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Abstract 

Graft Versus Host Disease (GVHD) is the major complication following hematopoietic 

stem cell transplantation. GVHD is activated by immunocompetent T cells presented in the 

donor grafted tissue. Due to the increased use of bone marrow transplantation to treat diverse 

malignancies, the incidence of GVHD has shown a notable increase. Depending of the degree of 

immunological mismatch between donor and host, 50-70 % of patients develop GVHD after 

allogeneic Bone Marrow Transplantation (BMT). Once GVHD develops, mortality reaches up to 

50% in humans. Several studies using Mesenchymal Stromal Cells (MSCs) to prevent and treat 

GVHD have produced controversial results. It is thought that distinct MSCs sources used in 

those studies might be an important factor that produces different outcomes.  For cellular 

therapy, the most attractive characteristics of MSCs are their reduced immunogenic potential, 

and their abilities to modulate immune responses. This dissertation addressed the hypothesis that 

Wharton‘s jelly cells (WJCs) would prevent the pathology and death associated with GVHD 

after BMT. To accomplish this, I created a clinically relevant model of GVHD by transplanting 

allogeneic bone marrow across minor histocompatibility antigen (HA) barriers in the rat. To 

enhance alloreactive T-cell stimulation, bone marrow (BM) was co-administered with a fraction 

of CD8
+
 cells magnetically selected from spleen to induce GVHD. Bone marrow tissue was 

isolated from a donor rat Fischer 344 (F344, RT1lv) and transplanted into lethally irradiated (10 

Gray) Lewis rat (LEW, RT1l). Once GVHD was induced, MSCs derived from umbilical cord 

WJCs were either co-transplanted at day 0 with bone marrow, or given on day 2 post-BMT 

intravenously. The prophylactic potential of WJCs in an in vivo GVHD model was assessed as 

survival time, clinical symptomatology occurrence, and histopathology injuries in target tissues. 

Results indicate that while co-administration of WJCs with hematopoietic cells on day 0 failed to 

alleviate GVHD associated symptomatology and mortality. WJCs administered on day 2 post-

induction ameliorated GVHD-associated symptomatology, improved engraftment and survival.  
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 Chapter 1- Introduction 

 1.1 Background and Significance 

Hematopoietic stem cell transplantation (HSCT) is the current transplant indication for 

patients suffering specific congenital or acquired hematologic disorders [1], such as leukemia 

[2,3,4], multiple myeloma  [5,6], aplastic anemia [7,8,9 ], thalassemia [10, 11], severe 

immunodeficiency syndrome [12,13 ] and more recently, human immunodeficiency virus (HIV) 

[14,15]. Currently, HSCT is performed from autologous, syngeneic and allogeneic donor sources 

[16] and hematopoietic cells are typically collected from bone marrow (BM), umbilical cord 

blood or peripheral blood after mobilization [1, 16, 17]. The aim of HSCT is replacing the 

damaged hematopoietic compartments with functional hematopoietic stem cells which are 

capable of reconstituting hematopoietic niches after myeloablative conditioning regimens [1, 17]. 

Therapeutic efficacy of HSCT in patients with hematologic malignancies is attributed, in part, to 

responses mediated by donor T cells and natural killer (NK) cells, which lead to the graft versus 

leukemia (GVL) effect [18]. Unfortunately, induction of GVL is accompanied often by the 

development of graft versus host disease (GVHD). GVHD is a post-transplant life-threatening 

disorder that affects 30-75% of the patients receiving allogeneic HSCT from disparate human 

leucocyte antigen (HLA) donors [19].  A GVHD-like syndrome also has been described after 

haploidentical HSCT, syngeneic [20] and even autologous HSCT [21]. Therefore, GVHD 

represents a major complication which affects successful HSCT outcomes [22]. The  severity of 

GVHD correlates with the stem cell source, MHC disparity across minor and major antigens  

[23], the age of the patient, sex mismatch between donor and recipient  [24], conditioning 

regimen [25], any GVHD prophylaxis used [26], degree of immunosuppression [27], number of 

transfused donor T cells [28], and intestinal microflora and endotoxin [29]. 

GVHD is a syndrome resulting from disparities for minor and major histocompatibility 

antigens [30]. Classically, based upon time of clinical symptomatology manifestation, GVHD 

has been described as acute (aGVHD) if symptoms appear before 100 days post-HSCT, or 

chronic (cGVHD), if clinical indicators appear beyond 100 days after HSCT [31]. However, a 

new consensus for GVHD diagnosis and grading for clinical trials, which is based on clinical 

manifestation rather than presentation time, is currently accepted by NIH. This consensus 
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includes a third classification of GVHD founded in the concomitant presentation of clinical 

signals of both acute and chronic GVHD [32, 33, 34].  

 Epithelial tissues are the target for GVHD [35]. Clinical signals and histopathological 

damage typically occur in skin, gastrointestinal mucosa and liver [34]. However, many studies 

have reported GVHD-related afflictions on varied organs such as pancreas [36], lung [37, 38, 39, 

40], kidney [39, 40], spleen [39] and cardiovascular system [40]. In contrast, cGVHD is 

considered a pleiotropic syndrome, whose target is mainly connective tissue and clinical and 

histopathological manifestations include fibrosis [34]. 

Although GVHD might involve multiple immune reactions [41], a general agreement is 

that this disorder is generated by the recognition of donor T cells to alloantigens present in 

immunocompromised hosts who are unable to reject donor cells after myeloablative regimens 

[42]. Under this notion,  GVHD pathophysiology is driven  by cytopathic donor T cells, which 

react to genetically disparate host polymorphic antigens  and can be presented by antigen-

presenting cells (APCs) from host, donor or both [34,41]. Hematopoietic derived APCs [43], also 

known as professional APC [44], such as B cells, tissue macrophages and Langerhans cells, play 

an important role in triggering aGVHD [45]. Recent investigation supports the notion that a 

subpopulation of stromal APCs (nonhematopoietic, also called nonprofessional APCs), such as 

follicular dendritic cells [46], fibroblasts, myofibroblasts, and pericytes [47], may play an 

underestimated role in GVHD pathogenesis [44, 47]. Scientific evidence presented by Tobuai et 

al. 2012 suggest that vascular endothelial and certain epithelial cells are the putative 

nonhematopoietic APCs  with the capacity to directly stimulate donor T cells and induce GVHD 

[48]. 

Typically, GVHD pathophysiology is described in sequential stages.  The first stage is set 

by the preparative immunosuppressive regimen of chemotherapy and/or radiotherapy, which 

damages host tissues, and causes hypercytokinemia [49]. In the second stage, APCs from donor 

and host, along with inflammatory cytokines, trigger activation of donor T cells, which 

proliferate and differentiate into effector cells. In the third stage, activated donor T cells drive 

cytotoxicity against target host tissue [50]. Radiation-induced vascular endothelium injury [40, 

51] and innate immunity are also considered triggering factors for GVHD progress [52]. 

Components of the innate immune system, such as epithelial barriers, soluble molecules and 

cells, are being studied as potential factors that play a role in GHVD induction in target tissues 



3 

 

[52, 53]. In a rat model of aGVHD, Koltun et al. found a positive correlation between small 

intestine epithelial permeability and GVHD occurrence [54]. Activation in target tissues of 

complement and Toll-Like Receptor (TLR) plays a role of recognition of associated molecular 

patterns (PAMPs) from the intestinal microflora and may intensify aGVHD syndrome [55]. 

Complement activation has been reported in murine models of aGVHD [56]. The role of innate 

immune cells, such as eosinophils, mast cells and neutrophils, and macrophages, in GVHD 

pathogenesis has been dissected in several studies [57, 58, 59, 60, 61, 62]. 

New theories argue that a pool of host radio-resistant immune cells may be involved in 

cGVHD pathogenesis [63, 64, 65], therefore cGVHD may be driven by autoimmune components 

[34, 63, 66]. In a cGVHD model Lee et al. showed that hosts receiving T-cell depleted BM 

develop an autoimmune disorder driven by host T cells originated from radio-resistant intra-

thymic precursors which, despite  a reduction in dendritic cells (DC) after high-dose irradiation, 

escape the intra-thymic mechanisms of  self-antigen removal (negative selection) [64]. Currently 

researchers are making efforts to find reliable biomarkers for the detection of GVHD [67, 68]. 

Recently, the protein Elafin was discovered as a novel marker for cutaneous GVHD which might 

predict GVHD severity [69]. However to date, diagnostic, staging and grading of GVHD are 

based on clinical manifestation and posterior confirmation is based on histopathology studies 

[19]. 

 1.2 Methods of Preventing GVHD 

 1.2.1. Immunosuppressive drugs. 

GVHD is one of the main causes of non-relapsed mortality in patients receiving 

allogeneic HSCT (allo-HSCT) [70].  GVHD development is determined by immunocompetent 

cells present in the allograft that recognize donor alloantigens and activate once they interact 

with APC, and thus generate an immune response against host target tissue [71, 72]. Most 

transplantation protocols include strategies to induce immunosuppression in the host and 

immunotolerance of donor tissues, and thus prevent or reduce clinical manifestations of GVHD 

[73]. Though, the optimal strategy to reestablish the immune system has not been defined [74]. 

Administration of immunosuppressive drugs to reduce the incidence of aGVHD in 

patients receiving allogeneic HSCT is considered a standard practice [75]. Various drugs either 
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prevent activation of donor T cells such as cyclosporine, tacrolimus, sirolimus (rapamycin), 

methotrexate, mycophenolate mofet and cytotoxic T-lymphocyte antigen 4 (CTLA-4), or act on 

effector cells, such as daclizumab and infliximab, are currently used in GVHD prophylaxis [76]. 

Corticosteroids, alone or in combination with other immunosuppressive drugs, are the first-line 

treatment of aGVHD [73], and methylprednisone is most frequently used [24]. However, steroid 

toxicity and collateral effects result in allograft loss, refractory condition to steroids and 

infections [77]. 

 1.2.2. Graft T-cell depletion. 

Another strategy to reduce incidence of GVHD involves removing T cells of the graft (T-

cell depletion) [24]. Nevertheless, hematopoietic reconstitution, mortality and occurrence of 

opportunistic infections [78] represent a problem in host receiving T-cell depleted grafts [79]. In 

addition, in the case of an underlying malignant disease, manipulation of the graft by depletion 

of T cells might reduce the desired GVL effect and increase risk of relapse of the underlying 

disease [79]. 

 1.2.3. Immunotolerance mediated by Tregs. 

Another approach to control GVHD is by means of regulatory T cells (Tregs), a 

subpopulation of T cells which have the capacity of modulate immune responses by regulating 

the effector cells activation, expansion and differentiation [80].. In a phase  I dose-escalation 

clinical trial Brusntein et al. demonstrated that infusion  of ex vivo expanded umbilical cord 

blood (UCB)- derived Tregs  selected  after double umbilical cord blood transplantation (UCBT) 

and nonmyeloablative conditioning regimen, reduced incidence of grade II-IV aGVHD. They 

have shown that in murine model of aGVHD, Tregs are able to suppress CD8+ effector cells in 

target organs [80]. However,  because Tregs can inhibit host antitumor responses leading to 

neoplasia recurrence, tolerance induced by Tregs might be insufficient to control underlying 

malignant diseases [81]. 

 1.2.4. MSCs infusions 

Mesenchymal stromal cells (MSCs) are a heterogeneous cell population derived from the 

embryonic connective tissue, mesenchyme, which constitutes the structural support, or stroma, of 

different organs [82]. MSCs are defined following the International Society for Cell Therapy 
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(ISCT) guideline as a population of cells which adheres to plastic culture flasks, express 

particular surface markers antigens and are capable to differentiate along mesenchymal lineages 

such as fat, bone and cartilage [83].  

Though absent of specific or standard surface markers, MSC recognition is made possible 

by several mechanisms.  Most practically, recognition is apparent within culture due to their 

ability to adhere to plastic tissue culture dishes [83].  Within assays, MSCs are recognized by the 

expression of certain mesenchymal surface markers such as cluster of differentiation (CD) 

CD105 (Sh2 or endoglin), CD73 (SH3 or SH4), CD90, CD44.  Additionally, MSCs are negative 

for expression of hematopoietic markers CD34 and CD45 [83]. Recognition of MSCs via their 

ability to differentiate into specific tissue of mesodermal lineages, such as bone, cartilage and fat, 

may also be accomplished [83].  Several studies have reported the capacity of MSCs to 

overcome the typical mesenchymal cell fate by trans-differentiating into cells of endodermal [84] 

and neuroectodermal origin [85].However, donor age affects both proliferation and 

differentiation potentials [86]. For example, an in vitro comparison of rat Wharton‘s jelly cells 

(WJCs) versus adult bone marrow derived MSCs showed a superior capacity of fetal sources of 

MSCs (WJCs) to differentiate towards cardiomyocyte lineage [87]. MSCs play a fundamental 

role in cell turnover and maintaining homeostasis within tissues in vivo [88]. The abilities of 

MSCs to suppress the activation, expansion and maturation of immunocompetent cells T cells, B 

cells, natural killer and dendritic cells [89], made them an attractive cell therapy to control 

immunologic disorders [90, 91].  

 1.2.5. Adult versus Fetal MSCs 

MSCs were initially isolated from adult bone marrow (BM), where they constitute about 

0.01 to 0.001% of mononuclear cells [92].  However, cells with comparable characteristics also 

have been found in almost every tissue, close to blood vessel walls [93].  Comparative studies of 

BM-derived MSCs versus fetal sources MSCs have established similarities between both sources 

of cells [94, 95]. MSCs from fetal sources are exceptional due to their proliferative and less 

differentiated state than the ones from adult origin [96]. Baksh et al. found that umbilical cord 

perivascular MSCs (UCPVCs) had a higher proliferative capacity than BM-derived MSCs [94]. 

Comparative studies of proliferation performed by Lu et al. in 2006 revealed that BM-derived 

MSCs manifested slower population doubling time (PDT) than umbilical cord-derived MSCs 
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[97]. Mitchell et al. found that porcine WJCs cultured for more than 80 population doubling time 

(PDT) do not show senescence, change in morphology or lose their capacity to differentiate into 

neurons [85].  

In the present dissertation, the goal is to evaluate the effect of administration of 

Wharton‘s jelly cells (WJCs) on the prophylaxis of graft versus host disease (GVHD) after allo-

HSCT. Specifically, this study aimed to first, I describe a protocol to isolate and expand WJCs 

from rat umbilical cord. Second, I developed a minor antigen mismatch model of GVHD.  Third, 

I evaluated the treatment effect of WJCs derived from rat umbilical cord to ameliorate clinical 

manifestation of GVHD, and to improve survival time in recipients following total body 

irradiation (TBI) and allo-HSCT. Finally, I measured the effect of WJCs in improving 

hematopoietic compartment reconstitution. 

 1.2.6. MSCs and the Immune System 

The reduced immunogenicity related to MSCs might be explained in part to their 

immunophenotype associated with low expression of MHC class I antigens and no expression of 

MHC class II [98], together with no expression of co-stimulatory molecules CD40, CD80 and 

CD86, which are decisive for the activation of T cells and the development of a successful 

immune response [99].  Due to MSCs expression of MHC class I molecules, they may 

potentially activate T cells, but in the absence of appropriated co-stimulation by a second signal, 

any lasting engagement of the T cell receptor on T helper (Th) cells would lead to state of 

unresponsiveness or anergy, which contributes to tolerance [99]. 

Different studies have shown that MSCs can regulate both adaptive and innate immune 

responses [100, 101, 102, 103]. Studies performed in vitro and in vivo have shown the capacities 

of MSC to exert a potent immunomodulatory effect on many cells of the immune system [100]. 

Even though mechanisms underlying these effects remain to be fully elucidated, the 

immunosuppressive effect of MSCs GVHD is highly related with soluble mediators [92,102].  

Polchert et al. consider that immunosuppressive properties of MSC on GVHD are activated by 

exposure to inflammatory cytokines, such as interferon gamma (INF-γ) released by T cells [103].  

On the other hand, Wang et al. 2009 support the idea that MSCs combat GVHD by inducing 

proliferation of regulatory T cells (Tregs), which are well-characterized as being T cell 

suppressors [104]. Soluble factors secreted by MSCs that are considered as candidates for 
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immunoregulation include transforming growth factor beta (TGF-β) [105], indoleamine 2,3-

dioxygenase (IDO) [ 106], hepatocyte growth factor (HGF) [99], inducible nitric oxide synthase 

(iNOS) [107], prostaglandin E2 (PGE2), human leukocyte antigen G6 (HLA-G6) [108], and 

interleukin 10 (IL-10) [105].  More recently, Lee et al. 2009 identified the protein TSG-6, also 

known as TNFα-induced protein 6, to be a soluble factor associated with extracellular matrix 

remodeling and anti-inflammatory functions [109].  Interestingly, TSG-6 is upregulated in 

response to inflammatory signaling such as IL-1 and TNF-α [110].  Recently, it has been 

suggested that nanometer scale vesicles (exosomes) released by MSCs may be involved in 

immunomodulation properties of these cells [111].  Since inflammation plays a fundamental role 

in GVHD pathogenesis [112], the use of MSCs for clinical trials may lead to the development of 

future therapies for difficult diseases [113].  

 1.2.7. MSCs in the Treatment of GVHD 

The safety and efficacy of MSC is currently being evaluated for at least 12 pathologic 

conditions, and several completed studies have shown the effectiveness of MSC to prevent or 

treat GVHD [114]. In 2004, Le Blank et al. reported a case of dramatic reduction in clinical 

symptomatology in a 9-year old patient suffering grade IV steroid-refractory aGVHD after 

administration of the first dose of MSCs derived from a haplo-identical donor [115]. This report 

was followed by a pilot study performed by Ringden et al. in 2006 who transferred MSCs in 8 

patients with steroid-refractory grade II and IV GVHD and one with cGVHD; aGVHD 

symptoms were completely abolished in 6 out 8 patients, whose survival rate was significantly 

improved in comparison with untreated controls [116].  

The efficacy of intravenous (IV) infusion of MSCs to control inflammatory responses in 

immunological disorders has been reported [103, 104, 113]. While MSCs homing and 

engraftment are considered fundamental requirements for cell therapy  [117], the cell kinetics 

and  biodistribution upon IV administration show that the  number of cells that home to the target 

tissues is extremely low and most MSCs remain trapped in capillary beds within the liver, spleen 

and lung [109, 118, 119]. Rochefort et al. found a 50 to 60% of MSCs in rats accumulate in lung 

microvasculature 1 hour after the infusion with a reduction and stabilization of about 30% at 3 

hours post-infusion. However, exosomes (20-200 nm in size) released by MSCs may mediate a 
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paracrine effect by acting local or at distance establishing an intercellular communication 

through via membrane receptors, intracellular uptake of exosomes or membrane fusion [111]. 

Roddy et al. used MSCs in a rat corneal model for inflammatory responses, and they suggest that 

MSCs engraftment is not a requirement since these cells are capable to work at distance from 

injury sites being activated to release the protein TSG-6 [120]. It is, therefore, suggestive that the 

therapeutic effects of MSCs are systemic and at a distance from injury sites [110, 120, 121]. 

 Studies determining the effectiveness of MSCs to control aGVHD in murine models have 

reported contradictory results [122]. Several studies [123, 124, 125] have reported that co-

infusion of MSCs with hematopoietic cells might be beneficial for hematopoietic cell 

engraftment and hematopoietic recovery. Christensen et al. evaluated timing of administration 

and dose-responses of MSCs using a GVHD murine model and showed that MSCs have only a 

transient immunosuppressive effect on the delay of GVHD progression. However, this study was 

performed by using cyclophosphamide as a pre-transplant therapy [126]. Nevertheless, since 

MSC are unable to exert immunosuppression activity when Tregs are depleted [127] and, being 

that cyclophosphamide targets Treg populations [128], it may be reasonable to conclude that the 

MSCs may have failed to express their immunosuppressive functions successfully under these 

conditions.  Prigozhina et al. also reported that MSCs failed to reduce GVHD-related mortality 

in a mouse model [129]. In this case, MSCs were administrated at days 0, 7 and 14 after HSCT at 

tolerated doses of 5x10
5
 or 0.5x10

5
 per mouse.  If an inflammatory response is required for MSC 

activation [130], Prigozina‘s results may be correlated with inadequate timing of administration 

of the cells as co-infusion of MSCs with hematopoietic cells at day 0 may not increase the level 

of inflammatory cytokines enough to activate the MSCs and prevent GVHD progress [103].  Joo 

and colleagues utilized a mouse model of GVHD and found that MSCs used at dose of 1x10
6 

and 
 

2x10
6   

MSCs per mouse  given together with hematopoietic cells after radiation (day 0) via IV 

improved survival to 40% and 60% respectively until day 50 after hematopoietic reconstitution, 

while a lower dose of 0.5x10
6 

cells per mouse
 
did not improve survival time [131]. Based upon 

this data, in addition to timing of administration, cell dose may be another variable that impacts 

the efficiency of MSCs to induce immune –regulation in GVHD settings. Joo‘s research by using 

MSCs which expresses red fluorescent protein (RFP) derived from transgenic mice C57BL/6 

RFP, and splenocytes derived from transgenic mice which express enhanced green fluorescent 

protein (EGFP) established in an in vivo fluorescent imaging study that MSCs and splenocytes 
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show similar kinetic and biodistribution pattern following IV infusion, reaching first lung and 

remaining there for about 24 hours, then moving to gastrointestinal tract and finally to lymp node 

and skin. In summary, reports about the efficiency of MSC infusions to prevent or treat GVHD 

are inconsistent. These inconsistencies could be related to the source of MSCs, donor age, using 

fresh or cryopreserved-thawed MSC, isolation and culture conditions for expansion and dose 

[132, 133]. 

 1.2.8. Wharton’s Jelly Cells 

Wharton‘s jelly is a specialized, primitive connective tissue which constitutes the 

functional supportive framework of the umbilical cord [82]. The umbilical cord contains 

fibroblast-like cells surrounded by an extracellular matrix composed of glycoprotein microfibrils, 

collagen fibrils and glycosaminoglycans (GAGs) [136]. Hyaluronic acid is the most abundant 

GAG present in the Wharton‘s jelly [12]. Disperse mast cells can be found within the Wharton‘s 

jelly, most frequently in the proximity of the umbilical blood vessels [137]. Fetal sources of 

MSCs, such as Wharton‘s jelly cells (WJCs), retain characteristics that make them an interesting 

resource for clinical applications and tissue engineering [138]. The fetal MSCs (fMSCs) can be 

derived from ethically compromised source of aborted material [113] or from  derived from 

discarded perinatal tissue e.g.,WJCs [87], while adult MSCs (aMSCs) isolation involves an 

invasive procedure[139].  Second, fMSCs proliferate faster than adult MSCs (aMSCs). Third, the 

immunosuppressive effect of fMSCs in vitro is stronger than aMSCs [140]. Finally fMSCs 

express broader differentiation potential than aMSCs [141]. For clinical applications aMSCs 

present some drawbacks, such as reduction in both MSC number and differentiation potential 

with age [142], early senescence in culture [143], reduced proliferation [144]. The umbilical cord 

is a perinatal tissue collected painlessly at birth and has no ethical controversy associated with its 

collection.  It is also is a rich source of stem-like cells [141]. The WJCs  maintain long telomeres 

in culture which is an indicator of proliferation and lifespan [10], as well as a high frequency of 

colony-forming unit fibroblasts (CFU-F) which assess clonogenic capacity  [142, 143] and 

secrete soluble factors probably as exosomes [111] implicated in immunomodulation [144, 145]. 

Little scientific information is available about the effectiveness of WJCs in GVHD 

prophylaxis. Wu and colleagues show that MSCs derived from umbilical cord had higher 

suppressive effect on peripheral blood mononuclear cell proliferation compared from the ones 
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derived from bone marrow, in vitro [139]. In addition, they reported that after four infusions of 

umbilical cord derived MSCs into two patients suffering severe steroid-resistant aGVHD, GVHD 

associated symptomatology dramatically improved, with no adverse effect observed [139].  

In a xenogeneic model of GVHD under a major histocompatibility mismatch setting, Guo 

et al. show that human WJCs given on day 0 and day 3 post-transplant alleviated clinical 

symptomatology of GVHD in mice and improved survival time [149]. Guo and colleagues 

showed that WJC are transplantable across xenogeneic  barriers and infusion of them at day zero 

is effective to delay GVHD occurrence. Xeno transfer of human WJCs in mice alleviated 

GVHD-symptoms and increased survival. However, questions about WJC‘s xenoreactivity and 

persistence after engraftment are not answered by Guo‘s study. 

In the present study, I addressed the hypothesis that allogeneic WJCs would prevent the 

pathology syndrome associated with GVHD after allogeneic bone marrow transplantation. To 

accomplish this, I created a clinically relevant model of rat GVHD by transplanting allogeneic 

bone marrow across minor histocompatibility antigen (HA) barriers. To enhance alloreactive T-

cell stimulation, bone marrow (BM) was co-infused with a fraction of CD8
+
 cells magnetically 

selected from spleen. Bone marrow tissue was isolated from donor rats Fischer 344 (F344, RT1lv) 

and transplanted into lethally irradiated (10 Gray) Lewis (LEW, RT1l) rats.  MSCs derived from 

umbilical cord Wharton‘s jelly (WJCs) were either co-transplanted at day 0 with bone marrow, or 

administered on day 2 post-BMT.WJCs and  bone marrow were collected from haploidentical 

donors. The prophylactic potential of WJCs in an in vivo GVHD model was assessed as survival 

time, clinical symptomatology occurrence, and histopathological damages in target tissue. 
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Chapter 2 

RAT UMBILICAL CORD WHARTON’S JELLY CELLS ISOLATION 

AND PRELIMINARY CHARACTERIZATION 

Abstract 

  Mesenchymal stromal cells derived from umbilical cord, called Wharton‘s jelly cells 

(WJCs), are a promising source of undifferentiated cells with stem-like properties. WJCs are 

harvested painlessly after birth, can be expanded rapidly to clinically relevant numbers and 

banked for autologous or allogeneic transplantations. The most attractive characteristic of WJC 

for cellular therapy is their ability to modulate immune reactions and to be immunotolerated. In 

addition, these cells are suitable for tissue engineering, regenerative medicine and gene therapy. 

WJCs have been used as a cell therapy for immunological disorders including graft versus host 

disease (GVHD). Here, I isolated, expanded and characterized rat WJCs and used them for 

treatment of GVHD in a rat model after allogeneic bone marrow transplantation (BMT). An 

explant method to isolate rat WJCs is described here. Briefly, timed-pregnant female rats were 

humanely euthanized and the uterus was removed aseptically to a sterile 150 mm culture dish. 

Inside a biosafety cabinet (BSC), the uterus was opened and the umbilical cords from each pup 

collected. The cord was moved to a single well of a six well dish (8.7 cm2) and torn into many 

small pieces (1 mm or smaller) using Dumont #5 forceps. The pieces were allowed to dry in the 

well for about 10 minutes before DMEM with 20% fetal bovine serum (FBS) culture medium 

was added. Over the next week, cells were seen migrating out from the cord explants onto the 

culture dish. Cells were passed when they reached 85% confluence. WJCs were used at passage 

4 for transplantation studies. Surface maker expression was used to characterize WJCs 

population and multipotency was confirmed via tri-lineage differentiation assays. In summary, 

rat WJCs express mesenchymal stem cell-like characteristics, they can be easily harvested and 

expanded and represent a novel allogeneic source of MSCs to be tested as a cell therapy in rat 

disease models. 

 Key words: Wharton‘s jelly cells, mesenchymal stromal cells, rat umbilical cord. 
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Chapter 2- RAT UMBILICAL CORD WHARTON’S JELLY 

CELLS ISOLATION AND PRELIMINARY 

CHARACTERIZATION 

 2.1. Isolation and Characterization of rat WJCs 

 2.1.1. Design and Methods Isolation and Cell Culture 

All protocols were reviewed and approved by the Institutional Animal Care and Use 

Committee (IACUC). Rat WJCs were isolated from four pregnant rats Fischer 344 (F344) at 

between 19 to 21 days post coitus (DPC). Timed-pregnant female rats were humanely 

euthanized: anesthesia was induced by exposing the rat to a 5% isofluorane -oxygen mixture in a 

closed chamber until death. The uterus was removed aseptically to a sterile 150 mm culture dish. 

Inside a biosafety cabinet (BSC), the uterus was opened and the umbilical cord from each pup 

collected. The umbilical cord was rinsed with Dulbecco‘s Phosphate Buffered Saline (DPBS, 

Invitrogen, cat # 14190-250) to remove as much blood as possible, and blotted. Two umbilical 

cords were dissected into 2-3 mm pieces and were placed in a single well (9.6 cm
2
/ well), and 

after attachment, 500 µl of growth medium was added.  Isolation and expansion of rat Wharton‘s 

jelly-derived MSCs (WJCs) was achieved by using an explant method. The pieces were allowed 

to dry in the well for about 10 minutes before culture medium containing low glucose Dulbecco's 

Modified Eagle Medium (DMEM GIBCO cat# 11885-092), 20% fetal bovine serum (FBS, 

Hyclone Thermo Scientific cat# SH3008803), 1% glutamine (GlutaMAX™ Gibco cat# 35050-

079) and 1% Penicillin Streptomycin (Pen Strep GIBCO cat# 15140-122) was added. Cell were 

incubated at 37 ˚C, saturating humidity in a 5% CO2 atmosphere. Over the next 2 days, cells 

migrated out from the cord explants onto the culture dish.  At passage 0, about 5-7 days after 

plating, the cells had grown to 85% confluence and then were passaged. To pass, the cells were 

rinsed twice with DPBS followed by 0.05% Trypsin/ Ethylene diamine tetraacetic acid (EDTA) 

(Gibco ca# 15050-065) for 5 minutes at 37°C. The trypsin was inactivated by adding 3 times 

volumes of growth medium then the cells were pelleted by 200xg centrifugation for 5 min at 

room temperature. Cells were plated at 10000 cells/cm
2
 after passage 0. WJCs were used at 
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passage 3 for immunophenotyping, and passage 4 for differentiation potential and transplantation 

studies.  

 2.1.2. Cell yield 

 The cell yield from 2 cords was calculated at passage 1. After trypsinization, cells were 

suspended in 1000 µl of DPBS and cell counts were performed by using a 

hemocytometer and viability was assessed by trypan blue exclusion test. Data was 

analyzed by descriptive statistics using GraphPad Software. Data was expressed as 

mean± SD and 95 % confidence interval (CI) of the mean.2.1.3. Immunophenotype 

analysis using flow cytometry  

To detect rat WJCs‘ surface marker expression, cells were characterized by flow 

cytometry after passage 3. A total of 6x10
6 
cells were used for flow cytometry analysis;  aliquots 

of 1x10
6
 cells were suspended in 12 x75 mm Falcon polystyrene tubes in 500 µl of DBPS and 

incubated with the specific antibody conjugated with fluorescein isothiocyanate (FITC). 

Expression of mesenchymal markers CD44 (Millipore cat# CBL1508F), CD73 (BD Pharmingen 

TM
 cat# 551123), CD90 (BD Pharmingen 

TM 
cat# 554897) and hematopoietic marker CD45 (BD 

Pharmingen 
TM 

cat# 554877) and CD34 (Santa Cruz Biotechnology cat# sc-7324) were analyzed. 

FITC conjugated mouse IgG1 (BD Pharmingen 
TM 

cat# 550616) was used as the isotype control. 

Antibodies were used at 1:100 dilution. Tubes were incubated at 4˚C in the dark for 20 min. 

After the incubation, the cells were washed with DPBS and the results were obtained by reading 

the output of a FACS Calibur flow cytometer (Becton Dickinson). For each tube, 10000 events 

were collected and the data was analyzed using Cell Quest software and the forward and side 

scatter profile gated out debris and dead cells. Data are expressed as percent of positive cells 

based on the mean fluorescence intensity of antibody compared with control. 

 2.1.4. Differentiation potential of rat WJCs 

Rat WJCs derived from rat F344 and expanded till passage 4 were differentiated into 

adipogenic, osteogenic, and chondrogenic lineages following a described protocol [1]. A non-

quantitative differentiation assay was performed. Briefly, for differentiation 10× 10
3
 cells/cm

2 
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was cultured in 6 well Falcon plates. Cells were incubated at 37 ˚C, saturating humidity in a 5% 

CO2 atmosphere. WJCs obtained from the same litter were pooled together and induced into the 

tri-lineage differentiation separately. Once they reached 85% confluence, growth medium was 

replaced by adipogenic induction medium containing DMEM high glucose (Gibco cat# 11965-

092 ) supplemented with 10% FBS (Hyclone Thermo Scientific cat# SH3008803), 0.5 mM 

isobutyl-methylxantine (Sigma I5879-100MG ), 200 μM indomethacin (Sigma cat#17378), 1 μM 

dexamethasone (Sigma cat# D4902) and 10 μg/ml insulin (Sigma cat#12643). The growth 

medium was replaced every 3 days. At 21 days of culture, cells were fixed in 4% 

paraformaldehyde and stained with oil red-O solution (Sigma cat# O06525). For osteogenic 

differentiation, once cells reached 85% confluence, growth medium was replaced by osteogenic 

induction medium containing low glucose DMEM (Gibco cat#11885-092) supplemented with 

10% FBS (Hyclone Thermo Scientific cat# SH3008803), 10 mM β-glycerophosphate (Sigma 

cat# G9422-10G), 0.2 mM ascorbic acid (Sigma cat# A5960-25G), and 10 nM dexamethasone 

(Sigma Cat#D4902), and cultured for 21 days, replacing the medium every 3 days. Cells were 

fixed in 4% paraformaldehyde for 10 minutes and osteogenic differentiation was detected by 

Von Kossa staining. For chondrogenic differentiation, medium was replaced by chondrogenic 

induction medium containing DMEM high glucose (Gibco cat# 11965-092 ), 6.25 μg/ml insulin 

(Sigma cat#12643), 6.25 µg/ml insulin transferrin selenium (GIBCO cat# 41400), 6.25 µg/ml 

selenous acid (Sigma cat# 211176-10G), 5.33 μg/ml linolenic acid (Sigma cat# L2376), 1.25 

mg/ml bovine serum albumin (BSA), 0.35 mM proline (Sigma cat#P5607), 1 mM sodium 

pyruvate (Sigma cat#P2256), 100 nM dexamethasone (Sigma cat# D4902 ), 0.1 mM L-ascorbic 

acid-2-phosphate (Sigma cat# A8960), supplemented with 10 ng/ml transforming growth factor-

beta 3 (TGF-β3) (R&D Systems,cat#243-B3/CF). The cells in culture plates were fixed with 4% 

paraformaldehyde for 10 minutes and stained with Masson‘s trichrome stain. Cells cultured in 

regular growth medium were used as negative control. 

2.3 Results 

 2.3.1 Primary explant culture of WJCs 

In the present study, fragments of umbilical cord adhered onto the surface of the culture 

dish about 10 min after plating. After 24 hour, adherent cells with fibroblast –like morphology 
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started to migrate from explants reaching 90% confluence between 7 and 10 days. The average 

cell yield at passaged 1 obtained from 2 cords plated together (n=24 , 6 cords from each litter) 

was 237430± 36480 cells, the 95% confidence interval of the mean was (222020 to 2528300). 

Migrating adherent cells from rat umbilical cord (UC) explants were identified 24 hours 

after culture. Primary cell cultures reached a confluence of 80%-90% at days 7-8. WJCs 

displayed a fibroblast-like or stellate morphology.  In most cells a prominent nucleus with oval 

shape and disperse chromatin was observed (fig. 2.1). 

 

Figure 2.1. Morphological characterization of rat Wharton‘s jelly cells (WJCs) passage 0.  

Objective magnification 10X. After culture of rat umbilical cord (UC) explants, adherent cells 

with fibroblast-like and spindle-shaped morphology were observed migrating from rat UC 

explants 24 hours after  plating. Spindle-shaped and fibroblast-like cells, as well as phase-bright 

cells (arrows) with rounded morphology, were seen growing out of the explants. Dashed line (---

) indicates the UC explant‘s margin. WJCs were sub-cultured for more than 8 passages without 

showing morphologic changes associated with senescence. 

 2.3.2. Immunophenotyping 

Surface marker expression of WJCs at passage 3 revealed expression of MSCs defined 

markers, such as CD44 (47.7%), CD73 (68.02%) and CD90 (90.33%) and negative expression of 

hematopoietic-specific markers CD34 (0.04%) and CD45 (0.05%) (fig.2.2). 
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Figure 2.2. Flow cytometry was performed on rat Wharton‘s jelly cells (WJCs) at passage 3. Dot 

plot representation shows percentage of Wharton‘s jelly cells expressing specific marker in upper 

right quadrant, percentage of cells not expressing specific markers are represented in upper left 

quadrant. Wharton‘s jelly cells express CD44, CD73, CD90 and do not express CD34 or CD45.  

The FITC isotype control (negative staining) was set at 1% (data not shown). 

 2.3.3. Differentiation potential of rat WJCs 

Another defining characteristic of MSCs is their ability to differentiate in cells of the 

adipocytic, osteocytic and chondrocytic lineages. Differentiation of WJCs at passage 4 into fat, 

bone and cartilage lineage is showed in figure 2.3 When WJCs were cultured in adipogenic 

medium, they accumulated intracytoplasmic lipid drops which is associated with differentiation 

into adipocyte lineage cells. When WJCs were cultured in osteogenic medium, extracellular 

mineralization related to osteocyte differentiation was detected. Finally, when WJCs were 

cultured in chondrogenic medium, I  noticed interstitial accumulation of collagen fibers. Taken 

together, these results provide support  the  mesenchymal differentiation potential of rat WJCs.  
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Figure 2.3.  Multilineage differentiation potential of rat Wharton‘s jelly-derived mesenchymal 

stromal cells (WJCs) at passage 4. Differentiation induced by incubation in adipogenic 

differentiation medium (top panel), in osteogenic differentiation medium (middle panel), or in 

chondrogenic differentiation medium (bottom panel). Adipogenic differentiation conditions 

(induced) or standard culture conditions (control) for 21 days is shown in top panels. Oil Red-O 

was used to stain lipids and hematoxylin for staining nuclei. Differentiation to adipogenic lineage 

induced small lipid droplets which stained positive with oil red-O to accumulate in the 

cytoplasm. WJCs maintained in osteogenic differentiation medium (left) or control 

(undifferentiated) conditions (right) is shown in middle panels  Cells were differentiated for 21 

days prior to being fixed and stained using von Kossa‘s stain  Note the dark crystalline staining 

in the differentiated cells indicating deposition of calcium. WJCs maintained in chondrogenic 

differentiation medium (left) or control (undifferentiated) conditions (right) is shown in the 

bottom panels.   Cells were differentiated for 21 days prior to being fixed and stained using 

Mason‘s Trichromic staining for collagen detection. Note that WJCs maintained in chondrogenic 

medium (left) displayed fascicules of fibrillar material staining positive for collagen.  

 

2. 4 Discussion 

Mesenchymal stromal cells (MSCs) are classically defined by three properties: their 

adherence to plastic in regular conditions, their expression of select surface marker antigens and 

their ability to differentiate along mesenchymal lineage such as fat, bone and cartilage [2]. 

However, some investigators consider this definition as unspecific, since these proposed typical 

characteristics to define MSC are based exclusively on culture conditions   [3]. The standard 

definition of MSCs proposed by Dominici et al. states that ≥95% of MSC population must 
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express CD73, CD90 and CD105 [2]. In the present study I found that 68 and 90 percent of rat 

WJCs expressed CD73 and CD90 respectively. The lower mesenchymal-associated marker 

expression of CD73 and CD44 may be correlated with species-specific differences, isolation 

procedure, culture conditions and passage. Mitchell et al. reported that human WJCs show 

heterogeneity in cell morphology after primary culture by explant method [4]. Most protocols to 

obtain WJCs from human UC include removing of blood vessels to potentially reduced 

heterogeneity of the cell population [5]. In the present study, removing blood vessels from rat 

UC was not feasible due to UC‘s size. This is a variable which may impact rat WJCs surface 

markers expression. 

Due to their differentiation potential and immune properties, MSCs have been used as 

cell therapy for immunologic disorders including GVHD [6]. Results from transplantation 

studies showed that a subpopulation of WJCs can promote tissue repair by maintaining 

multilineage differentiation in vivo [7]. Although the mechanism underlying MSCs 

differentiation is not completely elucidated, it is thought that cell determination and 

differentiation into completely differentiated specific cell types might be connected with 

epigenetic changes [8], cell fusion [9], soluble factors [10] and cell-to cell contacts [11], 

extracellular matrix components and mechanical forces [12]. According to our literature review, 

we are describing for the first time a protocol to isolate and expand rat WJCs. The three 

minimum criteria defining MSCs, such as plastic-adherence, specific surface antigen expression, 

and MSCs in vitro differentiation potential into adipocytes, osteoblasts and chondroblasts [2], is 

reached for rat WJCs. Similar to bone marrow-derived MSCs, rat WJCs expressed fibroblastic 

morphology, immunophenotyping and in vitro differentiation capacity. The rat has been used as 

a clinical model for GVHD [13, 14, 15], however until now non-availability of rat WJCs was a 

limitation to use them in allogeneic and syngeneic settings to prevent or treat GVHD in rat 

models. 
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Chapter 3-EXPERIMENTAL MODEL OF GVHD TO MINOR 

HISTOCOMPATIBILITY ANTIGENS IN A RAT MODEL 

Abstract 

 A clinically relevant model of GVHD across minor mismatch histocompatibility setting in rats 

was developed by allogeneic bone marrow (BM) cells and CD8
+
 splenocytes transplantation 24 

hours after lethal total body irradiation (TBI). Donor cells from 40 Fischer 344 rats (F344) 

(RT1lv) were transplanted through the dorsal vein of the penis into recipient Lewis rats (RT1l). 
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Recipient rats were divided in 4 groups categorized as1) positive control (receiving T cell-

depleted BM only), 2) GVHD-induced (rats receiving BM plus CD8
+
 splenocytes without 

Wharton‘s jelly cells (WJCs)), 3) GVHD-induced receiving WJCs on day 0, and 4) GVHD-

induced receiving WJCs on day 2 post-transplantation. GVHD was assessed daily by clinical 

signs such as food intake, weight loss, posture, diarrhea, skin integrity, hair coat, body 

temperature and survival. GVHD was confirmed using histopathological study of damaged 

tissues and immunohistochemistry expression of the GVHD biomarker Elafin in tissue sections. 

Other biomarkers of GVHD, such as complement activation, and collagen deposition, were also 

evaluated in affected tissues. Clinical data was scored from 0 to 3 using a previously described 

GVHD grading scale. Co-administration of WJCs with hematopoietic cells on day 0 failed to 

alleviate GVHD-associated symptomatology and mortality. WJCs administered on day 2 post-

induction ameliorated GVHD-associated symptomatology, hematopoietic niche reconstitution, 

survival time and enhanced hematopoietic recovery. 

Keyword:  graft versus host disease, Wharton‘s jelly, mesenchymal stromal cells, 

immunosuppression 

 

 

Chapter 3- EXPERIMENTAL MODEL OF GVHD TO MINOR 

HISTOCOMPATIBILITY ANTIGENS IN A RAT 

MODEL 

 3.1 Background 

 

Graft versus host disease (GVHD) is defined by the concurrence of clinical symptoms 

and pathological manifestations in an immunocompromised host receiving hematological stem 

cell transplantation (HSCT) [1]. Although the most important risk factor for the development of 

GVHD is genetic disparity at loci within the major histocompatibility complex (MHC), disparity 

at loci outside the MHC which encode minor histocompatibility antigens (MiHAs) can trigger 

donor T-cell activation and GVHD [2]. Therefore, in humans, even after transplantation of 

matched MHC tissues, incidence of acute GVHD can reach 30% [3, 4]. After autologous HSCT, 
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even though there is no genetic disparity, a GVHD-like syndrome has been reported to occur  

[5,6]. This auto-immune syndrome or autologous GVHD (auto-GVHD) has been described in 

patients receiving preparative conditioning regimen before HCT, immunosuppressive therapy, 

depletion of Tregs [5], suffering underlying malignant disease or receiving a second HCT [7]. 

After transplantation the initial donor T-cell recognition is amplified by proinflammatory 

cytokines released by the myeloablative conditioning regimen [8, 9]. Since in most clinical 

models of bone marrow transplantation (BMT) donor and recipient are MHC matched and 

disparate only for MiHAs, the experimental model of BMT needs to focus on clinically relevant 

MiHAs mismatch models [10]. GVHD pathophysiology has been largely dissected in mouse 

models [10,11]. However, rat models for GVHD are also suitable since they have been proved to 

mimic dermatologic manifestations of GVHD in human [12].  Studies of BMT in rats have 

revealed the role of autoreactive T cells in the development of GVHD after autologous [13] and 

syngeneic BMT [14].  

 

 3.1.2. The Histocompatibility Antigens of the Rat 

   

The laboratory rat (Rattus norvegicus) is an important model for studying transplantation 

[15,16,17] and for studying experimentally induced auto-immune diseases [15, 19]. The rat is an 

outstanding experimental model which combines the advantages of being an intermediate-size 

rodent [16] and it is well-characterized immunologically and immunogenetically [19]. The major 

histocompatibility complex (MHC) in the rat, known as the RT1 complex, is located in 

chromosome 20 [15, 20]. RT1 plays a fundamental role controlling immune responses [15, 18] 

and graft rejection [17]. RT1 complex has been characterized based on serological [16, 21], 

molecular [16], and transplantation studies [21].  The RT1 complex displays a similar 

organization to the MHC in human and mice [16, 17, 21]. Thus, the rat RT1 complex gene 

family contains classical class Ia genes and non-classical class Ib genes, class II and class III 

regions [15]. However, a distinctive characteristic of rat MHC is the presence of supplementary 

class I genes (Class Ia) centromeric to the class II region [15, 17, 22]. Class Ia loci encode 

proteins expressed on all nucleated somatic cells [23], which achieve antigen-presenting function 

to CD8
+
 T cells [18, 22, 24]. The function of the non-classical class Ib loci is mostly unidentified 
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[18, 22, 24]. The class II locus encodes molecules which present antigens to CD4+ T helper cells 

[18]. The class II antigens are expressed on a number of cells such as dendritic cells, 

macrophages and B cells [25]. Since these cells are specialized to initiate or stimulate T cell 

activation, they are known as professional antigen presenting cells (APCs) [26]. Due to their 

hematopoietic ontogeny, these cells are also known as hematopoietic APCs [27]. Nonetheless, a 

wider spectrum of cells derived from non-hematopoietic tissues, which do not constitutively 

express class II antigens necessary for recognition of naïve T cells [28], such as epithelial, 

stromal [29] and vascular endothelial cells [30], can acquire APC functions once they are 

stimulated by inflammatory conditions [31]. While class I and class II loci are responsible for 

adaptive immune responses [32], the class III loci expressed on a variety of cell types [33] 

encode secreted proteins, including some elements of the complement cascade and cytokines 

[18] such as tumor necrosis factor alpha and beta (TNF-α and -β) [34], and heat shock proteins 

[35],and are involved in innate immune responses [18]. 

 

3.2. Establishment of a GVHD model following bone marrow 

transplantation in a minor histocompatibility complex 

matching rats 

 

The model of GVHD in rats was established using allogeneic BMT plus donor-derived 

CD8
+
 from spleen with or without additional haploidentical MSC co-transplantation. I used male 

rat Lewis RT1
l
 as recipients and female Fischer 344 (F-334) RT1

lv 
as donor of hematopoietic 

cells from bone marrow and spleen, and WJCs from the umbilical cord of pups obtained from the 

female Fischer 344 rat. The establishment of this model was based upon studies of Schulak et al. 

and Nakao et al. who performed experiments of transplantation across minor histocompatibility 

in rats [36, 37] 

MHC complex from rat Lewis and F344 express similar haplotypes which vary at a 

single RT1-linked locus [38]. This model mimics clinical allogeneic hematopoietic cell 

transplantation (HCT), where donor and recipient are MHC-matched [10]. These studies were 

carried out with permission of Institutional Animal Use and Care Committee (IACUC) of Kansas 

State University dated 21.17.11.  
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 GVHD model was created by BMT across minor histocompatibility barriers after lethal 

10 Gy total body irradiation (TBI). Male Lewis (RT1l) rat recipients (10-12 weeks old, 200-

250g) were given 10 Gy TBI by using a linear accelerator (Varian Clinac 2100C/D) in Kansas 

State University, College of Veterinary Medicine, Clinical Sciences department. Radiation was 

given a dose of 600 cGy/min to un-anesthetized, restrained rats. Animals were injected 24 hours 

later with 30 x 10
6
 unfractionated bone marrow cells and 2 x10

6
 immuno-magnetically selected 

splenocytes (CD8
+ 

) female from F344 (Rt1
lv

) donor rats intravenously via the dorsal penis vein.  

Donor cells were suspended in 1000 µl of DPBS and infused using a scalp vein infusion set (27- 

gauge). Once the cells were injected, an additional 500 µl of DPBS was infused to flush the 

infusion line and assure each animal received the complete amount of cells. 

 3.2.1. Experimental design of the in vivo GVHD model 

Fifty five Lewis (RT1l) rats were divided in 6 groups: 3 experimental and 3 control 

groups. The experimental groups were composed of recipients Lewis rats randomly assigned (see 

Table 3.1) and were induced to develop GVHD following TBI and allogeneic hematopoietic cell 

transplantation (allo-HCT) with cells derived from F344 (Rt1
lv

) rat BM and spleen. Group 1 

(n=10) was composed of RT1
l 
rats Lewis that were induced to develop GVHD by co-

transplantation of 30x10
6
 bone marrow cells and 2 x10

6
 immuno-magnetically selected 

splenocytes (CD8
+
)  from F344 (Rt1

lv1
), this group was identified as GVHD-induced.  Group 2 

(n=10) was formed by recipient Lewis rats which were induced to develop GVHD as in group 1, 

and received 2 x 10
6 
WJCs simultaneously with the allo-HCT (day 0) identified as WJCs day 0 

(WJC0).Group 3 (n=10) was composed of recipient Lewis rats which were induced to develop 

GVHD as  in  group 1, and received 2 x 10
6
 WJCs 2 days after allo-HCT (day 2), this group was 

identified as WJC day 2 (WJC2). Control groups were formed by recipient rat Lewis which were 

randomly assigned to the group but were induced to develop GVHD. Control group 4 (negative 

control) (n=10) was formed by rats which received TBI without allo-HCT or WJCs; control 

group 5 (positive control) (n=10) was made up of rats that received TBI followed by bone 

marrow cells immunomagnetically depleted of CD4
+
 and CD8

+ 
cells (positive control), and 

group 6 (normal healthy control) (n=5) was comprised of untreated Lewis rats used to compile 

histopathological evaluation parameters. In a pilot study, by using the same combination of rat 

strains  male Lewis (RT1l)  as recipients and female F344 (Rt1
lv

) as donors, I established that 
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using bone marrow cells at dose of 30 x 10
6
 cells per rat together with 2 x 10

6
 
 
splenocytes was 

enough to induce GVHD. At the same time by using WJCs at dose of 2 x 10
6 

cell/rats attenuation 

in GVHD-associated symptomatology was observed (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 

Experimental groups 

 

 
 Abbreviations: TBI: total body irradiation; WJCs: Wharton‘s jelly cells; BM: bone marrow; 

GVHD: graft versus host disease 
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 3.2.2. Total Body Irradiation 

Allogeneic hematopoietic cell transplantation (HCT) is the standard treatment for patients 

suffering hematological disorders of malignant or non-malignant cause [39]. The efficacy of 

HCT in cancer treatment depends on myeloablative conditioning regimens, such as radiation, 

which eradicates circulating and bone marrow resident neoplastic cells, thus allowing the 

engraftment and repopulation of bone marrow with healthy donor hematopoietic cells. Ionizing 

radiation causes rupture of DNA by overproduction of activated radicals such as hydrogen 

peroxide, hydrogen radicals, OH radicals, and superoxide anions [40]. Since ionizing radiation 

causes rupture in the DNA double-strand, mitotically active cells including hematopoietic and 

gastrointestinal lining cells are mostly affected. DNA damage occurs in multiple sites and the 

cellular repair system is unable to fix them and resulting in cell death in target tissues which 

progress to either necrosis or apoptosis [41]. TBI induces systemic inflammatory responses, 

activation of innate immune responses and triggers release of inflammatory cytokines in different 

organs [42]. While DNA damage caused by low-dose exposure to radiation may be repaired, a 

high enough dose of total body radiation (TBI) exposure affects all stem cell compartments 

making autologous regeneration and repair no longer possible [40]. After TBI the only treatment 

to restore the hematological system is hematopoietic stem cell transplantation (HSCT) [42]. 

Lange and colleagues showed in a mouse model of acute radiation syndrome that infusion of BM 

derived MSCs were able to modulate toxic and inflammatory effects of radiation, reduce fibrosis, 

increase survival and even promote hematopoietic recovery in the absence of hematopoietic stem 

cell transplantation [42]. 

  

 3.2.3. Bone Marrow Hematopoietic Cells Harvesting 

 Forty female rats F344 (RT1
lv

, 10-12 weeks old, weighing 150-200 g obtained from 

Charles Rivers breeding laboratories, Wilmington, MA) were anesthetized by inhalation of 

isofluorane at 5% (Baxter Forane® Deerfield, IL cat# 1001936060 ) dissolved in oxygen using a 

V-10 Anesthesia system (VetEquip, Inc., Pleasanton, CA) and then were euthanized by cervical 

dislocation. The hind legs were shaved and betadine antiseptic solution was applied with gauze. 

Skin and muscle were removed and femur and tibia were excised and placed in a sterile 

specimen cup containing pre-warmed sterile DPBS (GIBCO cat#14190) at 37˚C. Inside a 
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biosafety cabinet (BSC) under aseptic conditions, bone  epiphysis were removed using a bone 

cutter Rongeur and bone marrow was flushed  from femur and tibia using a 10 ml syringe with a 

19 gauge needle  filled with pre-warmed DPBS at 37 °C. Marrow plugs were transferred into 50 

ml conical tube and broken up by aspirating the suspension in and out of the needle at least three 

times. Cells were passed through a 40 micrometer filter and centrifuged at 200 xg for 5 minutes 

at room temperature. The supernatant was discarded and red blood cells (RBCs) were lysed by 

adding 1 ml of lysing buffer (ACK lysing buffer GIBCO cat# A10492-01). After 1 minute 

exposure to lysing buffer, the cells were centrifuged at 600 xg for 6 minutes, the supernatant was 

discarded and the cells were washed twice with DPBS. Bone marrow cells harvested from one 

donor were transfused in one recipient at a dose of 30x10
6
 cells per recipient. 

 3.2.4. Magnetic Cell Sorting 

Bone marrow T cell depletion was achieved by using a Magnetic Cell Sorting (MACS) 

isolation kit containing depletion buffer and CD4 MicroBeads conjugated to monoclonal mouse 

anti-rat CD4 antibodies (isotype: mouse IgG2a, κ; clone: OX-38, Miltenyi Biotech cat# 130-090-

319); and MicroBeads conjugated to monoclonal mouse anti-rat CD8a antibodies (isotype: 

mouse IgG2a, Miltenyi Biotech cat# 130-090-318). Single cell suspension from bone marrow 

were obtained and cell number was determined and  10x10
7 

cells were suspended in 80 µl of 

buffer at 4˚C in an Eppendorf tube, then 20 µl  of CD8 microbeads  was added to each fraction 

and  cells were incubated for 20 minutes at 4 ˚C. After incubation, cells were washed in 1 ml of 

buffer and centrifuged at 300 xg for 10 minutes and the supernatant was discarded. This 

procedure was repeating using CD4 microbeads. After the incubation with microbeads, the cell 

suspension was applied onto the magnetic column separator and CD8
+
 and CD4

+ 
depleted

  
cells 

were collected in the flow-through fraction. 

In order to evaluate depletion efficiency, bone marrow aspirates were labeled separately 

with FITC Mouse Anti-Rat CD8a (BD Pharmingen™ cat# 554856) and FITC Mouse Anti-Rat 

CD4 (BD Pharmingen™ cat# 554837). Antibodies were used at 1:100 dilution and incubation 

was done for 20 minutes in the dark, then cells were washed in DPBS to remove unbound 

antibody.  CD4 and CD8 cell numbers were determined by flow cytometry and data was 

acquired using a BD FACS Calibur and CellQuest software. Depletion efficiency was calculated 
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by comparing the percentage of CD8
+
 and CD4

+
 before- and after- magnetic microbeads 

depletion.  

 3.2.5. Splenocytes Isolation 

The spleen from donor female F344 (Rt1
l v

) rats was excised and placed in a petri dish 

(100 x10 mm). The spleen was cut into longitudinal thin strips using a scalpel, and each strip was 

cut into smaller pieces. All the pieces were further diced using a small scissor. Spleen pieces 

were placed in 50 ml centrifuge tubes and treated with 0.25% trypsin at 37 ˚C for 5 minutes. 

Then, the tubes were centrifuged at 200 xg for 5 minutes, the supernatant was discarded and 

tissue was homogenized by using a pestle glass homogenizer (15 ml capacity) in an isolation 

buffer containing DPBS, 2% bovine albumin, and 0.5% EDTA at 37°C. The suspension was 

collected, mixed and passed through a 100 micrometer filter, and then through a 40 micrometer 

filter.  Cells were centrifuge at 200 xg for 5 min at room temperature, and the supernatant was 

discarded, and RBCs were lysed by adding 1 ml of lysing buffer (ACK lysing buffer, GIBCO, 

cat # A10492-01). After 1 minute of lysing buffer exposure, the cell pellet was centrifuged at 600 

xg during 6 minutes, the supernatant was discarded and cells were washed twice with DPBS, and 

resuspended in depletion buffer (Miltenyi Biotech, cat# 130-091-376). A fraction of spleen CD8
+ 

cells was obtained by positive selection by using a Magnetic Cell Sorting (MACS) isolation kit 

containing MicroBeads conjugated to monoclonal mouse anti-rat CD8a antibodies (isotype: 

mouse IgG2a, κ; clone: G28, Miltenyi Biotech, cat# 130-090-318). After incubation with 

microbeads, unlabeled cells which passed though the column were discarded, and the column 

holding CD8
+ 

cells was washed twice using the depletion buffer. 

Efficiency of spleen CD8
+ 

cells selection was assessed by flow cytometry. Selected CD8
+ 

cells were labeled with FITC Mouse Anti-Rat CD8a (BD Pharmingen™, cat# 554856). The 

percentage of CD8
+ 

cells present in splenocytes cell suspension before- and after- magnetic 

selection was used to calculate CD8
+ 

purification efficiency. Cell suspensions from bone marrow 

and spleen were combined and injected in the dorsal vein of the penis  into rats 24 hours after 

TBI on day 0 (e.g., the day of BM transplantation). 
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 3.2.6. Adoptive Transfer of Rat WJCs 

For WJCs adoptive transfer, recipient Lewis rats received 2x10
6
 donor WJCs from F344 

rat (WJCs isolated from F344 rat pups)  (Rt1
lv

) via the dorsal penis vein either 24 hours after 

lethal TBI together with the hematopoietic cells  on day 0, or 48 hours after hematopoietic 

transplantation on day 2. WJCs were infused at passage 4 and had never been subjected to a 

freeze/thaw cycle. 

WJCs from each litter were combined and suspended in 1000 µl of DPBS warmed at 

37⁰C. For dorsal penis vein injection, recipient rats were anesthetized by inhalation of  

isofluorane at 2% (Baxter Forane® Deerfield, IL cat#1001936060) dissolved in oxygen using a 

V-10 Anesthesia system (VetEquip, Inc., Pleasanton, CA). After the rat became insensitive to 

pain (e.g., loss of flexion reflex), the penis was extruded by descending the prepuce to the penis 

base, then the gland penis is held at the tip to visualize the dorsal penis vein for injection [43]. 

Injection was done using a 1 ml syringe with 25-gauge needle. The syringe was filled, air 

bubbles removed and cell injection was performed slowly.  

. 

 3.2.7. Assessment of GVHD 

The indicators of systemic GVHD in murine models, such as those reported by Polchert 

et al. and Taylor et al. [44, 45] include survival, percentage of weight lost, posture, behavior, and 

ruffled fur and skin integrity and erythema, and were evaluated daily. Rats were monitored for 

clinical symptomatology of GVHD including hair loss, skin rash, scleroderma, diarrhea, hunched 

posture and fur texture. Hematocrit was measured weekly by using standard microhematocrit 

technique; for hematology and serum biochemistry, samples were processed in the Clinical 

Pathological Laboratory at College of Veterinary Medicine in Kansas State University. 

Hematological parameter including serum biochemistry analysis were performed at 3 time 

points; first before radiation, second at day 35, which was considered as the midterm survival 

time, and finally at the end point defined as day 77 or at the time of euthanasia as indicated by 

advanced degree of GVHD (loss of 25% of initial body weight or hematocrit dropping to 20% or 

less). Individual values of creatinine, Alanine aminotransferase (ALT), Aspartate 

aminotransferase (AST) and bilirubin total were compared with the specie-specific reference 

values, as well as with the pretreatment normal values. Liver functionality was measured through 
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ALT, AST and total bilirubin, while renal function was measured by creatinine serum values. 

Animals dying before 15 days after TBI and showing aplastic anemia were considered to be 

suffered from acute radiation toxicity instead of GVHD. Recipient rats were considered as long-

term survivors if their survival time exceeded 60 days after hematopoietic cell transplantation. 

The degree of each GVHD associated symptom was semi-quantitatively scored from 0 to 3 

(Table 3.2). Negative control group formed by rats which received TBI without allo-HST or 

WJCs and  normal healthy control group untreated control were not included in the GVHD score 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

      TABLE 3.2 

         Semi-quantitative score of GVHD-associated clinical symptomatology 

 

The average for all symptoms daily observed in each rat was used to grade the severity of 

GVHD. The scores obtained from rats in transplanted with bone marrow cells and CD8
+
 

splenocytes untreated with WJCs( GVHD group), were compared to those in rat transplanted 
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with bone marrow cells and CD8
+
 splenocytes treated with WJCs at day 0 and day 2 to 

determine if the WJCs treatment had an effect in the prevention of GVHD. 

 3.2.8 GVHD Grading and Staging score 

Clinical  symptomatology  in rats were monitored and recorded daily.  Blood analysis was 

evaluated weekly. GVHD incidence in each target tissue was graded and staged using the 

Glucksberg and International Bone Marrow Transplant Registry (IBMTR) criteria (Table 3.3). 

The overall grading based on the individual stages of the organs involved was assigned using 

Glucksberg criteria (Table 3.4). A combination of both criteria was used to categorize GVHD as 

stage/grade.  

 

 

 

TABLE 3.3 

Glucksberg and IBMTR criteria target organ staging 

  
Graft versus host disease staging per International Bone Marrow Transplant Registry criteria [46, 

47, 48].  

 

 

TABLE 3.4 

GVHD overall grade Glucksberg criteria 
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Graft versus host disease grading per Gluckberg and criteria [46, 47, 48].  

 

 3.2.9 Supportive Care 

After TBI the animals were manipulated inside a High Efficiency Particulates Air 

(HEPA)-filtered isolation laminar flow unit (LABCONCO® PuriCare laminar flow cabinet). 

Rats were housed in an isolation room and had sterilized cages, food and water provided. 

Clinical observation, body weight and body temperature were recorded daily. Animals showing 

dehydration (indicated by a dorsal skin fold that was slow to return to normal position when 

gently pulled up), diarrhea or suddenly weight loss were given 0.2% glucose in their drinking 

water, as well as with intraperitoneal or subcutaneous administration of an ionic balance solution 

(Veterinary 0.9% sodium USP cat# 012007), ionic balance solution was pre-warmed at 37˚C and 

administered at 10 ml/kg. In addition, a high energy diet (Nutrical) and cereal (a highly preferred 

diet) were given to animals showing dehydration, diarrhea and weight loss. For intraperitoneal 

rehydration, animals were restrained using a sterile towel, the abdominal area was disinfected 

using betadine antiseptic solution. A 3 ml syringe with a 25 gauge needle was used to inject the 

solution. Solution was injected at a rate of 1 ml per minute. 

3.2.10 Neutrophil Recovery 

After myeloablative conditioning regimen followed by hematopoietic cell transplantation, 

neutropenia is a common event which increases susceptibility to infectious diseases until 

neutrophil number is recovered [49]. To determine the kinetics of peripheral blood neutrophil 
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recovery, manual differential cell count by blood smear was performed every 7 days for 5 weeks 

after hematopoietic cell transplantation. Neutrophil differential were determined by counting 100 

nucleated cells on Giemsa stained blood smear [50]. 

 3.2.11. Engraftment and Chimerism 

Hematopoietic engraftment was evaluated by three criteria. First, hematological 

evaluation of hematocrit (microhematocrit) and neutrophil recovery (blood smear differential 

count) every week while alive. Second, histopathological evidence of hematopoietic 

compartments reconstitution (after euthanasia), and thirdly by donor-recipient chimerism 

assessed by PCR using strain-specific DNA microsatellites from a spleen, a tail snip or  bone 

marrow tissue sample (after euthanasia). 

 3.2.12. Rat gDNA polymerase chain reaction (PCR) using Microsatellite 

Genomic DNA was isolated from rat tissue samples using a DNeasy blood and tissue kit 

Qiagen  cat# 69581.  For each rat gDNA was isolated from three tissues, the spleen, bone 

marrow and from a tail snip.  The genomic DNA was analyzed using PCR amplification with the 

microsatellite primer pair manufactured by IDT primer and obtained from the rat genome 

database [51]. PCR amplification conditions were 95˚C for 3 min, 94˚C for 15 s, 55˚C for 15 s, 

72˚C for 30 s for 40 cycles and 72˚C for 10 min for final extension.  The microsatellite was 

D5mgh20 (Forward-5‘-GAAGACACCCAGTGCAACCT, Reverse 5‘-

CTCTTTGCTTGAAAGACTTTTGC).  Expected product size was 252bp for Lewis and 219bp 

for F344. The amplification products were visualized by electrophoresis on a 2% agarose gel, 

stained with ethidium bromide and imaged using a gel imaging system (Fotodyne Inc., Hartland, 

WI). 

 3.2.13. Survival 

Survival and/or relapse-free survival of GVHD after hematopoietic cell transplantation 

was calculated using the Kaplan–Meier method, and the log-rank test was used for comparison 

of curves. Statistical analyses were done using GraphPad Prism® software. 
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3.3 Histopathological Evaluation 

 3.3.1 Hematoxylin and Eosin stain for morphological study 

Necropsy was performed in the Animal Resource Facility laboratory at Kansas State 

University. Animals were euthanized by CO2 overdose, then 500 µl of heparin was injected into 

the heart and blood perfusion was performed with a neutral pH phosphate buffer saline solution 

and then 10% neutral buffered formalin by using perfusion pump (Masterflex, Cole-Parmer 

instrument company, Vernon Hill, IL). Gross characteristics and occurrence of lesions in organs 

were recorded by photography (Nikon D70). Representative samples of target organs included: 

thin skin (forehead region), thick skin (pads), liver, lungs, pancreas, bone marrow (femur), 

spleen, thymus, small intestine (jejunum) and stomach were collected. The tissue samples were 

fixed by immersion in 10% neutral buffered formalin for 48 hours. Samples for healthy, 

untreated animals (n=5), lethally irradiated rats without BMT (negative control, n=10) and 

positive controls (rats receiving T-cell depleted BMT, n=10) were used as controls. For 

histopathological study using the routine stain hematoxylin and eosin (H&E), 1 cm
2
 samples 

were collected and processed by using the paraffin technique by the Kansas State University 

histopathology laboratory. Four 4 μm transverse sections were cut on a rotary microtome and the 

sections were stained by hematoxylin and eosin (H&E) and observed microscopically. Tissue 

samples were analyzed by a Board-Certified Veterinary Pathologist, Dr. Bhupinder Bawa, who 

was blinded to experimental conditions of the slides that were reviewed.  The histopathological 

parameters evaluated and scored include epithelial cells degeneration, necrosis or loss; atrophy, 

inflammation, hemorrhage, histiocytosis, edema and fibrosis.  

 3.3.2 Special stains 

 3.3.2.1 Mast cells, eosinophils and collagen deposition  

Mast cell distribution was studied using two different staining methods. First, mast cells 

were identified by their metachromatic properties using Toluidine blue staining [52]. Second, a 

simultaneous demonstration of mast cells and eosinophils was performed using a combined 

eosinophil/mast cells staining kit (American Master Tech, Lodi, CA, cat# KTCEM). Collagen 
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deposition was studied using Masson‘s trichrome stain [53]. Histopathological processing was 

carried out at the clinical histopathology laboratory at Kansas State University College of  

Veterinary Medicine.  

 3.3.1. Immunohistochemistry Evaluation 

 3.3.1.2 Complement, eosinophil major basic protein, and Elafin 

Immunohistochemistry was performed on 4 micrometer paraffin embedded sections. 

Antigen retrieval was performed by incubation of microscopic preparations in preheated (95˚C) 

10mM Sodium Citrate Buffer for 20 minutes. After 20 min of cooling, the sections were rinsed 

twice in DPBS with 0.05% Tween 20 for 2 min. After antigen retrieval procedures, tissue 

samples were blocked with 5% normal goat serum for 5 minutes to prevent the nonspecific 

binding of the antibodies. Sections were evaluated for complement (C3d) and anti-eosinophil 

major basic protein (MBP), and Elafin.  

Deposition of complement factor C3 was evaluated by using a immunoperoxidase 

staining kit (ImmunoCruz™ mouse ABC Staining System, Santa Cruz Biotechnology, cat# sc-

2017) following the manufacturer‘s instructions. Briefly, tissue sections were first incubated with 

mouse anti-goat primary antibody at 2.5 µg/ml overnight at 4°C. Tissues were washed with three 

changes of DPBS for 5 minutes each. Incubation was done with biotinylated secondary antibody 

goat anti-mouse for 30 minutes at room temperature. After washing three times with DPBS for 5 

minutes each, tissues were incubated for 30 minutes with ABC reagents. Finally, the target 

protein was visualized by incubation in peroxidase substrate. 

 Immunofluorescence staining was performed to assess presence of major basic protein 

(MBP). After antigen retrieval and nonspecific antibodies binding blocking, tissue sections were 

incubated with mouse IgG anti- eosinophil MBP primary antibody (Millipore, cat# CBL419) at 

dilution of 1:500 overnight at 4 °C. Incubation was done with secondary antibody FITC goat 

anti-mouse IgG (Millipore, cat# AP181F) at dilution 1:500 for 4 hours at room temperature. Cell 

nuclei were counterstained with 1 µg/ml 4'-6-Diamidino-2-phenylindole (DAPI) for 20 minutes 

and tissue sections were rinsed with DPBS. The fluorescence emission of FITC was obtained 

using an excitation wavelength of 490 nm and the emission was acquired using a 515 nm 
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longpass filter. The fluorescence emission of DAPI was obtained using an excitation wavelength 

of 358 nm and the emission was acquired using a 435-470 nanometers bandpass filter.  

Fluorescence was examined using a Nikon Eclipse TE2000-S microscope equipped with 

Semrock high-Q epifluorescence filters and micrographs taken with a Roper CoolSnap ES black 

and white camera using Metamorph software. 

Elafin was detected by rabbit polyclonal anti-Elafin antibody conjugated to biotin (Bioss, 

cat# bs-6531R-Biotin) for amplification of signal, a two-step biotin-avidin-enzyme system (ABC) 

was used following the manufacturer‘s instructions. 

3.4 Statistical analysis 

For all outcome variables normality was assessed by Shapiro-Wilk normality test. 

Variables that did not meet the assumption of homogeneity of variance or normal distribution 

were analyzed by Kruskal–Wallis one-way analysis of variance by ranks. Growth curves were 

calculated by using Excel and GraphPad prism software.  Results are expressed as the means± 

standard deviation (mean± SD). For analysis of more than 2 data sets Kruskal-Wallis test with 

Dunn's post-hoc test were used (non-parametric).  Significance was set at p˂0.05.  The variables 

studied were survival time, body weight, body temperature, hematocrit, blood analysis, serum 

biochemistry and histopathological and immunohistochemistry study. Survival time was 

evaluated by the Kaplan-Meier curve, a method of estimating time-to-event models in the 

presence of censored cases. Comparison between groups for: body weight, body temperature and 

hematocrit were conducted using Kruskal –Wallis one-way analysis of variance by ranks. 

Comparison within groups was conducted using a paired two-tailed t-test. Blood analysis and 

serum biochemistry between groups was compared using an unpaired two-tailed t-test. Data was 

analysed using GraphPad prism software.  
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3. 5. Results 

 3.5.1. Bone Marrow T-cell Depletion  

By using magnetic activated cell sorting (MACS), T-cell depletion efficiency was 96.1 

%. Total T cell recorded by flow cytometry in bone marrow cells suspension before depletion 

was 55% as detected by expression of CD4
+
 and

 
CD8

+ 
conjugated FITC antibodies. After 

magnetic depletion using Magnetic Cell Sorting (MACS) isolation kit containing Microbeads 

conjugated to CD4
+ 

and
 
CD8

+ 
T cell population dropped to 1.9%. After depletion the percentage 

of individual fractions of CD4
+ 

and
 
CD8

+ 
were 0.6% and 0.6% respectively (fig.3.1). 

 

 

 

 

 

Before depletion         

total T cells                                                                 After depletion After depletion After depletion 

 

 

Figure 3.1. Flow cytometry analysis of bone marrow T cell content before and after CD4
+
 and 

CD8
+
 depletion by magnetic activated cells sorting (MACS). Bone marrow cells were obtained 

by flushing BM from the  femur and tibia of donor F344 rats. 
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 3.5.2. Effect of Total Body Irradiation 

 3.5.2.1. Lethally irradiated, not transplanted rats (negative control group) 

Control animals which received the TBI-based conditioning regimen without 

hematopoietic cell transplantation did not survive longer than 12 days. Hematopoietic and 

gastrointestinal manifestations of acute radiation syndrome were observed as early as day 4 after 

TBI. Hematological analysis revealed aplastic anemia measured as pancytopenia (dramatic 

reduction in white and red blood cells counts) (Table 3.10). Histopathology study showed 

marked depletion of parenchymal components (hypoplasia) of hematopoietic organs spleen and 

bone marrow (fig. 3.6). 

 3.5.2.2. Acute Radiation Syndrome Pathogenesis 

Pathogenesis observed in negative control rats is summarized in figure 3.2. Rats exposed 

to 10 Gy TBI without hematopoietic cells transplantation had body weight loss of 20.8 % at day 

7 post-irradiation with a reduction from the initial weight average of 265 g to 210g (fig.3.3); also 

they presented anemia (defined as a hematocrit less than 42 percent or a hemoglobin level less 

than 13g/dL) and diarrhea (defined as having three or more loose or liquid and frequent bowel 

movements) less than 7 days after TBI. Respiratory symptoms such as dyspnea, breathing 

resistance were observed in all rats. 
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Figure 3.2. Acute radiation syndrome pathogenesis.  Rats exposed to10 Gy total body irradiation 

(TBI) without hematopoietic cells transplantation (negative control) showed at 7 days  post-

irradiation anemia symptomatology such as paleness of gums, ears and feet, reduction in 

hematocrit, pancytopenia and poor body condition. No alopecia was observed for negative 

control group.  

 3.5.2.3 Body weight 

The growth curve of rats during the 12 days study of negative control group is shown in 

figure 3.3. 
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Figure 3.3. Growth curve of rats receiving lethal 10 Gy total body irradiation (TBI) without 

hematopoietic cells transplantation (negative control group). Growth curve declined from day 1 

post-irradiation until day 12. Data is expressed as mean± SD.  

 

 3.5.2.4 Hematocrit 

The negative control group rats‘ hematocrit was measured before TBI (day 0), and 7 days 

post-TBI and at the end point (7-12 days) by microhematocrit.  The group values are presented in 

figure 3.4. The negative control group hematocrit measured before radiation was 50±2%, at 

seven days was 30±4%, which represents a decrease of 40%, and at the end point 9-11 days was 

12±4%, which denotes the hematocrit dropped to 76 % of the pre-radiation value (fig.3.4) 
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Figure 3.4.  Hematocrit  values in Lewis rats irradiated with 10 Gy total body irradiation(TBI) 

and not transplanted with bone marrow (negative control). Values represent the hematocrit 

(percentage of the volume blood sample occupied by red blood cells). Data are expressed as 

mean±SD. 

 3.5.2.5. Gross anatomy observations 

Gross anatomy observation of organs at necropsy of negative group rats revealed 

pulmonary hemorrhage, petechial hemorrhage in gastrointestinal tract and splenic atrophy (fig. 

3.5)  

 

Figure 3.5. Gross anatomy appearance of Lewis rats irradiated with 10 Gy total body irradiation 

(TBI) and not transplanted with bone marrow (negative control group). Macroscopic aspect of 

gastrointestinal tract and lungs from negative control group at day 10 post-irradiation. (a) Viscera 

of 2 rats showing similar pathological injuries, petechial hemorrhages disperse around intestine 

(solid yellow arrow) and pancreatic hemorrhage (dashed yellow arrow) was observed. (a‘) At 

higher magnification, petechial hemorrhage were easily distinguished (arrows). (b) Dramatic 

focal hemorrhage was present in all pulmonary lobes. 

 3.5.2.6. Histopathology 

Histopathological evaluation was performed at the end point (euthanasia) of negative 

control group rats. Tissue injuries observed were mucosal and sub-mucosal hemorrhage at 

intestinal level, hemorrhage and focal edema in lungs, and reduction in epidermis cell layers. 
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Deposition of collagen was observed by Masson‘s trichrome staining. Qualitative 

observation of collagen deposition showed a reduction in loose connective conforming papillary 

dermis in skin in specimens taken from negative control group animals (fig. 3.39) 

 

 3.5.2.7 Hematopoietic organs depletion 

Histopathological evaluation of hematopoietic compartments was performed at the end 

point (euthanasia) of negative control rats. Representative results are shown in figure 3.6 

 

 

 

Figure 3.6. Hematoxylin and eosin photomicrograph of sections from hematopoietic organs 

(spleen and bone marrow). (a) Healthy normal control spleen. Note the parenchymal components 

white pulp represented by primary lymph nodules spherical cluster of tightly packed small 

lymphocytes (solid ring), arrow indicates the central arteriole (1), surrounded by the mantle zone 

(2), red pulp (RP) surrounding white pulp is indicated. (b) Representative section from Negative 

control group spleen showing hypoplasia of parenchymal components white pulp  (indicated by 

ring and arrow) and RP (area adjacent to solid ring). (c) Bone marrow cavity from healthy 

normal rat, occupied by hematopoietic cells. (d) Bone marrow from representative section from 

the negative control group. Note the reduction in bone marrow parenchymal components 

(hypoplasia) observed in negative control group rat‘s bone marrow cavity (c).  This cavity is 
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mostly filled with fat stromal cells. (panels a and b objective magnification 10X, panels c and 

objective magnification 4X.Calibration bar is 500 micrometers. 

 

 3.5.2.8 TBI induced lung innate immunity activation. 

Histopathological evaluation of lung samples revealed extracellular deposition of 

eosinophil granule major basic protein (MBP) crystals close to hemorrhagic areas of lung 

parenchyma (fig 3.7). Definitive identification of MBP crystals was done by 

immunohistochemistry (fig 3.8). Intra-alveolar MBP crystals were observed in all negative 

control rats, and not in healthy animals (data not shown). 

 

 

Figure 3.7.  Irradiation induced lung injury.   (a) Lung parenchyma of rat irradiated with 10 Gy 

of total body irradiation (TBI) that was not transplanted with bone marrow (negative control 

group) showing lung injury indicated by extracellular acidophilic crystals (arrows).  These 

crystals were observed close to focal hemorrhage areas. (b) Lung parenchyma of healthy normal 

rat, alveolar clear airways are observed, magnification 20X. H&E stain. Calibration bar is 500 

micrometers. 
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 Figure 3.8.   Major basic protein (MBP) immunohistochemical staining of lung tissues from 

irradiated rats (negative control group).  a) Bright field micrograph of lung section arrows 

indicates crystalloid structures into lung airways. b) Immunofluorescence micrograph of same 

field as in a) indicating MBP staining associated with crystalloid structures (arrows). Objective 

magnification 40X. Calibration bar is 500 micrometers. 

 3.5.2.9. Mast cells distribution. 

Following total body irradiation, stainable mast cells were almost undetectable in small 

intestine lamina propia (fig.3.9), and at lung sub-pleural zone and in liver periportal areas.  

 

 

Figure 3.9. Eosinophil/mast cells staining of paraffin embedded tissues of rat irradiated with 10 

Gy of total body irradiation and not transplanted with bone marrow (negative control group).  

Representative small intestine section showing the epithelial surface lining and the subjacent 

lamina propia loose connective tissue.  Sections were stained with vital new red stain to visualize 

eosinophils, astra blue stain to show mast cells, and nuclei were counterstained with modified 

Mayer‘s hematoxylin. (a) No stained mast cell were observed in small intestine lamina propia of 

negative control group (arrows indicate eosinophils, objective magnification 10X). (b) Mast cells 
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(stained cells indicated by dashed arrows) and eosinophils (arrows) were found in small intestine 

lamina propia of healthy normal control rats (40X). Eosinophils were identified by their typical 

morphology of rounded cells with bilobed nucleus and affinity for vital new red dyes (arrows).  

Mast cells were identified by their oval morphology and intracytoplasmic granules with affinity 

for astra blue dye (dashed arrows).Calibration bar is 500 micrometers. 

 

3.6. Positive control group receiving bone marrow 

magnetically depleted of CD8
+
 and CD4

+ 
24 hours after TBI 

 3.6.1 Pathogenesis 

Rats that received 10 Gy of total body irradiation follow by bone marrow depleted of 

CD4
+
 and CD8

+ 
T cells was called the positive control group.  These animals survived until the 

77 days end point following bone marrow transplantation. The growth curve (fig 3.10) indicates 

a drop in body weight around day 7 post-transplantation, then body weight  constantly increased 

until around day 45 when some rats (n=3) reached a second drop in body weight. At day 10 all 

rats presented facial alopecia, more pronounced at the nasal area. Starting at day 20 hair was seen 

to be re-growing in all rats and by the mid-term of the study (day 35), alopecia was almost 

unnoticeable (fig 3.10). At midterm study (day 35) hematological parameter and serum levels of 

creatinine, alanine transaminase (ALT), aspartate transaminase (AST) and total bilirubin were 

within the healthy normal control reference values (Table 3.10). However, at the end point (day 

77) 5 of out 8 rats showed a significant elevation of hepatic enzymes ALT, t= 2.69, p value 

<0.03 and AST, t=1.68, p value <0.02. The mean values were ALT 81±52 U/L, and AST 

219±166 U/L (references values ALT=18-45 U/L; AST=74-143 U/L) [54]. 

Clinical manifestations of positive control rats receiving allogeneic hematopoietic cell 

transplantation (T-cell depleted bone marrow 24 hours after lethal TBI exposure) are 

summarized in figure 3.10. Growth curves of daily mean body weight is presented figure 3.11 
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Figure 3.10. Pathogenesis observed in the positive control group (rats which received 10 Gy 

total body irradiation followed twenty four hours later by bone marrow transplant of CD4 and 

CD8 depleted bone marrow).  This group showed very slight alopecia from day 4-10 post BMT 

and hair regrowth by day 20. 

 

 3.6.2 Body weight 

The growth curve of positive control group rats (rats which received 10 Gy total body 

irradiation followed twenty four hours later by bone marrow transplant of CD4 and CD8 

depleted bone marrow) during the 77 days after transplantation is shown in figure 3.11, data is 

expressed as mean±SD. 
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Figure 3.11. Body weight positive control group (rats which received 10 Gy total body 

irradiation followed twenty four hours later by bone marrow transplant of CD4 and CD8 

depleted bone marrow). Rats in the positive control group showed a significant body weight lost 

at day 3 post-TBI asterisk (indicated by *, t=2.72, df=18, p value=0.0140).  Body weight  

continued falling until day 7 reaching the first nadir in body weight. A second drop in growth 

curve was observed around day 50.  However, this was not  significant differences in body 

weight lost t= 1.428, df=16, p value=0.1689. Data is expressed as mean ± SD. 

 

 3.6.3 Hematocrit 

Mean values of hematocrit of the positive control group (rats which received 10 Gy total 

body irradiation followed twenty four hours later by bone marrow transplant of CD4 and CD8 

depleted bone marrow), was measured weekly by microhematocrit.  These data are presented in 

figure 3.12. 

 

Figure 3.12 Hematocrit  measured weekly during 77 days of study for rats that were irradiated 

with 10 Gy total body irradiation on day-1, and received T-cell depleted bone marrow on day 0. 
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Asterisk (*) indicates hemoconcentration. At week 1, 7 out 10 rats presented hemoconcentration. 

At week 2, hematocrit dropped and showed statistical difference with initial pre-treatment value 

(49.9%) until week 4, when hematocrit reached no significant differences with the pre-treatment 

value. (paired t test P value <0.03 α=0.05).  

 

 

                              

 3.6.4. Gross anatomy observations 

Macroscopic observations of positive control group viscera were recorded at day35 and 

day 77, when rats in the positive control group were euthanized. At day 35 after bone marrow 

transplantation, no noticeable damage was observed macroscopically (data not shown). At the 

end point (day 77), focal hyperemia and edema was observed in lung in 4 out of 8 rats  (fig.3.13) 

 

 

Figure 3.13.  Macroscopic aspect of gastrointestinal tract and lungs of transplanted rats with 

bone marrow T-cell-depleted at day 77 after bone marrow transplantation with T-cell depleted 

bone marrow .  Notice the hyperemia in the lungs and liver. 
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 3.6.5. Histopathology  

Tissue samples were taken and processed for histopathology from rats that were 

irradiated with 10 Gy total body irradiation on day-1, and received T-cell depleted bone marrow 

on day 0 (positive control group)  at day 35 (n=2) and day 77 end point (n=8). Deposition of 

collagen was observed by Masson‘s trichrome staining. Qualitative observation of collagen 

deposition showed a normal collagen network in target tissues as compared with healthy normal 

rat samples (fig 3.39). Representative histopathology results from skin, small intestine and liver 

are presented in figure 3.29. Mast cells distribution and in positive control groups are presented 

in figure 3.14. 

At day 35 post-transplantation, small intestine samples of rats receiving T-cell depleted 

bone marrow and untreated with WJCs (positive control), by using metachromatic stains the 

characteristics metachromatic granules of mast cells were not observed. However mast cells 

were localized exclusively in connective tissue of intestine lamina propia (fig3.14 (a)and (a‘) ). 

At day 77, mast cells which exhibit a positive metachromatic reactive reaction were observed in 

lymph node, lungs (fig.3.14 (b) and (c)) as well as in most tissues. 

 

 
Figure 3.14. Mast cells distribution in positive control rats, e.g., rats that were irradiated with 10 

Gy total body irradiation on day-1, and received T-cell depleted bone marrow on day 0.  

Toluidine blue stain at 77 days post-transplantation. (a) and (a‘) Small intestine interstitial mast 
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cells (yellow arrows) containing fine intracytoplasmic orthochromatic granules were observed, 

objective magnification 100X. (b) Mast cells were detected in lung sub-pleural zone (indicated 

by arrows). (c) Lymph node showing mast cell distribution in outer capsule (dashed arrows) and 

medullar zone (solid arrow). Note that mast cells stain purple and contain no metachromatic 

structures that stain blue.  Calibration bar is 100 micrometers in a and a‘; 50 micrometers in b 

and 100 micrometers in c.  

 

3.7. Establishment of rat model of GVHD  

 3.7.1. GVHD-induced rat with hematopoietic cells transplantation not 

receiving WJCs.  

GVHD induction was assessed by several criteria. The most prominent signal of GVHD 

in our model was alopecia. All GVHD-induced animal developed mild alopecia on their 

forehead. In addition to forehead, alopecia 4 out of 10 rats presented alopecia on their posterior 

legs, or on their anterior and posterior legs, as well as  dorsal area. As we observed in the 

positive control group, alopecia was observed at day 10 post-transplantation in the GVHD group, 

too. Two rats in the GVHD group presented a cyclic episode of diarrhea starting on day 10 and 

the second one at day 50 post-transplantation. At 35 day after transplantation in the GVHD 

group, serum chemistry revealed an increase in bilirubin total in 5 out of 10 rats, with a mean of 

0.3±0.25 U/L (reference value 0.05-0.15 U/L) (Table 3.10). Other serum biochemical values 

were within normal reference values. However, at the end point (day 77) an elevation of 

creatinine, ALT and AST was recorded in 5 out 5 rats. The mean values of creatinine, ALT and 

AST were 0.58±0.15, 54±17 and 153±51 U/L respectively (Table 3.11). The pathogenesis of 

GVHD in a rat minor histocompatibility mismatch model is summarized in figure 3.15. 
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 3.7.2 GVHD Pathogenesis 

 

Figure 3.15. Graft versus host disease pathogenesis observed in rats receiving bone marrow cells 

plus splenocytes (CD8
+
) after 10 Gy total body irradiation (GVHD group). 

 

Clinical manifestations of GVHD began at day 10 post-transplantation with 2 out of 10 

rats showing mild diarrhea at day 10 post-transplantation, and 6 out of 10 showing forehead 

alopecia.  

 3.7.3. Body weight 

The growth curve of rats during the 77 days study of GVHD group, e.g., rats receiving 

bone marrow cells plus splenocytes (CD8
+
) after 10 Gy total body irradiation, is showed in 

figure 3.16. 
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Figure 3.16.  Growth of the graft versus host (GVHD) group, e.g., rats receiving bone marrow 

cells plus splenocytes (CD8
+
) after 10 Gy total body irradiation.  GVHD rats showed a drop in 

body weight at day 3 post-TBI, paired t-test showed significant differences, asterisk (*) t=2.719, 

df=18, p value˂0.05. A second drop in body weight was observed at day 50, however this drop 

was not significant, paired t-test t= 1.394, df=12, p value˂0.02. Data is expressed as mean ± SD. 

 

 3.7.4 Hematocrit 

Mean values of hematocrit of the graft versus host (GVHD) group , e.g., rats receiving 

bone marrow cells plus splenocytes (CD8
+
) after 10 Gy total body irradiation.  GVHD rats are 

presented in figure 3.17. 
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Figure 3.17. Hematocrit measured weekly during 77 days of study of the graft versus host 

(GVHD) group , e.g., rats receiving bone marrow cells plus splenocytes (CD8
+
) after 10 Gy total 

body irradiation.  GVHD rats showed.  Asterisk (*) indicates hemoconcentration. At week 1, 5 

out 10 rats showed hemoconcentration. At week 2, co-existence of hemoconcentration in 2 rats 

and anemia in 2 more rats (O) was recorded. A third occurrence of hemoconcentration was 

observed in 1 out of 6 rats at week 7. At week 7, hematocrit was not significantly different from 

the initial pre-treatment value, paired t test t=0.05, p value˃0.90 

 

 3.7.5. Survival 

Estimates of survival of in the graft versus host disease (GVHD) only group (e.g., rats 

receiving bone marrow cells plus splenocytes (CD8
+
) one day after lethal irradiation) were 

calculated by Kaplan-Meier method.  Rats that develop GVHD and which died of transplant-

related toxicities within 77 days were recorded and rats which were euthanized to evaluate 

GVHD histopathology at day 35 . Statistical comparison of these data was performed using the 

log-rank test. Results were considered statistically significant when p was ≤ 0.05.  

Total mortality was observed in rats receiving lethal TBI only (e.g., 10 Gy irradiation 

only, the negative control group)..  This was  followed by rat receiving bone marrow cells and 

splenocytes CD8
+
 together with WJCs 24 hours after lethal TBI (WJC day 0 group) which had 

70% death.  Rats receiving bone marrow cells and splenocytes  CD8
+
  24 hours after lethal TBI  

and who were untreated with WJCs (e.g., the GHVD only group) had a mortality rate of 38% 

(see Table 3.5).  Survival curve was produced using the Kaplan-Meier method is shown in fig. 

3.18. 

 

 

 

 

 

 

 

 

 

TABLE 3.5 
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Summary of the Number of Censored and 

Uncensored Values 

 

 

 

 

 

 

 

 

 

 

*2 rats from each group were euthanized at middle term study (day 35) to evaluate 

histopathological status (these animals were censored from the survival curve). 

 

Kaplan Meier survival curve 

 

 

 

Figure 3.18. Kaplan Meier survival curve.  Rats (n = 50) receiving lethal 10 Gy total of body 

irradiation without hematopoietic cell (e.g., the negative control group, n=10) all died by day 12 

(red  line).  The graft versus host disease (GVHD) only group (e.g., rats receiving bone marrow 

Stratum TRT Total Died Censored Percent  

Censored 

 

Mortality 

1 GVHD only 10 3 2* 62.50 38% 

2 Negative    

control 

10 10 0 0.00      100% 

3 Positive control 10 0 2* 100.00  0% 

4 WJC day 2 10 0 2* 100.00  0% 

5 WJC day 0 10 7 2* 30.00 77% 

Total 44 20 24 54.24  
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cells plus splenocytes (CD8
+
) one day after lethal irradiation).  (GVHD only group, n=10) had a 

62% survival by the end of the study (green line).  Rats which were lethally irradiation on day -1, 

and transplanted with bone marrow and splenocytes CD8
+ 

together 2 × 10
6
 Wharton‘s jelly cells 

on day 0 (the WJC day 0 group, n=10) had a 38% survival rate by the end of the study (orange 

line).  Rats which were lethal irradiation on day -1, transplanted with  bone marrow and 

splenocytes CD8
+ 

day 0 and  received 2 × 10
6
 Wharton‘s jelly cells on day 2 (the WJC 2 group, 

n=10) had a 100% survival by the end of the study (purple line).  Rats in the positive control 

group, (e.g., rats transplanted with T-cell depleted bone marrow one day after lethal irradiation 

(n=10) also had a 100% survival rate by the end of the study (blue line).Log-Rank (Mantel-Cox 

test) indicates the survival curves are significantly different (Chi square: 68.56; P value 

˂0.0001).   

 

 3.7.6. Gross anatomy observations 

 Periosteal petechiae was observed in the frontal and temporal bones subjacent to skin 

alopecia after removing of skin in the GVHD only group rats after they were euthanized at 

different time post- transplantation (figure 3.18). At day 77 after bone marrow transplantation, I 

observed cecum vascular dilation and serosa thickening in large intestines as well as in 

peritoneum vascular dilation, and  atelectasis in lungs (fig. 3.20). 

 
Figure 3.19  Periosteal petechiae in the graft versus host disease (GVHD) only group (e.g., rats 

receiving bone marrow cells plus splenocytes (CD8
+
) one day after lethal irradiation).Note, this 

rat was euthanized at day 35 post-transplantation. 
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Figure 3.20 Macroscopic aspect of gastrointestinal tract and lung of the graft versus host disease 

(GVHD) only group (e.g., rats receiving bone marrow cells plus splenocytes (CD8
+
) one day 

after lethal irradiation).   The GVHD only group was not treated with WJCs. Tissue collected at 

the end of the survival period on day 77 post-transplantation is shown here. (a) Vascular dilation 

(yellow arrow) and serosa thickness was observed at cecum level. (b) Large intestine vascular 

dilation in observed in peritoneum and large intestine wall (yellow arrows). (c) Lungs show 

atelectasis left lobe (arrow) and in the cranial right lobe (dashed arrow). 

 3.7.7. Histopathology  

The graft versus host disease (GVHD) only group (e.g., rats receiving bone marrow cells 

plus splenocytes (CD8
+
) one day after lethal irradiation)  was not treated with Wharton‘s jelly 

cells.  In this group, mild to moderate tissue injuries was noted. In thin skin a reduction in 

epidermal cell layers (epidermis atrophy) and follicular drop-out were mostly observed. Hepatic 

centrolobulillar necropsy and periportal fibrosis was noted. In the intestines diffuse hemorrhage, 

histiocytosis and diffuse lymphocytic infiltration was observed. Abundant connective tissue was 

observed in samples taken from GVHD only group from target tissues skin, liver, small intestine, 

as well as from lung, and spleen (fig 3.39). Histopathological study revealed moderate 

pulmonary damage including peribronchiolar lymphocytic aggregation and mild interstitial 

mononuclear cells infiltration from tissues collected on day 77 (at the end of the study). 

 3.7.8. Mast cell distribution 

In the GVHD only group at day 35 after transplantation, I observed a pattern similar that 

in the negative control group rats: masts cell were not detected in lung or small intestine mucosa. 
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However at day 77, mast cells were detected in the small intestine mucosa, in both loose 

connective tissue (lamina propia) and epithelial lining (see figure 3.21). Mast cells containing 

prominent granules were observed with H&E and Astra blue staining. Stains performed in serial 

sections from formalin-fixed and paraffin-embedded cut at 4 micrometers thicknesses are shown 

figure 3.21. 

 

Figure 3.21. Mast cell staining in the graft versus host disease (GVHD) only group (e.g., rats 

receiving bone marrow cells plus splenocytes (CD8
+
) one day after lethal irradiation).  (a) At day 

77 after transplantation, mast cells (which are present within the small intestine lamina propia 

connective tissue of normal healthy animals) were observed inside the small intestine glandular 

epithelium in the GVHD only group. Mast cells with globular morphology and acidophilic 

intracytoplasmic granules were observed in both interstitial connective tissue (dashed arrows) 

and intraepithelial tissue (solid arrow). H&E staining of small intestine. (a‘) In an adjacent serial 

section, combined staining of eosinophils and mast cells confirmed the identification of mast 

cells (black arrow).  Note that mast cells showed affinity by Astra blue dye (black arrows), while 

eosinophils showed affinity for Vital red dye (red arrows).Objective magnification 100X. 

Calibration bar is 500 micrometers in both figures. 

 

Mast cell distribution in lung and lymph nodes at day 77 post-transplantation in the 

GVHD group is presented in figure 3.22. 
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Figure 3.22. Mast cell detection by Toluidine blue in lung (a) and lymph node (b) at day 77 post-

transplantation in the graft versus host disease (GVHD) only group (e.g., rats receiving bone 

marrow cells plus splenocytes (CD8
+
) one day after lethal irradiation).  Mast cells were 

identified by metachromatic stain of granular content (arrows) in (a) sub-pleural lung zone, 

objective magnification  20X or  (b) lymph node,  objective magnification 4X.  Note the scare 

number of mast cells within sub-capsular lymphatic sinus. Mast cells stain purple and non-

metachromatic tissues stain blue. Calibration bar is 500 micrometers. 

 

 3.7.9. Immunohistochemistry complement system cascade activation 

Complement deposition was observed in the GVHD group in a rat that died on day 17 

post-transplantation.   Complement c3a was observed in the proximal and distal tubule of the 

kidney, and in Henley‘s loop (e.g., the thin segment of nephron) (fig.3.23). Complement 

deposition was also detected in around small intestine glands, and in stomach mucosa 

(epithelium).  

 
Figure 3.23. Activated complement deposition in the kidney in the graft versus host disease 

(GVHD) only group (e.g., rats receiving bone marrow cells plus splenocytes (CD8
+
) after lethal 

irradiation). Deposition of complement (C3a) in tubular components of nephrons was observed 

in tissue samples from the GVHD group rat in tissues collected on day 17 post-transplantation. 
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Positive stain for C3a complement is brown and hematoxylin counterstain is blue.a) Kidney 

cortex complement C3a deposition was observed in tubular components of nephron, objective 

magnification 10.b) Complement C3a deposits were found along the luminal side of distal tubule    

Calibration bars is 500 micrometers. 

 

 3.7.10 Elafin: Biomarker of skin GVHD 

Elafin, also known as peptidase inhibitor-3, skin-derived anti-leukoproteinase or trappin-

2, is a protein overexpressed in patients suffering skin GVHD [55]. I found Elafin in GVHD 

target organs skin, liver and intestine in the graft versus host disease (GVHD) only group (e.g., 

rats receiving bone marrow cells plus splenocytes (CD8
+
) after lethal irradiation).   

Representative results are presented in figure 3.24 

 

  
Figure 3.24. Elafin staining in the graft versus host disease (GVHD) only group (e.g., rats 

receiving bone marrow cells plus splenocytes (CD8
+
) one day after lethal irradiation) at day 77 

post-transplantation. (a+a‘) Elafin immunoreactivity was observed in liver.  b) Few positively 

stained cells were observed inside large intestine epithelial glandular cells.  c) In contrast, no 

Elafin deposition was found in thin skin samples. Positively stained Elafin is brown and Mayer 

modified hematoxylin counterstain is purple.   
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3.8. Adoptive transfer of rat WJCs to prevent GVHD 

 3.8.1. Allogeneic hematopoietic cell and CD8
+
 splenocytes transplantation 

together with WJCs given at day 0 (WJC0). 

A summary of the pathogenesis observed in GVHD rats treated with WJCs on day 0 

(WJC 0) is presented in figure 3.25. Clinical evaluation and histopathologic study of 7 out of 10 

rats dying before day 17 post-transplantation indicated that these animals had engraftment failure 

(defined as failure to restore the blood cell production after hematopoietic cell transplantation) as 

a complication after hematopoietic cells transplantation. Histopathological evaluation showed 

bacterial sepsis in 3 out of these 7 rats in heart, liver and kidneys (fig.3.29). 

Five out of 10 the WJC0 group showed symptomatology of acute radiation syndrome 

including aplastic anemia and weight lost after day 17 post-transplantation. Aplastic anemia was 

defined as reduction of microhematocrit to less than 30%. A post-mortem validation was done by 

evaluating the cellularity of bone marrow and spleen parenchyma.  WJC 0 group rats (the three 

rats which survived to day 77) showed mild nose alopecia at day 31 (fig.3.25). Although initially 

their hematocrit dropped at week 2, by week 6 it reached the pretreatment value (fig.3.27). 

WJC0 rats that survived to day 77 may have had lower hepatic and renal damage 

compared to the GHVD only group as indicated by normal values of serum levels of ALT 38±6 

U/L, AST 89±20U/L, creatinine 0.37±0.06 U/L and bilirubin total 0.13±0.06 UL (Table 3.1). 
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 3.5.2. GVHD Pathogenesis. 

 

Figure 3.25. Clinical manifestations of graft versus host disease rats which were treated with 

Wharton‘s jelly cells, bone marrow and splenocytes 24 hour after lethal 10 Gy TBI (WJC day 0 

group). 

 

 3.8.3. Body weight 

The growth curve of GVHD rats treated with WJCs on day 0 is presented in figure 3.26. 

A drop in body weight was noted at day 3. At day 4, rats resumed a positive growth curve and 

they continued to gain weight until the end of the study (day 77) (fig.3.26) 
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Figure 3.26. Body weight in the Wharton‘s jelly cells on day 0 (WJC 0) group (e.g., rats which 

received bone marrow cells plus splenocytes (CD8
+
) 24 hrs after 10 Gy total body irradiation to 

induce graft versus host disease and were treated by Wharton‘s jelly cells on day 0).  Rats from 

WJC 0 group showed a significant body weight loss on day 3 post-TBI asterisk (*). t=5.098, 

df=18, p value˂0.01.  

 

 3.8.4 Hematocrit. 

The hematocrit of the WJC 0 group is presented in figure 3.27 

 
Figure 3.27.  Effect of Wharton‘s jelly cells given on day 0 (WJC day 0 group) on graft versus 

host disease (GVHD) on weekly hematocrit. In the second week, the hematocrit was 26 ±8% 
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which indicated anemia (O). After the third week, the hematocrit of surviving rats (n=3) had 

increased and was reaching the pre-treatment value at week 6. 
  

 3.8.5. Gross anatomy observations 

Five rats in the WJCs day 0 group died before day 17. These animals showed edema and 

focal hemorrhage in lungs.  In addition, kidney abscesses (fig.3.28), pericarditis, pneumonia and 

pleural effusion were observed in 3 out 7 rats. Splenic hypoplasia was observed in all rats in the 

WJC day 0 group after euthanasia. 

 

 

Figure 3.28 Kidney abscesses was observed in 3 out of 7 surviving rats who died before da 

17.Arrow indicates gross anatomy appearance of kidney sub-capsular  abscesses. 

Two GVHD rats treated on day 0 with WJCs and surviving until day 77 showed lung 

edema when they were euthanized (fig. 3.29).  This was similar to what was observed in the 

lungs of the GVHD only group (see figure 3.20). 



77 

 

 

Figure 3.29.  Effect of Wharton‘s jelly cells given on day 0 on graft versus host disease gross 

pathology. Gross aspects of gastrointestinal tract, kidneys and lungs of WJC day 0 rats at day 77 

post-transplantation. (a) No gross pathologies were observed in gastrointestinal tract, arrow 

indicates follicular hyperplasia in spleen.  (b) Higher magnification of area indicated by arrow in 

(a) is shown in (b).  Spleen showing reactive follicular hyperplasia (arrow). (c)  Lung edema was 

observed in 1 out 3 WJC day 0 rats which survived 77 days. 

 

  

 3.8.6. Histopathology 

The effect of Wharton‘s jelly cells given on day zero on GVHD (WJC day 0 group) on 

histopathology was evaluated in the 3 out of the 10 rats which survived till day 77 after 

transplantation.  These rats showed a normal histology in most target tissues. In two rats, mild 

pulmonary intra-alveolar histiocytosis and mild peribronchiolar lymphocytic inflammation were 

found. In contrast, 3 out of the 7 rats that died at or before day 17 after  bone marrow 

transplantation, presented with bacterial sepsis in lung, liver (fig. 3.30), heart, intestine and 

kidney. The same rats showed mild centrolobulillar necrosis in liver. A normal collagen network 

in tissues from the WJC day 0 group was noted from animals which died before day 17 after 

transplantation and from animals which died at the end point (day 77 after transplantation). 

Collagen deposition is shown in figure 3.39.  
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Figure 3.30. Bacterial sepsis was observed in WJC day 0 group rats that died on or before day 

17 after transplantation. Bacteria accumulation (arrows) and abscess were observed in lung (a) 

and liver (b). Hematoxylin and eosin stain.  Calibration bar is 250 micrometers. 

 

 3.8.6.1 Mast cells distribution 

Mast cell distribution in lung and lymph nodes of WJC day 0 group (e.g., rats 

transplanted with bone marrow cells and CD8
+
 splenocytes and treated with WJCs on day 0) at 

day 77 post-transplantation is presented in figure 3.31. Before day 17, mast cells were not 

detected with metachromatic or Astra blue stains (data not shown). In contrast, at day 77 post-

transplantation, mast cells were detected in lung sub-pleural and interstitial zones, dermis, small 

intestine lamina propia and lymph nodes in the WJC day 0 group (fig 3.31). 
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Figure 3.31. Mast cell detection by Toluidine blue in lung and lymph node at day 77 post-

transplantation in rats transplanted with bone marrow cells and CD8
+
 splenocytes and treated 

with WJCs on day 0 (WJC day 0 group). Mast cells were identified by metachromatic stain of 

granular content. (a) Sub-pleural lung zone and (b) Lymph node showing mast cells located 

mainly in outer parenchyma or cortex. Mast cells stain purple and non-metachromatic tissues 

stain blue. Calibration bar is 100 micrometers in panel (a) and 200 micrometers in panel (b). 

    

3.9. WJCs administered at day 2 post-transplantation attenuated 

acute radiation toxicity symptomatology 

Rats transplanted with bone marrow cells and CD8
+
 splenocytes to induce graft versus 

host disease (GVHD) and treated with WJCs on day 2 are called the WJC day 2 group below.  In 

contrast to all other experimental groups, the WJC day 2 group increased  their body weight after 

lethal 10 Gy TBI followed by hematopoietic cell transplantation (fig.3.33). Hematocrit was 

measured weekly in the WJC day 2 group.  As shown in figure 3.34, in week 2 after 

transplantation, there was a significant reduction in hematocrit, which fell from the pretreatment 

mean of 51 ±2 % to 48 ±2%. Despite this slight and significant decrease in hematocrit, the 

hematocrit value remained within the normal reference range (table 3.10). 

In the WJC day 2 group, dermatologic and gastrointestinal GVHD-associated 

symptomatology was observed in 1 out 10 rats (see fig.3.32). On day 35 after transplantation, 

two rats were randomly selected for euthanasia to evaluate GVHD via histopathology and serum 

biochemistry.  Serum biochemistry measured at day 35 after transplantation revealed normal 

biochemistry values in all 10 rats (Table 3.10).  
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 3.9.1. Pathogenesis observed in the WJC day 2 group. 

 

Figure 3.32 Clinical manifestations of graft versus host disease rats which were treated with 

Wharton‘s jelly cells, bone marrow and splenocytes 48 hour after lethal 10 Gy TBI (WJC day 2 

group).Clinical manifestation of GVHD was observed in 1 out of 10 rats on days 12-16 after 

transplantation. Alopecia was detected at day 38 after transplantation in 1 out of 8 rats. By day 

47 after transplantation, hair growth was observed and by 50 day after transplantation alopecia 

was almost undetectable. At day 50 after transplantation, diarrhea was detected in the same rat 

suffering alopecia.  Four rats also showed transient body weight loss around days 47-50 after 

transplantation.   

 

 3.9.2. Body weight  

The growth curve of the WJCs on day 2 group is presented in figure 3.33. These rats showed a 

positive growth curve following TBI. Around days 47-50, body average body weight dropped 

because 4 rats showed a transient weight loss.  On day 77 only 8 rats were surviving since 2 were 

euthanized on day 35. 
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 Figure 3.33. Growth curve of graft versus host disease rats which were treated with Wharton‘s 

jelly cells, bone marrow and splenocytes 48 hour after lethal 10 Gy TBI (WJC day 2 group). 

following graft versus host disease (GVHD) induction in rats transplanted with bone marrow 

cells and CD8
+
 splenocytes on day 0 and treated with Wharton‘s jelly cells (WJCs) on day 2 

after total body irradiation (called the WJC day 2 group). These rats showed a positive growth 

curve until days 47- 50 after transplantation, when body weight transiently dropped  due to 4 rats 

transiently losing body weight. One of these four rats showed other GVHD clinical signs such as 

slight alopecia and diarrhea.  

 

 3.9.3. Hematocrit 

Hematocrit measured weekly in WJC day 2 group is presented in figure 3.34. In these 

rats anemia was not observed.  However, a reduction in hematocrit was observed at week 2 after 

transplantation as seen in other GVHD groups (see GVHD only group figure 3.17 on page 65, 

see WJC day 0 group figure 3.27 on page 76) and the positive control group which received T-

cell depleted bone marrow transplantation (see figure 3.12 on page 60). 
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Figure 3.34.  Hematocrit of graft versus host disease rats which were treated with Wharton‘s 

jelly cells, bone marrow and splenocytes 48 hour after lethal 10 Gy TBI (WJC day 2 group). 

Asterisk (*) indicates a statistically significant reduction in hematocrit 2 weeks after 

transplantation  t=0.720, p value˂0.02.  After week 2, hematocrit increased and returned to pre-

treatment value by week 5, t=1.878, p value˃0.07. 

 

 3.9.4. Gross anatomy observations 

Viscera macroscopic observation of graft versus host disease rats which were treated with 

Wharton‘s jelly cells, bone marrow and splenocytes 48 hour after lethal 10 Gy TBI (WJC day 2 

group); indicates  no gross abnormalities in rats euthanized at day 35 or 77 post-transplantation 

(figure 3.35). 

 
Figure 3.35.  Macroscopic aspect of gastrointestinal tract and lungs rats transplanted with bone 

marrow cells and CD8
+
 splenocytes and treated with treated with Wharton‘s jelly cells (WJCs) 

on day 2. No discernible abnormalities were observed in (a) gastrointestinal tract, liver (arrow) or 

(b) lungs.  
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 3.9.5. Histopathology 

In GVHD rats treated with WJCs on day 2, no histopathological damage was observed in 

rats euthanized at day 35 or 77 post-transplantation.. 

 3.9.5.1. Mast cells distribution 

Evaluation of mast cells distribution in the WJC day 2 group at day 35 post-

transplantation by Touidine blue stain revealed few mast cells containing metachromatic 

granules. However, at small intestine level mast cells were observed within the lamina propia 

containing only orthochromatic granules (figure 3.36). 

 
Figure 3.36. Effect of Wharton‘s jelly cells given on day 2 on graft versus host disease in small 

intestine mucosa. Small intestine lamina propia day 35 post-transplantation.  Mast cells with 

orthochromatic granules were observed within the lamina propia connective tissue. Toluidine 

blue stain.  Calibration bar is 1000 micrometers. 

 At day 77 post-transplantation, many mast cells were detected in all studied tissues. 

Similar to what I observed in the WJC day 0 group, mast cells whose cytoplasm was occupied by 

metachromatic granules were evident in lymph nodes (fig. 3.37) 
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Figure 3.37.  Effect of Wharton‘s jelly cells given on day 2 on graft versus host disease on mast 

cell number and distribution.  Mast cells were observed in lungs and lymph nodes at day 77 post-

transplantation in graft versus host disease rats treated with Wharton‘s jelly cells on day 2. Mast 

cells were identified by metachromatic stain of granular content following Toluidine blue 

staining.  Both (a) Sub-pleural lung zone and  (b) Lymph node had many mast cells located 

mainly in lymph node inner parenchyma or medulla. Mast cells stain purple and non-

metachromatic tissues stain blue.   Calibration bar is 100 micrometers in a and 200 micrometers 

in b. 

  

 3.9.5.2 Collagen deposition and epidermis thickness 

Collagen deposition is usually a marker of chronic GVHD.  Here, I studied collagen 

deposition in my rat model of GVHD by Masson‘s trichrome staining. Qualitative comparison of 

collagen network in skin, liver, small intestine, lung and spleen was performed (fig 3.38). 

At day 17 an increase in collagen deposition was observed in GVHD only group in liver, small 

intestine sub-mucosa, lung and spleen (see arrows in figure 3.38).  
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Figure 3.38. Collagen deposition in graft versus host disease (GVHD) target tissues of control 

and experimental groups.  Note that abnormal collagen deposition was observed in GVHD only 

group at day 17 post- transplantation (indicated by arrows). Unusual collagen deposition was not 

found in any other group.  Masson‘s trichrome stain. Calibration bar is 200 micrometers. 

 3.9.5.3. Hematopoietic compartment reconstitution 

 Tissue samples from hematopoietic organs such as spleen and bone marrow were 

evaluated for hematopoietic reconstitution. Figures 3.39 and 3.40 show spleen and bone marrow 

from the experimental and control groups. 

 

 3.9.5.4 WJCs day 2 group   showed improved splenic T cell-dependent periarteriolar lymphoid 

sheath (PALS) and mantle repopulation at day 35 post-transplantation. 

 Cellular composition of splenic PALS, known to be constituted mainly z of T cells, and 

the follicular mantle zone or corona were studied. As shown in figure 3.39, PALS reconstitution 

was observed only in GVHD rats receiving WJCs at day 2. At 11 days post-irradiation, rats 

which were lethally irradiated  and not transplanted (negative control) showed a hypoplasia of 
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spleen parenchyma. At day 17 post-transplantation, in GVHD rats receiving bone marrow and 

splenocytes CD8
+  

 and untreated with WJCs (GVHD only group), as well as in
 
lethally irradiated 

rats receiving 
 
bone marrow and splenocytes CD8

+ 
treated with

 
WJCs on day 0 (WJC day 0 

group), numerous cells were found in mantle zone. In contrast, PALS seems to lack cells and 

periarteriolar zone (e.g., it looks clear).  Similarly, at day 35 post-transplantation lethally 

irradiate rats which received T-cell depleted bone marrow (positive control group) had a 

reduction in cell number in both PALS level, as well as the mantle zone (fig 3.39). 

 
Figure 3.39. Cellularity of spleen white pulp. Arrows indicate the central arteriole of spleen 

white pulp.Whisker denotes the mantle zone‘s thickness. Dashed ring delimits splenic follicles. 

Note that on day 35 after transplantation, the T cell-dependent periarteriolar lymphoid sheath 

(PALS) was repopulated in lethally irradiated rats receiving bone marrow and splenocytes CD8
+ 

and treated with Wharton‘s jelly cells on day 2 after transplantation (WJC day 2 group), and to a 

lesser extent the positive control group (e.g., lethally irradiated and transplanted with T-cell 

depleted bone marrow). Hematoxylin and eosin. Objective magnification 10X. 

 

 3.9.5.4 Rat lethally irradiated on day -1 and which received bone marrow and CD8+ T cells  

on day 0 and  given WJCs on day 0 and day 2 showed improved repopulation of bone marrow 

parenchyma at 77 days post-transplantation. 
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To establish the effect of WJCs on bone marrow reconstitution after lethal TBI on day -1 

followed by allogeneic hematopoietic cell transplantation and CD8+ splenocytes on day 0, 

hematoxylin and eosin sections were evaluated from lethally irradiated rats (negative control 

group on day 11 post-irradiation), lethally irradiate rats transplanted with T-cell depleted bone 

marrow and untreated with WJCs (positive control group), lethally irradiated rats transplanted 

with bone marrow and splenocytes CD8
+
 and

 
untreated with WJCs (GVHD only group), lethally 

irradiate rats treated with  bone marrow and splenocytes CD8
+ 

which received WJCs on day 0 

(WJC day 0 group) and which received
 
WJCs on day 2 (WJC day 2 group). Bone marrow 

samples from healthy normal rats were used as an untreated control (Untreated).   Results from 

cellular composition of bone marrow parenchyma are presented in figure 3.40.  

 

 

Figure 3.40. Bone marrow parenchyma compartment compared between positive control, 

negative control and untreated groups compared with various experimental groups (lethally 

irradiated rats that received bone marrow and CD8+ splenocytes on day 0 and then given 

Wharton‘s jelly cells) at 77 days post-transplantation.  Bone marrow from lethally irradiated rats 

who were not transplanted (negative control day 11 post-irradiation) shows a cellular 

appearance.  In contrast, rats transplanted with T-cell depleted bone marrow and who were 

untreated with WJCs (positive control group) and healthy rats (untreated group) show a highly 

populated bone marrow parenchyma.  The graft versus host disease (GVHD) only group showed 

a decreased cellularity of their bone marrow parenchymal compared to rats 
 
who were also 
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induced to have GVHD and were
 
treated with

 
WJCs on day 0 (WJC day 0 group) and  treated 

with WJCs on day 2 (WJC day 2 group). Note the fat vacuoles in the bone marrow cavity of 

untreated, negative control rats, GVHD only, positive control group and the WJC day 0 group. 

Note that the highest cellularity and the fewest fat vacuoles are found in the WJC day 2 group. 

Reconstitution of parenchymal components is observed in rats receiving Wharton‘s jelly cells on 

day 0 and day 2, as well as in positive control rats. Hematoxylin and eosin. Calibration bar is 250 

micrometers. 

 3.9.5.5. Neutrophil recovery 

At day 7 post-radiation, the cell count for leukocytes in peripheral blood was negligible 

in lethally irradiated rats who were not transplanted (negative control). In animals receiving 

hematopoietic cells transplantation, neutrophil counts subsequently increase with the time 

following irradiation and bone marrow transplantation (see figure 3.41).  The percentage of 

neutrophil recovery was determined using the following formula: (number of cells at time 

point/number of cells at baseline) × 100.  

  

 

 

Figure 3.41. Neutrophil recovery in lethally irradiated rats who were not transplanted (negative 

control group, baseline and day 11 post-irradiation, left-most bars), lethally irradiate rats who 

were transplanted with T-cell depleted bone marrow and untreated with WJCs (positive control 
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group, baseline and evaluated weekly after transplantation), lethally irradiated rats who were 

transplanted with bone marrow and splenocytes CD8
+ 

to induce graft versus host disease 

(GVHD) and who were untreated with WJCs (GVHD only group), lethally irradiated rats who 

were transplanted with bone marrow and splenocytes CD8
+ 

to induced GVHD and who were 

treated with
 
WJCs on day 0 (WJC day 0 group), and lethally irradiated rats who were 

transplanted with bone marrow and splenocytes CD8
+ 

to induce GVHD and who were treated 

with
 
WJCs on day 2 (WJC day 2 group).   I noted that the WJC day 2 group showed the most 

rapid neutrophil recovery, followed by the GVHD only group.  The positive control group and 

the WJC day 0 group did not show complete neutrophil recovery over the 77 day survival period.  

Differential cells counts were performed on Giemsa stained blood smears. Data is expressed as 

mean±SD. 

 

In the WJC day 2 group, neutrophil recovery was most rapid and had returned to baseline 

values in 3 weeks. In the GVHD only group, neutrophil recovery returned to baseline levels at 

week 5 post-transplantation.  In the positive control group and the WJCs day 0 group, neutrophil 

reached more than 10% at week 3 to 4 and had not returned to baseline pretreatment value (week 

0). 

 3.9.6 Comparing clinical manifestations at day 17 of WJC day 2 group versus 

the GVHD only group and the positive control group. 

 A comparison the WJC day 2 group versus  the positive control group at day 17 is shown 

in figure 3.42.   

The WJC day 2 group presented clinical characteristic of a healthy rat, no alopecia or ear 

erythema was noted at this time. In contrast, the positive control group presented with mild facial 

alopecia (nose) and ears erythema. Vasodilation in ears skin was also noted in these rats (fig. 

3.42) 
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Figure 3.42. Clinical manifestations of WJCs day 2 group versus the (GVHD only group on 

day 17. Nose and peri-ocular alopecia was observed in all rats from positive control group and 

not in the WJC day 2 group. 

 

  
 At day 17 a comparison between the WJC day 2 group versus GVHD only group is 

shown in figure 3.43. 

The WJC day 2 group presented clinical characteristic of a healthy rat, no alopecia or ear 

erythema was observed. Note the normal posture, fur texture and ears skin color of rats in the 

WJC day 2 group (fig 3.43). In contrast, rat from the GVHD only group have hunched posture, 

ruffled fur and marked skin eras erythema (fig. 3.43). 

   
Figure 3.43. Clinical aspect of the WJC day 2 group versus  the GVHD only group.  GVHD 

only group rats had hunched posture, ruffled fur and ears skin erythema. In contrast, rats in the 

WJCs day 2 group did not show GVHD –associated symptomatology. 
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3.10. Engraftment and chimerism 

Using genomic PCR analysis, long term engraftment (day 77) of allogeneic 

hematopoietic cells was found in all transplanted rats, except one rat in the WJC day 0 group in 

which cells from donor were not detected in  tail tip, spleen or bone marrow at day 77 (see 

samples from rat 26 in figure 3.44). 

 

Fig.3.44. PCR genotyping to detect the Lewis (252bp) and F344 (160 bp) microsatellite DNA to 

demonstrate engraftment of donor F344 rats hematopoietic cells in bone marrow, spleen and tail 

tip tissues from recipients Lewis rats. (A) WJCO group rats sampled at 14 and 15 days showed 

DNA from donor F344 rats only at bone marrow level, while at day 35 donor DNA was found in 
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both bone morrow and spleen from rats receiving WJCs at day 2. (B) Samples taken at the end 

point (day 77) show F344 DNA in spleen and bone marrow, however double band was not 

evident.  

Note that F344 DNA was not found in tail tip sample but was found in bone marrow and 

spleen for most animals. 

3.11 Assessment of GVHD 

 3.11.1 GVHD daily clinical signal grade  

 

 Semi-quantitative score of GVHD is summarized in table 3.6 

TABLE3.6 

Semi-quantitative score of GVHD associate symptomatology  

 

 

By using the IBMTR and Glucksberg five out of 10 rats in the GVHD only group were 

scored as suffering GVHD stage 1 grade II. The positive control group was scored as suffering 

stage GVHD 1 grade I. Rats in the WJC day 0 group that were dying before midterm study (day 

35) (n=7) were scored as suffering GVHD stage 1 grade I, and rats from this group that survived 

until day 77 (n=3) were considered not suffering GVHD.  In the WJC day 2 group, only one out 

of 10 rats scored as GVHD stage 1 grade II, and  9 out 10 rats from this group was considered 

not suffering from GVHD.   This ranking was validated with clinical pathological data obtained 

at day 77 (Tables 3.11). 
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3.12 Statistical analysis 

Comparison between group variables outcomes was performed by Kruskal-Wallis test 

with Dunn's post-hoc test (non-parametric). Significance was set at p˂0.05. 

 3.12.1 Body weight 

 

 
Figure 3.45. A Kruskal-Wallis test was used to evaluate differences among the 4 treatments. The 

outcome of the test indicated significant differences among the treatment conditions, Kruskal-

Wallis test p value = < 0.0001 (df= 4, N=2268). To find out the direction of the differences, 

Dunn‘s multiple comparison test was performed. 
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Table 3.7 

Dunn’s Multiple Comparison test of Average Weight 

 of rat groups  

 

Figure 3.46. Dunn‘s report. Dunn‘s Multiple Comparison test of body weight of the 

experimental groups. Pairwise multiple comparison test revealed no significant difference in 

body weight mean between the positive control group and the GVHD only group α=0.05. 

 3.12.2 Hematocrit 

 
Figure 3.47. After ranking the individual scores Kruskal-Wallis test was used to evaluate 

differences among the 4 treatments. The outcome of the test indicated significant differences 
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among the treatment conditions, Kruskal-Wallis test statistic (H= 91.07 p˂0.0001, df= 4, n=360). 

To find the direction of the differences, Dunn‘s multiple comparison test was performed. 

Table 3.8 

Dunn’s Multiple Comparison test of Average  

Hematocrit (Ht) of rat groups 

 

 

Figure 3.48. Dunn‘s report. Dunn‘s Multiple Comparison test of average Hematocrit (Ht) of rat 

group. Pairwise multiple comparison test revealed no significant difference in hematocrit mean 

between with the 
 
WJCs day 0 group and the positive control group  and the GVHD only group. 

No significant differences in hematocrit was found the GVHD only group and the positive 

control group. 

 

 3.12.3. Body temperature 

 

 

Body temperature 
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Figure 3.49. A Kruskal-Wallis test was used to evaluate differences among the 4 treatments. The 

outcome of the test indicated significant differences among the treatment conditions on the 

variable body temperature, Kruskal-Wallis test statistic (H= 71.76 ,df= 4, p value= ˂0.0001, 

n=2167). To find out the direction of the differences, Dunn‘s multiple comparison test was 

performed. 

 

 

Table 3.9 

Dunn’s Multiple Comparison test of Average  

Body Temperature (˚C) of rat groups 
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Figure 3.50. Dunn‘s Multiple Comparison test of body temperature (˚C) of experimental and 

control groups. 

 

 

3.13 Clinical pathological study. 

 Hematological and biochemical clinical parameters were evaluated at day 35 and 77 

respectively; data is summarized in tables 3.10 and 3.11. 
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TABLE 3.10 

35-Day GVHD study 

Clinical pathology evaluation 

 
(*) Sample were taken at day 7, 9,10 and 11 (prior to death) 

(**) only 3 animal survived until day 35  

(***) only 9 animals were alive at day 35 

‡ Charles Rivers Clinical Laboratory Parameter for Crl:WI(Han).  Mary L. A. Giknis, Ph.D and 

Charles B. Clifford, D.V.M, Ph.D.  March, 2008. 

 

 

TABLE 3.11 

77-Day GVHD study 

Clinical pathology evaluation 

 
(*) only  8 animal survived until day 77 

(**) only 3animal survived until day 77  

(***) only 5animals were alive at day 77‡ Charles Rivers Clinical Laboratory Parameter for 

Crl:WI (Han). Mary  L. A. Giknis, Ph.D and Charles B. Clifford D.V.M, Ph.D. March,2008 
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Chapter 4- Discussion. 

Mesenchymal stromal cells derived from bone marrow (BM-MSCs) show 

immunosuppressive capacities in vitro and in vivo, and they have been tested in clinical trials as 

a potential cell therapy to prevent or treat GVHD [1, 2]. However, the isolation procedure, age of 

the donor, and limitations of in vitro proliferation potential of adult BM-MSCs [3, 4, 5] highlight 

the necessity to find alternative non-controversial sources of MSCs such as Wharton‘s jelly cells 

(WJCs) [6]. The immunosuppressive properties of MSCs have been probed using in vitro [7], 

and in vivo assays [8] and, it has been established that their immune properties depend on timing 

of their exposure to activation-related cytokines (licensing), such as interferon gamma [7]. 

Valencic et al. found that in presence of non-licensed WJCs, activated lymphocytes showed 

regular or even increased proliferation, while in presence of licensed WJCs their proliferation is 

strongly inhibited [7]. In this dissertation, Wharton‘s jelly derived mesenchymal stromal cells  

(WJCs) were tested as cell therapy to prevent GVHD in a minor histocompatibility mismatch 

model in rats. Here, the GVHD model was established and lethally irradiated Lewis rats (RT1
l
, 

10 Gy exposure) received 30 x 10
6 

bone marrow cells and 2 x 10
6 
CD8

+ 
splenocytes. Adoptive 

transfusion of WJCs was done either on day 0 (24 hours after TBI, WJC day 0 group) together 

with bone marrow cells  and splenocytes CD8
+
 or at day 2 (48 hours after hematopoietic cell 

transplantation, WJC day 2 group).  I found that adoptive transfer of WJCs on day 2 ameliorated 

GVHD-associated symptomatology including body weight loss, diarrhea, hunched posture, hair 

loss, prolonged survival and improved hematopoiesis recovery as it was measured by hematocrit, 

neutrophil recovery and hematopoiesis compartment repopulation. 

Polchert et al. using bone marrow-derived MSCs to prevent GVHD in a mouse model 

found that MSCs had a beneficial effect, increasing survival only when given at day 2 or day 20 

after transplantation [9]. In agreement with this study, WJCs were valuable to control GVHD 

only when given on day 2 post-transplant. Although, 7 out 10 GVHD rats receiving WJCs at day 

0 died before day 35, the surviving rats showed normal serum biochemistry values and 

hematopoietic recovery by day 77. The surviving GVHD rats receiving WJC on day 0 showed no 

evidence of GVHD injury by gross anatomical or histopathological evaluation. In contrast, 

GVHD rats receiving WJC on day 0 dying before day 17 presented with clinical and 
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histopathological signs of engraftment failure. Rats in this group had a hematocrit on day 14 of 

25 ± 7%.   

WJCs express adhesion molecules (CD44, C105) and integrin markers such as CD29 and 

CD49e [10]. I conjecture that WJCs may adhere to endothelial cells via adhesion molecules or 

via interactions with integrins. A consequence of this interaction might be reducing diapedesis of 

hematopoietic cells when bone marrow and MSCs are simultaneously transplanted. It is known 

that when MSCs are infused IV, most of them are trapped in lung capillary network for about 24 

hrs [11]. Murine models showed rapid changes in lung caused by ionizing radiation include 

cytokines release and increase of endothelial cells adhesion molecules and thereby arrest of 

inflammatory cells [12]. I hypothesize that WJCs given 24 hours after total body irradiation in 

rats may fail to control GVHD due to endothelium swelling in lung which contributes with 

hematopoietic cell and WJCs stasis in lung capillaries, and secondarily producing as a 

consequence, engraftment failure. Infusion of WJCs on day 2 after transplantation (day 3 post-

irradiation) ameliorated the symptoms of acute radiation syndrome such as weight loss, diarrhea, 

anemia, breathing resistance and activation of lung innate immunity seen as degranulation of 

pulmonary eosinophils and deposition of major basic protein crystals.  

Eosinophils are inflammatory cells present primarily in sub-epithelial connective tissues 

of gastrointestinal, respiratory systems and final portion of genitourinary system [13]. Major 

basic protein (MBP) is the most abundant component of eosinophils and constitutes about 51% 

of the total protein stored in eosinophil granules [13]. Biological actions of MBP including 

release of histamine from mast cells and basophils, activation of neutrophils and alveolar 

macrophage, epithelial cell damage [14]. Interleukin 5 (IL-5) released by lymphocytes, mast 

cells and eosinophil is the main cytokine implicated in eosinophil activation [15]. Interestingly, I 

found an activation of eosinophils with a concomitant reduction of pulmonary mast cells.  In 

fact, no stainable pleural cells mast cells were found in the negative control group, or in the 

GVHD only group at day 35, or the WJC day 0 group dying before 17 days post-transplantation. 

A partial degranulation of mast cells, in which cells lost metachromatic granules but preserved 

orthochromatic granules, was observed in the positive control group at day 35 and in the WJC 

day 2 group at day 35. At the end point (day 77), rats from these two groups had mast cells with 

normal stain affinity in lung pleura.  Abundant numbers of mast cell were observed within lymph 

nodes in long term survival (day 77) of the WJCs day 0 group and WJC day 2 group (figs.3.30 
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and 3.36). On the contrary, the GVHD only group  showed a dramatic increase in mast cells not 

only in their typical localization within the lamina propia connective tissue, but also within the 

glandular epithelium (see figure 3.21). 

 Degranulation of mast cells after ionizing radiation exposure has been reported [16, 17]. 

Since mast cells secrete IL-5 which in turn activates eosinophils [18], I suppose that pulmonary 

radiation-induced mast cells depletion is associated with eosinophil activation and deposition of 

MBP crystals.  This leads to IL-5 and/ or mast cells activation and may initiate the inflammatory 

cytokine cascade and development of GVHD after total body irradiation by allogeneic 

hematopoietic cell transplantation in the rat model. Lung radiosensivity is indicated by early 

changes in cytokine production after radiation exposure [12].  

It has been proposed that GVHD pathogenesis may be initiated by conditioning regimen-

induced injury in target tissues, especially at intestinal level where translocation of 

lipopolysaccharide (LPS) released by resident microflora stimulate the secretion of cytokines 

particularly tumor necrosis factor alpha (TNF- α) and interleukin 1(IL-1) by macrophages [13]. 

Subsequent stages of GVHD may be driven by an increase in adhesion molecules and leakage 

through intestinal mucosa [14]. Although, the lower respiratory tract is free of resident bacteria 

[15], TNF-α is also produced by mast cells as preformed or immunologically inducible TNF-α 

[16]. Here, metachromatic stainable mast cells were not detected at intestinal, hepatic and 

pulmonary level in irradiated only group. This could be due activation and degranulation of mast 

cells which in turn may trigger cytokinemia and initiated GVHD syndrome manifestations after 

TBI and allogeneic hematopoietic cells transplantation. 

Contrary to other species where mast cells represent 2-3 % of total cells within lamina 

propia, mast cells in murine small intestine are scarce with about five mast cells per villus [17]. 

The role of mast cells in intestinal epithelial homeostasis and barrier has been established [17, 

18]. In rat model of GVHD Levy et al. showed that after radiation-induced depletion around day 

12, intestinal mast cells show a marked intestinal reduction [19]. In concordance with Levy et al, 

in my study stainable mast cells were not identified in tissue sections of Lewis rats irradiated and 

not transplanted or irradiated, and transplanted but dying before 35 days. The later depletion seen 

in my study may be related to the degree of histocompatibility mismatch established to induce 

aGVHD. Levy established the GVHD model across major histocompatibility antigen mismatch 

settings, which is known to accelerate GVHD manifestation. In my model (across minor 
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histocompatibility antigen mismatch) clinical and histopathological manifestation of GVHD had 

a delayed presentation. Metachromatic staining of tissue sample allowed to distinguish rare mast 

cells containing only orthochromatic granules and confined to sub-epithelial connective tissue in 

lung and intestine from rats receiving T-cell depleted bone marrow untreated with WJCs 

(positive control), GVHD rats receiving bone marrow cells and splenocytes CD8
+
 treated with 

WJC on day 2, and in rats receiving bone marrow cells and splenocytes CD8
+
 treated with WJC 

on day 0 which survived until day 77. A non-quantitative evaluation from GVHD rats untreated 

with WJCs revealed a pronounced increase in mast cell population at day 77. This increase was 

observed in small intestine lamina propia, and also within the glandular epithelial lining. Mast 

cells presented dense granules evident with routine hematoxiline-eosine (H&E) and with specific 

staining. This clear infiltration of mast cells in intestinal mucosa may produce alterations in 

epithelial barrier and permeability. Mast cells hyperplasia has been linked with fibrotic disorder 

associated with GVHD [20], and blockage of their secretion of TNF-α ameliorate aGVHD and 

improve survival time [21]. In this study, greater deposition of collagen in organs of GVHD rats 

untreated with WJCs was observed (see figure 3.38). This fibrosis could be linked with mast 

cells degranulation detected in this group of rats. The role of mast cells in long-term graft 

tolerance was reported by Lu et al. in 2006; they showed that mast cell deficient mice were not 

capable of establishing long term allo-graft tolerance[22 ]. In histological sections infiltration of 

mast cells co-localized with Tregs was observed [22]. Wu et al., in human patients suffering 

aGVHD, found a trend for higher number of mast cells and Tregs in skin areas corresponding to 

higher inflammation [23]. In the present study, I found infiltration of mast cells in lymph nodes 

from long term surviving GVHD rats receiving WJCs on day 0 and day 2 which exhibited 

clinical parameters considered normal. Based in this observation, I postulate that a putative 

mechanism used by WJCs to ameliorate GVHD symptomatology may be by recruiting mast cells 

to lymph nodes where expansion of Tregs occurs after developing in thymus. This hypothesis 

could be confirmed by lymph node biopsy to quantify presence of Tregs. 

Activation of humoral components of innate immunity was observed in GVHD-induced 

rats at day 17 post-transplantation. Complement deposition was detected in kidney nephron‘s 

tubules. Under physiological conditions complement components do not cross the glomerular 

filtration barrier, however presence of complement in nephron tubules is linked with nephritic 

pathologies connected to several etiology [24]. Kwan et al. recently reported in a mouse model 
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of GVHD that TBI triggers up-regulation of complement component by host dendritic cells (DC) 

which in turn activates allogeneic donor T cells [25]. In my study activation of complement may 

induce nephritic syndrome that could be linked with the increase in serum level creatinine 

observed in 5 out 5 GVHD rats untreated with WJCs.  

After myeloablative conditioning regimen followed by hematopoietic cell transplantation, 

neutropenia is a common complication associated with a high rate of systemic infections [26]. In 

this study, infusion of WJCs on day 2 post-transplantation accelerated neutrophil recovery. Rats 

receiving WJCs on day 2 recovered the initial pre-treatment percentage of neutrophils at week 3 

post-transplantation. (fig.3.41) 

In summary, in rats which are developing Graft versus host disease, adoptive transfer of WJCs 

on day 2 can alleviate GVHD-associated symptomatology and enhanced hematopoietic recovery. 

Although the mechanism used by WJCs to offer immunoregulation is still unclear, I consider that 

these cells may control innate immunity up-regulation after TBI by promoting mobilization of 

mast cell to lymph node which in turn facilitates expansion of Tregs. Further studies are needed 

to confirm this hypothesis. Additional work is also needed to optimize WJCs dose and the timing 

of administration. 
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