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6^^ INTRODUCTION

One of the basic problems of plane analytic geometry is

reducing the ge.neral equation of a second degree curve to

canonical form by transforming to a new coordinate system.. An

analogous problem can be stated for a space of any dimensions.

The solution of this and related problems is one of the funda-

mental aims of the theory of quadratic forms.

Rather than proceeding directly to quadratic forms, a

method for changing matrices to diagonal form will be presented.

With these results, a procedure for changing quadratic forms

to canonical form is developed. Then utilizing the quadratic

forms and the methods initiated, information sufficient for the

complete identification of a second degree curve is derived.

Finally, the extension of these methods to spaces of higher

dimensions is indicated.

In this report, matrices are denoted by capital letters

and their elements by lower case letters. If A is a matrix,

the determinant of A is denoted by a], the transpose by A
'

,

and the conjugate by A. The inverse of A, when it exists,

is denoted by A"-^.



•
. DEFINITIONS

The following definitions will be essential throughout

this report.

Definition 1. A square matrix is said to be diagonal if

the only nonzero elements are on the diagonal.

Definition 2. The characteristic polynomial of a matrix A

is f{X) = jA - All. The characteristic equation of A is

[a - Al| = 0, and the zeros of the characteristic polynomial

are the characteristic roots of A.

Definition 3. If A and B are two matrices for which there

exists a nonsingular matrix P such that P~-^AP = B, then A is

said to be similar to B. .
,

Although the following definitions could be presented for

vectors over either the complex or real field, only those de-

fined over the real number field will be discussed in this

report.

Definition 1^. A quadratic homogeneous form is a function

f(X) = X'AX, where X €, Y ^ ^n^^^' A is a symmetrix matrix, X is'

8 column vector, and V is a subspace of the vector space

V^(F) of dimension n over the field P.

A matrix can be thought of as either an ordered set of row

vectors or an ordered set of column vectors. It can be shown

that each of these sets will span a vector space.



Definition 5- The row space of a matrix A is the vector

space spanned by its row. vectors. The column space of a matrix

A is the vector space spanned by its column vectors.

Definition 6. A set of nonzero vectors »<2_, °<2> • • • -•• "^n

is said to be a basis of a vector space V is:

1. The ^^ C Y for i = 1, 2, . . ., n.

2. Any vector in V can be expressed as a linear

combination of the x..

3- The set is linearly independent.

Definition 7. A mapping f of VXV onto F (the real field),

is called an inner product if, for all vectors ^, 5, C V, and

k £ F, ^
1. f(»<, -<) is nonnegative, f(-<, .^) = implies ^ =

• 2, f(^, S) = f(5, »<)

3. f(^, k^e^L + kgSg) = k;Lf(-<> S^) + k2f(-<i, Sg) •

If a vector space V over F has an inner product function

defined, V is called a Euclidean space .

If .^-] , '<2> ' • • f -^-n
^^ ^ basis for the vector space V such

that f(<^^, -^O = S.'. (where 5 . • = 1 if i = j and otherwise),

then V is said to be orthonormal .

Definition _8. A matrix S formed from an orthonormal basis

of V^(F) has the property SS ' = S'S = I. This matrix is called

an orthogonal matrix .



TRANSFORMING A MATRIX TO DIAGONAL FORM

There are niimerous techniques which can be used to change

a matrix to diagonal form, some of which are more practical and

efficient than the procedure to be used in the following. The

method chosen, however, is convenient in. that the only matrix

theory required is relevant to the subsequent discussions.

By imposing various restrictions on a given matrix A, it

can be shown that A will be similar to a diagonal matrix. Let

the diagonal matrix be D. Then if A is similar to D, there

exists a nonsingular matrix P such that P"-'-AP = D. This can

also be written as AP = PD.

Using the equation AP = PD, a general method for finding

the matrix P can be established. For the sake of computational

simplicity the development is restricted to the case where A,

P, and D are three-by- three matrices. The extension to m.atrices

of higher order is readily apparent.

In matrix form AP = PD is

'11

'21

^31 ^'

12 ^13 Pll Pl2 Pl3~ "Pll P12 P13" ~^1 °

22 823 P21 P22 P23 = P21 P22 P23 ^2

32 a33_ _P31 P32 P33_ _P31 P32 P33_ \

Upon carrying out the matrix multiplication.



^11^11 ^ ^12^21 ^ ^13^31 ^11^12 ^ ^12^22 "^ ^13P32

^2lPll "^ ^22P21 -^ ^23P31 S21P12 + ^22P22 + ®23P32

®3lPll ^ ^32P2l *
®33p3l ®3lPl2 ''" ®32P22 ^ ®33P32

S]L]_P]_o *" ®i2P23 "^ ^13P33

^2lPl3 "^ ®22P23 "^ ^23P33

®3lPl3 "*" ^32P23 * ^33P33

Pll-^l Pl2^2 Pl3^3

P21''^l P22'*^2 P23'^3

P3l^l P32'^2 P33'^3

Equating corresponding elements of the matrix equation gives

the following three systems of linear homogeneous equations in

the p. .

.

'

:•

^^11 - ^l^Pll ^ a^2P2i + a-, ^p-,-, =

+ (a^2lPll + ^^22 - ^l)P21 +

^3lPll
"^

13^31

^23P31
~

32P21 + ^^}>J>
- ^l)P31 " °

(1)

(a 11 ^2'Pl2 ^ ^12P22 "*" ®13P32 =" "1

^2lPl2 "*" ^®22 " ^2)P22 "^ ^23P32 ~ ^

®3lPl2 ^ ®32P22 *" ^®33 ~ '^2''P32 ~ "^

(2)

®13P33 ~ ^

®23P33 ~ ^

^^11 - ^3)Pi3 + 912P23 +

^2iPi3 *" ^®22 " '*^3)P23 "*" s?^P^^ = f (3)

^3lPl3 "*" ^32P23 "*" ^^33 ~ '*^3)P33 = 0,

It should be noted that the coefficient matrices of these

three systems differ only in the subscript of \. Since these

are homogeneous equations, nonzero solutions exist for these



systems if and only if

ail - \ ^12 a
13

^21 ®22 - X ^23

^31 ao2 ^33
- \

for A = \^, 1=1, 2, 3. This is the characteristic equation

of A and X-^, X^, and X, are the characteristic roots of A.

Using these roots, the systems of equations (1), (2), and

(3) can be solved to find the column vectors of P. Note that

this solution is not unique. If P is nonsingular, the equation

AP = PD can be written as P"-^AP = D. Therefore A is similar

to a diagonal matrix.

QUADRATIC FORMS AND THEIR SIMPLIFICATION

Utilizing the concepts of orthogonality and similarity, a

procedure can be derived for reducing a matrix to diagonal form.

Consider a homogeneous quadratic form in three variables

X, y, and z. This is an expression of the form.

Q = ax + by^ + cz^ + 2fyz + 2gxz + 2hxy .

Writing this in matrix form, one has

Q = Qx y z] a h g X

h b f y

g f c z

or, denoting the coefficient matrix by A,



Q = Qx J z] A X

This equation can be written as

Q = ]^x J zl lAI X

y

z

where I is the identity matrix. If S is an orthogonal matrix,

then SS' = I so that

Q = l^x J z] SS'ASS' X

y

z

Since (XS) ' = S'X',

([]x y z] S) ' = S' X

y

z

Let

Qx y zl S = [X Y Z] ,

then

Q = []X Y" Z] S'AS X

Y

Z
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Before proceeding, the following theorem is needed.

Theorem 1. Every symmetric matrix A is orthogonally similar

to a diagonal matrix (2). '

,

The theorem implies that there exists a nonsingular matrix

P such that P~ AP = D, where A is symmetric and P is orthogonal

so that P' = P"^.

Prom this theorem it is seen that the orthogonal matrix S

above can be chosen such that S'AS = B, where D is a diagonal

matrix. In this case the quadratic form written in terms of

X, Y, and Z, is said to be the canonical form. Then, in ex-

plicit form,
.

'

This canonical form is not uniquely determined., as the

ordering of the diagonal elements of D can be changed. In this

report the elements will be ordered with respect to their abso-

lute values, with those least in magnitude occurring first.

As an illustration of the above procedure, consider the

quadratic equation •

,

2x^ + l;xy + 5y
2 _ 1 .

It is desired to rotate the coordinate system so that the equa-

tion of the conic has no xy term. In matrix notation the equa-

tion becomes.

I- rl 2 2

2 5

X

7

= 1 .



To find the canonical form, the characteristic equation

of the coefficient matrix must be found. The characteristic

matrix is

"2 - X 2

2 ^ - \

and the characteristic ecuation is

2 - X 2

2 5 - A
,

or .

X^ - 7^ + 6 = .

The solutions of this equation are \ = b and A. = 1, so the

canonical form for the equation is

x2 + 6y2 = 1 .

The matrix of this rotation can be found by referring to

the systems of equations (1), (2), and (3). The systems of

equations become

'(2 - Xi)Pii + 2p2i =

2Pii + (5 - ^i)P2i =0

and
. ..,

(2 - A2)P;l2 "^ 2P22 ^ ^

2P]_2 + (5 - ^2^ P22 = .
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Substituting in the values At = 1 and ^2 = 6, the systems

become

and

( Pll + 2p2i =0

[2p;i_l + ^P21 = ^

'-^Pl2 + P22 "^ ^
•

2p-L2
- P22 = •

The solutions for these systems can be expressed as

Pll = -2P21 2"^ P22 = 2p-L2 . •
.

Although there are many choices available for the p's,

they must be chosen so that the matrix P will be orthogonal:

that is, P'P = I.

Since the vectors of P must be normal, it must be true that

2 2 2 2
Pll "^ P2I ~ ^' ^° ^P21 "^ P2I = 1 or P22_ = -rrrr , SO

^5

V?
Pll =

5

2 2Similarly, p^2 + P22 ~ ^' implies

2 2
P12 "^ ^Pl2 = 1 or P12

orthogonal matrix P is

/?
-j=^ so Ppp =

VJ 22
^

Thus the

2a/? V?"

5

~
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It is then apparent that the choice of values to make P orthog-

onal should be P2j_ = A 5/5 and p-|2 = ^ S/S •

To verify that the matrix P gives the desired rotation,

compute the product

^1
5

2 2l

2//? _2 d
5

2^5 V5

5

V?

T
Hence in this case the canonical form is

5 . 5

1

V? 2/5 _o 6

5

Q = Cx y] 1

6

X

Y

X2 + 6y2

The reduction of a quadratic form to canonical form can

be generalized to apply to conies whose . representations involve

n-dimensional vectors and matrices. In actual practice, due to

the computation involved, finding the orthogonal matrix can be

a formidable task. .

HOMOGENEOUS COORDINATES AND CHANGE
OF COORDINATE SYSTEMS

For the reduction of a quadratic form, it will be conven-

ient to designate a vector X in E" by an ordered set of n + 1

scalers VX-^, Xj, • • ., ^n+i"] with X^^^^. /O' where the set

denotes the vector
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X =
^1 X2

^n+l Xn+1

Xn

Xn+1

The set of scalers rX]_, X2, . . ., X^^+i |
is called a set of

homogeneous coordinates of X.

If homogeneous coordinates are introduced into polynomial

equations in two or three variables, the equations become homo-

geneous in three or four variables, respectively. To illus-

trate the use of homogeneous coordinates, consider the second

degree equation in two variables ax^ + by + c = . Homogeneous

coordinates are introduced by replacing x by x/w and y by y/w.

9 op
The new equation is multiplied by w^ to obtain ax + byw + cw"^

= 0. This equation is homogeneous in the set of variables x,

y, and w.

p
A transformation of coordinates in E is a combination of

a translation and a rotation about the origin. Suppose there

exist two rectangular coordinate systems in the plane, with

origins at and 0' and with the first and second coordinate

axes parallel in the two systems. Then the point P in the plane

has two sets of coordinates (x, y) and (x', y') with respect to

the two sets of coordinate axes. If the coordinates of 0' are

(x]_, y-[_) with respect to the old axes, then the coordinates

(x, y) and (x', y') are related by the equations

Tx = x' + X-,

[j = J' + Ji

These are called the translation equations.
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The equations for rotating the axes about the origin

through an angle are

rx' = x" cos e - y" sin 9

[y' = x" sin. 9 + y" cos 9 .

Thus the equations for any rigid motion in the plane can be

written as '

'

_ .

'x = x' cos 9 - y' sin 9 + x-i

y = x' sin 9 + y' cos 9 + y-, .
•

If homogeneous coordinates are introduced, the system of equa-

tions takes the form of the linear transformation

'x= x' cos 9 - y' sin 9 + w'Xt

y = x' sin 9 + y' cos 9 + w'y-.

w W

The matrix which represents this transformation is

cos 9 sin 9 x1

sin 9 cos 9 y-i

. 1

The determinant of this matrix is 1. The matrix obtained by

deleting the last row and column of the above matrix is

. = r
cos 9 -sin 9

ji_sin 9 cos 9
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This is the matrix of the rotation of the coordinate axis about

the origin in the plane. Since the vectors are mutually orthog-

onal and the norm of each vector is 1, this matrix is orthogonal.

IDENTIFICATION OF SECOND DEGREE CURVES

The following two theorems are needed for the identifica-

tion of any second degree curve.

Theorem 2. If B is any matrix and A is a nonsingular

matrix, then the rank of AB and BA are both equal to the rank

of B (1)

.

Although the proof will not be given, the following results

are implied by the theorem. If A and B are square matrices of

the same order and if A"-^ exists, then BA has the same rank and

order as B. Since A is nonsingular implies A' is nonsingular,

A'BA has the same rank as B. Similarly, ABA', A~-^BA, and ABA"-^

have the rank as AB, and thus the same rank as B.

Theorem 3- Similar matrices have the same characteristic

polynomial and the same determinant.

Proof: If B = P"^AP, then

B - XI =

1
Since I

P~l

P~-AP - AIP~-^P
p-1'

A - AI P

-—
- , the characteristic polynomials are equal.

|P
I

By setting A. = in the equation A - AI = f(X), it is

seen that the constant term of the characteristic polynomial of

A is the determinant of A. But this is also the determinant of

B so I A !
=

I B I
.
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Consider the general second degree equation in two vari-

ables with real coefficients. It can be written in the form

? 2
ax + 2hxy + by + 2px + 2qy + d = (6)

Upon introducing homogeneous coordinates, by replacing x

by x/w and y by y/w, the equation becomes

X X y y X y
a — +2h +b — + 2p-+2q-+d =

w2 www w w

or

ax^ + 2hxy + by^ + 2pxw + 2qyw + dw = (7)

Equation (6) can be obtained from (7) by letting w = 1.

Equation (7) is a quadratic form which may be written as

Lx y w] Pa h p

h b q

p q d

= (8)

To change the system of coordinates in (8) so as to elimi-

nate the xy term, first consider the system of equations (5)

written in matrix form. This becomes

Tx

y

w

cos9 -sin 9 x-^

sin 9 cos 9 y]_

1

X'

y'

w'

(9)

Let
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V = X

y

' Vi = "x'

y
>

S =

w w'

cos 9 -sin 9 x,

sin 9 cos 9 j-^

1

Prom (9)

V = SV-L and V = (SV^) = V^'S' .

If the coefficient matrix of (8) is denoted by A, equation (8)

can be -written as V'AV = 0. The transformed equation is

V^'S'ASVt_ = 0, which, letting B = S'AS, becomes V^'BV-j^ = 0.

Let Q, and T denote the two-by-two submatrices formed by

deleting the last row and last column of A and S, respectively,

so

Q =
a h~

and T =
h b

cos 9 -sin ©

sin 9 cos 9

where T is an orthogonal matrix. Let R be the two-by-two matrix

formed by deleting the last row and last column of B. It is

easily verified that R is independent of x-j_ and y-]_ and that

R = T'QT. Since T is orthogonal, T' = T"^. This implies

R = T'-'-QT, or that R is similar to Q.

Prom Theorems 1 and 2 it is seen that R and Q have the same

rank, determinant, and characteristic equation. Also the rank

and determinant of B are the same as those of A, since the de-

terminant of S is equal to one.

Since Q is symmetric, T may be chosen so that R is in

diagonal form. Let R be denoted by
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and B by

a'

b

a' P'"

b' q'

P' q' d'_

Now V;l'BV-]_ = is

Cx' y ' w'1 a' p' X'

b' q' y'

P' q' d' Lw'_j

= ,

or

a'x'^ + b'y'^ + 2p'x'w' + 2q'y'w' + d'w'^ = ,

whence replacing w
'

" by 1, (6) becomes

a'x'2 + b'y'^ + 2p'x' + 2q'y' + d' = (10)

The transformation has eliminated the xy term.

Consider the following standard forms of the equations of

second degree in two variables:

x^ y^

a'

.2x- y
(ii) -^ +

a'

-^ = -1.

(ill) — + —
a^ b^

r2

~2 = 0,

the real ellipse,

the imaginary ellipse,

imaginary intersecting straight
lines.
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X
(iv) — y

(v)

X'

b2

= 1,

= 0,

(vi) x2 + 2py = 0,

(vii) x2 + a2 = o,

(vlii) X - a =0,

(Ix) x2 = 0,

the hyperbola,

real intersecting straight lines,

the parabola,

imaginary parallel lines,

real parallel lines,

two coincident lines.

If these are to be considered as quadratic forms, the

equations must be put into the form of equation (10). Equa-

tions (vi)-(ix) are already in this form. To change equations

(i)-(v), all that is necessary is to multiply both sides of the

equation by a b , and collect the nonzero terms on one side.

The following table exhibits the matrix B of the quadratic

form and its rank for each of the nine cases.

Second degree equation

(i) The real ellipse

B Rank

(ii) The imaginary , ellipse

(iii) Imaginary intersecting
straight lines

rb2

a2

_0 -a2b2

rb2 "

a2

_0 a2b2_

"b2 0~

a2
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(iv) The hyperbola

(v) Real intersecting
straight lines"

(vi) The parabola

(vii) Imaginary parallel lines

(viii) Real parallel lines

(ix) Two coincident lines

rb2

'-b2

a2

-a b

0~

-a2

0_

1

p

p

10

a2

"l

"l
0'

a'

Since the matrix B is of rank three for the ellipse, hyper-

bola, and parabola, A is also of rank three for these cases.

Likewise, A is of rank two for distinct straight lines and

rank one for coincident lines.

Further information valuable for the identification of the

curve given by a second degree equation can be obtained from
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the characteristic roots of the matrix R. For cases (i)-(iii)

"b2
the matrix R =

R =

-a2

and

.2 ?

R = b^a^. For (iv) and (v)

and R-= -b^a"^ , and for (vi)-(ix) R =

LO 0_

and
I

R
j

= 0.

Since R is a diagonal matrix, R
]
is the product of the

diagonal elements of R. The diagonal elements, however, are

also the characteristic roots of R. Thus recalling i R =
i Q, |,

it is seen that the product of the characteristic roots of Q

is positive for (i)-(iii), negative for (iv) and (v), and zero

for ( vi) -( ix) .

In addition, if X-, and Xp are the characteristic roots of

R, then |R
]

= |Q [

= X]_X2 ~ ^^ ~ ^ • Thus, provided the m.atrix

B is of rank three, an irreducible second degree curve is an

ellipse if ab - h^ > 0, a hyperbola is ab - h^ < 0, and a

pparabola if ab - h = .

Additional information for identification of a second de-

gree curve can. be obtained by consideration of the matrix

B = S'AS

B = S'AS =

cos 9 sin e O'

sin 9 cos 9

X-, yi 1

q h p~]

h b q

P q d

cos 9 -sin 9 x-]_'

sin 9 cos 9 y-]_

1

Let this product be denoted by a three-by- three matrix
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h' p'

h'- b' a'

.P' q' d'^ ,

where

a' = a cos^ e + 2h sin cos 9 + b sin^ 9

h' = (b - a)sin 9 cos 9 + h(cos2 9 - sin^ 9)

b' = a sin 9 - 2h sin 9 cos 9 + b cos 9 .

Since h' must be zero for the xy term to vanish, 9 is deter-

mined. Further, for such a value of 9,

p' = (a cos 9 + h sin 9)x-| + (h cos 9 + b sin 9)y-.

+ p cos 9 + q sin 9

q' = (-a sin 9 + h cos 9)x-, + ( -h sin 9 + b cos 9)y^

- p sin + q cos 9

2 2
d' = ax]_ + 2hx-Ly-|_ + by;]_ + 2px2_ +

2qy-L
+ d-L .

It will be possible to choose x-, and y-r so that p' and q'

both become zero if the determinant of the coefficients of x-,

and y-j^ in these two equations does not vanish. These choices

give

I

a cos 9 + h sin 9 h cos 9 + b sin 9

-a sin 9 + h cos 9 -h sin 9 + b cos

Since the determinant of Q is ab - Y? , the above result implies

that the rank of Q is two. If x-j^, y^ and are chosen such that

h' = p' = q' = 0, the matrix B is of the form

= ab - h^ 7^ 0,

a'

b'

d'
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Hence

V;[_'BV-L = fx' y' w'J a'

b'

d'

X tH

w

or

s'x' ^ + b'y'^ + d'w'^ = .

Now letting w' =1, the equation becomes

'x'^ + b'y'^ + d' = 0.

' b

'

? 2— x'^ + — y' +1=0

Dividing through by d
'

, this becomes

a

d' d'

which, depending on the value of d
'

, is one of the forms (i)

to (v)

.

If ab - h =0, it will be shown that a + b 7^ 0, and that

the angle 9 which makes h' = can be chosen such that

cos = and sin 9 = +

a + b
, where the sign is-

a + b

the same as that of ah. '

To prove that a + b 7^ if ab - h^ = 0, assume that

ab - h^ = and a + b = 0. Then a = -b, and -b^ - h^ = 0, or

h. = + i yy b . This contradicts the assximption that (6) had

real coefficients. Therefore a + b 7^ 0.

If cos e
a / b

and ah is positive, sin 6 =
a + b a + b
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/ b / a a b

h' = (b - a)Y V * ^^ ^a+ba + b a + b a + b

bVab - a'Vab + ha - hb

bh - ah + ah - bh

a+b . . .

=

Similarly, it can be shown, that if ah is negative.

sin e = -^/ and cos 9 = 'V will make h' = 0.

a + b 'a + b

In addition it can be shown that (l) these restrictions will

give

a ' = a + b, b' =

rr
x-^^/aia + b) + y^A/b(a + b) + p'^j +

q^J
a + b a + b

and

q' = qA/ (± pA/ )
•

a + b a + b
^

There are two cases to consider, q' ^ 0, and q' = 0.

If q' 7^ 0, then d' =
( )p' + £x^ + my-]_ + n , and it
a + b

can be shown that x-, and y-|_ may be chosen so p' and d' are zero,

This would reduce equation (10) to the form (vi)

.

The last case to consider is that for which a' = 0. If
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q' = 0, then d' = 2
p' + V, and X-, and y-, may be chosen so

a + b

that p' =0. Such a choice will give a value of d' which can be

shown to be independent of the particular choice of x-, and y-,

and equation (10) will reduce to one of the forms (vii), (viii),

or (ix). The matrix R and thus the matrix Q^ is of rank two

for forms (i)-(v), and of rank one for forms (vi)-(ix).

With the preceding results, complete identification of any

second degree curve in two variables can be made by considering

the matrices A and Q,. The identification depends upon the ranks

of the matrices A and Q, and on the characteristic equation of

Q. In any case, a m.atrix S can be found which will reduce

equation (6) to one of the standard forms.

As an example of these procedures, again consider the

conic 2x'^ + i].xy + 5y = 1- Introducing homogeneous coordinates,

replacing x by x/w and y by y/w, the equation becomes

2x + iixy + 5y - "w = 0, or in matrix form

l^x y w] 2 2 X

2 5 J

-1 _w

=

The matrices A and Q, are

A =

2 2

2 5

-1

Q =
2 2

2 5

which are clearly of rank three and two, respectively. From the
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ranks of A and Q, it is seen the conic must be an ellipse or a

hyperbola. But since the characteristic roots of Q, are 6 and 1

and the product of the characteristic roots is greater than

zero, the conic must be an ellipse. Alternatively, one could

compute ab - h , which in this case is (2) (5) - ij. = 6. Since

this is greater than zero and the rank of A is three, the conic

must be an ellipse.

SECOND DEGREE SURFACES

, The general second degree equation in three variables x,

y, and z can be written

2 2 2-
ax + by + cz + 2fyz + 2gxz + 2hxy + 2px + 2qy + 2rz + d =

(11)

where not all of a, b, c, f, g, h are zero. Again homogeneous

coordinates are introduced, replacing x by x/w, y by y/w, and

z by z/w. The homogeneous equation is .

'

.

ax + by + cz + 2fyz + 2gxz + 2hxy + 2pxw + 2qyw + 2rzw + dw

= . (12)

The derivation of properties useful for identifying the

particular surface parallels that of the previous section.

Equation (12) may be written as

L-
n r-

y z wj a h g P X

h b f q J

g f c r z

P q r d- w

=
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where the coefficient matrix is denoted by A
,

In this case

Q = a h q

h h f

_g f c_

The matrix. S needed to find B = S'AS will be of the form

^11 ^12 ^13 ^1

321 ^22 ^23 ^1

Q'^n Q'^Q ^00 ^"1

1

where

T =

^11 ^12 ^13

321 ^22 ^23

a^i 8^2 ^33

is orthogonal.

Then if the transformed equation of (11) is

a'x'^ + b'y'^ + c'z'^ + 2f'y'z' + 2g'x'z' + 2b'x'y'

+ 2p'x' + 2q'y' + 2r'z' + d' = ,

the matrix R is of the form

a' h' g'

h' b' f
g' f c'

As before the rank snd characteristic equation of R are
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the same as those of 'Q, while the rank and determinant of B are

the same as those of A.

As illustrations consider the following three equations

selected from the set of standard equations of the second degree,

2 2 2
'

(i) —+—+—- 1=0, the real ellipsoid,
a-^ b^ c2.

2 2X y
(ii) — + ^ + 2rz = 0,

a2 b^
the elliptic paraboloid.

(iii) x2 - a2 = o. real parallel planes,

Following is a table of the matrices B and R and their

ranks for the three cases.

(i)

(ii)

(iii)

B Rank R Rank

-b2 c2 0~ -b2 c2

a 2c2 II- a2c2 3

a 2b2 _0 a 2b2_

_0 -a2b2c2_

-b2 o" -b2 0~

a'
?

\ a2 2

a2b2r _0 • 0_

_0 a2b'~r o_

~1 n "l o"

2 1

_0 0_

-a2
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Note that the product of the characteristic roots of R is

greater than or equal to zero for all three cases.

It can be shown that every equation of the form (11) can

be reduced to a standard form of a surface, while various proper-

ties of the matrices A and Q, remain unchanged. Thus determina-

tion of the ranks of A and Q and the characteristic equation

and characteristic roots of Q, will identify the equation (11).

Theoretically, a similar process could be carried out in

Euclidean spaces of any dimension. However, as the dim.ension

of the space increases, the order of the matrices involved will

render this method impractical in view of the computations in-

volved. Major difficulties .arise first in finding the unitary

or orthogonal matrix which will change the quadratic forTH to

canonical form, and then in finding the characteristic equation

and characteristic roots of the matrices denoted above as A and

Q. These can be found by indirect methods, but such methods

usually involve approximation techniques which although they

are convenient in that they are applicable to computers, often

lead to inaccuracies in the results acquired. Caution must be

taken, therefore, to assure that one does not misinterpret the

results thus obtained.
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The purpose of this report is to consider applications of

quadratic forms to geometry. The report begins with a section

containing definitions essential to the development of the dis-

cussion. Then utilizing the definitions of characteristic and

similar matrices, a method for changing a matrix to diagonal

form is developed.

Next, using the concepts of orthogonality and similarity,

a procedure is derived for reducing a quadratic form, to canon-

ical form.. An example is given to illustrate this procedure.

Before consideration of the change of a coordinate system,

homogeneous coordinates are introduced as a means of simplify-

ing the procedure. With the homogeneous coordinates, the co-

ordinate transfonnation then takes the form of a linear trans-

formation.

The next step is to utilize a combination of the preceding

concepts and procedures to derive various properties useful for

identifying any second degree curve. Prom the ranks and de-

terminants of the matrices involved, a complete identification

of the conic from the equation is possible.

Finally, the extension of these methods to second degree

surfaces is indicated. In this section examples of the general

quadratic form and the matrices involved for three types of

second degree surfaces are presented.


