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Abstract 

In this paper we evaluate a general form of image classification algorithm based on dense 

SIFT sampling. This algorithm is present in some form in most state-of-the-art classification 

systems. However, in this algorithm, numerous parameters must be tuned, and current research 

provides little insight into effective parameter tuning. We explore the relationship between 

various parameters and classification performance. Many of our results suggest that there are 

basic modifications which would improve state-of-the-art algorithms. Additionally, we develop 

two novel concepts, sampling redundancy and semantic capacity, to explain our data. These 

concepts provide additional insight into the limitations and potential improvements of state-of-

the-art algorithms. 
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1 Introduction 

How does one recognize a picture of a dog? A car? A face? When translating this 

question into an algorithm, the problem is reduced to binary classification. There is a 

mathematical difference between a picture that contains a dog and one that does not. Finding 

such differences is the goal of image classification. 

While most state-of-the-art image classification algorithms share a set of basic 

components, there is little research exploring the optimal parameters for these basic components. 

Most of the work entails finding extensions or modifications to the basic algorithm. But, without 

a robust set of performance data from a basic algorithm, it is difficult to precisely assess the 

value of improvements. Furthermore, a lack of complete understanding of the basic algorithm 

makes it difficult to predict which lines of research are promising. 

 While even the simplest image classifier entails many design decisions, there are several 

elements shared by nearly all state-of-the-art approaches. These elements are as follows: 

1. Dense low-level feature sampling, 

2. Construction of a representative codebook of features, 

3. Codebook matching via a bag-of-features approach, 

4. Spatial pyramid matching for organization, and 

5. Learning and classification via support vector machine. 

 

 First, low-level features must be extracted from the image. These features are gathered by 

looking at small windows in the image, and performing some low-level processing on the pixels 

to generate values that are more indicative of the structure (shape, texture, color, etc.) While 

many vision applications attempt to find a small number of interest points in an image (to meet 

time constraints), image classifiers frequently employ a dense sampling strategy, finding 

thousands of features at regular pixel intervals across the whole image. In this paradigm, no 

attempt is made to determine which features in the image are salient. While usually slower, this 

method guarantees that the salient features will be included, and gives superior results in 

practice. 
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 Next, a codebook is constructed from some or all of the low-level features that have been 

extracted. A codebook contains a set of visual “words” that will be used to describe any image. 

Ideally, a codebook will have a sufficient number of words that are reasonably distinct. 

 The codebook is necessary because next, each image feature will be matched to one or 

more codebook features. Two features that have been matched to the same codebook feature(s) 

will be considered to be the same in the remaining steps. The benefit of this reduction is twofold. 

One, an intractable number of distinct possible features can be categorized into a manageable 

number of groups, based on the size of the codebook. Two, the generalization allows us to see 

the same codebook feature many times across many images, which is necessary for learning. 

 From these codebook matches, a “bag-of-features” is constructed for the image. The 

image is fully described by a vector consisting of the number of occurrences of each codebook 

feature in that image. This representation contains no information about where in the image those 

features were found, or any geometric relationship between these features. 

 An extension exists in the codebook phase that is not intrinsic to the approach, but is 

extremely important in practice. The codebook matching phase ignores the location of features in 

the image. To retain some of this information, a spatial pyramid classifies features into a few 

different groups based on where the features were found in the original image. The image vector 

then consists of several “bags-of-features”, one for each location, concatenated with each other 

(including the “bag-of-features” that describes the image as a whole). The localization provided 

by the spatial pyramid is very coarse but still substantially improves the classifier. 

 The image has now been transformed from raw pixel data into a vector of values, each of 

which correlates more with certain image classes than others. If this process is repeated for all 

images in a set of training data, the resulting vectors can be passed into a support vector 

machine. From these vectors and some initialization parameters, the support vector machine 

learns a classifier that can predict the class of test images. The classifier works by evaluating the 

similarity of a test image to certain positive and negative examples in the training set.   

1.1 Justification of Value 

This paper will analyze basic image classifiers. It will explore the relationship between 

various parameters and classification performance. Specifically, it will analyze codebooks 

(construction and size), sampling strategies (density, scales used), and feature complexity. 
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Knowledge of these relationships will provide insight into the performance of a basic classifier 

as well as the tools to optimize it. Additionally, it will clarify the reasons for the limitations of 

the current baseline, and identify the areas with greatest research potential. 

 

1.2 Hypothesis 

There may be specific improvements to parameter selection strategies of a basic image 

classifier. In particular, strategies that select the parameters of codebook construction, dense 

SIFT sampling, and feature complexity may be improved. 

 

 Furthermore, the mutual information between two features may be predictable based on 

the sampling redundancy. 

 

 Finally, a basic image classifier may have certain theoretical limitations, defined by its 

semantic capacity, that are applicable regardless of parameter configuration and amount of 

training data. 
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1.3 Definitions and Abbreviations 

 Average precision is an evaluation metric for an image classifier. The precision is 

measured at each point on the precision/recall curve corresponding to a retrieval, and then 

the average precision is the average of those precision values. 

o Mean average precision is an evaluation metric for an image classifier in the 

PASCAL VOC Challenge. It is the mean of all twenty average precision measures 

corresponding to the twenty object classes in the PASCAL VOC Challenge. 

o Interpolated average precision is the average of 11 measurements, consisting of 

the precision measured at 11 intervals on the range [0.0, 0.1…1.0] on the 

precision-recall curve. 

 A bag-of-features is a vector describing an image. Each element in the vector is a count 

of the number of times some feature appears in the image, regardless of where that 

feature appears in the image. 

 A codebook is a list of visual features that are intended to represent the space of all 

possible features.  

 Context is the effect that the presence or absence of one feature has on another distinct 

feature. It allows the total information of two features to be greater than the sum of the 

information of each separate feature. 

 A corner is a region in an image where a large gradient occurs over a short distance in 

two or more directions. 

 A dense sampling strategy is a sampling strategy consisting of a large number of samples 

at regular intervals. 

o A full-dense sampling strategy is a sampling strategy consisting of a large number 

of samples at multiple scales, with the same pixel stride for each scale. 

o A semidense sampling strategy is a sampling strategy consisting of a large 

number of samples at multiple scales, with a pixel stride that is proportional to the 

scale. 

 A descriptor is the vector of values that comprise a particular feature. 

 An edge is a region in an image where a large gradient occurs over a short distance. 
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 A feature is a vector describing part of an image. A feature is robust to one or more 

image deformations and can be compared to other features for similarity, using a basic 

distance measure. 

 A gradient is a change in intensity when moving in a particular direction in an image. 

 Hard assignment is an encoding scheme for codebook matching. For each sampled 

feature, the nearest codebook feature(s) are found, and the corresponding value in the 

bag-of-features vector is increased by 1, regardless of the distance measure between the 

codebook feature(s) and the sampled feature. 

 A histogram is a frequency distribution, expressed as a vector. 

 A hyperplane is a boundary learned by a support vector machine. All points on one side 

of the hyperplane belong in the positive class, and all points on the other side belong in 

the negative class. 

 Image classification is the task of determining whether an image does or does not belong 

to a general category based only the visual information present. Such categories may 

include “horses” or “cars”, but would not include “Secretariat” or “Ford Shelby GT500”. 

o An image classifier is a computer program whose purpose is image classification 

o A basic image classifier is an image classifier that consists of the following steps: 

1. Dense low-level feature sampling, 

2. Construction of a representative codebook of features, 

3. Codebook matching via a bag-of-features approach, 

4. Spatial pyramid matching for organization, and 

5. Learning and classification via support vector machine. 

 A kernel is a function that maps two vectors to a scalar. It is used in a support vector 

machine to represent a distance measure between two vectors in an implicit higher-

dimensional space. In this higher-dimensional space, two groups of vectors may be easier 

to separate. 

o An additive kernel is a kernel K that can be broken down into a function k on each 

individual variable in the vectors, such that K is the sum of all of the k values. It is 

described in mathematical detail in Section 7.1. 
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 Object recognition is the task of determining whether an image does or does not contain a 

specific object based only on the visual information present. A specific object may be a 

“Coca-Cola can” but it could not be a “can”. 

 An octave is one doubling of scale. 

 PASCAL VOC Challenge – PASCAL Visual Object Classes Challenge. The PASCAL 

VOC Challenge is an annual image classification competition in which participants must 

classify or detect images among twenty different object categories. 

 The performance of a proposed method is the positive or negative affect on the average 

precision of the associated image classifier. 

 A pixel stride is the number of pixels between the center of adjacent samples in a dense 

sampling strategy. 

 The point of redundancy is the point at which decreasing the pixel stride of a classifier 

starts to provide diminishing returns. It represents the point at which adjacent samples 

become likely to represent the same visual structure. 

 Sampling redundancy is the amount of mutual information between two samples based 

on their overlap in the (x,y) space of the image. 

 Saturation is when a classifier’s performance remains approximately constant when the 

pixel stride is decreased. 

 Scale is the size at which an image is being inspected for gradients. At low scales, only a 

few pixels are inspected at the same time, and thus gradients are observed over a short 

distance. As higher scales are inspected, the image is blurred with a Gaussian filter so 

that gradients over a short distance disappear. Then, gradients are observed over a longer 

distance. 

 Semantic capacity – the ability of a basic classifier to represent context. 

 SIFT – Scale Invariant Feature Transform. 

 SIFT features are composed of a 4x4 grid of histograms of gradients. Each member of the 

grid is a bin that contains a histogram 

o SIFT8 features are SIFT-like features that consist of an 8x8 grid of histograms of 

gradients. 
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 SPM – Spatial Pyramid Matching. SPM is an extension to a bag-of-features approach. 

SPM divides the image into several spatial regions and finds a bag-of-features for each 

region. 

 SVM – Support Vector Machine. An SVM  

 Test data are a set of images provided to an image classifier without labeling. The 

classifier must use a model it has learned to predict the correct class labels. 

 Training data are a set of images provided to an image classifier along with the correct 

class labels. The image classifier can learn from this data. 

 Validation data are a set of images provided to an image classifier along with the correct 

labels. The image classifier can use this as practice test data if it needs to calibrate certain 

parameters (specifically, the C parameter in a support vector machine). For each 

parameter setting, a model is learned from the training data and checked against the 

validation data. The model that performs best on the validation data will ideally perform 

best on the test data as well. 

 A visual word is a feature that strongly correlates (positively or negatively) with an object 

class, regardless of context. 

 A visual letter is a feature that does not strongly correlate (positively or negatively) with 

an object class regardless of context. A visual letter may strongly correlate with an object 

class in a specific context. 
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2 Literature Review 

2.1 Features 

The first step in the process is to convert images from an array of pixels to a sampling of 

features, each of which contains far more information than a single pixel or an unorganized 

group of pixels. Many features exist in computer vision, but some have proven particularly 

useful. 

2.1.1 SIFT and Histogram of Gradients 

The SIFT feature [Lowe99] introduced the concept of a histogram-of-gradients (HoG), a 

concept that is used in some form by many low-level features. A histogram-of-gradients takes a 

small group of nearby pixels, and, rather than describing them by their individual values, 

describes them in terms of their relationship to each other. This moves the representation away 

from pixels and toward edges and corners, which have more information and are less likely to be 

explained by noise. 

Diagram of a SIFT feature, from [Lowe04]. Left: gradients are found at each pixel (small squares) and 

weighted based on which pixels fall within the circle. Right: gradients for each bin (large squares with dark 

green borders) are accumulated in a histogram. 

 

 The SIFT feature is partially or totally invariant with respect to many common image 

deformations, including position, scale, illumination, rotation, and affine transformation.  For 

Figure 2-1 
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this reason it has been applied in basically every area of computer vision. More relevantly, all 

state-of-the-art image classifiers use some form of a histogram-of-gradients feature, and many 

use no other features. 

The pyramid histogram of gradients (PHOG) feature uses the same basic components as 

SIFT, but has a structure with multiple scales. [Bosch07] The feature window is split into 

different number of bins, and the histograms of gradients are computed similarly to SIFT. Then, 

the histograms from all scales are concatenated into one feature. This representation has the 

capacity to show different edge and corner structures at different scales. 

The pyramid histogram of words (PHOW) feature has the same pyramid structure as a 

PHOG feature. However, instead of encoding each scale as one more histograms of gradients, 

SIFT features are computed at each scale and matched to a small codebook. The resulting bag-

of-features encodings are concatenated into one feature. So, the feature is a list of word counts: a 

microcosm of the representation used for the entire image. 

 The deformable parts approach begins with a HoG, but provides additional geometric 

considerations that allow a complex object to be made up of several smaller features ("parts"). 

Each part will have its own smaller characteristic histogram, and these histograms must be 

positioned in a particular geometric fashion. Because some error is tolerated, the model is not 

"rigid", thus allowing the overall shape to be slightly deformed. [Felzenszwalb08] 

2.1.2 Other Features 

While there are other low-level features besides HoGs used in image classification, these 

other features still have very similar goals, and some structural similarities. Each feature attempts 

to look at a group of pixels from a larger image and describe it with a small vector of values that 

is more informative. This vector should be robust with respect to one or more common image 

deformations. 

 Local binary patterns [Ojala94] are frequently regarded as complementary to HoGs, 

because they tend to encode texture rather than shape. [Wang09] Local binary patterns, or LBPs, 

are computed at the pixel level, by analyzing the gradients in eight directions (for the basic 

descriptor). Instead of combining the gradients of neighboring pixels as in SIFT, every pixel is 

placed in a distinct category based on whether it has a positive or negative gradient in each 

direction. Thus, for an eight-directional LBP, there are 2
8
=256 possible combinations of gradient 
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configurations. The image is described by a single vector of 256 values which represent the 

frequency of each configuration. This vector is more descriptive of texture than shape because 

the configurations are all calculated from extremely local data; pixels that are not adjacent do not 

influence each other. [Ojala94] 

 Attempts to extend SIFT to the color domain have enjoyed some success. Color can 

either be added to a SIFT or integrated into it. In [Weijer06], a color feature is proposed. Its 

descriptor is constructed by concatenating a photometrically and geometrically robust color 

descriptor with the SIFT descriptor. The feature achieves superior classification to a pure SIFT 

feature. In [Sande10], several 3-channel color models are analyzed. For each color model there is 

a corresponding feature. For each feature, the descriptor is constructed by computing the SIFT 

descriptor individually for each of the 3 color channels of its model, and concatenating the result. 

 The GIST feature is designed specifically for scene categorization. As such, it attempts to 

capture global characteristics of the image through low-dimensional features.  The low-

dimensional features exist in a low-dimensional representation called the spatial envelope. 

Attributes including naturalness, openness, roughness, expansion, and ruggedness contribute to 

the overall categorization of the scene. [Oliva01] 

2.2 Codebook Matching 

A good codebook satisfies two opposing criteria. On the one hand, a codebook will 

ideally consist of a small number of highly distinct features. On the other hand, a codebook must 

be large enough that a representative feature exists for any feature that might be found in a set of 

images. If two features are visually distinct, they should not match the same feature or features in 

the codebook. 

Many methods for codebook construction exist. Among state-of-the-art image classifiers, 

k-means clustering is the most common, according to the literature. [Moosmann07, Jurie05] This 

is confirmed by the survey of current methods presented in Section 2.7.1. 
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2.2.1 K-Means Clustering 

K-means clustering takes a large number of points in n-dimensional space and divides 

them into a smaller number of clusters, maximizing the distance between each cluster. The 

process is an iterative one, where at each step, points are assigned to whatever cluster to which 

they are closest (in terms of Euclidean distance to the centroid). But, because of those 

assignments, the clusters may now consist of different points, and thus the centroids change. The 

process can be repeated until the clusters stabilize or some cutoff threshold is reached. 

 

Figure 2-2 

 

Diagram of k-means clustering shown in four steps, from left to right. 1. k centroids are selected from the 

data points. 2. Each data point is assigned to the closest centroid. 3. New centroids are computed based on the 

data points that belong to each cluster. 4. Steps 2 and 3 are repeated to convergence, or some other 

termination criterion. Images from [Pace07]. 

 

Currently, most visual codebooks in state-of-the-art image classifiers are built using some 

form of k-means clustering. [Moosmann07, Jurie05] It is not clear whether any alternative 

methods are in use; mention of alternative strategies is absent in the literature. 

2.2.2 Alternative Codebook Generation Algorithms 

Other algorithms do exist to build an effective codebook from a set of training features. 

[Moosmann07, Nister06, Jurie05, Wu11] 

In [Moosmann07], a set of hierarchical codebooks called clustering trees encode the 

training features. Each clustering tree assigns an independent classification to each training 

feature through a hierarchical matching algorithm. Each tree produces a histogram for the image, 

and all histograms are concatenated into one vector that describes the image. 
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A hierarchical codebook scheme is also presented in [Nister06]. Codebooks with as many 

as 10
6
 features are used efficiently, as hierarchical matching can be done in time that is 

logarithmic with respect to the codebook. 

In [Jurie05], codebooks are constructed one element at a time. To add a new element, a 

mean shift estimator finds the maximal density region of a random sampling of training features. 

However, once a codebook element is added, features that are similar to it in the training set are 

removed. This produces a codebook that encompasses a wider variety of the feature space rather 

than over-representing regions that appear more frequently in the set of training features. 

Recent work [Wu11] proposes the use of the histogram-intersection kernel in lieu of 

Euclidean distance to construct codebooks. Improvements over k-means codebooks are observed 

on some benchmark object recognition data sets. 

2.2.3 Universal Codebooks 

While codebooks are almost always constructed from scratch for a particular 

classification task, some research suggests that a universal codebook could be comparably 

effective on any set of natural images. In [Hou11], codebooks were computed on multiple image 

datasets, and then every codebook was tested on every dataset. This suggests that a codebook 

does not need to be constructed specifically for a given classification task.  

 Other recent work, however, argues that codebooks specifically tailored to each object 

category are more discriminative. [Yang08] 

2.3 Bags of Keypoints 

Object categorization seems to require some sort of geometric knowledge, but attempts 

that largely ignore geometry have been successful. Bag-of-keypoints or bag-of-features 

approaches look at a large number of features at various points and scales in the image, but do 

not attempt to rigorously organize them spatially. Instead, the features are mapped to one or 

more words in a codebook, and the feature counts are summed. [Csurka04] This approach exists 

in some form in most state-of-the-art classifiers (a survey of successful approaches can be found 

in Section 2.7.1). 
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2.4 Spatial Pyramid Matching 

Bag-of-features approaches eliminate all of the spatial information accompanying the 

features. Spatial Pyramid Matching (SPM) is a simple addition to a bag-of-features approach that 

restores some of that spatial information. [Lazebnik06] When a spatial pyramid is used in 

conjunction with a bag-of-features approach, there are several vectors constructed instead of one. 

Each vector is a bag-of-features for one region of the image. Which regions of the image are 

used is determined a priori by the spatial pyramid. Once all vectors are computed, they are 

concatenated into one larger vector, one that implicitly contains coarse spatial information. 

 

 

Diagram of SPM, from [Lazebnik06]. Left: At the first level of the pyramid, all features are organized into 

one histogram. Center, Right: At subsequent levels, multiple histograms are built corresponding to each 

region of the image. The concatenation of these histograms describes the whole image. 

2.5 Support Vector Machines 

Support vector machines are a machine learning tool capable of taking arbitrary vectors 

of data and separating these vectors into two (or more) classes. [Cortes95] The algorithm uses a 

kernel function that takes two vectors as input and produces one number as output. 

Figure 2-3 
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Mathematically, this value represents the distance between the vectors in some higher-

dimensional space. Conceptually, this value represents how “similar” these two vectors are. 

Restrict the discussion to the two-class example. The support vector machine is given a 

set of training data consisting of positive and negative examples. The support vector machine 

uses the kernel function to find the distance between each example, and in doing so learns a 

separating hyperplane. The hyperplane is a high-dimensional boundary that defines the 

difference between the positive and the negative class. Then, the class of any new vector can be 

predicted by computing which side of the hyperplane it falls on. 

 

Diagram of SVM. Left: In the original problem space, the data points are not linearly separable. Right: When 

transformed into the kernel space, the data points are linearly separable. Both: a red line corresponds to the 

hyperplane maximally separating the two classes. Points that fall on the nearby dotted lines are support 

vectors, the closest data points to the hyperplane that determine where the optimal hyperplane lies. 

 

 The performance of a support vector machine is largely dependent on the kernel chosen. 

Unfortunately, there are few explicit limitations on what a kernel function can be. The kernel 

should be appropriate given the underlying structure of the input data. It should be informative, 

but also efficient to compute between many pairs of large vectors. The    kernel is a popular 

Figure 2-4 
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choice for a bag-of-features visual classifier, as are the basic linear kernel and histogram 

intersection kernel. [Zhang06]  

 All of these kernels are additive kernels. [Maji12] demonstrates efficient algorithms to 

exactly compute additive kernels. These algorithms provide the same results but are much faster 

than the naïve implementation of an additive kernel.  

2.6 Affine-Invariant Object Recognition 

HoG features are partially invariant with respect to affine deformations, but other 

attempts exist that specifically address this common image transformation. In [Mikolajczyk04], a 

feature is described by the values of the second moment matrix. This feature is invariant to affine 

deformation. Alternately, in [Morel09], affine transformations are simulated on the image, and 

SIFT features are computed for every transformed image. 

2.7 PASCAL Challenge 

The PASCAL Visual Object Classes Challenge (PASCAL VOC Challenge) is an annual 

image classification competition in which participants must classify or detect images among 

twenty different object categories. The image sets used in the challenge are particularly difficult, 

showing objects in different poses, scales, backgrounds, lighting conditions, and occlusions. Any 

successful classifier must be robust with respect to all of these image deformations. Appendix A 

displays examples images from all twenty object categories, showing both typical examples, as 

well as difficult examples containing extreme deformations. 

 There are two primary competitions each year, a classification competition and a 

detection competition. In the classification competition, an image must simply be classified 

based on the object(s) found. The object does not need to be localized in the image. In the 

detection competition, objects must be detected and localized in each particular image. 

[Everingham12] 

While this paper's analysis focuses on the classification problem, advances in both 

competitions are worth analyzing. Most of the principles that apply to the detection competition 

hold for the classification competition. 
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2.7.1 Recent PASCAL VOC Challenge Winners 

The winners of the classification portion of the VOC Challenge in 2009 (VOC2009) used 

basic SIFT features and a linear SVM, but employed advanced coding schemes in the codebook 

matching phase. [Everingham12] 

 There were two joint winners of the detection portion of VOC2009. One team's approach 

was unique at the SVM stage. They employed a series of SVMs with different kernels, including 

a linear,   , and RBF kernel. [Vedaldi09] The other winning team's approach emphasized the 

deformable parts model. [Felzenszwalb08] 

 Both the VOC2010 classification winners and detection winners looked at the co-

occurrence of different object classes in the challenge. Thus, the classifier and detector were able 

to adjust predictions based on contextual relationships between different objects. 

[Everingham12] 

 One of the top performers in the VOC2011 classification portion considered the "most 

telling window" of each image when classifying it. In some sense, they applied detection 

principles to the classification challenge to improve results. [Everingham12] 

 The VOC2011 detection winners made further enhancements to the deformable parts 

approach, using features with reduced dimensionality due to principle components analysis. 

These features were faster, allowing the algorithm to use more than one model per object and 

capture different poses accurately. [Everingham12] 
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Table 2-1 

Approaches HoG features? 
Other 

features? 
Codebook 

construction 
Codebook 

Size 
Sampling 
strategy 

UvA-U. Trento 
2011 

SIFT with Color no k-means 4096 Pixel-wise 

NUS-Panasonic 
2010 

SIFT, PHOG 
LBP, GIST, 

color? 
? ? 

Full-dense, 
interest point, 
super-pixel 

NLPR 2010 Deformable parts LBP ? ? 
Full-dense (5 
scales, 4 pixel 

stride) 

NEC 2009 SIFT no n/a n/a 
Full-dense (3 
scales, 4 pixel 

stride) 

Oxford-Microsoft 
India 2009 

PHOG, PHOW 
visual words, 

SSIM 
? ? ? 

UoCTTI 2009 Deformable parts no n/a n/a Sliding window 

UvA-Surrey 2008 
SIFT with Color 

(multiple variants) 
no k-means 4000 

Full-dense 
(multi-scale, 6 
pixel stride) 

INRIA LEAR 2008 
SIFT, overlapping 

HoG 
no k-means 100 

1 scale, 6 pixel 
stride 

 

Approaches SPM? SVM Special 

UvA-U. Trento 
2011 

yes 
histogram 

intersection 
Most telling window 

NUS-Panasonic 
2010 

yes   , rbf Context learning on exclusive label sets 

NLPR 2010 ? linear 
Saliency coding, context learning on class co-

occurrence 

NEC 2009 yes linear Non-linear coding schemes  used to encode features 

Oxford-Microsoft 
India 2009 

? linear,   , rbf Multiple SVMs used iteratively (different kernels) 

UoCTTI 2009 no latent SVM Deformable parts 

UvA-Surrey 2008 yes    Kernel discriminant analysis 

INRIA LEAR 2008 yes linear,    Two-stage (hypothesis, verification) 

 

Table of recent successful approaches in the PASCAL VOC Challenge. 

 

  Table 2-1 organizes recent successful approaches in the PASCAL VOC Challenge. All 

winners or co-winners of the classification and detection competitions since 2008 are 

represented. For groups who have won multiple years, only the most recent year with available 

data are considered. 

 The table shows that all approaches use some form of a histogram-of-gradients feature to 

describe images. Five use no other features. A full-dense sampling strategy is used in at least six 
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approaches. An SPM is used in at least five approaches. Four approaches incorporate a linear 

kernel and four incorporate a    kernel. 

 

2.8 Parameter Optimization 

Some existing work does outline the effect that some parameters have on a standard 

dense sampling classification algorithm. [Nowak06, Zhang06, Varma07, Chatfield11] Most 

recently, [Chatfield11] explored the effect of different encoding schemes on classification 

performance. This paper also considered different parameters setups, varying the sampling rate, 

codebook size, and SVM kernel of their implementation.   
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3 Research Questions 

The goals of this paper are two-fold. First, this paper will provide a blueprint to optimize 

the parameters used in a basic classifier. Second, this paper will reveal the specific limitations of 

a basic classifier and in doing so provide insight into lines of future research. 

Specifically, all work will pertain to a basic classifier, as defined by what is common 

among all state-of-the-art approaches. Given these requirements, the approach is restricted to the 

following: 

1. Dense SIFT sampling, 

2. Construction of a representative codebook of features, 

3. Codebook matching via a bag-of-features approach with hard assignment, 

4. Standard SPM for spatial information, and 

5. Learning and classification via SVM with a hard-margin linear kernel. 

 

Within this framework, many logical research questions align themselves with this goal. 

Specifically, this paper will consider the following: 

 "Is k-means clustering useful when constructing a visual codebook?" 

 "What is the relationship between codebook size and classification performance?" 

 "What is the relationship between the number and scale of low-level features sampled 

and classification performance?" 

 "What is the relationship between the complexity of a SIFT-like feature and classification 

performance?”  
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4 Methodology 

Our approach first consists of constructing a robust basic image classification program. 

The program must be able to modify all of the parameters that are to be optimized. The program 

will need to be able to modify the following: 

1. The codebook construction scheme and codebook size, 

2. The sampling behavior for the SIFT features, 

3. The complexity of the SIFT feature. 

 Once constructed, the classifier runs under various parameter configurations in order to 

explore optimal configurations. 

4.1 Building a Basic Classifier 

A basic classifier must contain all of the following components: 

1. Dense SIFT sampling, 

2. Construction of a representative codebook of features, 

3. Codebook matching via a bag-of-features approach with hard assignment, 

4. Standard SPM for spatial information, and 

5. Learning and classification via SVM with a hard-margin linear kernel. 

 

 Classifiers in the PASCAL VOC Challenge are not required to run in real time, and in 

fact are given several weeks to calculate results. While this paper will not attempt to consider 

real-time constraints, the classifier must be efficient enough that numerous tests with various 

parameters can be performed. Certain stages in the classification process will require 

optimization. Toward this end, some of the steps are implemented to run on a GPU. A GPU can 

compute much faster than a similar-cost array of CPUs, if the program can be written to 

accommodate the GPU's massive parallelization. 

4.1.1 Dense SIFT Sampling 

Many open-source programs exist to extract SIFT data from an image. Provided that the 

software is capable of extracting an arbitrary number of SIFT points from arbitrary locations and 

scales, it is straightforward to build a classifier that can employ any sampling strategy. 

Specifically, the classifier in this paper makes use of SiftGPU [Wu07]. 
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4.1.2 Codebook Construction 

Constructing a codebook generally consists of gathering a set of image features and 

performing k-means clustering on them to generate a smaller set of codebook features. Because 

k-means clustering can be time-consuming and is parallelizable, a GPU implementation is useful. 

The classifier in this paper contains an original k-means clustering implementation that runs on 

the GPU. The GPU implementation has been verified against a much simpler CPU 

implementation. 

The classifier also provides two additional codebook generation strategies. The first 

strategy builds a codebook of size K by selecting K features at random from the training set. The 

second strategy is referred to as “representative k-means”. This strategy performs k-means 

clustering, resulting in a set of K centroids. However, instead of using those centroids for the 

codebook, the strategy finds the closest feature in the training set to each centroid, and uses that 

feature instead of the centroid in the codebook. 

4.1.3 Codebook Matching 

Matching image features to one or more codebook features is a straightforward problem 

that requires only some sort of distance measure. The classifier uses simple Euclidean distance as 

its distance measure for all configurations. 

 This step has the potential to be the most time-consuming step in the process. The 

classifier must compare every feature in the training and test data against every feature of the 

codebook. Thus, a parallelized implementation on the GPU is imperative. At the time of 

development there was no readily available GPU implementation of codebook matching. Thus, 

the classifier contains an original codebook matching algorithm that runs on the GPU.  

4.1.4 Spatial Pyramid Matching 

SPM is easily incorporated into the codebook matching phase. Unless otherwise noted, 

all tests use the standard spatial pyramid, which consists of 8 regions (full image, 2x2 quadrants, 

and 3x1 vertical thirds). 
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4.1.5 Support Vector Machine 

The final step requires an SVM  to learn a model that can classify every image vector into 

different categories. The classifier uses SVM
light

 [Joachims99], with some modifications to read 

in binary instead of text. 

For all tests, unless otherwise specified, a hard-margin (C=100000) linear kernel is used. 

The linear kernel was chosen because there is not a consensus among state-of-the-art classifier as 

to which kernel is best (and may, of course, be implementation-specific). The hard-margin 

setting for the regularization parameter C was chosen because in testing it was found to be 

roughly equivalent to an optimized C. 

If C is small, the support vector machine will produce a simpler model at the cost of 

incorrectly classifying some training examples. If the model is significantly simpler, it may 

generalize better to the test data. However, producing a simpler model is not useful for the tests 

presented in this paper. This is because the number of training vectors m passed in to the support 

vector machine is smaller than the length of the vectors n (      , and for most of the tests in 

this paper,          ). As such, a simple model (comparative to the dimensionality of the 

kernel space) can be found even while requiring that model to have 100% accuracy on the 

training data. 

When comparing against benchmarks in the literature, it is appropriate to use the    

kernel. However, since this kernel is slower to compute, a pre-computed kernel matrix is 

desirable to limit the redundancy of repeated runs of the SVM. Because SVM
light

 does not 

provide an option to use a pre-computed kernel matrix, the classifier uses LIBSVM [Chang11] for 

the tests involving the    kernel. 
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4.1.6 Approximate running times 

Table 4-1 gives an estimate of approximate running times for a basic configuration 

(approximately 10000 samples per image, standard SIFT features, codebook of 4000 elements, 

standard spatial pyramid, hard-margin linear kernel). The GPU used in the implementation is a 

Geforce GTX 590. The CPU used in the implementation is an AMD Phenom II X4 (3.4 GHz). 

 

Table 4-1 

Step Primary Processor Approximate Running Time 

1. Dense SIFT sampling GPU 10 minutes 

2. Codebook Construction   

2a. K-means Codebook GPU 45 minutes 

2b. Random Codebook CPU <1 second, can be done in step 1 

2c. Representative K-means GPU 1 hour 

3. Codebook Matching with SPM GPU 4 hours 

4. SVM Learning/Classification CPU varies, usually 1-4 hours 

 

4.2 Configuration 

A configuration of features has two relevant measurements. The first is the running time 

of the program, and the second is the mean average precision of the resulting classifier. Of the 

four phases (feature sampling, codebook generation, codebook matching with SPM, SVM 

classification), the codebook matching with SPM tends to be the most time-consuming, and is 

thus the most relevant when evaluating the running time. 

 In a dense feature sampling, every variable has roughly the same impact on the running 

time of this step. Also, in this step, the control flow is quite regular, and thus the running time is 

approximately given by 

 

T = K * S * D * C * F 

 



24 

 

 where T is the running time, K is an implementation-specific constant, S is the number of 

scales sampled, D is the number of samples per scale (density), C is the codebook size, and F is 

the complexity (vector length) of the SIFT feature used. 

 As this is the limiting step, this is the step most in need of optimizing. The majority of the 

paper will focus on optimizing this step. 

4.3 Testing 

Unless noted otherwise, all of the tests use the training data provided for use in 

VOC2011, the most recent PASCAL VOC Challenge. To limit the number of images to train and 

test, all test use the training set for training and the validation set for testing. These sets are each 

comprised of approximately 5000 images across 20 object categories. There is no need for a 

validation step, because no a posteriori optimizations need to be made (in particular, the 

regularization parameter C of the SVM is fixed, for reasons discussed in Section 4.1.5). 

 All test runs generate a complete set of results as per the VOC classification competition. 

Thus, the test set is classified according to all 20 object categories, and an average precision is 

found. The evaluation metric is the mean average precision across all 20 object categories. 

4.3.1 Codebooks 

First, this paper will explore various parameters for building codebooks. 

4.3.1.1 K-Means Clustering 

The first question to evaluate is whether or not k-means clustering is actually useful when 

constructing a codebook. Despite its popularity, there is no evidence in the literature establishing 

the value of the approach for constructing visual codebooks. It is thus reasonable to be skeptical 

of its usefulness. 

 The de facto argument in favor of k-means clustering is "Why not?" The algorithm can be 

constructed in a way that is not prohibitively time-consuming. Furthermore, building the 

codebook is a separate step from any other in the process. The size of the final codebook is the 

only parameter that actually influences how long it takes to perform k-means. 

 The conceptual advantage of k-means is that it "spreads out" the features in the codebook. 

Consider a codebook with a pair of features that are nearly identical. Including both of these 

features would not be discriminative and thus not useful. It may even be detrimental. K-means 
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prevents such pairs of features from appearing in the codebook. This is because clusters that are 

close together have a tendency to change over many iterations of the algorithm. 

 On the other hand, the k-means algorithm was not specifically designed with visual 

codebooks in mind. The algorithm can be used with any set of vectors, not just vectors that 

correspond to visual features. Furthermore, the resulting codebook after k-means clustering 

contains vectors that do not directly correspond to any of the original visual features. They are 

instead an "average" of many features. It may be possible that an exact feature vector found in a 

real image is a better codebook candidate than an "average" vector that never appeared in its 

exact form in the training data. 

The strategy for representative k-means builds the centroids for the codebook, but then 

finds the closest feature in the training set to each centroid, and uses that feature instead of the 

centroid in the codebook. Such a strategy may have an advantage from clustering as well as an 

advantage from consisting of actual features. 

 Section 5.1 compares the performance of both kinds of codebooks built from the k-means 

clustering algorithm against a baseline codebook of randomly selected training features. 

4.3.1.2 Codebook Size 

The second element pertaining to codebooks is the relationship between codebook size 

and classification performance. A larger codebook has the potential to give more accurate 

classification results, but a larger codebook takes longer to match. Defining a mathematical 

relationship between codebook size and classification performance would make it feasible to find 

the correct codebook size for a given time constraint. 

However, the ideal codebook size could vary based on other parameter settings. For 

example, as more samples are taken from each image, it may be plausible that a larger codebook 

can be useful to make finer distinctions between features. While it is not feasible to test every 

possible configuration of parameters, Section 5.4 explores the relationship of codebook size to 

the sampling rate. 

4.3.2 Dense SIFT Sampling 

Next, this paper will consider the various sampling approaches for finding SIFT features 

in an image. The task is simplified slightly because the classifier will not attempt to localize the 
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salient regions of the image. Instead, all of the samples will be equally dense across the image.  

However, even with this constraint, there are a number of choices available. 

4.3.2.1 Full-dense Sampling Versus Semidense Sampling 

The first question is whether the classifier should collect the same number of samples 

from every scale, or collect fewer samples from larger scales.  For example, consider a sampling 

strategy that collects features at the lowest scale s=1.0 (16x16 pixels). The strategy collects these 

samples at a 4 pixel stride, that is, 4 pixels between samples. For s=2.0 (32x32 pixels), should 

the strategy also collect samples at a 4 pixel stride, or at some larger interval to account for the 

fact that the samples are themselves larger? 
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Figure 4-1 

Diagram of overlapping sample windows at two sizes. The pixel offset between the red window and the blue 

window is the same in both images. Because the windows in the bottom image are larger, they have greater 

overlap. 

 

Figure 4-1 illustrates the ambiguity. In both examples, the two sample windows are offset 

by the same number pixels, horizontally and vertically. There is proportionally more shared area 

between the second pair of samples. Is there more redundancy between the second pair of 

samples? This is an open question that must be clarified in testing. 

Current multi-scale sampling strategies employ a strategy that uses the same pixel stride 

for every scale. Such a strategy would be sub-optimal if: 

1. There is less information available at higher scales. This would imply that higher scales 

should not be weighted equally. 
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2. Higher scale features are more redundant at the same pixel stride, due to sharing a greater 

overlap in terms of the proportional area that each covers. This would imply that fewer 

samples are necessary at higher scales. 

 

An alternative strategy to the current strategy of taking an equal pixel stride at every scale 

would be to take a pixel stride proportional to the width of the samples at that scale. So, if the 

alternative strategy uses a 4 pixel stride for s=1.0 (16x16), then it would use a pixel stride of 8 

for s=2.0 (32x32). As defined in Section 1.2 this alternative strategy will be called “semidense”, 

in contrast to the current “full-dense” strategy. 

 This semidense sampling strategy has the potential to be more efficient, allowing the 

classifier to look at more scales with minimal increase in time cost. But, each successive scale 

will have less impact on the resulting bag-of-features vector, so this does not guarantee that it 

will be more effective. Section 5.2 compares the two strategies with multiple scale choices. 

4.3.2.2 Number of Scales 

In practice, a small number of scales are used in a dense feature sampling. But a robust 

image classifier needs to be able to recognize objects at a wide variety of scales. The PASCAL 

VOC Challenge data sets contain examples of objects at many different scales, so it would seem 

that sampling as many scales as possible is desirable. 

There are actually two dimensions involved when determining the scales. The first is the 

total number of scales sampled, and the second is the spacing factor between. But, it is more 

convenient for the implementation to vary the number of octaves sampled, and the number of 

scales per octave. The number of octaves is the number of doublings in scale, and the scales per 

octave determine the step size in scale between doublings. Thus, a 2 octave x 2 scales per octave 

sampling would sample at scales   *  √     √ +. 

Section 5.2 explores various settings of octaves and scales per octave, and evaluates them 

with respect to both semidense and full-dense sampling. 

4.3.2.3 Sample Rate per Scale 

Next, this paper will consider the problem of how many features to sample at each scale, 

which the classifier controls by varying the pixel stride (pixels between each sample). If the pixel 

stride is equal to the pixel width of the feature window, then there will be no overlapping pixels 
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between samples at the same scale. However, smaller pixel strides are possible and in fact are 

common among state-of-the-art approaches. Pixel strides of 4 or less are reported in the 

literature. But, even for features at the lowest scales, this results in significant overlap between 

samples. So there is some redundancy present, and diminishing returns for higher sample rates 

are inevitable. 

Section 5.4 explores various settings of the sample rate along with the codebook. The 

relationship between this pair of parameters and the classification quality can be determined. 

4.3.3 SIFT Feature Complexity 

The original SIFT implementation uses a feature consisting of a 4x4 grid of histograms. 

However, this implementation was optimized with respect to finding image correspondences 

between two pictures of the same particular real-world object. An image classifier must find 

much a more general relationship between different versions of the same object. It must 

recognize the similarity between different dogs, and between different cars, and between 

different people. In the PASCAL VOC Challenge, classifiers also have access to numerous 

training images. Classifiers traditionally employ dense feature samplings while the original SIFT 

implementation attempts to find only salient sample points. 

With these considerations in mind, it is possible that different SIFT grid sizes, such as 

8x8, are better suited to the domain of image classification. This paper will evaluate the 

performance of these SIFT8 (8x8) features while varying other parameters such as codebook size 

and sample rate. Section 5.5 compares the performance of SIFT8 features against standard 4x4 

SIFT features, keeping in mind the difference in processing time for the larger features. 

4.3.4 Additional Tests 

During testing, a number of additional tests became necessary to clarify the results of the 

original tests. 

4.3.4.1 Individual Scale Information 

To clarify the behavior observed in the testing of the full-dense sampling strategy versus 

the semidense sampling strategy, the behavior at individual scales must be observed. Section 5.3 

explores various samplings of exactly one scale. The single scale chosen is varied, as well as the 

sampling rate. 
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4.3.4.2 Validity of Results 

Due to implementation differences, the results cannot be directly compared against a 

baseline. However, to provide evidence of the correctness of this paper’s implementation, its 

performance can be evaluated against a similar implementation in the literature. One of the 

configurations presented in [Chatfield11] is already similar in some ways to the basic image 

classifier. 

 To increase the similarity of the comparison, the following modifications are required for 

this test: 

1. Testing is performed on the PASCAL VOC2007 data set, the most common set used in 

benchmarks in the literature. 

2. Sample features are taken from the full-sized original image, rather than from an image 

that is scaled down initially. 

3. The SVM uses a    kernel instead of a linear kernel, optimizing the regularization 

parameter with the standard training/validation sets provided in the VOC2007 data set. 

4. The scoring for each object class is performed according to interpolated average precision 

(as specified in the VOC2007 competition protocol), rather than mean average precision. 

 

With these modifications, the implementation is similar, though not identical, to one of 

the classifiers presented in [Chatfield11], labeled as configuration (n) on the table in pages 7-8. 

The results of both implementations should be similar. The results of both implementations are 

compared in Section 5.6. 
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5 Results 

5.1 Codebooks 

Figure 5-1 

 

Fixed parameter settings: Semidense sampling, 2 octaves x 2 scales per octave, 4 pixel stride at scale=1. 

 

The results of Figure 5-1 confirm that a codebook built from k-means centroids is not 

superior to a codebook built from random features in the training set. The results also 

demonstrate that a codebook built from the most representative training feature of k-means 

clusters is not superior to a codebook built from random features. 

The results demonstrate the fact that a codebook consisting of actual features from the 

training set has an intrinsic advantage over one that does not, if codebooks are otherwise similar. 

Consider a feature A from a training image, to be matched in the encoding phase. If the codebook 

contains A itself, then there is a perfect match present. A maps to A. For any hard coding scheme, 

with a codebook of any size, this is the only time that a feature gets encoded without losing any 

information. 
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So, for any feature in the codebook that was sampled from a training image, there is at 

least one example in the training data that is a 100% "correct" match. This particular cat's eye 

(feature A) in the training image is exactly like the cat's eye in the codebook. Also, a cat's eye in 

a different image (feature B) that is very similar to the original may be very likely to match 

feature A in the codebook. But, if the codebook has no feature A, and instead consists of k-means 

centroids, then features A and B only match if both features map to the same centroid. This is less 

likely to occur, because now there are two mappings that have to occur correctly, when before 

there was effectively one. 

This advantage alone is sufficient to account for the difference between the performance 

of k-means codebooks and codebooks without k-means. As testing confirms, choosing a feature 

that actually exists in the training set (representative k-means) consistently provides a (small) 

improvement over k-means. 

The next factor that has to be considered is the inherent crudeness of encoding millions of 

image features in terms of a comparatively small codebook. No matter how intelligent a strategy 

for codebook selection is, it will produce a few thousand representatives that must adequately 

encode a feature space that represents about 2
500

 possible features (for a 128-dimensional SIFT 

feature). Not all possible values of a SIFT feature correspond to something that would be 

common or even existent in real image data, but the intrinsic limitations of the approach are 

clear. Even some theoretically optimal codebook would be limited in what it can discern between 

if the codebook is not large enough. 

There do exist encoding schemes to hard coding that provide superior results. Such 

encoding schemes can extend the limits of what a certain-sized codebook can achieve. But, even 

for many of these schemes, increasing codebooks to very large sizes continues to improve 

classification, albeit with diminishing returns. [Chatfield11] Current technology has not yet 

reached a point where one can build a visual codebook that is in any way exhaustive. 

Continuing on the idea of larger codebooks: the usefulness of any clustering or selection 

strategy deteriorates when a larger fraction of the training features may be selected for the 

codebook. As an example, if there are 1 million training features, from which 999,999 may be 

selected to build a codebook, then no strategy can be significantly superior to random selection. 

No strategy can generate a codebook with more than one differing feature to any other. Given 

this behavior, at some threshold, random sampling becomes equivalent to any other strategy. 
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Another limiting factor for visual codebooks in a basic image classifier is that they can 

only represent an image as some linear combination of the features in the codebook. There is no 

additional meaning ascribed to particular pairings or groups of features. Attempting to do so 

requires analysis of many variables: if there are n codebook features, there are O(n
2
) pairs of 

codebook features. Attempting to assign a variable to each pair or group of features becomes 

intractable quickly. State-of-the-art approaches do not consider combinations of features in this 

manner. 

But ignoring these relationships, the context of the features, pushes that contextual 

responsibility down to the feature level. It requires, at minimum, that a single feature must have 

some appreciable amount of information by itself, free of any sort of context 

This requirement, that a single visual word have meaning, is consistent with the 

traditional definition of "word": a semantic unit. In other domains it is clear to see that a "word" 

possesses information on its own. Consider document classification: if the word "endocarditis" 

appears in a document, there is appreciable evidence that it is a medical document. The single 

word has meaning in and of itself. Can the same be said of a SIFT (or SIFT-like) feature? 

The fact that bag-of-features approaches work at all for image classification suggests that 

there is some information present even in a single SIFT feature. But is there enough information 

to constitute a whole "word"? The original viability of SIFT was demonstrated by finding 

correspondences between images. A combination of multiple SIFT matches with geometric 

agreement implied that the same object existed in two images. But that geometric agreement 

implies a relationship between those features. Any one feature match by itself means little; 

multiple features grouped in a certain way mean something. In the original algorithm, SIFT 

features are treated more like visual "letters" than visual "words". This shortcoming will be 

explored in greater detail in Section 5.5.2, as well as in Chapter 7. 

Research into effective codebooks is limited by the discriminative quality of the visual 

words they encode. As mentioned in Section 2.2.2 there is work in the area of constructing better 

codebooks with more sophisticated encodings. However, the work has seen little representation 

in the PASCAL challenge. Many of these more sophisticated codebook structures could be more 

discriminative if the features they encoded were themselves more discriminative. Evidence of 

this is beyond the scope of this paper, but a basic adjustment to SIFT features that provides 

greater complexity and discriminative power is presented in Section 5.5.  
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5.2 Full-dense Versus Semidense SIFT Sampling 

Figure 5-2 

 

Fixed parameter settings: 4 pixel stride at scale=1, random codebook, codebook size=4000. 

 

 

Table 5-1 

O x S RS RD RS / RD 

1 x 1 1.00 1.00 1.00 

1 x 2 1.50 2.00 0.75 

1 x 3 2.03 3.00 0.68 

2 x 1 1.25 2.00 0.63 

2 x 2 1.88 4.00 0.47 

2 x 3 2.53 6.00 0.42 

3 x 1 1.31 3.00 0.44 

3 x 2 1.97 6.00 0.33 

3 x 3 2.66 9.00 0.30 

 

(O x S): Octaves x Scales per octave; (RS): total samples taken divided by samples taken at scale=1, semidense 

strategy; (RD): same as RS, but for full-dense strategy 

 

Figure 5-2 demonstrates the superiority of semidense sampling to full-dense sampling. 

The performance is comparable at all levels before eventually becoming superior, and fewer 

samples are taken at all levels (except for 1 octave x 1 scale, where the methods are equivalent). 
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At one octave, there is little difference in performance between the full-dense and 

semidense strategies. This is can be attributed primarily to the fact that the methods are not very 

different when only small scales are used. At 1 octave x 1 scale the methods are equivalent. At 1 

octave x 2 scales, the methods get an equal sampling for the first scale, and the full-dense 

sampling takes twice as many features for the second scale. Adding a third scale per octave has 

minimal positive impact for either method. When more octaves are used, adding a third scale per 

octave is detrimental for both strategies in some tests. 

For two octaves, the performance between the two strategies is similar. But, the 

semidense sampling strategy takes far fewer samples at the second scale, resulting in far fewer 

samples overall (less than half if two or three scales per octave are used; see Table 5-1). 

When a third octave is introduced, the semidense strategy improves, but it is marginal. 

This is due to the fact that the first scale of the third octave has only 1/16 as many samples as the 

first scale of the first octave, and thus little influence on the resulting feature counts. However, 

the full-dense strategy experiences a sharp decline in performance as scales at the third octave 

are introduced. The problem is the lack of information present in the scales of this third octave, 

proportional to the number of features sampled. 

The scales of the third octave contain some useful information. Given that the objects of 

interest can occupy a wide range of scales in our images, there are many useful features to be 

found even at large scales. But it is also unlikely that any two different scales possess an equal 

amount of information. 

Consider the two most extreme scales. At the small end, a scale with features of one pixel 

in width could be considered to consist almost entirely of noise. The basic motivating 

assumption behind research into visual features is that one pixel does not have significant 

information on its own. If it did, then a simple bitmap of pixel values would be a strong feature. 

At the other end of the spectrum, an arbitrarily large scale would correspond to an image that is 

Gaussian-blurred entirely into homogeneity, consisting of one color. 

So all useful scales lie in between the two ends of this spectrum, but they may not be of 

equal usefulness. This presents a problem, because sampling additional scales can actually make 

an algorithm not only less efficient, but also less accurate. This behavior is responsible for the 

decline of the full-dense strategy in the third octave in Figure 5-2. The reason for the decreased 

performance is that every feature is treated as equal when mapping to the codebook. The highest 
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scales have some useful information, although not as much as the lower scales. But, since the 

encoding scheme does not account for the redundancy between features, each scale has an equal 

number of samples. Thus, each scale has an equal proportional influence on the final 

classification. Taking too many samples of the scales with less information dilutes the effect of 

the scales with more information. 

At this point, however, it is not clear exactly how much information is present at each 

scale. The proportional quality of different scales can be discovered by testing samples of a 

single scale at a time and observing the performance. If each test samples one scale to saturation, 

then each test provides an indicator of how much information is actually present at each scale. 

The data will indicate a trend, where information may decrease at increasing scales. The next 

section will explore this.  
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5.3 Individual Scale Information 

Figure 5-3 

 

Fixed parameter settings: Semidense sampling, random codebook, codebook size=4000. 

 

 

Figure 5-4 

 

Fixed parameter settings: Semidense sampling, random codebook, codebook size=4000. 
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 Figure 5-3 and Figure 5-4 explain the behavior of individual scales. Figure 5-3 compares 

individual scales, varying the sampling rate independently of the scale chosen. Figure 5-4 

compares individual scales, varying the sampling rate proportionally to the scale chosen. 

The data confirm that there is in fact greater redundancy at increasing scales, given the 

same sampling rate. At first each scale displays improved precision at approximately a linear rate 

with respect to the logarithm of the samples taken (each successive test represents four times as 

many samples). Eventually, each scale except s=1 reaches a point each successive scale provides 

diminishing returns. The location and meaning of this point is clarified in Chapter 6. 

Some of the higher scales give inferior performance, even when sampled to saturation. 

This means there is less information present at those scales, at least when sampled by SIFT 

features. 

Both of the implicit assumptions of full-dense sampling as stated in Section 4.3.2.1 are 

refuted by the data here. First, the data show that if the pixel stride is held constant, there is 

greater redundancy at higher scales. Thus, it is neither necessary nor useful to take as many 

samples at higher scales. Second, the data show that even when sampled to saturation, the higher 

scales provide inferior classification performance. Thus, higher scales should not contribute 

equally to the final feature counts. 

Appendix B show examples images from different classes at s=1 and s=4. These images 

illustrate some of the differences in what types of features are found at higher and lower scales. 
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5.4 SIFT Sampling Density 

Figure 5-5 

 

Fixed parameter settings: Semidense sampling, 2 octaves x 2 scales per octave, random codebook. (pps) = 

pixels per sample = pixel stride. 

 

Figure 5-5 shows that larger codebooks and denser sampling rates both can increase the 

performance of a classifier, albeit with diminishing returns. The data suggests that there is a hard 

ceiling near the 2 pixel stride, and this trend is corroborated by the data in [Chatfield11]. The 

meaning of this ceiling will be clarified in Chapter 6. The sampling rates documented in recent 

approaches approach or exceed this sampling rate. Even if minor performance gains could be 

tolerated past this, it is highly unlikely that any sampling strategy would benefit appreciably with 

a sampling rate that is greater than per-pixel. 

Contrastingly, codebooks of much larger size than those sizes used in state-of-the-art 

classifiers continue to give increasing performance. This is corroborated again by the data in 

[Chatfield11]. These trends constitute evidence that many state-of-the-art algorithms could 

derive improvements if they reduced their sampling to a 4 pixel stride, used a semidense 

approach, and used the corresponding reduction in time complexity to build a much larger 

codebook.  
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5.5 SIFT Feature Complexity 

Figure 5-6 

 

Fixed parameter settings: Semidense sampling, 2 octaves x 2 scales per octave, random codebook. (pps) = 

pixels per sample = pixel stride. 

 

Figure 5-6 demonstrates that the SIFT8 features are superior to the standard SIFT 

features for matching. The SIFT8 features are four times the dimension of the standard SIFT 

features (512 elements instead of 128). As such, they require four times as long to match to the 

codebook, and to sample. However, if the classifier takes four times fewer samples for the SIFT8 

features (32 pixels between samples instead of 16, or 16 instead of 8), the running time is 

comparable. The results show that even with fewer samples, the SIFT8 features still produce 

better classification results. 

Furthermore, because SIFT8 features are more complex, they are more amenable to 

increasing performance by increasing the codebook size, even to very large values. Figure 5-7 

shows test with a codebook of 64000 elements, much larger than those used in the literature (the 

largest being codebooks with 25000 elements reported in [Chatfield11]). 
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Figure 5-7 

 

Fixed parameter settings: Semidense sampling, 2 octaves x 2 scales per octave, random codebook 

5.5.1 Original Motivation for SIFT 

To understand why larger features are superior in these circumstances, one needs to 

understand the structure and purpose of the standard SIFT feature. Consider the motivation that 

produced the original SIFT feature. SIFT features were originally optimized to recognize specific 

objects, not classify general images. The assumptions of that problem demand an algorithm with 

very different optimizations than a general classifier. Such assumptions encourage simpler SIFT 

features. The following sections explore two of these key assumptions. 

5.5.1.1 Similarity of Images 

First, in specific object recognition, the images to match are very similar. Two pictures of 

the same phone taken at different angles in different lighting are far more similar than any two 

pictures of two different phones. Thus, for a robust object recognition algorithm, it is reasonable 

to require feature matches to be close. Such a requirement encourages features that are easier to 

match more precisely. SIFT features are relatively easy to match precisely, given their 

discriminative capability. This is owed in part to their simplicity. 

To observe the relationship between simplicity and reliable matching, consider the 

problem of affine invariance. It is possibly the most challenging invariance to address in a visual 

system. This is due in large part due to the fact complete affine invariance is not desirable. Full 
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three-dimensional affine invariance for a three-dimensional object model makes it nearly 

impossible to distinguish between different objects, when there is only a single two-dimensional 

available to build an implied three-dimensional model. 

 

Figure 5-8 

 

Diagram of affine invariance. The corner circled in red appears different depending on the viewpoint; four 

examples are shown here. 

 

Observe Figure 5-8. Many different two-dimensional visual structures can be produced 

from the same three-dimensional object. A three-dimensional model that is fully affine invariant 

can make no distinction between any of these two-dimensional visual structures (without 

synthesizing multiple images from multiple viewpoints. Many applications, including the 

PASCAL VOC Challenge, do not provide such opportunities for multiple viewing angles). A 

model that can make no distinction between a “T” shape and a “Y” shape is limited in what it 

can express. 
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Most successful features do not attempt to model objects in three dimensions anyway, but 

three-dimensional information is relevant. While planar approximations of three-dimensional 

objects have demonstrated effectiveness, a certain degree of three-dimensional affine invariance 

is desirable, because most interesting objects are not planar. Of the 20 object categories of the 

PASCAL VOC Challenge, none consist of strictly planar objects. 

SIFT features are not fully affine-invariant, because there is no normalization performed 

for that specific purpose. However, hidden within the “binning” behavior of the feature is an 

incidental robustness to affine transformations. If the viewing angle changes slightly, but the 

edges and corners of the object in question still fall into the same bins, the values of the resulting 

SIFT descriptor will change little. The amount of invariance to affine deformation depends 

largely on the object being deformed, but the original work reported tolerance of rotations of 60 

degrees from the viewing angle for planar objects, and 20 degrees for three-dimensional objects. 

[Lowe99] 

If a feature divided the same viewing window into more bins, it would possess less of this 

incidental affine invariance, because small shifts in viewpoint would be likely to push a corner or 

edge into a different bin. This causes the resulting SIFT descriptor to be very sensitive to 

viewpoint, and less robust for matching. This is illustrated in Figure 5-9. 

Figure 5-9 

 

Diagram of decreasing invariance with increasing bins. Left: a small shift in location between the blue 

window and the green window does not result in the important gradients (arrows) falling into different bins. 
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Right: each feature is the same size but has more bins. The same shift causes the top-right gradient to fall into 

a different bin. The resulting descriptor will change significantly as a result. 

 

Therefore, the original implementation of SIFT is well-suited for finding 

correspondences in images that are very similar. When objects are similar, precise matches are 

desirable, and less complex features (features with fewer bins) match more precisely. 

5.5.1.2 Geometric Constraints 

 Second, in the original SIFT algorithm, geometric constraints add structure to the 

problem. Because the objects it intends to recognize are mostly rigid, it makes sense to require 

the SIFT algorithm to search for a very specific geometry. But, this geometry provides additional 

high-level information, that allows the SIFT features themselves to be less complex. One SIFT 

feature does not have to be significant on its own. This makes it conceptually closer to a visual 

"letter" than a visual "word". So again, a simpler, more reliable feature will be preferable, 

because it becomes more important that it is robust for matching, and less important that a single 

feature is a strong indicator of an object. 
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Diagram of SIFT matching, from [Lowe99]. Top: Images of original objects. Center: Image to search for 

objects. Bottom: Correct SIFT feature matches are shown as small squares. Dominant orientation is indicated 

by a line from the center of the square. Estimated boundaries of the objects are shown by the large rectangles. 

Figure 5-10 
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Observe Figure 5-10. The features that have been matched do not correspond to large, 

singularly meaningful portions of the object. At most, they encompass a few letters of print. But 

there are enough correspondences found here that it is not necessary. And in fact, limiting the 

complexity of the features allows robust matching to smaller, less consequential portions of the 

object. Smaller features can provide matches when a larger part of the object is unable to be 

matched, due to occlusion, shadows, specular highlights, or even physical destruction (if the box 

was scuffed or marked). 

This approach is made possible by the additional geometric constraints that are imposed. 

Many spurious feature correspondences appear in the entire image. The SIFT features are simple 

enough that they generate frequent incorrect matches. But these incorrect matches are ignored 

when they do not agree geometrically with multiple other features, and the resulting recognition 

algorithm is robust. 

5.5.2 Moving towards Generality 

Neither of the two assumptions from the previous sections holds for general image 

classification. If a specific dog is present in the training set, it will not be present in the test set. 

Thus, the classifier cannot rely on feature correspondences between two pictures of dogs to be 

perfect or even close to perfect. 

Regarding rigidity: none of the object classes in the PASCAL VOC Challenge that 

represent natural objects (bird, cat, cow, dog, horse, person, plant, sheep; 8 out of 20 categories) 

are rigid at all. Furthermore, there is evidence that even rigid objects can benefit from a non-rigid 

representation, because it allows a more flexible geometric definition that generalizes across 

different instances of the object. [Felzenszwalb08] That is, two bottles may have similar 

contours, but different proportions. There may be a single model that can fit both, provided that 

the model does not impose a rigid representation. 

So, the original optimization of SIFT into 4x4 bins was suited for the problem it 

originally addressed, but this is not evidence that it is appropriate for general image 

classification. The assumptions of the original problem domain demanded a feature that matched 

precisely, but an image classifier require a feature that provides greater information. 

Furthermore, the information that the feature provides must be provided independent of 

its relationship to other features. This is explored in greater detail in Chapter 7. 
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5.6 Validity of Implementation 

Figure 5-11 

  
 

  

 The results of Figure 5-11 provide evidence of the validity of the implementation in this 

paper. While the implementation is not identical to that of configuration (n) in [Chatfield11] (in 

particular, [Chatfield11] uses PHOW features, which are similar but not identical to SIFT 

features), the results indicate that the implementation in this paper is similar. 

 Note that even when using the    kernel, tuning the error parameter C is not useful for 

the basic classifier. Since the size of the training vectors (200000) is significantly larger than the 

number of training vectors (~5000), there is little cost associated with finding a hyperplane that 

separates 100% of the training data.  
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6 Sampling Redundancy 

The goal for a sampling strategy is to maximize the mutual information of the features 

sampled. The most trivial approach to increase this information is to increase the number of 

features sampled. However, a secondary consideration is the need to minimize the redundancy of 

those features. By restricting the analysis to samplings of a single scale, there is enough data to 

develop a theory of sampling redundancy. Sampling redundancy is the relationship between the 

amount of overlap in (x,y) space between adjacent SIFT features in a sampling, and the amount 

of mutual information, as determined by classification performance. 

In the case of only one sampling scale, only the pixel stride is a variable parameter. 

Choose a pixel stride X and collect features at a spacing of X pixels, vertically and horizontally. 

One can observe the redundancy of features at a single scale by increasing the sampling density 

(lowering X) and observing the diminishing returns in image classification. 

In varying the single scale chosen for sampling, it is possible to observe how larger scales 

exhibit larger redundancy. It is clear from the results in Section 5.3 that diminishing returns for 

higher sample rates occur much faster at higher scales. Specifically, each scale s reaches a point 

of diminishing returns when the pixel stride reaches approximately 4s. 

This is corroborated by the results in Section 5.4. The difference in precision is negligible 

between a semidense sampling strategy that uses a pixel stride of 4s and a semidense sampling 

strategy that uses a pixel stride of 2s. This indicates that there is negligible total information from 

all scales when moving from a pixel stride of 4s to 2s for each scale s. The trend is consistent 

regardless of codebook size. 

This point, after which diminishing returns are observed, will be referred to as the point 

of redundancy for scale s. There is a solid theoretical justification for the existence of a point of 

redundancy at exactly 4s. A SIFT window at a given scale s has bins that are 4s pixels in width 

and height. Moving a window fewer than 4s pixels may not, in some cases, move any of the 

corners or edges described by the SIFT feature into different bins. Then, the resulting SIFT 

feature is quite similar. This is by design, and it is one of the reasons SIFT matching is robust in 

the first place. However, it also causes two samples at the same scale, whose centers differ by 

fewer than 4s pixels, to be highly redundant. 
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Additionally, before the point of redundancy, each scale displays improved precision at 

an approximately linear rate with respect to the logarithm of the samples taken. There are no 

diminishing returns until the point of redundancy is reached. Thus the data indicate that there is 

negligible redundancy when the point of redundancy has not been reached, even though adjacent 

features will heavily overlap in (x,y) space (at the point of redundancy, adjacent samples overlap 

by 75%). 

 

Figure 6-1 

 

Diagram of point of redundancy. Top: sample windows with no overlap have negligible redundancy. Center: 

at the point of redundancy, adjacent sample windows overlap heavily, but still display negligible redundancy. 

Bottom: past the point of redundancy, pairs of adjacent features display high redundancy. 
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This principle also confirms that the semidense sampling strategy is efficient with respect 

to the sampling of multiple scales. The semidense strategy samples each scale up to the point of 

redundancy. While additional precision may be possible by adjusting the weighting of different 

scales, there is evidence that semidense sampling collects a sampling of SIFT features that is 

negligibly redundant. 
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7 Semantic Capacity 

This paper will now explore a principle that places a hard limit on the potential of many 

state-of-the-art classifiers, and determines which modifications to a basic classifier are necessary 

to transcend this limit. We will call this principle semantic capacity. 

7.1 Proof of Limitations of Additive Kernels 

Consider the fundamental unit of the SVM learning algorithm, which is the kernel 

function. The SVM can only learn what the kernel function allows. An effective kernel function 

must produce large differences between most vectors of different classes and strong similarities 

between most vectors of the same class. It must put as much kernel space as possible between the 

two classes. The learning algorithm calibrates the hyperplane, but it is ultimately effective only if 

the kernel function translates the problem space into a kernel space where a good hyperplane 

exists. 

All of the kernels that are popular in image classification (linear,   , and histogram 

intersection) are additive. A kernel K is additive if it can be broken down into a function k on 

each individual variable in the vectors, and K is the sum of all of the k values. Or, formally 

stated: 

 

   *     +     *     +  

 (   )  ∑ (     )

 

   

 

 

 With an additive kernel, a vector is essentially described by the sum of its parts. There 

are specific mathematical limitations on what an additive kernel can distinguish between. The 

following proof will show these limitations. 
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Suppose an SVM with an additive kernel learns a model M described as follows: 

 

 *      + : a set of support vectors (SVs), each of length n, 

 *      + : a set of weights for each SV, 

 *      +          : a set of class assignments for each SV, 

  (   )  ∑  (     )
 
    : an additive kernel function, and 

   : the threshold associated with the hyperplane. 

 

For any vector X, let 

 

 ( )  (∑     (    )

 

   

)    

 

Then the hyperplane of M is defined by the set of all points satisfying  

 

* | ( )   + 

 

Then, for any test vector X, we can find the classification given by the model as follows: 
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Theorem: Consider four test vectors X, A, B, and Y, such that, for some distinct indices p, q, r, s, 

and for some values            , 

 

   *      +  
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   *      +  where          except                      and        

 

Then for any model M that uses an additive kernel, 
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Proof: Using M, we find 
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Since       except when     or      A and X only differ at two points. It follows that 
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Symmetrically, 
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And, similarly, since Y differs with X at four points, 
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7.2 Context in Image Classification 

The proof of the previous section demonstrates that a support vector model that uses an 

additive kernel is limited in what it can express. If one feature re-assignment (moving A to B) 

changes the vector from a negative to a positive class identification, and a second feature re-

assignment (moving C to D) changes the vector from a negative to a positive class identification, 

then the combination of those re-assignments must change the vector from a negative to a 

positive class identification. 

If there exist two features that are separately positive indicators, but in combination are a 

negative indicator, then a support vector machine with an additive kernel cannot build a correct 

model. Exclusive-or behavior cannot be modeled. 

Suppose there is a need for a classifier that distinguishes between two classes: “animal” 

(positive) and “not animal” (negative). The classifier will search for visual features that are 

indicative of animals. 

A feature corresponding to a lion’s body would be a positive indicator. A feature 

corresponding to an eagle’s head would be a positive indicator. However, the presence of both 

these features may be a negative indicator, as seen here: 

 

Figure 7-1 

 

 

Image classification where context is necessary. An eagle head and a lion body have a different meaning in 

combination. Each is indicative of an animal (positive) separately, but together, they indicate a gryphon 

(negative). 
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A gryphon possesses a lion body with an eagle head. One might debate whether a 

mythical beast is an animal, but from a functional standpoint, the correct classification would 

depend on the ultimate goal of the classifier. If the purpose of the “animal” classifier is to assist 

in identifying natural scenes, then a gryphon clearly is a negative example. 

In this example, the meaning provided by two features together is very different than the 

sum of the separate meanings of each. Or, equivalently, the presence of one feature creates a 

context which influences the meaning of the second feature. Regardless of how this relationship 

is understood, it cannot be modeled by a support vector model that uses an additive kernel. A 

model with an additive kernel lacks the semantic capacity to model context between separate 

features. 

Context is necessary because a standard SIFT feature does not contain enough 

information in and of itself to strongly indicate any object class. In the hypothetical example 

above, features corresponding to lion bodies and eagle heads were found. But these features 

would have to be expressed with a more robust feature than SIFT. SIFT features are not complex 

enough to accurately represent such visual structures. This can be seen in the data of Figure 5-3 

which show that standard SIFT features work poorly at large scales. This is because in most 

images, the features found at large scales are complex structures such as bodies and heads. These 

structures are too complex for standard SIFT features. At lower scales, structures such as eyes, 

noses, beaks, or paws are more likely to be found. But these structures are visually basic enough 

that they are not always distinct. A lion’s body is visually distinct from an eagle’s body, but a 

lion’s eye looks very similar to an eagle’s eye in some images. So both eye structures might be 

described by a single codebook feature that corresponds to a general eye. 

There are seven classes in the PASCAL VOC Challenge that have eyes. So if the 

classifier is trained to recognize cats, evidence of a general eye cannot be a strong positive 

indicator in and of itself. There are six other classes with eyes that constitute negative examples, 

and thus there many are more negative examples with eyes in them than there are positive 

examples with eyes in them. But, if features corresponding to other elements of a cat face are 

also present, than an eye should be a strong indicator. However, context is necessary to emulate 

this decision process. 

 Context is still useful even in cases where the features are independently strong 

indicators, because feature matching is an imprecise process. Even when two images contain the 
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same object, the features are not certain to match correctly. When a codebook is introduced to 

the process it becomes more difficult, because instead of matching training feature A directly to 

test feature B, both A and B must be matched to (hopefully) the same codebook feature. Some of 

the matches will be incorrect. 

The original SIFT implementation resolved the ambiguity of imprecise matching by 

requiring geometric consistency. Simply counting the number of matched features is ineffective, 

but by finding multiple feature matches that share a consistent geometric relationship (that is, 

they occur at the correct locations and rotations), then the object can be recognized with high 

precision. 

For reasons already clarified in Section 5.5.2, the original SIFT strategy to handle 

unreliable matches using geometry is not effective for the more general problem of image 

classification. But handling unreliable matches is even more necessary in image classification 

than it is in specific object recognition. Since the correspondences must be more general (match 

a picture of one dog to a picture of a different dog), the feature matches across images are less 

reliable. Adding a codebook degrades the reliability of matching further. With less reliable 

matches, there is a greater need to verify those matches through context. 

7.3 Extending the Basic Model 

The inherent assumptions of an additive kernel ignore context, but these assumptions are 

made to simplify the learning process. An algorithm that explores the potentially unique 

information of every combination of input variables is intractable. For a set of n input variables, 

there are 2
n
 unique subsets. Considering the potential information in each subset would be 

infeasible for 100 input variables, let alone the thousands used by state-of-the-art image 

classifiers. 

Practically, in most problem domains, not all combinations of input variables contain 

additional meaning. Constructing an effective model requires that the model efficiently recognize 

which combinations are important and which can be ignored. But since these combinations may 

largely be domain-specific, it is not clear which complex kernel out of infinite possibilities is 

appropriate. Furthermore, the SVM optimization process is already limited by the time 

complexity of computing the kernel matrix (for all kernels covered in this paper,  computing the 

kernel matrix requires O(m
2
n) time, where m is the number of training examples and n is the 
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length of the input vector.). Increasing this time complexity by even one degree of n to O(m
2
n

2
) 

makes the SVM the slowest step in the image classifier, by a large factor. 

Finding the right model to address arbitrary complexity is a problem that applies not just 

to support vector machines, but essentially any learning model. Consider neural networks. A 

single-layer network with the standard perceptron can only model functions that are a linear 

combination of the inputs. It cannot encode “exclusive-or” behavior, or any other function in 

which a combination of two variables holds information greater than the sum of the parts. A two-

layer network can theoretically model any function *   +   *   +   But such a two-layer 

network must consider the potentially unique information of every combination of input 

variables, and thus may require a number of perceptrons that is exponential with respect to the 

number of input variables. 

Because the combinations of training variables that are relevant are largely domain-

specific, it is not the responsibility of the learning algorithm to find them. If this responsibility is 

not placed on the learning algorithm, then it is necessary that the input vectors passed in to the 

learning algorithm contain variables with significant information independent of the other 

variables.  

To do this, one must process the input vectors. If the input vectors that comprise the 

training data are properly processed, the task of choosing a kernel is simplified. Specifically, if 

each variable in the input vector has significant information, independent of context, then a basic 

kernel function can put those variables together into a cohesive model. 

Thus the problems pertaining to context can be addressed before the learning phase. To 

achieve this, the variables in the input to the learning algorithm must represent either: 

1. semantic structures that combine multiple SIFT features in a non-linear fashion, or 

2. features other than SIFT that are less context-dependent than SIFT features. 

7.3.1 Feature Complexity 

Section 5.5 shows that even a basic modification to SIFT (increasing the number of bins) 

produces a superior feature for use in a basic classifier. This is because the modified feature 

allows more complex pixel patterns to be approximated, with more edges and more corners. 

Even though it is less robust to common image deformations, the feature possesses additional 

complexity. A feature that represents an entire object or a larger piece of an object does not 
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require as much contextual information as a feature that represents a smaller piece of an object. 

Thus, when this more complex feature is used with an additive kernel, which cannot represent 

context, the resulting model has fewer theoretical limitations. 

The basic modification to SIFT features, SIFT8, in Section 5.5 increases the complexity, 

but at the cost of the robustness to common image deformations. This makes the feature more 

difficult to match, mitigating some of the benefit gained from the increased complexity. 

If a feature exists that can describe visual structures of the same complexity as a SIFT8 

feature, but is more robust to common image deformations, then it will be superior. While the 

theoretical limitations given by Section 7.1 will be similar, in practice, a feature that matches 

more accurately and provides the same information will provide higher classification precision in 

an image classifier. 

7.3.2 Deformable Parts Models 

Deformable parts models are the clearest example in the literature of a feature that is less 

context-dependent than SIFT. This is achieved with an additional layer of semantic construction, 

in which smaller SIFT-like features are combined with a non-rigid geometric grammar to form a 

larger feature. The larger feature is intended to describe the whole object and thus context is less 

necessary. 

One limitation of deformable parts models is that they must be constructed a priori for 

each specific object class. There is presently no algorithm to learn a deformable parts model for 

an arbitrary class. Constructing multiple deformable parts models, one for each specific instance 

of an object, is also potentially useful, as presented by one of the co-winners of the PASCAL 

VOC Challenge in 2011. [Everingham12] This, however, takes even longer, and is even more 

dependent on sufficient training data. An algorithm to learn a deformable parts model for an 

arbitrary image would make the approach more independent of human intervention. 

7.3.3 Encoding schemes 

A basic classifier encodes the sampled features by hard assignment to the nearest word in 

a visual codebook. However, other encoding schemes exist. A survey of them is explored in 

[Chatfield11]. If an additive kernel is used, the vector that results from the encoding scheme still 

has the same limitation given by Section 7.1. However, if the encoding scheme creates a vector 

where each variable has more information free of context, the classifier has higher potential.  
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8 Conclusion 

This paper has examined the various parameters that can be adjusted in a basic dense 

SIFT sampling image classifier. It has examined rigorously many of the decisions that have 

traditionally been made without supporting evidence. 

The data provide evidence of improved strategies for parameter selection in a basic 

classifier. Some of the results conflict with conventional wisdom in the field. 

This paper has also developed two novel concepts, sampling redundancy and semantic 

capacity, which explain the data and provide insight into the underlying structure of the image 

classification problem. Sampling redundancy is a theory that describes mathematically the 

mutual information provided by two sampled features which overlap in the image space. This is 

useful for constructing an optimal dense feature sampling. Semantic capacity mathematically 

clarifies the key limitation of a basic image classifier (the inability to model context). This is 

useful to direct future research, by explaining which types of extensions to the basic model can 

give the model fundamentally greater potential. 
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Appendix A Sample Images 

To explain the PASCAL VOC Challenge, this appendix contains example images from 

all twenty object classes. All images are taken from the PASCAL VOC2011 training data. A pair 

of images representing typical positive examples is shown for each class. These images were 

found by selecting the first two relevant images that occur in the training data, which, given that 

there is no ordering to the training data, makes them random. A second pair of images 

representing difficult positive examples is shown for each class. These images were hand-picked 

to illustrate the wide variety of difficult images to be classified in the PASCAL VOC Challenge. 
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Aeroplane (Typical) 

 

 

 

  

Planes are consistently classified at the highest average precision of all 20 classes in the 

PASCAL VOC Challenge. The stringent requirements of their function result in a design that is 

structurally similar. Thus, many planes look very similar. The same cannot be said of the other 

object classes. 
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Aeroplane (Difficult) 

 

 

 

  

Planes can still be challenging to classify. Pictures taken of an airborne plane will be at a 

large distance, and thus the plane will appear at a small scale. Head-on viewing angles tend to be 

less common and more distinctive than side angles. 
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Bicycle (Typical) 

 

 

 

  

Pictures of bicycles in the PASCAL image data sets vary between pictures of stationary 

bicycles, and pictures of people riding bicycles. The wheels (thin, round) are the most consistent 

features across different instances of the class. 
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Bicycles (Difficult) 

 

 

 

  

Bicycles frequently appear in an outdoor context, so a violation of that context can be 

potentially confusing to a classifier. Bicycles are light and thin by design. This means that while 

they may constitute a large portion of the image in terms of a bounding box (top image), many of 

the pixels in that bounding box are background pixels that essentially inject noise into the SIFT 

representation. Or, if the bicycle is viewed head-on (bottom image), it will represent a very small 

portion of the image. 
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Bird (Typical) 

 

 

 

 

Birds can potentially be identified by their beaks or by their wings. Additionally, context 

(aerial scenes, trees) can be useful. 
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Birds (Difficult) 

 

 

 

  

Some birds blend in very well with their surroundings. Even when this is not the case, 

severe occlusions can arise due to their tendency to be found in trees, and thus be occluded by 

branches. 
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Boats (Typical) 

 

 

 

 

 Boats reliably occur in the context of water. Many boats have tall, thin vertical masts. 
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Boats (Difficult) 

 

 

 

 

 Sizes of different boats vary widely, and different sizes of boats tend to possess distinct 

visual features. The bottom image shows a boat that is not presented at an uncommon angle, but 

is removed from its usual context. It is unlikely to be classified correctly. 

  



75 

 

Bottle (Typical) 

 

 

 

 

 Bottles are defined by their function: to hold liquid. However, since the liquid conforms 

to the bottle, there is little restriction on the potential shape of the bottle. Furthermore, bottles are 

commonly either partially transparent, or reflective, each of which results in difficult image 

deformations. Each year, “bottle” is the class in the PASCAL VOC Challenge that is classified 

with the lowest average precision by top competitors. 
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Bottle (Difficult) 

 

 

 

 

 While most bottle images are difficult to classify, some are especially difficult because 

they do not show the full shape of the bottle (top image). Some bottles are less curved and more 

angular, but there are fewer examples of these, making them harder to match (bottom image). 
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Bus (Typical) 

 

 

 

 

 Buses frequently have a box-like shape. Context (streets) and wheels are indicators of 

buses but do not necessarily discriminate them from other vehicles, particularly cars. 
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Bus (Difficult) 

 

 

 

 

 All objects with glass can be reflective, generating distorted features with unclear 

meaning. Some images of buses are taken from close enough that the entire shape cannot be 

observed, but rather only inferred. 
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Car (Typical) 

 

 

 

 

 Like buses, wheels and context (streets) can be indicative of cars. Cars can potentially be 

discriminated by their sleeker shapes. Headlights, rearview mirrors, and other features can 

sometimes be matched across different kinds of cars. 
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Cars (Difficult) 

 

 

 

 While SIFT is illumination-invariant, at least some light is needed to detect gradients. 

Very dark images (top) are challenging regardless of object class. In the bottom image, there is a 

wheel present, indicating a bus or car. However, it must be inferred from context that a car is the 

more likely object. 
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Cat (Typical) 

 

 

 

 

 Like all animals, cats have distinctive faces and body shapes. Not all images present both 

types of features. 
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Cat (Difficult) 

 

 

 

 Pictures of cats can be taken when they are in motion (top image), resulting in image 

deformations due to the camera. Dark images (bottom) are difficult for cats. Smaller features 

such as facial features may not be present, and even larger shape features may be obfuscated. 
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Chair (Typical) 

 

 

 

 The shape of chairs can vary significantly. They do reliably occur in an indoor context.  
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Chair (Difficult) 

 

 

 

 Chairs are commonly found near tables or desks. Thus they may be largely occluded 

from certain angles.  
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Cow (Typical) 
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Cow (Difficult) 

 

 

 

 

 When an object occurs in the “wrong” context in the test data (top image), it is less likely 

to be matched. The car features present here would negatively correlate with positive cow 

classification. If the object occurs in the “wrong” context in the training data, the consequences 

can be worse, because the model conflates the features of cows and cars. Then, the model will 

potentially determine car features to be positive indicators of cows. 

 In the bottom image, it is difficult to recognize exactly what animal is present, even for a 

human.  
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Dining Table (Typical) 

 

 

 

 

 Dining tables generally occur in an indoor context. They frequently have tall, thin legs, 

but this is not universal.  
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Dining Table (Difficult) 

 

 

 

 

 Sometimes the presence of a dining table needs to be heavily inferred from context. 

Nearby chairs or food on top may be more indicative than any features of the table itself.  
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Dog (Typical) 

 

 

 

 

 Dogs occur in a variety of contexts. They have distinct faces and bodies but do share 

some similarities with cats.  
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Dog (Difficult) 

 

 

 

 

 The dog in the top image blends in heavily with the background. The bottom image 

presents an unusual viewpoint. Images of animals may potentially display them lying down, but 

such images are infrequent and thus difficult to match to other examples. 
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Horse (Typical) 

 

 

 

 

 Horses have a distinct gait and identifiable long faces.  
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Horse (Difficult) 

 

 

 

 

 The horse in the top image is heavily occluded. In the bottom image, recognition from the 

face may be effective, but since there are few images of horses lying down, body features will 

not match well. 
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Motorcycle (Typical) 

 

 

 

 

 Motorcycle wheels have the potential to be confused with other vehicle wheels, but they 

are somewhat distinct. Other features such as headlights, handlebars, and seats can potentially be 

matched as well. 
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Motorcycle (Difficult) 

 

 

 

 

 Motorcycles look very different from a back or head-on view, and, like most objects, are 

difficult to recognize in the presence of severe occlusion or unique viewpoints. 
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Person (Typical) 

 

 

 

 

 People are the most commonly occurring objects in PASCAL VOC Challenge image 

data. This is because many images that represent another object class also include people. Faces 

frequently constitute a large portion of the image and thus are recognizable.  
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Person (Difficult) 

 

 

 

 

 People can occur in a wide variety of poses, which makes using context potentially 

important. However, people also occur in many settings, in the presence of many different 

objects. This makes using context potentially difficult.  
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Potted Plant (Typical) 

 

 

 

 

“Potted plant”  is one of the most difficult object classes in the PASCAL VOC. Part of 

the difficulty is that this object class is limited only to potted plants and not all plants. This 

makes the visual information of the plant itself much less likely to be useful. The information of 

the pot is potentially more salient. This distinction (potted plants only) also makes an indoor 

context more likely.  
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Potted Plant (Difficult) 

 

 

 

 

As “plant” is a very general class, the visual information associated with plants varies 

greatly. As seen in the bottom image, even plants in containers that are not pots are considered 

potted plants. But, this results in a very general “container” class. However, neither class is 

sufficient to indicate a potted plant on its own, so some sort of context information is necessary. 
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Sheep (Typical) 

 

 

 

 

Sheep, like all other animals, have distinct bodies and faces, but confusion between 

animal classes is still common. Sheep can frequently be confused with cows. 
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Sheep (Difficult) 

 

 

 

 

 From challenging viewpoints or at small scales, there are few distinguishing features for a 

sheep. 
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Sofa (Typical) 

 

 

 

 

 Sofas are a difficult object class because even when they resemble the “standard” shape, 

as in these images, that shape is not highly distinct. An indoor context is helpful. 
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Sofa (Difficult) 

 

 

 

 

 When in use, sofas are largely occluded, and it is difficult to extract even shape 

information. 
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Train (Typical) 

 

 

 

 

Trains have a similar shape to buses in many images. However, they possess some 

distinguishing features, and rails, while not strictly part of the train, can be indicative. 
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Train (Difficult) 

 

 

 

 

Like planes, trains are large enough objects that they can potentially be recognized at a 

wide variety of scales. However, the distinguishing features vary widely based on the scale at 

which the train is presented. 
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TV or Monitor (Typical) 

 

 

 

 

Monitors, and to a lesser extent TVs, have a well-defined box shape from the front. They 

tend to be uniform in color as well. 
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TV or Monitor (Difficult) 

 

 

 

 

 The simple shape of monitors and TVs frequently makes it difficult to pick out of the 

background (top image). Side views (bottom image) are less uniform in appearance and less 

common in the training data. 
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Appendix B Single Scale Samples 

To illustrate the difference in small and large scale features, sample images were taken 

based on the data presented in Section 5.3. Three object classes (bird, horse, and train) are 

considered, and two images are presented for each class. 

The images were selected by comparing two single-scale classifiers from Figure 5-3 (s=1 

at 4 pixel stride, and s=4 at 4 pixel stride). The two images chosen for each class are the positive 

test images with the greatest disparity in classification between the two single-scale classifiers. 

So, the first image in each section is an image that the s=1 (low-scale) classifier recognized, but 

the s=4 (high scale) classifier did poorly with. The second image is an image that the high-scale 

classifier recognized, but the low-scale classifier did poorly with. 
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Bird 

Low-scale features: 

 

 

High-scale features: 

 

 

 The facial features of the bird appear useful. When such features take up a large portion 

of the image (bottom image), the high-scale classifier is more successful. 
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Horse 

Low-scale features: 

 

 

High-scale features: 

 

 

 Low-scale facial features are best presented from a front view (top image). Larger 

features that pertain to head and body shape are best presented from a side view (bottom image). 
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Train 

Low-scale features: 

 

 

High-scale features: 

 

 

 Trains do not appear to have a distinct shape, at least with respect to SIFT features. As 

such, the high-scale classifier does better only in images with very close viewpoints (bottom 

image). The high-scale classifier does poorly with trains, with a mean average precision of .410 

versus .551 for the low-scale classifier. 

 


