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Abstract 

Stripe rust, caused by Puccinia striiformis f. sp. tritici, historically has been a minor 

problem in the Great Plains. However, Kansas had significant losses due to stripe rust in 2001, 

2003, and 2005. Recent research on the population of P. striiformis suggests changes in the 

fungal population may have been responsible for these epidemics. The objectives of this research 

were to determine conditions that are favorable for the infection of P. striiformis f. sp. tritici 

isolates from the current population and develop models to predict infection events. Two week 

old potted seedlings were inoculated with an isolate of P. striiformis and exposed to ambient 

weather conditions for 16 hours. Results of this bioassay were used to develop logistic regression 

models of infection. Models using hours at relative humidity >87%, leaf wetness, and mean 

relative humidity predicted infection with 93%, 80%, and 76% accuracy. Future research will use 

these results to determine weather patterns that influence the probability of stripe rust epidemics 

and to facilitate the development of regional prediction models for stripe rust. 

Foliar diseases of wheat result in an average yield loss of 7.8% in Kansas. Although it is 

possible to reduce these losses with foliar fungicides, the yield increases resulting from these 

applications may not justify the additional costs. The objective of this research was to develop 

models that help producers identify factors associated with disease-related yield loss and the 

profitable use of foliar fungicides. Data were collected for two years at three locations in central 

Kansas to determine yield response to fungicide application on eight varieties with varying 

degrees of resistance. Logistic regression was used to model the probability of a yield response 

>4 bushels per acre based on disease resistance of a variety, historical disease risk, and in-season 

disease risk. The accuracy of the resulting prediction models ranged from 84% to 71%. A model 



 

 

 

combining in-season disease risk and variety resistance was most accurate. The prediction 

accuracy of the model was 79% when tested with an independent validation dataset.  In the 

future, these models will serve as educational tools to help producers maximize profit and 

productivity. 
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CHAPTER 1 - Literature Review 

Historically wheat has been the most economically important crop in Kansas. In 

2007, 10.4 million acres were planted, resulting in a $1.76 billion crop. Although the 

number of wheat acres planted has decreased slightly to 8.8 million acres in 2009, it is 

still a very important crop today, producing nearly 370 million bushels of grain in the 

state of Kansas in 2009 (National Agricultural Statistics Service).   

Foliar fungal diseases on wheat can significantly reduce yields. Major foliar 

fungal diseases on Kansas wheat include leaf rust, stripe rust, tan spot, powdery mildew 

and Septoria blotch. In 2007, fungal disease caused an estimated 17.4% loss in yield in 

Kansas. In 2008 and 2009 foliar disease losses were lower; however, they still resulted in 

more than $100 million in losses each year.  The twenty-year average yield loss for foliar 

fungal diseases is 7.8 % in Kansas (Appel, et al., 2009). Shriveled grain, fewer kernels 

per head, and damaged tillers cause yield reduction in fields affected by foliar disease 

(Bowen, 1991; Gilchrist and Dubin, 2002; Singh et al, 2002).   

Foliar Disease 

Leaf Rust 

 Leaf rust is caused by Puccinia triticina Eriks.  As its disease name implies, leaf 

rust primarily affects the leaf blades of wheat, but it can also affect the leaf sheath.  It is 

caused by an obligate pathogen. Leaf rust infection occurs during warm wet conditions 

and requires at least 4 hours of leaf wetness to cause infection. It is adapted to a wide 
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range of temperatures, with maximum spore germination occurring from 5° to 25° C with 

a wetness period of 24 hours.  Most spores fail to infect at 30°C and spore germination 

ceases at 35°C (de Vallavieille, 1995).  After the primary infection, leaf rust has a latent 

period of 7-10 days at optimum temperatures (Singh, et al., 2002). Leaf rust infections on 

the flag leaf cause a greater reduction in yield than infections in the lower canopy.  

Infection is caused mainly by viable urediniospores (Eversmeyer and Kramer 1994). In 

Kansas, the main source of this inoculum is fields to the south where the fungus 

overwinters, however it is possible for leaf rust to overwinter in fields in Kansas.  During 

years that leaf rust overwinters in fields, yield losses greater than 2% occur (Eversmeyer 

et al, 1988 and Eversmeyer and Kramer, 2000). When rust overwinters in the field, 

pustules from spring infection develop much earlier (March 1 in Manhattan, KS) than in 

fields where overwintering did not occur (April 25 in Manhattan, KS) (Eversmeyer and 

Kramer, 2000).  Because leaf rust is an obligate parasite, the majority of the visible 

disease will produce spores, increasing the amount of inoculum in the field, and leading 

to possibly severe secondary infections (Paveley et al., 1997). 

There are three stages of spore dispersal for leaf rust spores: liberation, dispersion, 

and deposition.  Liberation can be caused by anything that causes the spores to be 

detached from the leaf, such as rainfall, insects, or wind (Eversmeyer and Kramer, 2000). 

Wind is considered to be the primary means of dispersion, and spores can be moved great 

distances. The leaf rust fungus is considered to have a greater population diversity and is 

often more threatening than more localized pathogens (Duveiller, et al., 2007 and 

McDonald and Linde, 2002). 
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 In a study in France using resistant and susceptible varieties, Rimé et al. found 

that a resistant reaction may increase the latent period by 1.5 days (2005). The study also 

found that although pustule size was reduced in resistant varieties, sporulating capacity of 

the pustules per unit area was not. Pustule density on leaves is inversely proportional to 

size. However, the number of spores produced per unit area remained constant, regardless 

of pustule density or size (Rimé et al., 2005; Robert et al., 2002). 

In Kansas, leaf rust is generally the most yield-limiting foliar disease. In the past 

20 years, Kansas wheat producers have lost on average 3.8% of their yield due to leaf 

rust. Losses in the past 20 years have been as high as 13.9% in 2007 and as little as 0.1% 

in 2006 and 1996 (Appel, et al., 2009; National Agricultural Statistics Service). 

Powdery Mildew 

 Powdery mildew is caused by Blumaria graminis (DC.) E.O. Speer. It is 

characterized by white or gray pustules on the upper and lower leaf surfaces (Daamen, 

1986). The disease is generally favored by environments that are cool and moist (Bennett, 

1984).  The optimum temperature for powdery mildew growth is 21°C. Most spore 

germination occurs at 10-22°C, which is lower than some foliar diseases on wheat 

(Schnathorst, 1965 and te Beest et al., 2008).  At temperatures above 28°C, growth of 

powdery mildew is inhibited (Bowen et al., 1991).  Unlike many plant pathogenic fungi, 

B. graminis does not require dew or rain droplets to cause infection; however, the fungus 

does require extended periods of relative humidity between 95-100% to infect. Powdery 

mildew infections occur from ascospores, conidia, and overwintering mycelia. Secondary 

infections usually originate from conidia. The disease is often observed first on the lower 

leaves, but quickly spreads upward as conidia cause secondary infection on adjacent 
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leaves (Schathorst, 1965). Powdery mildew can overwinter on wheat in fields, volunteer 

wheat, or other grass species (Frank and Ayers, 1986; Cunfer, 2002).   

The conidia of B. graminis are wind dispersed, and wind strongly influences the 

rapid increase of disease. Once the powdery mildew is established in a wheat canopy, 

temperature is considered to be the greatest determinant of final disease severity (te Beest 

et al., 2008).  Early season infection of powdery mildew can be associated with excessive 

tillering. Many of these tillers will not reach reproductive stages of growth and often 

deplete carbohydrate reserves of the infected plants, resulting in fewer viable tillers, 

smaller head size per tiller, and fewer kernels per head (Everts and Leath, 1992; Bowen 

et al., 1991). Powdery mildew is generally not considered to be a serious threat in 

Kansas, but severe yield losses can occur when environmental conditions favor disease 

development. The twenty-year average yield loss due to powdery mildew is 0.2% (Appel, 

et al., 2009; National Agricultural Statistics Service). 

Septoria Blotch 

  Septoria blotch on wheat is caused by Septoria tritici Roberge in Desmaz. It is 

favored by long periods of rainy weather and is characterized by irregular chlorotic 

lesions (Gilchrist and Dubin, 2002; Shaner, 1981).  The optimum temperature range for 

Septoria blotch development is 18-25°C.  It requires 12-15 hours of leaf wetness for 

infection, and disease severity increases as leaf wetness duration increases (Magboul et 

al., 1992).  Primary infections are caused by airborne ascospores and rain splashed 

pycnidiospores. Pycnidiospores are responsible for the majority of secondary infections 

(Eyal, 1999; Gilchrist and Dubin, 2002). Septoria infection is often first observed on the 

lowest leaves, but the disease often spreads to the upper leaves as pycnidiospores are 
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dispersed throughout the canopy (Lovell et al., 2004).  These secondary infections can 

occur in as little as 6 days, but generally take 3-4 weeks to develop (Gilchrist and Dubin, 

2002; Lovell et al., 2004; Shaw, 1990). After inoculation, severe disease may develop 

after either a long moist period followed by a cool incubation period or a short moist 

period followed by a warm incubation period (Hess and Shaner, 1987).  Wheat may also 

become infected with Septoria blotch when it comes in contact with infected debris from 

the previous year. S. tritici survives in infested crop debris and on volunteer wheat and 

other grass species (Gilchrist and Dubin, 2002). It is difficult to assess the amount of 

inoculum present in a field based on visible symptoms because the fungus will remain 

viable even after the wheat dies (Paveley, 1997). On average, Septoria blotch causes 

approximately 1% yield loss in Kansas, but yield losses range from trace to 7.4% (Appel, 

et al., 2009; National Agricultural Statistics Service). 

Stripe Rust 

 Stripe rust is caused by Puccinia striiformis f.sp. tritici Westend., which is an 

obligate pathogen.  It occurs during cool, moist weather, and is characterized by lines of 

small rust-colored pustules called uredinia, which are composed of urediniospores. 

Infection requires at least 3 hours of leaf wetness (Rapilly, 1979). Generally stripe rust 

thrives at lower temperatures, and the majority of spore germination occurs from 5-16°C 

(de Vallavieille-Pope et al., 1995).  The disease has a latent period of 9-13 days (Milus et 

al., 2006). Urediniospores are readily dispersed by wind or rain (Chen, 2005; Rapilly, 

1979). Spores from the lower leaves serve as the main source of inoculum for the 

infection of the upper leaves. Windblown urediniospores from fields in the Southern 

United States serve as the primary inoculum for Kansas (Paveley et al., 2000). The timing 



 

6 

  

of these spore movements relative to crop growth stage is important. If infection occurs 

very early in the season, yield loss can approach 100% in fields of highly susceptible 

varieties (Chen, 2005). 

 The main determinant of a stripe rust epidemic and its severity is temperature (te 

Beest et al., 2008).  The last time Kansas saw significant yield loss from stripe rust, the 

mean temperatures in May and June were lower than normal (Chen, 2005). Markell and 

Milus (2008) found that populations of P. striiformis in the eastern United States (states 

east of the Rocky Mountains) before 2000 were genetically different from those found 

since then.  Furthermore, they found that the differences in the populations most likely 

came from an exotic introduction rather than from mutations of the previous population. 

Since 2000, stripe rust has been most severe in the south central US, with severe yield 

losses reported in Arkansas, Louisiana, Kansas, Oklahoma, and Texas. Milus et al. (2006) 

found that the new isolates of P. striiformis were more aggressive and better adapted at 

higher temperatures compared to isolates prior to 2000. In this study, latent periods of 9-

13 days were recorded for the new isolates, compared to a minimum of 11 days 

previously recorded for old isolates.  Isolates with short latent periods may cause up to 

2.5 times more disease in the field compared to isolates with longer latent periods, 

contributing to the severity of stripe rust epidemics. Isolates from the new populations of 

P. striiformis also showed faster urediniospore germination at 18°C than isolates 

collected prior to 2000 (Milus et al., 2006). 

Prior to 2001, stripe rust was rarely a problem in Kansas. In fact, between 1988 

and 2000, yield losses resulting from stripe rust were only reported twice, in 1995 with 

0.01% yield loss and in 2000 with 0.05% yield loss.  However, in 2001, 2003, and 2005 
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the state suffered yield losses of 7.3%, 10.6%, and 8%, respectively, presumably due to 

favorable weather for stripe rust infection and new, more aggressive isolates of P. 

striiformis. The twenty-year average for yield loss due to stripe rust is 1.31% (Appel, et 

al., 2009; National Agricultural Statistics Service).   

Tan Spot 

 Tan spot is caused by Pyrenophora tritici-repentis (Died) Drechs.  It is 

characterized by brown oval shaped lesions with yellow edges. It occurs in warm 

environments and is favored by a wide range of temperatures from 18 to 32° C and long 

periods of moisture (Duveiller and Dubin, 2002; Shabeer and Bockus, 1988).  The leaf 

wetness duration required for tan spot infection is influenced by the genetic resistance of 

a wheat variety. Wheat varieties that are resistant to tan spot may require more than 48 

hours to become infected by P. tritici-repentis, whereas susceptible varieties show 

symptoms of infection after 6-12 hours of leaf wetness. The required leaf wetness 

duration is also affected by temperature. At 10°C infection is suppressed if the leaf 

wetness period is less than 24 hours (Hosford et al, 1987). Tan spot has a latent period of 

7-14 days (Shaner, 1981).  Pseudothecia of this fungus mature on residue from the 

previous year‟s wheat crop and then release ascospores to cause the initial infection of 

subsequent wheat crops.  Conidia on the residue or on previously infected leaves of the 

current crop act as a source of secondary inoculum.  Infection spreads from lower leaves 

to upper leaves. Greenhouse studies by Shabeer and Bockus found that wheat is most 

susceptible to injury from tan spot between the boot and flowering growth stages 

(Shabeer and Bockus, 1988).    
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Winter survival of the tan spot fungus is greater when autumn and winter 

conditions are cold and dry. Stubble on which tan spot survives is broken down more 

during autumns and winters that are warm and wet.  Knowledge of the previous year's 

weather may help to predict the severity of tan spot in fields (Jorgensen and Olsen, 2007). 

In the past 20 years, tan spot has caused low levels of losses nearly every year in 

Kansas, averaging about 1% loss per year.  In 1996, no yield loss was attributed to tan 

spot. However, that year had very little disease loss overall, reporting less than 2% yield 

loss due to foliar disease.  The greatest loss due to tan spot was 2.5% in 1993 (Appel, et 

al., 2009; National Agricultural Statistics Service). 

Spray Decisions 

Because of increased commodity prices and the recent problems in Kansas with 

foliar disease, there is greater interest in protecting wheat through the use of foliar 

fungicides. The decision to spray a foliar fungicide in order to prevent yield loss is 

influenced by many factors including genetic resistance of a variety, nitrogen application 

history, tillage practices, previous crops, crop growth stage, and diseases present.  

Planting resistant varieties has successfully reduced the need for fungicide application. 

From 1976-2000, losses due to disease were reduced by 38%. This reduction is attributed 

to the use of resistance genes in resistant varieties, rather than the use of foliar fungicide 

(Bockus et al, 2001).  In a study conducted in Denmark, Olsen, et al. found that Septoria 

blotch and powdery mildew occur at higher levels when nitrogen fertilizer levels are 

high; however, powdery mildew was more affected by nitrogen levels than Septoria 

blotch. Split nitrogen applications have been found to reduce overall powdery mildew 

throughout the season (Olesen et al., 2003).  Varga et al. (2005) found that under high 
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nitrogen inputs, foliar fungicide had a greater positive impact on wheat yields when 

compared to low nitrogen inputs. Furthermore, the study found that susceptible varieties 

benefited more from foliar fungicide application than resistant varieties. During years 

with low disease pressure only susceptible varieties showed a positive yield difference 

due to fungicide application (Varga et al., 2005). 

Scouting for diseases is also considered to be an important factor for determining 

the need for fungicide application.  Pest Management in US Agriculture reports that in 

1996, 66% of planted winter wheat acres were scouted for diseases (Fernandez-Cornejo 

and Jans, 1999).  The USDA reports in Agricultural Chemical Usage 2006 Field Crops 

Summary that in 2006, 62% of winter wheat acres were scouted for disease.  In Kansas 

45% of wheat acres were deliberately scouted, while 42% were scouted by general 

observations (National Agricultural Statistics Service, 2007).  Only 56 % of wheat acres 

in Kansas were actually scouted for disease. The majority of the scouting (93%) is done 

by the producer or a family member. In 2006, it was estimated that 9% of all US wheat 

acres were sprayed with fungicide, and that fungicide contributed to 19% of the yield that 

year. Fungicides increased the value of production in US agriculture in 2006 by nearly 

$107 million (Gianessi, 2006).   

 Timing of fungicide application is also important. Paveley et al. suggest that fall 

application of fungicides to potentially reduce inoculum was not an effective means of 

reducing overall disease levels in the spring (Paveley, 1997).  Spring application of 

fungicide, however, reduces inoculum and delays the onset of epidemics, thus reducing 

disease severity in wheat (Paveley, 2000).  When spraying is delayed in the spring 

beyond the optimum spray time, higher application rates are not needed. However, the 
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highest labeled application rate is recommended, and more than one spray may be needed 

to achieve maximum disease control when disease pressure is very high (Paveley, 2001).  

Fungicides 

Fungicides can increase yield by prolonging the grain filling period (Dimmock 

and Gooding, 2002). Fungicides also help to prolong green leaf duration, improving grain 

nitrogen and dry matter yields (Ruske, et al., 2003). Along with foliar fungicides, some 

foliar diseases may also be reduced through the use of seed treatment fungicides. Seed 

treatments of triadimenol help to reduce powdery mildew, Septoria blotch, and tan spot 

levels (Duveiller and Dubin, 2002; Frank and Ayers, 1986; Frank et al, 1988).  Several 

options of fungicide are available for producers to choose from, depending on the 

historical risk of disease and the diseases present in the field. The most common foliar 

fungicides currently fall into either the strobilurin or triazole classes of chemistry. 

Strobilurins 

 Strobilurins work by inhibiting mitochondrial respiration of the fungus. Along 

with controlling foliar disease on wheat, strobilurins have also been shown to boost yield 

in some cases by maintaining green leaf area longer than other fungicides.  Although 

strobilurins work most effectively when applied prior to infection or in the early stages of 

infection, they have been shown to control disease after visible symptoms appear and to 

reduce sporulation in some cases (Bartlett, 2002). Headline and Quadris belong to the 

Strobilurin class of fungicides.  

Headline has the active ingredient pyraclostrobin and is labeled in wheat to 

control foliar diseases.  It is manufactured by BASF (Research Triangle Park, NC) and 

may be applied to wheat up to the beginning of flowering. For maximum protection 
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Headline should be applied soon after flag leaf emergence and prior to disease 

development (Anonymous (c), 2008). Headline shows excellent control of leaf and stripe 

rust and tan spot. It was assigned an efficacy rating of “very good” for glume blotch and 

Septoria blotch, and good against powdery mildew.  It is not recommended for use for the 

suppression of Fusarium head blight (De Wolf, 2008). 

Quadris is a broad spectrum fungicide with the active ingredient azoxystrobin. 

Azoxystrobin is a xylem systemic fungicide that can move to new growth in wheat 

(Bartlett et al., 2002).  Quadris is manufactured by Syngenta Crop Protection 

(Greensboro, NC) and may be mixed with many other common fungicides, liquid 

fertilizers, herbicides, and insecticides.  It effectively controls the major foliar diseases on 

wheat in Kansas, as well as glume blotch.  As with Headline, Quadris is not 

recommended for the suppression or control of Fusarium head blight (De Wolf, 2008). It 

may be applied up to Feekes growth stage 10.5 or 45 days before harvest (Anonymous 

(f), 2007).  

Triazoles 

 Bumper, Proline, PropiMax, and Tilt belong to the Triazole class of fungicides.  

Bumper (Makhteshim Agan of North America, Raleigh, NC) is a systemic fungicide that 

contains the active ingredients prochloraz and propiconazole. It is labeled in wheat to 

control foliar diseases (Anonymous (a), 2009).  Propimax (Dow AgroSciences, 

Indianapolis, IN) also contains the active ingredient propiconazole and is labeled for the 

control of foliar diseases in wheat.  It may be applied up to Feekes growth stage 8 

(Anonymous (h), 2001). De Wolf (2008) found that Bumper and PropiMax gave very 
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good control of the major foliar diseases in Kansas and fair control of Fusarium head 

blight.   

Tilt also contains the active ingredient propiconazole. It is manufactured by 

Syngenta while Propimax is made by Dow AgroSciences (Anonymous (g), 2007; 

Anonymous (h), 2001).  It received the same ratings in fungicide efficacy trials as 

Propimax and Bumper (De Wolf, 2008). Propiconazole is a systemic fungicide that works 

to both treat and protect against foliar disease. Cook et al. found propiconazole was the 

most effective at controlling Septoria blotch and leaf rust (Cook et al., 1999). 

Proline (Bayer Crop Science, Research Triangle Park, NC) is a fungicide labeled 

to control leaf and stripe rust, tan spot, Septoria blotch, and glume blotch, and to suppress 

Fusarium head blight in wheat.  Its active ingredient is prothioconazole (Anonymous (d), 

2008).  It has very good control of glume blotch, Septoria blotch, tan spot and leaf rust. 

The suppression of Fusarium head blight by Proline may be increased with a higher dose, 

taking it from „good‟ to „very good‟ (De Wolf, 2008).  

Folicur (Bayer Crop Science, Research Triangle Park, NC) is a demethylation 

inhibitor fungicide labeled for use on wheat to control leaf, stem, and stripe rust and to 

suppress Fusarium head blight. Its active ingredient is tebuconazole. For rust control, 

Folicur should be applied at the first signs of symptoms. To suppress Fusarium head 

blight, Folicur should be applied at the beginning of flowering. It may be applied up to 30 

days before harvest (Anonymous (b), 2008). 

Premix 

 Quilt (Syngenta Crop Protection, Greensboro, NC) and Stratego (Bayer Crop 

Science, Research Triangle Park, NC) are premixed fungicides that contain both 
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strobilurin and triazole fungicides.   Both contain propiconazole, the active ingredient in 

Bumper, PropiMax, and Tilt.  Stratego also contains the active ingredient trifloxystrobin. 

Stratego interferes with fungal respiration, inhibits spore germination, and prevents 

fungal growth.  It is labeled in wheat to control glume blotch, Septoria blotch, powdery 

mildew, rusts, and tan spot. It may be applied up to full head emergence, or 35 days 

before harvest (Anonymous (i), 2001). Quilt is a premixed combination of Tilt and 

Quadris from Syngenta.  It contains both active ingredients azoxystrobin and 

propiconazole.  Quilt may be applied through full head emergence (growth stage 10.5), 

but best control usually occurs when applied at 50%-100% flag leaf emergence 

(Anonymous (e), 2008). Although it is not recommended for suppression of head scab, it 

had excellent control of leaf and stripe rust and very good control of the other major 

foliar diseases (De Wolf, 2008).   

Management  

In addition to foliar fungicide application, many cultural methods may be 

employed to control foliar fungal diseases in wheat crops.  Selection of resistant varieties 

may greatly reduce the need for fungicide application and reduce yield loss (Bockus et 

al., 2001and Chen, 2005).  The use of cultivar mixtures has been shown to reduce the 

severity of foliar diseases. Cox et al. (2004) found a 32% reduction in leaf rust severity in 

50:50 mixtures compared to single varieties. Tan spot and powdery mildew are also 

reduced by cultivar mixtures (Cox et al., 2004; Cunfer, 2002).  Planting date and variety 

maturity also affect foliar disease levels.  Selecting an early maturing variety has been 

shown to reduce foliar diseases including leaf rust and Septoria blotch (Eversmeyer and 

Kramer, 2000; Shabeer and Bockus, 1988).  
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Because primary inoculum is found in residue from the previous year‟s wheat 

crop, tan spot and Septoria blotch can be more severe in no-tillage and continuous wheat 

systems. Tillage or burning to reduce crop residue may decrease severity of epidemics of 

tan spot and Septoria blotch.  Carignano et al. (2008) found that spraying fungicide on 

no-till wheat when tan spot severity was high would control tan spot and improve yields 

to levels comparable to tilled wheat. The study also found that the use of a resistant 

variety will help control tan spot when large amounts of wheat residue are left on the soil 

surface. Crop rotations also reduce tan spot in wheat.  Bockus and Claassen (1992) found 

that even one year of rotation out of wheat effectively controlled tan spot. Using 

pathogen-free seed also helps to reduce tan spot inoculum (Duveiller and Dubin, 2002).   

Many fungicides are labeled for control of foliar fungal diseases in wheat. The 

timing of a fungicide application strongly influences the efficacy of the treatment for 

disease control and yield improvements. Timing often depends on the prominent disease 

present and the region in which the wheat is grown.  Bowen et al. (1991) found that early 

season control was important in protecting yield from powdery mildew in the 

southeastern United States. Lipps and Madden (1989) found similar results in studies 

conducted in Ohio, concluding that if powdery mildew is the disease that will limit yield 

the most, fungicide should be applied early in the season, at growth stages 6-8 (from first 

visible node on main stem to flag leaf emergence) (Lipps and Madden, 1989). Powdery 

mildew is well controlled when fungicide is applied immediately after individual leaf 

emergence (Cook et al., 1999). Tan spot can also reduce yield early on in the growing 

season. Shabeer and Bockus found in field studies in Kansas that about half of yield loss 

due to tan spot can come from infection occurring very early in the season before the boot 
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stage. This is likely due to the multiple secondary infections that can occur in the field 

when infection takes place early. This suggests that fungicide application may be needed 

earlier for control of tan spot than for rusts (Shabeer and Bockus, 1988). Stripe rust and 

leaf rust control depended more upon the timing of the application rather than the product 

applied. In studies conducted in England, it was found that the optimum spray time for 

control of leaf rust was 10 days earlier than for stripe rust (Cook, 1999). 

 

Models 

Crop modeling has been used over a wide array of crop types and diseases. 

Models can be either mechanistic or empirical. Mechanistic models are generally more 

explanatory and often use results from controlled environment experiments, whereas 

empirical models generally use statistics to describe relationships between variables using 

data from field experiments. Once developed, disease prediction models must be 

validated regardless of strategy used to develop the model. This can be accomplished by 

dividing data into model development and model validation sets prior to development or 

by using data collected separately from the data used for model development. Bayesian 

decision theory may also be used to evaluate models. This method evaluates the 

likelihood of making the correct decision with the predictive model verses decisions 

made without any additional information (De Wolf and Isard, 2007). Bayesian analysis 

also allows for threshold adjustments to account for rare events, such as sporadic but 

severe stripe rust or leaf rust epidemics in western Kansas. Logistic regression is also 

often used in modeling to assess disease risk in cropping systems.  Paul and Munkvold 

(2004) used pre-planting and hybrid genetics information to predict risk for gray leaf 
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(caused by Cercospora zeae-maydis) spot on corn (Zea mays) using logistic regression. 

The model did not use any in-season data for disease risk prediction. Therefore, the 

predictive model can be used for decisions such as hybrid selection or fungicide 

application (Paul and Munkvold, 2004). 

Logistic regression was also used by Twengstrom et al. (1998) to develop a model 

for fungicide spraying decisions for Sclerotinia stem rot in oilseed rape in Sweden.  Risk 

factors including disease in the previous crop, crop density, regional risk, and weather 

were used to develop models. Points were assigned based on risk factors, and when a 

threshold was reached, spraying was recommended.  Models were compared using the 

area under the receiver operating characteristic (ROC) curve (Twengstrom, et al., 1998). 

The ROC curve is a plot of the relationship between the sensitivity (true positive 

proportion) and 1-specificity (false positive proportion) of a model. The optimum area 

under the ROC curve is 1 (Madden et al. 2007). 

In wheat, prediction models have been developed for the foliar fungal diseases 

leaf rust, powdery mildew, Septoria blotch, stripe rust, and tan spot, as well as Fusarium 

head blight and soil-borne mosaic virus and spindle streak mosaic virus (De Wolf and 

Isard, 2007).  Audsley et al. (2005) developed a foliar fungal disease prediction model for 

winter wheat in the United Kingdom. Risk factors, including host resistance, inoculum 

pressure and weather variables that were easily accessible to producers were used to 

estimate green leaf area loss due to disease in the canopy. The foliar diseases considered 

in the model were leaf rust, stripe rust, powdery mildew and Septoria blotch (Audsley et 

al., 2005). This model can be used with another model, developed by Milne et al. (2007) 

that describes the effect of active ingredients of foliar fungicides on green leaf area and 
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yield loss due to disease (Milne, 2007). Another model, created in the UK, used rainfall 

and temperature during late winter and early spring to predict Septoria blotch epidemics 

in wheat. Other variables that are less accessible to producers, including high vapor 

pressure, low wind run speed, and high radiation were also linked to an increased risk of 

severe epidemics. Variety resistance was not included in the model but it was noted that 

susceptible varieties had more false negatives, and resistant varieties had more false 

positives (te Beest et al., 2009).  Linear regression was used to develop a model to predict 

leaf rust epidemics in Argentina. This model used temperature, relative humidity, and 

variety resistance to predict leaf rust severity (Moschini and Pérez, 1999). 

Research Objectives 

The objective of the following research is to use information regarding disease 

biology and factors associated with disease to develop logistic regression models that 

assist producers in assessing the risk of disease epidemics and appropriate use of 

fungicides to combat economic losses due to disease. The objectives of the first 

experiment, presented in Chapter 2, are to identify environmental conditions that are 

conducive to stripe rust infection and to develop infection models that will later be 

incorporated into regional prediction models. The objectives of the second experiment, 

presented in Chapter 3, are to identify variables influencing the probability of a positive 

yield response to foliar fungicides and to develop models that assist producers with their 

fungicide decisions. The ultimate objective of the research is to increase the profitability 

and productivity of Kansas wheat producers.  
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CHAPTER 2 - Identification of weather variables associated 

with stripe rust infection of wheat and prediction models 

describing the probability of infection in Kansas 

Introduction 

Stripe rust on wheat is caused by the obligate fungus Puccinia striiformis f. sp. 

tritici Westend. Although stripe rust reduces yield and grain quality, the actual yield 

losses are determined by the timing and onset of infection, the rate of disease 

development, the susceptibility of the variety, and the duration of infection. Yield losses 

from stripe rust in the US generally range from 10% to 70% in infected fields, but may 

approach 100% when the disease occurs very early in the growing season on susceptible 

varieties (Chen, 2005). 

Prior to 2000 in the US, stripe rust was generally a problem only in the Pacific 

Northwest and California.  However, since 2000, states east of the Rocky Mountains, 

including Arkansas, Louisiana, Kansas, Oklahoma, and Texas have reported severe 

epidemics of stripe rust and significant yield losses due to the disease. In Kansas, stripe 

rust generally was not considered a serious threat to wheat production until 2001. In fact, 

in Kansas between 1988 and 2000, stripe rust was only reported twice to cause even trace 

levels of statewide yield losses, with losses of 0.01% in 1995 and 0.05% in 2000. 

However, in 2001, 2003, and 2005 the state suffered yield losses of 7.3%, 10.6%, and 

8%, respectively (Appel et al., 2009; Milus et al., 2006).   

 The recent emergence of stripe rust may be the result of changes within the North 

American populations of P. striiformis. Markell and Milus (2008) found that populations 

of P. striiformis in the eastern United States (states east of the Rocky Mountains) before 
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2000 were genetically different from those found since then.  Furthermore, they found 

that the differences in the populations most likely came from an exotic introduction rather 

than from mutations of the previous population (Markell and Milus, 2008). Milus et al. 

(2006) found that the new isolates of P. striiformis were more aggressive and better 

adapted at higher temperatures compared to isolates found prior to 2000.  Latent periods 

of 9-13 days were recorded for the new isolates, compared to a minimum of 11 days 

previously recorded for old isolates.  New isolates also showed faster urediniospore 

germination at 18°C than old isolates. The authors suggested that new isolates with 

shorter latent periods may cause up to 2.5 times more disease in the field, which may 

explain in part the recent stripe rust epidemics (Milus et al., 2006). 

Stripe rust forms lines of small yellow to orange pustules called uredinia, which 

contain urediniospores. Windblown urediniospores from fields in the southern United 

States serve as the primary source of inoculum. Urediniospores can cause secondary 

infections through wind or rain dispersal, and spores from the leaves in the lower canopy 

serve as a source of inoculum for the infection of the upper leaves (Paveley et al., 2000; 

Chen, 2005; Rapilly 1979).  Stripe rust infections generally occur during cool, moist 

weather and require a leaf wetness duration of at least 3 hours (Rapilly, 1979).  It was 

previously reported that the majority of stripe rust urediniospores germination occurs 

from 5-16°C (de Vallavieille-Pope et al., 1995). The main determinant of a stripe rust 

epidemic and its severity is temperature (te Beest et al., 2008).  The last time Kansas saw 

significant yield loss from stripe rust, the mean temperatures in May and June were lower 

than normal (Chen, 2005).   
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Although many studies on infection and pathogenicity are conducted in controlled 

environments, it is essential to conduct bioassays in an outdoor environment to confirm 

results and establish their utility in changing field environments. Fluctuating temperatures 

and relative humidity, as well as interruption of leaf wetness and rainfall events, often 

make an outdoor environment much different from the controlled experimental 

conditions of a growth chamber. One approach to studying infection in an outdoor 

environment is to place potted wheat plants outdoors and then monitor plants for 

symptoms of disease following exposure (Francl, 1995). For example, Francl (1995) used 

a bioassay in which plants were placed outside in a wheat field for 24 hours. Following 

exposure the plants were either placed in a controlled environment or exposed to a 24 

hour leaf wetness period before being placed in a growth chamber. Pots were not 

inoculated before outdoor exposure. Weather data were monitored during exposure and 

used to examine conditions associated with infection events (Francl, 1995). A similar 

study was conducted in North Dakota to collect data to develop models of tan spot 

(caused by Pyrenophora tritici-repentis) and Stagonospora leaf blotch (caused by 

Stagonospora nodorum) infection. These infection models were later used as part of a 

prediction system for these two diseases (De Wolf and Francl, 1997; De Wolf and Francl, 

2000). 

In another outdoor exposure study, Jeger, et al. (1981) investigated the 

epidemiology of S. nodorum in a field environment. The first part of the bioassay 

involved inoculated plants placed outside to study environmental conditions favorable for 

infection. The second part of the study involved sporulating plants placed outside next to 

noninoculated plants to investigate conditions favorable for spore dispersal. The data 
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collected in these experiments were used to establish minimum conditions for infection 

and to predict infection events (Jeger et al., 1981).  

The objectives of this study are to identify weather variables that are important for 

stripe rust infection, and to develop models to predict stripe rust infection events in 

outdoor environments. The long term goal of this research is to develop prediction 

models for stripe rust for use in the Great Plains region of the US. 

Methods and Materials 

Inoculum production 

 Approximately 30 seeds of stripe rust-susceptible hard red winter wheat TAM 

107 were planted in a 10x10x8.9 centimeter square pot containing Metro-mix 360 potting 

soil (Sun Gro Horticulture, Bellevue, WA). After planting and prior to emergence, pots 

were treated at a rate of 2 ml/L water with a growth regulator Cycocel (active ingredient 

chlormequat (2-chloroethyl) trimethylammonium chloride, OHP, Inc, Mainland, PA) to 

reduce internode elongation. Plants were grown in a controlled environment chamber at a 

constant temperature of 12°C with 18 hours of light each day at a light intensity of 147 

micromol m
-2

 sec
-1

. To avoid leaf surface wetness and potential infections by fungal 

pathogens, the plants were watered by placing the pots in shallow trays and allowing the 

soil to absorb water from the bottom. After two weeks of growth, the plants were 

inoculated with urediniospores of P. striiformis suspended in Soltrol 170 light paraffin oil 

(Chevron Phillips Chemical Company, The Woodlands, TX) at a concentration of 10
6 

spores per ml. Plants were rotated during inoculation to ensure uniform inoculation. The 

isolate used was race PST-100 collected in 2005 from Colby, Kansas, which had been 

maintained on inoculated seedlings of the same variety. The spores were applied using an 



 

30 

  

atomizer with compressed CO2 at 137.9 mPascals (20 psi) of pressure. After inoculation, 

plants were placed in a fume exhaust hood for approximately 10 minutes to facilitate 

evaporation of the oil. The plants were misted with sterile distilled water and covered 

with plastic bags to retain surface moisture. The plants were uncovered after 24 hours and 

incubated at 12°C to allow disease to develop. Two to three weeks after inoculation, 

spores were collected into glass vials using a cyclone spore collector (G-R Manufacturing 

Co., Manhattan, KS) attached to a DeWalt vacuum (Model DC500, Baltimore, MD).  

Open vials of spores were dried at room temperature (20-25°C) for 24 hours in an airtight 

container containing desiccant packets (Humidity Sponges, Control Company, 

Friendswood, TX). Vials were then capped and stored at 4°C until use.  

Infection bioassay 

  The infection bioassay consisted of two-week old seedlings of TAM 107 that 

were inoculated with P. striiformis and exposed to different environmental treatments. 

The plants were grown and inoculated as described above. The bioassay included four 

treatments with two pots (60 plants total) per treatment. In treatment 1 (Control), the 

inoculated plants were misted with sterilized distilled water, covered with a plastic bag, 

and incubated at 12°C for 16 h. The objective of this treatment was to evaluate inoculum 

viability by providing temperature and moisture conditions suitable for spore germination 

and infection. Treatments 2-4 involved exposing the inoculated plants to an outdoor 

environment overnight for approximately 16 h. Pots were placed outside in holders 

affixed to a section of turf grass (mowed to approximately 4 cm) in an area protected 

from wind. The plants of treatment 2 (Ambient) were exposed to ambient conditions to 

determine the effects of naturally fluctuating temperatures and moisture levels on 
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infection. In treatment 3 (Mist) the exposed plants were misted with sterile distilled water 

at the beginning of the treatments. This treatment simulated an interrupted wetness event 

at ambient temperatures. For treatment 4 (Wet) the plants were misted with sterile 

distilled water and placed in a plastic bag to retain wetness for the duration of the 

exposure. The objective of the Wet treatment was to determine the effect of ambient 

temperature given sufficient moisture. Treatments started around 5 pm and ended at 

approximately 9 am the following morning when the plants were placed in a controlled 

environment and incubated at 12°C and 18 h of light. The bioassay was repeated on 60 

arbitrarily selected days, from March 31, 2008 to June 12, 2008 and from Oct 9, 2008 to 

Dec 11, 2008.    

The weather conditions during the exposure period were monitored using a 

Campbell data logger (Model CR-10X, Logan, UT) located at the bioassay site. This 

weather station recorded ambient temperature and relative humidity (Model 

HMPA45AC, Vaisala, Helsinki, Finland), rain (Model 525I Texas Electronics, Dallas, 

TX), and leaf wetness (Dielectric Leaf Wetness Sensor Model LWS, Decagon Devices, 

Inc, Pullman, WA). An additional temperature sensor (Model 109-L, Campbell 

Scientific, Logan, UT) was placed inside one of the plastic bags used in the Wet 

treatment to ensure accurate observation of temperature for this portion of the bioassay. 

Weather data were recorded every minute and later summarized into hourly 

representations of temperature, relative humidity, leaf wetness, and precipitation, 

including mean air temperature (°C), mean temperature in bag (°C) (for Wet treatment), 

mean relative humidity (%), amount of precipitation (mm), duration of precipitation (h), 

duration of leaf wetness (h), duration of relative humidity ≥80% and ≥90% (h), mean 
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temperature during precipitation (°C), mean temperature during leaf wetness (°C), mean 

temperature when relative humidity ≥80% and ≥90% (°C), duration of relative humidity 

≥87% (h)  and temperature between 2-23°C (h).   

Fifteen days after inoculation, the disease severity of 20 leaves from each pot (40 

leaves per treatment) were assessed using a rating scale from 0-3 where: 0= no pustules 

present; 1= <5% severity; 2= 5-10% severity; 3= >10% severity. The oldest leaf was 

rated to assure that it had received inoculum. The disease severity ratings were 

summarized for each day or repetition of the bioassay by calculating the incidence of the 

disease severity classes (from the scale defined above) including severity equal to 0, 1, 2, 

3, 2 or 3, and >0. The results of the infection bioassay were paired with summaries of 

environmental conditions. The results of the Ambient treatment were used to develop a 

binary variable representing days in which infection by P. striiformis occurred (y=1) or 

did not occur (y=0) at different disease incidence/severity combinations. When the results 

of the control treatments of the bioassay indicated potential problems in spore viability, 

the affected days were dropped from further analysis. 

Model Development 

 Logistic regression models predicting infection events of P. striiformis were 

developed using SAS (SAS Institute, Cary, NC). Cases (results from the daily bioassay 

treatment Ambient) were randomly assigned to either a data set used in model 

development (n=42) or one reserved for model validation (n=14). Several weather 

variables were tested in developing the models and models were renamed using letters A-

G (Table 2.1). Two combination variables were created using multiple weather variables. 

The combination variable „RH87, 2-23C‟ was created using hours during which relative 
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humidity was >87% and temperature was 2-23°C. A second combination variable, 

„RH87, 2-23C, weighted‟, was created using the same information, but hours during 

which relative humidity was >87% and temperature was 18-23°C were weighted by 0.5.  

Both of these variables were created based on the temperature response curve indicated in 

the Wet treatment.  

Index plots (PROC IPLOTS of SAS) were used to examine the fit of the candidate 

models and identify potential outliers or influential cases. One case in the development 

dataset was deemed an outlier and dropped from the subsequent analysis. A 

nonparametric correlation analysis, Kendall‟s Tau, obtained using PROC CORR of SAS, 

was used to evaluate the relationship between variables and the binary infection response 

variable. Variables with a high correlation to infection events were then used to develop 

the logistic regression models (Table 2.2). Single variable models and multivariate 

models were evaluated. The sensitivity (correctly predicted infection events (%)), 

specificity (correctly predicted cases with low or no infection (%)), false positive 

proportion and false negative proportion of each model were calculated based on the 

results of the logistic regression analysis. Area under the receiver operating characteristic 

(ROC) curve was used to evaluate models. The ROC is a graphical representation of 

sensitivity verses 1-specificity for each model. The area under the ROC helps to estimate 

the ability of models to correctly classify cases as infection or non-infection events for a 

range of possible thresholds in posterior probability. A model that provides complete 

separation of the two classes represented by the binary response variable would have an 

area under the ROC curve equal to 1 (Hughes and Madden, 2003). Sensitivity and 

specificity of the models were also used to calculate Youden‟s Index to measure the 
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accuracy (proportion of correctly predicted positive and negative cases) of the models. 

Like the area under the ROC curve, a perfect model would have a value of 1 for 

Youden‟s Index. Models were then further evaluated using the Hosmer-Lemeshow 

Goodness of Fit Test. These three statistics (area under ROC curve, Youden‟s Index, and 

Hosmer-Lemeshow test) were used to evaluate the ability of the models to correctly 

predict infection events. Models were renamed using letters A-G (Table 2.1).  

Results  

The infection bioassay resulted in 64 cases that could be used to examine the 

effect of environment on the infection of P. striiformis. During the spring run of the 

bioassay (March 31, 2008 to June 12, 2008), 40 out of 42 days (95%) resulted in 

infection in the Wet treatment. The same treatment resulted in infection on 18 out of 22 

days (82%) during the fall run of the bioassay (Oct 9, 2008 to Dec 11, 2008). The Mist 

and Ambient treatments were very similar in infection frequencies. Specifically, the 

Ambient treatment had 18 out of 42 days (43%) with infection in the spring and both the 

Mist and Ambient treatments had seven out of 22 days (32%) with infection in the fall. 

Days on which the Control treatment had no disease were dropped from the dataset. 

Infections in the Ambient treatment occurred most frequently when more than 6 

hours of leaf wetness occurred. Rain was recorded on 16 days. Although infection 

occurred on all of these days, infection also occurred on many days without measurable 

rainfall. Temperature during the exposure period ranged between -4.6 to 27.8°C over the 

64 days considered by the infection bioassay, with infections in the Ambient and Mist 

treatments occurring at temperatures between 3.9 and 24.3° C.  In the Ambient and Mist 

treatments, infection occurred on days with mean relative humidity of 55.5 to 95.2%. 
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Hours recorded at relative humidity above 87% ranged from 0-16 h, with infections 

occurring throughout this range. The mean temperature when relative humidity was 

above 87% ranged from 1.9 to 22.5°C on the days considered by this bioassay. 

When days in which at least one leaf had a rating of 1 or higher (>1% severity) 

were considered to have infection, the dataset resulting from the infection bioassay had 

24 positive cases and 32 negative cases. The random assignment of cases to the model 

development set resulted in 20 positive cases and 21 negative cases for use in model 

building. The validation set was not as balanced and had 4 positive cases and 10 negative 

cases.  

Several models were created using hours at relative humidity above 87%. One 

model used that variable alone (Model A). Two other models were created using relative 

humidity and temperature, based on the temperature response documented in the Wet 

treatment. The majority of the infections that occurred in the Wet treatment occurred 

between 2 and 23°C, with the incidence of infection decreasing at mean temperatures of 

18-23°C (Figure 2.1). One model used hours at relative humidity greater than 87% and 

mean temperature between 2 and 23°C (Model B) (Figure 2.2). A third model developed 

used the same criteria, hours at RH>87 and mean temperature 2-23°C, but high 

temperatures (18-23°C) were weighted by 0.5 to decrease the influence of time at high 

temperatures and high relative humidity (Model C).  Although all three models had the 

same area under the ROC curve in the model development data set, models A and B had 

a slightly lower accuracy (% correctly classified cases) than model C when all cases were 

considered (Tables 2.3 and 2.4).  Models A and B were identical in variable threshold 

(hours at RH87 required by the model to classify a case as an infection event), area under 



 

36 

  

the ROC curve, sensitivity, specificity, and accuracy.  In the validation set, model C 

predicted one additional true positive case than the other models using RH>87% (Models 

A and B), resulting in a higher Youden‟s Index value for model C than models A and B.  

Two other models using MeanRH (Model D) and LW (Model E) were also 

significant (based on the p-value of the chi squared tests of whole model, calculated in 

model development) with 8 and 9 errors out of 41 cases in the development dataset, 

respectively. These variables had lower Kendall correlation coefficients than the 

variables using RH87. When 2-23C was used alone in model development, it was not 

significant. The model using this variable had an accuracy of 66%. MeanTemp alone was 

not significant in any of the logistic regression models and had a slightly lower percent 

accuracy. MeanTemp and 2-23C were not significant in any model unless combined with 

a variable representing moisture present during exposure. 

The results from the logistic regression models were used to calculate the 

probability of cases being classified as an infection event, given a specific value for the 

variable used by the model. The following equation was used to calculate the probability 

of predicting an infection event given a specific case: 

Equation 2.1 

 

 

Where:  

P(i)=Probability of infection 

P*=β0+β1X1 

β0=Intercept 

β1=Parameter estimate 
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X1=variable value 

For example, using Model A, if the value for RH87 is 3.0 (3 hours of relative 

humidity >87%), then the probability (P) of the model classifying that case as an 

infection event is equal to 0.9922, using the following equations: 

Equation 2.2 

 

   

Equation 2.3 

 

 

At RH87=0.5, the probability of classifying a case as an infection event is 0.1574, 

calculated using the equations given above. See Table 2.4 for P* calculations for all 

models.  

Discussion  

Model Development and Analysis 

 Models using relative humidity were most accurate at predicting stripe rust 

infections.  RH87 was used in three different models, all with the same accuracy (% 

correctly classified cases) in the development data set. Models using temperature alone 

were not significant, but temperature was successfully combined with relative humidity 

in the model RH87, 2-23 (Model B). The model using 2-23C prevents cases with 

adequate relative humidity but extreme temperatures from being predicted as an infection 

event. These temperature parameters were established based on the information collected 

in the Wet treatment and previous studies that found that stripe rust infections were 
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limited by high temperatures (de Vallavieille-Pope, 1995; Rapilly, 1979). Because the 

bioassay took place over night, the temperature restriction was rarely needed, but in 

future applications the restriction may become more important. Although model C 

predicted one more case correctly in the validation dataset, the added complexity in 

calculating the input variable may not be justified by the slight improvement in model 

accuracy; in the model development dataset, the accuracy of this model was equal to that 

of the other two models using RH87 (Models A and B).  The modification of the 

temperature variable only impacted six cases because the majority of cases occurred at 

temperatures <18° C and were not influenced by the weighting procedure. Additional 

validation of the models will be needed to determine the potential value of the more 

complex model (Model C). 

Similar representations of relative humidity to those used in the models A-D have 

been used successfully in other plant disease prediction models. Prediction models for 

potato late blight were adapted for use in the Midwestern region of the U.S. by Wallin 

and Waggoner during the 1950‟s and early 60‟s (Wallin and Waggoner 1950, Wallin 

1951, Wallin 1960). Within this prediction system, late blight is predicted to occur when 

average temperatures were less than 24°C for eight days and RH≥90% for 10 hours each 

day. This prediction model was subsequently combined with other approaches to 

predicting late blight in the fungicide scheduling system known as BLITECAST (Krause 

et al. 1975, Krause et al., 1975). Variations of these prediction models are still widely 

used today. Another model to predict Cercospora leaf spot infection on sugar beets used 

daily infection values (DIV) to predict disease. The DIVs were calculated using the 

number of hours in a 24 hour period with relative humidity above 90%, along with 
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average temperature. The model was later modified to use accumulated hours at relative 

humidity above 87% (Windels et al., 1998). Similar variables have also been applied for 

fungal diseases of wheat. Prediction models estimating the risk of Fusarium head blight 

proposed by De Wolf et al. (2003) use an input variable that summarizes the duration that 

temperature is between 15-30°C and RH>90% (De Wolf et al., 2003). 

Although the model using LW was not as accurate as models using the RH87 

variable, the threshold of 5.37 hours of leaf wetness established by the model LW was 

similar to the minimum continuous leaf wetness duration of 4 to 6 hours required for 

infection, depending on temperature, found by de Vallavieille-Pope et al. (1995). Logistic 

regression models using rainfall as an input variable were not significant in this analysis. 

This result suggests that rainfall alone may not be a useful predictor of infection by P. 

striiformis when other variables describing the availability of moisture within an 

environment are also present. In this analysis, variables representing leaf wetness and 

extending periods of high relative humidity likely provide indicators of environmental 

moisture coming from multiple sources including both rain and dew. Leaf wetness alone 

as an indicator of conditions favorable for infection may pose unique challenges to 

regional deployment as part of a prediction system. The application of models using LW 

would require access to LW information over a broad geographical area through 

integration of specialized LW sensors into existing networks of weather stations or the 

application of prediction models designed to predict LW based on other variables 

(Chitoui et al., 1999; Kim et al., 2006). In comparison, models using relative humidity (or 

variables derived from relative humidity) may have an advantage in regional deployment. 
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Relative humidity is collected by most weather stations and does not vary over a large 

area as much as other variables such as LW, MeanTemp, and rainfall. 

Previously, temperatures 5-12°C were considered favorable for stripe rust 

infection (de Vallavieille-Pope et al., 1995). The results presented here suggest that the 

isolate used in this study may be able to infect susceptible wheat varieties at a 

considerable wider range of temperatures than previously shown by de Vallavieille-Pope 

et al (1995). These results are also supported by additional bioassays conducted in 

controlled environment chambers using isolates of the fungus collected before and after 

2000. The results of those bioassays indicate that infection with the current population of 

stripe rust can occur between 2.5 and 21.3°C (Appendix B). To the best of our 

knowledge, this is the first report that isolates within the current U.S. population of P. 

striiformis may be able to cause infections at temperatures previously thought to prohibit 

the invasion process. This result is consistent with other reports that the current U.S. 

population of the fungus is more aggressive at warm temperatures than isolates collected 

prior to 2000 (Milus et al., 2006).  

Error Analysis 

 The models using RH87 and RH87, 2-23C (models A and B) had the same four 

errors, two in the development data set and two in the validation data set. All of these 

errors occurred during the spring run of the bioassay.  The model falsely predicted that 

infection would occur on two days. One of these days (DAY15), had 2.0 hours at RH87, 

only slightly greater than threshold of 1.83 hours differentiating infection and non-

infection. Detailed evaluation of this case indicated that temperature ranged between 

19.6-20.5°C for more than half of the exposure period. The hours of RH87 were 
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accumulated during a period when the humidity ranged between 86-88%, again very near 

a threshold considered by the model. Examination of the leaf wetness information for this 

day suggests that the moisture period may have been interrupted multiple times during 

the exposure period. Another day (DAY30) with similar mean temperature and hours at 

RH87 was predicted correctly by the models. On this day, the hours at RH87 were 

accumulated during one continuous time period. The leaf wetness sensor also indicated 

consistent wetness.   

Models A and B incorrectly predicted no infection on three days.  These errors 

occurred on days when duration of leaf wetness was greater than expected based on 

RH87. For example, the first false negative (DAY07) had 10.7  hours of leaf wetness, 

supplying enough moisture for infection, but the relative humidity only reached 87% for 

40 minutes. The remaining false negative cases (DAY19 and DAY37) also had similar 

patterns of leaf wetness without accompanying periods of high relative humidity. Similar 

breakdown in the normal correlation periods of high relative humidity and leaf wetness 

have been observed in other systems (Campbell and Madden, 1990).  Other days with 

similar MeanTemp and RH87 were correctly predicted by the models to have no 

infection. Further comparisons were not possible because these cases had periods of leaf 

wetness or RH87 associated with high temperatures that would have also reduced the 

likelihood of infection. 

Future Research and Model Application 

  It may be possible to use the models proposed here as part of a regional approach 

to predicting epidemics of stripe rust. A number of potential limitations must be 

addressed prior to application of the models. 
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 Application of the infection models as part of an Integrated Pest Management 

(IPM) system for wheat would couple the infection models with either local disease 

scouting information or models predicting the atmospheric movement of inoculum from 

known source regions. Future research is needed to identify possible thresholds of disease 

level at the local or regional level that warrant activation of the infection models. It may 

be possible to use historical records of stripe rust epidemics and disease scouting reports 

to explore application of the models as part of a disease prediction system.  

 One limitation of using the bioassay information to develop regional prediction 

models is that the data were collected using a single susceptible variety and a single 

isolate of P. striiformis. Clearly, all wheat varieties are not equally susceptible to the 

current races of P. striiformis and additional model calibration may be needed to address 

the infection of varieties with varying degrees of susceptibility to stripe rust with 

additional isolates from the U.S. population. This could be done through expanding the 

infection bioassay to consider varieties representing additional levels of susceptibility and 

other P. striiformis isolates. Alternatively, it may be possible to address both of these 

sources of variation through field testing of the models to establish practical thresholds of 

days with predicted infection to account for the variation in susceptibility and virulence 

of the stripe rust population. 

 Several model assumptions should also be addressed prior to application for 

disease management. In the current form, the infection models assume that a sufficient 

amount of inoculum is present for infection to occur. In many years, stripe rust is present 

at very low levels in the central Great Plains region of the U.S. suggesting that the models 

assumption about inoculum may be incorrect. In this situation, it is advisable to couple 
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the infection models with some direct measure of pathogen presence, such as scouting for 

symptoms of disease, or monitoring for potential incursion of fungal spores brought by 

atmospheric movement systems. A second assumption of the models is that conditions 

will be favorable for disease development after the infection has taken place. This 

assumption is a product of the infection bioassay in which potentially infected plants 

were incubated in a controlled environment. The effect of environment on expression of 

stripe rust symptoms and latency has been partially explored by Milus et al. (2006). 

These results suggest that temperature could significantly alter the latent period of P. 

striiformis. Additional research is needed to more thoroughly describe the role of 

environment in incubation, latent period, and other aspects of stripe rust development.  
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Figures and Tables 

Table 2.1. Model names and variables used in models.  

Model Variable Name Description 

Model A RH87 Hours at relative humidity >87% 

Model B RH87, 2-23C Hours at relative humidity >87% and temperatures 2-23°C 

Model C Weighted Hours at RH>87, temperatures 2-23°C, temperatures 18-

23°C weighted 0.5 

Model D MeanRH Mean relative humidity  

Model E LW Hours of leaf wetness 

Model F MeanTemp Mean temperature 

Model G 2-23C Hours at temperatures 2-23° C 
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Table 2.2. Correlation with binary infection variable using Kendall’s Tau-b. 

Variable
a 

Kendall’s Tau
b 

p value 

RH87 0.7387 <0.0001 

RH87, 2-23C 0.7387 <0.0001 

RH87, 2-23C, Weighted 0.7425 <0.0001 

MeanRH 0.4908 0.0002 

LW 0.4951 0.0002 

MeanTemp -0.0307 0.8144 

2-23C 0.2315 0.0834 

 

a 
Variable descriptions can be found in Table 2.1. 

b 
Kendall‟s Tau-b correlation coefficient.  
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Table 2.3. Youden’s Index and percent accuracy of models in development and 

validation datasets. 

 

Dataset
a 

Model
b 

True 

Positives
c 

True 

Negatives
c
 

False 

Positives
c
 

False 

Negatives
c
 

Youden’

s Index
d 

Accurac

y 

DEV A 18 21 0 2 0.90 0.95 

DEV B 18 21 0 2 0.90 0.95 

DEV C 18 21 0 2 0.90 0.95 

DEV D 16 17 4 4 0.61 0.80 

DEV E 15 17 4 5 0.56 0.78 

DEV F 8 16 5 12 0.16 0.59 

DEV G 7 20 1 13 0.30 0.66 

VAL A 3 9 1 1 0.65 0.86 

VAL B 3 9 1 1 0.65 0.86 

VAL C 4 9 1 0 0.90 0.93 

VAL D 3 6 4 1 0.35 0.64 

VAL E 4 8 2 0 0.80 0.86 

VAL F 2 5 5 2 0.00 0.50 

VAL G 1 7 3 3 -0.05 0.57 

 

a
 DEV= development dataset (n=41); VAL=validation dataset (n=14). 

b 
Model names and descriptions found in Table 2.1. 

c 
Indicates the number of cases predicted by the model. 

d 
Youden‟s Index, calculated as: True Positive Proportion-False Positive Proportion.
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Table 2.4. Model thresholds, area under the receiver operating characteristic curve, 

and fit statistics. 

Model Threshold
a 

C
b 

p value
c 

Lack of fit p value
d 

P*
e
 

A 1.83 h 0.965 <0.0001 0.9968 -2.982+2.6097A 

B 1.83 h 0.965 <0.0001 0.9968 -2.982+2.6097B 

C 0.75 h 0.968 <0.0001 0.9820 -3.1054+3.2863C 

D 69.2 % 0.845 <0.0001 0.8016 9.3208-0.1345D 

E 5.37 h 0.845   0.0001 0.2647 -1.7117+0.3161E 

F 9.73° C 0.527   0.0915 0.4238 0.0194-0.00487F 

G 16.0 h 0.649   0.0612 0.2757 -2.2338+0.1582 

 

a
 Threshold above which infection is predicted to occur. Units vary depending on 

prediction variable used in modeling. Models A, B, C, E, and G are quantified in hours. 

Model G is quantified in % relative humidity. Model F is quantified in °C. 

b
 C is equal to the area under the ROC curve. 

c
 Chi-squared test of whole model. 

d
 Hosmer-Lemeshow lack of fit test. 

e 
The critical value used in Equation 2.1 to calculate the probability of infection. 
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Figure 2.1  Temperature response in Wet treatment using percent incidence at 

severity >5%.   
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Figure 2.2  Infection in Ambient treatment comparing mean temperature and hours 

at relative humidity >87%.  
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CHAPTER 3 - Predicting yield response to foliar fungicide 

application in Kansas wheat using logistic regression models 

Introduction 

Wheat is an important commodity in Kansas. In 2009, 8.8 million acres of wheat 

were harvested in Kansas, producing nearly 370 million bushels of grain. Foliar fungal 

diseases are consistently a problem on Kansas wheat and can significantly reduce yields.  

In 2007, fungal disease caused 17.4% loss in yield in Kansas. In 2008 and 2009, disease 

levels were lower, with fungal diseases resulting in approximately 5.71% and 2.66% 

yield loss, respectively. The twenty-year average yield loss for foliar fungal diseases is 

7.75% in Kansas, leading to an average of more than $100 million in yield losses each 

year (National Agricultural Statistics Service; Appel et al., 2009). A complex of foliar 

diseases, including leaf rust (caused by Puccinia triticina Eriks), stripe rust (caused by 

Puccinia striiformis Westend.), tan spot (caused by Pyrenophora tritici-repentis (Died) 

Drechs), powdery mildew (caused by Blumaria graminis (DC.) E.O. Speer) and Septoria 

blotch (caused by Septoria tritici Roberge in Desmaz) occurs frequently in Kansas. The 

importance of any single member of the disease complex is influenced by regional and 

local cropping practices and weather patterns. The foliar disease complex is often 

managed with crop rotation, appropriate planting dates, and the use of resistant varieties; 

however, the timely application of a foliar fungicide may still be required to prevent the 

diseases from reaching levels that will result in economic yield losses.  

The decision to apply a fungicide to wheat requires growers to incorporate 

information from multiple sources into the decision process. Clearly this process is 

influenced by the value of grain produced and cost of fungicide treatment (product and 
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application costs), but the decision also requires growers to evaluate the need for 

fungicide in light of seasonal variation in disease intensity, potential contributions of 

other management tactics that may reduce disease risk, and potential yield losses. Each of 

the factors influencing the decision also has an inherent variability, further adding to the 

potential uncertainty in the decision process. The objectives of this study were to identify 

indicators of when a fungicide application will and will not result in a positive yield and 

profit, and to develop prediction models that help wheat producers integrate multiple 

sources of information into foliar fungicide application decisions. The long-term 

objective of this research is to help increase the productivity and profitability of wheat 

producers in Kansas. 

There are many approaches to developing prediction models for plant diseases, 

including both mechanistic and empirical modeling strategies (De Wolf and Isard, 2007). 

Many of these models attempt to predict one or more components of pathogen biology, 

such as dormancy, reproduction, dispersal, or infection, with the goal of estimating 

disease epidemics. Logistic regression analysis has been used successfully to predict 

disease for a number of pathogen systems. For example, logistic regression was used to 

estimate the risk of Fusarium head blight (caused by Fusarium graminearum) in wheat 

based on temperature, humidity, and rainfall during critical stages of crop development 

(De Wolf et al., 2003). Paul and Munkvold (2004) used similar modeling approaches to 

predict the risk of gray leaf spot (caused by Cercospora zeae-maydis) on corn (Zea 

mays). These models predicted severity using multiple aspects of the production system, 

including surface residue, planting date, field location (longitude), hybrid maturity, and 
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hybrid resistance to gray leaf spot. These models can be used for decisions such as hybrid 

selection or fungicide application (Paul and Munkvold, 2004). 

Logistic regression was also used by Twengstrom et al. (1998) to develop a model 

for fungicide spraying decisions for Sclerotinia stem rot (caused by Sclerotinia 

sclerotiorum) in oilseed rape in Sweden.  This modeling effort for Sclerotinia stem rot 

established a point system to quantify disease risk based on disease levels in a previous 

crop, crop density, regional risk, and weather. Logistic regression models were used to 

evaluate the risk levels at multiple locations and estimate the need for fungicide 

application. The point system is easy to implement and does not require specialized 

training or laboratory analysis, so producers can easily use it to make spraying decisions 

(Twengstrom, et al., 1998). 

Methods and Materials 

Data collection 

 The yield response of eight varieties of hard red winter wheat to foliar fungicides 

was evaluated in Kansas during the 2008 and 2009 growing seasons (Table 3.1). The 

eight varieties were arranged in a split-plot experimental design with varieties as the 

whole plot and fungicide application as the sub plot. The varieties used in the experiment 

had varying degrees of resistance to the most common foliar diseases in the state, and 

were considered agronomically viable based on variety performance test reports and 

percent of acreage planted with these varieties. The experiment was conducted at three 

locations representing wheat production regions within central KS. The plots were 

located near the towns of Conway Springs, Hutchinson, and Belleville, in Sumner, Reno, 

and Republic counties, respectively.  Each location had four replications.  The sub-plots 
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were sown with a Hege small plot drill equipped with six rows of no-till openers on 18 

cm centers. Plots were 1.7 m wide with a length of 4.6 m. The seeding rate for all 

locations was approximately 84 kg/hectare (75 lb/acre). In both 2008 and 2009, the 

Belleville location was drilled into soybean stubble within a no-till production system. 

Conventional tillage practices were used at the Conway Springs and Hutchinson locations 

in both years. The Conway Springs location was in continuous wheat. The Hutchinson 

location previously had sorghum, followed by a fallow period during which a green 

manure crop of soybeans was planted.  

 One split plot of each variety received a fungicide application while the other 

remained unsprayed. Plots were sprayed with the fungicide Quilt with the active 

ingredients azoxystrobin and propiconazole (Syngenta Crop Protection, Greensboro, NC)  

using a hand held sprayer (Model T, R&D Sprayers, Opelousas, LA) at a rate of 1 

L/hectare in 140 L of water per hectare (14 oz/acre in 15 gallons of water/acre). All 

locations were sprayed at the heading growth stage. In 2008, plots in Conway Springs 

and Hutchinson were sprayed May 8, and Belleville was sprayed May 29. In 2009, the 

Conway Springs and Hutchinson locations were sprayed May 6, and the Belleville 

location was sprayed May 11.  

The severity of foliar disease was evaluated at the late milk to early dough stage 

by visually assessing the percentage of leaf tissue damaged on 20 flag leaves in each sub-

plot. Observations of prominent diseases were recorded, but no distinction between 

diseases was made when assessing leaf damage. These 20 observations were used to 

calculate the mean disease severity for each sub-plot. In 2008, foliar disease severity was 

assessed on June 2 in Conway Springs, June 3 in Hutchinson, and June 18 in Belleville. 
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In 2009, the Conway Springs and Hutchinson locations were evaluated for disease 

severity May 30, and Belleville was assessed on June 5. 

Plots were harvested using a Massey 8XP combine (Kincaid Manufacturing, 

Haven, KS) and yield data were collected using a Harvest Master data logger (Juniper 

Systems, Logan, UT).  Test weights and moisture for each plot were measured using a 

Dickey-john moisture tester (Churchill Industries, Minneapolis, MN.)  In 2008, Conway 

Springs was harvested June 21, Hutchinson July 1, and Belleville July 22.  In 2009, plots 

were harvested June 21 (Conway Springs), June 26 (Hutchinson) and July 2 (Belleville). 

  Weather conditions were recorded at or near all locations both years.  The 

weather conditions were monitored within the research plots at the Conway Springs 

location in 2008 and 2009 and at the Belleville location in 2009, beginning approximately 

April 1, and ending approximately July 1 using a Campbell data logger (Model CR-10X, 

Logan, UT). Ambient temperature and relative humidity were measured with a 

temperature/RH probe (Model HMPA45AC, Vaisala, Helsinki, Finland). A rain gage 

(Model 525I Texas Electronics, Dallas, TX) was used to monitor precipitation events.  

All weather observations were recorded every 15 minutes. For Belleville 2008 and 

Hutchinson 2008 and 2009, weather data were obtained from the Kansas State University 

Weather Data Library.  The weather conditions for the Belleville location in 2008 were 

monitored by a weather station located in Scandia, KS, approximately 13 km from the 

plots.  Weather data for the Hutchinson location were collected from a weather station at 

the same research farm as the plots and was located within approximately 100 m from the 

experiments. Weather variables including temperature, relative humidity, and  rainfall 

were used to calculate average relative humidity, hours at relative humidity>85%, hours 
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at relative humidity>87%, hours at relative humidity>90%, average temperature, hours at 

temperatures 5-25°C, and  maximum and minimum daily temperature. Weather 

observations were summarized in six seven-day increments for each location and year, 

starting the date of application. They were then compared to mean yield. 

Data Analysis 

 Variables summarizing historical risk, in-season risk, and variety susceptibility 

risk were calculated for each location and variety combination. The historical risk (H) for 

each disease was calculated as: 

Equation 3.1 

        

 

where I is the importance (potential to cause yield loss) of disease and Freq is the 

frequency of epidemics of that disease within each region of the state. The term region is 

used to describe the six crop reporting districts used by national agricultural statistics. 

Both I and freq were rated on a 1-4 scale where a value of 4 indicated the greatest 

importance or frequency. In this analysis, leaf rust and stripe rust were rated a 4 for 

importance, indicating that these diseases have the highest potential to cause severe 

losses.  Tan spot and Septoria blotch were rated a 3 for importance because they have the 

potential to cause moderate to severe losses in Kansas. Powdery mildew was rated a 2 

because it generally causes only moderate losses in the state. The importance of each 

disease remained constant across regions. Although none of the diseases considered in 

this study were assigned an importance level of 1, indicating that the disease had the 

potential to cause minor yield losses, the category was retained to allow for potential 
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expansion of the variables to consider additional diseases or adaptation to other wheat 

producing regions. Frequency of the disease varied among the regions (Table 3.2), based 

on expert opinion of the number of years out of 10 years that a given disease has resulted 

in significant yield loss. The importance of the disease was multiplied by the frequency at 

which the disease occurs to obtain a single value ranging from 1-16 and representing the 

historical risk of disease in each region of the state. The historical risk index for all 

diseases was then calculated using the following formula: 

Equation 3.2  

 

 

Where H is the historical risk of disease and each term in the numerator represents the 

risk value of leaf rust (LRHist), stripe rust (SRHist), powdery mildew (PMHist), Septoria 

blotch (SLBHist), and tan spot (TSHist). The denominator represents the maximum 

possible value for individual historical risks (a maximum historical value of 16 for all 5 

diseases). The historical frequency of each disease, on a scale of 1-4, without the 

importance of each disease factored in was also considered.  

The in-season risk variable (F) summarized disease scouting information from 

within the field for all five diseases considered in this analysis, and also incorporated 

regional information regarding leaf rust and stripe rust. In-season risk for a location was 

determined by assigning a value between 1-3 for each disease where 1 signified that the 

disease was not present in the field or region; 2 signified that low levels (<5% severity) of 

the disease were present in the lower canopy, or that either leaf rust of stripe rust was 

reported in the region; 3 represented moderate to high levels of disease (>20% severity) 

present in the lower canopy or low levels of the disease (<5%) on the flag leaf, or either 
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leaf rust or stripe rust was present in adjacent fields. Regional disease information for this 

analysis was provided by extension wheat disease specialists and regional agronomists. 

Only information that was available at the time of spraying was used to determine the in-

season risk. The in-season risk variable was calculated combing the risk of multiple 

diseases as: 

   Equation 3.3 

 

 

Where F is the in-season risk of disease and each term in the numerator designates the 

risk value for leaf rust (LRrisk), stripe rust (SRrisk), powdery mildew (PMrisk), Septoria 

blotch (SLBrisk), and tan spot (TSrisk), respectively. The denominator of 15 represents 

the maximum possible value for disease risk (a risk value of 3 for all 5 diseases) and 

rescales the variable between 0-1.  

The disease reaction for each variety was determined for each disease using the 

variety resistance ratings published by Kansas State University (Table 3.1). Varieties 

were rated on a scale of 1-9 for each of the diseases, where 1 indicates that a variety is 

highly resistant and 9 highly susceptible (DeWolf and Sloderbeck, 2008 and DeWolf and 

Sloderbeck, 2009). The disease reactions for each variety were combined by: 

   Equation 3.4 

 

 

where R is the combined disease reactions of a wheat variety, and LRres, SRres, PMres, 

SLBres, and TSres are the disease reactions for leaf rust, stripe rust, powdery mildew, 

Septoria blotch, and tan spot. As with in-season risk, dividing by 45, the maximum 
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possible value given a disease reaction of 9 for the five diseases considered in the 

analysis, rescales the sum of the disease reactions between 0-1. An alternative method of 

calculating R using a disease reactions reported on a 1-5 scale was also considered. In 

this approach the disease reactions were combined as in Equation 3.4 except the 1-9 scale 

was reduced to 1-5 by combining the categories within the ordinal scale. For example, the 

1 and 2 categories within the 1-9 scale were combined and assigned a value of 1 within 

the 1-5 scale. Assigning the categories 3-4, 5, 6-7, and 8-9 within the 1-9 scale to the 

categories 2,3,4,5 completed the conversion to the 1-5 scale. This new variable is 

designated as R(1-5) in subsequent use. 

Response Variable  

The mean yield of unsprayed plots was subtracted from the mean yield of sprayed 

plots to obtain the yield difference. Yield data were separated into a binary response 

value, 0=yield response ≤4 bushels and 1=yield response >4 bushels. A threshold of 4 

bushels/acre (268.8 kg/hectare) was selected as an economic breakeven point based on 

grain prices and fungicide application costs at the time of model development. 

Model Development and Evaluation 

The non-parametric correlation procedure Kendall‟s Tau was used to evaluate the 

relationship between potential input variables and yield response to fungicides expressed 

as a binary variable (SAS, SAS Institute, Cary, NC) (Table 3.3).  Variables representing 

similar information were compared using the correlation results, and variables with poor 

correlation to the response variable were dropped from the analysis in favor of variables 

with higher and significant (α=0.05) correlation. When variables representing similar 
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information had only slight differences in correlation results, both variables were retained 

and tested further in model development.  

 Logistic regression was used to model the potential relationship between 

historical risk (H), in-season risk (F), combined disease reaction (R), and weather 

variables, with the binary representation of yield as the response variable. Single variable 

models and additive models were developed. Each model was evaluated using a number 

of measures of accuracy and fit.  The accuracy of the models was evaluated based on the 

true positive proportion (TPP), the portion of correctly predicted cases with a yield 

response to fungicide application and true negative proportion (TNP), the proportion of 

correctly classified cases with low or no yield response to the fungicide. TPP and TNP 

are often referred to as model sensitivity and specificity. The models were also evaluated 

for the proportion of cases with ≤4 bu/a response to fungicide that were predicted to have 

a yield response greater than the 4 bu/a threshold, false positive proportion (FPP), and 

proportion of cases with a yield response where no response was predicted, false negative 

proportion (FNP). The overall accuracy of the models, given by (TPP+TNP)/2, was also 

determined for each of the candidate models. However, this metric is potentially 

influenced by the fraction of cases belonging to each category of the binary response 

variable. To compensate for any potential influence, Youden‟s index was also used to 

evaluate the accuracy of the models. Youden‟s index was calculated as J=TPP-FPP; J=1 

for a perfect model (Madden 2006; Madden et al., 2007). The area under the receiver 

operating characteristic curve (ROC curve) was used in part to evaluate the possible 

models. In typical use, an ROC curve plots the model true positive proportion against the 

FPP (1-specificity) for a range of possible thresholds of the predictor variable(s) 
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considered by the model. Area under the ROC curve provides an estimate of the ability of 

a model to correctly discriminate between cases providing a yield response to fungicide 

application (greater than 4 bu/a) (Hughes and Madden, 2003). A perfect model would 

have an area under the ROC curve equal to 1. The fit of the models was evaluated based 

on the likelihood test and the Hosmer – Lemeshow test. Based on these measures of 

model accuracy and fit, two single variable models (R*F and R*H) and two additive 

models (R+F and R+H) were selected for further evaluation. Thresholds for each model 

were established using the probability (p in Equation 3.9) that maximized the TPP and 

minimized the FPP.   

Model Validation 

The models were validated using data from previous disease studies and 

replicated fungicide trials conducted around the state of Kansas. One dataset (n=27), 

collected during a previous fungicide response study included data from 2005-2006 

collected in southwest, south central, east central, and northeast Kansas, using three 

different varieties (Jagger, 2137, and Cutter). These locations had very little disease in 

both years. Other validation cases were obtained from replicated fungicide trials in 

western and central Kansas. Some cases collected in western Kansas included irrigation 

and varieties not used in the model development (TAM 110, TAM 111, and Ike). All 

cases received an application of Quilt at heading. Some of these locations included 

multiple varieties, with each variety being considered a separate case. In-season risk was 

assessed using information provided by area agronomists and field notes. The combined 

disease reactions were calculated using the resistance ratings for the year in which the 

trials took place.  
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Bayesian Analysis 

The models identified during the logistic regression analysis were further 

evaluated using Bayesian decision theory. The application of Bayesian decision theory to 

plant diseases epidemiology has been pioneered by J. Yuen, G. Hughes, and some of their 

colleagues (Yuen et al., 1996; Hughes et al., 1999; Yuen and Hughes, 2002; Yuen, 2003). 

In general, the Bayesian approach provides the conceptual framework to evaluate the 

probability that disease management action will be needed in a given production system 

or environment. More importantly, the Bayesian approach also estimates the potential 

impact of information provided by a disease prediction model on the probability of 

correctly identifying the need for disease management (Madden, 2007). In order to 

evaluate the potential predictive models within the Bayesian framework, several 

additional metrics describing model accuracy were also calculated. The likelihood ratio 

of a positive prediction was estimated by: LR(+)=TPP/FPP. Similarly, the likelihood ratio 

of a negative prediction (a low yield response to a fungicide application) was estimated 

as: LR(-)=FNP/TNP. Accurate prediction models will generally have a LR(+) above 1 

and a LR(-) near 0 (Madden, 2006). 

Application of Bayesian decision theory required estimates of the unconditional 

probability of a yield response to fungicides in multiple regions of Kansas (prior 

probability) which is denoted as Pr(D+). In this analysis, the prior probability was 

estimated by combining USDA production estimates with annual disease loss estimates 

provided by the Kansas Department of Agriculture (National Agricultural Statistics 

Service). More specifically, the average yield in the six crop reporting districts was 

multiplied by estimated yield loss to foliar disease for each year between 1994 and 2009. 
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The disease loss estimates for six crop reporting districts in Kansas were available from 

1994 to 2009. The prior probability was then determined by calculating the number of 

years in which >4 bu/a were lost due to foliar disease divided by the total number of 

years considered (n=16). Quality and test weight losses were not considered as part of the 

estimate of potential yield loss. Once the Pr(D+) was determined, the prior probability of 

no yield response to the fungicide Pr(D-) was obtained by Pr(D-)=1-Pr(D+).  

Following Madden et al. (2007), the application of Bayes‟ theorem can be 

simplified if the odds of an event are defined as: 

Equation 3.5 

 

 

and 

      Equation 3.6 

 

 

Then the odds of a fungicide resulting in a yield response >4 bu/a given a positive 

prediction by the model, odds (D+|P+) was calculated as: 

     Equation 3.7 

 

 

Where odds (D+) and LR+ are defined as above. Similarly, the odds of no yield response 

to the fungicide given a negative prediction by the model, odds(D-|P-): 

      Equation 3.8 
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The odds(D+|P+) and odds((D-|P-) were converted to the conditional probability 

statements Pr(D+|P+) and Pr(D-|P-) using Equation 3.6 (Madden et al., 2007). 

Predicting Rare Events 

The evaluation of prior probability of disease related yield losses for each of the 

six crop reporting districts in Kansas indicated that the frequency of severe foliar disease 

was lower in Western Kansas. However, these regions do occasionally experience severe 

epidemics of foliar disease resulting in significant yield losses. The application of the 

models developed primarily with data collected from central Kansas could potentially 

result in consistent overestimation of the need for fungicides in the more arid 

environments of western regions. Additional model thresholds based on the ROC curve 

were also considered to facilitate their potential application in Western Kansas based on 

results of the ROC analysis. More specifically, the model thresholds were adjusted to 

decrease the FNP, and thus increase the TPP of the models. This proportion of the 

analysis was focused on the R+F model, which had been selected as a candidate for 

possible application based on accuracy and model fit parameters. 

Model Deployment 

Graphs were created representing the information from the two additive models. 

The following formula was used to derive the value that R must be above given a specific 

F or H value in order for the model to predict a >4 bu/a response: 

      Equation 3.9 

 

 

Where: 
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p=threshold established in model development 

B0= intercept 

B1=parameter estimate for R 

X1=R value 

B2=parameter estimate for either F or H 

X2=F or H value 

From this information, the equation for a line equal to the threshold was derived 

for the models R+F and R+H. R was graphed on the X axis and either F or H was 

graphed on the Y axis (Figures 3.2 and 3.3 and Equations 3.10 and 3.11).  

 

Results 

Model Development Dataset 

The replicated plots evaluating potential yield responses to fungicide application 

resulted in 16 yield comparisons from north central Kansas and 32 yield comparisons 

from south central Kansas (Table 3.5). Of these cases (combination of variety, location, 

and year), 23 resulted in a yield difference of greater than 4 bu/a, and 25 resulted in a 

yield difference of less than this yield threshold. The average yield difference for cases in 

the >4 bu/a category was 6.6 bu/a, while the average yield difference in cases in the <4 

bu/a category was 0.65 bu/a. Most of the cases with a positive yield difference came from 

south central Kansas. In 2008, all varieties at the Conway Springs location in south 

central Kansas resulted in yield differences of >4 bu/a. Leaf rust was the predominant 

pathogen at this location; however, Septoria blotch, powdery mildew, tan spot, and stripe 

rust were also present on many varieties. The mean disease severity on unsprayed plots 
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ranged from 36.0% on Karl 92 to 5.4% on Santa Fe. In sprayed plots, the mean disease 

severity ranged from 32.6% on Karl 92 to 3.4% on Santa Fe. Many varieties also 

provided a yield response of >4 bu/a at the Hutchinson location in that year. This 

location, approximately 100 km north of the Conway Springs location, also experienced 

severe leaf rust, and varieties with known susceptibility to this disease were responsible 

for many of the positive yield responses. However, Septoria blotch and powdery mildew 

were also issues at this location, as evidenced by 6.8% mean disease severity on the 

variety PostRock. This variety is susceptible to Septoria blotch and powdery mildew, but 

is currently considered resistant to leaf rust. The Hutchinson location experienced a 

hailstorm, but the damage was not severe enough to limit harvest. The disease situation 

was similar in 2009, for both locations in south central Kansas, but leaf rust arrived later 

in this growing season, relative to 2008. However, many varieties susceptible to leaf rust, 

including 2137, Jagalene, and Overley still showed a yield response greater than the 4 

bu/a threshold. The application of fungicide reduced the severity of disease across all 

varieties and locations. In general, the singe fungicide application decreased the average 

disease severity of the flag leaves to less than 3.5% in south central Kansas.  In 

comparison, the average disease severity was >14% for plots that remained untreated.   

The overall disease pressure was lower in north central Kansas in both 2008 and 

2009. Only two varieties resulted in a yield response greater than the predetermined 

threshold in 2008, and none of the varieties resulted in a positive yield difference in 2009. 

Leaf rust was again the predominant disease at this location, but the disease did not 

develop in these plots until milk stages of kernel development. The yield differences in 

2008 occurred for the varieties Jagger and Jagalene, which are both highly susceptible to 
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leaf rust and suggest that leaf rust may have impacted grain yield despite low disease 

severity at the time of assessment. The overall impact of the fungicide application was 

less dramatic at the north central location with the average disease severity of fungicide 

treated and untreated plots 1.7% and 6.5%, respectively.  

Many plots at all locations were also infected with Fusarium head blight (caused 

by Fusarium graminearum); however, the incidence was less than 2% in most plots. The 

application of the fungicide Quilt, a pre-mix of active ingredients propiconazole and 

Azoxystrobin, applied at heading resulted in no visible differences in head blight 

incidence between the sprayed and unsprayed plots of individual varieties. Quilt is not 

labeled for suppression of scab. Low levels of other diseases and pests were also detected 

in the plots including: Cephalosporium stripe (caused by Cephalosporium graminerum), 

Barley Yellow Dwarf virus, bacterial leaf streak (Xanthomonas campestris pv. 

translucens); Green bugs (caused by Schizaphis graminum), and bird cherry-oat aphids 

(Rhopalosiphum padi). In all cases, these diseases or insects were considered to be at low 

enough levels as to not significantly impact grain yield; however, they did likely 

contribute to the overall variability among research locations and years. Abiotic stresses 

that were also present in some plots and likely contributed to variability included freeze 

and hail damage. 

Model Evaluation 

Variables considered in this analysis were evaluated using Kendall‟s Tau 

correlation (Table 3.3). The variables R, H, and F had high correlation to the binary yield 

variable. These variables were used to develop the additive models R+F and R+H. The 

combined variables R*F and R*H also had high correlation values and were used to 
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develop single variable models. Due to low correlation values and lack of weather in the 

validation dataset, weather variables were not used further in model development.  

The proportional accuracy of the logistic regression models developed in this 

analysis ranged from 0.81 to 0.88 (Table 3.6). In general, models that included the 

variables combining resistance to multiple diseases (R) with either the historical risk of 

disease (H) or in-season risk of disease (F) resulted in greater accuracy than models 

without these variables. The models were evaluated using Kendall‟s tau, the chi squared 

test of overall mode fit and the Hosmer-Lemeshow lack of fit test. Based on these results, 

four models were considered for further evaluation. Two models (R*F and R+F) used 

variety resistance and in-season risk, and two models (R*H and R+H) used variety 

resistance and historical risk. Models using in-season risk (F) had the greatest accuracy in 

the model development dataset (Table 3.6). The additive model R+F had the greatest area 

under the ROC curve, although it was similar to the values obtained for models R*F and 

R+H. The model R+F also had the highest TPP with the dataset used to develop the 

models. However, the TNP of this model was slightly lower than models R*F and R+H. 

The two models using in-season risk had six errors each in the development dataset, but 

the balance of false positives and false negatives was not equal. Models R*F and R+H 

were more accurate at predicting true negative cases, and R+F and R*H were more 

accurate when predicting cases with low or no yield response to fungicide, and models 

using R+F and R*H were more accurate when predicting cases with a yield response >4 

bu/a in the development dataset. Another measure of model fit, Youden‟s Index, was also 

calculated, with values ranging from 0.630 in R*H to 0.753 in R+F. Although models 
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R+F, R+H, and R*F all had equal accuracy, their Youden‟s Index values differed slightly 

based on their differences in TPP and FPP.  

In the validation dataset, all models correctly predicted 20 or more of the 28 cases 

with a low yield response to fungicides. The accuracy of the models was generally lower 

than for cases with a yield response >4 bu/a in this dataset. The model using R+F had the 

greatest TPP accuracy, but only predicted correctly 3 of the 10 cases with yield response 

greater than the yield threshold. When all cases available for this analysis were 

considered together, the proportional accuracy of the models ranged from 0.84 to 0.71. 

The model using R+F had the highest TPP, and R*F had the highest TNP in the 

combined dataset. When all cases were combined, Youden‟s Index decreased for all 

models, but remained above 0.5 for the models R+F, R+H, and R*F (Table 3.6). 

Bayesian Analysis and Prior Probabilities 

Based on expert opinion and analysis of USDA and disease survey estimates, the 

prior probability (Pr(D+) of a fungicide application resulting in a yield response of >4 

bu/a was 0.6 in south central Kansas, indicating that 60% of the time wheat producers in 

this region would experience a yield response of 4 bu/a or more (Appendix A). Applying 

the Bayesian analysis to the prediction models using the estimates of accuracy obtained 

with all available data (i.e. combined development and validation datasets) resulted in 

estimates of LR(+) of 4.82 for the logistic model R+H. The Pr(P+|D+) and Pr(P-|D-) for 

the model R+H was 0.88 and 0.61 respectively. Evaluation of the model R+F indicates 

that the LR(+) of this model was 7.71. The PR(D+P+) for this model was 0.92, 

suggesting that producers in central Kansas would have a 0.92 probability of gaining >4 

bu/a when the need for fungicide was predicted by the model (Table 3.7). The probability 
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of a yield response of <4 bu/a given the model predicted a low or no yield response to the 

fungicide, Pr(D-|P-), was 0.69.  

The Bayesian results suggest that if the R+F model was used in Western Kansas, 

where the prior probability of needing a fungicide is lower (Pr(D+)=0.20), the probability 

of gaining >4 bu/a from a fungicide application when the model indicates that spraying is 

needed (Pr(D+|P+)) was 0.66. Although this probability is low relative to south central 

Kansas, it still represents a considerable improvement over the prior probability of 

gaining >4 bu/a without the use of the information provided by the model (i.e. a decision 

based on prior probability alone). The model R+F had a Pr(D-P-)=0.93, suggesting a high 

probability that there will be no response to fungicide when no response is predicted in 

western Kansas. However, the improvement in the conditional probability of correctly 

deciding not to apply a fungicide is only slightly higher than the prior probability for no 

yield response to fungicides in western Kansas (Pr(D-)=0.80). 

When the threshold for p was adjusted from 0.52 to 0.65 for the model R+F to 

compensate for the low probability of a yield response to fungicide in western Kansas, 

the TPP decreased from 0.73 to 0.61 and TNP increased from 0.91 to 0.94. The 

adjustments in model accuracy also impacted the conditional probability of the yield 

response to fungicides with Pr(D+|P+), increasing to 0.73, and Pr(D-|P-) decreasing to 

0.91. In practical terms, this means that a wheat producer in western Kansas has a 

probability of 0.73 of obtaining a yield increase >4 bu/a when a yield response was 

predicted by the adjusted model. This represents a considerable improvement over the 

prior probability of a yield response to fungicide (Pr(D+)=0.20), and a small 

improvement over the unadjusted model (Pr(D+|P+)=0.66). 
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Model Deployment 

The following linear equations were derived from the additive models 

representing the threshold for >4 bu/a response: 

For R+F:         Equation 3.10 

      

   

For R+H:         Equation 3.11 

      

   

These equations were used to create a graphical representation of the model information 

(Figure 3.1). Any situations in which the combination of R and F or R and H values fell 

above the lines stated above, the model would suggest a fungicide application (Figures 

3.2 and 3.3).  

Discussion  

Development of Prediction Models 

The four models that were considered for further evaluation (R+F, R+H, R*F, and 

R*H) had high accuracy in the development dataset. Although the accuracy decreased 

slightly when combined with the validation dataset, the models were still accurate enough 

to be considered useful in fungicide decision making. The models R+F and R+H were 

approximately 80% accurate when using all data, but had a much higher accuracy in the 

regions in which they were developed. Adjustments were considered to increase the 

usefulness of the models in areas outside of the model development regions. 

Of the two models considered that used historical risk (models R+H and R*H), 

the additive model (R+H) predicted fungicide response more accurately than the model 
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that used the interaction of these two terms as a single variable (R*H) in both the 

development and validation datasets. The models using in-season risk were equally 

accurate in the development dataset, but the additive model (R+F) correctly predicted two 

more cases than the single variable model (R*F) in the validation dataset. All models 

were less accurate in the validation dataset than the development dataset; however, the 

model R+F was still 79% accurate in the validation dataset. Models using historical risk 

were least accurate in the validation dataset.  

Overall, the most accurate models were R+F and R*F, which requires scouting 

information and regional disease information at the time of fungicide application. 

However, if fungicide spraying decisions must be made for application scheduling before 

in-season risk is known, R+H may be used to predict the need for fungicide. This model 

could be used at any time during the season, or even prior to planting to select varieties 

that likely will not need a fungicide application. It could be used in other regions if 

resistance and historical risk were known. In some areas where very little wheat is grown, 

historical disease risk may be more difficult to estimate. Because both resistance and 

regional historical risk can be calculated and provided to growers, very little input from 

producers is needed, and the prediction does not rely on subjective field scouting. The 

same values used in model development would be used by producers, with very little 

change from year to year. However, slight changes should be expected as the disease 

resistance levels of varieties are adjusted to account for changes in the regional 

populations of some pathogens (i.e. new races of P. triticina and E. graminis), or the 

release of additional varieties. In the event of a change in the frequency of epidemics of 

specific diseases, historical disease risk may need to be reevaluated. The weakness of this 
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model is that it does not account for rare events. For example, western Kansas in 2001, 

2003, and 2005, when yield losses due to stripe rust were estimated at 14%, 21%, and 

16%, respectively (Disease loss estimates, unpublished), the model R+H would not have 

predicted a yield increase of >4 bushels on most varieties, including the stripe rust 

susceptible variety 2137.  

Although the models using in-season risk (R+F and R*F) were more accurate 

than the models using historical risk, the data needed to calculate the input variables are 

more subjective. The models rely on field scouting by producers at the time of fungicide 

application to assess in-season risk. They also assume producers have access to regional 

disease reports and accurate information regarding disease risk in their region of Kansas. 

This knowledge could be obtained from crop reports and newsletters, field scouts and 

crop consultants throughout the region, and extension agents. The accuracy of the models 

was lower in the validation dataset, perhaps due to differences in scouting methods and 

disease assessment. However, this model could be adapted quickly to other wheat 

producing areas because it relies heavily on scouting. One limitation may be the scale of 

the in-season risk. For example, the model assumes that the presence of leaf rust or stripe 

rust in the region increases risk to growers, even if the disease is not yet in their field. 

This may change in regions where the primary disease most years is not leaf rust, as it is 

in Kansas.  

Both models rely on a resistance scale of 1-9, using variety information that is 

released yearly by Kansas State University, but 1-9 resistance ratings may not be 

available in some states or from some seed companies. As indicated earlier, in early 

model exploration, a resistance scale of 1-5 was used with similar results (Table 3.8); 
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however the 1-9 scale was used due to its slightly higher accuracy. The model could 

likely be modified for use in areas where the detailed 1-9 scale is not available. The 1-9 

scale is also a subjective scale. Because disease pressure changes across regions, 

estimates of variety susceptibility may change also. Therefore, the thresholds may need to 

be adjusted to reflect different resistance scales. 

Error Analysis 

Several cases were consistently errors in most or all of the models (Table 3.9).  

Four cases were not predicted correctly by any model. Three of those cases were from 

2008 and included: Jagger at Belleville, Jagger at Hutchinson, and Santa Fe at Conway 

Springs. In 2009, Overley at Conway Springs was not predicted correctly by any of the 

models. All of the false negative cases occurred in 2008, possibly due to the late onset of 

disease or the prolonged grain fill period due to rainy weather prior to and during harvest. 

Some false negative cases were likely due to a variety‟s relatively high R value despite a 

vulnerability to a specific disease present in the field. For example, Jagger and Karl 92, 

both of which are highly susceptible to leaf rust but have moderate levels of resistance to 

the other diseases considered in this analysis, were responsible for more errors than other 

varieties. The majority of false positive cases occurred in 2009, half of them occurring at 

the Conway Springs location. This may be explained in part by a late freeze in 2009 after 

jointing that caused some damage to the plots in Conway Springs. Two other false 

positive errors were cases that were very close to the threshold of 4 bu/a. 

Similar types of errors were also observed in the validation dataset. Some of these 

could be explained by environmental conditions. For example, information for a case 

from Garden City, KS in 2007, indicates that although disease was present at the time of 
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spraying, the flag leaf was curled due to drought stress, leading to a false positive 

prediction in the model R*F. In another case from Colby in 2009, leaf rust was not 

detected at the time of spraying, but the disease arrived shortly after the critical stages for 

disease scouting, resulting in a yield response of >4 bu/a and a false negative prediction 

by the models. Irrigation in one case may have lead to a greater yield gain than expected, 

contributing to false negative errors. Additional false negative predictions of the models 

were associated with cases that had a yield response within 1.5 bu of the 4 bu/a criterion 

used to determine acceptable levels of yield response to the fungicide treatment. 

Bayesian Analysis 

When the threshold for R+F was adjusted to increase the probability of predicting 

true positive cases under a low prior probability, the probability of predicting false 

negatives also increased, but with less magnitude. The increase in false negatives was 

greater when a higher prior probability was used. Therefore, the adjusted threshold 

should only be applied to regions with lower prior probabilities, such as western Kansas. 

In central Kansas, where the model was developed, the original threshold should be used. 

The threshold should not be adjusted in the R+H model because that model already 

reflects a low probability of needing a fungicide. When the threshold was adjusted, it 

increased the probability of predicting a false positive while decreasing the probability of 

predicting a true positive. Thus, the original threshold should be used in the model R+H 

in both central and western Kansas.   

The Bayesian analysis illustrates the value of the models to producers. When the 

model R+F is used in central Kansas, it increases the probability of a yield response by 

1.5 times compared to the probability of a yield response with no additional information. 
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In other words, in Central Kansas, 60% of the time a fungicide application would result 

in a gain of >4 bu/a, but with the model, 90% of the time when a fungicide application is 

recommended it will result in a gain of >4 bu/a. Although the probability of correctly 

predicting a yield response to fungicide using the model was lower in western Kansas, 

with the adjusted threshold, producers are more than 3 times as likely to get a response of 

>4 bu/a when the model predicts one, compared to the likelihood of a yield response 

without the use of the model. In western Kansas, the models very accurately predict when 

fungicide is not needed. In central Kansas, the models best predict when a yield response 

will occur.  

Future Research and Model Deployment 

Previously in Kansas, a point system was used to determine the need for a 

fungicide application. The factors considered to amass points included the growth stage 

and leaf number at which disease was present, variety susceptibility, favorability of 

weather conditions, and predicted disease severity, calculated separately for each disease 

present in the field. This system also encourages producers to consider yield potential 

prior to spraying, and asserts that wheat fields with other severe problems such as insects, 

weeds, and viral disease will likely not result in the needed yield response to justify 

fungicide application (Bowden, 1995). Many of the factors used in the previous system 

are incorporated into the models R+F or R+H. The in-season risk factor incorporates the 

disease severity and leaf number on which disease occurs. In the case of leaf rust and 

stripe rust, it also accounts for the likely increase in severity if the disease is present in 

the area or field. Variety susceptibility is also considered by both models. However, 

unlike the previous system, the models consider all disease present and susceptibility to 
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all disease to simplify inputs needed by producers. As with the previous system, the 

models should not be used on wheat that has other severe problems or very low yield 

potential.  

In the future, two of the four models will be further developed and made available 

to producers. Because some producers must schedule fungicide applications far in 

advance, the additive model using resistance and historical risk (R+H) will be used. This 

model was more accurate than the single variable model using those two risk factors. The 

model R+H can be used quickly and easily by producers throughout the state. It does not 

require an input of time and money to scout, and the resistance and historical factors are 

already known. The additive model R+F will also be further developed for use by 

producers because when time allows, models using in-season risk were more accurate. 

The two variables for each model, either R and H or R and F were plotted in a way to 

show the combinations of risk that would likely result in a yield difference of >4 bu/a. 

Although the additive models are more complex, the input variable calculations are 

simple. R is a single variable that could be calculated and known when producers make 

planting decisions. In Kansas, H for each region could be calculated for producers as 

well. The only variable that producers would have to calculate is F. The use of a graph to 

illustrate fungicide response will allow the model to be deployed through extension 

publications or a web based program. The use of models to predict the need for a 

fungicide will allow producers over time to see patterns that emerge so that they can 

make better fungicide decisions even in the absence of a prediction model.  

The models have the potential to be expanded to other wheat producing regions. 

Historical disease risk would need to be assessed for the regions. For disease reaction 
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information, either R or R(1-5) could be used, based on the format of information available 

for that region. F would still be calculated based on in-season scouting in that region, and 

would likely not require modification, unless foliar diseases not considered by the models 

are present in the region. 

The graphs created with the model information can be used to show the threshold 

above which a >4 bu/a yield response is expected (Figures 3.2 and 3.3). This graphical 

representation of the model can be used by producers to assist in fungicide application 

decisions. The additive models were chosen for further development because they will 

require few calculations and can easily be represented in either a graph or table format. 

The R+H model can be used without any calculations made by the producer because 

historical risk and susceptibility are known at the time of planting. The in-season risk 

must be calculated, but there are only 11 different possibilities, ranging from 0.33 (or 

5/15) to 1.0 (or 15/15). The use of a model to predict a yield return of greater than four 

bushels may improve producers‟ ability to correctly decide when a fungicide application 

is warranted. This could increase producers‟ profit by either gaining more than enough 

yield to pay for a fungicide application, or by preventing unnecessary expenditures on 

chemical applications. 
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Figures and Tables 

Table 3.1 Variety resistance ratings
a
 published by Kansas State University in 2008 

and 2009 and variety disease reaction risk index values. 

 

Year Variety 

Leaf 

rust 

Stripe 

rust 

Septoria 

blotch 

Tan 

spot 

Powdery 

mildew R
b
 

2008 2137  7 8 5 5 4 0.664 

2008 Fuller 3 2 6 6 6 0.511 

2008 Jagalene 9 4 4 8 9 0.756 

2008 Jagger 9 3 3 4 7 0.578 

2008 Karl 92 8 5 5 3 4 0.556 

2008 Overley 7 2 5 5 7 0.578 

2008 PostRock 4 4 8 6 8 0.667 

2008 Santa Fe 3 4 2 6 6 0.467 

2009 2137 7 8 5 5 4 0.644 

2009 Fuller 3 2 6 6 6 0.511 

2009 Jagalene 9 4 4 7 9 0.733 

2009 Jagger 9 3 3 4 7 0.578 

2009 Karl 92 8 5 5 3 4 0.556 

2009 Overley 8 2 5 5 7 0.600 

2009 PostRock 4 3 8 6 8 0.644 

2009 Santa Fe 3 3 2 5 6 0.422 
 

a 
Ratings:1 – highly resistant; 5 – intermediate; 9 – highly susceptible (De Wolf and 

Sloderbeck, 2008 and De Wolf and Sloderbeck, 2009.) 

b 
Disease reaction risk index value used in modeling. 
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Table 3.2 Historical disease risk calculations for regions in Kansas. 

 

 Importance Frequency  

Region LR
a
 SR

b 
SB

c
 TS

d
 PM

e
 LR SR SB TS PM H

f
 

West 4 4 3 3 2 3 2 1 1 1 0.350 

South Central 4 4 3 3 2 4 2 3 3 3 0.600 

North Central 4 4 3 3 2 3 2 3 3 2 0.525 

East 4 4 3 3 2 4 2 3 3 4 0.625 

 

a
 Leaf rust 

b
 Stripe rust 

c
 Septoria blotch 

d 
Tan spot 

e 
Powdery mildew 

f 
Historical disease risk index value used in modeling, calculated using equations 3.1 and 

3.2.
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Table 3.3 Correlation analysis with binary yield variable using Kendall’s Tau. 

 

Variable
a 

Kendall‟s Tau
b 

p value 

R 0.4059 0.0013 

F 0.4858 0.0003 

H 0.5103 0.0006 

R*F 0.6055 <0.0001 

R*H 0.4962 <0.0001 

R(1-5) 0.3637 0.0057 

RH>87 (a-4) 0.4199 0.0011 

RH>90 (a-5) 0.4199 0.0011 

MeanRH (a-5) 0.3984 0.0020 

RH>85 (a-5) 0.3769 0.0034 

RH>87 (a-1) 0.3769 0.0034 

Rain (a-5) 0.3123 0.0152 

Rain (a-1) 0.3123 0.0152 

RH>90 (a-1) 0.2907 0.0238 

Temp (a-4) -0.2046 0.1118 

5-25C (a-4) -0.3123 0.0152 

 
a 
See table 3.4 for complete description of variables. 

b 
Kendall‟s Tau-b coefficient. 
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Table 3.4 Variables used in models. 

 

Variable Description 

R Variety disease reaction risk calculated using a 1-9 scale 

F In-season risk 

H Historical risk 

R*F Single variable calculation for variety disease reaction and in-season risk 

R*H Singe variable calculation for variety disease reaction and historical risk 

R(1-5) Variety disease reaction risk calculated using a 1-5 scale 

RH>87 (a-4) Hours at RH
a
 >87% during the 4

th
 week prior to fungicide application 

RH>90 (a-5) Hours at RH>90% during the 5
th

 week prior to fungicide application 

MeanRH (a-5) Mean relative humidity during the 5
th

 week prior to fungicide application 

RH>85 (a-5) Hours at RH>85% during the 5
th

 week prior to fungicide application 

RH>87 (a-1) Hours at RH>87 % during the week prior to fungicide application 

Rain (a-5) Total rainfall during the 5
th

 week prior to fungicide application 

Rain (a-1) Total rainfall during the week prior to fungicide application 

RH>90 (a-1) Hours at RH>90% during the week prior to fungicide application 

Temp (a-4) Mean temperature during the 4
th

 week prior to fungicide application 

5-25C (a-4) Hours at 5-25° C during the 4
th

 week prior to fungicide application 

  

a 
RH = relative humidity 
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Table 3.5 Number of cases per region of Kansas. 

 

 Development
a 

Validation
b 

Region >4 Bu/a <4 Bu/a >4 Bu/a <4 Bu/a 

West 
0 0 4 9 

South Central 
21 11 1 7 

North Central 
2 14 1 1 

East 
0 0 4 11 

Total 
23 25 10 28 

 

a 
Cases used in model development. 

b 
Cases used in model validation. 
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Table 3.6 Model results and accuracy. 

 

Data

set
a 

Model 

Lack of 

Fit
b
 C

c 
TPP

d 
TNP

e 
FPP

f 
FNP

g 
Accuracy 

Youden’s 

Index
h 

DEV R+F 0.5768 0.926 0.913 0.840 0.160 0.087 0.875 0.753 

DEV R+H 0.4379 0.914 0.826 0.920 0.080 0.174 0.875 0.746 

DEV R*F 0.2944 0.919 0.826 0.920 0.080 0.174 0.875 0.746 

DEV R*H 0.1875 0.842 0.870 0.76 0.24 0.130 0.813 0.630 

VAL R+F 
. . 

0.300 0.964 0.036 0.700 0.789 0.264 

VAL R+H 
. . 

0.200 0.821 0.179 0.800 0.658 0.021 

VAL R*F 
. . 

0.200 0.929 0.071 0.800 0.737 0.129 

VAL R*H 
. . 

0.200 0.714 0.286 0.800 0.579 -0.086 

ALL R+F 
. . 

0.727 0.906 0.094 0.273 0.837 0.633 

ALL R+H 
. . 

0.636 0.868 0.132 0.364 0.779 0.504 

ALL R*F 
. . 

0.636 0.925 0.075 0.364 0.814 0.561 

ALL R*H 
. . 

0.667 0.736 0.264 0.333 0.709 0.403 

 

a 
DEV=development dataset; VAL=validation dataset; ALL=all available data 

(DEV+VAL). 

b 
Hosmer-Lemeshow lack of fit test. A high p-value (>.05) indicates a good fit. 

c 
Area under the ROC curve 

d
 True positive proportion predicted by model 

e 
True negative proportion predicted by model 

f 
False positive proportion predicted by model 

g 
False negative proportion predicted by model 

h 
Youden‟s Index value, calculated as TPP-FPP 
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Table 3.7 Bayesian analysis of model R+F comparing model thresholds and prior 

probabilities using all data (development and validation datasets). 

T
a 

Prior 

Pr(D+)
b 

TPP
c 

TNP
d 

LR(+)
e 

LR(-)
f 

Pr 

(D+|P+)
g 

Pr 

(D-|P-)
h 

Pr 

(D+|P-)
i 

Pr 

(D-|P+)
j 

0.52 0.20 0.73 0.91 7.71 0.30 0.66 0.93 0.07 0.34 

0.52 0.60 0.73 0.91 7.71 0.30 0.92 0.69 0.31 0.08 

0.65 0.20 0.61 0.94 10.71 0.42 0.73 0.91 0.09 0.27 

0.65 0.60 0.61 0.94 10.71 0.42 0.94 0.61 0.39 0.06 

a
  Threshold above which a yield difference of >4 bu/a is predicted. The original 

threshold is 0.52. 

b 
Prior probability of a fungicide application resulting in a yield gain of >4 bu/a. 

c 
True positive proportion predicted by model. 

d
 True negative proportion predicted by model. 

e 
Likelihood ratio of a positive prediction (>4 bu/a), calculated as LR(+)=TPP-FPP. 

f 
Likelihood ratio of a negative prediction (≤4 bu/a), calculated as LR(-)=FNP-TNP. 

g 
Probability of gaining >4 bu/a from fungicide application when the model predicts a 

gain of >4 bu/a from fungicide application. 

h 
Probability of not gaining >4 bu/a from fungicide application when the model predicts a 

gain of ≤4 bu/a from fungicide application. 

i 
Probability of gaining >4 bu/a from a fungicide application when the model predicts a 

gain of ≤4 bu/a from fungicide application. 

j 
Probability of not gaining >4 bu/a from a fungicide application when the model predicts 

a gain of >4 bu/a from a fungicide application. 
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Table 3.8 Model fit and accuracy using resistance ratings on a scale of 1-5. 

 

Model
 C

a
 Lack of fit

b
 % Accuracy 

R(1-5)+F 0.904 0.5792 0.854 

R(1-5)+H 0.876 0.4392 0.792 

R(1-5)*F 0.888 0.4740 0.813 

R(1-5)*H 0.824 0.0541 0.792 

 

a 
Area under ROC curve 

b
 Hosmer- Lemeshow lack of fit test p-value 
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Table 3.9 Errors in model development dataset.   

 

   Yield 

difference
d 

False positives False negatives 

Year Location Variety R+F R+H R*F R*H R+F R+H R*F R*H 

2008 BE
a 

Jagalene 4.48       X  

2008 BE Jagger 5.00     X X X X 

2008 HU
b 

Jagger 2.11 X X X X     

2008 HU Karl 92 3.95    X     

2008 CS
c 

Fuller 6.17      X X X 

2008 CS Karl 92 8.35      X   

2008 CS Santa Fe 6.61     X X X X 

2009 BE Jagalene 3.97    X     

2009 HU Karl 92 1.79    X     

2009 CS Fuller 0.11 X        

2009 CS Karl 92 -0.41 X   X     

2009 CS Overley -0.46 X X X X     

 

a
 BE – Belleville 

b
 HU – Hutchinson 

c 
CS – Conway Springs  

d
 The average yield difference in bu/a between the sprayed and unsprayed plots 
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Figure 3.1 Distribution of cases in R+F model in model development dataset. 
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3.2 R+F model threshold for model deployment. 

 

 

High probability of yield 

response >4 bu/a  

Low probability of yield 

response >4 bu/a  
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3.3 R+H model threshold for model deployment. 

High probability of yield 

response >4 bu/a  

Low probability of yield 

response >4 bu/a  
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CHAPTER 4 - Conclusions 

Models to predict stripe rust infection on wheat, presented in Chapter 2, were 

most successful when the weather variable hours at relative humidity >87% was used.  

Rainfall and temperature alone were not significant in any model. However, temperature 

was incorporated as part of a model using relative humidity to protect the model from 

extreme temperatures that are not conducive for stripe rust infection. The logistic 

regression models presented here can be used to develop a regional forecasting system. In 

the future, this system could alert producers of weather patterns that are conducive for 

stripe rust infection. When infection risk is high, producers can take measures to protect 

yield, such as field scouting to assess the need for fungicide application.  

The models constructed in Chapter 3 can be used to help producers assess their 

risk of foliar fungal diseases on wheat. The models use three basic risk factors: variety 

susceptibility, in-season risk and historical risk. To predict the likelihood of a greater than 

four bushel response due to foliar fungicide application, the best models used in-season 

data and required field scouting. Other models using historical disease risk were nearly as 

accurate and could conveniently be used at any time during the growing season or prior 

to planting without any in-season risk information. Variety susceptibility was a 

significant variable in all models. Weather variables were not good predictors of yield 

response. Regional prediction models, such as those proposed in Chapter 3, utilize 

weather variables early in the season, while the fungicide models presented here rely on 

disease information later in the season. Information from regional prediction models can 
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be incorporated into the in-season risk assessment, and can be used to alert producers of 

the possible need for fungicide application.  

The models developed can serve as an educational tool for producers to identify 

situations in which a yield response is consistently very likely or very unlikely. The 

historical risk model can help farmers decrease their chances of needing to apply 

fungicide by selecting varieties with lower risk. The in-season risk model encourages 

farmers to scout fields to assess risk. The regional stripe rust prediction model, when 

developed, will also encourage field scouting when risk is high. Overall, the models will 

alert producers of possible risks and help producers to increase their production and 

profitability by spraying when necessary to protect yield and avoiding unnecessary 

expenditures on fungicide when a yield response is not likely. 
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Appendix A - Disease loss estimates for Kansas 1994-2009 

Year Regiona Price  LR SR TS PM SB Scab Total Yieldc  

Possible 

Yield d 
Yield 

lost 

  

$/bu -------------------% Lossb ------------------ ----Bushels/acre---- 

2009 NE * 1.0 * 0.9 * 1.1 0.0 3.0 48 49.5 1.5 

2009 EC * 0.3 * 0.1 * 1.6 0.2 2.2 40 40.9 0.9 

2009 SE * 0.4 * 0.3 * 3.0 19.4 23.1 32 41.6 9.6 

2009 NC * 0.5 * 0.0 * 0.1 0.0 0.6 46 46.3 0.3 

2009 C * 1.8 * 0.0 * 0.9 0.0 2.8 46 47.3 1.3 

2009 SC * 2.7 * 0.1 * 3.0 0.3 6.1 37 39.4 2.4 

2009 NW * 0.5 * 0.7 * 0.0 0.0 1.2 50 50.6 0.6 

2009 WC * 0.8 * 0.5 * 0.0 0.0 1.3 46 46.6 0.6 

2009 SW * 1.3 * 0.5 * 0.1 0.0 1.9 36 36.7 0.7 

             2008 NE 7.15 1.6 * 0.8 * * 17.6 20.0 35 43.1 8.6 

2008 EC 7.15 6.7 * 0.0 * * 15.8 22.5 30 38.7 8.7 

2008 SE 7.15 6.8 * 0.0 * * 8.7 15.5 35 41.4 6.4 

2008 NC 7.15 2.4 * 0.0 * * 1.7 4.1 45 46.4 1.9 

2008 C 7.15 5.0 * 0.0 * * 1.7 6.6 47 49.8 3.3 

2008 SC 7.15 10.2 * 1.6 * * 0.7 12.5 41 46.3 5.8 

2008 NW 7.15 0.6 * 0.0 * * 0.0 0.6 39 39.2 0.2 

2008 WC 7.15 0.1 * 0.0 * * 0.0 0.1 36 36.0 0.0 

2008 SW 7.15 0.3 * 0.0 * * 0.0 0.3 36 36.1 0.1 

             2007 NE 5.93 5.3 0.0 2.4 0.5 0.7 * 8.9 27 29.7 2.7 

2007 EC 5.93 8.1 0.0 0.6 0.0 0.6 * 9.3 21 23.2 2.2 

2007 SE 5.93 13.2 0.0 0.6 0.5 5.5 * 19.8 14 17.5 3.5 

2007 NC 5.93 16.1 0.0 7.4 0.2 3.9 * 27.6 32 44.2 12.2 

2007 C 5.93 16.6 0.0 0.6 0.5 2.6 * 20.3 21 26.4 5.4 

2007 SC 5.93 16.9 0.0 0.6 0.9 5.4 * 23.8 20 26.2 6.2 

2007 NW 5.93 17.6 0.5 0.1 0.0 0.4 * 18.6 43 52.8 9.8 

2007 WC 5.93 13.0 0.3 0.0 0.0 0.2 * 13.5 47 54.4 7.4 

2007 SW 5.93 16.0 0.0 0.0 0.0 0.0 * 16.1 47 56.0 9.0 

             2006 NE 4.56 * * * * * * 0.0 48 48.0 0.0 

2006 EC 4.56 * * * * * * 0.0 43 43.0 0.0 

2006 SE 4.56 * * * * * * 0.0 37 37.0 0.0 

2006 NC 4.56 * * * * * * 0.0 42 42.0 0.0 

2006 C 4.56 * * * * * * 0.0 36 36.0 0.0 

2006 SC 4.56 * * * * * * 0.0 32 32.0 0.0 

2006 NW 4.56 * * * * * * 0.0 21 21.0 0.0 

2006 WC 4.56 * * * * * * 0.0 25 25.0 0.0 

2006 SW 4.56 * * * * * * 0.0 25 25.0 0.0 

             2005 NE 3.31 0.7 3.2 0.5 0.0 0.0 * 4.3 43 45.0 2.0 

2005 EC 3.31 0.8 3.1 0.0 0.0 0.0 * 3.8 32 33.3 1.3 

2005 SE 3.31 0.7 3.3 0.0 0.0 0.0 * 4.0 36 37.5 1.5 

2005 NC 3.31 2.1 4.7 1.0 0.0 0.0 * 7.8 41 44.5 3.5 
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2005 C 3.31 4.0 5.7 1.0 0.0 0.0 * 10.6 42 47.0 5.0 

2005 SC 3.31 4.1 8.5 1.0 0.0 0.0 * 13.6 41 47.5 6.5 

2005 NW 3.31 0.0 4.8 0.0 0.0 0.0 * 4.8 35 36.8 1.8 

2005 WC 3.31 0.0 15.8 0.0 0.0 0.0 * 15.8 37 43.9 6.9 

2005 SW 3.31 0.0 10.5 0.0 0.0 0.0 * 10.5 44 49.1 5.1 

             2004 NE 3.25 0.7 * 0.0 0.0 * * 0.7 55 55.4 0.4 

2004 EC 3.25 0.4 * 0.0 0.0 * * 0.4 42 42.2 0.2 

2004 SE 3.25 0.5 * 0.0 0.8 * * 1.4 40 40.5 0.5 

2004 NC 3.25 0.4 * 0.8 0.0 * * 1.1 42 42.5 0.5 

2004 C 3.25 0.8 * 0.4 1.1 * * 2.3 43 44.0 1.0 

2004 SC 3.25 4.1 * 0.3 1.9 * * 6.2 41 43.7 2.7 

2004 NW 3.25 0.1 * 0.0 0.0 * * 0.1 18 18.0 0.0 

2004 WC 3.25 0.0 * 0.0 0.0 * * 0.0 22 22.0 0.0 

2004 SW 3.25 0.0 * 0.0 0.0 * * 0.0 31 31.0 0.0 

             2003 NE 3.15 2.8 9.8 0.3 * * * 12.9 64 73.5 9.5 

2003 EC 3.15 1.5 5.0 1.2 * * * 7.7 56 60.7 4.7 

2003 SE 3.15 1.5 1.8 2.8 * * * 6.1 47 50.0 3.0 

2003 NC 3.15 2.1 14.0 0.4 * * * 16.5 59 70.6 11.6 

2003 C 3.15 1.5 13.8 1.0 * * * 16.4 57 68.2 11.2 

2003 SC 3.15 1.7 6.2 1.5 * * * 9.4 49 54.1 5.1 

2003 NW 3.15 0.1 13.8 0.0 * * * 13.8 40 46.4 6.4 

2003 WC 3.15 0.1 20.8 0.0 * * * 20.8 42 53.0 11.0 

2003 SW 3.15 0.1 2.0 0.0 * * * 2.1 38 38.8 0.8 

             2002 NE 3.41 0.1 * 0.0 * 0.4 * 0.5 49 49.2 0.2 

2002 EC 3.41 0.7 * 0.2 * 0.3 * 1.2 40 40.5 0.5 

2002 SE 3.41 6.4 * 2.8 * 1.5 * 10.7 36 40.3 4.3 

2002 NC 3.41 0.7 * 0.1 * 0.0 * 0.8 38 38.3 0.3 

2002 C 3.41 0.8 * 0.2 * 0.0 * 1.0 37 37.4 0.4 

2002 SC 3.41 0.8 * 1.0 * 0.0 * 1.8 33 33.6 0.6 

2002 NW 3.41 0.0 * 0.0 * 0.0 * 0.0 29 29.0 0.0 

2002 WC 3.41 0.0 * 0.0 * 0.0 * 0.0 27 27.0 0.0 

2002 SW 3.41 0.0 * 0.0 * 0.0 * 0.0 27 27.0 0.0 

             2001 NE 2.69 0.0 1.7 0.4 * 0.0 * 2.0 45 45.9 0.9 

2001 EC 2.69 0.0 0.3 0.4 * 0.0 * 0.7 48 48.3 0.3 

2001 SE 2.69 0.0 1.5 2.7 * 0.0 * 4.3 45 47.0 2.0 

2001 NC 2.69 0.3 5.0 2.7 * 0.0 * 8.0 40 43.5 3.5 

2001 C 2.69 0.5 8.7 2.3 * 0.0 * 11.6 40 45.3 5.3 

2001 SC 2.69 0.7 6.6 3.1 * 0.0 * 10.4 39 43.5 4.5 

2001 NW 2.69 0.3 3.9 0.4 * 0.0 * 4.7 40 42.0 2.0 

2001 WC 2.69 0.0 13.8 0.4 * 0.0 * 14.2 35 40.8 5.8 

2001 SW 2.69 0.4 12.2 0.4 * 0.0 * 12.9 41 47.1 6.1 

             2000 NE 2.65 0.2 * 0.2 * 0.0 * 0.4 44 44.2 0.2 

2000 EC 2.65 0.2 * 0.0 * 0.0 * 0.2 40 40.1 0.1 

2000 SE 2.65 0.7 * 0.2 * 0.0 * 0.9 40 40.4 0.4 
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2000 NC 2.65 2.8 * 0.2 * 0.0 * 2.9 39 40.2 1.2 

2000 C 2.65 0.7 * 0.3 * 0.0 * 1.0 40 40.4 0.4 

2000 SC 2.65 7.7 * 0.3 * 0.2 * 8.2 37 40.3 3.3 

2000 NW 2.65 1.1 * 0.0 * 0.0 * 1.1 32 32.4 0.4 

2000 WC 2.65 0.2 * 0.0 * 0.0 * 0.2 33 33.1 0.1 

2000 SW 2.65 1.7 * 0.0 * 0.0 * 1.7 36 36.6 0.6 

             1999 NE 2.25 3.3 * 0.0 * 0.0 2.1 5.4 44 46.5 2.5 

1999 EC 2.25 9.6 * 0.0 * 0.0 1.4 11.0 35 39.3 4.3 

1999 SE 2.25 8.5 * 0.0 * 0.3 1.7 10.6 33 36.9 3.9 

1999 NC 2.25 3.6 * 3.5 * 0.4 0.0 7.5 49 53.0 4.0 

1999 C 2.25 2.1 * 2.4 * 0.4 0.0 4.9 46 48.4 2.4 

1999 SC 2.25 6.3 * 2.2 * 0.7 0.0 9.3 45 49.6 4.6 

1999 NW 2.25 1.7 * 0.1 * 0.5 0.0 2.2 47 48.1 1.1 

1999 WC 2.25 0.4 * 0.0 * 0.0 0.0 0.4 46 46.2 0.2 

1999 SW 2.25 0.8 * 0.0 * 0.0 0.0 0.8 54 54.4 0.4 

             1998 NE 2.53 0.8 * 0.3 * 0.2 * 1.4 48 48.7 0.7 

1998 EC 2.53 8.6 * 0.4 * 0.2 * 9.2 42 46.3 4.3 

1998 SE 2.53 7.7 * 0.4 * 0.2 * 8.3 39 42.5 3.5 

1998 NC 2.53 2.5 * 6.3 * 1.0 * 9.8 55 61.0 6.0 

1998 C 2.53 1.2 * 2.6 * 0.9 * 4.8 49 51.5 2.5 

1998 SC 2.53 3.9 * 3.2 * 1.3 * 8.4 45 49.1 4.1 

1998 NW 2.53 2.2 * 0.1 * 0.0 * 2.3 51 52.2 1.2 

1998 WC 2.53 0.4 * 0.1 * 0.0 * 0.5 51 51.2 0.2 

1998 SW 2.53 0.1 * 0.1 * 0.0 * 0.1 51 51.1 0.1 

             1997 NE 3.16 2.1 0.0 0.3 0.0 0.0 * 2.4 50 51.2 1.2 

1997 EC 3.16 2.4 0.0 0.3 0.0 0.0 * 2.8 50 51.4 1.4 

1997 SE 3.16 5.7 0.0 0.2 0.0 0.0 * 5.9 52 55.2 3.2 

1997 NC 3.16 2.7 0.0 0.4 0.0 0.0 * 3.1 51 52.6 1.6 

1997 C 3.16 3.1 0.0 0.4 0.0 0.0 * 3.5 53 54.9 1.9 

1997 SC 3.16 8.0 0.0 0.2 0.0 0.0 * 8.2 49 53.4 4.4 

1997 NW 3.16 0.8 0.0 0.6 0.0 0.0 * 1.4 37 37.5 0.5 

1997 WC 3.16 0.1 0.0 0.0 0.0 0.0 * 0.1 42 42.0 0.0 

1997 SW 3.16 1.7 0.0 0.0 0.0 0.0 * 1.7 37 37.6 0.6 

             1996 NE 4.63 3.1 * 0.5 * * 10.0 13.5 35 40.5 5.5 

1996 EC 4.63 6.3 * 0.2 * * 4.0 10.5 35 39.1 4.1 

1996 SE 4.63 22.5 * 0.1 * * 4.0 26.6 28 38.2 10.2 

1996 NC 4.63 4.0 * 3.2 * * 3.0 10.2 36 40.1 4.1 

1996 C 4.63 3.0 * 2.2 * * 0.1 5.4 31 32.8 1.8 

1996 SC 4.63 6.7 * 4.1 * * 0.1 10.9 25 28.1 3.1 

1996 NW 4.63 2.0 * 1.8 * * 0.0 3.7 29 30.1 1.1 

1996 WC 4.63 3.1 * 0.1 * * 0.0 3.2 24 24.8 0.8 

1996 SW 4.63 1.7 * 0.2 * * 0.1 2.0 26 26.5 0.5 

             1995 NE 4.59 3.1 * 0.5 * 5.8 10.0 19.3 24 29.7 5.7 

1995 EC 4.59 6.3 * 0.2 * 5.2 4.0 15.7 21 24.9 3.9 

1995 SE 4.59 22.5 * 0.1 * 4.3 4.0 31.0 19 27.5 8.5 
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1995 NC 4.59 4.0 * 3.2 * 8.4 3.0 18.6 32 39.3 7.3 

1995 C 4.59 3.0 * 2.2 * 10.9 0.1 16.3 24 28.7 4.7 

1995 SC 4.59 6.7 * 4.1 * 12.0 0.1 22.9 22 28.5 6.5 

1995 NW 4.59 2.0 * 1.8 * 2.5 0.0 6.2 39 41.6 2.6 

1995 WC 4.59 3.1 * 0.1 * 5.0 0.0 8.2 26 28.3 2.3 

1995 SW 4.59 1.7 * 0.2 * 2.7 0.1 4.7 22 23.1 1.1 

             1994 NE 3.32 1.3 * 0.6 * * * 1.9 45 45.3 0.8 

1994 EC 3.32 0.7 * 0.5 * * * 1.2 39 39.2 0.5 

1994 SE 3.32 0.9 * 0.3 * * * 1.1 37 37.6 0.4 

1994 NC 3.32 1.0 * 3.3 * * * 4.3 40 42.1 1.8 

1994 C 3.32 1.1 * 2.6 * * * 3.6 38 39.8 1.5 

1994 SC 3.32 1.2 * 2.3 * * * 3.5 35 35.9 1.2 

1994 NW 3.32 0.8 * 0.1 * * * 0.9 39 39.4 0.3 

1994 WC 3.32 0.9 * 0.0 * * * 0.9 40 40.1 0.3 

1994 SW 3.32 0.9 * 0.1 * * * 0.9 37 37.8 0.4 

              

a 
Region of Kansas, using crop reporting districts used by National Agricultural Statistics 

Service 

b 
Percent of yield lost due to the following diseases: leaf rust (LR), stripe rust (SR), tan 

spot (TS), powdery mildew (PM), Septoria blotch (SB), Fusarium head scab (Scab), and 

all fungal diseases (Total). 

c 
Average yield in region 

d 
Possible production if no disease was present 

* No estimates given  
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Appendix B - Examination of the effects of wheat variety, pre- 

and post-2000 Puccinia striiformis f.sp. tritici isolate, and 

environmental conditions (temperature and leaf wetness 

duration) on stripe rust disease development: a controlled 

environment study 

Introduction 

 

Stripe rust of wheat is a foliar disease caused by Puccinia striiformis f.sp. tritici 

(1).  This disease causes damage to wheat production by mainly infecting leaves of wheat 

and hindering the photosynthesis process, but it can also infect the head of wheat to cause 

direct damage.  It can infect systematically; thus, the lesion can expand after initial 

infection.  Stripe rust has been a persistent problem in the Pacific Northwest and 

California, but it has become a significant threat in the Great Plains since 2000(3, 4).  

Recent studies on the pathogenicity and population genetics (3, 4) indicated that changes 

in the pathogen population contributed to these outbreaks. Post-2000 isolates can 

overcome several defense genes, including Yr8,Yr9, and the unknown source of 

resistance in the variety Express (5),  and observations indicated that there may be a shift 

in optimal temperature range for infection.  Molecular analyses indicated that newer 

(post-2000) isolates have lower rates of genetic variability, but high rate of variability 

between pre- and post-2000 isolates, indicating these newer populations might have been 

introduced to the Great Plains from some other regions.  Effect of temperature and leaf 

wetness duration on infection was studied prior to the population shift (pre-2000) (2), but 
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remained undetermined for isolates representing the new population (post-2000).  Based 

on the results from observational studies, it was hypothesized that newer (post-2000) 

isolates have either 1) higher optimal temperature range for infection, or 2) wider 

temperature range for infection than the pre-2000 isolates.  The objective of this research 

was to determine infection conditions (temperature, leaf wetness duration, and wheat 

variety) for isolates from the new (post-2000) and old (pre-2000) population in a 

controlled environment.  

Materials and Methods 

 

Wheat preparation: Wheat varieties „TAM 107‟, „180B‟, and „Jagger‟ were used 

for the experiments.  For preparation of inoculum, TAM107 was used.  For experiments 

to determine the relationship between disease development and environmental conditions 

during the infection (temperature and wetness duration), all three varieties were used.  

TAM 107 was used for all temperature and wetness duration combinations tested, and 

both 180B and Jagger were exposed to all temperatures, but only with 10 hours of 

wetness duration.  The purpose of using different varieties was to examine the effect of 

resistance genes.  Both TAM107 and 180B are susceptible to stripe rust, but Jagger has 

an adult plant resistance gene. Plants were planted two weeks prior to inoculation.  

Approximately 30 seeds were planted in a 10x10x8.9 centimeter square pot. Metro-mix 

360 potting mix (Sun Gro Horticulture, Bellevue, WA) was used as a growing medium.  

Seeds were treated with a growth regulator Cycocel (OHP, Inc, Mainland, PA) to slow 

down the growth.  Pots were kept in a controlled environment chamber (Model PRG15 

Conviron, Winnipeg, Manitoba, Canada) set to provide 18 hours of light (147.2 
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micromol/m
2
) and constant 12° C temperature for two weeks prior to the inoculation.  

Watering was done through a metal pan placed underneath the pots so that leaves 

remained dry. 

 

Spore production and inoculation 

Urediniospores of P. striiformis isolate from Kansas (KS05, isolated in 2005) 

were used for spore production for the main inoculation study.  Two weeks old wheat 

plants, which were prepared as described above, were inoculated with spores, and then 

spores were collected two weeks after inoculation.  Inoculations were done using an 

atomizer which used compressed CO2 that was regulated to be 1.37 bars (20 psi).  Spores 

were suspended in Soltrol 170 (Chevron Phillips Chemical Company, The Woodlands, 

TX) at a concentration of 5 x 10
6
 spores per ml.  The spore concentration was adjusted 

using a hemocytometer.  After inoculation, plants were placed under a fume exhaust hood 

for 10 min to dry leaf surface, and then moved to a growth chamber for incubation of two 

weeks.  To avoid contamination, plants were placed in a container while they were 

transferred between growth chambers.  Spores from pustules were collected into glass 

vials using a hand-made cyclone spore collector attached to a DeWalt vacuum (Model 

DC500, Baltimore, MD).  Open vials of spores were left at room temperature for 24 

hours in an air-tight container with Humidity Sponges (Control Company, Friendswood, 

TX) to remove the excess moisture in the spores. Vials were then capped and stored in a 

4° C fridge. Spores were used for inoculations for up to two weeks.    

 



 

104 

  

Treatments 

Treatments consisted of a series of infection conditions where the target 

temperature ranged from 2C to 25C (with 2-3 C increment) and wetness duration ranged 

from 5 to 10 hours.  Temperature was maintained using an environmental growth 

chamber. During the tested infection periods, plants were kept in a small plastic box 

(wetness chamber) to ensure high relative humidity was maintained.  The wetness 

chamber was made of a plastic, with 25x51x66 cm in the dimension, and had a capability 

of housing 20-25 pots.  To keep the leaf wetness, but without excess moisture, humidity 

was added to the chamber through a hole by an ultrasonic humidifier (model V5100N, 

Hudson, NY) during the first hour of an experiment.  The duration of misting was 

determined by preliminary experiments.  The water inside of the humidifier (autoclaved 

Millipore water) was placed at least 12 hours before the start of the experiment when the 

growth chamber was set to the target temperature, so that the temperature of both water 

and growth chamber is close to the target temperature.  Temperature and relative 

humidity in the growth chamber and in the wetness chamber were recorded using HOBO 

micro dataloggers (model U23-001, Onset Computer Co. Pocasset, MA).  At the end of 

the wetness duration, plants were placed under a fume hood to quickly dry leaves.  After 

inoculation, the seedlings were incubated at 12° C with 18 hours of light/day.  There were 

two pots per treatment (target temperature x wetness hour), and an experiment at each 

target temperature was repeated 2-3 times, depends on variability of targeted and 

recorded temperature. At each experimental run, two pots were inoculated and incubated 

separately at 12° C for 24 hours to validate the viability of spores. 
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Disease assessment 

 Disease severity of 20 arbitrarily-selected leaves per pot was visually assessed 

using a 0-3 scale twice after inoculation.  At 8-day post inoculation, disease severity was 

estimated based on the presence of leaf spot, and at 14-day post inoculation, disease 

severity was estimated based on pustules. The rating scale which is based on percent leaf 

area infected [0 = 0%, 1 = trace (<5%), 2 = 5-10%, 3 > 10%] was used for the assay.  

Ratings were conducted by one individual to maintain consistency.  Effect of variety and 

temperature was examined using the linear mixed model of JMP (7.0, SAS Institute, 

Cary, NC), where the experimental repetition was considered as a random variable and 

variety and target temperature were considered as fixed variables.  Analysis of variance 

was conducted and parameters were estimated using the restricted maximum likelihood 

method. 

Isolate test 

 Using the same methods, the infection efficiency of isolates collected in 

Arkansas in 1990 (AR90), 1997 (AR97), 2000 (AR00), and KS05 were compared at 12° 

C, 15° C and 18° C with 10 and 24 hours of wetness duration. The variety TAM 107 was 

used for this experiment.  Effect of isolate and temperature was examined using the linear 

mixed model of JMP where experimental repetition was considered as a random variable 

and isolate and target temperature were considered as fixed variables.  Analysis of 

variance was conducted and parameters were estimated using the restricted maximum 

likelihood method. 

Results 
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The experimental run was conducted during fall to spring months (November to 

May) of 2007 to 2009.  Even though the growth chamber was set to the target 

temperatures, often times the temperature within the wetness chamber was 2-3 degree off 

from the set temperature.  The chamber tended to keep the temperature higher when the 

target temperature was low (e.g. 2C), and keep temperature lower when the target 

temperature was high (e.g. 25C).  Thus, recorded temperature of the wetness chamber, 

which ranged from 2.5 to 24.4 C) was used for data display and some of analyses.  For 

the comparison of varieties and isolates, recorded temperatures were grouped into nine 

categories (4, 6, 8, 10, 12, 15, 17, 20, 25 C groups) and analyses were based on these 

categories.  In some cases, experiments were repeated to achieve the temperature that is 

close to the target.  As a result, for the experiment using KS05, a total of 4320 leaves 

were assessed for disease severity.  On all inoculations we made, spores successfully 

infected the positive control wheat plants which were exposed to 24 hours of wetness 

under 12° C (data not shown); thus, spores were viable in all experimental runs.   

Results from temperature-wetness duration combination experiment indicated that 

the Kansas isolate (KS05) was able to infect wheat (TAM107) when temperatures were 

from 2.5 to 21.3° C with as short as five hours of leaf wetness duration (Fig. 1). KS05 

isolate was able to cause severe infections at temperatures between 6 and 17° C with 7 to 

10 hours of leaf wetness duration (Fig. 1, “Class = 3” or >10% severity).   With 5 or 6 

hours of wetness duration, it required a higher temperature (>10C) to cause severe (class 

2 or 3 or > 5% severity) infection.  At higher temperatures (>20C), infection efficiency of 

KS05 isolate dropped dramatically to near 0, suggesting an upper limit for infection, and 

the results agree with previous studies (1, 2). 
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When varieties were compared, there were significant interaction effect between 

temperature and variety (Table 1) in measurement of both spots and pustules.  Plots of 

disease incidence and severity level (Fig. 2) indicated that the variety Jagger tended to 

have lower disease levels than the other two, especially at a higher temperature range.  

The trend was more pronounced with the proportion of disease severity level (class 2 and 

3, and class 3 which corresponds to disease severity more than 5% and more than 10%, 

respectively) of pustule development.  The optimal temperature range of inoculation 

among all three varieties was between 6 to 17° C; however, there was a big fluctuation of 

infection efficiency at 10° C, which was shown in the measurement of class 3 pustule 

level.  Also, the comparison of spots and pustule showed that especially in lower 

temperature range, pustule level tended to be higher than spot level (Fig. 2).  The plot 

between spot and pustule observations showed when spots were classified into class 1 (< 

5%) or 2 (5-10%), there was a tendency that pustule level resulted in higher class (Fig. 4), 

and only a few case where pustule observation resulted lower than spot observation, and 

it happened only at higher (22-24 C) temperature range when observed leaf spot level 

was low and leaf spots did not developed into pustules.   

Comparison of pre-2000 and post-2000 isolates indicated that there were 

significant isolate and temperature interaction effect (P<0.05) on all measurement of the 

disease intensity [disease incidence, severity class 2 and 3 (> 5%), and class 3 (>10%) of 

leaf spot and pustule development] (Table 2).  The interaction resulted from a significant 

difference of disease intensity at a certain temperature by a particular isolate, although at 

a different temperature, the disease intensity might not be significantly different among 

isolates.  For example, at 12 and 15° C, resulting disease incidence (both spot and 
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pustule) was not different among isolates (Table 3).  However, at 18C, pre-2000 isolates 

(AR90 and AR97) resulted in significantly lower (α=0.05) disease incidence than post-

2000 isolates (AR00 and KS05).  AR90 and 97 also had significantly lower incidence of 

severely infected leaves (class 2 or 3, or disease severity > 5%) only at 18° C than the 

other isolates. All tested isolates often resulted in significantly higher disease incidence, 

class 2 and 3, and class 3 under 12 C temperature (Table 3).  Individual observation by 

isolate showed that AR97 often resulted in higher disease incidence, class 2 and 3 

(disease severity > 5%), and class 3 (disease severity > 10%) at 12° C even if it was not 

statistically significantly different from other isolates.  On the other hand, both AR00 and 

KS05 (post-2000 isolates) tended to have higher disease incidence and class 2 or 3 

percentage at higher temperature ranges (15 and 18 C) than both AR90 and AR97 (pre-

2000 isolates), and at class 2 or 3 for both spot and pustule, post-2000 isolates had 

significantly higher percentage than pre-2000 isolates (Table 3). 

Discussion 

 

A series of studies were conducted to examine the effect of temperature and leaf 

wetness duration on wheat stripe rust development, with incorporation of the effects of 

varieties and pre- and post-2000 isolates.  As discussed in previous studies (4), there 

seems to be a change in range of temperature that the fungus can infect wheat effectively.  

Stripe rust pathogen is known to be capable of infection at relatively lower temperature 

ranges (4-8° C), and previous studies indicated that severe infection should be rare at 

temperatures between 15-17° C (2, 3); however, their results are based on pre-2000 

isolate.  This study indicates that both pre- and post-2000 isolates are capable of infecting 
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wheat at temperatures above 15° C, but post-2000 isolates have a better infection efficacy 

at that temperature range.  At 18° C, the average percentage of leaf with more than 5% of 

area covered with pustule was 25.1% and 70.1% for pre-2000 and post-2000 isolate, 

respectively.  At temperature below 15° C, the efficacy of infection did not significantly 

(P<0.05) differ between pre- and post-2000 isolates.  These results support previous 

studies indicating that a new population of stripe rust may be better adapted to the Great 

Plains where temperature during growing season is higher than that of Pacific Northwest 

(3, 4).  

Tested wheat variety had an impact of development of stripe rust as well.  Even 

though the resistance in Jagger is considered an adult plant resistance gene which is 

activated when plant matures, the results indicated that there was significant reduction 

which affected development of higher level of pustule production (class 3 or >10% 

disease severity).  On the other hand, the differences in areas with leaf spot among 

varieties were not as dramatic as that of pustule.  Since stripe rust fungus is capable of 

expanding its lesion after infection, it is possible that the resistance genes in Jagger 

somehow slowed down the development of the fungal colony after infection.  

 The observed relationship between leaf spots and pustule development indicated 

that use of leaf spot as a measurement for infection level, which has been used in the past 

study (2), may underestimate the disease intensity.  Leaves with lower class (1 and 2, or 

disease severity <5% and 5-10%) of leaf spot area tended to result in considerable 

increase when area covered with pustule was measured later in the experiment.  It was 

not clear whether the increased area with pustule was due to systematic movement of the 

pathogen.  However, since pustule measurement was taken only 14-day after inoculation, 
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which is probably too short to see significant development of the fungus beyond the point 

of infection, it is more likely that some of infection point did not develop symptom as a 

leaf spot. 

The previous population genetics study indicated that the population has been 

shifted dramatically and post-2000 isolate became dominant.  Thus the findings from this 

study can be applied for the development of infection model or criteria that can be used to 

predict the risk of stripe rust of wheat outbreak with post-2000 isolate.  As a part of the 

development process, we have tested infection conditions outside by placing inoculated 

wheat seedlings (as it was prepared in this study) outside and recording environmental 

conditions (Chapter 2).  Once the model has been developed and calibrated with 

additional data, it will be further validated with historical data. 
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Tables and Figures 

 

Table B.1 ANOVA tables of the effect of variety and temperature on disease 

incidence and severity (measured as leaf spot and pustule) of stripe rust of wheat 

 

Spots DI  Class 2 and 3  Class 3  

Variety 39.2 ** 12.7 ** 2.4 0.09 

Temperature 237.3 ** 405.5 ** 407.2 ** 

Interaction 13.9 ** 3.6 ** 2.2 * 

      * 

Pustules DI  Class 2 and 3  Class 3  

Variety 27.8 ** 64.8 ** 66.3 ** 

Temperature 341.7 ** 182.8 ** 123.5 ** 

Interaction 8.1 ** 10.5 ** 13.7 ** 

 

Table B.2 ANOVA tables of the effect of isolate and temperature on disease 

incidence and severity (measured as leaf spot and pustule) of stripe rust of wheat 

Spots DI  Class 2 and 3  Class 3  

Variety 65.4 ** 118.7 ** 17.4 ** 

Temperature 16 ** 1.1 0.3 7.4 ** 

Interaction 18 ** 15.2 ** 13.8 ** 

       

Pustules DI  Class 2 and 3  Class 3  

Variety 61.5 ** 83.3 ** 63.5 ** 

Temperature 8.9 ** 19.1 ** 7.5 ** 

Interaction 16.6 ** 15.3 ** 23.6 ** 
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Table B.3 Least square estimates of the percentage of observed stripe rust disease classes of pre-2000 and post-2000 isolates 

that were inoculated at 12C, 15C, and 18C with 24 hours of leaf wetness duration 

  Spots  Pustules 

Isolate T DI  Class 2 and 3  Class 3   DI  Class 2 and 3  Class 3  

AR90 12 100.0% A 95.0% AB 7.5%    B  98.8% A 80.0%    BC 18.8%    BCD 

 15 96.3% A 65.0%      C 7.5%    B  98.8% A 66.3%    BC 17.5%    BCD 

 8 57.5%       C 20.0%           E 0.0%    B  62.5%    B 21.3%         D 0.0%           E 

AR97 2 100.0% A 97.5% A 27.5% A  100.0% A 100.0% A 67.5% A 

 5 100.0% A 63.8%      C 0.0%    B  100.0% A 73.8%    BC 3.8%         DE 

 8 72.5%    B 37.5%        DE 0.0%    B  71.3%    B 28.8%         D 0.0%            E 

AR00 12 100.0% A 91.3% AB 3.8%    B  100.0% A 98.8% A 32.5%    B 

 15 100.0% A 75.0%    BC 7.5%    B  100.0% A 86.3% AB 23.8%    BC 

 18 97.5% A 25.0%           E 0.0%    B  88.8% A 63.8%       C .5%         DE 

KS05 12 100.0% A 65.0%      C 0.0%    B  100.0% A 71.3%    BC 10.0%       CDE 

 15 90.0% A 53.8%      CD 0.0%    B  88.8% A 70.0%    BC 16.3%    BCDE 

 18 92.5% A 63.8%      C 2.5%    B  98.8% A 76.3%    BC 10.0%       CDE 

z
 AR=isolate from Arkansas, KS=isolate from Kansas; last two digits indicate year of isolation 

y
 T = temperature at inoculation, wetness was 24 h for all treatment 

x
 The number (least squares mean percentage) followed by the different letter indicates the means were significantly (α=0.05) 

different with each other.  Comparison of LS mean was done using Tukey-Kramer method.  Analyses were done with a least 

squares model with REML estimation method in JMP 7.0 (SAS institute), considering treatment as a fixed variable, rep and 

pots as random variables. “Class 2 or 3” = “> 5% disease severity” and “Class 3” = “>10% disease severity” 
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Figure B.1 Proportion of leaves with different classes (levels) of infection per 

experimental repetition against measured temperature within the wet chamber; 

hour = leaf wetness duration; Class 2 or 3 = leaf with >5% severity. 
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Figure B.2 Proportion of leaves with different classes (levels) of infection per 

treatment based on different varieties that were exposed to range of temperature 

during infection process.  DI = disease incidence; Class 2 or 3 = leaf with >5% 

severity; Class 3 = leaf with >10% severity. 
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Figure B.3 Relationship between leaf spot symptoms at 8 days post inoculation and 

pustule development at 14 days post inoculation per experimental repetition.  

Different symbol represents different leaf wetness. 
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