

The Ability of Medium Chain Fatty acids (MCFA) to Replace Zinc Oxide (ZnO) and Common **Antimicrobials in Nursery Pig Diets**

Introduction

- ZnO and antimicrobials, such as carbadox, maximize pig growth performance, however, there is rising consumer pressure to decrease their use in nursery pig diets.
- ZnO is an environmental pollutant and carbadox residues are carcinogenic
- Studies have shown that MCFA may be able to replace the use of ZnO and carbadox due to their antiviral, bactericidal, and bacteriostatic effects.
- MCFA are known to improve growth, feed efficiency, and mortality. Consumers are requesting further research.

Objective

• To evaluate the use of Medium Chain Fatty Acids in Nursery Pig diets to determine if they can effectively replace ZnO and common antimicrobials in Nursery Pig Diets.

Materials and Methods

- Materials: 360 weanling pigs (21d) were randomly allotted to one of 60 pens (6 pigs per pen and 10 pens per treatment) and one of 6 dietary treatments
- Experimental Unit: Pen
- Dietary Treatments:
 - 1. Negative control
 - 2. Carbadox (50g/ton)
 - 3. ZnO(3,000 ppm in phase 1 and 1,500 ppm in phase 2)
 - 4. 1% C6:C8:C10 (MCFA blend)
 - 5. 1% Feed Energy R2 (Feed Energy Crop, Des Moines, IA)
 - 6. 1% FORMI GML (ADDCON; Bitterfeld-Wolfen, Germany)
- **Treatments/Phases:** Dietary treatments were fed in 2 phases: phase 1 (d 0 to 7) and phase 2 (d 8 to 19). A common control diet was fed during phase 3 (d 20 to 35)
- **Response Criteria:** Individual pig weights and feeder weights were taken weekly to calculate ADG, ADFI and G:F. Fecal scores and blood parameters were taken on days 0 and 19.
- **Data Analysis:** Data was collected and analyzed using SAS GLIMMIX (SAS version 9.4, Cary, NC)

S. N. Reynolds, A. B. Lerner, C. K. Jones

Department of Animal Sciences and Industry, Kansas State University, Manhattan

			50 g/ton	1%	1%	1%		
BW, kg	ZnO	Control	Carbadox	C6, C8, C10	Feed Energy R2	FORMIGML	SEM	P =
d 0	5.42	5.42	5.41	5.42	5.41	5.42	0.009	0.696
d 7	6.10 ^a	6.02 ^{ab}	6.13 ^a	5.79 ^b	5.82 ^{ab}	6.11 ^a	0.075	0.003
d 19	10.26 ^a	9.23 ^c	10.05 ^{ab}	9.34 ^{bc}	9.11 ^c	9.71 ^{abc}	0.170	< 0.0001
d 35	18.70	17.66	18.49	17.84	17.47	17.99	0.316	0.06

Conclusions

- carbadox or ZnO versus those fed MCFA.
- weren't fed ZnO and carbadox.

Results

Overall Body Weight (d 0 to d 35)

Overall, there was no significant difference in body weight and G:F for pigs fed

• Pigs fed diets containing ZnO and carbadox had higher ADG and ADFI than those that

• Further research is recommended to evaluate the use of MCFA in nursery pig diets.

Acknowledgements

Thank you to the Dr. Mark and Kim Young Undergraduate Research Fund and ADDCON for your support in this research project.