4.2 EQUIVALENT FAILURE AND REPAIR RATES
Consider a nommaintained system with two identical units in series.
If the failure times of each unit is exponentially distributed with the

parameter A, then the reliability of the system is as follows
Rs(t) - E—At e—At

o AR (4.47)
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Now if this system is replaced by a single unit with the equivalent

failure rate le, then

-A t
e

=2)t
e =e

Ae = 22, (4.48)

For a system having two units in parallel

R (1) = oAt L At _ mAe | -t
(4.49)
= 9e At e-ZAt .
The mean life E(t) = [ [2¢7'F - e”2*f1q¢
0
-3
=S (4.50)

A component which replaces this system and has the equivalent failure

rate, would have the same mean life as that of the system, hence

1_3
Ae 2A\
Ae = 2% (4.51)

In a series hook-up, exponential failure is preserved but in a parallel

hook-up the failure is no longer exponential. Again if there were two
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repairmen each having a repair rate p, they would both attempt to service
the equipment that failed and the equivalent repair rate would be pe = 2y.
For a system with two units in parallel and two repairmen, when the status

of the individual units are monitored it was seen in equation (4.16) that

2
A(=) =1 - p2 - EL_i;g%H , and
(A+u)
AZ
P2 = -——2- . (4. 52)
(A+u)
A2
So in time T, the system is expected to be down —— + T. (4.53)
(A+u)

For 2 repairmen each having a repair rate u, the effective or equivalent

repalr rate pe = 2p, thus

the effective time to repair = %E .

2

The expected number of failures = E——L——— « T1/ i . (4.54)
2 2n
()

If Ae was the equivalent failure rate of this system, the expected

number of failures in time T is Xe T, hence

AZ
e T = — 3" 2u T, and
(A+u)
2
N ot -A"‘—Z . (4.55)
(A+u)

This is approximately equal to the equivalent failure rate for the same
set up calculated by Epstein and Hosford [22] using more rigorous mathe-

matical methods. The Epstein equivalent failure rate is
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(4.56)

Now again for a two equipment parallel redundant system where the status
of individual pieces of equipment is not monitored and service, by two
repairmen, begins only when the system fails was seen in equation (4.40)
to be

2

2uid + 3p
Az + 3ph+3u2

A(®) =1-P, =

where

12 + Ay

22+ 3un + 3

7 - ' (4.57)

2
So in time T the equipment is expected to be down 7 L 7 T.
AT 4+ 3pd + 3n

(4.58)
For 2 repairmen, each having a repair rate yu,
the effective time to repair = %E .
12 + A 1
The expected number of failures = [ 3 E 5 * T1/ i (4.59)

AT + 3ud + 3p
If )e was the equivalent failure rate of this system, the expected

number of failures = le T.

2u(a? + )

Az + 3u) + 3u2

Hence, Ae T = - T

and
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2
re = —2ul * ) (4.60)
AT 4+ 3ud + 3p
and pe = Zu. (4.61)

4.3 TINCREASE IN MEAN LIFE DUE TO PREVENTIVE MAINTENANCE

Rosenheim [57] has shown that the mean life of a system having re-
dundant units can be increased by performing periodic maintenance. Assume
that all components obey the exponential failure law and the system is re-
stored to "as new" condition after each periodic maintenance since no de-
terioration takes place. Every T hrs, starting at time 0, periodic
maintenance is performed. All the elements are checked and any, which
has failed, is repaired to its original condition or replaced by a new
and statistically identical component.

If f£(t) is the failure density function then the mean life 6 for any

system or component is given by

e =] t £(t) dt (4.62)
0]

Alternatively, if R(t) is the reliability function of the system or com-

ponent, then Shooman [62] has shown that

6 = [ R(t) dt. (4.63)
0

A period of time t hours can be written as
t=iT + 1 j=0,1, 2, ... 0<t<T

Let the reliability function of a redundant system, where maintenance is
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performed every T hours, be denoted by BT(t). For a time period t where

j=1land =0

R(T) (4.64)

T)

Ry(t

If j =2 and 1 = 0 the system has to operate the first T hours without
failure of the system. After repair or replacement of all failed com-
ponents, another T hours of failure free system operation is required,

50 RT(t = 2T) = R(T) - R(T)

If 0 < 1 < T, then a further T hours of failure free system operation is

required and

R.(t = 2T + 1) = [R(D)1% R(T) .
In general, Ry(t = jT + 1) = [R(M I r(o). (4.65)

The mean life of the redundant system when periodic maintenance is per-

formed every T hours is

[--]

N =bf Rp(t) dt .

The integral over the range 0 < t < = can be expressed as sum of integrals
over intervals of time T.
o (j+1)T
oxre =] [ R, (t) dt. (4.66)
j=0 jT

Since t = jT + 1, dt = dt and by transformation, the limits of the

integral become O to T.
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@ T @ T
Hemce 6= J [ R()dr = ] [ (RO R0 dr
j=0 0 j=0 0
© j T
= 7 [RM) [ R(1) dr.
§=0 0
1 v 3
Since —— = x
1-x jZO
hence ) [R(T : Q-
o R =15
T
[ R(t) at
and so BS = gl—_m (4.67)

Consider a system consisting of two units in parallel, each individual
unit having a failure distribution which is exponential with parameter
A. Periodic maintenance is performed every T hrs starting from time 0.

The reliability function of the system is given by

R(t) = ZE—-M: _ e-ZM: (4.68)
T
[ R(t) de
; =0
The mean life of the system is 65 =1 - RM
T
I [2e—lt _ e-ZAt]dt
o =9
LR B
3 2 e-xr +_1_ e—ZJLT
_22 ) 2) (4.69)
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If periodic maintenance is not performed, T = =« then

i m (4.70)

3
s 2x °

For example when A = ,01 failures/hr if

T = o 6 = 150 hrs
s

T = 150 hrs: BB = 179 hrs

T = 100 hrs: Bs = 208 hrs

T = 50 hrs: 88 = 304 hrs

T = 10 hrs: es =1097 hrs

As expected, when the time period between preventive maintenance decreases,
the mean life of the redundant system increases. An exponential distri-
bution has a constant failure rate with time which is to say that the

age of a unit has nothing to do with its failure rate. An old unit and

a brand new one are equally likely to go on operating for some particular
time period, and consequently,‘we gain nothing by applying planned re-
placement or repair to units having an exponmential distribution of fail-
ures; the units we install are no better than the one we take out. This
can also be seen if a single unit with constant failure rate A undergoes

periodic maintenance every T hours.

The mean life without periodic maintenance = f R(t) dt

0
=] oM g -1 (4.71)
A
0 :
T
[ R(t) at
3 - 0
The mean life with periodic maintenance 1 - R(T)
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1
3 (4.72)

Thus for a single unit having an exponential failure distribution there
is no increase in mean life by performing periodic maintenance.
Nevertheless, if a system has units in parallel, even though the
individual units have an exponential failure distribution, a periodic
maintenance policy can achieve an increased mean life. An increase in
mean life imﬁlies that the system reliability has increased., The reason
for the increase in reliability of a redundant system is that when periodic
maintenance is performed the system might have been working with some
redundant units in the failed state. These failed units are now repaired
and restored to 'mew' condition. Figure 4.7 is a plot of a reliability
function, where maintenance is performed every T hours, denoted by RT(t)
versus time for a redundant system. Note the increase in reliability

that can be achieved by a preventive maintenance policy.

4.4 TINCREASE IN AVAILABILITY DUE TO PREVENTIVE MAINTENANCE

Now with regard to the redundant system with repair, the major
concern is the effect of performing preventive maintenance at fixed in-
tervals. In a system.with repair, the measure of the system reliability

effectiveness is availability. By introducing periodic maintenance the
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availability would increase depending upon the corrective maintenance
policy that is pursued. If the status of the individual units is mon-
itored and repair begins whenever any unit fails, then periodic main-
tenance will not increase availability. Periodic maintenance will,
though, provide such attention as lubrication, refueling, alignment,
etc., and overhaul components to prevent wearout. If the corrective
maintenance policy is such that repair begins only when the system has
failed due to failure of all units in parallel then availability will
increase with the introduction of periodic maintenance. As before the
reason for the increase in availability is that each time periodic
maintenance is performed, all the units are checked and if one has failed
it is repaired, or replaced by a new and statistically identical component.
For a system with corrective maintenance; expressions for instan-
taneous availability and steady state availability were obtained using
a Markovian approach. Expressions for Pn(t) and Pn were also obtained.
NoFe that Pn(t) is the probability for the system being in a failed state
at any instant t, and Pn is the steady state probability of the system
being in a failed state. With the introduction of periodic maintenance
the availability increases and consequently the probability of the system
being in a failed state decreases. On an intuitive basis it is felt that
the decrease in Pn(t) or P is directly proportional to the increase in

the mean life obtained by introducing periodic maintenance. That is

Pn or Pn(t) for system with corrective maintenance and periodic maintenance

P or P“(t) for system with only corrective maintenance

_ Mean life of system ®n.p.m.) (4.73)
Mean life of system with periodic maintenance @ p.m.) '
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where
n.p.m. stands for no periodic maintenance

p.m. stands for periodic maintenance.

This is the principal assumption upon which the availability models are
developed in this thesis. The justification of this assumption is made
on an intuitive basis. Given that a failed state is when the system will
not operate, it is felt that this is an appropriate assumption.

For example consider a system with a mean life of 150 hours. Suppose
the steady state availability of this system is 0.95. The introduction
of periodic maintenance every 50 hours increases the mean life to 300
hours. Then the steady state avialability if periodic maintenance is
performed every 50 hours is obtained as follows

Pn =1=A(x) =1 - 0.95 = 0.05

—-E——es“l; e (4.74)

Pn with periodic maintenance

- ‘]—-iq-
300

1 - 0.025

L 0-05 = -025v

]

A(<) with periodic maintenance

0.975.

So, by introducing periodic maintenance every 50 hours, there is a .025
increase in availability. In the literature covering models for systems
with repair, expressions for availability for various types of redundant
configurations have been derived. But the effects on availability by
introducing periodic maintenance have not been stated nor has the change
been shown in Mathematical terms. Some thought needs to be exercised on

the existing corrective maintenance policy before introducing periodic
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maintenance since it will not always increase availability. As mentioned
earlier, if the status of the units is monitored and repair begins the
moment any unit fails then periodic maintenance will not increase avail-
ability.

Consider a system with two units in parallel. Using equations (4.69)
and (4.70) and introducing periodic maintenance every T hours, the ratio

of increase in mean life is

2
@ n.p.m. _ 2)
6 p.m. 3 2 =AT 1 -2AT
o xe tyxxe

AT

T

-z -

- . (4.75)
3 2 T, L o1
T 2x ©

In the same system, with a corrective maintenance policy of starting re-
pair only when the system is in a failed state due to failure of both

the units, by equation (4.39)

_ Az + A
Py =73 7
AT 4+ 3pix + 3p

Hence P, with corrective maintenance and periodic maintenance every T

2
hours is
3= e (2 - oMYy 2
P _2) AT+ Ay (4.76)
20" 3 a2 FT Gl BT T B .
25 A i L "
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The steady state availability for this system with corrective and pre-

ventive maintenance is

%r[l—e-n 2 - e My W2 4
A(®) =1 - P pm. =1 - . (4.77)
2 e B WO R, 0T A% + 3un + 3
22 2 °© 2 P 3

For the system with two parallel units where only one unit is repaired

when the system fails we have the following expression for awvailability

3 -\T -\T

AGt) = 1 - 2 [1-e ™ (2~-e")] N D N W2 - o (e
3 _2 AT |1 _-iT PSTRRETESY 2_,2 '
FFNDY 2% !

(4.78)

The expressions for availability shown in equations (4.15) and (4.16) do
not change with periodic maintenance because of the existing corrective
maintenance policy. However the total cost will increase due to the ad-
ditional cost for preventive maintenance.

So far in the discussions, the time required for periodic or pre-
ventive maintenance was not included. Since preventive maintenance is
usually performed at times other than the normal operating hours, it was
not necessary to include it. The time required for preventive maintenance
is generally taken to be constant (t*). In a period of T hours the system
will be operational for T-t* hours and for t* hours the system is down
for periodic maintenance. Taking this into consideration and setting

T-t* = Tl equation (4.77) becomes
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3 1 1
5 ll-e (2.6 ]} = & 9
AR) =g |t - T T, | 2 2 (4. 79)
3 2.7, T e+
2% T % 2

At the end of each preventive maintenance, the system is in a state with
no failed components regardless of what state it was in at the beginning
of preventive maintenance. This is shown in Figure 4.8. Since the
availability curve repeats itself every T hours a different approach as
follows may be used.

Let t = t' mod (T)

Then A(t) = A(t') if 0<t"< T1

(4. 80)
0 if T1< t' < T
If t' is known, then A(t') may be obtained from equation (4.36). Equation

(4.80) is for the normal case where preventive maintenance cannot be per-

formed while the system is operating.

4.5 COST STRUCTURE

Let a single equipment have exponentially distributed failure and re-
pair times with parameters A and p respectively. The total cost for design
and maintenance is broken up into three components namely, the cost of de-
signing for a failure rate ) and repair rate py in the system, the cost of
corrective maintenance and the cost of preventive maintenance. Shershin
[61] has shown that the nature of the functions for each of these costs
generally approximate realistic situations. General cost information

for these quantities may be found in Ankenbrandt [2] and ARINC [70]. Using
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the parameters A and p and given constants a, b, c, dl, d2 and d3 the -

different cost functions can be stated as

1. the cost of corrective maintenance = 63)2

2. the cost of preventive maintenance %-= c

3. the cost of designing a failure rate

d,

A and repair rate p in the system = udl +-I— - d3

When the value of ) decreases the design cost should increase since now

the unit will take a longer time to fail and when the value of u increases

the design cost should increase while the maintenance cost should fall
since now the unit is repaired in a shorter time. This is the reasoning
upon which the three cost functions are based. For a system with a com-
plex configuration the equivalent failure rate Ae and the equivalent
repair rate ue may be used in place of A and p respectively. Consider

a system consisting of n subsystems in series where Aei and we, are the
equivalent failure and repair rates for the ith subsystem. Let t be the
mission time, and T the time interval for periodic maintenance. Then

the total cost for the system is

‘z‘ d, ‘I‘ a2 g ‘z‘ b
Total cost = (d,pe, + — - d,) + t xe, ()" + = (—— - o).
i=1 1771 lei 3 i=1 i uei T 121 uei

72

(4.81)

%-is a multiplier for the preventive maintenance cost function to show

that if T is small then periodic maintenance is performed more often

and the preventive maintenance cost component is higher.



Each of the subsystems is given the weighting t Aei for its cor-
rective maintenance cost since the subsystem with a smaller Aei will
fail often and will need fewer corrective maintenance actions.

The design cost is the initial cost and is independent of the mis-
sion time. The total cost divided by the mission time gives the ex-

pected total cost per operating hour.

4.6 MATHEMATICAL STATEMENT OF PROBLEM

Consider a system with n subsystems in series as shown in Figure
4.9. Each subsystem consists of two identical units in parallel with
the failure rate Ai and the repair rate By for the ith subsystem. The
corrective maintenance policy is to start servicing a subsystem when it
fails due to failure of both the units. Due to the series connection,
when a subsystem fails the entire system is down and two repairmen are
adequate for corrective maintenance. The system will function with one
unit of each subsystem in a failed state but will fail with more than
one failure at any stage. Periodic maintenance is performed on the en-
tire system every T hours. So at the time of performing periodic main-
tenance a maximum of n+l units may be in failed states. A repair crew
capable of performing periodic maintenance is assumed to be available.

From equation (4.77) availability of the ith subsystem is given by

-A.T =-A,T
3 i i
o, e (2-e 7)] Ao & A
_ i i itdi

By d= ) 7
3 2 e-AiT . 1 E—ZAiT li + Buiki + Bui
2). AL 2

i i i

From equations (4.60) and (4.61) the equivalent failure rate and repair

73
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i o
rate of the i i subsystem

2
2“1 (Ai + liui)

ke, -

2 2
Ai + Buiki + Bui

The total cost for design and operation for a mission time t is given

by equation (4.81)

% d2 E a . 2 t E b
C= (d,pe, - — - 4d.) + tie, (—) + = —-9o .
gm1 0 L1 ey 3 101 i Tuey T ;21 'ney

The nonlinear programming problem may be formulated as follows:

Determine Ai’ His and T, i=1, ..., n

such that the total cost C is minimized

subject to L f-li <m i=1l, ..., n
q f_ui <r i=1l, ..., n
v<T<w
and
n
I Ai Z-AO’ the minimum availability requirement
i=1
d"‘v
whe. y My q, ¥y, V, W, and AD are known constants.

Sequential Unconstrained Minimization Technique (SUMT) is one of the opti-

mization techniques for dealing with this problem, Due to difficulties in
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taking the first order and second order derivatives with respect to each
of the variables, the computer program implementing SUMT developed by Lai
[42] is recommended in this thesis, instead of the standard RAC program
(IBM SHARE number 3189). This optimiéation method may be used to appor-
tion or improve availability during the design or redesign phase, and
may also be employed for improvement purposes after the initial testing

has been performed.
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Chapter 5

SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT)

The Sequential Unconstrained Mimimization Technique (SUMI) is a
simple and efficient method for solving constrained nonlinear program—
ming problems. The transformation of a constrained minimization problem
into a sequence of unconstrained minimization problems is the principle
behind SUMT. The method was first proposed by Carroll [17] in 1959,
and further developed by Fiacco and McCormick [26, 27]. In 1964 Fiacco
and McCormick developed their general algorithm, and in 1965 they ex-
tended their method which they called SUMT. McCormick, Mylander and
Fiacco developed a general computer program called "RAC Computer Program
Implementing the Sequential Unconstrained Minimization Technique for
Nonlinear Programming", and the IBM SHARE number is 3189. 1In this
computer program, the unconstrained minimization technique uses a second
order gradient search method.

In large size or complex nonlinear programming problems difficulties
arise when one has to find the first order and second order derivatives
of the converted objective function. Since most practical problems
fall into this category, a modified version was developed by Lai [41],
which bypasses this difficulty. Basically it incorporates the Hooke
and Jeeves pattern search method which requires taking no derivatives.
The direction of search in the gradient method is the steepest descent
direction, whereas in the Hooke and Jeeves pattern search technique it
is determined by a direct comparison of two values of the objective

function at two points separated from each other by a finite step.
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For this reason when the pattern search is close to the boundary of
some inequality constraint, it falls into the infeasible region. A
heuristic technique developed by P;viani and Himmelblau [53] is then
used to direct the search back into the feasible region.

The general nonlinear programming problem with nonlinear in-
equality and equality constraints is formulated as the problem of

finding the n dimension vector x,

X = (xl, Xps eens xn) which

minimizes f(x) (5.1)
subject to 81(3).i 0 i=1, ..., m (5.2)
hj(x) =0 d= 15 awis B (5:3)
The SUMT formulation is based on the minimization of a function
vl e & o
P(x, rk) = f(x) + T, izl gi(x) + T, 2 jzlhj(x) (5.4)

over a strictly monotonic decreasing sequence of the penalty coefficient

4 d Under certain conditions the sequence of values of the P function,

k.
P(x, rk), are respectively minimized by a sequence of {x(rk)} over a
strictly monotonic decreasing sequence {rk}, and converges to the con-

strained optimum values of the original objective function f(x). The

essential requirement is that the P funetion should be convex.
m

The second term of the P function r Z -

k 4= 8;(x)

finity as the value of x approaches any one of the boundaries given by

will approach in-

gi(x) > 0 and hence the value of x will tend to remain within the in-

equality constrained feasible space.
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-3 2
The third term r ¥ hj(x) will approach infinity as r, tends

k j=1
to zero since the sequence {rk} is strictly monotonic decreasing and
this consideration will force all equality constraints hj(x) = 0 to be
Zero.

The solution process for the nonlinear programming problem as de-
fined by the P function in equation (5.4) is started by selecting an
arbitrary point inside the feasible region and selecting a value of I
A search is made for the minimum value of the P function. After a
minimum value is obtained, the value of T, is reduced and the search is
repeated starting from the previous minimum point of the P function.

By employing a strictly monotonic decreasing sequence {rk}, a monotonic

decreasing sequence‘{Pmin(x, rk)} inside the feasible region is ob-

tained. As r, tends to zero the equality constraints are satisfied

k
: m
and the second term of equation (5.4) r E b also approaches
ko 8
zero. That is as Ey 0, P(x, rk) + f(x), where x is the optimum point

which yields the minimum P(x, rk), and is also the optimum point of the
original problem.

Details of the computational procedures, the flow diagrams, ex-
planations and numerical examples may be seen in Lai [42]. The complete
computer program for the numerical example solved in this thesis is
listed in Appendix 2. 1In the computational procedures two stopping
criteria are needed to obtain a meaningful optimal solution. The first
stopping criteria is for terminating the minimization of the P function

for the current value of £ - For the Hooke and Jeeves pattern search



solution, it is the number of reduced stepsize operations. For the
computer program one of the values (2, 3 or 4) is selected for this
reduction. The second stopping criteria is to terminate the overall
minirnization of f[x(rk)]. This stopping criteria generally ranges
from lO-3 to 10—5.

The program designed by Lai uses the WATFOR compiler and consists

of the following routines

Main Program

Subroutine BACK - used to pull back from infeasible region

Subroutine PENAT - used to compute the penalty terms

Subroutine WEIGH - used to compute the weight of violations

Subroutine READIN - used to read in additional data if needed

Subroutine OUTPUT - used to output additional information if
desired

Subroutine OBRES — used to compute the objective function and

the constraints

Since the Fortran H level compiler is considerably faster, the control
cards, the READ and WRITE statements and some FORMAT statements have
been changed in this work in order to use it. Also since the main
program and the first four subroutines are unaltered in most runs,

an object deck was used for these portions of the program, thus saving
some computer time. The program requires the following information.

1 N the number of variables in the problem.

2 MG the number of inequality constraints.

3 MH the number of equality constraints.

80
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RATIO
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DX(T)

NOPM

ITMAX
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I the penalty coefficient for the SUMI formulation. If
the vaiue of R which is specified is less than or equal to
zero, then a computed value is used. If a suitable value
is not known, the wvalue of R should be 0.

the reducing rate for R from stage to stage. If the value
of RATIO which is specified is less than or equal to zero,
then a computed value is used. Again the value of RATIO
specified is 0, if a suitable value is not known.

the stopping criteria for the stage interation and is the
number of reducing step size operations. Values of 2, 3,
and 4 maybe used.

the final stopping criteria and the value used is usually
between 10-3 and 10_5.

the initial starting point with values for each of the N
variables. If the initial point provided is not feasible

then the program computes its own initial starting point.

the initial step size for each of the N variables. 1/10th

of the value of the variables of the estimated optimum

point is usually good for starting.

the estimated optimum point with values for each of the N vari-
ables.

the number of subproblems. Usually only one subproblem is

run at one time.

the maximum number of iterations within one stage. A message
is printed out when the value specified is exceeded.

the maximum number of stages which if exceeded the computation

will stop.
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14 ISIZE the option code for the initial step size set up.
0 - use the input D(I) values
1 - use the computed D(I) = 0.02 . DX(I)
The value 0 is commonly used.
15 IcUuT the option code for the step size in each of the stages
0 - use the input D(I) values for all stages
1 - use the initial D(I)/K for the Kth stage
16 The objective function and the constraints using X(I), I =1 ...N
as the variables are to be placed in the block provided in sub-
routine OBRES in the following form.

Y = function of X(I) for the objective function

G(J) function of X(I) for the constraints greater than 0

H(K) function of X(I) for the constraints equal to 0
The double precision procedure is used when the objective function
of the problem considered is too flat. As explained earlier the optimal
x value is obtained when the P function tends to the same value as that
of the f function. The program computes a final stopping criteria called
YSTOP at the end of each stage of the monotonically decreasing sequence
of R(rk). When YSTOP becomes less than THETA at any stage, the compu-
tation stops, and the x vector values are printed as the final optimum
point. However further improvement in the f function maybe possible
when the program stops, due to the nature of the formulation of the
computational procedure. Thus a modest improvement can usually be made
by using the final optimum x values as the initial starting point, and
running the computer program again. This process is continued until
subsequent computer trials show an insignificant improvement in the f
function. Three computer trials seem adequate to obtain a stabilized

optimum solution for the f function and x vector.
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Chapter 6
NUMERICAL EXAMPLE

6.1 PROBLEM STATEMENT

Consider a system with three subsystems connected in a series con-
figuration. Each subsystem consists of two identical components in
parallel. Let the times to failure and repair times be exponentially
distributed with parameters Ai and My for the ith subsystem. The status
of individual units is not monitored and repair commences only when the
system fails. The system will function with one unit of each subsystem
in a failed state but will fail with more than one failure at any stage.
A repair crew capable of repairing the system at any time is assumed to
be available. Periodic mainteance is performed every T hours, starting
at time 0. During periodic maintenance every element is checked and any
unit which has failed is repaired. Performance requirements for the
system specify that the steady state availability should be at least 0.99.
The time T for periodic maintenance is suggested to fall between 75 hours
and 800 hours for the mission time t equal to 1500 hours. Limits are im-
posed on the individual A's to be between 0.001 and 0.02 failures per
hours. Likewise each of the p's are required to function between 0.0l and
0.6 repairs per hour. In designing this system the total overall costs
are separated into three categories. The first cost is the cost of de-

's and p."s

signing the system for particular values of the parameters ki 1

the failure rate and the repair rate for each unit of the ith subsystem.

The second and third costs are the costs for corrective maintenance and
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preventive maintenance respectively for the system with the particular
values of the parameters Ai's and ui's. The problem is one of finding the
combination of values of Ay i1=1, 2, 3,)ui (i =1,2,3and T which will
minimize the total overall cost for a mission time t equal to 1500 hours.
6.2 PROBLEM FORMULATION 2
u, Gy + Auy)

The equivalent failure rate of lst subsystem le, =
1 2 2
3u; + 311“1 + A

1
2y (A2 + M)
The equivalent failure rate of 2nd subsystem_xe2 W i 3
3u2 + SAzuz +12
2
21, (A3 + A3u3)
The equivalent failure rate of 3rd subsystem Aes == 3
3u3 + 3k3u3 + A3
(6.1)
The equivalent repair rate of lst subsystem ne; = 2ul
The equivalent repair rate of 2nd subsystem He, = Zuz (6.2)

The equivalent repair rate of 3rd subsystem weqy = 2u3

These equivalent failure and repair rates are obtained from equations
(4.60) to (4.61) in Chapter 4.
The objective function is obtained from equation (4.8l) in Chapter 4,

in which the following values for the constants are used



c =5.0
dl = 0.15
d2 = 150.0
d3 = 10.0

and the mission time t = 1500 hrs.

The objective function f(Ael, Aez, Aes, He s Hey, Heg, t, T) is

then given by

3 3 2
£= 7 [9;—15+150 uei—10J+ 1 1500 xe, (=)
i=1 L %4 i=1 Hey
1500 3 , 5
L G Y
T |

The steady state availability expression for each of the subsystems is

obtained from equation (4.77) in chapter 4.

=T -ALT
3 1 1
211 [1 -e (2 -e )] Ai & ll uy
Al(co) =] - . 3
3 2 e—AlT L1 e-leT 3u] + gy + A
] T X 25,
AT -A.T
3 2 2
2%, [1-e (2-e ")I] Ag + Au,
Ay(=) =1 - * T3 7
2x, 2, 2,
. AT
3 . 3
2%, [1-e (2 -e )] Ag o gl
A3(m) - 1 - . 2
3 2 E—A3T L1 e-zxsr 3u3 + 3Agug + 2
2X x 2)
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(6.3)

(6.4)
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Since the three subsystems are in series, the failure of any subsystem
would cause the system to fail. Therefore, the system is operational only
when all three subsystems are operational and the steady state avail-

ability of the system is given by
A (=) = A (=) = Ay(=) - Ag(=) . (6.5)

The nonlinear programming problem in the SUMT format is stated as

follows
3 0.15 3 1.5.2
minimize f= ) (xé—— + 150 ue; - 10) + ) 1500 re, (559
i=1 "€ i=1 hey
1500 2 , 5
+ = 4 G- )
i=1 i

subject to the constraints

g(1) =1, - .001 >0
g(2) =2, - .001 >0
g(3) = A3 - .001 >0
g(4) = ,02 - Al >0
g(5) =.02-2, >0
g(6) =.02-1x; >0
g(7) =y - .01 >0
g(8) = My - .01 >0
g(9) =wu; -.01>0
g(l0) = -y >0
g(1l) = .6 - uy > 0
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8(12) =.6 =~yu; >0

g(l3) =T ~75>0

g(ld) =800- T >0 (6.6)
g(15) =A_(~) - .99 >0

where the P function as defined in equation (5.4) is given by

P=f+r = . (6.7)

6.3 PROBLEM DEFINITION FOR THE SUMT PROGRAM

The complete SUMT computer program for solving this problem is shown
in Appendix 2. For more details on how this particular program works
see Lai [41]. The objective function and constraints are put in the block
provided in the subroutine OBRES. Values given to the following SUMT

variables and parameters are specified in the data cards.

NOPM =1
NAME = RELPRB
N =7
MG = 15
MH =0
R =0
RATIO =0
ITMAX = 7000
INCUT =4
THETA = 2 x 10



]
o

ISIZE

[}
=

ICUuT

The individual variables are specified by X(I) in the program as follows:

Al = X(1)
Az = X(2)
Ay = X(3)
Hy = X(4)
u, = X(5)
Hy = X(6)
T = X(7)

Y is used to specify the objective function f,

f =Y.
In the data cards the value of R is specified to be zero so an actual
valge for R is calculated by the program. The initial starting point,
the step size, and the estimated optimum point are also specified in the
data cards,

The estimated optimum values are:

A = .003
12 = ,003
A3 = .003
My = .20
My = .20
My = .20

T = 200.

88
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The step size (0.1 times estimated optimum values) are:

D(1) = .0003
D(2) = .0003
D(3) = .0003
D(4) = .02
D(5) = .02
D(6) = .02
D(7) = 20.0.
6.4 RESULTS

The initial starting point, the computed value of R, the values of RATIO,
the objective function f, and the P function are shown in Table 6.1. Also
shown is the phase wise minimization of the P function, values of the
parameters Al’ Az, 13, Bps Hos u3 and T, R, the availability, the objective
function £, the P function, the costs for corrective maintenance, preventive
maintenance and design, and the number of iterations within each phase.
After a minimum P function wvalue is reached at each phase the value of R
is reduced and the search is repeated again starting from the previous
minimum point of the P function. Through the phases a decreasing sequence
of P function values are obtained corresponding to the optimum points at
each phase and lying within the feasible region. As R is reduced, the P
function approaches the f function and in this example at phase 9 the final
stopping criteria YSTOP is less than the specified value (THETA). 1In other
words at phase 9 the P function and f function are sufficiently close and
the optimum of the problem has been reached.

To test the solution for the optimum, the optimum parameter values just
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obtained are used as the initial starting point for another trial. Table
6.2 shows the phase-wise minimization of the P function for this sécond
trial. Very little improvement in the f function is achieved and thus it
is concluded that the optimum values for the parameters and the f function
have been obtained. In actuality there are other points which achieve
approximately the same cost and satisfy the specified constraints. To test
whether the solution is a global optimum rather than a local optimum other
starting points are selected and the solutions obtained. If the other solu-
tions converge to the first, or are inferior th%n the optimum has been
achieved. Otherwise a local optimum has been reached and the search con-
tinues. Table 6.3 shows the phase-wise optimization when a different
starting point is used where the value of the overall stopping criteria
(THETA) has been reduced to 5x10_4. The initial starting point provided
does not lie in the feasible region and so a different starting point has
been selected by the program. The optimum point obtained after nine phases
is some what inferior to that obtained in Table 6.2. Table 6.4 shows an
optimum point obtained from yet another starting point in which objective
function has a value slightly better than that in Table 6.2. This im-
provement is not significant and may result from numerical round off error
in the computational methods. If it were significantly better we would
suspect that the other solutions were local optimums. It may be seen in
the first three tables that improvements in the objective function occur

mostly in the initial stages.
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Table 6.1 Phases in Optimization of the Objective Function Subject to

Inequality Constraints

No. Parameters Starting Phase 1 Phase 2 Phase 3 Phase 4
Costs etc. Point
-2 -2 -2 -2 -2
1 Al . 3500x10 . 440010 .4156x10 .3994x10 . 3675x10
2 A, .3500x102  .4400x107% .4137x1072 .4262x10° 2 .4094x10 2
3 Ay .3500x1072  .4400x1072 .4137x1072 .4262x10"% .3925x102
4 My . 2500 .3300 . 3525 . 3408 . 3246
5 Mo . 2500 . 3400 .3525 . 3492 . 3354
6 Mg .2500 . 3400 .3525 « 3475 . 3337
7 i 100.0 180.0 267.5 292.5 368.7
8 R .1092 .1092 .1364x107  .3411x10”2 .8528x10 >
9 No. of iter- 90 370 555 809
ations within
this phase
10 Cost for cor- 65.54 56.27 58.80 59.91
rective main-
tenance
11 Cost for pre- 60.68 35.20 34.30 31.10
ventive main-
tenance
12 Cost for 426.42 450.15 443.16 441.64
" design
13 Value of the 707.4 552.64 541,62 536,32 532.65
obj. function
f
14 Value of the P 884.2 730.02 569.10 545,98 536.62
function P
15 Availability .9916 .9912 . 9906 .9903



Table 6.1 (continued)
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No. Parameters Phase 5 Phase 6 Phase 7 Phase 8 Phase 9
Costs etc. Final
=2 -2 -2 -2 -2
1 Al . 3675x10 .3801x10 . 3801x10 .3895x10 . 3895x10
2 A 4094x1072  ,4094x107%  .4094x107% .4094x107% .4094x102
3 Ay .3925x10" 2 .3925x10" 2 .3925x10°2 .3925x10"2 .3925x10 2
4 Hy .3246 . 3246 . 3246 . 3246 . 3246
5 Hy . 3354 .3354 . 3354 « 3354 3354
6 Mg . 3337 «3337 .3337 . 3337 . 3337
7 T 368.7 368.7 368.7 368.7 368.7
8 R .2132x107°  .2665x10™% .6663x107° .1666x107° .4164x10~°
9 No. of iter- 7815 8070 11049 11221 11666
ations within
this phase
10 Cost for cor- 59.91 60.58 60.58 61.08 61.08
rective main-
tenance
11 Cost for pre- 31.10 31.10 31.10 31.10 31.10
ventive main-
tenance
12 Cost for 441.64 439.61 439.61 438.18 438.18
design
13 Value of the 532.65 531.29 531.29 530.37 530. 37
obj. function
f
14 Value of the 533.65 531.50 531.35 530.40 530.37
P funection P
15 Availability .9903 .99015 .99015 . 99005 . 99005
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Table 6.4 Final Phase Values in Optimization of the Objective Function
Subject to Inequality Conmstraints (third set of starting values)

A = .3774x1072
A, = .3788x107°
Ay = -3803x107
v, = 3249
w, = 3281
ug = .3253
T = 431.9
Value of R

Number of iterations within this phase
Cost for corrective maintenance

Cost for preventive maintenance

Cost for design

Value of the objective function £
Value of the P function P

Availability

.2082x10"°

16468
60.13
27+.79
441.66
529.57
529.58

.99003
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Chapter 7
DISCUSSION AND CONCLUSIONS

The introduction of maintenance is one of the major approaches for
increasing system reliability effectiveness. 1In this thesis, the design,
control and improvement of corrective and preventive maintenance policies
and their associated cost have been emphasized. A complete procedure
has been ocutlined for quantitatively employing availability as the
principal parameter in the determination of an optimum system. A model
has been developed for the availability of a system comprising of stages
where each stage has two, identical units in parallel. A policy is
established for preventive maintenance particularly when it is to be per-
formed. It has been demonstrated that for a redundant non-maintained
system, an increase in the mean life is obtained by performing periodic
maintenance, and that the amount of the increase depends upon the fre-
quency of periodic maintenance. On an intuitive basis it was felt that
if corrective maintenance is performed on the same system then the de-
crease in the probability of the system being down is proportional to
the increase in mean life achieved by periodic maintenance. This is
the principle assumption in the development of the availability model.

It is suggested that a topic for further work would be a complete simu-
lation study of the system to test the validity of this assumption. The
logic may be extended in developing availability models for systems with
different redundant configurations. With complex maintained systems,
steady state solutions were obtained without much difficulty by setting

the derivatives Pi(t) equal to zero as shown in equation (4.38).
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The availability model is structured on a strictly periodic main-
tenance policy. 1In practical cases having the same fixed time between
preventive maintenance actions is more common and is preferred from an
administrative point of view. The proposed model is inadequate if a
random periodic, or a sequentially determined preventive maintenance
policy is in effect. The increase in mean life of a redundant non-
maintained system with the introduction of a random periodic, or a se-
quentially determined preventive maintenance policy has not been inves-
tigated. If such studies are conducted at a later date the same con-
ceptual approach as used here may be used to develop these availability
models.

The functions for the total systems costs categorized under a) the
cost for corrective maintenance, b) the cost for preventive maintenance,
c) the cost for design, have general forms that approximate realistic
situations. For example the design costs for a unit which can be re-
paired in a short time is high, while the maintenance costs for such
a ﬁnit would be low. A typical set of values for the constants in the
cost functions is shown in the numerical example. These constants may be
changed to obtain different cost functions. In the 'Mathematical State-
ment of the Problem' in Chapter 4 the objective is to minimize the total
system cost while maintaining a given level of availability and keeping
all the parameters within given upper and lower bounds. This type of -\
analysis is valuable during final design or redesign when the availabili%y
requirements have been established. During preliminary design analysis_J
it would be more realistic to maximize availability while a specified

total system cost is not to be exceeded. Since the cost of purchase and
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installation is directly related to the design cost of the equipment,“‘
the total system cost could very well be categorized under a) the cost
for purchasing and installing the equipment b) the cost for corrective
maintenance and c) the cost for preventive maintenance. Such a cost !
model may be used in the selection of equipment from different manu- —~
facturers,

The SUMT formulation is based on the minimization of the P function
(equation (5.4)) over a strictly monotonic decreasing sequence of the
penalty coefficient T The number of phases required to obtain the
optimal solution increases with an increase in . The reason for this
is that the optimal solution is obtained when the decreasing P function
is sufficiently close to the objective function. The essential requirement
for the decreasing sequence of values of the P function to converge to
the constrained optimum value of the objective function is that the P
function be convex. The availability constraint shown in equation (6.6)
is exceedingly complex in form and is part of the second term of the P
function. So there is a chance that the P function is not convex. Thus
the optimal solution obtained in the numerical example may not be a
global optimum., It is possible to obtain separate local optimum points
having approximately the same value of the objective function and sat-
isfying all the specified constraints. Reduction of the step sizes for
the Hooke and Jeeves search restrict the area in which the search is
conducted with a good possibility that the P function is convex in that
area. The amount of reduction depends upon the problem. With large

step sizes the objective function does not montonically decrease over
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the phases. Though the objective function has a decreasing trend, some
increases in value along the successive phases may be experienced. An
extensive search of the whole domain has to be made to obtain the global
optimum, The time, effort and computational work needed for such a
search was not warranted for the numerical example since the primary
purpose of this work was to establish a procedure for analyzing problems
of this type.

In the numerical example the mission time t was given, but under
different conditions it might be treated as a variable. For example,
it might be necessary to determine the expected mission time, for the
system considered in this thesis, before the total system cost exceeds
a set value. Again in the numerical example the availability constraint
A(=) - .99 (equation 6.7) decreases over the phases and has the final
value .00001 as shown in Table 6.2. This indicates that the availability
constraint is active while the other constraints are inactive. It might
be mentioned that in another model studied but not shown in this thesis
thé constraint on the upper limit of the time between periodic mainten-
ance actions was active. In the availability expression shown in equation
(4.4b), if A = .01 failures per hour and y = 1.0 repairs per hour, then
A(») = ,9977. If the availability constraint was say .998 the minimi-

zation of total cost would push the time period for preventive maintenance

E

T in the third term of equation

to its upper limit because of the factor
(4.81) for i = 1.
The model for availability and total system cost are based on the ex—

ponential distribution for failure and repair times. This choice is not

too restrictive as shown in the choice of the distribution for failure
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and repair times (Appendix 1). The exponential distribution is conven-
ient, simple and usually describes the physical nature of many problems.
Considering exponential distributed failure and repair times, a Markovian
approach may be employed in obtaining instantaneous or steady state solu-
tions for maintained systems. On the assumption that the decrease in the
probability of the system being down is proportional to the increase in
mean life achieved by periodic maintenance, availability models for
systems with corrective and preventive maintenance may be developed,

SUMT can then be used to determine values for the failure rates, the
repair rates, the time interval for preventive maintenance and the mission
time such that associated costs are minimized subject to specified con-
straints. This is the general nature of the approach and the effort of
this work is to show a method of availability analysis so that other re-

lated models can be developed and optimized.
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APPENDIX 1
Al.1 MEASURES OF SYSTEM RELIABILITY EFFECTIVENESS

Probability of Survival

The probability of system survival is a measure of the probability
that a system will not reach a completely failed state during a given
time interval given that the system was fully operable at the beginning
of the interval. 1In systems where maintenance is either not possible
during operation or can only be performed at different times for example
missiles and satellites, the probability of survival is an appropriate

measure of system reliability effectiveness.

Mean Time to System Failure

In reliability engineering, one frequently encounters Mean-Time-
Between Failures (MTBF), Mean-Time-To-Failure (MITF), and Mean-Time-
To-First-Failure (MITFF). MIBF is sﬁecifically applicabie to a large
number of pieces of equipment where we are interested in the average
time between the individual equipment failures., MITF is applicable to
non maintained systems and is the expected time the system is in an
operable state given that at the start of time all equipments comprising
the system were in perfect working condition. MITFF is applicable to
maintained systems and the only difference with MITF is that individual

pieces of equipment are repaired when they fail.

Duration of Single Down Times
For systems like the early warning radar network, the duration of
single down times may be the most meaningful measure of system relia-

bility effectiveness. The reason for this is that if the enemy knew the

112
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system was to be down on the average of an hour each time a system failure

occured, he could arrange a sneak attack.

Maintainability

Calabro [15] defines maintainability as the probability that a de-
vice will be restored to operational effectiveness within a given period
of time when the maintenance action is performed in accordance with pre-
scribed procedures. Since a device does not always fail to accomplish
its mission because of failure requiring a repair action, the definition
refers to maintenance action and not to repair. However the words repair
and maintenance action is often used interchangeably. If we have an
exponential repair distribution with p as the maintenance action rate
or repair rate measured in number of maintenance actions per hour and t
is the maintenance time constraint in hours, the maintenance equation is

expressed as

M(t) =1 - e PE, (A1)

The mission time T, also expressed in hours, is usually very large in
comparison with t. The relationship between t and T is brought out in the

Maintainability Increment.

Maintainability Increment

Maintainability Increment is defined as the proportion of failures
in time T which will be restored to operational effectiveness in an
interval of time t as a result of the maintenance activity. Maintain-
ability Increment is a function of p, A, t and T where A is the failure

rate for an exponential distribution, whereas maintainability is a function
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of only y and t. Maintainability Increment MA is expressed as

=
I

(Probability of one or more failures in time T) (Maintainability)

AT)

1-e (1 - e-ut)

=AT

l-e - e—ut (1 - e—AT

). (A2)

Availability actually consists of two components, maintainability and
reliability, since poor reliability can be offset by correspondingly
improved maintainability. Also if the maintenance action rate is faster,

then higher availability is obtained.

Dependability

Dependability is a measure applied to missions with specified dura-
tion and allowable down times. As such, it expresses the probability of
successfully completing a mission of duration T when t is the allowable

down time during the mission.

Dependability D = e M 4 (1 e_lT)(l - MY (A3)
-AT . .
e = the probability that failure will not occur during
given time interval T for the exponential failure parameter A.
1-e™ = the probability that the system will be restored to operation

within allowable down time t for the exponential repair
parameter j.
Figure Al illustrates the relationship between u and A for a given t
and T and this suggests that the dependability model may be used for

trade off procedures.
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Figure Al. Dependability trade-off graph for given t and T



116

Mission Availability

Mission Availability has been defined by Howard [36] for a specified
period of time t, as the product of the expected availability and the
probability of survival for the period t. It seems intuitive that
frequent failures,even though they are minor, can be more damaging than
they appear to be. A car that runs a month and takes a day to fix is
preferable to a car that runs a half hour and takes a minute to fix, even
though these have the same availability in the steady state. For illus-
tration let us assume that a system must operate continuously for 1/2

hour if it is to fulfill its purpose,

TABLE Al Mission Availability for changes in mean failure and repair

times
Mean Time to Mean Time to Availability Mission
Failure 1/X Repair 1/M T Availability
T hrs t hrs A= T A - e—O.S/T
100 10 +91 .91
10 1 .91 .885
1 .1 .91 .55

As is seen in Table Al,even with equal steady state availabilities, the

last system has more of a chance to fail.

Al.2 FAILURE RATE
Let the time to failure of a component be the random variable T.

The failure density function is defined by

P(t < T < t+dt) = f£(t)dt (A4)
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The probability of failure between time t and t+dt given that there were

no failures up to time t is given by

P(t < T < t +dt)

P(t<T<t+dt |T>¢)= (A5)

P(T > t)

where P(T > t) =1 - P(T <t) =1 - F(t) = R(t).

The conditional probability on the left side gives rise to the conditional
density function A(t) as shown by Shooman [62] and is defined as

P(t <T<t+dt |T>t)

- E(r) (A6)

A(t) = lim iE = R(t)

dt=>0

The conditional density function is generally called the hazard function
or (instantaneous) failure rate. Figure A2 is the plot of the curve of
the failure rate against the lifetime T of a very large sample from a
homogenous component population. The failure rate stabilizes to an ap-

proximately constant value at time T Noticeable wearout starts occuring

B’
when components reach life TW' M is the mean wearout life of the population.

For the Weibull failure law we have

ACE) = (aB)ePt (A7)

where a and B are positive constants. Thus A is an increasing, decreasing
or constant function of t, depending on the value of B as shown in

Figure A3. We note that the exponential distribution is a special case of
the Weibull distribution since we obtain the exponential distribution if
we let B = 1. The failure rate vs time plot for the normal and log normal

distributions are shown in Figure A4. Another density function of
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Figure A4, Graphs of failure rate A(t) versus time t for the Rayleigh,

Normal and Log normal distributions.
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considerable interest is the single parameter Rayleigh distribution which

is given as

—Kt2/2
f(t) = Kt e . (A8)

The Raleigh distribution as shown in Figure A4 has a linearly increasing
failure rate.

All that has been said with reference to failures is equally appli-
cable in the case of repairs and the repair rate is the equivalent of
the failure rate. If the failure rate is known then the reliability
function R(t) and the failure density function f(t) may be computed by

the following expressions

t
- f Ax) dx
R(t) =e ° (49)
t
& I A(x) dx
f(t) = A (t) e g (A10)

The main reason for defining the A(t) function is that it is often more

convenient to work with than f(t).

Al.3 CHOICE OF THE DISTRIBUTION FOR FAILURE AND REPAIR TIMES
One chooses a model for a continuous distribution function on the
basis of the following criteria.
1. The underlying assumptions associated with a particular distribution
satisfy the physical nature of the problem.
2, Data is available and curve fitting is done from the plot of data.
3. A convenient and simple model is chosen based on engineering

Judgement.
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The exponential distribution is the most important distribution for
failure times since it seems to apply to most electronic equipment.
All military standards are based on it and 907 of all military reli-
ability calculations use it., The rationale is that electronic compon-
ents do not fail from wearout or fatigue but from overstress (voltage,
temperature, current etc) and these overstress conditions have the
Poisson distribution. Under the usual conditions of operation for
equipment composed of many component parts, the time between failures
are exponentially distributed as shown by Davis [19].

| Repair times appear to be described best by a log normal distri-
bution but it can for computational purposes, usually be approximated
by an exponential function according to Westland [77]. Shelley [60]
after a study of maintenance man hour distributions for cargo air craft
concluded that it adhers closely to the cumulative log normal distri-
bution especially at the upper percentile points. The hypothesis that,
"as long as the start of the repair periods occur at random, the re-
sults for availability would be independent of the type of distribution
of the length of repair periods", was tested for a duplex system by a
Monte Carlo method by Rohn [56]. Separate tests were made for the fol-
lowing distributions (1) a constant distribution (2) a normal distri-
bution (3) a rectangular distribution (4) an exponential distribution.
All the distributions were chosen to have the same average value. The
fractional simultaneous repair times were very nearly the same for all
the tests and agreed closely with the derived expressions in which an

exponential distribution had been considered.
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Al.4 SINGLE UNIT AVAILABILITY FOR WEIBULL DISTRIBUTED TIME TO FAILURE
AND REPAIR.

Wohl [79] has developed expressions for availability of a single unit
system when times to failure and repair have a Weibull distribution. The

two parameter Weibull distribution is generally given by

y
P(t) = 1 - e CE/%) (AL1)

where P(t) is the probability of occurence of an event by time t, and
X and y are the Weibull parameters (x is the median and y is the shape

parameter). The expected time of occurence of an event is given as

t - xI'(-i— +1). (A12)
Thus MTTF = BP(% + 1)
MRT = Y@ + 1)

where 6 and y are the median values and B and o are the shape parameters

of the failure and repair time distributions respectively.

1o MITR F
S ®) = —————
ince the steady state availability A(w) MTTR + HRT °
5 F
A = -
¢FC; + 1)
1l + —m———
or(: + 1)
B
Case I: a =8
1
For any o = B8, A(=) =
g
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Case 1I : B = I%;
For any B = I%E-, A=) = 2
1+ 8

Bredeman [l4] has shown that for the active tail defense system of a
strategic bomber the Weibull model describes the reliability performance
very well, and that Weibull parameters determined from the performance
data are relatively insensitive to equipment age. The shape parameters
in the Weibull failure distribution were less than unity, indicating a

failure rate decreasing with time,
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APPENDIX 2

The SUMT computer program listing. This version was written by

LAI [42].
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In this thesis,a procedure is presented which uses availability as
the principal consideration in the design of an optimum system. A system
is considered which has n parallel subsystems connected in series and cor-
rective maintenance is practiced. Each subsystem consists of two identical
units in parallel, where the failure and repair times are exponentially
distributed, with parameters A and p respectively. A Markovian approach
is employed in obtaining the instantaneous and steady state availability
expressions for each of the subsystems. It is shown that periodic main-
tenance increases the mean life of nonmaintained redundant systems. Based
on the assumption that the probability of the system being down is pro-
portional to the increase in the mean life achieved by periodic mainten-
ance, availability models for systems with corrective and preventive
maintenance are developed. The total system costs that are included in
the model are a) the cost for designing failure and repair rates; b) the
cost for corrective maintenance; and c¢) the cost for preventive mainten-
ance. The total cost expression is a function of the failure and repair
rates of the individual units, the time interval for preventive mainten-
ance and the mission time.

The problem is one in which the total system cost is minimized while
maintaining a given level of availability. This is a nonlinear program-
ming problem and is solved with the Sequential Unconstrained Minimization
Technique (SUMI). A version of this technique suggested by Lai (42) is
used which does not require finding the first order and second order de-
rivatives of the objective and constraint functions as when the gradient

search versions of the technique are used. The version of Lai used in



