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Abstract

This dissertation consists of three essays relating to asymmetric preferences in optimal

monetary policy models. Optimal monetary policy models are theoretical optimal control

problems that seek to identify how the monetary authority makes decisions and ultimately

formulate decision rules for monetary policy actions. These models are important to policy

makers because they help to define expectations of policy responses by the central bank.

By identifying how researchers perceive the central bank’s actions over time, the monetary

authority can identify how to manage those expectations better and formulate effective

policy measures.

In chapter 1, using a model of an optimizing monetary authority which has preferences

that weigh inflation and unemployment, Ruge-Murcia (2003a; 2004) finds empirical evidence

that the monetary authority has asymmetric preferences for unemployment. We extend

this model to weigh inflation and output and show that the empirical evidence using these

series also supports an asymmetric preference hypothesis, only in our case, preferences are

asymmetric for output. We also find evidence that the monetary authority targets potential

output rather than some higher output level as would be the case in an extended Barro and

Gordon (1983) model.

Chapter 2 extends the asymmetric monetary policy problem of Surico (2007) by relaxing

the assumption that inflation and interest rate targets are constant using a time varying

parameter approach. By estimating a system of equations using iterative maximum likeli-

hood, all of the monetary planner’s structural parameters are identified. Evidence indicates

that the inflation and interest rate targets are not constant over time for all models esti-

mated. Results also indicate that the Federal Reserve does exhibit asymmetric preferences

toward inflationary and output gap movements for the full data sample. The results are



robust when accounting for changing monetary policy targeting behavior in an extended

model. The asymmetry for both inflation and output gaps disappears over the post-Volcker

subsample, as in Surico (2007).

In chapter 3, Walsh (2003b)’s speed limit objective function is generalized to allow for

asymmetry of policy response. A structural model is estimated using unobserved compo-

nents to account for core inflation and measure the output gap as in Harvey, Trimbur and

Van Dijk (2007) and Harvey (2011). Full sample estimates provide evidence for asymmetry

in changes in inflation over time, but reject asymmetry for the traditional speed limit for

the output gap. Post-Volcker subsample estimates see asymmetry disappear as in a more

traditional asymmetric preferences model like Surico (2007).



ESSAYS IN OPTIMAL MONETARY POLICY AND

STATE-SPACE ECONOMETRICS

by

C. PATRICK SCOTT

B.S., University of South Alabama, 2008

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Economics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Approved by:

Major Professor
Steven P. Cassou



Copyright

C. Patrick Scott

2013



Abstract

This dissertation consists of three essays relating to asymmetric preferences in optimal

monetary policy models. Optimal monetary policy models are theoretical optimal control

problems that seek to identify how the monetary authority makes decisions and ultimately

formulate decision rules for monetary policy actions. These models are important to policy

makers because they help to define expectations of policy responses by the central bank.

By identifying how researchers perceive the central bank’s actions over time, the monetary

authority can identify how to manage those expectations better and formulate effective

policy measures.

In chapter 1, using a model of an optimizing monetary authority which has preferences

that weigh inflation and unemployment, Ruge-Murcia (2003a; 2004) finds empirical evidence

that the monetary authority has asymmetric preferences for unemployment. We extend

this model to weigh inflation and output and show that the empirical evidence using these

series also supports an asymmetric preference hypothesis, only in our case, preferences are

asymmetric for output. We also find evidence that the monetary authority targets potential

output rather than some higher output level as would be the case in an extended Barro and

Gordon (1983) model.

Chapter 2 extends the asymmetric monetary policy problem of Surico (2007) by relaxing

the assumption that inflation and interest rate targets are constant using a time varying

parameter approach. By estimating a system of equations using iterative maximum likeli-

hood, all of the monetary planner’s structural parameters are identified. Evidence indicates

that the inflation and interest rate targets are not constant over time for all models esti-

mated. Results also indicate that the Federal Reserve does exhibit asymmetric preferences

toward inflationary and output gap movements for the full data sample. The results are



robust when accounting for changing monetary policy targeting behavior in an extended

model. The asymmetry for both inflation and output gaps disappears over the post-Volcker

subsample, as in Surico (2007).

In chapter 3, Walsh (2003b)’s speed limit objective function is generalized to allow for

asymmetry of policy response. A structural model is estimated using unobserved compo-

nents to account for core inflation and measure the output gap as in Harvey, Trimbur and

Van Dijk (2007) and Harvey (2011). Full sample estimates provide evidence for asymmetry

in changes in inflation over time, but reject asymmetry for the traditional speed limit for

the output gap. Post-Volcker subsample estimates see asymmetry disappear as in a more

traditional asymmetric preferences model like Surico (2007).



Table of Contents

Table of Contents viii

List of Figures x

List of Tables xi

Acknowledgements xii

Dedication xiii

1 Optimal Monetary Policy with Asymmetric Preferences for Output 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Using Time Varying Monetary Policy Parameters to Identify Asymmetric
Preferences 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Optimal Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Forward-Looking Conditional Expectations . . . . . . . . . . . . . . . 16

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 A Time Varying Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Estimating the Asymmetry of Speed Limits: A Structural Model Using
Unobserved Components 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Rational Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Optimal Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 44

viii



A Chapter 1 Technical Notes 45
A.1 Solving the planner’s optimization problem . . . . . . . . . . . . . . . . . . 45
A.2 Estimation Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.2.1 ARIMA(2,0,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2.2 ARIMA (1,1,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Some notes for solving an equation above. . . . . . . . . . . . . . . . . . . . 51
A.4 Great Moderation Period Results . . . . . . . . . . . . . . . . . . . . . . . . 53

B Chapter 2 Technical Notes 54
B.1 Deriving the Benchmark Dynamic New-Keynesian Model . . . . . . . . . . . 54

B.1.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.1.2 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.1.4 Log-Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.1.5 The Benchmark Model . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.2 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2.1 Time Varying Target Rate Model . . . . . . . . . . . . . . . . . . . . 62
B.2.2 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2.3 Time Varying Aversion Parameter Model . . . . . . . . . . . . . . . . 65
B.2.4 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C Chapter 3 Technical Notes 69
C.1 Deriving the Modified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.1.1 Rational expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.1.2 The UC updated Phillips curve . . . . . . . . . . . . . . . . . . . . . 69
C.1.3 The UC updated consumer’s Euler Equation . . . . . . . . . . . . . . 69

C.2 State-Space Formulation - Speed Limits with
Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.2.1 Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.2.2 Smoothed Estimates of the State Vector . . . . . . . . . . . . . . . . 74

ix



List of Figures

1.1 Asymmetric Policy Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Inflation Rate Target Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Interest Rate Target Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Inflation with Estimated Trend and Cycle . . . . . . . . . . . . . . . . . . . 36
3.2 Output with Estimated Trend and Cycle . . . . . . . . . . . . . . . . . . . . 38

x



List of Tables

1.1 LR tests for neglected ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Maximum Likelihood Estimates - ARIMA(1,1,2) Model . . . . . . . . . . . . 6
1.3 Maximum Likelihood Estimates - ARIMA(2,0,2) Model . . . . . . . . . . . . 8

2.1 Maximum Likelihood Estimates - Time Varying Policy Targets . . . . . . . . 19
2.2 Testing Joint Restrictions - Likelihood Ratio Tests . . . . . . . . . . . . . . . 20
2.3 Maximum Likelihood Estimates - Time Varying Aversion Parameters . . . . 23
2.4 Testing Joint Restrictions - Likelihood Ratio Tests . . . . . . . . . . . . . . . 25

3.1 Maximum Likelihood Estimates - 1960:1 to 2012:4 . . . . . . . . . . . . . . . 34
3.2 Maximum Likelihood Estimates - 1979:4 to 2012:4 . . . . . . . . . . . . . . . 37

xi



Acknowledgments

I wish to thank my major professor, Dr. Steve Cassou for offering exceptional advice and

support throughout my graduate studies. His mentoring during this chapter of my academic

career has been an invaluable resource and inspiration. Working with both Dr. Cassou and

Dr. Jesus Vazquez on various research projects has been an incredible learning opportunity.

Additional thanks go to Dr. William Blankenau and Dr. Lance Bachmeier. Their helpful

comments and challenging coursework over the past five years have contributed much to my

development and interest in macroeconomics and econometrics. I also wish to thank Dr.

Allen Featherstone for his course in nonlinear optimization.

I gratefully acknowledge all of the economics graduate faculty, in particular Dr. Yang-

Ming Chang, Dr. Phillip Gayle, and Dr. Dong Li. Thank you to all of my friends and

colleagues that have been instrumental to my success in graduate school, most notably

Bebonchu Atems, Vladimir Bejan, Mark Melichar and many others.

Last, but certainly not least, thank you to my family. To my daughter, Elizabeth,

thank you for keeping me young. Thank you to my wife, Suzanna. My gratitude for your

unwavering love and passionate support cannot be expressed in words.

xii



Dedication

For my wife, Suzanna and daughter, Elizabeth Claire.

xiii



Chapter 1

Optimal Monetary Policy with
Asymmetric Preferences for Output

1.1 Introduction

The possibility that monetary policy makers may induce an upward bias in inflation was first

suggested by Barro and Gordon (1983). They suggested that, because the monetary policy

maker is unable to make long term commitments, it is possible that instead they pursue

policies which create surprise inflation. This intriguing proposition has been explored

in numerous empirical studies including Ireland (1999), Ruge-Murcia (2003a; 2004) and

others with mixed results. Although Ruge-Murcia (2003a; 2004) showed that the Barro

and Gordon style inflation bias is not supported by the data, these papers developed a

new theory that an inflation bias may arise from asymmetric preferences on the part of

the monetary authority. In the Ruge-Murcia model, the inflation bias arises because the

monetary authority takes stronger action when unemployment is above the natural rate

than when it is below the natural rate.

In this paper, we develop an asymmetric preference model which focuses on an output

asymmetry. Such a model is consistent with many important optimal monetary policy

papers, including Cukierman (2002), Nobay and Peel (2003) and Walsh (2003b), which have

a more theoretical emphasis. The structure of our model is similar to the one in Ruge-

Murcia (2003a; 2004). However, it includes a slightly different trend structure to handle
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the growing character of the output data.1

We find that the monetary authority targets permanent output rather than some higher

level of output which would be required in a parallel Barro and Gordon type model in which

output is considered instead of unemployment. Furthermore, we find that the preferences

of the monetary authority are asymmetric with stronger action taken when output is below

its permanent level than when it is above. For this study, we look at two different data

periods, including one of the standard periods used in both Ireland (1999) and Ruge-Murcia

(2003a; 2004) and a second that extends that series up to the second quarter of 2011.

1.2 The Model

The model starts with a common formulation for the short run supply curve given by

Yt = Y p
t + α(Pt − P e

t ) + ηt,

where Yt is observed output at time t, Y p
t is permanent or potential output at time t, Pt

is the price level at time t, P e
t is the expected price level at time t based on information

at time t − 1 and ηt is a supply disturbance.2 Adding and subtracting Pt−1 inside the

parenthesis term on the right and rearranging terms gives

Yt = Y p
t + α(πt − πet ) + ηt, (1.1)

where πt = Pt − Pt−1 and πet = P e
t − Pt−1.

Permanent output fluctuates over time in response to a real shock ζt according to the

autoregressive process

(1− L) [Y p
t − (1− δ)t] = ψ − (1− δ)

[
Y p
t−1 − (1− δ)(t− 1)

]
+θ(1− L)

[
Y p
t−1 − (1− δ)(t− 1)

]
+ ζt, (1.2)

1Another approach taken by Surico (2007) also uses output as part of the monetary authorities objective
function, but his paper differs from our paper and the Ruge-Mucia (2003a; 2004) models in that it focusses
on policy rule asymmetries.

2This supply curve can be motivated in a number of ways and standard sources for it can be found in
Friedman (1968) and Lucas Jr (1977).
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where −1 < θ < 1, 0 < δ ≤ 1, L is the lag operator and ζt is serially uncorrelated

and normally distributed with mean zero and standard deviation σζ . As in Ruge-Murcia

(2003a; 2004) we use δ to capture different types of trend possibilities in the permanent

output process. To understand these different trends, rewrite (1.2) as

Y p
t − Y

p
t−1 = ψ′ + (1− δ)2t− (1− δ)Y p

t−1 + θ(Y p
t−1 − Y

p
t−2) + ζt, (1.3)

where ψ′ = ψ + (1 − δ) [1− θ − (1− δ)]. This formulation shows that when δ = 1, the

model has no deterministic trend, ψ′ = ψ and there is a unit root. On the other hand,

when δ < 1, there is a deterministic trend and no stochastic trend.3

Actual inflation for the period is then determined as the sum of a policy variable chosen

by the monetary authority denoted by it and a control error, εt, so that

πt = it + εt, (1.4)

where εt is serially uncorrelated and normally distributed with mean zero and standard

deviation σε. Define ξt to be the 3 × 1 vector that contains the model’s structural shocks

at time t. We assume that ξt is serially uncorrelated, normally distributed with zero mean,

and (possibly) conditionally heteroscedastic:

ξt|It−1 =

 ηt
ζt
εt

 |It−1˜N(0,Ωt), (1.5)

where Ωt is a 3 × 3 positive-definite variance–covariance matrix. The conditional het-

eroscedasticity of ξt relaxes the more restrictive assumption of constant conditional second

moments and captures temporary changes in the volatility of the structural shocks.

The policy maker selects it in an effort to minimize a loss function that penalizes varia-

tions of output and inflation around target values according to(
1

2

)
(πt − π∗t )

2 +

(
φ

γ2

)
(exp(γ(Y ∗t − Yt))− γ (Y ∗t − Yt)− 1) ,

3We empirically investigated both the integrated model, where δ = 1, and a trend-stationary model
where δ < 1. Results for both models were similar, so only the integrated results are reported below.
However, for the sake of replication, we provide some further discussion on how one could replicate our
stationary model estimation results.
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Figure 1.1: Asymmetric Policy Response

where γ 6= 0 and φ > 0 are preference parameters, and π∗t and Y ∗t are desired rates of inflation

and output, respectively. Figure 1.1 highlights the asymmetry of the policy response to

a positive and negative output gap. The symmetric (Barro-Gordon) case is shown by the

dashed line while the asymmetric form is demonstrated by the solid line. The steeper slope

when output is below the target (or natural) rate translates to a higher loss for the policy

maker and thus a stronger policy response. The more gradual slope when output is above

the target (or natural) rate yields a lower loss and a weaker policy response. In this case,

since the output gap is defined as Y ∗t − Yt then γ is expected to > 0.

As in Ireland (1999) and Ruge-Murcia (2003a), we assume π∗t is constant and denote it

by π∗. The output level targeted by the central banker is proportional to the permanent

value according to

Y ∗t = kEt−1Y
p
t , for k ≥ 1. (1.6)

In this formulation, when k = 1, the authority targets permanent output, while for k > 1

the authority targets output beyond the permanent level. Substituting (1.1), (1.4), and

(1.6) into the objective function gives

min
it
Et−1


(
1
2

)
(it + εt − π∗t )

2

+
(
φ
γ2

)( exp(γ(kEt−1Y
p
t − Y

p
t − α(it + εt − πet )− ηt))

−γ (kEt−1Y
p
t − Y

p
t − α(it + εt − πet )− ηt)− 1

)  .
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Table 1.1: LR tests for neglected ARCH

Squared residuals Sample period No. of lags
1 2 3 4 5 6

Original 1960:1-1999:4 0.60 5.44† 5.93 8.57† 9.87† 8.41
1960:1-2011:2 1.43 7.40∗ 8.00∗ 11.29∗ 12.51∗ 10.97†

Standardized 1960:1-1999:4 1.04 2.45 2.64 5.47 5.48 5.72
1960:1-2011:2 0.49 2.59 2.68 5.75 5.83 6.08

Note: We use the convention that tests that are significant at the 10 percent level only have a †
while those that are significant at the 5 percent (and 10 percent) level have an ∗.

1.3 Empirical Results

Solving the optimization problem and linearizing the decision rule gives the following reduced

form inflation equation4

πt = a+ bEt−1Yt + cσ2
Y,t + et, (1.7)

where a is a constant intercept, b = φα(k − 1) ≥ 0, c = φαγ
2

≷ 0, and et is a reduced

form disturbance. As in the Ruge-Murcia model, as γ → 0 (with k > 1) one obtains

an inflation-output version of the Barro and Gordon model. So a test of that model is,

H0 : c = 0. Also, when k = 1 the policy preferences are such that the monetary authority

targets permanent output, so a test of this is, H0 : b = 0.

A reduced form for the output equation is also easily derived

∆Yt = ψ′ + (1− δ)2t− (1− δ)Yt−1 + θ∆Yt−1 + ζt + ηt + αεt (1.8)

−δ (αεt−1 + ηt−1)− θ(α∆εt−1 + ∆ηt−1).

Equations (1.7) and (1.8) were estimated jointly using a maximum likelihood procedure.

The output conditional variances were estimated first using a GARCH(1, 1) model. Since

σ2
Y,t is identified only if it is not constant, we ran some preliminary tests to see if it is time

4See Appendix A for a derivation of Equations (1.7) and (1.8).
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Table 1.2: Maximum Likelihood Estimates - ARIMA(1,1,2) Model

Sample 1960:1-1999:4
Coefficient Model

Barro and Gordon Asymmetric with
k free k ≥ 1 k = 1

a 3.90∗ 5.15 2.88∗ 2.88∗

(0.20) (4.39) (0.33) (0.33)
b 0.0 -0.26 0.0

· (0.49) ·
c 1.29∗ 1.33∗ 1.33∗

(0.39) (0.39) (0.39)
log likelihood 165.29 173.40 173.28 173.28
Sample 1960:1-2011:2
Coefficient Model

Barro and Gordon Asymmetric with
k free k ≥ 1 k = 1

a 3.53∗ 14.80∗ 2.68∗ 2.68∗

(0.17) (3.49) (0.27) (0.27)
b 0.0 -1.24∗ 0.0

· (0.38) ·
c 0.91† 1.14∗ 1.14∗

(0.34) (0.36) (0.36)
log likelihood 231.29 245.10 238.90 238.90

Note: Significance at the 5 percent level denoted by a † while those that are significant at the 1

percent (and 5 percent) level have an ∗.

varying. Table 1.1 contains the results of various neglected ARCH tests. The first two

rows show the results using the original output series. Here the residuals from a four-lag

V AR with a time trend were collected. These residuals were then squared and an OLS

regression was run on a constant and one to six lags. The last two rows show the results

using the standardized residuals from the GARCH(1, 1) model. These test statistics have

χ2
q distribution where q is the number of lags. These results show evidence that the original

output series does have conditional heteroscedasticity, while the conditional variance series

does not.
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In estimating the trend-stationary model, we set δ = 0.991, which is the value of the

coefficient on the time trend term in a simple regression of output on a constant and a time

trend. For the nonstationary model we set δ = 1. The first (second) panel of Table 1.2 shows

the results of the maximum likelihood estimation of the model using the sample period of

1960:1-1999:4 (1960:1-2011:2). The first sample period is one of the data periods used in

Ruge-Murcia (2003a; 2004) and it is similar to the sample period of 1960:1-1997:2 considered

in Ireland (1999). The table is organized so that the first column provides estimates of an

output and inflation version of the Barro and Gordon model, while the next three columns

provide estimates of an asymmetric preference formulation. The first asymmetric preference

formulation allows k to vary freely and to possibly have negative values, contrary to the

model restriction, while the second asymmetric preference formulation allows k to vary freely

in a range greater than 1 and the third case constrains k to equal 1.

Focusing on the first panel, Table 1.2 shows that whenever k is allowed to vary freely, b

takes on a negative, but insignificant, value as Ruge-Murcia (2003a) found in one of his esti-

mated specifications using unemployment instead of output. Not surprisingly, constraining

k to its theoretical plausible region results in it always moving to its lower bound. Fur-

thermore, using the likelihood ratio test, the null hypothesis that b equals zero, cannot be

rejected. This result is similar to results found using the inflation-unemployment model by

Ruge-Murcia (2003a; 2004) and implies that policy makers target permanent income rather

than some higher level of output. Moreover, Table 1.2 also allows one to test for the presence

of asymmetric preferences over output by testing whether the coefficient of the conditional

variance of output, c, is significant. Both the t statistic and the likelihood ratio statistic

(the latter takes the value 15.98 using the theoretically consistent model with k ≥ 1 as the

unrestricted model) reject this null at any standard significance level.

The second panel shows the estimation results obtained running the same model, but

considering data up through 2011:2. Estimation results are fairly robust across the samples,

although b does become significantly negative in this longer sample. Overall, in both sam-

7



Table 1.3: Maximum Likelihood Estimates - ARIMA(2,0,2) Model

Sample 1960:1-1999:4
Coefficient Model

Barro and Gordon Asymmetric with
k free k ≥ 1 k = 1

a 3.90∗ 5.03 2.86∗ 2.86∗

(0.20) (4.47) (0.32) (0.32)
b 0.0 -0.25 0.0

· (0.50) ·
c 1.30∗ 1.34∗ 1.34∗

(0.39) (0.39) (0.39)
log likelihood 165.67 173.72 173.61 173.61
Sample 1960:1-2011:2
Coefficient Model

Barro and Gordon Asymmetric with
k free k ≥ 1 k = 1

a 3.53∗ 13.95∗ 2.70∗ 2.70∗

(0.17) (3.48) (0.27) (0.27)
b 0.0 -1.26∗ 0.0

· (0.38) ·
c 0.88† 1.12∗ 1.12∗

(0.35) (0.36) (0.36)
log likelihood 230.26 243.99 237.58 237.59

Note: Significance at the 5 percent level denoted by a † while those that are significant at the 1

percent (and 5 percent) level have an ∗.

ples, we find robust evidence of asymmetric preferences for output on the part of an optimal

monetary planner.

Table 1.3 reports estimation results for the ARIMA(2, 0, 2) formulation for the same two

sample periods. The estimation results are almost identical under the two permanent output

specifications. Again, when k is allowed to vary freely beyond its theoretical constraint b

assumes a negative value. When k is limited, b is pushed to a zero lower bound implying the

central bank targets natural output. In all cases we reject the hypothesis of c = 0 implying

that the policy maker exhibits an asymmetry of preference toward output.
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1.4 Conclusion

In this paper we develop an optimal monetary policy model that estimates output asym-

metry for the central bank. The model is appropriately parameterized to account for the

trending nature of the output data. A reduced form model is derived that depends on the

conditional variance of output to identify asymmetry of monetary policy. Results indicate

that output is conditionally heteroscedastic, thus asymmetry is identified. Model estimates

indicate that the Federal Reserve does exhibit asymmetric preferences for output. Addi-

tionally, parameter estimates indicate that the Fed targets natural output as opposed to

some nominal output level. Results are consistent across subsamples and different trend

specifications.
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Chapter 2

Using Time Varying Monetary Policy
Parameters to Identify Asymmetric
Preferences

2.1 Introduction

The optimal monetary policy literature has long focused its attention on the deviations of

macroeconomic variables from their natural rates and policy variables from their target rates

to analyze policy behavior. This follows a lengthy tradition in the literature first analyzed by

Kydland and Prescott (1977) and formalized by Barro and Gordon (1983). One important

consequence of both studies is that policy responses to positive deviations in unemployment

from its natural rate are met with the same urgency as negative deviations by the central

banker. In order to address this concern, some studies in the literature have turned to

asymmetric specifications to model these responses in the policy maker’s loss function. This

allows positive and negative deviations to be weighted differently in terms of policy response

by the monetary authority.

Asymmetry of optimal monetary policy has been well studied in the recent literature.

Ruge-Murcia (2004) models an asymmetric specification of Barro and Gordon (1983) to show

that the much studied inflation bias could arise, not by an overly ambitious central bank,

but through the asymmetry of policy responses. Surico (2007) shows that the asymmetry of

policy response appears to go away in the post-Volcker era of the Fed and thus the average
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inflation bias decreases and is less important during the Great Moderation. Tangentially

related to this, Doyle and Falk (2010) offer a meaningful critique of the asymmetric policy

rule and its ability to explain the general rise and subsequent fall of inflation within the

U.S. among other OECD countries.

A significant portion of the recent empirical literature impose the simplifying assump-

tion that the policy maker’s inflation target is constant over time. Closely related to this

is a growing body of literature that suggests monetary policy has changed for the Federal

Reserve, particularly after the appointment of Paul Volcker as Fed Chairman. The litera-

ture investigating shifting monetary policy for the U.S. is extensive and divided1. It is not

the aim of this paper to argue the evidence for or against switching monetary policy mod-

els. However, the constancy of inflation targets, interest rate targets, and policy targeting

parameters may be important to testing the asymmetric preferences hypothesis.

Ruge-Murcia (2003a; 2003b; 2004), Surico (2007), and Doyle and Falk (2010) are not

able to fully identify all of the policy maker’s structural or deep parameters. Surico (2007)

comes close by creatively identifying the asymmetry parameters. Part of this shortcoming

in the literature is a direct result of a single equation estimation strategy. Doyle and Falk

(2010) note that if we are to take the model seriously, then a single equation estimation of the

linearized first order condition should suffice to capture the relationship among the structural

equations of the model. The problem with this approach is that reduced form parameters

are estimated as convolutions of structural parameters and time invariant monetary policy

targets. So long as the only interest is in estimating and drawing inference from a reduced

form parameter, they are correct. But if we are to take seriously the testing of the nonlinear

hypothesis, then a multiple equation framework is needed, where all of the policy maker’s

structural parameters are identified.

This paper contributes to the optimal monetary policy literature by extending Surico

(2007) to include time varying monetary policy parameters. Two models are estimated.

1For a brief introduction to this literature see Clarida, Gaĺı and Gertler (2000), Kim and Nelson (2006),
Lubik and Schorfheide (2004), Primiceri (2005), and Sims and Zha (2006)
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The first models time varying inflation and interest rate targets for the monetary authority.

This extension, combined with the system estimation of all of the models equations, allows

for identification and estimation of all deep parameters in the model. The second model

relaxes the imposed assumption that policy behavior is constant over time. Evidence from

these two exercises indicates a rejection of the assumption that inflation targets and interest

rate targets are constant. Evidence from the second model implies that monetary policy

targeting behavior is also variable. The full sample estimates from both models indicate

evidence of asymmetric preferences toward inflationary and output gaps. The post-Volcker

subsample estimates show that the asymmetry is no longer significant, as is the case in

Surico (2007).

The remainder of the chapter is outlined as follows. Section 2 describes the model setup,

the asymmetric preferences literature, and derives the baseline model. Section 3 describes

the data and estimation procedure used. Section 4 discusses estimation results. Section 5

describes the time varying aversion parameter extension of the model and presents results.

Section 6 concludes.

2.2 Model

We start with a textbook log-linearized New-Keynesian model as discussed in Gali and

Gertler (1999), Walsh (2003a), Woodford (2003), and Gaĺı (2007). This model is a familiar

benchmark in the monetary policy literature and is a suitable baseline framework for models

with staggered pricing features.

xt = Etxt+1 − σ−1 (it − Etπt+1) (2.1)

Equation (2.1) is the consumer’s Euler equation. The output gap is denoted by xt, more

specifically xt = yt − ynt where yt is output and ynt is natural output. The intertemporal

elasticity of substitution is given by σ−1, and it is the interest rate. The forward looking

expectations of tomorrow’s output gap and inflation are conditional on the information
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set, It, that includes all past observations of the models variables. Equation (2.2) is a

New-Keynesian Phillips curve where β is the discount factor from the consumer’s utility

problem and ψ is a convolution of structural problem parameters that include a Calvo

(1983) staggered pricing mechanism.2

πt = βEtπt+1 + ψxt (2.2)

2.2.1 Optimal Monetary Policy

Monetary policy is determined by minimizing the expectational sum of future loss functions,

(2.3). Loss in every period follows an asymmetric form described in Equation (2.4). Positive

and negative deviations in inflation from a time varying target rate are asymmetrically

weighted as are positive and negative output gaps.

Min
{it}

Et−1

∞∑
k=0

lt+k (2.3)

lt = φ

{
exp [α (πt − π∗t )]− α (πt − π∗t )− 1

α2

}
+ λ

{
exp [γ (yt − ynt )]− γ (yt − ynt )− 1

γ2

}
+

{
(it − i∗t )

2

2

}
(2.4)

This linex specification is well documented in the monetary policy literature. The asym-

metric functional form was first discussed by Varian (1975) and Zellner (1986). It was later

applied to the optimal monetary policy problem by Cukierman and Gerlach (2003), Nobay

and Peel (2003), Ruge-Murcia (2003a; 2003b; 2004), and Surico (2003; 2007).

The parameters α and γ represent the degree of asymmetric policy response of the

central banker. As α and γ approach 0, the central banker’s response to positive and

negative deviations in inflation and the output gap become more symmetric, like the type

of symmetric policy function modeled in a Barro and Gordon (1983) type model. Defining

the output gap in this way means that one would reasonably expect γ to be < 0 such that

2See Appendox (B.1) for a detailed derivation of Equations (2.1) and (2.2).
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the policy maker responds more forcefully when output is below potential levels. If α is

negative in this case, then the policy maker responds with greater urgency when prices do

not grow as fast as the target rate. Some of the previous studies mentioned above have

focused on the testable restriction that α = γ = 0 with mixed results. Surico (2007) finds

evidence that γ is statistically different from zero only for the subsample corresponding to

the Great Inflation. Inflation asymmetry is rejected for all subsamples in his estimations.

The parameters φ and λ in Equation (2.4) are the monetary policy aversion parameters.

They communicate the degree to which the central banker is averse to deviations in the

inflation gap and the output gap. Regardless of whether deviations in inflation and output

are asymmetrically weighted, the aversion parameters communicate targeting behavior of

the policy maker. If targeting behavior changes over time, one would expect shifts in the

relative sizes of the aversion parameters. Davig and Leeper (2007) model regime switching

aversion parameters in a symmetric long-run Taylor rule specification for this model. They

show that determinacy for this model is implied by parameter estimates greater than unity

for both φ and λ. Additionally, a larger relative value implies evidence of policy targeting

behavior.

There are two noticeable differences in the monetary policy specification from the model

examined by Surico (2007). First, it differs in that the asymmetric deviations in inflation

from the target inflation rate are not normalized to one. Second, the inflation and interest

rate targets are modeled as time varying. The reason for the first departure is relatively

self-evident. If inflation gap variation is normalized to one, then one cannot estimate an

aversion parameter (φ) for it. The loss function is thus trivially normalized to interest rate

deviations. The second departure incorporates findings in the monetary policy literature by

Schorfheide (2005) and Ireland (2007) that find the inflation target for the Federal Reserve

is time varying. As mentioned before, numerous monetary policy models make the sim-

plifying assumption that the inflation target is constant. The period loss function in (2.4)

highlights the trade off between inflationary gap targeting and output gap targeting. As the
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inflation rate moves over time, the desire to close that gap asserts itself in the policy makers

preferences. If for instance, inflation is considerably different from zero then the central

bank feels more pressure to adjust it’s target. The inflation rate target, π∗t is assumed to

evolve according to Equation (2.5).

π∗t = µπ
∗

+ ρππ
∗
t−1 + uπt (2.5)

Here µπ
∗

is the unconditional mean of π∗t and 0 ≤ ρπ < 1. The error process is assumed

uπt ∼ N (0, σ2). The functional form of this unobserved evolution equation is chosen be-

cause it implies a testable hypothesis of the assumption that the inflation rate target, π∗t

is constant. If the coefficient on the autoregressive component is statistically zero then

π∗t = µπ
∗

+ uπt . While this does provide a testable hypothesis for constancy, the presence

of the random variable, uπt means that the time varying model does not nest its constant

parameter counterpart. More on this below.

Given that the interest rate is the primary policy tool3, then a time varying inflation

target implies that the interest rate target is time varying also. This is modeled analogously

in Equation (2.6).

i∗t = µi
∗

+ ρii
∗
t−1 + uit (2.6)

Again, µi
∗

is the unconditional mean of i∗t and 0 ≤ ρi < 1. The error process is assumed

to be such that uit ∼ N (0, σ2). Statistical significance of ρi implies a test of constancy for

i∗t . In order to test the joint restriction that ρπ = ρi = 0, we must impose it in a separate

estimation to use a likelihood ratio test in order to have a nested structure.

Since there are no endogenous variables in this system, discretionary optimal policy is

determined by solving the minimization problem which reduces to a single period problem

in the form of Equation (2.7).

Min
{it}

Et−1

{
φ

exp [α (πt − π∗t )]− α (πt − π∗t )− 1

α2

}
+ Et−1

{
λ

exp [γ (yt − ynt )]− γ (yt − ynt )− 1

γ2

}
+

{
(it − i∗t )

2

2

}
(2.7)

3By this I mean the variable being chosen in the minimization problem.
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Minimizing (2.7) by choosing it subject to Equations (2.1) and (2.2) yields Equation (2.8).

it =
ψ

σ
Et−1

{
φ

exp [α (πt − π∗t )]− 1

α

}
+

1

σ
Et−1

{
λ

exp [γ (yt − ynt )]− 1

γ

}
+ i∗t (2.8)

This nonlinear first order condition (FOC) is problematic to estimate in its current form.

The statistical significance of α and γ implies a test of a linear null hypothesis versus a

nonlinear alternative hypothesis. In keeping with the literature, this FOC is linearized via

a second-order Taylor series expansion, Equation (2.9).

it =
ψφ

σ

{
(πt − π∗t ) + α

(πt − π∗t )
2

2

}
+
λ

σ

{
(yt − ynt ) + γ

(yt − ynt )2

2

}
+ i∗t + ζit−1 + δt (2.9)

A lag of the interest rate is included in the linearized FOC per Surico (2007). The identifi-

cation of ψ and σ through estimation of Equations (2.1) and (2.2), combined with the time

varying inflation and interest rate targets, provides identification of the remaining deep pa-

rameters for the central banker. The inflationary gap and the output gap are still identified

even if we fail to reject the null hypothesis of α = γ = 0. More to the point, α now measures

asymmetry of the inflationary gap, rather than just asymmetry of inflation as is the case

in both Surico (2007) and Doyle and Falk (2010). The expectations are substituted with

realized values. The reduced form error term, δt captures the rational expectations errors.

2.2.2 Forward-Looking Conditional Expectations

Equations (2.1) and (2.2) contain forward-looking conditional expectation terms. The em-

pirical literature on the estimation of these components is extensive with little consensus

methodologically. Nason and Smith (2008) discuss multiple empirical techniques for the

estimation of forward-looking Phillips curves. Their method is to choose instruments to

capture the expectation forming process in a first stage type regression. This approach is

applied here.

To see this more clearly, denote the conditional expectations of future inflation and

output gap discussed above as Et [πt+1|It] and Et [xt+1|It] respectively. The econometric

forecast of these expectations can be denoted by Et [πt+1|zt] and Et [xt+1|zt] respectively.
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Here zt is the set of instruments used to make predictions about πt+1 and xt+1. The linear

regression used to calculate this forecast is given by

πt+1 = b̂1zt + e1t+1

xt+1 = b̂2zt + e2t+1

Notice that the error process eit+1 for i = 1, 2 is uncorrelated with the instrument set zt by

design. The predictions are then given by

Et [πt+1|zt] = π̂t+1 = b̂1zt

Et [xt+1|zt] = x̂t+1 = b̂2zt

Applying the law of rational expectations to this implies that the expectations conditional

on the information set is equal to our optimal forecast given our instruments plus some

error, more formally, Equations (2.10) and (2.11).

Et [πt+1|It] = Et [πt+1|zt] + η1t (2.10)

Et [xt+1|It] = Et [xt+1|zt] + η2t (2.11)

As discussed in Nason and Smith (2008), the rational expectations errors are ∼ N (0, σ2),

and E [ηit+τzt+s] = 0 for i = 1, 2 for all τ and s. Rational expectations imposes that nothing

can be learned from the error process over time to improve our expectations. Equations

(2.10) and (2.11) can be substituted into (2.1) and (2.2) to put them into a more estimable

form, Equations (2.12) and (2.13) respectively.

xt = [Etxt+1|zt]− σ−1 (it − [Etπt+1|zt]) + εdt (2.12)

πt = β [Etπt+1|zt] + ψxt + εst (2.13)

Here εdt and εst are reduced form errors that are functions of rational expectations errors.

For the sake of this estimation these rational expectations errors are not individually iden-

tified. Given appropriate restrictions placed on their respective law of motion it is possible

to identify them, but imposing these additional assumptions does not aid in parameter

identification which is of primary interest here.
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2.3 Data

For this estimation quarterly data is collected from the Federal Reserve Economic Database

(FRED) and the Congressional Budget Office (CBO). The output gap series is constructed as

in Surico (2007) as the difference between logged GDP from the FRED and logged potential

output from the CBO estimates. Two inflation series are constructed by calculating the

logged difference of the implicit GDP deflator and personal consumption expenditure (PCE)

series from the FRED. The interest rate is the effective federal funds rate. The full quarterly

data sample is from 1960:1 to 2012:2. Additionally, estimates are also presented for the post

Paul Volcker period, 1982:4 to 2012:24.

The instrument vector, zt contains lagged values of the constructed output gap series,

the corresponding inflation rate, and the effective federal funds rate. The initial regression

forecast is constructed using lagged variables in order to account for the errors-in-variables

problem that is common in the empirical rational expectations literature.

Equations (2.5), (2.6), (2.9), (2.12) and (2.13) comprise the system of equations to

be estimated. These equations are arranged in state-space form and jointly estimated by

iterative maximum likelihood using the Kalman filter. Parameter values are chosen by

minimizing the sum of the log likelihood function. Standard errors are calculated from the

hessian matrix using the optimally estimated projection matrix as described in (Hamilton,

1994, Ch. 13)5.

2.4 Results

Table 2.1 reports the maximum likelihood estimates of the model parameters as well as stan-

dard errors over the two sample periods for both inflation rates. Initial attempts to estimate

4Surico (2007) provides a subsample estimation for 1960:1 to 1979:3. This subsample of just under 80 ob-
servations and does not provide adequate variation in the data to produce trustworthy results. Nevertheless,
these results are available from the author upon request.

5For details on the formulation of the state-space model and the estimation algorithm please see Appen-
dices (B.2.1) and (B.2.2).
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Table 2.1: Maximum Likelihood Estimates - Time Varying Policy Targets

GDP Deflator Inflation PCE Inflation
Parameter 1960:1 - 2012:2 1982:4 - 2012:2 1960:1 - 2012:2 1982:4 - 2012:2
α -0.382† -0.125 -0.288 -0.199

(0.113) (0.798) (0.182) (0.108)
γ -0.715† -0.307 -0.104† -0.273

(0.089) (0.201) (0.027) (0.238)
φ 3.061† 4.755† 2.966† 4.659†

(0.104) (0.352) (0.235) (0.272)
λ 4.977† 6.259† 7.295† 6.890†

(0.094) (0.405) (0.031) (0.062)
β 0.886† 0.921† 0.864† 0.931†

(0.002) (0.003) (0.002) (0.005)
ψ 0.009 0.017 0.040 0.027†

(0.074) (0.078) (0.062) (0.001)
ζ 0.882† 0.867† 0.861† 0.868†

(0.001) (0.005) (0.005) (0.004)
ρi 0.953† 0.682† 0.779† 0.681†

(0.002) (0.010) (0.008) (0.008)
ρπ 0.898† 0.590† 0.818† 0.520†

(0.002) (0.008) (0.002) (0.009)
Log likelihood -282.599 -242.871 -377.867 -345.514
† represents significance at the 1 percent level.

this model produced unreasonable results for the intertemporal elasticity of substitution, σ.

This parameter was calibrated according to Davig and Leeper (2007) at 2.84. Estimates

for the autoregressive components for the inflation and interest rate targets are within the

unit circle and highly statistically significant for both sample periods. These results do

imply a rejection that these target rates are constant for the Federal Reserve, but of more

importance is the joint test that they are both equal to zero. The asymmetry parameters,

α and γ are both negative and statistically significant for the full sample period for GDP

deflator inflation. The full sample point estimate for α using PCE inflation is reasonable yet

it falls just short of significance at the 90 percent confidence level. Generally, these results

imply that the Fed reacts with more urgency to negative output fluctuations and negative

inflationary gaps. Both asymmetries appear to go away in the post-Volcker subsample. This

result along with the sign and size of the estimates are consistent with Surico (2007)’s GMM
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Table 2.2: Testing Joint Restrictions - Likelihood Ratio Tests

GDP Deflator Inflation PCE Inflation
1960:1 to 2012:2 1982:4 to 2012:2 1960:1 to 2012:2 1982:4 to 2012:2

Restrictions Log Likelihood Log Likelihood Log Likelihood Log Likelihood
LR Test Statistic LR Test Statistic LR Test Statistic LR Test Statistic

ρπ = ρi = 0 -340.738 -286.788 -447.659 -378.885
116.278 87.834 139.584 66.742

α = γ = 0 -328.159 − -422.211 −
91.120 88.688

Lr = restricted log likelihood value

Lu = unrestricted log likelihood value

LR = 2 (Lu − Lr)

estimates. The aversion parameters, φ and λ are statistically significant and greater than

one in absolute value. The size of λ relative to φ suggests the Fed is more likely to target

output gap fluctuations than inflationary gap fluctuations, a result that has been widely

shown in the monetary policy literature. The discount parameter β is always close to one

and significant. The coefficient on the interest rate lag, ζ is also within the unit circle and

significant for all estimations. Again, this is consistent with previous estimates.

Table 2.2 shows likelihood ratio test statistics imposing two joint restrictions on the above

model. The first joint restriction imposes constancy on the inflation and interest rate targets

for both sample periods and both inflation series. The second joint restriction eliminates

the asymmetry of policy response. This restriction is tested for the full sample only since

both types of asymmetry are individually insignificant for the subsample estimations. Both

tests are distributed χ2 with two degrees of freedom. According to (Hamilton, 1994, pp.

754) the 0.001 critical value associated with this test is 13.8. This indicates a rejection of

the imposed joint restrictions in all cases and provides further evidence that inflation and

interest rate targets are not well represented by constant parameters. Similarly, imposing

the joint restrictions of no asymmetry is also rejected for both full sample estimations.

Since this model is estimated using a Kalman filter, the estimates of our time varying

conditional inflation and interest rate targets can be recursively extracted. Note, these esti-
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Figure 2.1: Inflation Rate Target Estimates

(a) GDP Deflator Inflation with Inflation Target

(b) PCE Inflation with Inflation Target

Figure 2.2: Interest Rate Target Estimates
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mates are conditional on the optimal monetary policy solution characterized above. Figure

2.1 shows inflation data for both implicit GDP deflator (2.1a) and PCE inflation (2.1b)

plotted in solid lines over the full sample period. The estimated conditional inflation target

for each series is superimposed over the top in the dashed line. These conditional inflation

targets are similar visually to those found in Ireland (2007) and embody the idea that the

Fed through its preferences targets a lower rate of inflation when inflation is relatively high

and a higher level of inflation when inflation is relatively low. Thus, the inflation target

for both series has a lower variance than actual inflation.6 Similarly, Figure 2.2 shows the

effective fed funds rate plotted in solid with the estimated conditional interest rate target

series in the dashed line. The conditional interest rate target appears to follow the effective

rate much more closely in this plot which is to be expected given the degree of control that

the Fed exerts over the effective fed funds rate. Since the effective rate is the weighted

average of the interest rates that banks actually charge one another to borrow funds, the

difference between these two series can be interpreted as a measure of systemic risk in the

banking system.

2.5 A Time Varying Specification

Implicit in the above model is the assumption that monetary policy targeting behavior does

not shift over the sample period. This may be an assumption that matters to the testing

of policy targets and asymmetric preferences for monetary policy. To test the robustness

of the above results an alternative model is formulated that relaxes this assumption. This

type of extension is briefly considered in the concluding remarks of Ruge-Murcia (2004).

In this case, the aversion parameters, φt and λt are modeled to vary over time. Equation

(2.14) is the recast FOC for the optimal monetary policy rule with the time varying aversion

6Summary statistics for both the inflation target series and interest rate target series are not reported
here for the sake of brevity but are available from the author upon request.
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Table 2.3: Maximum Likelihood Estimates - Time Varying Aversion Parameters

GDP Deflator Inflation PCE Inflation
Parameters 1960:1 to 2012:2 1960:1 to 2012:2
α -0.599† -0.362†

(0.003) (0.012)
γ -0.645† -0.376†

(0.014) (0.006)
β 0.994 0.9144

(0.672) (0.744)
ψ 0.099† 0.198†

(0.012) (0.008)
ζ 0.968† 0.779†

(0.017) (0.014)
ρi 0.580† 0.981†

(0.025) (0.006)
ρπ 0.188† 0.676†

(0.017) (0.005)
ρφ 0.697† 0.442†

(0.004) (0.013)
ρλ 0.837† 0.997†

(0.030) (0.015)
log likelihood -585.185 -540.704
† represents significance at the 1 percent level.

parameters.

it = φt
ψ

σ

{
(πt − π∗t ) + α

(πt − π∗t )
2

2

}
+λt

1

σ

{
(yt − ynt ) + γ

(yt − ynt )2

2

}
+i∗t+ζit−1+δt (2.14)

In this alternative specification π∗t , i
∗
t , φt, and λt are unobserved components in the Kalman

filter recursion and assumed to follow Equations (2.5), (2.6), (2.15), and (2.16), respectively.

φt = µφ + ρφφt−1 + uφt (2.15)

λt = µλ + ρλλt−1 + uλt (2.16)

The aversion parameters are assumed to follow a stable autoregressive process implying

0 ≤ ρφ < 1 and 0 ≤ ρλ < 1. The error processes are assumed to follow a multivariate

Gaussian distribution. Analogously to the varying inflation and interest rate targets, the
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statistically test ρφ = ρλ = 0 implies that monetary policy targeting behavior does not shift

over time. The presence of the random variables uφt and uλt has the unfortunate consequence

that this model does not perfectly nest the previous model above. The individual statistical

test for constancy over time is valid, but a lower log likelihood is not expected from this

model. Like before, in order to test the joint restrictions, we must impose them in a separate

estimation and use a likelihood ratio test. The new state space system is comprised of

Equations (2.5), (2.6), (2.12), (2.13), (2.14), (2.15), and (2.16)7.

2.5.1 Results

Table 2.3 reports parameter values and standard errors of the maximum likelihood esti-

mation over the full sample set for both measures of inflation. A subsample analysis is

not needed in this case because the time varying aversion parameters capture any shifts

in monetary policy targeting behavior that is intended to be isolated through subsample

estimation. The autoregressive estimates for the unobserved processes are all statistically

significant implying that individually we reject the null hypothesis of constancy for each.

The estimate for ρπ using GDP deflator inflation decreases somewhat when we account for

shifting policy behavior, but it is still highly significant. The asymmetry parameters are all

significant and still within expected ranges. The point estimate for the conditional expecta-

tions of inflation, β is inline with the estimates from Table 2.1, however it loses significance

here. This is not uncommon in the empirical estimations of the New-Keynesian Phillips

curve. The interest rate lag coefficient is still persistent and significant.

Table 2.4 imposes the same set of joint restrictions as in Table 2.2 except that it also

includes another joint restriction. This new restriction is a joint test of constancy for the

aversion parameters, ρφ = ρλ = 0. This joint test serves as test of consistency of the in-

dividual hypothesis tests. As before the test statistics are distributed χ2 with two degrees

of freedom, and the 0.001 critical values is 13.8. The joint restriction of constant inflation

7For details on the formulation of the state-space model and estimation algorithm please see Appendices
(B.2.3) and (B.2.4).
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Table 2.4: Testing Joint Restrictions - Likelihood Ratio Tests

GDP Deflator Inflation PCE Inflation
1960:1 to 2012:2 1960:1 to 2012:2

Restrictions Log Likelihood Log Likelihood
LR Test Statistic LR Test Statistic

ρπ = ρi = 0 -615.386 -575.614
60.402 69.820

α = γ = 0 -608.652 -586.877
46.934 92.346

ρφ = ρλ = 0 -617.140 -592.287
63.910 103.166

Lr = restricted log likelihood value

Lu = unrestricted log likelihood value

LR = 2 (Lu − Lr)

and interest rate targets, symmetric policy response, and constant aversion parameters are

all rejected for both model estimations. These results indicate that the joint test of con-

stancy for inflation and interest rate targets is robust to changing monetary policy targeting

behavior.

2.6 Conclusion

This paper relaxes a commonly imposed assumption that target inflation rates and target

interest rates are constant over time. In the absence of data for these processes, our best first

guess is that they follow an AR(1) law of motion. Surico (2007)’s model is extended to in-

corporate this dynamic structure. Jointly estimating a system of equations for this extended

model conveniently allows for identification of all of the deep parameters for the model. The

model is estimated using iterative maximum likelihood. Results indicate a rejection that

inflation and interest rate targets can be closely approximated by constants. Additionally,

monetary policy exhibits asymmetric responses towards inflationary and output gaps over

the full sample period. This asymmetry disappears over the post-Volcker subsample, like

in Surico (2007). A more robust model that allows for changing monetary policy targeting
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behavior, through time-varying aversion parameters supports these findings and provides

evidence that monetary policy aversion parameters are not constant either.
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Chapter 3

Estimating the Asymmetry of Speed
Limits: A Structural Model Using
Unobserved Components

3.1 Introduction

The benchmark New-Keynesian model, pioneered by Yun (1996), Goodfriend and King

(1997), Gali and Gertler (1999), Walsh (2003a), and Woodford (2003), among others, has

long been a useful tool for modeling monetary policy. This purely forward-looking framework

has led to much discussion regarding the need to exogenously impose additional persistence

on the log-linearized equations that summarize the evolution of the theoretical economy

(Gali and Gertler (1999), Estrella and Fuhrer (2002) and Walsh (2003a)). As discussed

in Walsh (2003a; 2003b), the inclusions of lagged dependent variables in order to build

persistence into this model provides better fit and statistical significance of the estimated

parameters. This has helped lend creditability to the deviation in the model that is derived

from first order conditions.

Of particular relevance to this discussion are monetary policy rules that incorporate

persistence in the policy maker’s optimization problem. Walsh (2003b) proposes a relatively

different objective for the monetary authority suggesting that it is bound by the speed at
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which it pushes the economy. More specifically Walsh examines

Lt = Et

∞∑
i=0

βi
[
π2
t+i + λ (xt+i − xt+i−1)2

]
,

where the policy maker cares about the social loss incurred by inflation and the difference of

the output gap, xt over time. The policy maker seeks to target the output gap in every period

in order to effect the rate of change over time. Put another way, the policy maker wishes to

keep the change in the output gap small, which is interpreted as a speed limit. This so called

speed limit to monetary policy has been well explored in the monetary policy literature1.

Paez-Farrell (2009) finds that an interest rate rule based on a speed limit objective provides

a reasonable fit of the interest rate data for the United States. He attributes this to the

Fed’s inability to announce explicit monetary policy objectives. Kapinos and Hanson (2011)

provide a theoretical and empirical evaluation of speed limit objectives. Their theoretical

study suggests that speed limit targeting and price level targeting provide more stability

than strict inflation targeting, but in their empirical evidence speed limit targeting is only

significant at short forecast horizons. The authors attribute this to the relative constant

Greenbook forecasts of the output gap in the near-term future.

Harvey, Trimbur and Van Dijk (2007) model the persistent components of inflation and

output using unobserved processes for both the deterministic and stochastic components of

the series. Harvey (2011) applies this same approach to the estimation of the New-Keynesian

Phillips curve (NKPC) using an atheoretical model to obtain estimates of the output gap.

More specifically, the output gap is estimated as the stochastic cycle of the output series.

While the fit of this model to U.S. data is relatively good, it disregards the consumer’s Euler

equation which provides a theoretical specification for the output gap and does not provide

a statistical test for the importance of forward-looking inflation.

Tangentially related to this, there is a portion of the optimal monetary policy literature

that models the preferences of the central banker under asymmetry. Cukierman (2002)

1Blake (2012) examines determinacy of speed limit targeting in a simple interest rule and shows that
results to be not unique. However the parameterization of his representation does not apply in this case.
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and Nobay and Peel (2003) formalize optimal monetary policy models using the type of

asymmetry first explored by Varian (1975) and Zellner (1986). Ruge-Murcia (2003a; 2004)

finds evidence of asymmetric responses to changes in the unemployment gap.

This paper adds to the empirical literature of speed limit policies in two ways. The

first is to formulate a generalized version that allows asymmetry in speed limit policies, but

that nests Walsh’s original model as a special case2. Thus negative changes in inflation

rates and the output gap over time are treated differently than positive changes of the

same magnitude. The second contribution of this paper is to reconcile Harvey (2011) with

the remainder of the forward-looking New-Keynesian framework and incorporate it into

the monetary planner’s problem. Both contributions seek to expand the already vibrant

discussion around persistence of inflation rates and optimal monetary policy.

The remainder of this chapter is organized intuitively. Section 2 explains the adjustments

made to the New-Keynesian model to account for unobserved persistent components. The

optimal monetary problem is solved and additional model details are provided. Section 3

defines the data used and relevant estimation results. Section 4 closes with brief summary

remarks.

3.2 Model

The baseline forward-looking New-Keynesian model (sans monetary policy) in its log-linearized

form is given by Equations (3.1) and (3.2).3

πt = βEtπt+1 + ϕxt + εst (3.1)

Equation (3.1) is the NKPC. Inflation is denoted by πt. xt is the output gap, or yt − ynt ,

where ynt is natural output. β is the discount factor in the consumer’s utility maximization

problem and governs the degree to which today’s conditional expectations of future inflation

2Much in the same way that Ruge-Murcia (2003a) nests Barro and Gordon (1983).
3A detailed derivation of this model is located in Appendix (B.1).
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effect today’s inflation. εst is a supply side shock.

xt = Etxt+1 − σ−1 (it − Etπt+1) + εdt (3.2)

The consumer’s Euler equation is given by (3.2). The interest rate is denoted by it. σ
−1 is

the intertemporal elasticity of substitution. Demand is shocked by εdt . It is assumed that

[εdt , ε
s
t ] ∼ N (0, σ2). Forward-looking expectations of future inflation and the output gap are

conditional on the information set, It which is a function of past observations and rational

expectations errors.

As previously mentioned, often these equations are modified to include lagged dependent

variables in order to build persistence and capture some of the stylized facts of the output and

inflation data. Harvey (2011) shows that even when the NKPC is adjusted to incorporate

lagged inflation, it cannot adequately account for nonstationarity in the data nor explain

core inflation when estimated with a detrended inflation series. Rather than including lagged

dependent variables, the hybrid New-Keynesian model can be modified according to Harvey,

Trimbur and Van Dijk (2007) and Harvey (2011) to include unobserved deterministic and

stochastic components. The adjusted NKPC is thus represented according to Equation

(3.3).

πt = µπt + ψπt + βEtπt+1 + ϕxt + εst (3.3)

µπt represents a deterministic trend that follows a random walk, Equation (3.4), while ψπt is

a stochastic cycle that accounts for the fluctuation around core inflation.

µπt = µπt−1 + νπt (3.4)

The output gap is econometrically estimated from the deconstructed output series that

is modeled according to Equation (3.5).

yt = µyt + ψyt + εyt (3.5)

The deterministic trend of output, µyt , is captured by an integrated random walk, (3.6).

This is often referred to as a smooth trend model because extraction of this series will
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be smoother than a traditional random walk. In this case, the smoothed estimates of µyt

represent estimates of natural output.

µyt = µyt−1 + νyt−1 (3.6)

νyt = νyt−1 + uyt

The stochastic cycle around that deterministic trend, or the output gap, follows from

Equation (3.7). Here the stochastic components of Equations (3.3) and (3.5) are modeled

as similar cycles.[
ψt
ψ∗t

]
= ρ

[
cosλc sinλc
− sinλc cosλc

⊗ I2
] [

ψt−1
ψ∗t−1

]
+

[
κt
κ∗t

]
(3.7)

where ψt =
[
ψπt ψyt

]′
. λc is the frequency of the cycle expressed in radians and ρ is a

dampening factor that is bounded such that 0 ≤ ρ < 1. The E (κtκ
′
t) = E

(
κ∗tκ

∗′
t

)
= Σκ

for both π and y. The E (κtκ
∗
t ) = 0. The cycles for inflation and output have the same

dynamics since ρ and λc are the same for both series. Additionally, the errors
[
νπt εyt uyt

]
are assumed ∼ N (0, σ2) as well as mutually and serially uncorrelated.

3.2.1 Rational Expectations

Rational expectations implies that expected values of variables equal the sum of their re-

alized values and a stable, mean zero error process. In other words, rational expectations

errors should have no systemic errors. Rather than using instrumentation as an identifi-

cation scheme as in Nason and Smith (2008), this will be imposed directly via Equation

(3.8),

Etπt+1 = πt+1 + ηπt (3.8)

Applying rational expectations and substituting the stochastic cycle from (3.7) for the out-

put gap implies

πt = µπt + ψπt + βπt+1 + ϕψyt + βηπt + εst (3.9)

Since the output gap is stationary by design, there is no need to include unobserved per-

sistence in the Euler equation. However, the forward-looking conditional expectation of the
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output gap in the consumer’s Euler equation can be solved for using the persistence of the

stochastic cycle. Leading Equation (3.7) by the Law of Iterated Expectations implies (3.10).

Etψ
y
t+1 = ρ cosλcψ

y
t + ρ sinλcψ

y∗
t + Etκ

y
t+1 (3.10)

After some small algebra and using the intermediate result Etκ
y
t+1 = 0, the Euler equation

can then be recast as (3.11)4.

σ−1it = σ−1πt+1 + (ρ cosλc − 1)ψyt + ρ sinλcψ
y∗
t − σ−1ηπt + εdt (3.11)

3.2.2 Optimal Monetary Policy

Monetary policy is based on the expectational sum of discounted period loss functions

described in Equation (3.12). Here, as in Walsh (2003b), the function embodies the in-

tertemporal constraint that the central bank faces by adjusting the economy too quickly.

The change in inflation is also included in this formulation in order to provide an additional

hypothesis to test as well as another source of persistence in the model.5

Lt =
∞∑
i=0

βi
{
φ

exp [α (πt+i − πt+i−1)]− α (πt+i − πt+i−1)− 1

α2

+ λ
exp [γ (xt+i − xt+i−1)]− γ (xt+i − xt+i−1)− 1

γ2

}
(3.12)

The exponentiated functional form implies that the change in inflation and the change in

the output gap are asymmetrically weighted, like in Ruge-Murcia (2003a; 2004) and Surico

(2003; 2007). The original specification of Walsh’s model is quadratic in nature which

implies that the magnitude of policy response for a positive one percent change in inflation

from one period to the next is the same as a negative one percent change in inflation over

the same time. This more general specification of Walsh’s model nests the original model

as a special case when α = γ = 0. The change in the output gap and change in inflation

implies that the central bank cares about fluctuations in inflation and the output gap rather

4See technical notes in Appendix (C.1.1) for a detailed derivation.
5This extension to the original framework is briefly considered Walsh.
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than the actual levels of inflation and output gap. Since the velocity of the output gap and

inflation over time matters in this way we expect both α and γ to > 0. This is consistent

both with the asymmetric preferences literature as well as the dual mandate of the Federal

Reserve.

The parameters φ and λ are the aversion parameters for the policy maker. They measure

the degree to which the central bank is averse to deviations in the inflation rate and output

gap over time. Larger values of one with respect to the other can be interpreted as evidence

of targeting behavior.

Discretionary Equilibrium

A purely discretionary equilibrium to this problem is examined here rather than Woodford

(1999)’s timeless perspective examined by Walsh. Given the forward-looking expectations as

well as the backward-looking components, the discretionary and precommitment policy will

be the same at time t. Optimal discretionary policy implies that the policy maker chooses

the output gap in order to influence (πt − πt−1) and (xt − xt−1). Minimizing a single period

loss function subject to (3.9) and (3.11) implies the following nonlinear first-order condition.

φ

{
exp [α (πt+i − πt+i−1)]− 1

α

}
ϕ+ λ

{
exp (γ (xt+i − xt+i−1))− 1

γ

}
= 0 (3.13)

Standard asymptotic theory does not apply to the estimation of equations where statistical

inference of parameters represent a test of a linear null hypothesis versus a nonlinear alter-

native. This is especially true of exponential functional forms and was first addressed by

Luukkonen, Saikkonen and Teräsvirta (1988). Standard convention6 for dealing with this is

to linearize this FOC via a second-order Taylor series expansion, (3.14).

φϕ

{
(πt − πt−1) + α

(πt − πt−1)2

2

}
+ λ

{
(xt − xt−1) + γ

(xt − xt−1)2

2

}
= 0 (3.14)

Given joint estimation of equations above, identification of all the structural parameters in

the problem are possible.

6Within the optimal monetary policy literature see Ruge-Murcia (2003a; 2004) and Surico (2003; 2007).
For a more general treatment, Van Dijk, Teräsvirta and Franses (2002)

33



Table 3.1: Maximum Likelihood Estimates - 1960:1 to 2012:4

Parameter PCE Inflation CPI Inflation GDP Deflator Inflation
α 0.488† 0.473† 0.332†

(0.108) (0.088) (0.099)
γ 0.018 0.017 0.031

(0.059) (0.061) (0.059)
φ 0.755† 0.681† 0.538†

(0.067) (0.024) (0.022)
λ 0.422† 0.421† 0.545†

(0.002) (0.002) (0.026)
β 0.468† 0.531† 0.238†

(0.016) (0.019) (0.030)
ϕ 0.016∗ 0.013† 0.034†

(0.007) (0.002) (0.002)
σ 3.098† 3.248† 2.496†

(0.024) (0.286) (0.148)
ρ 0.703† 0.696† 0.621†

(0.049) (0.045) (0.032)
λc 0.203† 0.203† 0.272†

(0.043) (0.058) (0.074)
Log Likelihood -662.851 -640.552 -873.8621
∗ and † represent significance at the 5% and 1% respectively.

3.3 Results

Equations (3.4), (3.5), (3.6), (3.7), (3.9), (3.11), and (3.14) comprise the system of equations

to be estimated using maximum likelihood. The system is recast into state-space form.7 The

state equation and the log-likelihood function are iteratively updated using a Kalman filter

and the relevant parameters are chosen to minimize the sum of the individual log-likelihoods.

Standard errors are calculated by taking the square root of the diagonal elements of the

inverse Hessian estimated from the optimally weighted mean squared error matrix from the

Kalman filter recursion.

All data sources are provided by the Federal Reserve Economic Database. Output is the

7For more details on the state-space formulation and estimation algorithm please see Appendices (C.2)
and (C.2.1).
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natural logarithm of real gross domestic product (RGDP). The interest rate is the Fed Funds

rate. Because results may be sensitive to different measures of inflation, three pricing indices

are examined; personal consumption expenditure (PCE), GDP deflator, and consumer price

index (CPI). Each series is transformed into an inflation rate by taking the first difference

of the natural log. The full sample period of the quarterly data extends from 1960 to 2012.

Additional results are also provided for the corresponding time period after the appointment

of Paul Volcker as Federal Reserve Chairman in order to account for structural breaks8.

Table 3.1 shows the maximum likelihood estimates corresponding to the three different

inflation series for the full data sample. The asymmetry over the speed limit of inflation is

positive and significant for all three series. This implies that the Fed responds more urgently

when the difference in inflation is positive than when it is negative. Put another way, when

today’s inflation is higher than yesterday’s inflation the response is more forceful than when

the opposite is true. Interestingly, the asymmetry estimates over the change in the output

gap is small and never significant; a quadratic specification for this portion of the objective

function cannot be rejected. The aversion parameters φ and λ are always significant, but it

is difficult to clearly determine targeting behavior based on the relative similarities of the

estimates. Statistical significance of λ is consistent with earlier studies that find evidence

for a speed limit objective. Evidence for forward-looking inflation is indicated from β. One

limitation of Harvey (2011) is that it does not identify forward-looking inflation. These

results indicate that future inflation expectations are still important for explaining inflation

today. Estimates for ρ, the cycle dampening factor, and λc, the frequency, are in line with

previous estimates for U.S. data.

Table 3.2 shows the model parameter estimates for the Post-Volcker subsample. For all

three inflation series both types of asymmetry disappear over this time period. Surico (2007)

estimates a similar asymmetric preferences model except the asymmetry in his case is over

inflation (not the change in inflation) and the output gap (not the change in the output gap).

8Additional results for the Great Moderation subsample are available from the author upon request.
These estimates are not reported here because of stability and small-sample bias concerns.
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Figure 3.1: Inflation with Estimated Trend and Cycle

(a) PCE Inflation with Trend plus Cycle

(b) CPI Inflation with Trend plus Cycle

(c) GDP Deflator Inflation with Trend plus Cycle
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Table 3.2: Maximum Likelihood Estimates - 1979:4 to 2012:4

Parameter PCE Inflation CPI Inflation GDP Deflator Inflation
α 0.728 0.720 0.151

(1.761) (0.770) (0.325)
γ 0.008 0.002 0.012

(0.894) (1.070) (0.566)
φ 0.768 1.0189 0.777

(0.566) (1.718) (0.735)
λ 0.422† 0.300† 0.421†

(0.037) (0.026) (0.038)
β 0.3042† 0.422† 0.313†

(0.009) (0.024) (0.008)
ϕ 0.016 0.002 0.016†

(0.024) (0.002) (0.006)
σ 3.417† 3.599† 2.904†

(0.565) (0.724) (0.044)
ρ 0.417† 0.643† 0.031†

(0.061) (0.074) (0.010)
λc 0.212 0.201∗ 0.364†

(0.157) (0.091) (0.032)
Log Likelihood -499.929 -434.580 -632.246
∗ and † represent significance at the 5% and 1% respectively.

This could be the result of policy leadership by the Fed or the general smoothing out of

the time series data during this period,9 as suggested by Doyle and Falk (2010). Parameter

estimates for φ, aversion toward changes in inflation increase a bit, but lose significance,

while λ, aversion toward output gap changes, remains stable and significant. This can be

interpreted as a possible change in policy behavior given that the loss function is correctly

specified. Expectations of future inflation are still significant.

The cycle dampening factor, ρ, drops in value considerably for GDP deflator inflation.

Additionally, the lower log-likelihood estimates for both sample periods is somewhat puz-

zling and prompted the graphs in Figures (3.1) and (3.2). Figure (3.1) shows the three

inflation series, PCE, CPI, and GDP deflator inflation plotted in black in subplots (3.1a),

9Assuming that the two are not correlated, which they very well might be.
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Figure 3.2: Output with Estimated Trend and Cycle

(a) Output with Trend

(b) Output with Trend plus Cycle

(3.1b), and (3.1c) respectively. The trend and cycles of each series are recursively extracted

from the Kalman filter estimates, added together and plotted using a dashed line. For the

inflation series, the deterministic trend captured by the random walk accounts for most of

the variation in the data (the stochastic cycle adds little) since inflation is stationary. This

is expected given the setup of the model and the loss of persistence in inflation during the

Great Moderation period.

The same is also done for the log of output in Figure (3.2). Here the estimates of both

trends for output are shown. Subplot (3.2a) shows output and the deterministic trend
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(natural output) estimates while subplot (3.2b) shows output with the sum of both trends.

One can see the effects of the stochastic trend more clearly given the nonstationarity of the

output series.

Visual inspection of the plots indicate that the trend and cycles produced from the

estimates do a relatively good job of accounting for the data in a backward-looking fash-

ion. Additionally, the statistical significance of future inflation expectations reported above

in the face of this fit provides additional justification for the inclusion of forward-looking

expectations in the model.

3.4 Conclusion

This paper contributes to the empirical literature surrounding speed limits to monetary

policy by estimating a general form specification that allows for asymmetric response of the

policy maker to positive and negative changes in inflation and the output gap over time.

Additionally, the model incorporates an alternative form of persistence using unobserved

deterministic and stochastic trends in the data rather than lagged dependent variables.

Forward-looking expectations of future inflation are still significant given the strong fit

of backward-looking components. Parameter estimates indicate asymmetric responses to

positive changes in inflation, but that asymmetry disappears in the Post-Volcker subsample,

a well established phenomenon in a more general asymmetric preferences model.
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Appendix A

Chapter 1 Technical Notes

A.1 Solving the planner’s optimization problem

Taking the derivative with respect to it and taking the public’s inflation forecast as given

yields first order condition

Et−1

{
(πt − π∗) +

(
φ

γ2

)
(−γα exp(γ(kEt−1Y

p
t − Yt)) + αγ)

}
= 0, (A.1)

or

Et−1πt − π∗ −
(
φα

γ

)
Et−1 (exp(γ(kEt−1Y

p
t − Yt))− 1) = 0. (A.2)

As shown below, the assumption that the structural disturbances are normal implies

that, conditional on the information set, output is also normally distributed. Then,

exp(γ(kEt−1Y
p
t − Yt)) is distributed log normal. Using the intermediate result

Et−1Yt = Et−1Y
p
t , (A.3)

obtained by taking conditional expectations of both sides of (1.1) and using the assumption

of rational expectations, it is possible to write the mean of this log normal distribution as

exp
(
γ(k − 1)Et−1Y

p
t +

γ2σ2
Y,t

2

)
. The notation σ2

Y,t is the conditional variance of output and

is derived below in terms of the elements of ξt. Finally, using (1.4), it is easy to show that

πt = π∗ +

(
φα

γ

)(
exp

(
γ(k − 1)Et−1Y

p
t +

γ2σ2
Y,t

2

)
− 1

)
+ Aξt, (A.4)

45



where A = (0, 0, 1).1 Next, using (1.1), we see

[Yt − Et−1Yt] = [Y p
t − Et−1Y

p
t ] + [α(πt − πet )− Et−1(α(πt − πet ))] + [ηt − Et−1ηt] .

Using (1.3) and (1.4) gives

Yt = Et−1Yt + Bξt,

where B = (1, 1, α). Next using (A.3) gives

Yt = Et−1Y
p
t + Bξt. (A.5)

Note that since Et−1Y
p
t is included in the public’s information set at time t − 1 and the

linear combination Bξt is normally distributed, so

Yt|It−1˜N(Et−1Y
p
t , σ

2
Y,t) where V ar (Yt|It−1) ≡ σ2

Y,t = BΩtB
′,

as claimed above.

1To see this, note that (1.4) implies

[πt − Et−1πt] = [it − Et−1it] + [εt − Et−1εt] ,

which implies
πt = Et−1πt + εt.

Next using (A.2) gives the result.
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A.2 Estimation Description

A.2.1 ARIMA(2,0,2)

Here I describe one state space formulation. Others probably exist, but according to

Hamilton, in the middle of page 375, it does not matter which is used. The forecasts are

always the same. Begin by noting that

∆Yt = ψ′+(1−δ)2t−(1−δ)Yt−1+θ∆Yt−1+ζt+ηt+αεt−δ (αεt−1 + ηt−1)−θ(α∆εt−1+∆ηt−1).

can be written as

Yt = Yt−1 + ψ′ + (1− δ)2t− (1− δ)Yt−1 + θ∆Yt−1 + κt + β1κt−1 + β2κt−2,

where κt denotes the white noise term that builds either the ARIMA (1,1,2) or the ARIMA(2,0,2)

process and β1 and β2 are the moving average coefficients for the MA part of the model.

First, consider the case where δ 6= 1. Then this equation can be written as

Yt = ψ′ + (1− δ)2t+ [(1 + θ)− (1− δ)]Yt−1 − θYt−2 + κt + β1κt−1 + β2κt−2.

or, noting using the algebra given in the notes at the bottom we have

Ỹt = [(1 + θ)− (1− δ)] Ỹt−1 − θỸt−2 + κt + β1κt−1 + β2κt−2, (A.6)

where Ỹt =
(
Yt − ψ

(1−δ) − (1− δ)t
)

. Note, this is the ARIMA (2,0,2) case. This is one of

the equations I will write in the state space form. The other is (1.7). For this system,

write the state equation as

ξt = Fξt−1 +Rκt. (A.7)

Note, I have used some of the notation from Hamilton, but I have also used some of the

formulation in Harvey. There are two differences from Hamilton, the first is trivial, but it

is to write the equation in terms of time t rather than time t + 1. The second is to add a
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matrix in from of the error term κt. Hamilton would define vt = Rκt. In this formulation,

we have the following matrices:

ξt =


ξ1t
ξ2t
ξ3t
ξ4t
ξ5t

 , F =


(1 + θ)− (1− δ) 0 1 0 0
(1 + θ)− (1− δ) 0 1 0 0

θ 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 , R =


1 0
0 0
β1 0
β2 0
0 1

 , κt =

[
κt
et

]
.

(A.8)

Note that multiplying elements of (A.7) starting with the last line, we get

ξ5t = et,

ξ4t = β2κt,

ξ3t = θξ1t−1 + ξ4t−1 + β1κt = θξ1t−1 + β2κt−1 + β1κt,

ξ2t = [(1 + θ)− (1− δ)] ξ1t−1 + ξ3t−1 = [(1 + θ)− (1− δ)] ξ1t−1 + θξ1t−2 + β2κt−2 + β1κt−1,

ξ1t = [(1 + θ)− (1− δ)] ξ1t−1 + ξ3t−1 + κt = [(1 + θ)− (1− δ)] ξ1t−1 + θξ1t−2 + β2κt−2 + β1κt−1 + κt.

Next define the observation equation by

yt = A′xt +H ′ξt. (A.9)

Here I am using Hamilton’s notation. In this formulation, we have the following matrices:

yt =

[
Yt
πt

]
, A′ =

[ ψ
(1−δ) 0 (1− δ)
a′ c b(1− δ)

]
, xt =

 1
σ2
Y,t

t

 , H ′ =

[
1 0 0 0 0
0 b 0 0 1

]
, ξt =


ξ1t
ξ2t
ξ3t
ξ4t
ξ5t

 .
(A.10)

Notice that a key difference between ξ1t and ξ2t is that ξ2t = Et−1ξ1t. Since things are

constructed so that ξ1t = Ỹt, we have ξ2t = Et−1Ỹt. As in the earlier model this has some

implications. First it implies that a′ = a + b ψ
(1−δ) as before. Second, we need the time

trend term in the inflation equation to adjust things back so that we have bEt−1Yt
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A.2.2 ARIMA (1,1,2)

Now consider the case where δ = 1. In this case,

∆Yt = ψ − (1− δ)Yt−1 + θ∆Yt−1 + κt + β1κt−1 + β2κt−2,

becomes

∆Yt = ψ + θ∆Yt−1 + κt + β1κt−1 + β2κt−2,

or, noting that ∆Y ≡ E[∆Yt] = ψ
1−θ , we have

(
∆Yt −∆Y

)
= θ

(
∆Yt−1 −∆Y

)
+ κt + β1κt−1 + β2κt−2. (A.11)

This is one of the equations I will write in the state space form. The other is (1.7). For

this system, write the state equation as

ξt = Fξt−1 +Rκt. (A.12)

Note, I have used some of the notation from Hamilton, but I have also used some of the

formulation in Harvey. There are two differences from Hamilton, the first is trivial, but it

is to write the equation in terms of time t rather than time t + 1. The second is to add a

matrix in from of the error term κt. Hamilton would define vt = Rκt. In this formulation,

we have the following matrices:

ξt =


ξ1t
ξ2t
ξ3t
ξ4t
ξ5t

 , F =


θ 0 1 0 0
θ 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 , R =


1 0
0 0
β1 0
β2 0
0 1

 , κt =

[
κt
et

]
. (A.13)
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Note that multiplying elements of (A.12) starting with the last line, we get

ξ5t = et,

ξ4t = β2κt,

ξ3t = ξ4t−1 + β1κt = β2κt−1 + β1κt,

ξ2t = θξ1t−1 + ξ3t−1 = θξ1t−1 + β2κt−2 + β1κt−1,

ξ1t = θξ1t−1 + ξ3t−1 + κt = θξ1t−1 + β2κt−2 + β1κt−1 + κt.

Next define the observation equation by

yt = A′xt +H ′ξt. (A.14)

Here I am using Hamilton’s notation. In this formulation, we have the following matrices:

yt =

[
∆Yt
πt

]
, A′ =

[
ψ

1−θ 0 0

a′ b c

]
, xt =

 1
Yt−1
σ2
Y,t

 , (A.15)

H ′ =

[
1 0 0 0 0
0 b 0 0 1

]
, ξt =


ξ1t
ξ2t
ξ3t
ξ4t
ξ5t

 . (A.16)

Notice that a key difference between ξ1t and ξ2t is that ξ2t = Et−1ξ1t. Since things are

constructed so that ξ1t =
(
∆Yt −∆Y

)
, we have ξ2t = Et−1∆Yt − ∆Y . Technically this

means that a′ = a + b∆Y , but this does not matter since we are not interested in testing

things about a anyway.
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A.3 Some notes for solving an equation above.

Consider an equation of the form

yt = a+ bt+ c1yt−1 + c2yt−2 (A.17)

which we would like to solve.

Guess the form

yt = α + βt. (A.18)

Substituting this in gives

α + βt = a+ bt+ c1 (α + β(t− 1)) + c2 (α + β(t− 2)) (A.19)

= a+ bt+ c1α + c1βt− c1β + c2α + c2βt− 2c2β. (A.20)

Since the constants have to equal and the terms with the time trends have to equal we have

the following two equations

β = b+ c1β + c2β. (A.21)

α = a+ c1α− c1β + c2α− 2c2β, (A.22)

and these imply

β =
b

1− c1 − c2
. (A.23)

α =
a− c1β − 2c2β

1− c1 − c2
=
a− β(c1 + 2c2)

1− c1 − c2
. (A.24)

For our model we have

β =
(1− δ)2

1− [(1 + θ)− (1− δ)]− [−θ]
=

(1− δ)2

1− [θ + δ] + θ
= (1− δ). (A.25)

α =
ψ′ − (1− δ)([θ + δ]− 2θ)

1− [θ + δ)] + θ
(A.26)

=
ψ + (1− δ) [1− θ − (1− δ)]− (1− δ)(δ − θ)

(1− δ)
(A.27)

=
ψ + (1− δ) [δ − θ]− (1− δ)(δ − θ)

(1− δ)
=

ψ

(1− δ)
, (A.28)
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which means the solution is

Yt =
ψ

(1− δ)
+ (1− δ)t. (A.29)

If we work backwards, we can show that

Yt = ψ′ + (1− δ)2t+ [(1 + θ)− (1− δ)]Yt−1 − θYt−2 + κt + β1κt−1 + β2κt−2.

will become(
Yt −

ψ

(1− δ)
− (1− δ)t

)
= [(1 + θ)− (1− δ)]

(
Yt−1 −

ψ

(1− δ)
− (1− δ)(t− 1)

)
−θ
(
Yt−2 −

ψ

(1− δ)
− (1− δ)(t− 2)

)
+κt + β1κt−1 + β2κt−2,

or

Ỹt = [(1 + θ)− (1− δ)] Ỹt−1 − θỸt−2 + κt + β1κt−1 + β2κt−2.
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A.4 Great Moderation Period Results

Table 4. Sample 1982:4-2003:2
ARIMA(2, 0, 2)
Coefficient Model

Barro and Gordon Asymmetric with
1 ≤ k k = 1

a 2.48 1.59 1.59
(0.11) (0.39) (0.39)

b 0.0 0.0
· ·

c 1.64 1.64
(0.71) (0.71)

log likelihood 207.83864 210.30374 210.30374

ARIMA(1, 1, 2)
Coefficient Model

Barro and Gordon Asymmetric with
1 ≤ k k = 1

a 2.47 -1.85 -1.85
(0.11) (1.30) (1.30)

b 0.0 0.0
· ·

c 5.72 5.72
(1.72) (1.72)

log likelihood 205.72 209.59243 209.59243
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Appendix B

Chapter 2 Technical Notes

B.1 Deriving the Benchmark Dynamic New-Keynesian

Model

B.1.1 Households

Households are infinitely-lived agents who are normalized to 1. They choose consumption,

labor supply, bonds, and money every period to maximize utility. Assuming a simple CRRA

functional form for Ut (·), households maximize

Et|0

∞∑
t=0

βt
[
C1−σ
t

1− σ
− 1

η
Lηt + ν ln

Mt

Pt

]

s.t. Ct +
Bt

Pt
=
Rt−1

Pt
Bt−1 +

Wt

Pt
Lt + Ft + Tt −

Mt −Mt−1

Pt

Here Rt is the nominal return on holding bonds, Ft is the dividends paid on the ownership

of the intermediate goods firms, Tt is transfer payments. By solving for Ct in the budget

constraint and substituting into the objective function we get

max
{Bt,Mt,Lt}

Et|0

∞∑
t=0

βt [Ut (·)]

Ut (·) =


(
Rt−1

Pt
Bt−1 + Wt

Pt
Lt + Ft + Tt − Mt−Mt−1

Pt
− Bt

Pt

)1−σ
t

1− σ
− 1

η
Lηt + ν ln

Mt

Pt


∂U (·)
∂Bt

= 0⇒ C−σt = βEt

[
Rt

(
pt+1

Pt

)−1
C−σt+1

]
(B.1)
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∂U (·)
∂Lt

= 0⇒ C−σt
Wt

Pt
= Lη−1t (B.2)

∂U (·)
∂Mt

= 0⇒ C−σt = βEt
[
C−σt+1Π

−1
t+1

]
+

ν
Mt

Pt

(B.3)

B.1.2 Firms

Output in this model is made up of final goods that are produced using intermediate goods.

The final goods market is competitive while the intermediate goods market is monopolisti-

cally competitive. Yt is the final good produced by Yj,t intermediate goods.

Final good firms

Final goods output is given by the CES aggregator,

Yt =

[∫ 1

0

Y
α−1
α

jt dj

] α
α−1

Final good firms seek to minimize total cost by the standard cost min problem

L =

∫ 1

0

PjtYjtdj + Pt

[
Yt −

[∫ 1

0

Y
α−1
α

jt dj

] α
α−1

]
(B.4)

∂L
∂Yjt

= 0⇒ Pjt = Pt
α

α− 1

[∫ 1

0

Y
α−1
α

jt dj

] 1
α−1

× α− 1

α
Y
− 1
α

jt (B.5)

or

Pjt = PtY
1
α
t Y

− 1
α

jt (B.6)

This can be rearranged to solve for Yjt

Yjt =

(
Pjt
Pt

)−α
Yt (B.7)

We can solve for the lagrangian multiplier, Pt by plugging in Yjt into our original definition

of Yt

Yt =

∫ 1

0

((
Pjt
Pt

)−α
Yt

)α−1
α

dj


α
α−1

= Yt

[∫ 1

0

(
Pjt
Pt

)1−α

dj

] α
α−1

Since Yt has constant returns to scale, it drops out and we can solve for Pt

Pt =

[∫ 1

0

(Pjt)
1−α dj

] 1
1−α
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Intermediate good firms

The intermediate goods sector is monopolistically competitive, indexed over j ∈ (0, 1). Each

firm faces a downward sloping demand curve, Yjt. Each firm uses labor to produce according

to the following constraint

Yjt = AtLjt

Producers choose price, Pjt taking the demand curve as given. Prices can only be changed

when allowed to which occurs with probability 1− θ.

Imposing a Calvo (1983) structure implies that if some firms are allowed to change prices

then the average price in the economy will be a CES aggregate of all prices. This can be

derived by imposing it directly

Pt =

[∫ 1

0

(Pjt)
1−α dj + (1− θ)P ∗1−αt

] 1
1−α

=
[
θ (Pjt)

1−α + (1− θ)P ∗1−αt

] 1
1−α

P 1−α
t = θ (Pjt)

1−α + (1− θ)P ∗1−αt

A purely forward-looking demand function for the intermediate producer is

Y ∗jt+k =

(
P ∗jt
Pt+k

)−α
Yt+k (B.8)

The maximization problem that this producer faces is given by

max
{P ∗jt}

∞∑
k=0

(θβ)k Et

[(
Ct
Ct+k

)σ ( P ∗jt
Pt+k

− Zt+k
)
Y ∗jt+k

]
(B.9)

Optimization yields

∞∑
k=0

(θβ)k Et

[
Λt,k

(
Y ∗jt+k
Pt+k

+
P ∗jt
Pt+k

∂Y ∗jt+k
∂P ∗jt

− Zt+k
∂Y ∗jt+k
∂P ∗jt

)]
= 0 (B.10)

where Λt,k =
(

Ct
Ct+k

)σ
. Next factor out

Y ∗jt+k
Pt+k

to get

∞∑
k=0

(θβ)k Et

[
Λt,k

Y ∗jt+k
Pt+k

(
1 +

P ∗jt
Y ∗jt+k

∂Y ∗jt+k
∂P ∗jt

− Zt+kPt+k
P ∗jt

∂Y ∗jt+k
∂P ∗jt

∂Y ∗jt+k
∂P ∗jt

)]
= 0
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Solving for the elasticity
P ∗jt
Y ∗jt+k

∂Y ∗jt+k
∂P ∗jt

using the forward-looking demand function (B.10) we

get
∞∑
k=0

(θβ)k Et

[
Λt,k

Y ∗jt+k
Pt+k

(
1− α +

Zt+kPt+k
P ∗jt

α

)]
= 0

Multiply both sides by P ∗jt and simplifying we get

∞∑
k=0

(θβ)k Et

[
Λt,k

Y ∗jt+k
Pt+k

(
P ∗jt −

α

α− 1
Zt+kPt+k

)]
= 0

Define X = α
α−1 , which is the steady state markup. In equlibrium the firms that do

change price all choose the same price P ∗jt = P ∗t . Using these two we get

∞∑
k=0

(θβ)k Et

[
Λt,kY

∗
jt+k

(
P ∗t
Pt+k

−XZt+k
)]

= 0

Rearranging above we can get

∞∑
k=0

(θβ)k Et

[
Λt,kY

∗
jt+k

P ∗t
Pt+k

]
= X

∞∑
k=0

(θβ)k Et
[
Λt,kY

∗
jt+kZt+k

]
Also note that the real marginal cost, Zt+k evolves following Zn

t+k = Zt+kPt+k. Solving for

Zt+k and substituting we can solve for P ∗t

P ∗t = X

∑∞
k=0 (θβ)k Et

[
Λt,kY

∗
jt+kZ

n
t+kP

−1
t+k

]∑∞
k=0 (θβ)k Et

[
Λt,kY ∗jt+kP

−1
t+k

] (B.11)

This expression states that the optimal price is a weighted average of current and expected

future marginal costs under sticky prices. If we relax the stickiness assumption then θ = 0

and the optimal price is a constant markup over marginal cost.

We have a pricing rule but we still need a labor demand rule for the producer. To get

that setup the following cost minimization problem

L =
Wt

Pt
Ljt + Zt (Yjt − AtLjt) (B.12)

∂L
∂Ljt

= 0⇒ Wt

Pt
= ZtAt (B.13)

or
Wt

Pt
= Zt

Yjt
Ljt

(B.14)
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Solving for Ljt

Ljt = Zt
Yjt
wt
, (B.15)

where wt = Wt

Pt
.

B.1.3 Equilibrium

Total output in the economy is characterized by

Yt =

[∫ 1

0

Y
α−1
α

jt dj

] α
α−1

=

[∫ 1

0

(AtLjt)
α−1
α dj

] α
α−1

It is not possible to simplify this further, since input usages across firms are different. The

linear aggregator Y ′t =
∫ 1

0
Yjtdj ' Yt within a local region of the steady state, so we can use

Yt = AtLt

The goods market clears at Yt = Ct and the bond market clears at Bt = 0. Equilibrium is

characterized by three equations

Y −σt = βEt

[
RtPt

Pt+1Y σ
t+1

]
(B.16)

Y η+σ−1
t = ZtA

η
t (B.17)

P 1−α
t = θ (Pjt)

1−α + (1− θ)

[
X

∑∞
k=0 (θβ)k Et

[
Λt,kY

∗
jt+kZ

n
t+kP

−1
t+k

]∑∞
k=0 (θβ)k Et

[
Λt,kY ∗jt+kP

−1
t+k

] ]1−α
(B.18)

These equations represent equilibrium in the goods market, equilibrium in the labor market,

and the aggregate price level respectively. We get (B.16) from imposing Yt = Ct on (B.1).

Eq. (B.17) comes from setting (B.2) equal to (B.14). Eq. (B.18) comes from substituting

(B.11) into our Calvo pricing structure.

B.1.4 Log-Linearization

Log-linearizing (B.16) yields

ỹt = Etỹt+1 −
1

σ
(rt − Etπt+1) (B.19)
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Log-linearizing (B.17) yields

yt =
1

η + σ − 1
zt +

η

η + σ − 1
at (B.20)

Log-linearizing (B.18) is modestly more difficult. First start with P ∗t . Rearranging this,

getting rid of Y ∗jt+k =
(

P ∗t
Pt+k

)α
Yt+k, and dividing by Pt yields

P ∗t
Pt

∞∑
k=0

(θβ)k Et
[
Λt,kYt+kP

α−1
t+k

]
=

1

Pt
X

∞∑
k=0

(θβ)k Et
[
Λt,kYt+kZ

n
t+kP

α−1
t+k

]
Start now with the LHS(

P̂ ∗t − P̂t
) ∞∑
k=0

(θβ)k
[
ΛY Pα−1]+

∞∑
k=0

(θβ)k
[
ΛY Pα−1]Et [Λ̂t,k + Ŷt+k + (α− 1) P̂t+k

]
Now the RHS. Notice that we split up the Zn term

−P̂t
∞∑
k=0

(θβ)k
[
ΛY Pα−1]+

X

P

∞∑
k=0

(θβ)k
[
ΛY Pα−1Zn

]
Et

[
Λ̂t,k + Ŷt+k + (α− 1) P̂t+k + Ẑn

t+k

]
Using ZnX = P or more specifically ZnX

P
= 1

−P̂t
∞∑
k=0

(θβ)k
[
ΛY Pα−1]+

∞∑
k=0

(θβ)k
[
ΛY Pα−1]Et [Λ̂t,k + Ŷt+k + (α− 1) P̂t+k + Ẑn

t+k

]
Noting also Ẑn

t+k = P̂t+k + Ẑt+k this equation collapses to

P̂ ∗t

∞∑
k=0

(θβ)k =
∞∑
k=0

(θβ)k Et

[
P̂t+k + Ẑt+k

]
or

P̂ ∗t = (1− θβ)
∞∑
k=0

(θβ)k Et

[
P̂t+k + Ẑt+k

]
= (1− θβ)Et

[(
P̂t + Ẑt

)
+ θβ

(
P̂t+1 + Ẑt+1

)
+ θ2β2

(
P̂t+2 + Ẑt+2

)
+ . . .

]
= (1− θβ)

(
P̂t + Ẑt

)
+ θβEtP̂

∗
t+1

(1− θ) P̂ ∗t = (1− θ) (1− θβ)
(
P̂t + Ẑt

)
+ (1− θ) θβEtP̂ ∗t+1
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Now using (B.18) we can write P̂t − θP̂t−1 = (1− θ) P̂ ∗t or

P̂t − θP̂t−1 = (1− θ) (1− θβ)
(
P̂t + Ẑt

)
+ (1− θ) θβEtP̂ ∗t+1

P̂t − θP̂t−1 = (1− θ) (1− θβ)
(
P̂t + Ẑt

)
+ θβ

(
EtP̂t+1 − θP̂t

)
P̂t − P̂t−1 = − (1− θ) P̂t−1 + (1− θ) (1− θβ)

(
P̂t + Ẑt

)
+ θβ

(
EtP̂t+1 − θP̂t

)
P̂t − P̂t−1 = (1− θ) P̂t − P̂t−1 + (1− θ) (1− θβ) Ẑt + θβ

(
EtP̂t+1 − P̂t

)
π̂t = (1− θ) π̂t + θβEtπ̂t+1 + (1− θ) (1− θβ) Ẑt

π̂t = βEtπ̂t+1 +
(1− θ) (1− θβ)

θ
Ẑt

Finally, we get

πt = βEtπt+1 +
(1− θ) (1− θβ)

θ
zt (B.21)

B.1.5 The Benchmark Model

We need two more things to get to the “benchmark” New-Keynesian model. First, we need

some way to relate zt, marginal cost to yt, output. Second, we need to determine monetary

policy. To relate zt to yt we have to recognize that some firms can price over marginal cost,

and some cannot when we have sticky prices. Therefore potential output reflects output

under flexible prices. Flexible prices implies (1−θ)(1−θβ)
θ

→∞ and zt → 0 so

ynt =
η

η + σ − 1
at

The output gap is then a constant market

yt − ynt =
1

η + σ − 1
zt

This into (B.21) implies

πt = βEtπt+1 + (η + σ − 1)
(1− θ) (1− θβ)

θ
(yt − ynt ) (B.22)

Monetary policy is an ad hoc specification of an interest rate rule in this model. The

interest rate rule chosen in most textbook examples is a Taylor (1993) rule.

Rt = Rφr
t−1

(
r̄r

(
Pt
Pt−1

)1+φπ (Zt
Z

)φz)1−φr

εr,t (B.23)
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Since we are not choosing an optimal monetary policy rule we can log-linearize this directly

to get

rt = φrrt−1 (1− φr) ((1 + φπ) πt + φzzt) + εr,t (B.24)

Substituting our earlier result for zt is straightforward. The three equations then for the

benchmark New-Keynesian model are

ỹt = Etỹt+1 − σ−1 (rt − Etπt+1) (B.25)

πt = βEtπt+1 + ψỹt (B.26)

rt = φrrt−1 (1− φr) ((1 + φπ) πt + φx (yt − ynt )) + εr,t (B.27)

Note, (B.27) is not needed for this paper but is included for the sake of completeness.
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B.2 State-Space Representation

B.2.1 Time Varying Target Rate Model

The equations that comprise the estimated model are

xt − [Etxt+1|zt] + σ−1 (it − [Etπt+1|zt]) = εdt

πt − ψxt − β [Etπt+1|zt] = εst

π̃t = πt − π∗t

it =
ψφ

σ
π̃t +

αψφ

2σ
π̃t

2 +
λ

σ
xt +

γλ

2σ
x2t + i∗t + ζit−1 + δt

The unobserved components i∗t and π∗t are assumed to follow a stable AR(1) law of motion.

i∗t = µi
∗

+ ρii
∗
t−1 + uit

π∗t = µπ
∗

+ ρππ
∗
t−1 + uπt

One state-space form of this system is below. The state equation is given by

ξt = Fξt−1 +B +Qνt

ξt =


i∗t
π∗t
δt
εdt
εst

 , F =


ρi 0 0 0 0
0 ρπ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B =


µi
∗

µπ
∗

0
0
0

 , Q = I5×5 , νt =


uit
uπt
δt
εdt
εst


The observation equation is given by

yt = AXt +Hξt

yt =


σ−1 (it − [Etπt+1|zt])− [Etxt+1|zt]

πt − β [Etπt+1|zt]
πt

it − ζit−1

 , H =


0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 1 0 0



A =


−1 0 0 0
ψ 0 0 0
0 0 1 0
λ
σ

γλ
2σ

ψφ
σ

αψφ
2σ

 , Xt =


xt
x2t
π̃t
π̃2
t


Note π̃t and π̃2

t are functions of the unobserved vector element, ξ2t. These elements must

be recursively updated after the matrix ξt+1|t is updated.
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B.2.2 Estimation Procedure

The Kalman filter is a direct estimation of the log-likelihood function by the following

algorithm. Given the initial conditions

ξ1|0 =
[

0 · · · 0
]′

and

P1|0 = vec
[
(I25×25 − F ⊗ F )−1 vec (QΣQ′)

]
where Σ = E (νtν

′
t)

δt, ε
d
t , and εst are rational expectations error process which implies that they are mutually

and serially uncorrelated with each other for all t. The covariance matrix is econometrically

assumed symmetric along the diagonal.

ξt|t−1 and Pt|t−1 can be recursively estimated and the log-likelihood function updated by

the following sequence.

L = −T ln (2π) +
T−1∑
t=1

llt

where

llt = −1

2
ln
[
det
(
HPt|t−1H

′)]− 1

2

(
yt − Axt −Hξt|t−1

)′ (
HPt|t−1H

′)−1 (yt − Axt −Hξt|t−1)
Kt = FPt|t−1H

′ (HPt|t−1H ′)−1
ξt+1|t = Fξt|t−1 +Kt

(
yt − Axt −Hξt|t−1

)
+B

Pt+1|t = (F −KtH)Pt|t−1 (F ′ −H ′K ′t) +QΣQ′

X3t+1|t =
(
πt+1 − ξ2t+1|t

)
X4t+1|t =

(
πt+1 − ξ2t+1|t

)2
for t = (1, 2, . . . , T − 1)

The parameters α, γ, φ, λ, ζ, β, ψ, µi
∗
, µπ

∗
, ρi, ρπ, and the relevant variance-covariance

estimates are all chosen to minimize the sum of the log-likelihoods in the above algorithm.
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As discussed in (Hamilton, 1994, Ch. 13), inference using Pt+1|T when there are trans-

formed parameters is infeasible. An unbiased estimate Pt+1|T must be reestimated using

non-transformed optimal parameters from the algorithm described above. The optimal

Pt+1|T is used to construct the optimal Fisher information matrix (inverse hessian matrix).

Standard errors are calculated by taking the square root of the diagonal elements of the

inverse of the hessian matrix.
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B.2.3 Time Varying Aversion Parameter Model

The equations that comprise the estimated model are

xt − [Etxt+1|zt] + σ−1 (it − [Etπt+1|zt]) = εdt

πt − ψxt − β [Etπt+1|zt] = εst

π̃t = πt − π∗t

it =
ψ

σ
φtπ̃t +

αψ

2σ
φtπ̃t

2 +
1

σ
λtxt +

γ

2σ
λtx

2
t + i∗t + ζit−1 + δt

Rearranging the interest rate rule by expanding π̃t yields

it =
ψ

σ
φtπt−

ψ

σ
φtπ

∗
t +

αψ

2σ
φtπ

2
t −

αψ

σ
φtπtπ

∗
t +

αψ

2σ
φt (π∗t )

2 +
1

σ
λtxt +

γ

2σ
λtx

2
t + i∗t + ζit−1 + δt

The unobserved components i∗t , π
∗
t , φt, and λt are assumed to follow a stable AR(1) law of

motion.

i∗t = µi
∗

+ ρii
∗
t−1 + uit

π∗t = µπ
∗

+ ρππ
∗
t−1 + uπt

φt = µφ + ρφφt−1 + uφt

λt = µλ + ρλλt−1 + uλt

One state-space form of this system is below. The state equation is given by

ξt = Fξt−1 +B +Qνt

ξt =



i∗t
π∗t
φt
λt
δt
εdt
εst


, F =



ρi 0 0 0 0 0 0
0 ρπ 0 0 0 0 0
0 0 ρφ 0 0 0 0
0 0 0 ρλ 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, B =



µi
∗

µπ
∗

µφ

µλ

0
0
0


, νt =



uit
uπt
uφt
uλt
δt
εdt
εst


and Q = I7×7. The observation equation is given by

yt = AXt +Hξt
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yt =

 σ−1 (it − [Etπt+1|zt])− [Etỹt+1|zt]
−β [Etπt+1|zt]
it − ζit−1

 , H =

 0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 a −ψ
σ
φt 0 1 0 0


Where a = αψ

σ

(
1
2
π∗t − πt

)

A =

 0 0 −1 0
−1 0 ψ 0
ψ
σ
φt

αψ
2σ
φt

1
σ
λt

γ
2σ
λt

 , Xt =


πt
π2
t

xt
x2t


Note H and A are each a function of elements of ξt and observed data in Xt. These must

be updated recursively after the matrix ξt+1|t is updated.
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B.2.4 Estimation Procedure

The Kalman filter is a direct estimation of the log-likelihood function by the following

algorithm. Given the initial conditions

ξ1|0 =
[

0 · · · 0
]′

and

P1|0 = vec
[
(I49×49 − F ⊗ F )−1 vec (QΣQ′)

]
where Σ = E (νtν

′
t)

δt, ε
d
t , and εst are rational expectations error process which implies that they are mutually

and serially uncorrelated with each other for all t. The covariance matrix is econometrically

assumed symmetric along the diagonal.

ξt|t−1, Pt|t−1, Ht|ξt+1 , At|ξt+1 , and xt|ξt+1 can be recursively estimated and the log-likelihood

function updated by the following sequence.

L = −T ln (2π) +
T−1∑
t=1

llt

where

llt = −1

2
ln
[
det
(
HPt|t−1H

′)]− 1

2

(
yt − Axt −Hξt|t−1

)′ (
HPt|t−1H

′)−1 (yt − Axt −Hξt|t−1)
Kt = FPt|t−1H

′ (HPt|t−1H ′)−1
ξt+1|t = Fξt|t−1 +Kt

(
yt − Axt −Hξt|t−1

)
+B

Pt+1|t = (F −KtH)Pt|t−1 (F ′ −H ′K ′t) +QΣQ′

H(3, 2) = −αψ
σ

(
1

2
ξ2|t+1 − x1t

)
H(3, 4) = −ψ

σ
× ξ3t|t+1

A(3, 1) =
ψ

σ
× ξ3t|t+1
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A(3, 2) =
αψ

2σ
× ξ3t|t+1

A(3, 3) =
1

σ
× ξ4t|t+1

A(3, 4) =
γ

2σ
× ξ4t|t+1

for t = (1, 2, . . . , T − 1)

The parameters α, γ, ζ, β, ψ, µi
∗
, µπ

∗
, µφ, µλ, ρi, ρπ, ρφ, ρλ, and the relevant variance-

covariance estimates are all chosen to minimize the sum of the log-likelihoods in the above

algorithm.

As discussed in (Hamilton, 1994, Ch. 13), inference using Pt+1|T when there are trans-

formed parameters is infeasible. An unbiased estimate Pt+1|T must be reestimated using

non-transformed optimal parameters from the algorithm described above. The optimal

Pt+1|T is used to construct the optimal Fisher information matrix (inverse hessian matrix).

Standard errors are calculated by taking the square root of the diagonal elements of the

inverse of the hessian matrix.
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Appendix C

Chapter 3 Technical Notes

C.1 Deriving the Modified Model

C.1.1 Rational expectations

Etπt+1 = πt+1 + ηπt (C.1)

C.1.2 The UC updated Phillips curve

πt = µπt + ψπt + βEtπt+1 + ϕxt + εst

πt = µπt + ψπt + βπt+1 + ϕxt + βηπt + εst

πt = µπt + ψπt + βπt+1 + ϕψyt + βηπt + εst (C.2)

C.1.3 The UC updated consumer’s Euler Equation

Leading Equation (3.7) and using the law of iterated expectations leads to

Etψ
y
t+1 = ρ cosλcψ

y
t + ρ sinλcψ

y∗
t + Etκ

y
t+1 (C.3)

where Etκ
y
t+1 = 0. Substituting this into (3.2) and using (C.1) implies

ψyt = ρ cosλcψ
y
t + ρ sinλcψ

y∗
t − σ−1 (it − πt+1 + ηπt ) + εdt (C.4)

Which can be rearranged by collecting terms to get

ψyt = ρ sinλc
(1−ρ cosλc)ψ

y∗
t − 1

σ(1−ρ cosλc) (it − πt+1)− 1
σ(1−ρ cosλc)η

π
t + 1

(1−ρ cosλc)ε
d
t (C.5)

69



multiplying both sides by (1− ρ cosλc) yields

(1− ρ cosλc)ψ
y
t = ρ sinλcψ

y∗
t − σ−1 (it − πt+1)− σ−1ηπt + εdt (C.6)

or

σ−1it = σ−1πt+1 + (ρ cosλc − 1)ψyt + ρ sinλcψ
y∗
t − σ−1ηπt + εdt (C.7)
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C.2 State-Space Formulation - Speed Limits with

Asymmetry

The system of equations to be estimated are

µπt = µπt−1 + νπt (C.8)

µyt = µyt−1 + νyt−1 (C.9)

νyt = νyt−1 + uyt (C.10)

yt = µyt + ψyt + εyt (C.11)

[
ψt
ψ∗t

]
= ρ

[
cosλc sinλc
− sinλc cosλc

⊗ I2
] [

ψt−1
ψ∗t−1

]
+

[
κt
κ∗t

]
(C.12)

πt = µπt + ψπt + βπt+1 + ϕψyt + βηπt + εst (C.13)

σ−1it = σ−1πt+1 + (ρ cosλc − 1)ψyt + ρ sinλcψ
y∗
t − σ−1ηπt + εdt (C.14)

φϕ

{
(πt − πt−1) + α

(πt − πt−1)2

2

}
+ λ

{
(xt − xt−1) + γ

(xt − xt−1)2

2

}
= 0 (C.15)

The state equation is given by

ξt = Fξt−1 +QVt (C.16)
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where

ξt =



µπt
µyt
νyt
ψπt
ψyt
ψπ∗t
ψy∗t
εdt
εst
εyt
ηπt


, F =



1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 ρ cosλc 0 ρ sinλc 0 0 0 0 0
0 0 0 0 ρ cosλc 0 ρ sinλc 0 0 0 0
0 0 0 −ρ sinλc 0 ρ cosλc 0 0 0 0 0
0 0 0 0 −ρ sinλc 0 ρ cosλc 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



Q =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


, Vt =



νπt
uyt
κπt
κyt
κπ∗t
κy∗t
εdt
εst
εyt
ηπt


The observation equation is given by

Yt = AXt +Hξt (C.17)

where

Yt =


yt
πt

σ−1it
φϕ (πt − πt−1)

 , A =


0 0 0 0
β 0 0 0
σ−1 0 0 0

0 −φϕα
2
−λ −λγ

2

 , Xt =


πt+1

(πt − πt−1)2
(ψt − ψt−1)
(ψt − ψt−1)2



H =


0 1 0 0 1 0 0 0 0 1 0
1 0 0 1 ϕ 0 0 0 1 0 β
0 0 0 0 (ρ cosλc − 1) 0 ρ sinλc 1 0 0 −σ−1
0 0 0 0 0 0 0 0 0 0 0


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C.2.1 Estimation Algorithm

The Kalman filter is a direct estimation of the log-likelihood function by the following

algorithm. Given the initial conditions

ξ1|0 =
[

0 · · · 0
]′

and

P1|0 = vec
[
(I121×121 − F ⊗ F )−1 vec (QΣQ′)

]
where Σ = E (VtV

′
t ) and is symmetric. Individually, E

(
κitκ

i′
t

)
= E

(
κi∗t κ

i∗′
t

)
= σ̂2

κ, for

i = [π, y]. Also νπt , uyt , ε
y
t , and ηπt all follow a multivariate Gaussian distribution and are

mutually and serially uncorrelated.

ξt|t−1 and Pt|t−1 can be recursively estimated and the log-likelihood function updated by

the following sequence.

L = −T ln (2π) +
T−1∑
t=1

llt

where

llt = −1

2
ln
[
det
(
HPt|t−1H

′)]− 1

2

(
yt − Axt −Hξt|t−1

)′ (
HPt|t−1H

′)−1 (yt − Axt −Hξt|t−1)
Kt = FPt|t−1H

′ (HPt|t−1H ′)−1
ξt+1|t = Fξt|t−1 +Kt

(
yt − Axt −Hξt|t−1

)
Pt+1|t = (F −KtH)Pt|t−1 (F ′ −H ′K ′t) +QΣQ′

X (3, 1) =
(
ξ5,t+1|t − ξ5,t|t−1

)
X (4, 1) =

(
ξ5,t+1|t − ξ5,t|t−1

)2
for t = (1, 2, . . . , T − 1)

The parameters α, γ, φ, λ, ϕ, β, σ, ρ, λc and the relevant variance-covariance estimates

are all chosen to minimize the sum of the log-likelihoods in the above algorithm. Standard

errors are calculated by taking the square root of the diagonal elements of the inverse of the

hessian matrix that is constructed from the optimal Pt+1|T matrix in the Kalman recursion.
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C.2.2 Smoothed Estimates of the State Vector

Smoothed estimates of the state vector can be recursively solved for by decomposing the

Kalman Gain, Kt = FPt|t−1H
′ (HPt|t−1H ′)−1 and storing the one-step updates, ξt|t, ξt+1|t,

Pt|t, and Pt+1|t. After optimal estimation of the ξT |T and PT |T matrices, the smoothed

estimates can be backward solved by

ξ̂T−i−1|T−i = ξ̂T−i−1|T−i−1 + JT−i−1

(
ξ̂T−i|T−i − ξ̂T−i|T−i−1

)
where JT−i = Pt|tF

′P−1t+1|t, for i = (T − 1, . . . , 1).
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