
  

Characterization of soybean seedborne Fusarium spp. in the state of Kansas, USA. 

 

 

by 

 

 

Rodrigo Pedrozo 

 

 

 

B.S., Federal University of Lavras, 2006 

M.S., Federal University of Lavras, 2009 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Plant Pathology 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2017 

 

  



  

Abstract 

Fusarium spp. are among the most important pathogen groups on soybeans. However, 

information regarding this genus on soybean seeds in the state of Kansas remains underexplored. 

Therefore, the goal of this study was to characterize the identity, frequency, and pathogenicity of 

soybean seedborne Fusarium spp. in the state of Kansas. For the identification and frequency of 

seedborne Fusarium spp., culture-dependent (i.e. semi-selective medium) and -independent (i.e. 

DNA metabarcoding) approaches were used. Also, information regarding the pathogenicity of 

the most common seedborne Fusarium spp. from soybeans was assessed to better understand 

their role as soybean pathogens. Overall, eleven Fusarium spp. were identified in this 

study. Semi-selective media showed that approximately 33% of soybean seed samples were 

infected with Fusarium spp. Moreover, Fusarium spp. were isolated from seed sampled from 

80% of the locations in Kansas. Furthermore, a low incidence of Fusarium spp. was observed 

within infected seed samples and averaged 2%. Nine Fusarium spp. were found in soybean seeds 

using the culture-dependent approach. Fusarium semitectum was the most frequent, followed 

by F. proliferatum and F. verticillioides. Fusarium acuminatum, F. equiseti, F. fujikuroi, F. 

graminearum, F. oxysporum, and F. thapsinum were found in lower frequencies among naturally 

infected seeds. DNA metabarcoding experiments showed that Fusarium spp. are more frequent 

in soybean seeds than previously known. All asymptomatic soybean seeds analyzed, using 

Illumina MiSeq platform, showed the presence of the genus Fusarium including two pathogenic 

species, F. proliferatum and F. thapsinum. Fusarium acuminatum, F. merismoides, F. solani, F. 

semitectum, and Fusarium sp. were also identified using the culture-independent approach. 

Preliminary results also showed that F. proliferatum and F. thapsinum were observed in all three 

major soybean seed tissues: seed coat, cotyledons, and the embryo axis. Depending on the 



  

soybean genotype, inoculum potential and aggressiveness, F. proliferatum, F. graminearum, F. 

fujikuroi, F. oxysporum, F. semitectum, F. thapsinum, and F. verticillioides were pathogenic to 

soybean and negatively affect soybean seed quality, at different levels, in controlled conditions. 

Moreover, F. equiseti and F. acuminatum did not cause significant damage to soybean seeds and 

seedlings. Understanding seedborne Fusarium spp. and their influence on soybean seed and 

seedling diseases is critical for the development of effective disease control strategies, especially 

regarding early detection of pathogenic strains in seeds (i.e., seed health testing), ensuring the 

crop productivity, quality, and safety. 
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Chapter 1 - Introduction 

Seeds are of immense importance for society. They represent the basic agricultural unit to 

ensure a sustained and improved food supply. Conversely, seed also provides an effective means 

of spreading plant diseases as numerous pathogens, especially fungi, are seed-transmitted. The 

movement of plant pathogens through infected seeds is a major concern for seed certification and 

quarantine programs, and represents an important challenge facing modern agriculture due to its 

potential to introduce exotic plant diseases into new hosts and areas. Hence, the seed and its 

movement are subjected to regulations and must undergo seed health testing for the presence or 

absence of seedborne pathogens to minimize the risk of spreading unwanted diseases among 

states, regions, countries, and continents.  

 

For soybeans (Glycine max (L.) Merr.), the genus Fusarium represents one of the most 

important pathogen groups causing diseases including Fusarium wilt, caused by F. oxysporum; 

sudden death syndrome, caused by F. virguliforme in North America; and seed, seedling and root 

diseases caused by several Fusarium species. At the same time, some other species, such as F. 

semitectum (F. fc. incarnatum) and F. equiseti, are known to be saprophytes or endophytes and 

may not play an important role in any soybean disease process. Furthermore, most of the 

agriculturally important Fusarium spp. have frequently been reported in soybean seeds in North 

America and other parts of the world. Also, although it is not within the scope of this study, it is 

important to emphasize that Fusarium spp. can also produce mycotoxins, which represent a 

health risk to humans and livestock. 
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Overall, although the genus Fusarium represents a potential threat to soybean seed 

production as well as food, feed quality, and safety, many questions regarding the significance 

and influence of this important pathogenic group remains underexplored. For example, clear 

experiments are needed to answer the questions of impacts of Fusarium spp. on soybean seed 

and seedling diseases and how widespread seedborne pathogenic Fusarium spp. are. Thus, the 

correct identification and frequency of soybean seedborne Fusarium spp. and information 

regarding their pathogenicity to the crop is important for the development of effective disease 

control management strategies, improvements in seed certification and quarantine programs, and 

as a basis for making decisions to protect the future of agriculture.  
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Chapter 2 - Literature review 

 The role of seedborne pathogens in agriculture 

 

Seeds are the basic material used for maintenance of ecosystems as well for agricultural 

practices. It is estimated that about 90% of the world’s crops are sown by true seeds (Agarwal 

and Sinclair 1996; Neergaard 1979). Due to the significance of agriculture to modern society, 

using high-quality seeds from improved and adapted varieties is a fundamental element for 

agricultural productivity (Harman 1982; Neergaard 1986). Hence, improvements and 

development of new technologies that ensure the quality of seeds are essential for the future of 

agriculture and the survival of humankind.  

 

Seedborne pathogens can affect seed quality and cause diseases that significantly impact 

yield or marketability of seed lots (Machado et al. 2002; Mathur and Kongsdal 2003; Van Gastel 

et al. 2002). By definition, seedborne pathogens are any infectious agent associated with seeds 

that have the potential to cause seed, seedling, and plant diseases (Agarwal and Sinclair 1996). 

Plant pathogenic bacteria, fungi, nematodes, and viruses occur with seed either as contaminants 

adhering to the seed surface, loosely mixed with seed or as an infection present inside the seed 

tissues (Neergaard 1979).  

 

Most seed diseases and diseases related to seedborne pathogens of the major crops are 

caused by fungi. Numerous species of fungi are associated and have been reported in crop seeds 

(Agarwal and Sinclair 1996). Among those, many species are endophytes or saprophytes that do 

not adversely affect the performance of seeds or affect the health of the plant and do not affect 



 4 

production and quality (Machado et al. 2002). On the other hand, several seedborne fungi have 

been reported to cause severe economic losses and represent a major threat to food production 

(Neergaard 1979). For example, losses due to Karnal bunt of wheat, incited by Tilletia 

indica (syn. Neovossia indica) in northwestern Mexico are estimated to average $7.5 million per 

year, in which the direct yield and quality losses account for 42.6% of the total (Brennan et al. 

1992). Yield losses of 100% due to wheat loose smut, caused by Ustilago tritici (Pers.) Rostr., 

were reported in Georgia (Persons 1954). Rice blast, caused by Magnaporthe oryzae, was 

responsible for a famine in Japan during the 1930s and represents a US$ 55 million problem in 

South and Southeast Asia (Anderson et al. 2004). 

 

Reduced germination by seed rot and increased post-emergent damping-off are common 

losses related to seedborne pathogens, which commonly affect the marketability of seed 

(McDonald 1998; McGee 1980). For example, soybean seedling emergence was reduced by 30% 

by Cercospora kikuchii (Singh and Agarwal 1986) and 59% by Macrophomina phaseolina 

(Gangopadhyay et al. 1971) depending on the level of infection observed in seeds. Barley and 

wheat seeds infected with Bipolaris sorokiniana did not germinate, or if they germinated, 

seedlings became infected (Al‐Sadi and Deadman, 2010). However, reduced germination due to 

seedborne pathogens is complex and depends on many factors such as host genotype, 

environmental conditions, and the type, amount, and location of inoculum within the seeds 

(Agarwal and Sinclair 1996; Machado et al. 2013; Neergaard 1979). Due to this complex 

interaction, the relationships between most plant pathogenic fungi and seed production is still not 

well understood.  
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Roy et al. (2001) have reported that at least 63 genera and approximately 108 or more 

species occur in soybean seeds in North America. Although many of the soybean seedborne 

fungi are considered transients and are reported only sporadically in seed, accurate information 

regarding the widespread distribution of most soybean seedborne fungi is still lacking. Under 

normal conditions, species of Alternaria, Cercospora, Fusarium, and Phomopsis are the fungi 

most consistently and frequently isolated from seeds (Roy et al. 2001). 

 

In the United States, seed and seedling diseases of soybean are a common and significant 

problem. Wrather and Koenning (2009) reported that seed and seedling diseases represent one of 

the most problematic diseases encountered in 28 soybean-growing states, including Kansas, 

during the 1998 to 2007 growing seasons. In 2007 for example, suppression of soybean yields 

caused by seed and seedling diseases reached 34,985,000 bushels followed by suppressions 

caused by soybean cyst nematode (SCN), which represented a decrease of yield in a magnitude 

of 93,981,000 bushels (Wrather and Koenning 2009). Several different pathogens cause soybean 

seed and seedling diseases. These include Fusarium, Rhizoctonia, Macrophomina, Cercospora, 

Phomopsis, Phytophthora, and Pythium and tend to be the most common fungal and oomycete 

genera in the Midwestern U.S. (Wrather and Koenning 2009). Most importantly, these 

pathogenic organisms may survive for an extended period in the soil and are often associated 

with plant debris or alternative hosts (Broders et al. 2007; French-Monar et al. 2006; Kmetz et al. 

1979; Leslie et al. 2004; Payne and Waldron 1983; Ritchie et al. 2013; Singh et al. 1990). Those 

pathogens that persist in field soils or in alternative hosts are the most dangerous for introduction 

into new areas. Once established, it is difficult or virtually impossible to eliminate them 
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especially in the case of soil-infesting pathogens. The wider the host range of the pathogen, the 

more difficult eradication becomes as a cultural management strategy (Baker and Smith 1966).  

 The movement of plant pathogens through seeds 

 

Due to the significant increase of international food trade, the risks of introducing exotic 

pathogens into new areas through infected or contaminated plant materials represent a major 

concern to agriculture (Stack et al. 2014; Strange et al. 2005). It is estimated that introduced 

pathogens are responsible for about 65% of U.S. crop losses, representing a cost of $137 billion 

annually (Fletcher et al. 2006). In Florida, citrus canker, caused by Xanthomonas axonopodis pv. 

citri, is suspected to be introduced via infected fruits. This pathogen has resulted in tremendous 

yield losses, which represent more than a US$ 200 million cost to citrus producers in the United 

States (Graham et al. 2004). 

 

Another common means of spreading diseases are seeds. Seeds represent an efficient 

mechanism of spreading diseases among states, countries, and continents. Many plant pathogens 

can be asymptomatic in seed lots, which makes their detection extremely challenging (McGee 

1995). For this reason, many countries have formulated legislation that helps to minimize or 

prevent the introduction of exotic pathogens or strains into new areas through infected or 

contaminated seeds and promote the improvement of seed certification as well as quarantine 

programs (Munkvold 2009).  

 

The close association of plant pathogens with seeds facilitates their long-term survival 

and widespread dissemination (Mancini et al. 2016). For example, some fungi can survive 
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unfavorable conditions, normally encountered in dry seeds, by producing dormant mycelium or 

spores, such as chlamydospores (Neergaard 1979). Several studies have reported the incredible 

longevity that some plant pathogenic fungi can have in cereal seeds (Agarwal and Sinclair 1996). 

For instance, Cochliobolus sativus (formally known as Helminthosporium sativum) in barley 

seed was found to be alive after seven years (Machacek and Wallace 1952). Fusarium 

verticillioides (formally known as F. moniliforme) was isolated from maize seeds after 7 to 8 

years of storage (Dungan and Koehler 1944). 

 

The introduction of new pathogens into new areas may be disastrous to U.S. agriculture, 

and it may result in significant economic losses due to a ban placed on seed imports (Madden 

and Wheelis 2003). Depending on the pathogen and under favorable conditions, a few infected 

seeds may serve as a source of inoculum for the establishment of new epidemics (Neergaard 

1979; Shaw and Osborne 2011). For example, as few as two cabbage seeds infected by 

Xanthomonas campestris pv. campestris per 10,000 are enough to cause an epidemic of black rot 

(Schaad et al. 1980). In beans, under favorable conditions, as little as 0.5% seed infection by X c. 

pv. phaseoli and 0.02% of Pseudomonas syringae pv. phaseolicola can produce epidemics 

caused by these pathogens (Walker et al. 1964; Wallen et al. 1965). Knowledge regarding seed 

infection and transmission rates is a crucial factor that affects the epidemiology and the effective 

control or management of diseases caused by seedborne pathogens (Agarwal and Sinclair 1996). 

Interestingly, for many soybean seedborne pathogenic fungi, especially Fusarium spp., only 

information on their seedborne nature is available, but infection and spread rates remain 

unknown.  
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 Seed health testing 

 

Infections resulting from diseased seeds are best avoided by protection (i.e. using 

treated seeds) or by exclusion (i.e. using pathogen-free seeds). At present, large quantities of 

seeds are routinely treated with chemical agents, especially fungicides (Tinivella et al. 2009). 

However, certain limitations (e.g. pathogen resistence to active ingredients) and environmental 

disadvantages (e.g. soil contamination), which have been associated with the use of chemicals 

as well as the uncertainties about the future availability of fungicides, call for the development 

of alternative methods for seedborne pathogen management (Gullino and Kuijpers 1994). 

Since the introduction of site-specific fungicides in the late 1960s, fungicide resistance in 

phytopathogenic fungi has become a major problem in crop protection (Ma and Michailides 

2005). For example, no suppression of Fusarium head blight (FHB) and deoxynivalenol (DON) 

was observed in plants inoculated with the tebuconazole-resistant isolate following application of 

a commercial rate of tebuconazole when compared with sensitive isolates (Spolti et al. 2014). 

 

Because of that, it has being suggested that the essential attribute to successfully control 

seed and seedling diseases is to plant seeds as free as possible of seedborne pathogens. Hence, 

accurate early diagnosis through seed health testing is the goal to manage seedborne pathogens 

and prevent their unwanted introduction and spread into new areas (McGee 1995). Therefore, the 

main objective of seed health testing is to accurately identify and quantify the presence of 

seedborne pathogens in seed (Machado et al. 2002). Ideally, seed health testing methods should 

be cheap, quick, reproducible, specific, and sensitive (Walcott 2003).  
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Depending on the pathogen, level of infection, and degree of damage, some fungal 

pathogens can be easily detected based on incubation methods followed by visual examinations 

(Mathur and Kongsdal 2003). For example, discoloration, shriveling, cracks, and the presence of 

fungal reproductive structures on soybean seeds are typical of Phomospsis longicolla and 

Cercospora kikuchii, and they can be commonly observed using these methods (Figure 1). 

Blotter test and agar plate method (i.e. semi-selective medium) are the two most common 

approaches used for identification of seedborne pathogens in commercial seed lots (Mathur and 

Kongsdal 2003). Overall, incubation methods and visual examinations are cheap, reproducible 

and easy to interpret. However, they are not specific and sensitive due to the difficulties in 

distinguishing relevant species based on morphological characters alone (i.e. Fusarium spp.) and 

considering that some fungi are not cultured in artificial media (Geiser et al. 2004; Mancini et al. 

2016) 

 

In general, detecting seedborne pathogens is a challenging task due to their complex 

interaction with the host (Mancini et al. 2016, Munkvold 2003; Walcott 2003). For example, 

latent or asymptomatic (cryptic) seedborne pathogens impose great challenges for the detection 

of contaminated seed lots at ports of entry and may explain the unintentional introduction of 

disease-causing microorganisms (Pimentel et al. 2000; Sinclair 1991). In addition to 

asymptomatic seeds, the pathogen amount of inoculum may be unevenly distributed in a seed lot, 

which could result in false negatives. For example, recently a wheat blast outbreak in Bangladesh 

has been reported, and it is suspected that the unwanted introduction of this pathogen was likely 

due to undetected infected wheat seeds from Brazil (Saharan et al. 2016). Moreover, seed health 

testing methods should guard against false positives as well. The presence of dead pathogens and 
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non-pathogenic strains are typical examples of false positives commonly encountered in seed lots 

(Agarwal and Sinclair 1996).  

 

Among the tools available for plant pathogen detection, DNA-based techniques are 

widely recognized as one of the most useful and efficient. Diagnostic methods based on DNA 

significantly improved after the introduction of the polymerase chain reaction (PCR) in the mid-

1980s (Narayanasamy 2011). DNA-based detection techniques that rely on PCR are quick, 

specific, and highly sensitive. However, proper implementation of these techniques poses further 

challenges that range from the high cost of the technology to the need to train personnel to 

interpret the results (Walcott 2003). Common PCR-based applications for seed health testing 

methods include conventional PCR, Bio-PCR, nested PCR, real-time PCR, magnetic capture 

hybridization PCR, and loop-mediated isothermal amplification (Mancini et al. 2016, Munkvold 

2003; Walcott 2003). 

  

Recently, next-generation sequencing (NGS) has gained more attention in the field of 

seed pathology, regarding its application and implications for seed health testing (Mancini et al. 

2016). NGS is a relatively recent technology that allows for the generation of large amounts of 

sequence data from a given sample (Mardis 2008). The combination of NGS technology and 

metagenomics, i.e. DNA metabarcoding, offers new insights and many advantages for plant 

disease diagnosis including seed health testing (Coissac et al. 2012). For example, the screen for 

the presence of pathogen genomic fragments is captured by a genomic overview of everything in 

the sample; thus the identification of pathogen genomic material obtained from metabarcoding 

the microbiome would result in confirmation of a pathogen being present (Adams et al. 2009). 
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This methodology has been applied to several types of environmental samples including 

seawater, bilge water, marines, intestinal tracts of various animals, and contaminated water 

sources (Berg et al. 2014; Mardis 2008). Furthermore, DNA metabarcoding technique has been 

applied to plant disease diagnostics as a means to search for unknown pathogens such as plant 

viruses, bacteria, and fungi (Adams et al. 2009; Turner 2013). Although this method is not yet 

used for seed diagnostics, due to its enormous potential and increased availability, it will likely 

be applied for the detection of plant pathogens in seed lots in the near future (Mancini et al. 

2016).  

 

 The soybean host 

 

One of the most important cash crops in the world is soybean (Glycine max (L.) Merrill) 

due to its wide range of geographical adaptation, unique chemical composition, nutritional value, 

functional health benefits, and industrial applications (Masuda and Goldsmith 2009). The protein 

content in soybean seed is approximately 40%, and the oil content is around 20%. In fact, 

soybean represents the highest protein content and gross output of vegetable oil among the 

cultivated crops, providing around 60% of vegetable protein and 30% of the total vegetable oil 

production in the world (Medic et al. 2014). Additionally, soybean also improves soil fertility by 

adding nitrogen from the atmosphere. Biological nitrogen fixation (BNF) is one of the major 

features of soybean that makes it an attractive crop (Herridge et al. 2008). Because of the 

association of soybean with Bradyrhizobium in the root nodules, the soybean crop requires low 

nitrogen supplies (Herridge et al. 2001). Although the quantum of fixed nitrogen varies with the 

environment and soils conditions, agronomic practices, and genotype, for instance, it is estimated 
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that 50-60% of the nitrogen demand of soybean crop is met by BNF (Salvagiotti et al. 2008). 

This is a major benefit to exhausted soils considering that fertilizer availability is limited or are 

too expensive for many farmers around the globe, especially in undeveloped countries (Wilson 

2008).  

 

Because of its versatility, importance, and production potential, soybean is also known as 

the golden grain of the globe (Singh 2010). The use of soybean has increased in human nutrition 

and health, edible oil, livestock feed, biofuel, and other industrial and pharmaceutical 

applications (Chiu et al. 2004; Hammond and Vicini 1996). As a result, its production has 

increased more than ten times since the first decade of the 20th century, from 22 million tons to 

313 million tons respectively (USDA website - http://www.globalsoybeanproduction.com/). 

 

The first cultivation of soybean dated to China >5000 years ago (Singh 2010). Soybean 

was introduced into the United States in 1765 (Hymowitz and Harla 1983). However, its 

popularity and large-scale production began in the early 20th century due to the high demand for 

vegetable oil, especially during the two world wars (1914-1918 and 1939-1945). Afterward, the 

area planted to soybeans has expanded rapidly. Its success in the United States led to its 

introduction to South America, especially Argentina and Brazil. The United States is the country 

with the highest production (118.7 million tons), followed by Brazil (102 million tons), 

Argentina (57 million tons), China (12.5 million tons), India (9.7 million tons), Paraguay (9.1 

million tons) and Canada (6 million tons). Last year production (2016/2017), reached 336.9 

million tons, which represented an increase of 7.3% globally (USDA website - 

http://www.globalsoybeanproduction.com/). 

http://www.globalsoybeanproduction.com/
http://www.globalsoybeanproduction.com/
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The significant increase in production is the result of intensive and consistent breeding 

programs around the globe. Breeders continue to seek high-yielding genetic stocks to increase 

production, wider adaptation, and nutritional value as well as increased resistance to biotic and 

abiotic stresses (Kolhe and Hussian 2009; Nelson 2009). Therefore, germplasm, which includes 

primitive cultivars, landraces, and closely related wild species, genetic stocks, inbred and hybrids 

are the base of the crop improvement programs necessary to meet current and future demand 

(Singh 2010). It is estimated that around 147,000 (Kolhe and Hussian 2009) or 170,000 (Nelson 

2009) soybean accessions, with some accessions duplicated, exist worldwide. In North America, 

extensive soybean collecting started in the 1920s, but systematic preservation did not occur until 

the United States Department of Agriculture (USDA) Soybean Collection was established in 

1949 (Carter et al. 2004). Song et al. (2015) have recently reported that the USDA soybean 

germplasm collection contains approximately 19,700 soybean accessions. 

 

Soybean crops have the potential to exhibit better productivity and quality in the coming 

years with provision of research back-up, technology transfer, and policy support from 

governments (Rao 2004). Among the major aspects to be improved on soybean crop to achieve 

higher productivity and quality, pest resistance, especially fungi and oomycetes, is one of the 

most imperatives (Rubiales et al. 2015; Yuan et al. 2002).  

 

 Soybean seedborne Fusarium spp. 
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Several pathogenic fungi are responsible for seed and seedling diseases in soybean. 

Among them, Phomopsis, Fusarium, Rhizoctonia, Pythium, and Phytophthora are the most 

common causal agent of seed and seedling diseases in growing states the United States. To date, 

only soybean varieties presenting complete or partial resistance to Phomopsis, Rhizoctonia, 

Pythium, and Phytophthora have been reported (Bates et al. 2008; Bradley et al. 2005; Dorrance 

et al. 2003; Jackson et al. 2005; Smith et al. 2008). Regarding Fusarium spp., although no 

resistant commercial variety is available, recent studies have shown that some varieties contain 

alleles conferring resistance to F. graminearum (Acharya et al. 2015; Ellis et al. 2012; Zhang et 

al. 2010).  

 

Fusarium is a cosmopolitan genus of filamentous ascomycete fungi that represents a vast 

array of agronomically important plant pathogens (Geiser et al. 2013). Fusarium wilts or blights, 

seed, seedling, stem and root rots are typical diseases that cause economic losses in cash crops, 

horticultural, ornamental, and forest industries worldwide (Leslie and Summerell 2006). In fact, 

recently Fusarium was listed among the top 10 most important plant pathogenic fungi of crops 

(Dean et al. 2012). Native forest and grassland plants have also been reported as a natural 

reservoir of this important plant pathogenic group (Leslie et al. 2004; Leslie and Summerell 

2006; McMullen and Stack 1988; Windels and Kommedahl 1974). Additionally, this genus has 

the potential to produce mycotoxins, such as deoxynivalenol (DON) and T-2 toxin (T-2)), 

zearalenone (ZEN) and fumonisin B1 (FB1) which can contaminate agricultural products 

resulting in depreciation of food and feed as well as harm to humans and livestock (Antonissen et 

al. 2014; Ma et al. 2013).  
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On soybeans, Fusarium can cause several diseases such as sudden death syndrome 

(SDS), caused by F. virguliforme in North America, and Fusarium blight or wilt, root and pod rot 

caused by several species (Table 2.1). Additionally, although the nature of Fusarium spp. as 

seedborne pathogens are not entirely understood and explored, several species have been 

reported to have the potential to cause seed and seedling diseases (Table 2.1). In North America, 

at least 14 Fusarium spp. have reported in soybean seeds (Miller and Roy 1982; Roy et al. 2001) 

including F. acuminatum, F. avenaceum, F. culmorum, F. decemcellulare, F. equiseti, F. 

graminearum, F. oxysporum, F. proliferatum, F. semitectum (F. fc. incarnatum), F. solani, F. 

sporotrichioides, F. subglutinans, F. verticillioides, and F. tricinctum. In general, the frequency 

of seedborne pathogens among and within seed samples may vary depending on geographical 

location, genotype, and agricultural practices (Harman 1982). For all of the seedborne Fusarium 

spp. known on soybean, accurate information regarding the frequency distribution of Fusarium 

spp. among and within soybean seed samples is lacking.  

 

The most studied pathogenic soybean seedborne Fusarium spp. is F. graminearum 

followed by F. oxysporum (Barros et al. 2014; Broders et al. 2007; Ellis et al. 2011; Ellis et al. 

2014; Schlub et al. 1981). As observed in several studies, F. graminearum and Fusarium 

oxysporum can impact soybean seed quality by decreasing seed germination and vigor as well as 

causing seedling damping-off and root rots (Barros et al., 2014; Broders et al. 2007; Ellis et al. 

2011; Ellis et al. 2014; Hartman et al. 1999; Martinelli et al, 2004; McGee et al. 1980; Pioli et 

al., 2004).  
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F. graminearum Schwabe has been identified as a primary pathogen of soybean causing 

seed rot and seedling damping-off in North and South America (Barros et al, 2014; Broders et 

al.2007; Díaz Arias et al. 2013; Ellis et al., 2012; Martinelli et al. 2004; Pioli et al. 2004 Xue et 

al. 2007). In the United States, the first reported occurrence of infection of soybean seed by F. 

graminearum was recordered in the Midwestern in 1986 (Hartman et al. 1999). In comparison to 

other Fusarium species, F.graminearum was found to be highly aggressive in causing severe 

seed, seedling and root rots in soybean by several studies (Broders et al. 2007; Díaz Arias et al. 

2013; Ellis et al. 2011; Jacobsen et al. 1995; Zhang et al. 2010). In the state of Ohio for 

example, F. graminearum was isolated from symptomatic soybeans seedlings collected in the 

field (Broders et al. 2007). In other surveys conducted in Iowa and Eastern Ontario, F. 

graminearum was also the most frequently recovered species of Fusarium in fields (Díaz Arias 

et al. 2013; Zhang et al. 2010). In artificially inoculated seeds and seedlings, symptoms of seed 

rot and seedling damping-off caused by this pathogen appear first as water-soaked lesions 

followed by light brown or pink discoloration around the inoculation point (Broders et al. 

2007; Ellis et al. 2011; Xue et al. 2007). In South America, infections also observed to occur at 

pod filling, and symptoms include spreading of discoloration vertically on the stem, interveinal 

chlorosis of leaves leading to plant wilting, pod blight and death (Martinelli et al. 2004; Pioli et 

al. 2004). 

 

Fusarium oxyporum Schlechtend emend. Snyder & Hansen has been traditionally 

associated with Fusarium wilt or blight in soybeans (Hartman et al. 1999). However, seed, 

seedling, root, and pod rots are also diseases caused by this species (Anwar et al. 1995; Shovan 

et al. 2008). Economic losses up to 59% resulting from wilt, 64% from root rot, and 50% from 
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reduced pod formation have been reported. Also, infected seeds can reduce germination up to 

40% in the field (Hartman et al. 1999). In controlled conditions and depending upon the 

aggressiveness of the isolate, mortality of soybean seedlings by F. oxysporum reached 80% 

(Arias et al. 2013). Interestingly, Arias et al. (2013) also reported that some F. oxysporum were 

observed to be non-pathogenic to soybean. Interspecific variation in pathogenicity within 

Fusarium spp., especially regarding F. oxysporum, is well documented and isolates may range 

from highly aggressive to nonpathogenic (Leslie and Summerell 2006). Therefore, the presence 

of Fusarium spp. in a soybean seed lot does not always correspond to the development of seed 

and seedling diseases (Pawuk 1978; Graham and Linderman 1983; Axelrood et al., 1995).  

 

Seeds heavily infected by F. oxysporum and F. graminearum appear shrunken, irregular 

in shape, often cracked and presenting salmon or pink to reddish discoloration in the seed coat 

(Agarwal and Sinclair 1996). Similar symptoms are also observed in soybean seeds infected by 

other Fusarium spp., such as F. proliferatum, F. semitectum, and F. verticillioides (Figure 2.3). 

However, depending on other factors, such as amount and position of inoculum, seed infected by 

not only these two pathogens, but other Fusarium spp. may be asymptomatic (Figure 2.4). In 

fact, the taxonomic array of plant species that host cryptic (asymptomatic) infection by F. 

oxysporum suggest that this mode of existence may be normal in plants (Stergiopoulos and 

Gordon 2014). Consistent with this view, F. graminearum have been recovered from 

asymptomatic soybean plants including seeds (Clear et al. 1989; Osorio and McGee 1992; Russo 

et al. 2016). Although not much is known regarding the relationship between asymptomatic 

soybean seeds and crop production, quality, and safety, several Fusarium spp., are commonly 

carried asymptomatically in seed lots.  
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Besides F. graminearum and F. oxysporum, limited information is known regarding the 

pathogenicity of other Fusarium spp. in soybean seeds. Understanding what seeds carry in and 

on them, especially regarding to pathogenic fungal strains, is a crucial first step towards 

significant improvement of seedborne pathogens control strategies. Therefore, preventive actions 

such as accurate early diagnosis, through specific and sensitive seed health testing, are the goal 

to effectively manage pathogenic seedborne Fusarium spp. and prevent their unwanted 

introduction and spread into new areas. 

 

In the state of Kansas limited information is available regarding this important pathogenic 

seedborne genus. Until recently, besides the presence of the genus Fusarium in soybean seeds, 

no characterization of the isolates at the species level, their frequency in seeds or pathogenicity 

has been reported (Habermehl 1964; Jardine 1991). 

 

 Objectives 

 

The goal of this research was to characterize the identity, frequency, and pathogenicity of 

soybean seedborne Fusarium spp. in the state of Kansas. To accomplish that, this study was 

divided into three major parts, with the following main objectives: 

 

i) Use culture-dependent approach (i.e. semi-selective medium) for identification 

and frequency of seedborne Fusarium spp of soybean in the state of Kansas, USA 
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and evaluate their potential to decrease seed germination and vigor under 

laboratory and greenhouse conditions (Chapter 3; Appendix A; Appendix B);  

 

ii) Use culture-independent approach in combination with next-generation 

sequencing (i.e. DNA metabarcoding) to identify and better understand the 

frequency distribution of pathogenic Fusarium spp. among and within soybean 

seed samples (Chapter 4; Appendix C); 

 

iii) Understand the influence of inoculum potential of pathogenic seedborne 

Fusarium spp. on soybean seed quality (Chapter 5; Appendix D).  
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Figure 2.1 Examples of soybean seedborne fungi after seed incubation in a moisture chamber 

after 7 days. Clean soybean seeds (A); Aspergillus flavus (C); Aspergillus niger (C); 

Cladosporium sp. (D); Chaetomium sp. (E); Alernaria alternata (F); Penicillium sp. (G); 

Cercospora sojina (H); Cercospora kikuchii (I); Macrophomina phaseolina (J); Phomopsis 

longicolla (K); Fusarium sp. (L). 
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Figure 2.2 Symptoms of Fusarium proliferatum (A), F. semitectum (B), and F. verticillioides 

(C) on artificially inoculated soybean seeds.  
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Table 2.1. Diseases caused by seedborne Fusarium spp. in soybean. 

 

Seedborne 

Fusarium spp. 
Diseases on soybean Reference 

F. acuminatum  Root rot Arias et al. 2013 

F. avenaceum  Seedling and root rot Chang et al. 2015 

F. culmorum  Seedling and root rot Chang et al. 2015 

F. equiseti  Root rot Arias et al. 2013 

F. graminearum  Seed, seedling and root rot Arias et al. 2013 

F. merismoides  Root rot Anwar et al. 2013 

F. oxysporum  Seed, seedling, root rot and wilting Chang et al. 2015 

F. proliferatum Root rot Chang et al. 2015 

F. semitectum  Root rot Arias et al. 2013 

F. solani  Seed, seedling and root rot Arias et al. 2013 

F. sporotrichioides Root rot Arias et al. 2013 

F. subglutinans Root rot Anwar et al. 2013 

F. verticillioides Seed and seedling rot Broders et al. 2007 

F. tricinctum Root rot Zhang et al. 2010 
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Chapter 3 - Identification, frequency, and pathogenicity of Fusarium 

spp. in soybean seeds in the state of Kansas. 

 Abstract 

Although Fusarium spp. are one of the most important pathogen groups on soybeans, 

their identity and frequency in seeds as well as their importance as seedborne pathogens remain 

unclear. The objectives of this work were to characterize: i) the identity and frequency of 

Fusarium spp. present within 408 soybean seed samples in the state of Kansas during three 

growing seasons 2010, 2011, and 2012; and ii) to test the pathogenicity of the most commonly 

encountered seedborne Fusarium spp. on soybean seeds and seedlings under growth chamber 

and greenhouse conditions using artificial inoculation. A semi-selective medium (PCNB) was 

used for Fusarium isolation. Identification was based on morphological characters and PCR. The 

influence of Fusarium spp. on soybean seed germination and vigor was assessed by 

pathogenicity assays in laboratory and greenhouse. The three-year screening effort showed that 

33% of the seed samples contained Fusarium spp. at some level. Nine Fusarium species were 

identified among the infected seed samples. Fusarium semitectum was the most frequently 

encountered species followed by F. proliferatum, F. verticillioides, F. acuminatum, F. equiseti, 

F. thapsinum, F. fujikuroi, F. oxysporum, and F. graminearum. Regarding pathogenicity, only 

soybean seeds artificially inoculated with F. proliferatum, F. graminearum, F. fujikuroi, F. 

oxysporum, and F. thapsinum significantly decreased seed germination (p > 0.001) and vigor (p 

> 0.001) as compared with mock-inoculated control. No significant reductions in seed quality 

were observed for seeds artificially inoculated with F. semitectum, F. verticillioides, F. 

acuminatum, or F. equiseti. Understanding the relationship between pathogenic Fusarium spp. 
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and soybean seeds will improve seed health testing methods, and ensure crop security, quality, 

and production.  

 

Introduction 

Fusarium spp. are among the most important pathogens on soybeans  

(Glycine max (L.) Merr.) causing diseases including Fusarium wilt, caused by F. oxysporum; 

sudden death syndrome, caused by F. virguliforme in North America; and root rots and seedling 

disease caused by several Fusarium spp. (Arias et al. 2013; Arias et al. 2011; Barros et al, 2014; 

Jordan et al. 1988; Osorio and McGeer 1992). Furthermore, Fusarium spp. have frequently been 

reported in soybean seeds (Hartman et al. 1999; McGee et al. 1980; Roy et al. 2001). However, 

although Fusarium is pathogenic to soybean, limited information is available regarding the 

significance and influence of this important genus on seed quality. 

 

Seeds infected with pathogenic fungi can decrease seed germination and vigor, resulting 

in reduced seed quality (Agarwal et al. 1996; Munkvold 2009; McGee 1981; Pedrozo and Little 

2014; Pedrozo et al. 2015). Moreover, infected and infested seeds may provide primary inoculum 

for the establishment of pathogens into new crops and hosts (Agarwal et al. 1996; Hartman et al. 

1999; Neergaard 1977). Therefore, preventive actions such as accurate seed health testing 

methods are required and necessary to protect agricultural production, food quality, and safety 

(Machado et al. 2002; McGee 1995; Munkvold 2009).  

 

Accurate diagnosis of seedborne pathogens is challenging (Machado et al. 2002; 

Munkvold 2009; Walcott 2003). For example, not all Fusarium spp. are known to be pathogenic 
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to soybean (Hartman et al. 1999; Leslie and Summerell 2006; McGee et al. 1980). Moreover, 

inoculum may be unevenly distributed within a seed or in a seed lot, which could result in false 

negatives due to sampling error or the use of non-sensitive diagnostic methods. Therefore, 

accurate identification and knowledge regarding the frequency distribution of Fusarium spp. 

among and within seed samples are essential for the accurate characterization of seedborne 

isolates and improvements on seed health methods (Leslie and Summerell 2006).  

 

In North America, at least fourteen species have been observed in soybean seeds (Roy et 

al. 2001). Among these, the two most studied are F. oxysporum and F. graminearum (Barros et 

al., 2014; Broders et al. 2007; Ellis et al. 2011; Ellis et al. 2014). Fusarium oxysporum and F. 

graminearum have the potential to impact soybean seed quality by decreasing seed germination 

and vigor (Barros et al. 2014; Broders et al. 2007; Ellis et al. 2011; Ellis et al. 2014; Hartman et 

al. 1999; Martinelli et al. 2004; McGee et al. 1980; Pioli et al. 2004). For example, in controlled 

conditions and depending on the aggressiveness of the isolates, mortality of soybean seedlings by 

F. oxysporum and F. graminearum reached 80% (Arias et al. 2013) and 40% (Broders et al. 

2007), respectively. However, besides these two species, little information is known regarding 

the pathogenicity of other soybean seedborne Fusarium species. Understanding what seeds carry 

in and on them, especially regarding pathogenic strains, is a crucial first step towards significant 

improvements of seed health testing methods. 

 

In Kansas, limited information is known regarding this important pathogenic seedborne 

genus. No characterization of soybean seedborne Fusarium isolates at the species level, their 

frequency, and pathogenicity has been reported (Habermehl 1964; Jardine 1991). Thus, the 
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objectives of this study were to characterize: i) the identity and frequency of Fusarium spp. 

present within 408 soybean seed samples in the state of Kansas during three growing seasons 

2010, 2011, and 2012; and ii) to test the pathogenicity of the most commonly encountered 

seedborne Fusarium spp. on soybean seeds and seedlings under growth chamber and greenhouse 

conditions using artificially inoculated seeds. 

 

 Materials and Methods 

 

Soybean seed samples 

Fusarium spp. were isolated from soybean seed samples obtained from eleven Kansas 

counties during the 2010, 2011, and 2012 growing seasons (Figure 1). A total of 408 soybean 

samples were analyzed over the three-year survey. Not all locations were sampled equally during 

the three years and the number of samples from each field and between years varied. In 2010, a 

total of 21 samples from nine counties were collected, 114 samples from six counties were 

collected in 2011, and 266 samples from 10 counties were collected in 2012 (Table 1). Seed 

samples were stored at 4°C in the Department of Plant Pathology at Kansas State University, 

Manhattan, Kansas, USA. 

 

 Isolation and morphological identification of seedborne Fusarium spp. 

To avoid contaminants and to promote the isolation of internal Fusarium spp., seeds were 

surface-sterilized with a 1% sodium hypochlorite solution (v/v) for 10 min. Seeds were rinsed 

with sterile-distilled water and dried overnight at room temperature. One hundred arbitrarily 

selected seeds from each soybean sample were plated on Nash-Snyder medium, a semi-selective 
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medium for Fusarium spp. previously described by Leslie and Summerell (2006), and incubated 

at 23 ± 2°C for seven days (Leslie and Summerell 2006; Mathur et al. 2003). After incubation, 

plates were examined and colonies visually identified as Fusarium were single-spored by 

micromanipulation as described by Leslie and Sumerrell (2006) and then transferred to carnation 

leaf agar (CLA) and potato dextrose agar (PDA) for further morphological evaluation. CLA and 

PDA were used for species differentiation regarding colony pigmentation and morphology. CLA 

was used to characterize micromorphological features such as macroconidia, mesoconidia, and 

microconidia as well as conidial arrangement (shape, size, and formation), conidiogenous cell 

formation (mono- or polyphialides), and the formation and arrangement of chlamydospores 

(Leslie and Sumerrell, 2006). Isolates were grown on CLA for five days, and conidia were 

dislodged from the plate using 2 ml of a 10% glycerol solution to prepare single-spore cultures 

for long-term storage. The resulting conidial suspension and segments of medium containing 

mycelium (“blocks of medium”) were removed from the plate, transferred to a 2 ml Eppendorf 

tube, and stored at -80°C. The entire collection was deposited and accessed in the Fusarium 

collection in the Department of Plant Pathology at Kansas State University (Table 3.2). 

 

 Molecular identification of seedborne Fusarium spp. 

For molecular identification, the translation elongation factor 1-alpha region of the 

mitochondrial DNA of the isolates was sequenced using the TEF1 (forward: 5’-

ATGGGTAAGGAGGACAAGAC-3’) and TEF2 (reverse: 5’-GGAAGTACCAGTGATCAT 

GTT-3’) primers (O’Donnell et al. 1998). To extract genomic DNA, mycelia was grown in 

nutrient broth (Difco™ Nutrient Broth, BD Diagnostics, Sparks, MD, USA) and incubated on a 

shaker at 124 rpm for four days at room temperature (~23°C). After vacuum filtration, mycelium 
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from each isolate was ground in a mortar to a fine powder with liquid nitrogen. Approximately 

50 mg of the lyophilized mycelia was used for DNA extraction. A Master PureTM Yeast DNA 

purification kit (Biocentre, Madison, WI, U.S.A.) was used for DNA extraction following the 

manufacturer’s instructions. After extraction, the DNA concentration was measured using a 

spectrophotometer (Nanodrop ND-1000, Thermo Scientific, Wilmington, DE, USA) and 

adjustments were made to achieve a final concentration of 20 ng DNA/μL per sample. PCR 

reactions consisted of 2 μL of the template DNA (40 ng DNA), 2 μL of each primer (TEF1 and 

TEF2; 5 pmol μL-1), 2 μL of each deoxynucleotide triphosphate (dNTP, 2 mmol), 2 μL of 10x 

KCl with MgCl2, 0.1 μL Taq DNA polymerase (Bioline USA Inc., Taunton, MA, USA), and 

14.9 µL of sddH2O resulting in a final volume of 25 μL. The PCR program consisted of an initial 

denaturation at 94°C for 1 min, then 35 cycles of denaturation at 94°C for 30 s, annealing at 

56°C for 45 s, and extension at 72°C for 1 min. The final primer extension reaction consisted of 

incubation at 72°C for 7 min. As a result, a ~700 bp product was amplified. A negative PCR 

control in which templates were replaced with ddH2O was used. PCR amplicons were mixed 

with one μL of loading dye (QIAGEN-GelPilot loading dye) and separated by electrophoresis in 

a 1.5% agarose gel in TB buffer at 70 V for 45 min. The PCR products were purified using the 

QIAquick after amplification. PCR purification kit (QIAGEN Inc., Valencia, CA, USA). TEF 

primers were used to sequence amplicons in both directions at the Kansas State University 

Sequencing and Genotyping Facility, Department of Plant Pathology, Manhattan, KS, USA. The 

sequences were edited using Bioedit software version 7.0.5.3 (Hall 1999) and blasted against the 

FUSARIUM-ID/FUNCBS (http://www.fusariumdb.org/) and The National Center for 

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/) databases.  

 

http://www.fusariumdb.org/
http://www.ncbi.nlm.nih.gov/
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 Rolled-towel pathogenicity assay  

The rolled-towel assay was used to evaluate the pathogenicity of all 69 soybean 

seedborne Fusarium isolates from 2010 and 2011 and their influence on soybean seed quality, 

herein measured by germination. The soybean variety used for this test was Asgrow 'AG3039' 

(SDS moderate susceptible) (Monsanto, Inc.; St. Louis, MO, USA). Prior to inoculation, seeds 

were surface disinfested with a 5% bleach solution (0.5% sodium hypochlorite v/v) for 1 min. 

Then seeds were dried overnight at room temperature. Physiological (% of normal germination) 

and phytosanitary (presence or absence of seedborne pathogens) parameters of the seeds were 

also evaluated before inoculation. As a result, ninety-four percent germination, and zero 

incidences of seedborne pathogens, especially Fusarium, were observed (data not shown). For 

inoculations, seeds were imbibed in a 25 ml conidial suspension for 1 min at 2.5  105 conidia 

ml-1. Twenty-five artificially inoculated seeds were placed on two moistened sheets of 

germination paper (Anchor Paper Co., St. Paul, MN, USA). An additional sheet of moistened 

germination paper was placed over the inoculated seeds, the layers were rolled into a tube, 

secured by a rubber band, set upright in a plastic Rubbermaid Cereal Keeper container (Newell 

Rubbermaid Co., Atlanta, GA, USA) and incubated in a growth chamber (Power Scientific Inc., 

St. Louis, MO, USA) at 25C for seven days. During the growth chamber experiment, 

temperature and humidity within the plastic containers were measured using a data logger 

(MicroDAO Ltd, Contoocook, NH, USA) and averaged 25.4C and 88.3%, respectively. For 

each Fusarium isolate, four rolled-towels were used, which corresponded to four replicates. 

After seven days, the pathogenicity and influence of Fusarium spp. on artificially inoculated 

soybean seeds was assessed by disease severity index (DSI), by percentage of normal 

germination (healthy seedlings), abnormal germination (symptomatic seedlings), dead seeds 
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(non-germinated seeds), and fresh seedling weight (g). DSI was calculated based on the rated 

seedlings, using a scale of 0 to 3 where: 0 = germinated seeds and healthy and normal seedlings 

with no symptoms (e.g., discoloration) on the primary and/or secondary roots or hypocotyl (A); 1 

= seed germinates, and abnormal seedling shows minor discoloration and reduction on the 

primary and/or secondary roots as well as hypocotyl (B); 2 = seed germinates, and abnormal 

seedling shows heavy discoloration and reduction on the primary and/or secondary roots. Also, 

the hypocotyl is heavily discolored and girdled by the lesion (C); 3 = non-germinated seed 

(Figure 3.2). DSI was calculated based on the formula: DSI = ((A*0) + (B*1) + (C*2) + (D*3)) / 

Nt, where “A”, “B”, “C”, and “D” are the number of seedlings presenting disease severity scores 

0, 1, 2, and 3, respectively; and Nt = total number of seeds tested. Isolates having pathogenicity 

scores < 1, between 1 and 2, and > 2 were considered low, moderately, and highly aggressive, 

respectively.  

 

Greenhouse pathogenicity assay  

After screening the Fusarium isolates from 2010 and 2011 for pathogenicity and their 

influence on seed germination under laboratory conditions using the rolled-towel assay, one 

representative isolate from each species was used for greenhouse trials including F. semitectum 

(23565), F. equiseti (23567), F. acuminatum (23598), F. verticillioides (23625), F. fujikuroi 

(23560), F. proliferatum (23559), F. thapsinum (23623), F. oxysporum (23578), and F. 

graminearum (23577). The influence of Fusarium spp. on seed vigor, which reflects the ability 

of inoculated seeds to produce normal seedlings under less than optimum growing conditions 

like those that may occur in the field, were measured by the initial stand (IS), final stand (FS), 

and fresh aerial weight (FAW). The values for the IS and FS were measured at 10 and 25 days 
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after sowing, respectively, and the absolute value recorded at these two periods was converted in 

percentage. Values for FAW were obtained 25 days after sowing by weighing all fresh aerial 

mass of soybean plants from each pot in a semi-analytical balance. Results were expressed in 

grams. Seeds were artificially inoculated as previously described for the rolled-towel assay 

experiments. After inoculation, twenty-five seeds from each treatment were planted in 500 ml 

pots with autoclaved soil (reading silt clay loam) and vermiculite using 1:1 ratio. Mock-

inoculated seeds (imbibed in sterile-distilled water) were used as the control.  

 

Data analysis 

The frequency of infected soybean samples (prevalence by samples; Ps) and locations 

presenting infected samples by Fusarium spp. (prevalence by location; Pl) were calculated based 

on the formulas: i) Ps = (Number of soybean samples having a Fusarium spp. / Total number of 

samples analyzed)*100; ii) Pl = (Number of soybean samples having a Fusarium spp. / Total 

number of locations presenting infected seeds)*100. Also, the percentage of infected seeds 

among infected samples (Incidence; In) was calculated based on (the number of isolates found in 

an infected sample) / (the total number of seed present in a sample) * 100. All variables were 

reported statewide for the overall data set. For the pathogenicity assays, analysis of variance was 

conducted using PROC MIXED of SAS (Version 9.3, SAS Institute). The influence among 

species or isolates of Fusarium spp. on soybean seed quality was measured using inoculated 

treatments (seeds artificially inoculated with seedborne Fusarium isolates) compared with the 

mock-inoculated control using Dunnett’s test for both laboratory and greenhouse experiments. 

Treatments were significantly different at p ≤ 0.05. Disease severity index (DSI) was used to 

measure the aggressiveness of pathogenic seedborne Fusarium species and isolates in laboratory 
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assays. Species/isolates having aggressiveness scores < 1, between 1 and 2, and > 2 were 

considered low, moderate, and highly aggressive, respectively.The experimental design used for 

the growth chamber and greenhouse pathogenicity tests was a completely randomized design. 

Each experiment was repeated three times. In addition, the seed quality variables measured in 

laboratory and greenhouse from inoculated seeds with seedborne Fusarium isolates were 

correlated using the package CORRPLOT of R (Version 0.98.987). 

 

 Results 

 

Identification and frequency of soybean seedborne Fusarium spp.  

During the three-year survey, 266 seedborne Fusarium isolates were collected and 

identified. One hundred thirty-nine isolates were identified based upon morphology alone and 

127 isolates were identified based on morphology and PCR (Table 3.2). All species that were 

characterized based on morphological features showed considerable variation (Figure 3.1). F. 

proliferatum, F. thapsinum, and F. semitectum (F. fc. incarnatum) showed the most variable 

pigmentation range on PDA among seedborne isolates, ranging from light to dark violet, 

colorless to dark yellow, and light to dark brown, respectively (data not shown). A total of nine 

Fusarium spp. were identified within soybean seeds samples including F. acuminatum, F. 

equiseti, F. fujikuroi, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. 

thapsinum, and F. verticillioides (Table 3.3). The total number of Fusarium spp. from each year 

varied and increased as sample size increased (Table 3.3). Overall, F. semitectum (154 isolates) 

was the most frequently isolated species followed by F. proliferatum (44 isolates), F. 

verticillioides (38 isolates), F. equiseti, (7 isolates), F. acuminatum (7 isolates), F. fujikuroi (6 
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isolates), F. thapsinum (6 isolates), F. oxysporum (3 isolates), and F. graminearum (3 isolates) 

(Table 3.3). 

 

Due to their agronomic importance and confusion regarding their correct identification, 

all G. fujikuroi species complex isolates, including F. proliferatum, F. verticillioides, F. 

fujikuroi, and F. thapsinum were identified based on DNA sequencing using Fusarium-specific 

translation elongation factor 1-α (TEF1, forward; TEF2, reverse) primers (Table 3.2). However, 

initial identification was based on morphological characteristics and was used to sort the species 

into smaller groups before molecular confirmation. Additionally, all F. oxysporum and F. 

graminearum isolates and some isolates of F. acuminatum, F. equiseti, and F. semitectum were 

identified by PCR regardless of their morphological identification. From the 127 isolates that 

required molecular confirmation, a ~700 bp band was amplified, and a BLAST search for 

similarity using the Fusarium-ID and the NCBI databases showed an identity of the isolates 

ranging from 98 to 100% (Geiser et al. 2004). Additionally, two members of the F. incarnatum-

equiseti species complex (FIESC) showed lower identity (94%) with strains deposited in the 

Fusarium-ID. However, when blasted against the NCBI database, the identity was 100% (Table 

3.2).  

 

Thirty-three percent of the samples analyzed during the three-year survey contained 

Fusarium spp. at some level. Within infected samples, on average, 2% of the seeds contained 

Fusarium species. F. semitectum was the most frequently identified species among the infected 

samples in all three years (2010, 2011, and 2012) followed by F. proliferatum, F. verticillioides, 

and F. equiseti (Table 3.4). F. acuminatum and F. thapsinum were only identified from seed 
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samples acquired in 2011 and 2012 whereas F. fujikuroi was identified only from infected 

samples collected in 2010 and 2012 (Table 3.4). F. oxysporum and F. graminearum were 

identified only in 2010 samples (Table 3.4). Furthermore, approximately 80% of all locations 

sampled during the survey presented at least one soybean sample infected with Fusarium spp. 

during the three-year survey. The same trend was observed among species and F. proliferatum, 

F. semitectum, and F. verticillioides were present in most of the locations sampled statewide 

(Table 3.4). The rest of the species were present in <40% of the locations sampled during the 

three-year survey (Table 3.4).  

 

Rolled-towel assay 

Among the nine soybean seedborne Fusarium spp. found in this study, five species, 

including F. fujikuroi, F. graminearum, F. oxysporum, F. proliferatum, and F. thapsinum were 

identified as pathogenic to soybean (Table 3.5). The aggressiveness of pathogenic species and 

their influence on seed quality was measured by the disease severity index (DSI). Fusarium 

graminearum produced the highest DSI and was considered the most pathogenic species (Table 

3.5). Fusarium oxysporum, F. proliferatum, F. fujikuroi, and F. thapsinum were identified as 

moderately aggressive (Table 3.5). Fusarium acuminatum, F. equiseti, F. semitectum, and F. 

verticillioides were classified as non-pathogenic (low aggressiveness) and were not able to 

significantly decrease normal soybean seed germination and fresh seedling weight when 

compared with mock-inoculated control (Table 3.5). Furthermore, no significant increase in the 

percentage of abnormal seed germination and dead seeds was observed with seed inoculated with 

F. acuminatum, F. equiseti, F. semitectum, and F. verticillioides (Table 3.5).   
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All pathogenic soybean seedborne Fusarium species significantly reduced normal 

soybean seed germination (healthy seedlings) of artificially inoculated seeds when compared 

with mock-inoculated control (Table 3.5). Reduced normal germination resulted from a 

significant increase in the percentage of abnormal germination (symptomatic seedlings) and an 

increase of dead seeds (non-germinated seeds) observed in artificially inoculated seeds when 

compared with mock-inoculated control (Table 3.5). Except for F. thapsinum, pathogenic 

soybean seedborne Fusarium species reduced the fresh weight of germinated seedlings when 

compared with mock-inoculated control (Table 3.5).  

 

When DSI was analyzed within species, the F. proliferatum isolates presented the most 

variability regarding their pathogenicity. One isolate (23619) was identified as non-pathogenic 

(low aggressiveness), twelve isolates were identified as moderately aggressive (23559, 23592, 

23603, 23605, 23606, 23608, 23612, 23613, 23615, 23618, 23620, 23621), and two isolates 

exhibited high aggressiveness (23602 and 23614) (Table 3.6). As expected, only moderately or 

highly aggressive F. proliferatum isolates reduced soybean seed quality by reducing seed 

germination and fresh seedling weight when compared to the mock-inoculated control (Table 

3.6). Fusarium oxysporum showed similar behavior regarding pathogenicity and all three isolates 

were identified as pathogenic to soybean (Table 3.6). One F. oxysporum isolate (23578) was 

classified as highly aggressive whereas two isolates were identified as moderately aggressive 

(Table 3.6). None of the F. acuminatum, F. equiseti, F. semitectum, or F. verticillioides isolates 

reduced soybean seed germination and seedling fresh weight except for one isolate of F. 

semitectum (23574), which significantly reduced soybean fresh weight (Table 3.6).  
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Greenhouse assay  

Seeds inoculated with moderately and highly aggressive isolates showed significant 

reduction of seed vigor, which resulted in a significant decrease of final stand of soybean plants 

when compared with mock-inoculated control (Table 3.7). Overall, there was a significant 

correlation between the aggressiveness of the isolates tested in laboratory conditions and the 

parameters tested in greenhouse assays (Figure 3.3). The vigor of the seeds artificially inoculated 

with Fusarium spp., measured by initial and final stand as well as fresh plant aerial weight, 

decreases as the DSI of the seedborne isolates increases. 

 

Interestingly, only F. graminearum (23577), F. proliferatum (23559), F. thapsinum 

(23623), and F. fujikuroi (23560), but not F. oxysporum (23578), exhibited reduced seedling 

germination after ten days post-planting (initial stand) when compared with mock-inoculated 

control (Table 3.7). Post-emergent damping-off symptoms were observed among all the 

pathogenic Fusarium species (Figure 3.4).  

 

Although the pathogenic Fusarium isolates tested reduced seed vigor in a significant 

manner, only isolates classified as highly pathogenic (aggressive) significantly reduced fresh 

aerial weight (p < 0.001) of inoculated soybean plants when compared to the mock-inoculated 

control (Table 3.7). Isolates with low pathogenicity (aggressiveness), such as F. semitectum 

(23565), F. equiseti (23567), F. acuminatum (23598), and F. verticillioides (23625) were not 

different from mock-inoculated seeds for any of the variables tested in the greenhouse (Table 

3.7). This information confirms the results from laboratory assays regarding the limited potential 

of non-pathogenic (low aggressive) isolates to decrease seed germination. 
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Discussion 

 

Infected and infested seeds may decrease seed quality as well as provide primary 

inoculum for the establishment of pathogens in new hosts and areas (Agarwal et al. 1996; 

Hartman et al. 1999; Neergaard 1977). The movement of plant pathogens through infected seeds 

is a major concern and represents an important challenge facing modern agriculture as seeds may 

travel around the globe (Munkvold 2009). Seedborne pathogens are difficult to control. Thus, 

preventive actions such as using sensitive and specific seed health testing methods are required 

and necessary to protect agricultural production, quality, and safety (Machado et al. 2002; 

McGee 1995; Munkvold 2009). Understanding what, and how much of a plant pathogen is 

carried in and on seed is crucial information and represents the first step toward significant 

improvements in seed health testing methods.  

 

Overall, approximately 33% of soybean seed samples were infected with Fusarium spp. 

Fusarium spp. were isolated from seed sampled from 80% of the locations in Kansas. 

Furthermore, a low incidence of Fusarium spp. was observed within infected seeds and averaged 

2%. Similar results were also observed in previous studies in Kansas where only 3 to 5% of 

soybean seeds were infected by Fusarium spp. (Habermehl 1964; Jardine 1991). Nine different 

species were present in soybean seeds in this study. Among these, F. acuminatum, F. equiseti, F. 

graminearum, F. oxysporum, F. proliferatum, F. semitectum, and F. verticillioides have been 

reported previously by other authors in North America and in other parts of the world (Baird et 

al. 2001; Impullitti et al. 2013; Ivić et al. 2009; Jordan et al. 1988; Medić-Pap et al. 2007; Roy et 
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al. 2001). Fusarium fujikuroi and F. thapsinum were only recently reported in soybean seeds 

(Pedrozo & Little 2014; Pedrozo et al. 2015) (Appendix A & B). Among the species observed in 

this study, F. semitectum was the most frequent species found, followed by F. proliferatum and 

F. verticillioides. Fusarium semitectum is known to be a weak or a non-pathogenic species to the 

crop (Hartman et al. 1999; Leslie and Summerell 2006). The pathogenicity results from F. 

semitectum, from both laboratory and greenhouse studies, further confirm this information. 

Fusarium semitectum was not able to significantly decrease germination and vigor of soybean 

seeds.  

 

The second most frequently identified seedborne species in this study was F. 

proliferatum. Although this species has recently gathered more attention due to its potential to 

cause soybean seed, seedling, and root rots on soybeans, limited information regarding its 

significance to soybean production is available (Arias et al. 2013; Arias et al. 2011, Pedrozo and 

Little 2016). The results obtained in this study further confirm that F. proliferatum has the 

potential to infect soybean seed and cause a significant reduction in the seed and seedling quality 

of artificially inoculated seeds. Although at a low incidence (~2%), most of the locations in this 

study presented seeds infected by this pathogenic species, which suggest that F. proliferatum is a 

pathogenic species to expect in soybean seed lots. Interestingly, F. proliferatum also showed the 

highest variability regarding its aggressiveness to soybean. Most of the F. proliferatum isolates 

reduced seed quality of artificially inoculated soybean seeds at some level, whereas yet one 

isolate was not able to cause any symptoms in seeds or seedlings. This variability in 

aggressiveness among F. proliferatum isolates is expected, and it was reported recently (Arias et 

al. 2013). Among four F. proliferatum isolates tested, Arias et al. (2013) reported that three 
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significantly increased seedling mortality (%), whereas one isolate did not reduce the emergence 

of soybean seedlings in greenhouse assays. These results suggest that current seed health testing 

methods should be improved to not only detect the presence or absence of seedborne pathogens 

but also to measure the potential variability in aggressiveness of pathogenic isolates. 

 

Another frequently isolated species in this study was F. verticillioides. Although this 

species has never been recovered from soybean seeds in the state of Kansas, F. verticillioides 

was found in seeds from other geographical locations worldwide (Garcia et al. 2012; Ivić et al. 

2009; Zelaya et al. 2013). Although F. verticillioides has the potential to decrease seed 

germination and vigor in maize (Munkvold et al. 1997), its influence on soybean seed quality is 

not well understood. In this study, the germination and emergence of soybean seedlings 

artificially inoculated by this pathogen were not significantly affected in laboratory and 

greenhouse assays. These results may be explained by the lack of sufficient inoculum present in 

the seeds.  

 

Generally, besides other factors, such as the aggressiveness of the isolates and the 

susceptibility of the host, the amount of inoculum within a seed, i.e. “inoculum potential”, are 

most likely to significantly influence and cause damage to the seeds, seedlings, or adult plants 

(Agarwal et al. 1996; Neergard, 1979). In a recent study, Pedrozo & Little (2016) showed that 

the potential of F. verticillioides to decrease soybean seed quality is dependent upon the 

inoculum potential present in the seeds. Seeds inoculated with low inoculum potential of F. 

verticillioides did not influence seed germination, whereas seeds inoculated with high inoculum 

potential significantly reduced seed germination (Pedrozo & Little 2016). Although this 
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information is essential to the development of efficient disease management control strategies, 

the minimum amount of inoculum for a pathogenic species necessary to cause seed and seedling 

diseases in the field (inoculum threshold) is still unknown for F. verticillioides and other 

seedborne Fusarium spp. on soybeans. This is an area that deserves further attention. Because of 

increased international seed movement and the need for reasonable phytosanitary requirements, 

the need to establish minimum inoculum thresholds for seedborne pathogens is apparent 

(Agarwal and Sinclair 1996; Machado et al. 2002; McGee 1995; Munkvold 2009; Neergaard, 

1979). 

 

Fusarium oxysporum and F. graminearum are among the most studied seedborne species 

in soybean (Barros et al., 2014; Broders et al., 2007; Diaz et al., 2013; Ellis et al., 2011; 

Martinelli et al., 2004; Pioli et al., 2004; Xue et al., 2007). Both are well known seedborne 

species with the potential to impact soybean seed quality, especially on seeds that have 

experienced pre- or post-harvest damage (Agarwal et al. 1996; Barros et al. 2014; Neergaard 

1979). Fusarium graminearum is a well-known pathogen of cereal crops worldwide (Barros et 

al. 2014; Broders et al., 2007; Martinelli et al., 2004; Pioli et al., 2004). In Kansas, F. 

graminearum causes head blight in wheat and stalk and ear rot of corn, which results in loss of 

seed and grain quality (Broders et al., 2007; Ellis et al., 2011). To date, F. graminearum is 

recognized as a primary pathogen of soybean in Argentina, Brazil, and the United States (Barros 

et al., 2014; Broders et al., 2007; Diaz et al., 2013; Ellis et al., 2011). In this study, F. 

graminearum was identified as highly aggressive to soybean seeds and seedling and reduced 

germination and vigor by 27% and 14%, respectively. Drastic reduction of soybean seed 

germination by this pathogen, ranging from 20 to 50%, was also observed by other authors 
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(Barros et al. 2014; Broders et al., 2007). In a similar way, a significant reduction of soybean 

seed quality was also observed in this study by F. oxysporum. The same behavior is also known 

for F. oxysporum where a significant decrease of seed germination and emergence of seedling 

was observed by other authors (Arias et al. 2013). Reduction of soybean seedling emergence was 

reported by Arias et al. (2013) and reached 80% in greenhouse assays. Also, in this study, both 

F. oxysporum and F. graminearum were observed to infect soybean seed at a low frequency, 

among and within samples. 

 

In this study, two other pathogenic species found in low frequency, among and within 

samples, were F. thapsinum and F. fujikuroi (Pedrozo & Little 2014; Pedrozo et al. 2015). 

Fusarium thapsinum and F. fujikuroi were recently reported in soybean seeds in the United 

States (Pedrozo & Little 2014; Pedrozo et al. 2015). In sorghum and rice, they are well-known 

pathogens and can cause stalk rots as well as grain mold and Bakanae disease, respectively 

(Leslie et al. 2004; Leslie and Summerell 2006; Little et al. 2011; Pedrozo & Little 2014; 

Pedrozo et al. 2015; Tesso et al. 201, Suga et al. 2014). Soybean seedborne F. fujikuroi 

significantly reduced rice seed germination, promoted post-emergent damping off, and cause 

internode elongation, which is a typical Bakanae disease symptom (Pedrozo et al. 2015).  

 

Fusarium acuminatum and F. equiseti were found less frequently in infected soybean 

seeds. They were identified as non-pathogenic under laboratory and greenhouse conditions. 

Fusarium equiseti is known to be endophytic and does not play a significant role in soybean seed 

and seedling disease development (Leslie and Summerell 2006; Park et al. 1999; Summerell et 

al. 2010). As previously mentioned, the inoculum potential present in the seeds plays an 
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important role and can influence seed and seedling disease development. However, even seeds 

inoculated with a high amount of F. equiseti inoculum did not significantly decrease soybean 

seed vigor (Pedrozo & Little 2014). Fusarium acuminatum was not pathogenic to soybean seeds 

or seedlings in this study. However, F. acuminatum has shown some potential to cause seedling 

damping-off and root rots in artificially inoculated plants in other studies suggesting that this 

species could be detrimental to soybean seed at higher inoculum levels (Arias et al. 2013). Thus, 

is it becomes evident that further investigation should be considered regarding this seedborne 

fungus to better understand its significance on soybean seed quality. 

 

In summary, this study has shown that soybean seeds are commonly infected by both 

pathogenic and non-pathogenic Fusarium species. Nine Fusarium spp. were identified in 

naturally infected soybean seed in the state of Kansas. On average, low frequency of Fusarium 

spp. was observed among and within soybean seed samples. Moreover, the aggressiveness of 

pathogenic seedborne Fusarium spp. varied significantly among and within species. Hence, the 

collection of soybean seedborne Fusarium spp. yielded may contribute to advances on the 

development of more sensitive and specific seed health-testing methods, specifically designed to 

accurately detect pathogenic Fusarium isolates in commercial soybean seed lots, as well as 

helping breeders to develop resistant varieties against this important group of plant pathogens. 

To the best of our knowledge, this study provides the first complete documentation regarding the 

characterization of soybean seedborne Fusarium spp. in the state of Kansas, USA. 
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Figure 3.1 Morphological characteristics of the nine seedborne Fusarium spp. recovered from 

soybean seed in the state of Kansas during the 2010, 2011, and 2012 surveys. Colony shape and 

pigmentation on PDA medium (left and middle columns) and asexual reproductive structures 

(right column). Fusarium verticillioides (23564; A, A.1, A.2); F. proliferatum (23602; B, B.1, 

B.2); F. fujikuroi (23560; C, C.1, C.2); F. thapsinum (23623; D, D.1, D.2); F. oxysporum 

(23563; E, E.1, E.2); F. semitectum (23569; F, F.1, F.2); F. equiseti (23585; G, G.1, G.2); F. 

acuminatum (23598; H, H.1, H.2); F. graminearum (23577; I, I.1, I.2). 
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Figure 3.2 Disease severity index (DSI) was calculated based on seedling ratings using a scale of 

0 to 3 where: 0 = germinated seeds and healthy and normal seedlings with no symptoms on the 

primary and/or secondary roots or hypocotyl (A); 1 = seed germinates and abnormal seedling 

presents minor discoloration and reduction on the primary and/or secondary roots as well as 

hypocotyl (red arrow) (B); 2 = seed germinates and abnormal seedling presents heavy 

discoloration and reduction on the primary and/or secondary roots. Also, the hypocotyl is heavily 

discolored and/or girdled by the lesion (red arrow) (C); 3 = non-germinated seed/seeds initially 

germinated and dead (D). 

 

  

  

A B 

C D 
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Figure 3.3 Linear correlations among soybean seed germination and vigor characteristics. The 

strength of the correlations is color labeled. Blue indicates strong and significant positive 

correlation of parameters; and red strong and significant negative correlation. White represents 

no significant correlation at p < 0.05. Parameters observed in the laboratory: Disease severity 

index (DSI); Normal germination (NG); Abnormal germination (AG); Dead seed (DS); Fresh 

seedling weight (FSW). Parameters observed in the greenhouse: Initial stand (IS); Final stand 

(FS); Fresh aerial weight (FAW). 
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Figure 3.4 Example of reduced of soybean seed quality by decreasing seed germination and 

vigor under laboratory and greenhouse conditions, respectively. Non-pathogenic F. semitectum 

isolate (23565) compared with a pathogenic isolate of F. proliferatum (23606) (A and B).  

Mock-inoculated seeds (control) presented healthy and abundant aerial plant mass when 

compared with seeds artificially inoculated with a pathogenic isolate of F. proliferatum (23606) 

(C and D). Post-emergent damping-off symptoms caused by F. proliferatum (23606) (E). 
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Table 3.1 Soybean seed samples used for isolation and characterization of seedborne Fusarium 

species during three growing seasons (2010, 2011, and 2012) in the state of Kansas.  

 

County 
Number of samples 

Total a 
2010 2011 2012 

Republic 4 32 -- 36 

Pottawatomie 1 8 26 35 

Shawnee 2 -- 21 23 

Franklin 2 -- 34 36 

Saline 1 -- 26 27 

Reno 1 -- 38 39 

Cherokee 10 8 18 36 

Neosho 4 13 23 40 

Crawford 3 18 25 46 

Labette -- 35 31 66 

Finney -- -- 24 24 

Total b 28 114 266 408 

 

aTotal number of soybean seed samples collected during the three-year survey from each county 

studied; bTotal number of soybean seed samples collected during the three-year survey from each 

year studied. 

 



 63 

Table 3.2 Identification of Fusarium isolates collected during the survey. 

 

Year Isolate a Locations b 

Morph. Molecular ID Final 

References f  ID c (Fusarium - ID / NCBI) d ID e 

  Accession numbers Identity (%) ID   

2010 23558 CK FSE FD_01635 / JX268971 100 / 100 FIESC / FSE FSE (1)    

2010 23559 CK FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2010 23560 CK FSP FD_01369 / JN695742 98 / 100 FFU / FFU FFU (2)    

2010 23561 CK FSE * * * FSE (3)    

2010 23562 NO FSE FD_01635 / JX268971 100 / 99 FIESC / FSE FSE (4)    

2010 23563 NO FOX FD_01141 / JF740817 100 / 100 FOX / FOX FOX (5)    

2010 23564 CK FVE FD_01388 / FN179343 100 / 99 FVE / FVE FVE (6)    

2010 23565 CK FSE * * * FSE (3)    

2010 23566 CK FSE * * * FSE (3)    

2010 23567 CK FEQ * * * FEQ (3)    

2010 23568 CK FSE * * * FSE (3)    

2010 23569 CK FSE FD_01635 / JF270198 100 / 99 FIESC / FSE FSE (7)    

2010 23570 CK FSE FD_01643 / KF962948 100 / 100 FIESC / FSE FSE (8)    

2010 23571 CK FEQ * * * FEQ (3)    

2010 23572 CK FSE * * * FSE (3)    

2010 23573 CK FSE * * * FSE (3)    

2010 23574 FR FSE FD_01635 / JF270296 100 / 100 FIESC / FSE FSE (7)    

2010 23575 CK FOX FD_01141 / JF740817 100 / 100 FOX / FOX FOX (5)    

2010 23576 PT FSE * * * FSE (3)    

2010 23577 RP FGR FD_0005 / CM002652 100 / 100 FGR / FGR FGR (9)    

2010 23578 CK FOX FD_01141 / JF740817 100 / 100 FOX / FOX FOX (5)    

2011 23579 LB FSE * * * FSE (3)    

2011 23580 LB FSE FD_01659 / JF270275 100 / 100 FIESC / FSE FSE (7)    
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2011 23581 LB FSE FD_01659 / JF270269 100 / 100 FIESC / FSE FSE (7)    

2011 23582 LB FSE FD_01635 / JF270296 100 / 100 FIESC / FSE FSE (7)    

2011 23583 LB FSE * * * FSE (3)    

2011 23584 LB FSE * * * FSE (3)    

2011 23585 LB FEQ FD_01694 / JN127347 100 / 99 FIESC / FEQ FEQ (10)    

2011 23586 LB FSE * * * FSE (3)    

2011 23587 LB FSE FD_01659 / JF270275 100 / 100 FIESC / FSE FSE (7)    

2011 23588 LB FSE * * * FSE (3)    

2011 23589 LB FSE * * * FSE (3)    

2011 23590 LB FSE * * * FSE (3)    

2011 23591 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2011 23592 LB FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2011 23593 LB FSE * * * FSE (3)    

2011 23594 LB FSE * * * FSE (3)    

2011 23595 LB FSE * * * FSE (3)    

2011 23596 LB FSE * * * FSE (3)    

2011 23597 LB FSP FD_01659 / JF270275 100 / 100 FIESC / FSE FFU (7)    

2011 23598 LB FAC FD_01726 / JX397865 99 / 100 FAC / FAC FAC (12)    

2011 23599 LB FSE * * * FSE (3)    

2011 23600 LB FSE * * * FSE (3)    

2011 23601 LB FSE * * * FSE (3)    

2011 23602 RP FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2011 23603 PT FPR FD_01378 / KM462975 100 / 99 FPR / FPR FPR (1)    

2011 23604 PT FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2011 23605 CR FPR FD_01378 / KM462975 99 / 99 FPR / FPR FPR (1)    

2011 23606 RP FPR FD_01378 / KM462975 100 / 100 FPR / FPR FPR (1)    

2011 23607 CK FSE * * * FSE (3)    

2011 23608 PT FPR FD_01378 / JX268968 100 / 100 FPR / FPR FPR (4)    

2011 23609 CR FSE * * * FSE (3)    
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2011 23610 CR FSE * * * FSE (3)    

2011 23611 CR FSE FD_01635 / JF270296 100 / 100 FIESC / FSE FSE (7)    

2011 23612 CR FPR FD_01378 / JX268968 100 / 100 FPR / FPR FPR (4)    

2011 23613 RP FPR FD_01378 / JX268968 99 / 100 FPR / FPR FPR (4)    

2011 23614 RP FPR FD_01378 / JX268968 99 / 99 FPR / FPR FPR (4)    

2011 23615 RP FPR FD_01378 / KM462975 100 / 99 FPR /FPR FPR (1)    

2011 23616 RP FSE * * * FSE (3)    

2011 23617 CK FEQ * * * FEQ (3)    

2011 23618 NO FPR FD_01378 / KM462975 100 / 100 FPR / FPR FPR (1)    

2011 23619 NO FPR FD_01389 / JX268968 100 / 100 FPR / FPR FPR (4)    

2011 23620 LB FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2011 23621 LB FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2011 23622 LB FSE * * * FSE (3)    

2011 23623 LB FTH FD_01177 / KM463006 99 / 100 FTH / FTH FTH (1)    

2011 23624 LB FSE * * * FSE (3)    

2011 23625 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23626 LB FSE * * * FSE (3)    

2012 23627 LB FSE * * * FSE (3)    

2012 23628 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23629 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23630 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23631 LB FSE * * * FSE (3)    

2012 23632 LB FSE * * * FSE (3)    

2012 23633 LB FSE * * * FSE (3)    

2012 23634 LB FSE * * * FSE (3)    

2012 23635 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23636 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23637 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23638 LB FSE * * * FSE (3)    
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2012 23639 LB FSE * * * FSE (3)    

2012 23640 LB FSE * * * FSE (3)    

2012 23641 LB FSE * * * FSE (3)    

2012 23642 LB FSE * * * FSE (3)    

2012 23643 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23644 RN FSE * * * FSE (3)    

2012 23645 RN FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23646 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23647 LB FPR FD_01378 / JX268968 99 / 99 FPR / FPR FPR (4)    

2012 23648 NO FSE * * * FSE (3)    

2012 23649 LB FPR FD_01389 / JX268968 99 / 99 FPR / FPR FPR (4)    

2012 23650 LB FSE * * * FSE (3)    

2012 23651 SA FTH FD_01177 / KM463006 100 / 100 FTH / FTH FTH (1)    

2012 23652 LB FSE * * * FSE (3)    

2012 23653 NO FSE FD_01694 / JF270184 94 / 100 FIESC / FSE FSE (7)    

2012 23654 NO FSE * * * FSE (3)    

2012 23655 LB FVE FD_01388 / KJ481244 99 / 99 FVE / FVE FVE (11)    

2012 23656 NO FSE * * * FSE (3)    

2012 23657 NO FSE * * * FSE (3)    

2012 23658 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23659 NO FSE * * * FSE (3)    

2012 23660 NO FSE * * * FSE (3)    

2012 23661 NO FSE * * * FSE (3)    

2012 23662 NO FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23663 NO FSE * * * FSE (3)    

2012 23664 NO FSE * * * FSE (3)    

2012 23665 NO FSE * * * FSE (3)    

2012 23666 NO FSE * * * FSE (3)    

2012 23667 NO FSE * * * FSE (3)    
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2012 23668 RN FPR FD_01378 / JX268968 99 / 99 FPR / FPR FPR (4)    

2012 23669 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23670 RN FPR FD_01378 / JX268968 99 / 99 FPR / FPR FPR (4)    

2012 23671 RN FPR FD_01378 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23672 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23673 RN FPR FD_01378 / JX268968 99 / 99 FPR / FPR FPR (4)    

2012 23674 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23675 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23676 LB FSE * * * FSE (3)    

2012 23677 CR FSE * * * FSE (3)    

2012 23678 CR FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23679 CR FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23680 CR FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23681 NO FSE * * * FSE (3)    

2012 23682 NO FSE * * * FSE (3)    

2012 23683 NO FSE * * * FSE (3)    

2012 23684 SA FTH FD_01177 / KM463006 99 / 100 FTH / FTH FTH (1)    

2012 23685 LB FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23686 PT FSE * * * FSE (3)    

2012 23687 PT FSE * * * FSE (3)    

2012 23688 PT FSE * * * FSE (3)    

2012 23689 PT FPR FD_01378 / JX268968 100 / 100 FPR / FPR FPR (4)    

2012 23690 PT FSE * * * FSE (3)    

2012 23691 PT FSE * * * FSE (3)    

2012 23692 PT FSE * * * FSE (3)    

2012 23693 PT FSE * * * FSE (3)    

2012 23694 PT FSE * * * FSE (3)    

2012 23695 PT FSE * * * FSE (3)    

2012 23696 PT FSE * * * FSE (3)    
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2012 23697 PT FSE * * * FSE (3)    

2012 23698 PT FSE * * * FSE (3)    

2012 23699 PT FSE * * * FSE (3)    

2012 23700 PT FSE * * * FSE (3)    

2012 23701 PT FSE * * * FSE (3)    

2012 23702 PT FSE * * * FSE (3)    

2012 23703 PT FPR FD_01378 / JX268968 100 / 99 FPR / FPR FPR (4)    

2012 23704 PT FAC * * * FAC (3)    

2012 23705 PT FAC * * * FAC (3)    

2012 23706 PT FSE * * * FSE (3)    

2012 23707 PT FSE * * * FSE (3)    

2012 23708 PT FSE * * * FSE (3)    

2012 23709 PT FSE * * * FSE (3)    

2012 23710 PT FSE * * * FSE (3)    

2012 23711 FR FSE * * * FSE (3)    

2012 23712 FR FSE * * * FSE (3)    

2012 23713 PT FSE * * * FSE (3)    

2012 23714 PT FSE * * * FSE (3)    

2012 23715 PT FSE * * * FSE (3)    

2012 23716 PT FSE * * * FSE (3)    

2012 23717 PT FSE * * * FSE (3)    

2012 23718 PT FSE * * * FSE (3)    

2012 23719 PT FSE * * * FSE (3)    

2012 23720 PT FSE * * * FSE (3)    

2012 23721 PT FSE * * * FSE (3)    

2012 23722 PT FSE * * * FSE (3)    

2012 23723 PT FSE * * * FSE (3)    

2012 23724 PT FSP FD_01369 / JN695742 98 / 100 FFU / FFU FFU (2)    

2012 23725 PT FSE * * * FSE (3)    
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2012 23726 PT FSE * * * FSE (3)    

2012 23727 PT FSE * * * FSE (3)    

2012 23728 PT FSE * * * FSE (3)    

2012 23729 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23730 FR FSE * * * FSE (3)    

2012 23731 FR FPR FD_01378 / JX268968 100 / 100 FPR / FPR FPR (4)    

2012 23732 RN FSE * * * FSE (3)    

2012 23733 NO FSE * * * FSE (3)    

2012 23734 PT FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23735 SA FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23736 PT FAC * * * FAC (3)    

2012 23737 PT FSE * * * FSE (3)    

2012 23738 PT FSE * * * FSE (3)    

2012 23739 PT FSE * * * FSE (3)    

2012 23740 PT FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23741 LB FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23742 LB FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23743 LB FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23744 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23745 LB FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23746 SA FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23747 SH FPR FD_01388 / KJ481244 100 / 100 FVE / FVE FPR (11)    

2012 23748 FR FAC * * * FAC (3)    

2012 23749 SA FPR FD_01389 / KM462975 100 / 100 FPR / FPR FPR (1)    

2012 23750 FR FSE * * * FSE (3)    

2012 23751 NO FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23752 NO FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23753 NO FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23754 PT FSE * * * FSE (3)    
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2012 23755 PT FEQ * * * FEQ (3)    

2012 23756 NO FSE * * * FSE (3)    

2012 23757 NO FSE * * * FSE (3)    

2012 23758 NO FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23759 NO FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23760 NO FSE * * * FSE (3)    

2012 23761 NO FSE * * * FSE (3)    

2012 23762 NO FSE * * * FSE (3)    

2012 23763 NO FEQ * * * FEQ (3)    

2012 23764 NO FSE * * * FSE (3)    

2012 23765 NO FSE * * * FSE (3)    

2012 23766 NO FSE * * * FSE (3)    

2012 23767 NO FSE * * * FSE (3)    

2012 23768 CR FSE * * * FSE (3)    

2012 23769 CR FPR FD_01380 / JX268968 100 / 99 FPR / FPR FPR (4)    

2012 23770 NO FSE * * * FSE (3)    

2012 23771 SA FSE * * * FSE (3)    

2012 23772 SA FTH FD_01177 / KM463006 100 / 100 FTH / FTH FTH (1)    

2012 23773 SA FPR FD_01389 / KM462975 99 / 99 FPR / FPR FPR (1)    

2012 23774 PT FSE * * * FSE (3)    

2012 23775 PT FPR FD_01389 / KM462975 99 / 100 FPR / FPR FPR (1)    

2012 23776 PT FSE * * * FSE (3)    

2012 23777 PT FSE * * * FSE (3)    

2012 23778 PT FSE * * * FSE (3)    

2012 23779 PT FSE * * * FSE (3)    

2012 23780 PT FSE * * * FSE (3)    

2012 23781 SA FSE * * * FSE (3)    

2012 23782 RN FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23783 PT FSE * * * FSE (3)    
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2012 23784 PT FSE * * * FSE (3)    

2012 23785 PT FPR FD_01378 / JX268968 100 / 99 FPR / FPR FPR (4)    

2012 23786 PT FSP FD_01369 / HF679028 98 / 99 FFU / FFU FFU (13)    

2012 23787 PT FSE * * * FSE (3)    

2012 23788 PT FSE * * * FSE (3)    

2012 23789 PT FPR FD_01378 / JX268968 100 / 99 FPR / FPR FPR (4)    

2012 23790 PT FSP FD_01369 / HF679028 98 / 99 FFU / FFU FFU (13)    

2012 23791 FR FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23792 PT FAC * * * FAC (3)    

2012 23793 PT FSP FD_01369 / HF679028 98 / 99 FFU / FFU FFU (13)    

2012 23794 PT FAC * * * FAC (3)    

2012 23795 PT FSE * * * FSE (3)    

2012 23796 PT FSE * * * FSE (3)    

2012 23797 PT FSE * * * FSE (3)    

2012 23798 PT FSE * * * FSE (3)    

2012 23799 PT FSE * * * FSE (3)    

2012 23800 PT FSE * * * FSE (3)    

2012 23801 PT FSE * * * FSE (3)    

2012 23802 PT FSE * * * FSE (3)    

2012 23803 PT FSE * * * FSE (3)    

2012 23804 PT FSP FD_01369 / HF679028 98 / 99 FFU / FFU FFU (13)    

2012 23805 PT FEQ FD_01694 / JN127347 100 / 99 FIESC / FEQ FEQ (10)    

2012 23806 PT FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23807 PT FSE * * * FSE (3)    

2012 23808 PT FSE * * * FSE (3)    

2012 23809 PT FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23810 PT FVE FD_01388 / KJ481244 100 / 99 FVE / FVE FVE (11)    

2012 23811 RN FAC * * * FAC (3)    

2012 23812 FR FPR FD_01389 / KM462975 99 / 99 FPR / FPR FPR (1)    
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2012 23813 RN FSE * * * FSE (3)    

2012 23814 SA FTH FD_01177 / KM463006 100 / 100 FTH / FTH FTH (1)    

2012 23815 CR FSE * * * FSE (3)    

2012 23816 CR FSE * * * FSE (3)    

2012 23817 RN FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23818 RN FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23819 SA FTH FD_01177 / KM463006 100 / 100 FTH / FTH FTH (1)    

2012 23820 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    

2012 23821 SA FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23822 NO FPR FD_01389 / KM462975 100 / 99 FPR / FPR FPR (1)    

2012 23823 LB FVE FD_01388 / KJ481244 100 / 100 FVE / FVE FVE (11)    
 

aSoybean seedborne Fusarium isolates were deposited and accessed in the fungal collection from the Department of Plant Pathology at 

Kansas State University; bLocations of soybean seed samples infected by Fusarium spp. in Kansas (County codes: Cherokee (CK), 

Crawford (CR), Franklin (FR), Labette (LB), Neosho (NO), Pottawatamie (PT), Reno (RN), Republic (RP), and Saline (SA)); 
cFusarium isolates were analyzed based upon specific morphological features as described in Leslie and Summerell (2006) (Species 

codes: F. acuminatum (FAC), F. equiseti (FEQ), F. fujikuroi (FFU), F. graminearum (FGR), F. incarnatum-equiseti species complex 

(FIESC), F. oxysporum (FOX), F. proliferatum (FPR), F. semitectum (FSE), F. thapsinum (FTH), F. verticillioides (FVE), and an 

unidentified Fusarium sp. (FUS)); dBLAST searches to known sequences in the Fusarium-ID and NCBI databases were used for 

molecular identification of Fusarium isolates; eFusarium spp. assigned based upon morphological and molecular identification;. 
eMorphological and molecular literature references: (1) Funnell-Harris et al. 2011;(2) Suga et al. 2014; (3) Leslie and Summerell 

2006; (4) Funnell-Harris et al. 2013; (5) O’Donnell et al. 2012; (6) Wulff et al. 2009; (7) Funnell-Harris and Pedersen 2011; (8) 

Castella and Cabanes 2014; (9) Gardiner et al. 2014; (10) Garibaldi et al. 2011; (11) Babič et al. 2015; (12) Niessen et al. 2012; (13) 

Wiemann et al. 2013; *Fusarium isolates assigned to species based upon morphology only. 
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Table 3.3 Number of soybean seedborne Fusarium isolates recovered during three growing 

seasons (2010, 2011, and 2012) in the state of Kansas.  

 

Species 
2010 2011 2012 Total* 

(N †= 28) (N = 114) (N = 266) (N = 408) 

F. semitectum (FSE) 12 26 116 154 

F. proliferatum (FPR) 1 15 28 44 

F. verticillioides (FVE) 1 3 34 38 

F. equiseti (FEQ) 2 2 3 7 

F. acuminatum (FAC) 0 1 6 7 

F. fujikuroi (FFU) 1 0 5 6 

F. thapsinum (FTH) 0 1 5 6 

F. oxysporum (FOX) 3 0 0 3 

F. graminearum (FGR) 1 0 0 1 

Fusarium spp. ** (n) 21 48 197 266 
 

*Total number of Fusarium spp. isolates recovered during the three-year survey; **Total number 

of Fusarium spp. isolates recovered by year; † Number of soybean seed samples. 
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Table 3.4 Prevalence of soybean seedborne Fusarium spp. by samples (Ps) and location (Pl) and incidence of infected seeds among 

infected samples (In) observed during the survey three from 2010, 2011, and 2012 seasons in Kansas. 

 

Species 

2010 (N † = 28; n†† = 9) 2011 (N = 114; n = 6) 2012 (N = 266; n = 10) 

Ps (%) a Pl (%) b In (%) c Ps (%)  Pl (%)  In (%)  Ps (%)  Pl (%)  In (%)  

F. semitectum 21.4 44.4 2.0 11.4 66.7 1.0 18.1 70.0 2.3 

F. proliferatum   3.6 11.1 1.5 11.4 83.3 1.0 7.1 80.0 1.5 

F. verticillioides   3.6 11.1 1.0   2.6 33.3 1.0 7.1 70.0 1.8 

F. equiseti   3.6 22.2 1.5   1.8 33.3 1.0 1.1 20.0 1.0 

F. acuminatum   0.0   0.0 0.0   0.9 16.7 1.0 1.5 30.0 1.3 

F. fujikuroi   3.6 11.1 1.0   0.0   0.0 0.0 1.5 10.0 1.3 

F. thapsinum   0.0   0.0 0.0   0.9 16.7 1.0 1.5 10.0 1.3 

F. oxysporum   7.1 11.1 1.5   0.0   0.0 0.0 0.0   0.0 0.0 

F. graminearum   3.6 11.1 1.0   0.0   0.0 0.0 0.0   0.0 0.0 

 

aPrevalence by seed sample (Ps, %) = (Number of soybean samples containing a Fusarium species / Total number of samples 

analyzed)*100; bPrevalence by location (Pl, %) = (Number of locations containing a seed samples infected by a Fusarium species / 

Total number of locations analyzed)*100; cIncidence (In, %) = (the number of isolates found in a seed sample) / (the number of seed 

samples) *100. † Number of soybean seed samples studied by a given year. †† Number of locations sampled by a given year. 
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Table 3.5 Pathogenicity and aggressiveness of seedborne Fusarium spp. and their effect on soybean seed normal germination (NG), 

abnormal germination (AG), dead seeds (DS), and fresh seedling weight (FSW) under laboratory conditions†. 

 

Species  Aggressiveness a 
NG  AG   DS  FSW  

(no. of isolates) Low Moderate High 

F. acuminatum (1) + 
  

91.0 3.3 5.7 22.5 

F. equiseti (4) + 
  

88.5 4.6 6.9 23.3 

F. fujikuroi (1) 
 

+ 
 

71.1 *** 16.7 *** 12.2 *** 19.5 *** 

F. graminearum (1) 
  

+ 65.5 *** 24.0 *** 10.5 ** 17.9 *** 

F. oxysporum (3) 
 

+ 
 

71.8 *** 16.9 *** 11.2 ** 17.6 *** 

F. proliferatum (15) 
 

+ 
 

71.9 *** 15.2 *** 13.0 *** 18.7 *** 

F. semitectum (38) + 
  

89.5 4.2 6.3 23.3 

F. thapsinum (1) 
 

+ 
 

77.7 *** 12.7 ** 9.7 ** 22.8 

F. verticillioides (4) + 
  

89.5 3.9 6.6 22.8 

Mock-inoculated control +     92.5 4.8 2.7 23.4 
 

a Species having aggressiveness scores < 1, between 1 and 2, and > 2 were considered low, moderate, and highly aggressive, 

respectively; **, ***Significantly different from mock-inoculated control at the P ≤ 0.05, P ≤ 0.001, and P ≤ 0.0001 levels using 

Dunnett’s test. †Results are the means of three experiments. 
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Table 3.6 Pathogenicity of seedborne Fusarium spp. among individual isolates and their effect on soybean normal seed germination 

(NG), abnormal germination (AG), dead seeds (DS) and fresh seedling weight (FSW) on soybean seed artificially inoculated under 

laboratory conditions†.  

 

Species Isolate 

Code 

Aggressiveness a 
NG  AG   DS  FSW  

(no. of isolates)  Low Moderate High 

F. acuminatum (1) 23598 + 
  

91.0 3.3 5.7 22.5 

F. equiseti (4) 23567 + 
  

88.0 5.7 6.7 24.5 

 
23571 + 

  
88.7 4.0 7.3 24.0 

 
23617 + 

  
88.0 4.0 8.0 22.4 

 
23585 + 

  
89.3 4.7 6.0 22.5 

F. fujikuroi (1) 23560 
 

+ 
 

71.1 *** 16.7 *** 12.2 ** 19.5 *** 

F. graminearum (1) 23577 
  

+ 65.5 *** 24.8 *** 9.7 17.9 *** 

F. oxysporum (3) 23575 
 

+ 
 

77.8 *** 17.0 *** 11.0 ** 17.5 *** 

 
23578 

  
+ 63.7 *** 25.3 *** 11.0 ** 17.1 *** 

 
23563 

 
+ 

 
74.2 *** 20.3 *** 5.5 18.2 *** 

F. proliferatum (15) 23559 
 

+ 
 

70.0 *** 21.0 *** 9.0 18.9 *** 

 
23614 

  
+ 68.0 *** 20.3 *** 11.7 ** 18.1 *** 

 
23602 

  
+ 65.0 *** 13.0 *** 22.0 *** 17.5 *** 

 
23606 

 
+ 

 
72.7 *** 17.3 *** 10.0 ** 18.9*** 

 
23613 

 
+ 

 
72.7 *** 17.0 *** 10.3 ** 19.6 *** 

 
23615 

 
+ 

 
73.7 *** 19.7 *** 6.7 18.3 *** 

 
23612 

 
+ 

 
71.0 *** 14.7 *** 14.3 ** 18.0 *** 

 
23605 

 
+ 

 
82.7 ** 9.7 ** 7.7 19.6 *** 

 
23603 

 
+ 

 
61.0 *** 20.7 *** 18.3 *** 17.4 *** 

 
23608 

 
+ 

 
76.7 *** 13.0*** 10.3 ** 19.2*** 

 
23618 

 
+ 

 
65.7 *** 20.3 *** 14.0 ** 17.5 *** 

 
23619 + 

  
87.0 5.0 8.0 22.3 

 
23592 

 
+ 

 
67.0 *** 15.7 *** 17.3 *** 17.9 *** 

 
23620 

 
+ 

 
67.7 *** 18.3 *** 14.0 ** 18.6 *** 
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23621 

 
+ 

 
71.7 *** 17.0 *** 11.3 ** 20.4 *** 

F. semitectum (38) 23576 + 
  

90.3 4.0 7.3 25.0 

 
23574 + 

  
90.2 3.5 6.3 20.8 *** 

 
23565 + 

  
87.2 7.2 5.7 22.3 

 
23566 + 

  
89.3 6.5 4.7 25.3 

 
23568 + 

  
90.3 3.7 5.0 24.3 

 
23569 + 

  
92.5 3.8 3.7 23.3 

 
23570 + 

  
91.0 4.7 4.3 24.6 

 
23572 + 

  
91.7 3.0 5.3 24.1 

 
23573 + 

  
89.2 6.5 4.3 24.7 

 
23562 + 

  
87.5 5.0 8.3 22.3 

 
23561 + 

  
88.0 5.0 7.0 23.2 

 
23616 + 

  
88.0 4.3 7.7 23.7 

 
23607 + 

  
87.3 6.0 6.7 23.0 

 
23609 + 

  
92.3 1.4 6.3 23.6 

 
23610 + 

  
89.7 3.7 6.7 23.4 

 
23611 + 

  
87.7 5.3 7.0 23.9 

 
23584 + 

  
87.7 4.3 8.0 22.6 

 
23586 + 

  
86.3 6.4 7.3 22.3 

 
23587 + 

  
90.3 2.7 7.0 23.2 

 
23624 + 

  
91.3 2.0 6.7 22.7 

 
23600 + 

  
91.7 3.7 4.7 24.4 

 
23601 + 

  
91.3 1.4 7.3 23.3 

 
23595 + 

  
93.3 3.4 3.3 23.6 

 
23596 + 

  
92.0 1.7 6.3 23.9 

 
23597 + 

  
89.0 5.7 5.3 23.7 

 
23599 + 

  
87.7 5.3 7.0 22.9 

 
23622 + 

  
86.3 5.7 8.0 22.8 

 
23593 + 

  
85.3 4.0 10.7 * 22.2 

 
23594 + 

  
90.7 3.0 6.3 22.7 

 
23579 + 

  
88.3 4.7 7.0 22.7 
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23580 + 

  
89.3 6.7 4.0 23.4 

 
23581 + 

  
90.7 3.0 6.3 22.8 

 
23583 + 

  
92.0 2.7 5.3 23.1 

 
23582 + 

  
88.7 5.7 5.7 22.5 

 
23590 + 

  
91.3 4.4 4.3 24.3 

 
23588 + 

  
89.3 3.4 7.3 22.0 

 
23589 + 

  
89.0 5.7 5.3 22.9 

 
23558 + 

  
89.9 4.4 5.7 24.6 

F. thapsinum (1) 23623 
 

+ 
 

77.7 *** 12.7 *** 9.7 22.8 

F. verticillioides (4) 23564 + 
  

93.0 4.3 2.7 24.0 

 
23604 + 

  
87.7 6.0 6.3 22.0 

 
23625 + 

  
90.0 4.3 5.7 23.5 

 
23591 + 

  
87.3 3.7 9.0 21.8 

Mock-inoculated control NA +     92.5 4.8 2.7 23.4 
 

a Isolates having scores < 1, between 1 and 2, and > 2 were considered low, moderate, and highly aggressive, respectively; *, **, 

***Significantly different from mock-inoculated control at the P ≤ 0.05, P ≤ 0.001, and P ≤ 0.0001 levels using Dunnett’s test. †Results 

are the means of three experiments.  
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Table 3.7 Effect of seedborne Fusarium isolates on soybean seed vigor characteristics including initial stand (%), final stand (%), and 

fresh aerial plant weight (FAW, g) of soybean seeds artificially inoculated under greenhouse conditions†. 

 

Isolate Code Species Aggressiveness Initial stand (%) a  Final stand (%) b FAW (g) c 

23577 F. graminearum High 86.0*** 82.3*** 19.0*** 

23614 F. proliferatum High 87.7*** 85.3*** 17.0*** 

23578 F. oxysporum High 91.0 86.3*** 20.7** 

23623 F. thapsinum Moderate 86.3*** 86.3*** 26.3 

23560 F. fujikuroi Moderate 89.7* 85.3*** 23.7 

23625 F. verticillioides Low 92.0 91.7 22.6 

23567 F. equiseti Low 92.7 90.7 25.5 

23565 F. semitectum Low 94.7 94.7 27.1 

23598 F. acuminatum Low 94.0 94.7 27.3 

Mock-inoculated control MCO  -- 96.3 96.3 24.5 
 

aPercentage of seedlings emerged 10 days post-inoculation (d.p.i.); bPercentage of seedlings emerged at 25 d.p.i.; cFresh aerial weight 

(FAW) of soybean plants at 25 d.p.i. *; **; ***Significantly different from mock-inoculated control at the P ≤ 0.05, P ≤ 0.001, P ≤ 

0.0001 levels using Dunnett’s test. †Results are the means of three experiments. 
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Chapter 4 - Metabarcoding pathogenic Fusarium spp.                      

in soybean seeds 

 Abstract 

The goal of this study was to identify Fusarium spp. and better understand their 

frequency distribution among and within naturally infected and asymptomatic soybean seed 

samples using DNA metabarcoding. A total of nine soybean seed samples were used in this 

study. The soybean seedborne fungal DNA (i.e., soybean seed mycobiome) was extracted from 

five individual asymptomatic seeds from each sample. Forward fITS7 and reverse ITS4-

barcoded primers were used for the amplification of the fungal ITS2 region. After library 

construction, amplicons were sequenced using the Illumina platform. Approximately 291,000 

high-quality reads were produced from all soybean seed samples analyzed. Overall, 66 

operational taxonomic units (OTUs) representing 29 fungi genera, were identified in this study. 

The BLAST search showed that the genus Fusarium, including known pathogenic groups such 

as F. proliferatum and F. thapsinum, was observed in all seed analyzed, including in the high-

quality seed control. Overall, F. proliferatum (OTU02; 44,429 reads) was the most abundantly 

amplified species followed by F. thapsinum (OTU03; 11,820 reads), F. acuminatum (OTU08; 

4,609 reads), F. merismoides (OTU13; 4,302 reads), F. solani (OTU35; 254 reads), Fusarium sp. 

(OTU55; 19 reads), and F. semitectum (OTU57; 17 reads). Accurate information regarding the 

identity and frequency of what seed lots carry among and within them is crucial for significant 

improvements towards seed and seedling disease management strategies, especially regarding 

the detection of pathogenic seedborne fungi. 
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 Introduction 

Although seed and seedling diseases caused by Fusarium spp. is documented in the 

United States, accurate information regarding the identity and frequency distribution of most 

pathogenic species among and within naturally infected and asymptomatic soybean seed lots 

remain underexplored. Infected soybean seeds may present poor germination and emergence of 

seedlings (Hartman et al. 1999; McGee et al. 1980; Pedrozo and Little 2014; Pedrozo et al. 2015; 

Pedrozo and Little 2016). Besides, infected seeds may serve as a source of inoculum to new 

hosts and areas, which represent a concern for global food production, quality, and safety due to 

constant international seed trade.  

 

Seedborne pathogens are difficult to control and thus, preventive actions such as accurate 

diagnosis, which can be accomplished by using appropriate seed health testing methods, is one of 

the most effective ways to manage them (Machado et al. 2002; McGee 1995; Munkvold 2009, 

Walcott 2003). Accurate information regarding the identification and frequency of what is 

carried among and within seed lots is crucial for significant improvements towards seed and 

seedling disease management strategies, especially regarding the detection of pathogenic 

seedborne groups (Agarwal and Sinclair 1996; Neergaard, 1979; Mathur and Kongsda 2003).   

 

In previous studies, nine Fusarium spp. were identified including two new species 

reported in soybean seed for the first time in the United States, F. thapsinum and F. fujikuroi (see 

Chapter 3; Pedrozo and Little 2014; Pedrozo et al. 2015). Six species, F. oxysporum, F. 

graminearum, F. proliferatum, F. thapsinum, F. fujikuroi, and F. verticillioides significantly 

reduced the percentage of germination and vigor of artificially inoculated seeds in laboratory and 
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greenhouse assays (see Chapter 3; Pedrozo and Little 2014. Pedrozo et al. 2015; Pedrozo and 

Little 2016). Moreover, the overall amount of inoculum present among and within naturally 

infected soybean seed samples (prevalence and incidence) of pathogenic seedborne Fusarium 

spp. was low, averaging 33 and 2%, respectively (see Chapter 3). Besides other factors that 

might affect the accurate quantification of seedborne pathogens in seed lots, the methodology 

(i.e. culture-dependent or culture-independent approaches) as well as technology (i.e. next-

generation sequencing) used for detection play a crucial role (Agarwal and Sinclair 1996; 

Machado et al. 2002).  

 

Novel approaches such as DNA metabarcoding, which couples culture-independent 

methodology plus next-generation sequencing technology, have been used for improved 

detection and characterization of fungal communities associated with diverse plant species 

(Begerow et al. 2010; Coissac et al. 2012; Cuadros-Orellana et al. 2013; Glenn et al. 2011; 

Lundberg et al. 2015; Nam et al. 2012). Although this approach has a tremendous potential for 

the detection of seedborne pathogens in crops, no information has been reported for soybean 

seeds. Thus, the main objective of this study was to use DNA metabarcoding to identify and 

better understand the frequency distribution of Fusarium spp. in naturally infected soybean seed 

samples.  

 

 Materials and Methods 
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 Soybean seed samples 

To access the soybean seed core mycobiome, eight soybean samples, representing two 

genotypes, Midland 4263 (Sylvester Ranch INC, Ottawa, KS, USA) and Pioneer 94Y01 (Du 

Pont Pioneer, Johnston, IA, USA), from four different locations in the state of Kansas (Franklin, 

Finney, Neosho, and Reno counties) were used in this study (Table 4.1). Also, the variety 

Asgrow 3039 (Monsanto, Inc.; St. Louis, MO, USA) was used as a high-quality seed control. 

Poor quality seeds carry a higher percentage (prevalence and incidence) of seedborne pathogens 

than good quality seeds (Agarwal and Sinclair 1996).  

 

 Seed sample quality testing 

The soybean samples used in this study were further analyzed regarding the quality of the 

seeds. The physical condition of the seeds, measured by the percentage of damaged seeds, were 

observed and reported as well as physiological and sanitary parameters (Table 4.2). The 

percentage of damaged seeds was calculated based on the formula: DS (%) = (A / Nt) * 100, 

where “A” was the number of seeds presenting some type of physical damage (Figure 4.2); and 

Nt = total number of seeds tested. Physiological conditions of the seed samples were measured 

based on the tetrazolium and warm germination tests according to standard protocols for soybean 

seeds from the Association of Official Seed Analysis (AOSA). For seed health testing, which 

accounts for the presence or absence of seedborne pathogens in a seed lot, a semi-selective 

medium was used. One hundred arbitrarily selected seeds from each soybean seed sample were 

plated on semi-selective Nash-Snyder media (Leslie and Sumerrell, 2006) and incubated at 23 ± 

2°C for seven days (Mathur and Kongsdal 2003). To promote the isolation of internal seed 

seedborne fungi, especially Fusarium spp., seeds were surface-sterilized with a 10% sodium 
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hypochlorite solution (v/v) for 10 minutes. Seeds were rinsed with sterile-distilled water and 

dried overnight at room temperature. Identification of soybean seedborne species such as 

Alternaria alternata, Cercospora kikuchii, Phomopsis longicolla and Fusarium spp. was made 

based on morphological features observed on the seeds under a stereomicroscope (Mathur and 

Kongsdal 2003). The frequency of infected soybean samples (sanitary aspect of the samples) was 

calculated based on the formula: Sanitary = (Number of soybean samples infected by fungi/ 

Total number of samples analyzed)*100. After the first screening, Fusarium-like colonies were 

isolated, purified (single-spored) and further identified based on morphological characters 

(Leslie and Summerell, 2006) and polymerase chain reaction (PCR) (Geiser et al. 2014). The 

translation elongation factor 1-alpha region of the mitochondrial DNA of the isolates was 

amplified using TEF1 (forward: 5’-ATGGGTAAGGAGGACAAGAC-3’) and TEF2 (reverse: 

5’-GGAAGTACCAGTGATCAT GTT-3’) primers set (Geiser et al. 2014; O’Donnell et al. 

1998). After identification, the soybean seedborne Fusarium isolates used in this study were 

deposited and accessed in the Fusarium collection in the Department of Plant Pathology at 

Kansas State University, USA (Table 4.3).   

 

 Soybean seedborne fungal DNA extraction 

Only healthy individual soybean seeds were used to access the seed fungal community 

from each sample tested, and any physically damaged seeds (Figure 4.2) were discarded. DNA 

extraction of the seeds was performed using DNeasy Mini Plant Kit (Qiagen, USA) accordantly 

to the manufactured protocol. Before the DNA extraction, seeds were surface sterilized using a 

5% bleach solution (0.5% NaOCl, v/v) for 5 minutes to minimize external contamination, and 

dried overnight at room temperature. After DNA extraction, DNA pools (plant + fungal DNA) 
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obtained from each experimental unit (45 total) were quantitated with an ND1000 

spectrophotometer (NanoDrop Technologies, Wilmington, Delaware). After quantification, the 

DNA of the samples was standardized to 5.0 ng μl-1 for subsequent PCR amplification. DNA was 

stored at -20°C until PCR amplification. 

 

 ITS2 amplification and sequencing 

The internal transcribed spacer 2 (ITS2) region of the ribosomal RNA gene, proposed as 

the universal barcode for fungi, was chosen for amplification of the soybean seedborne 

mycobiome (Schoch et al., 2012) The amplification was performed in a two-step nested PCR 

process following the protocol recommended by Berry et al. (2011) using the forward primer 

fITS7 (50-GTGARTCATCGAATCTTTG-30 and reverse primer ITS4 (50-TCCTCCGCTTAT 

TGATATGC-30) (Ihrmark et al., 2012; White et al., 1990) for the first run. PCR reactions were 

performed in 25 μl reaction volumes with three technical replicates of each of the 45 

experimental units, and a negative control was also used to avoid and check potential cross-

contamination (molecular biology grade water). The primary PCRs contained the following 

amounts/concentrations: 25 ng DNA template (5 μl), 200 lM dNTPs, 1 lM of both forward 

(fITS7) and reverse (ITS4) primers, 5 μl Phusion Green HF Buffer containing 1.5 mM MgCl2, 

7.3 μl molecular biology grade water, and 0.5 unit (0.25 μl) of the proof-reading Phusion Green 

Hot Start II High-Fidelity DNA polymerase (Thermo Scientific, Pittsburgh, USA). PCR cycling 

parameters included an initial denaturing at 98oC for 30 s, followed by 35 cycles of denaturing at 

94oC for 30 s, annealing at 58oC for 1 min and extension at 72oC for 2 min, and a final extension 

at 72oC for 8 min. Unique sample-specific 12-base-pair sequence barcodes were used in a 

secondary PCR as ITS4-barcoded primers (Table 4.4). Identical conditions were used in the 
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secondary PCR except that they included five μl of the primary PCR product as template, tagged 

reverse primers (ITS4), and the number of PCR cycles was reduced to seven. The secondary 

PCR amplicons were cleaned using Agencourt AmPure XP magnetic 96-well SPRIplate system 

(Beckman Coulter, Indianapolis, Indiana) following the manufacturer’s protocol with 1:1 

AmPure XP solution to amplicon ratio. The three technical replicates per experimental unit (45 

in total) were combined and the experimental units equimolarly pooled into one amplicon 

library. Size selection (180 to 400 bp) was also performed using Pippin Prep (Sage Science). The 

libraries were AmPure cleaned again to remove any residual short DNA contaminants and 

submitted to the Integrated Genomics Facility at Kansas State University (Manhattan, KS, USA). 

Illumina specific adapters and indices were ligated using QIAGEN GeneRead Library Prep 

(QIAGEN, USA) and then sequenced using MiSeq Reagent Kit v3 (Illumina, San Diego, CA, 

USA) with 600 cycles.  

 

 Sequencing analyses 

After sequencing, the data (reads) were analyzed using the program Mothur (v. 1.37.5; 

Schloss et al., 2009). After initial contig construction, paired-end read library with less than 100 

bp overlap, ambiguous bases, any disagreements with primer or DNAtag sequences, sequences 

shorter than 250 bp, or homopolymers longer than 8 bp were screened and discarded. Identical 

sequences were preclustered to reduce potential sequencing bias (Huse et al., 2008) and screened 

for chimeras (uchime; Edgar et al., 2011). After quality control and removal of chimeras, 

sequences were normalized, and 6,600 high-quality sequences (reads) were subsampled from 

each experimental unit. The pairwise distance matrix was calculated and sequences clustered into 

operational taxonomic units (OTUs) at 99% sequence similarity. As suggested by previous 
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studies, OTUs presenting low frequency of reads (<10 sequences) were removed from the dataset 

(Brown et al., 2015; Oliver et al. 2015; Tedersoo et al., 2010).  

 

 The soybean seed mycobiome 

 A representative sequence for each OTU was picked and then taxonomically assigned at 

the UNITE (https://unite.ut.ee/; Kõljalg et al. 2005) and GeneBank taxonomy references 

((http://www.ncbi.nlm.nih.gov/) using the PlutoF Biodiversity platform (https://plutof.ut.ee/). A 

minimum of 97% identity threshold for positive confirmation of the OTUs as species was used in 

this study.The seedborne frequency distribution of the soybean seed mycobiome, including the 

genus Fusarium, among and within naturally and asymptomatic soybean seed samples were 

calculated based on prevalence and incidence. The frequency of infected soybean samples 

(Prevalence; Pr) was calculated based on the formula: Pr = (Number of soybean samples having 

a fungi group / Total number of samples analyzed)*100. Besides, the percentage of infected 

seeds among infected samples (Incidence; In) was calculated based on: In = (the number of 

infected seeds found in an infected sample) / (the total number of seeds present in a sample) 

*100.  

 

 Results 

 

 Seed sample quality tests 

The physical, physiological, and sanitary quality aspects of the nine soybean seed 

samples was analyzed and physical, physiological, and sanitary aspects were measured (Table 

4.2). Overall, the results showed that all the samples were significantly different from the high-

https://unite.ut.ee/
http://www.ncbi.nlm.nih.gov/
https://plutof.ut.ee/
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quality seed check regarding their physical and physiological parameters except sample no. 3 

(S3) (Table 4.2). Regarding the sanitary aspect of the samples, which considers the amount of 

plant pathogens present in a seed lot, on average 77% of the samples were infected by seedborne 

fungi (Table 4.2). On average 44% of the samples were naturally infected by Fusarium spp. 

(Table 4.2). Among the Fusarium infected-samples, an average of 3% of the seeds were infected. 

Overall, eleven seedborne Fusarium isolates were obtained, where ten isolates were identified as 

F. proliferatum and one as F. semitectum (Fusarium fc. incarnatum) based on morphological and 

molecular identification (Table 4.3). Interestingly, the only sample that showed similarities 

regarding physical and physiological parameters with the high-quality seed control, S3, was the 

only sample to present a high incidence of pathogenic F. proliferatum (Table 4.2). Besides 

Fusarium spp., three other fungal genera were observed and identified based on morphological 

features of the soybean seed samples, Alternaria alternata, Cercospora kikuchii, and Diaporthe 

(Phomopsis) longicolla (Table 4.2). Using culturable methods, the high-quality check did not 

present seedborne fungi (Table 4.2). 

 

 The soybean seed mycobiome 

Independent of the quality of the samples used in this study, only healthy/asymptomatic 

soybean seeds were used to access the seed fungal community from each sample. Any physically 

damaged seeds were discarded (Figure 4.2). Overall, a broad range of seedborne fungi was 

observed among the seed samples tested (Table 4.5). Among the 45 experimental units (single 

soybean seeds), a total of 291,194 high-quality sequences (reads) were obtained (Table 4.5). 

Most of the sequences obtained in this study were identified as ascomycetes (237,397 reads), 

followed by basidiomycetes (33,325 reads), zygomycetes (44 reads), and unclassified fungi 
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(11,552 reads) (Table 4.5). Furthermore, reads presenting < 97% identity were classified as 

unidentified sequences (“others”) (8,876 reads; Table 4.5; Table 4.6). As a result, most the OTUs 

identified in this study are ascomycetes (45.5%), followed by basidiomycetes (27.0%), 

unclassified fungi (17%), unidentified sequences (“others”) (9.0%), and zygomycetes (1.5%) 

(Table 4.5).  

 

Considering all the seed samples, a total of 66 OTUs and 29 major seedborne fungal 

genera plus unclassified fungi and unidentified sequences (classified as “other”) were identified 

in this study (Tables 4.6 and 4.7). In general, the genus Fusarium was the second most frequent 

genus found among the samples (Table 4.7). Additionally, the genus Fusarium was found not 

only among all the samples (prevalence) but also in every seed analyzed (incidence) from all the 

samples studied (Table 4.7). Besides the genus Fusarium, fifteen other genera were also 

commonly identified within the soybean seed mycobiome and were also present in 100% of the 

seeds analyzed (Table 4.7). Interestingly, the groups representing the unclassified fungi as well 

as unidentified sequences (“others”) also showed representative OTUs (i.e. OTU05 and OTU25) 

to be commonly present in the seed mycobiome (Tables 4.6 and  4.7). Although not present in all 

the samples or seeds analyzed, ten other genera including yeasts (Bulleromyces, Tilletiopsis), 

filamentous ascomycetes (Aspergillus, Biappendiculispora, Cladosporium, Exserohilum), and 

filamentous basidiomycetes (Baeospora, Marasmius, Phlebiella, Resinicium) were commonly 

identified within the soybean seed samples, and their presence and incidence ranged from 77 to 

100% and 31 to 53%, respectively (Table 4.7).  

 



 90 

Interestingly, other important soybean seedborne and plant pathogenic groups such as 

Diaporthe, Erysiphe, and Exserohilum were also observed to be common inhabitants of the 

soybean seed mycobiome (Table 4.7). Even though DNA was extracted from healthy seed, one 

of the most important soybean seedborne species, Diaporthe (Phomopsis) longicolla, the causal 

agent of seed decay, was observed among and within all the samples analyzed (Table 4.7). Other 

well-known seedborne genera such as Cercospora and Macrophomina were not as commonly 

identified in soybean seeds, and they were present in only 33% and 11% of the samples, 

respectively (Table 4.7).  

 

Seven seedborne Fusarium species (OTUs) were identified in this study (Figure 4.3). 

Overall, F. proliferatum (OTU02; 44,429 sequences) was the most abundantly amplified species 

followed by F. thapsinum (OTU03; 11,820 sequences), F. acuminatum (OTU08; 4,609 

sequences), F. merismoides (OTU13; 4,302), F. solani (OTU35; 254 sequences), Fusarium sp. 

(OTU55; 19 sequences), and F. semitectum (OTU57; 17 sequences) (Table 4.8). The BLAST 

search for similarity showed an identity of the isolates ranging from 97 to 100% (Table 4.8). 

Among the species identified, F. proliferatum (OTU02), F. thapsinum (OTU03), F. acuminatum 

(OTU08), and F. merismoides (OTU13) were present in 100% of the samples analyzed (Table 

4.8). Fusarium solani (OTU3) was identified in most of the soybean samples and seeds whereas 

Fusarium sp. (OTU55), and F. semitectum (OTU57) were identified in a few soybean seed 

samples (Table 4.8).  

  

 Discussion 
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The results of this chapter demonstrate that seven Fusarium spp., F. proliferatum, F. 

thapsinum, F. acuminatum, F. merismoides, F. solani, Fusarium sp. (unclassified), and F. 

semitectum were identified among the nine soybean seed samples analyzed using DNA 

metabarcoding. Fusarium proliferatum, F. thapsinum, F. acuminatum, and F. merismoides were 

the most commonly identified species among and within naturally infected seed samples. In fact, 

F. proliferatum, F. thapsinum, and F. acuminatum were observed in all the asymptomatic 

soybean seeds that were analyzed. Interestingly, F. proliferatum and F. thapsinum were 

previously reported to have the potential to decrease soybean seed germination and vigor as well 

as cause post-emergent damping-off (Pedrozo and Little 2014; Pedrozo et al. 2015; Pedrozo and 

Little 2016). These results suggest that the presence of pathogenic Fusarium spp. associated with 

soybean seed samples is higher than previously recognized (see Chapter 3), where only a small 

percentage of infection among and within seed samples was observed.  

 

Recent studies using DNA metabarcoding have revealed the presence of Fusarium spp. in 

other seed crops such as wheat, canola, sorghum, and peanuts (Nicolaisen et al. 2014; Links et al. 

2015; Stokholm et al. 2016; Xing et al. 2016). In wheat and canola, F. equiseti and F. 

graminearum were commonly found (Links et al. 2015). An important pathogenic Fusarium 

species of sorghum, F. thapsinum, was identified as one of the most abundant species on 

sorghum seed and seedlings (Stokholm et al. 2016). In another study, although no further 

information was given at the species level, Xing et al. (2016) reported that the genus Fusarium 

was commonly found within peanut seeds. This information suggests that important plant 

pathogenic groups, such as Fusarium, are commonly present in the seed mycobiome of a broad 

array of agriculturally important crops. 
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The findings of this study have demonstrated that DNA metabarcoding can contribute to 

increased detection sensitivity of seedborne pathogens in soybean seed. For example, DNA 

metabarcoding offers mass parallelization of sequencing reactions, which significantly increases 

the amount of DNA that can be sequenced in one run (Heather and Chain 2016). As a result, in 

addition to the two pathogenic Fusarium spp. (F. proliferatum and F. thapsinum), three other 

soybean seedborne pathogenic species Diaporthe (Phomopsis) longicolla, Diaporthe caulivora, 

and Erysiphe polygoni were also present among and within all the soybean seed samples 

analyzed. These results agree with previous studies in which these important seedborne 

pathogenic species have been found in asymptomatic soybean seeds (Walcott 1998). Other 

authors have also reported that F. graminearum, another important species pathogenic to 

soybean, have been recovered from asymptomatic soybean plants and seeds (Russo et al. 2016). 

Although more studies are required to better understand the implications and significance of 

having important pathogenic seedborne fungi in healthy soybean seeds, these current findings 

reinforce the challenges facing accurate detection of plant pathogens in seed lots. These findings 

highlight the need for the development of new and more advanced molecular seed health testing 

methods that relies on quantification of seedborne pathogens rather than just presence or 

absence. 

 

Several studies have reported the successful use of molecular techniques to identify 

pathogenic or toxigenic Fusarium spp. in soybean plants (Arias et al. 2011; Arias et al. 2013; 

Chandra et al. 2011; Watanabe et al. 2011). However, molecular techniques developed to detect 

Fusarium spp. in soybean seeds, specifically, are still underexplored. Seedborne pathogens are 
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difficult to control and thus, preventive actions such as accurate early diagnosis, which can be 

accomplished by using appropriate seed health testing methods, is one of the most effective 

management tools (Machado et al. 2002; McGee 1995; Munkvold 2009). Detecting seedborne 

pathogens is a challenging task due to the presence of asymptomatic seeds, which makes visual 

detection impossible (Walcott 2003). Besides, the pathogen inoculum in seeds may be low or 

unevenly distributed in the seed lot, which could result in false negatives (Mathur and Kongsda 

2003). Thus, sensitive seed health testing methods, which account for those adversities, is 

required and necessary.  

 

Besides pathogenic species, a diversity of yeasts and other fungi were also found within 

the soybean seed mycobiome. Sapkota et al. (2015) studied the composition of cereal grain 

leaves and found that among the most abundant taxa, some pathogens were identified together 

with a range of non-pathogenic yeasts and filamentous fungi. The current study shows that 29 

fungal genera were present in healthy/asymptomatic soybean seeds. Interestingly, it is known 

from metagenomics studies that the number of sequences (reads) obtained from a species is 

dependent upon several factors including the relative abundance of the species, DNA extraction 

efficiency, genome copy number, primer set, analysis of the data, and specificity and accuracy of 

the datasets (Caporaso et al. 2012; Joshi et al. 2014; Leach and Board 2015; Valentini et al. 

2009). Thus, it is possible and reasonable to think that more fungal genera than currently 

observed including pathogens, mycotoxin producers, endophytes, and yeasts are present among 

naturally infected and asymtomatic soybean seeds. Additional studies that use new technologyies 

for DNA extraction, amplification and sequencing are necessary for a deeper understanding of 

the fungal composition of soybean seeds and their influence on productivity, quality, and safety.  
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Using new molecular approaches, such as DNA metabarcoding, for identification and to 

gain accurate information regarding the frequency distribution of seedborne fungi among 

naturally infected and asymptomatic seeds is important and necessary. Understanding what crop 

seeds carry within them (i.e., the seed microbiome) is a crucial first step towards the 

development of accurate seed health testing methods. Crop seeds microbial prolifing can help us 

to better address and estimate inoculum thresholds of important pathogenic groups, such as 

Fusarium spp., which can improve commercial seed certification as well as quarantine programs. 

DNA metabarcoding may lead to the design of innovative methods for detection and 

identification of all classes of seedborne pathogens in a single assay. 
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Figure 4.1 Healthy (asymptomatic) seeds (A); shriveled seeds (C); mechanically damaged seeds 

(D) and stained seeds (E and F). Only healthy seeds (A) were used for identification of 

pathogenic seedborne Fusarium spp. All the damaged seeds (B, C, D, E, and F) were discarded. 

    

    

  
A B 

C D 

E F 
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Figure 4.2 The soybean seed samples (S1-S8) used for identification of pathogenic seedborne 

Fusarium spp. within the soybean seed core mycobiome represent three soybean varieties 

(Pioneer 94Y01, Midland 4263, and Asgrow 3039) as well as four locations (Franklin-Kansas 

(L1), Finney-Kansas (L2), Neosho-Kansas (L3), and Reno-Kansas (L4), Idiana (L5)). Asgrow 

3039 was used as a high-quality seeds (CO) check. Five biological replicates (individual soybean 

seeds) were used for each sample. After extraction and quantification, the DNA pool (plant + 

fungi DNA) was normalized (N) to 5.0 ng μl-1. Three technical replicates were used for 

amplification of the ITS2 region (PCR 1, 2, 3). Nested PCR (n) was conducted after the first 

round of PCR using barcoded reverse ITS4 primers (Table 3.4). After library construction (LC), 

the library as sequenced (S), using the Illumina MiSeq platform. 
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Figure 4.3 Major OTUs classified as Fusarium spp. observed among soybean seed samples 

analyzed in this study. The OTU002, OTU003, OTU008, OTU011, OTU035, OTU055, and 

OTU057 were identified as F. proliferatum (FPR), F. thapsinum (FTH), F. acuminatum (FAC), 

F. merismoides (FME), F. solani (FSO), Fusarium sp. (FSP), and F. semitectum (FSE), 

respectively. S1 (Franklin, KS; Midland 4263); S2 (Neosho, KS; Midland 4263); S3 (Reno, KS; 

Midland 4263); S4 (Finney, KS; Midland 4263); S5 (Franklin, KS; Pioneer 94Y01); S6 (Neosho, 

KS; Pioneer 94Y01); S7 (Reno, KS; Pioneer 94Y01); S8 (Finney, KS; Pioneer 94Y01); CO 

(Indiana; Asgrow 3039). 
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Table 4.1 Soybean seed samples used for isolation and molecular identification of seedborne 

fungi. 

 

  

Location 

Sample Genotype Field County State 

S1 Midland 4263 Ottawa Franklin KS 

S2  Erie Neosho KS 

S3  Hutchinson Reno KS 

S4  Garden city Finney KS 

S5 Pionner 94Y01 Ottawa Franklin KS 

S6  Erie Neosho KS 

S7  Hutchinson Reno KS 

S8  Garden city Finney KS 

CO  Asgrow - 3039 -- -- IN 
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Table 4.2 Physical, physiological and sanitary aspects of the soybean seed samples used in this 

study.  

 

 

Physical (%)  Physiological (%) Sanitary (%) – Culture-dependent †  

Sample DS a Tz b Germ. c AAL d CKI e PHO f FSP g 

S1 9.0 ** 95.0 89.2 4.0 2.0 -- 1.0 

S2 7.0 * 95.0 82.5 ** 6.0 10.0 5.0 1.0 

S3 1.5 97.5 95.8 1.0 -- -- 8.0 

S4 5.0 90.0 85.0 ** 4.0 9.0 1.0 -- 

S5 11.5 *** 85.0 72.5 *** 11.0 3.0 -- 1.0 

S6 3.0 87.5 80.8 *** 2.0 7.0 2.0 -- 

S7 3.0 87.5 85.0 ** 1.0 -- -- -- 

S8 20.5 *** 47.5 *** 20.8 *** -- -- -- -- 

CO  1.5 95.0 95.8 -- -- -- -- 

 

aThe physical quality of the samples was calculated based on the percentage of damaged seeds 

(DS) accordingly to the formula: DS = (A / Nt) * 100, where “A” was the number of seeds 

presenting mechanical damage; and Nt = total number of seeds tested. bTetrazolium test (Tz); 
cPercentage of normal geminated seedlings (Germ.); dAlternaria alternata (AAL); eCercospora 

kikuchii (CKI); fPhomopsis longicolla (PHO); gFusarium sp. (FSP). *, **, ***Significantly different 

from mock-inoculated control at the P ≤ 0.01, P ≤ 0.001, and P ≤ 0.0001 levels using Dunnett's 

test (α=0.05). †Culture-dependent approach (semi-selective medium). 
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Table 4.3 Identification and cataloging of Fusarium isolates collected among the soybean seed 

samples used in this study.   

 

  

(Fusarium - ID / GeneBank)  Final 

 Isolate a Sample b  Accession strains c Identity (%) ID d Ref. e 

23812 S1 FD_01389 / KM462975 99 / 99 FPR (3) 

23648 S2 FD_01659 / JF270275 100 / 100 FSE (1) 

23668 S3 FD_01378 / JX268968 99 / 99 FPR (3) 

23669 S3 FD_01389 / KM462975 100 / 99 FPR (3) 

23670 S3 FD_01378 / JX268968 99 / 99 FPR (2) 

23671 S3 FD_01378 / KM462975 100 / 100 FPR (3) 

23672 S3 FD_01389 / KM462975 100 / 99 FPR (3) 

23673 S3 FD_01378 / JX268968 99 / 99 FPR (2) 

23674 S3 FD_01389 / KM462975 100 / 99 FPR (3) 

23675 S3 FD_01389 / KM462975 100 / 99 FPR (3) 

23731 S5 FD_01378 / JX268968 100 / 100 FPR (2) 

 

aSoybean seedborne Fusarium isolates were deposited and accessed in the fungal collection from 

the Department of Plant Pathology at Kansas State University; bSoybean seed samples used in 

this study (Further information can be found in the Table 3.1 and Table 3.2); cBLAST searches 

for comparison to known sequences in the Fusarium-ID and NCBI databases were used for 

molecular identification of Fusarium isolates; dSpecies codes: F. proliferatum (FPR), and F. 

semitectum (FSE); eLiterature references: (1) Funnell-Harris and Pedersen 2011; (2) Funnell-

Harris and Prom 2013; (3) Funnell-Harris et al. 2015.  
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Table 4.4 Primers and Multiplexing IDentifiers (MIDs) sequences used for sample identification 

in Illumina MiSeq ITS2 amplicon library. The MIDs were combined with the ITS4 primer and 

the sample specific MIDs were incorporated into the amplicons in secondary PCRs. Sample ID 

includes (1) individual soybean seed replicate (SS1-SS5); (2) soybean seed sample (S1, S2, S3, 

S4, S5, S6, S7, S8, CO*). *High quality soybean seed sample (CO).   

 

Forward primer (ITS1F) - CTTGGTCATTTAGAGGAAGTA  

Forward primer (f7ITS1) - GTGARTCATCGAATCTTTG 

Reverse primer (ITS4) - TCCTCCGCTTATTGATATGC  

Sample_ID  MIDs † Primers (5' - MIDs + ITS4 - 3') 

SS1_S1 ACTCCTTGTGTT ACTCCTTGTGTTTCCTCCGCTTATTGATATGC 

SS2_S1 CCAATACGCCTG CCAATACGCCTGTCCTCCGCTTATTGATATGC 

SS3_S1 ACTTGGTGTAAG ACTTGGTGTAAGTCCTCCGCTTATTGATATGC 

SS4_S1 TCACCTCCTTGT TCACCTCCTTGTTCCTCCGCTTATTGATATGC 

SS5_S1 CAAACAACAGCT CAAACAACAGCTTCCTCCGCTTATTGATATGC 

SS1_S2 GCAACACCATCC GCAACACCATCCTCCTCCGCTTATTGATATGC 

SS2_S2 GCACACCTGATA GCACACCTGATATCCTCCGCTTATTGATATGC 

SS3_S2 CGAGCAATCCTA CGAGCAATCCTATCCTCCGCTTATTGATATGC 

SS4_S2 AGTCGTGCACAT AGTCGTGCACATTCCTCCGCTTATTGATATGC 

SS5_S2 GCGACAATTACA GCGACAATTACATCCTCCGCTTATTGATATGC 

SS1_S3 CGAGGGAAAGTC CGAGGGAAAGTCTCCTCCGCTTATTGATATGC 

SS2_S3 TCATGCTCCATT TCATGCTCCATTTCCTCCGCTTATTGATATGC 

SS3_S3 AGATTGACCAAC AGATTGACCAACTCCTCCGCTTATTGATATGC 

SS4_S3 AGTTACGAGCTA AGTTACGAGCTATCCTCCGCTTATTGATATGC 

SS5_S3 GCATATGCACTG GCATATGCACTGTCCTCCGCTTATTGATATGC 

SS1_S4 CAACTCCCGTGA CAACTCCCGTGATCCTCCGCTTATTGATATGC 

SS2_S4 GAGAGCAACAGA GAGAGCAACAGATCCTCCGCTTATTGATATGC 

SS3_S4 TACGAGCCCTAA TACGAGCCCTAATCCTCCGCTTATTGATATGC 

SS4_S4 CACTACGCTAGA CACTACGCTAGATCCTCCGCTTATTGATATGC 

SS5_S4 TGCAGTCCTCGA TGCAGTCCTCGATCCTCCGCTTATTGATATGC 

SS1_S5 ACCATAGCTCCG ACCATAGCTCCGTCCTCCGCTTATTGATATGC 

SS2_S5 TCGACATCTCTT TCGACATCTCTTTCCTCCGCTTATTGATATGC 

SS3_S5 GAACACTTTGGA GAACACTTTGGATCCTCCGCTTATTGATATGC 

SS4_S5 GAGCCATCTGTA GAGCCATCTGTATCCTCCGCTTATTGATATGC 

SS5_S5 TTGGGTACACGT TTGGGTACACGTTCCTCCGCTTATTGATATGC 

SS1_S6 CGTGCTTAGGCT CGTGCTTAGGCTTCCTCCGCTTATTGATATGC 

SS2_S6 CACTCATCATTC CACTCATCATTCTCCTCCGCTTATTGATATGC 

SS3_S6 TATCTATCCTGC TATCTATCCTGCTCCTCCGCTTATTGATATGC 

SS4_S6 TTGCCAAGAGTC TTGCCAAGAGTCTCCTCCGCTTATTGATATGC 

SS5_S6 CATACCGTGAGT CATACCGTGAGTTCCTCCGCTTATTGATATGC 

SS1_S7 TACTACGTGGCC TACTACGTGGCCTCCTCCGCTTATTGATATGC 

SS2_S7 GGCCAGTTCCTA GGCCAGTTCCTATCCTCCGCTTATTGATATGC 
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SS3_S7 GATGTTCGCTAG GATGTTCGCTAGTCCTCCGCTTATTGATATGC 

SS4_S7 CTATCTCCTGTC CTATCTCCTGTCTCCTCCGCTTATTGATATGC 

SS5_S7 ACTCACAGGAAT ACTCACAGGAATTCCTCCGCTTATTGATATGC 

SS1_S8 ATGATGAGCCTC ATGATGAGCCTCTCCTCCGCTTATTGATATGC 

SS2_S8 GTCGACAGAGGA GTCGACAGAGGATCCTCCGCTTATTGATATGC 

SS3_S8 TGTCGCAAATAG TGTCGCAAATAGTCCTCCGCTTATTGATATGC 

SS4_S8 CATCCCTCTACT CATCCCTCTACTTCCTCCGCTTATTGATATGC 

SS5_S8 ATGTGTGTAGAC ATGTGTGTAGACTCCTCCGCTTATTGATATGC 

SS1_CO TTCTCTCGACAT TTCTCTCGACATTCCTCCGCTTATTGATATGC 

SS2_CO ACAATAGACACC ACAATAGACACCTCCTCCGCTTATTGATATGC 

SS3_CO CGGTCAATTGAC CGGTCAATTGACTCCTCCGCTTATTGATATGC 

SS4_CO GCTCTCCGTAGA GCTCTCCGTAGATCCTCCGCTTATTGATATGC 

SS5_CO GCTCGAAGATTC GCTCGAAGATTCTCCTCCGCTTATTGATATGC 
 

† Multiplexing IDentifiers (Barcodes) 
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Table 4.5 Number of sequences (reads) and OTUs observed among the overall seedborne fungi 

groups identified within infected soybean seed samples. 

 

Groups Reads  RA (%) a OTUs  RA (%) 

Ascomycetes 237,397 81.53 30 45.45 

Basidiomycetes 33,325 11.44 18 27.27 

Zygomycetes 44 0.02 1 1.52 

Fungi (Unclassified) 11,552 3.97 11 16.67 

Others † 8,876 3.05 6 9.09 

Total 291,194 100 66 100 

 

aRelative abundance (RA); † Reads presenting less than 97% identity with accessed strains from 

UNITE and GeneBank were identified as “others”, which represents unidentified sequences. 
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Table 4.6 Taxonomic assignment of representative ITS2 OTUs according to UNITE and GenBank reference sequences.   

 

    
 

UNITE GenBank 

OTUs Reads RA (%) a In (%) b Genus Species Accession strain 
Accession 

strain 

Identity 

(%) c 

OTU01 149,384 51.301 100 Alternaria A. alternata  SH215493.07FU LT560139 100 

OTU02 44,429 15.258 100 Fusarium F. proliferatum SH219673.07FU X94171 (1) 99 

OTU03 11,820 4.059 100 Fusarium  F. thapsinum SH219673.07FU KX171659 (2) 100 

OTU04 8,236 2.828 100 Alternaria  A. infectoria   SH216783.07FU Y17067  100 

OTU05 8,113 2.786 98 Fungi (unclassified) Fungi (unclassified) SH199073.07FU KC753422 99 

OTU06 6,072 2.085 100 Others Others SH211110.07FU DQ421255 95 

OTU07 5,770 1.981 91 Malassezia  M. sympodialis  SH188402.07FU KM454159 100 

OTU08 4,609 1.583 100 Fusarium F. acuminatum SH219674.07FU KU382624 (3) 100 

OTU09 4,585 1.575 49 Baeospora  B. myosura  SH187911.07FU LN714524 100 

OTU10 4,397 1.510 100 Diaporthe  D. longicolla SH185492.07FU U97658  100 

OTU11 4,302 1.477 84 Fusarium  F. merismoides SH175278.07FU AB586998 (4) 100 

OTU12 3,988 1.370 89 Phlebia  P. chrysocreas SH192450.07FU KP135358 99 

OTU13 3,795 1.303 80 Wallemia   Wallemia sp. SH216454.07FU FR682244   97 

OTU14 3,616 1.242 64 Schizophyllum  S. commune   SH190191.07FU LC068797 100 

OTU15 3,401 1.168 76 Clitocybe  C. vibecina SH218334.07FU JF907821 100 

OTU16 2,968 1.019 71 Aureobasidium  A. namibiae SH195774.07FU KT693730   100 

OTU17 2,650 0.910 96 Cryptococcus  Cryptococcus sp. SH197623.07FU LC018794 100 

OTU18 2,011 0.691 67 Erysiphe E. polygoni  SH187440.07FU AF011308 100 

OTU19 1,965 0.675 60 Nigroporus  N. vinosus SH190478.07FU JX109857 100 

OTU20 1,841 0.632 36 Others Others SH179952.07FU KT581876 85 

OTU21 1,658 0.569 29 Fungi (unclassified) Fungi (unclassified) SH215453.07FU KF800580 100 

OTU22 1,465 0.503 78 Penicillium P. brevicompactum  SH199400.07FU LN833549 100 

OTU23 1,318 0.453 53 Bulleromyces  B. albus  SH215453.07FU HE650882  100 

OTU24 1,003 0.344 36 Biappendiculispora  B. japonica  SH532144.07FU LC001730 99 

OTU25 924 0.317 64 Fungi (unclassified) Fungi (unclassified) SH210215.07FU KT202892 100 
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OTU26 809 0.278 47 Resinicium  R. friabile SH204932.07FU DQ826545 98 

OTU27 713 0.245 24 Phlebia Phlebia sp. SH525658.07FU KJ654591   100 

OTU28 686 0.236 13 Others Others SH179952.07FU KT581876 87 

OTU29 563 0.193 100 Diaporthe  D. caulivora  SH185506.07FU KT895390 99 

OTU30 500 0.172 27 Phlebiella  P. borealis   SH532759.07FU KP814210  99 

OTU31 445 0.153 40 Epicoccum E. nigrum   SH207241.07FU KU204774 100 

OTU32 401 0.138 38 Penicillium  Penicillium sp. SH207150.07FU KP016820 100 

OTU33 384 0.132 9 Aureobasidium  Aureobasidium sp. SH195774.07FU LC018807  100 

OTU34 349 0.120 16 Fungi (unclassified) Fungi (unclassified) SH010431.07FU AB828221 97 

OTU35 254 0.087 22 Fusarium  F. solani  SH205225.07FU KJ541492 (5) 99 

OTU36 247 0.085 100 Others Others SH208383.07FU KP814441 78 

OTU37 173 0.059 73 Fungi (unclassified) Fungi (unclassified) -- KM247468 97 

OTU38 163 0.056 13 Acremonium  A. fusidioides  SH203375.07FU HF680234 100 

OTU39 145 0.050 31 Aspergillus Aspergillus sp. SH182491.07FU GU910689 100 

OTU40 123 0.042 93 Fungi (unclassified) Fungi (unclassified) SH200466.07FU KF800626  100 

OTU41 121 0.042 71 Alternaria  Alternaria sp. SH215493.07FU GU721735 100 

OTU42 101 0.035 87 Fungi (unclassified) Fungi (unclassified) SH190991.07FU JX675046 100 

OTU43 79 0.027 40 Malassezia  M. restricta  SH176394.07FU NR:103585 100 

OTU44 75 0.026 2 Alternaria Alternaria sp. SH215493.07FU EF504668   99 

OTU45 58 0.020 9 Cercospora  C. apiicola SH206769.07FU KU870468  100 

OTU46 53 0.018 71 Fungi (unclassified) Fungi (unclassified) SH203201.07FU KC785574  100 

OTU47 46 0.016 60 Wallemia    Wallemia sp. SH216453.07FU KF800096 100 

OTU48 44 0.015 4 Rhizopus  R. arrhizus SH193530.07FU LC149790 100 

OTU49 34 0.012 42 Epicoccum E. nigrum SH207241.07FU KU254609 100 

OTU50 34 0.012 49 Fungi (unclassified) Fungi (unclassified) SH197623.07FU KU515728 100 

OTU51 29 0.010 51 Marasmius  M. tubulatus  SH010949.07FU FJ936151 97 

OTU52 26 0.009 33 Wallemia  Wallemia sp. SH216453.07FU JF497133 100 

OTU53 24 0.008 16 Alternaria  Alternaria sp. SH215493.07FU GU721735 98 

OTU54 20 0.007 24 Cladosporium  C. subuliforme  SH212842.07FU LN834396 100 

OTU55 19 0.007 16 Fusarium  Fusarium sp. SH219673.07FU KJ466111  97 

OTU56 19 0.007 33 Tilletiopsis T. washingtonensis SH186666.07FU HQ115649 99 
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OTU57 17 0.006 13 Fusarium  F. semitectum  SH204421.07FU KU881904 100 

OTU58 16 0.005 31 Wallemia Wallemia sp. SH216453.07FU GU370753 100 

OTU59 16 0.005 7 Others Others SH219673.07FU X94174 96 

OTU60 16 0.005 2 Macrophomina M. phaseolina SH182425.07FU KU863545  100 

OTU61 14 0.005 4 Others Others SH193582.07FU GQ922553 96 

OTU62 13 0.004 4 Fungi (unclassified) Fungi (unclassified) SH198034.07FU JX984706 100 

OTU63 12 0.004 27 Exserohilum E. rostratum  SH211295.07FU KU945863 100 

OTU64 11 0.004 9 Pseudopithomyces P. chartarum SH186930.07FU LK936369 100 

OTU65 11 0.004 4 Fungi (unclassified) Fungi (unclassified) SH176396.07FU GU327512 100 

OTU66 11 0.004 20 Aspergillus A. ruber  SH179237.07FU U18357 100 

 
aRelative abundance (RA). bPercentage of infected seeds (Incidence; In). cBLAST searches to known sequences in the NCBI databases 

were used for molecular identification of soybean seedborne fungi. (1)Waalwijk et al. 1996; (2)Stokholm et al. 2016; (3)Scruggs and 

Quesada-Ocampo 2016; (4)Watanabe et al. 2011; (5)Schuck et al. 2016. 
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Table 4.7 Taxonomic assignment of soybean seedborne fungi groups (phylum; unclassified 

fungi; and others) and distribution shown in % of total reads (relative abundance; RA), number 

of OTUs taxonomically assigned to a group (OTUs), % of infected samples (prevalence; Pr), and 

% of infected seeds among infected samples (incidence; In).   

 

  

Soybean seeds (N = 291,194) a 

Groups  Genus Reads  RA (%)  OTUs  Pr (%)  In (%)  

Ascomycetes Acremonium  163 0.06 1 55 23 

(N = 237,397) Alternaria 157,840 54.2 5 100 100 

 Aspergillus 156 0.05 2 100 38 

 Aureobasidium  3,352 1.15 2 100 73 

 Biappendiculispora  1,003 0.34 1 88 43 

 Cercospora  58 0.02 1 33 27 

 Cladosporium  20 0.01 1 77 31 

 Diaporthe  4,960 1.70 2 100 100 

 Epicoccum 479 0.16 2 100 64 

 Erysiphe 2,011 0.69 1 100 67 

 Exserohilum 12 0.00 1 77 34 

 Fusarium 65,450 22.48 7 100 100 

 Macrophomina 16 0.01 1 11 20 

 Penicillium 1,866 0.64 2 100 87 

 Pseudopithomyces 11 0.00 1 33 20 

Basidiomycetes  Baeospora  4,585 1.57 1 100 49 

(N = 33,325)  Bulleromyces  1,318 0.45 1 100 53 

 Clitocybe  3,401 1.17 1 100 76 

 Cryptococcus  2,650 0.91 1 100 96 

 Malassezia  5,849 2.01 2 100 100 

 Marasmius  29 0.01 1 100 49 

 Nigroporus  1,965 0.67 1 100 60 

 Phlebia 4,701 1.61 2 100 91 

 Phlebiella  500 0.17 1 88 33 

 Resinicium  809 0.28 1 88 53 

 Schizophyllum  3,616 1.24 1 100 64 

 Tilletiopsis 19 0.01 1 100 33 

 Wallemia 3,883 1.33 4 100 96 

Zygomycetes Rhizopus  44 0.02 1 11 40 

Fungi Unclassified  11,552 3.97 11 100 100 

Others b -- 8,876 3.05 6 100 100 
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aTotal number of reads (sequences) observed among all nine soybean seed samples analyzed; 

bReads presenting less than 97% identity with accessed strains from UNITE and GeneBank were 

identified as “others,” which represents unidentified sequences.  
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Table 4.8 Taxonomic assignment, relative abundance (RA), % of infected samples (Prevalence; 

Pr), and % of infected seeds among infected samples (Incidence; In) of soybean seedborne 

Fusarium OTUs.   

 

      Species OTUs  Reads  RA (%)  Pr (%)  In (%)  

F. proliferatum OTU02 44,429 67.88 100 100 

F. thapsinum OTU03 11,820 18.06 100 100 

F. acuminatum OTU08 4,609 7.04 100 100 

F. merismoides OTU11 4,302 6.57  100 84 

F. solani  OTU35 254 0.39 89 22 

Fusarium sp.   OTU55 19 0.03 55 15 

F. semitectum  OTU57 17 0.03 67 13 
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Chapter 5 - Effects of Fusarium proliferatum                                     

on soybean seed quality 

 

 Abstract 

 

Although Fusarium proliferatum has shown the potential to cause soybean seed, seedling 

and root diseases, the conditions necessary to negatively affect seed quality are still 

underexplored. The objectives of this study were to evaluate the aggressiveness of F. 

proliferatum and the influence of its inoculum potential on soybean seed quality. Aggressiveness 

screens were conducted using laboratory and greenhouse assays. Eight F. proliferatum isolates 

were used and the results, from all of parameters tested, were compared with mock-inoculated 

controls. Overall, all F. proliferatum isolates significantly affected (p < 0.001) seed quality 

varibles in laboratory assays. In greenhouse assays, most F. proliferatum isolates tested reduced 

seed vigor (p < 0.001) when compared with mock-inoculated control. Using the rolled-towel 

assay, two F. proliferatum isolates were used to study the influence of inoculum potential and its 

interaction with aggressiveness on soybean seed quality. There was a significant interaction 

between isolate aggressiveness and inoculum potential (p < 0.001). The effects of seedborne F. 

proliferatum isolates on soybean seed quality parameters increases as the inoculum potential in 

contact with the seeds increases and it was more severe with the higly aggressive isolate. 

Moreover, no significant effects on the seed quality was observed when soybean seeds were 

treated with low inoculum potential (2.5  101 conidia ml-1) with either moderate or highly 

pathogenic isolates. The findings of this study may serve as a baseline for future experiments 
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addressing the establishment of  inoculum thresholds for pathogenic Fusarium spp. in soybean 

seed lots. These experiments may contribute to advances on the development of accurate 

diagnostic tools (i.e, seed health testing methods) especifically designed to detect pathogenic F. 

proliferatum strains in naturally infected and asymptomatic commercial soybean seed lots.  

 

 Introduction 

 

Fusarium proliferatum (Matsushima) Nirenberg ex Gerlach & Nirenberg is a fungal plant 

pathogen isolated from a vast array of hosts and geographic locations (Leslie and Summerell 

2006). It can colonize and cause diseases in important crops such as asparagus (Seefelder et al. 

2002), banana (Jimenez et al. 1993), garlic and onion (Stankovic et al. 2007), orchids (Kim et al. 

2002), maize (Munkvold 2003), rice (Amatulli et al 2012), sorghum (Leslie and Summerell 

2006), and wheat (Desjardins et al. 2007). Furthermore, some isolates of this fungus can produce 

potent mycotoxins, including beauvericin, fumonisins, fusaproliferin, fusaric acid, fusarins, and 

moniliformin. Some of these secondary metabolites are associated with serious animal and 

human diseases (Bacon et al. 1994; Bacon et al. 1996; Chelkowski et a. 1990; Leslie et al. 2004; 

Miller et al. 1995).  

 

On soybeans, the first report of Fusarium proliferatum as a disease agent was described 

in the United States by Arias et al. (2011). Under artificial conditions, F. proliferatum can cause 

seedling and root rots (Arias et al. 2011; Arias et al. 2013; Chang et al. 2015). Symptoms include 

pre- and post-emergent damping-off, water-soaked lesions on the stems, stunting, chlorosis and 

necrosis of cotyledons, wilting, and brown to black root rot in both the lower taproot and lateral 
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roots, with cortical decay or vascular discoloration (Nelson 1999). In general, yield losses by 

seedling and root rot diseases were estimated as 177,000 tons per year in the USA from 2003 to 

2005 (Wrather and Koenning 2006). However, losses caused by F. proliferatum, specifically, 

have not been specified. 

 

The seedborne nature of F. proliferatum has also been observed and reported in soybeans 

(Medić-Pap et al. 2007; Roy et al. 2001). Another important consideration is that infected seeds 

with pathogenic species and strains of Fusarium can serve as a source of inoculum dispersal, 

providing primary inoculum for infestation and establishment of the pathogens into new hosts 

and fields. This represents a significant threat to the future of food production, quality, and safety 

(Agarwal and Sinclair 1996; Machado et al. 2002; Neergaard 1979; Stack et al. 2014). However, 

besides its seedborne nature, little is known regarding the potential and conditions necessary for 

isolates of F. proliferatum to negatively affect soybean seed quality.  

 

In previous study (see Chapter 4), F. proliferatum was identified in every single 

asymptomatic soybean seed analysed. Moreover, this pathogenic species was found in all three 

major soybean seed tissues, seed coat, cotyledons and embryo axis, from high quality seeds 

(Appendix C). The effect of a pathogen on seed germination and vigor can be influenced by 

different variables, of which, inoculum potential and aggressiveness of the pathogen plays an 

important role in addition to the incidence of the organism in the seed lot (Agarwal and Sinclair 

1996; Neergaard 1979). Hence, the inoculum potential and aggressiveness of F. proliferatum 

may explain the presence of this pathogenic species of Fusarium in naturally and asymptomatic 

infected soybean seeds.  



 117 

 

Because the aggressiveness of soybean seedborne F. proliferatum as well as the effects of 

the inoculum potential of this pathogen on soybean seed quality are still poorly understood and 

underexplored, the objectives of this study were: i) screening eight soybean seedborne F. 

proliferatum isolates, previously isolated from asymptomatic seeds, for pathogenicity under 

laboratory and greenhouse conditions, and ii) to evaluate the effects of F. proliferatum inoculum 

potential on soybean seed germination. 

 

 Materials and methods 

 

 Soybean seedborne F. proliferatum isolates 

A total of eight soybean seedborne F. proliferatum isolates were used in this study. The 

isolates were previously isolated from asymptomatic soybean seeds (viability >97% and 

germination >95%) using culture-dependent approach (Nash-Snyder medium) and identified 

based on morphological features and PCR as previously reported (see Chapter 4).  

 

 Screening for pathogenicity: 

 Rolled-towel assay  

The rolled-towel assay to evaluate pathogenicity and aggressiveness of seedborne 

Fusarium spp. on soybean seeds and seedlings (see Chapter 3) was used to compare the 

aggressiveness of eight seedborne F. proliferatum isolates to mock-inoculated control. The 

soybean variety used this study was Asgrow 'AG3039' (SDS moderate susceptible) (Monsanto, 

Inc.; St. Louis, MO, USA). Prior to inoculation, seeds were surface disinfested with a 5% bleach 
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solution (0.5% sodium hypochlorite v/v) for 1 min and dried overnight at room temperature. For 

inoculations, seeds were imbibed within a 25 ml conidial suspension at 2.5  105 conidia ml-1 for 

1 min. Twenty-five artificially inoculated seeds were placed on two moistened sheets of 

germination paper (Anchor Paper Co., St. Paul, MN, USA). An additional sheet of moistened 

germination paper was placed over the inoculated seeds, the layers were rolled into a tube, 

secured by a rubber band, set upright in a modified plastic Rubbermaid Cereal Keeper container 

(Newell Rubbermaid Co., Atlanta, GA, USA) and incubated in a growth chamber (Power 

Scientific Inc., St. Louis, MO, USA) at 25C for seven days. For each F. proliferatum isolate, 

four rolled-towels were used, which corresponded to four replicates. After 7 days, the quality of 

the artificially inoculated soybean seeds was accessed by germination of normal seedlings (%), 

abnormal seedlings (%), dead seeds (%), and fresh seedling weight (g). The aggressiveness of 

the F. proliferatum isolates was based on the disease severity index (DSI) (Broders et al. 2007). 

DSI was calculated based on the formula: DSI = ((A*0)+(B*1)+(C*2)+(D*3)) / Nt, where A, B, 

C, and D are the number of seedlings presenting disease severity scores 0, 1, 2, and 3, 

respectively; and Nt = total number of seeds tested. The scale used for DSI ranged from 0 to 3 

where: 0 = germinated seeds and healthy and normal seedlings with no symptoms on the primary 

and/or secondary roots or hypocotyl (A); 1 = seed germinates and the abnormal seedling shows 

minor discoloration and reduced primary and/or secondary roots as well as hypocotyl (B); 2 = 

seed germinates and abnormal seedling shows heavy discoloration and reduced primary and/or 

secondary roots. Also, the hypocotyl is heavily discolored and girdled by the lesion (C); 3 = non-

germinated seed. Isolates having pathogenicity scores < 1, between 1 and 2, and > 2 were 

considered low, moderately, and highly aggressive, respectively.  
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 Greenhouse assay 

After screening the seedborne F. proliferatum isolates for their aggressiveness under 

laboratory conditions using the rolled-towel assay, all F. proliferatum isolates were screened in 

greenhouse assays to evaluate their influence on soybean seed vigor. The vigor of artificially 

inoculated soybean seeds was measured by the percentage of germinated seedlings at 10 days 

post-inoculation (d.p.i.) (i.e., initial stand), and at 25 d.p.i (i.e, final stand). In addition, dry plant 

aerial mass and root weight of artifially inoculated soybean plants were measured at 25 d.p.i. To 

assess the dry plant aerial mass, the seedlings were cut at 2 cm above substrate line and then 

subjected to the drying process in a forced air circulation oven, at 50ºC temperature, until 

reaching constant weight. After 96 h, the dried material was weighed in a semi-analytical 

balance. Results were expressed in grams. After cutting the aerial part of the plants, the 

remaining roots in the pots were washed with water and then dried and measured using the same 

approach describied previously. Results were also expressed in grams.The methodology used for 

seed inoculation was the same as previously described for the rolled-towel assay experiments. 

After inoculation, twenty-five seeds from each treatment were planted in 500 ml pots with 

autoclaved soil and vermiculite (1:1) in the greenhouse. 

 

 Effects of F. proliferatum inoculum potential and aggressiveness on soybean 

seed quality 

One moderate (23675) and one highly aggressive (23670) seedborne F. proliferatum 

isolate was used to study the effects of inoculum potential of this pathogen on soybean seed 

quality. Six inoculum potential treatments (0 to 5) were used in this study. Mock-inoculated 

seeds with ddH20 (0) and 2.5  101 conidia ml-1 (1) to 2.5  105 conidia ml-1 (5). As before, 
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AG3039 was the genotype used for this pathogenicity screen. After 7 days, the quality of 

artificially inoculated soybean seeds treated with different inoculum potentials was accessed by 

germination of healthy seedlings (percentage of normal germination), abnormal seedlings 

(percentage of symptomatic seedlings, dead seeds (percentage of non-germinated seeds) and 

fresh seedling weight (g). 

 

 Data analysis 

Screening for pathogenicity: Analysis of variance was conducted using PROC MIXED of 

SAS (Version 9.3, SAS Institute). Among isolates, means of inoculated treatments (seeds 

inoculated with seedborne F. proliferatum isolates) were compared with the mock-inoculated 

control using Dunnett’s test. Treatments were significantly different at P ≤ 0.05. Furthermore, 

variables measured in laboratory and greenhouse assays were correlated using the SAS PROC 

CORR procedure.  

 

 Effects of F. proliferatum inoculum potential and aggressiveness on soybean seed 

quality: For the interaction between aggressiveness and inoculum potential assays, analysis of 

variance was conducted using PROC MIXED of SAS (Version 9.3, SAS Institute) and the 

treatments were arranged in a factorial sheme 2 x 6 (2 F. proliferatum isolates representing two 

aggressiveness levels (moderate and highly aggressive) and 6 inoculum potentials (mock-

inoculated seeds with ddH20 (IP0) and 2.5  101 conidia ml-1 (IP1) to 2.5  105 conidia ml-1 

(IP5)). Moreover, data from the inoculum potential experiments were submitted to orthogonal 

polynomial contrast analysis of SAS (Version 9.3, SAS Institute) to determine the relationship 

between classes of inoculum potential and percentage of normal and abnormal germination, dead 
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seed and fresh seedling wieght of artificially inoculated seeds with moderate and higly 

aggressive isolates considered in laboratory trials. In addition, the influence of inoculum 

potential treatments (IP1-IP5) within isolates on soybean seed quality variables was also 

compared with the mock-inoculated control (IP0) using Dunnett’s test for both laboratory and 

greenhouse experiments. Treatments were significantly different at p ≤ 0.05.  

  

The experimental design used for the pathogenicity assays was a completely randomized 

design, and all experiments were repeated three times. 

 

 Results 

 

 Rolled-towel assay  

All eight F. proliferatum isolates tested were identified as pathogenic to soybean seed 

and seedlings under laboratory conditions (Table 5.1). There was a significant decrease (p < 

0.001) in the percentage of normal seed germination for artificially inoculated seeds when 

compared to mock-inoculated control for all isolates (Table 5.1). The percentage of abnormal 

seedlings (p < 0.001; symptomatic seedlings) as well as dead seeds (p < 0.001; non-germinated 

seeds) was also affected when inoculated seeds were compared with mock-inoculated control 

(Table 5.1). All of the isolates tested, but the isolates 23668 and 23675, were able to significantly 

increase the percentage of abnormal seedlings (Table 5.1). However, all isolates tested 

significantly increased (p < 0.001) the percentage of dead seeds when compared with mock-

inoculated seeds (Table 5.1). Except for isolate 23675, seed artificially inoculated with F. 

proliferatum isolates presented a significant decrease in fresh seedling weight when compared to 
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the mock-inoculated control (Table 5.1). Six isolates were identified as moderately aggressive 

(23668, 23660, 23671, 23672, 23674, and 23675) and two as highly aggressive (23670 and 

23673) to soybean seeds and seedlings (Table 5.1). 

 

 Greenhouse assay  

In addition to the laboratory assay, the F. proliferatum isolates were also tested in the 

greenhouse to evaluate their influence on seedling vigor. Most of the isolates tested significantly 

reduced initial (p < 0.001) and final stand (p < 0.001) when compared to mock-inoculated 

control. Isolates 23668, 23674, and 23675 did not reduce soybean seedling vigor after artificial 

inoculation of seeds (Table 5.2). Only isolates 23669, 23670 and 23673 significantly reduced dry 

aerial weight of artificially inoculated soybean plants when compared with the mock-inoculated 

control (p < 0.001; Table 5.2). Interestingly, all eight seedborne F. proliferatum isolates 

significantly reduced (p < 0.001) dry root weight when compared with mock-inoculated control 

(Table 5.2; Figure 5.1).  

 

Overall, there was a significant correlation between the aggressiveness of the isolates 

tested under laboratory conditions and the parameters tested in greenhouse assays (Table 5.3). 

Overall, the vigor of the seeds artificially inoculated with F. proliferatum, measured by initial 

and final stand as well as dry plant aerial and root weight decreases as the DSI of the seedborne 

isolates increases (Table 5.3). Under laboratory conditions, all parameters tested were also 

affected by the aggressiveness of the isolates (i.e., DSI; Table 5.3). As DSI of the isolates 

increases, germination and fresh seedling weight of artificially inoculated seeds decrease.  
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 Effects of F. proliferatum inoculum potential on soybean seed quality 

Overall, the inoculum potential treatments of the F. proliferatum isolates significantly 

reduced seed quality and were influenced by the aggressiveness of the isolates of artificially 

inoculated seeds in laboratory assays (Table 5.4). The effect of both moderate and higly 

aggressive seedborne F. proliferatum isolates on soybean seed germination decreases as the 

inoculum potential in contact with the seeds decreases (Figure 5.2 and Figure 5.3). No reduction 

of seed germination was observed when soybean seeds were treated with the low inoculum 

potential treatment (2.5  101 conidia ml-1) and seeds inoculated with both moderately and highly 

pathogenic isolates were not significaly affected (Table 5.5). The fresh weight of soybean 

seedlings, the percentage of abnormal soybean seedlings and dead seeds were also not 

significantly affected hen soybean seeds were treated with the low inoculum potential treatment 

(2.5  101 conidia ml-1) (Table 5.5). In the same manner, both moderate and highly aggressive 

isolates decrease the fresh weight of soybean seedlings as the inoculum potential increases 

(Figure 5.3). Moreover, the percentage of abnormal soybean seedlings and dead seeds increases 

as the inoculum potential increases (Figure 5.3. 

 

 Discussion 

Although Fusarium proliferatum has shown the potential to cause soybean seed rot, 

seedling damping-off and root rots, the conditions necessary for this species to negatively affect 

seed quality remain underexplored. The findings of this study confirm and complement previous 

results (see Chapter 3 and Appendix D), in which F. proliferatum significantly reduced soybean 

seed quality. Overall, F. proliferatum significantly decreased soybean seed germination and 

vigor under laboratory and greenhouse conditions. In addition, F. proliferatum caused seedling 
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damping-off and negatively affected the roots, by significantly reducing its mass, of artificially 

inoculated soybean plants, suggesting their potential importance as a seedborne pathogen in 

soybean growing regions. These results are consistent with previous studies where F. 

proliferatum isolates decreased seedling emergence and caused root disease (Arias et al. 2011; 

Chang et al. 2015). For example, seedling mortality from 40 to 78% was observed on soybean 

plants infected by F. proliferatum isolates in greenhouse experiments (Arias et al. 2013, Chang 

et al. 2015).  

 

F. proliferatum is a soil inhabitant (Leslie and Summerell 2006). There is evidence that 

this fungus can colonize organic matter and persist on the soil surface or remain buried in the 

field for an extended period (Cotton and Munkvold 1998; Leslie et al. 1990; Gaige 2016). 

Therefore, in addition to the direct effect of F. proliferatum on soybean seeds, seedling and plant 

quality, infected soybean seeds represent a risk for the introduction and establishment of 

aggressive isolates into new areas (Gamliel 2008). Furthermore, F. proliferatum has been 

reported to cause diseases in other important cash crops such as sorghum, rice, wheat, and maize 

(Leslie et al. 1990; Bashyal et al. 2016; Molnár 2016; Munkvold 2003). Once established into 

new fields, F. proliferatum present in the soil can build up over time and serve as a primary 

source of inoculum to new crops. Because of that, the use of traditional plant diseases 

management strategies such as rotation of crops between host and non-host plant species may 

become restricted. Hence, early detection of F. proliferatum in commercial soybean seed lots is 

necessary to minimize the spread of pathogenic strains among crop growing areas. 
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The current study also showed that the effects of F. proliferatum on soybean seed quality 

increased as inoculum potential increased. Moreover, the effects on soybean seed quality of seed 

inoculated with a high inoculum potential of F. proliferatum were more severe with highly 

aggressive isolate than moderately aggressive isolate. Most importantly, soybean seeds 

inoculated with low F. proliferatum inoculum potential showed no significant decrease of seed 

quality parameters for moderately and highly aggressive isolates. Thus, considering that the 

amount of inoculum present within seeds plays a crucial role in seed and seedling diseases 

development (Agarwal and Sinclair 1996; Neergaard, 1979), it is tempting to speculate that 

soybean seedborne pathogenic groups, such as Fusarium spp. for example, are perhaps present in 

low inoculum levels in the seeds in order to not incite seed and seedling diseases. This may 

explain the presence of pathogenic Fusarium species, such as F. proliferatum, within naturally 

infected and asymptomatic soybean seeds observed in previous studies (see Chapter 4 and 

Appendix C).  

 

Similar results have also been observed regarding the effects of F. verticillioides 

inoculum potential on soybean seed quality (Pedrozo and Little 2016). Pedrozo and Little (2016) 

suggested that F. verticillioides has the potential to reduce soybean seed quality, depending on 

the amount of inoculum present in seeds (i.e. inoculum potential). At low inoculum potential, 

F. verticillioides was not able to significantly reduce soybean seed quality (Pedrozo and Little 

2016). This inoculum potential phenomenon of seedborne Fusarium spp. has been observed to 

negatively affect the germination and vigor of other crop seeds, such as cotton and maize seeds 

(Araujo et al. 2016; Machado et al. 2013). Araujo et al. (2016) observed that the influence of 

Fusarium oxysporum f. sp. vasinfectum on the germination of cotton seeds was higher when the 
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amount of inoculum in seeds was increased. Machado et al. (2013) reported that the most severe 

effects of F. verticillioides on the development of maize seed and seedling diseases were 

observed at the highest level of inoculum present in seeds. Overall, the most severe effect of 

these two Fusarium spp. on cotton (Araujo et al. 2016) and maize (Machado et al. 2013) 

seedlings were observed when high inoculum potential was present in seeds. In contrast, no 

decrease of seed quality parameters such as germination and vigor was observed when low 

inoculum potential was present within seeds (Araujo et al. 2016; Machado et al. 2013). For both 

studies, seeds were inoculated with different inoculum potentials using the osmoconditioning 

method described previously by Machado et al. (2012).  

 

From these results, it becomes clear that the presence of Fusarium spp., per se, among 

and within seeds does not fully translate the potential of this pathogenic genus to significantly 

affect the quality of soybean seed. The findings of this study showed that the inoculum potential 

as well as the aggressiveness of F. proliferatum isolates present in the seeds may play a 

significant role for soybean seed and seedlings diseases. Therefore, these are important factors 

that influence seed quality. Further studies are necessary to better understand and estimate the 

significance of infected seeds by F. proliferatum to soybean seed production and quality. 

Considering that the presence of asymptomatic plant pathogens in seed lots makes their accurate 

identification extremely challenging (Sousa et al. 2015; Stergiopoulos and Gordon 2014), this 

study may serve as a baseline for future experiments addressing the mechanisms used by 

pathogenic Fusarium spp. to colonize plants and seeds asymptomatically as well as the 

establishment of an inoculum threshold for pathogenic Fusarium spp. in soybean seed lots.  
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Figure 5.1 Influence of the highly aggressive seedborne F. proliferatum isolate (23670) on seed-

inoculated soybean plants compared to mock-inoculated control (MCO) (A). Healthy and 

abundant root masses develop from mock-inoculated plants (MCO), compared to those where 

the seed was imbibed with F. proliferatum (B). Characteristic post-emergent damping-off of 

seedlings inoculated with a highly aggressive seedborne isolate (23670) of F. proliferatum (C). 
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Figure 5.2 Influence of inoculum potential treatment by moderately and highly aggressive 

seedborne F. proliferatum isolates (23675 and 23670) on soybean seed quality. Comparisons of 

soybean seeds inoculated with F. proliferatum isolate (23675) using the lowest (A) and highest 

inoculum potential (B). Soybean seeds inoculated with F. proliferatum isolate (23670) using the 

lowest (C) and highest inoculum potential (D). 
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Figure 5.3 Relationship between germination (%) and inoculum potential treatments (0 to 5) in 

contact with the soybean seeds for each of the seedborne F. proliferatum isolates tested (highly 

aggressive [HA], 23670; moderately aggressive [MA], 23675). Mock-inoculated seeds, treatment 

0; Inoculum potential, treatment 1 (2.5  101 conidia ml-1); Inoculum potential, treatment 2 (2.5  

102 conidia ml-1); Inoculum potential, treatment 3 (2.5  103 conidia ml-1); Inoculum potential, 

treatment 4 (2.5  104 conidia ml-1); Inoculum potential, treatment 5 (2.5  105 conidia ml-1). 
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Table 5.1 Effect of seedborne Fusarium proliferatum isolates on soybean seed germination, and fresh seedling weight under 

laboratory conditions.  

 

  
Aggressiveness a Normal 

Germ. (%)  

Abnormal 

Germ. (%) 

Dead 

Seed (%)  
F.S.W. (g)  

Treatments  Isolates LA MA HA 

Mock-inoculated control NA 0.2 -- -- 93.7 1.7 4.6 20.3 

F. proliferatum 23668 -- 1.7 -- 61.7 *** 7.3 31.0 *** 15.8 ** 

 
23669 -- 1.7 -- 61.0 *** 8.0 31.0 *** 16.6 * 

 
23670 -- -- 2.1 36.0 *** 21.3 **** 42.7 *** 14.8 *** 

 
23671 -- 1.8 -- 55.3 *** 14.3 ** 30.4 *** 17.2 * 

 
23672 -- -- 2 49.0 *** 15.3 ** 35.7 *** 15.7 ** 

 
23673 -- -- 2.1 41.3 *** 18.7 *** 40.0 *** 13.5 *** 

 
23674 -- -- 2 50.7 *** 9.3 40.0 *** 14.7 ** 

  23675 -- 1.2 -- 78.0 ** 5.0 17.0 * 21.0 

 
a Isolates having pathogenicity scores < 1, between 1 and 2, and > 2 were identified with low (LA), moderate (MA), and high 

aggressiveness  (HA), respectively; *, **, *** Significantly different from control (mock-inoculated seeds) at the P ≤ 0.05, P ≤ 0.001, and 

P ≤ 0.0001 levels using Dunnetts test. †Results are the means of three experiments. Normal Germ. = Normal germination; Abnormal 

Germ. = Abnormal germination; Dead Seed = Dead seed; F.S.W.=Fresh Seedling weight. 
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Table 5.2 Effect of seedborne Fusarium proliferatum isolates on soybean seedling vigor 

measured by the percentage of initial and final stand as well as dry aerial and root weight of 

plants.† 
 

 
Code I.S. (%)  F.S. (%)  D.A.W. (g)  D.R.W. (g)  

Isolates 

Mock-inoculated control MCO 95.7 95.0 2.9 1.5 

F. proliferatum 23668 75.3 75.0 2.4 1.1* 

 

23669 50.7 ** 51.7 ** 1.6 ** 0.8 ** 

 

23670 54.3 ** 55.4 ** 1.7 ** 0.6 *** 

 

23671 59.7 * 58.3 ** 1.9 0.9 ** 

 

23672 61.3 * 60.7 * 2.0 0.9 ** 

 

23673 52.0 ** 53.3 ** 1.7 ** 0.8 * 

 

23674 80.7 81.0 2.6 0.9 ** 

  23675 76.0 78.7 2.5 0.9 * 
 
*, **, ***Significantly different from mock-inoculated control at the P ≤ 0.05, P ≤ 0.001, and P ≤ 

0.0001 levels using Dunnett's test. †Results are the means of three experiments. I.S. = Initial 

stand; F.S. = Final stand; D.A.W. = Dry aerial weight; D.R.W. = Dry root weight. 
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Table 5.3 Correlation coefficients (r) and probabilities (P) for linear correlations among soybean seed germination and vigor 

characteristics in plants with inoculated seeds with F. proliferatum isolates in laboratory and greenhouse assays. † 

 

 

 

†Data combined for three laboratory (LAB) and greenhouse (GH) experiments. 

Variable Final stand 

GH - (%) 

Root weight 

GH - (g)

Aerial weight 

GH - (g)

Normal Germ. 

LAB - (%)

Abnormal Germ. 

LAB - (%)

Dead Seed 

LAB - (%)

F.S.W. 

LAB - (g)

DSI LAB

Initial final GH (%) (r) 0.9888 0.7727 0.9749 0.4610 -0.4248 -0.4021 0.2510 -0.4815

P < 0.0001 < 0.0001 < 0.0001 0.01550 0.0272 0.0376 0.2066 0.011

Final stand GH (%) … 0.77732 0.96395 0.43087 -0.4105 -0.36806 0.21853 -0.44509

… < 0.0001 < 0.0001 0.02490 0.0334 0.0589 0.2735 0.02

Root weight GH (g) … … 0.71531 0.47087 -0.46355 -0.39376 0.2368 -0.50687

… … < 0.0001 0.01320 0.0149 0.0421 0.2343 0.007

Aerial weight GH (g) … … … 0.41867 -0.38772 -0.36398 0.26069 -0.41526

… … … 0.02970 0.0457 0.062 0.1737 0.0312

Normal Germ. LAB (%) … … … … -0.80071 -0.94048 0.81077 -0.96107

… … … … < 0.0001 < 0.0001 < 0.0001 < 0.0001

Abnormal Germ. LAB (%) … … … … … 0.54947 -0.52844 0.70497

… … … … … < 0.0001 < 0.0001 < 0.0001

Dead Seed LAB (%) … … … … … … -0.083101 0.9405

… … … … … … < 0.0001 < 0.0001

Fresh seedling weight LAB (g) … … … … … … … -0.76669

… … … … … … … < 0.0001
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Table 5.4 P values of F tests from analysis of variance for soybean seed quality variables as 

measured with six inoculum potentials and two soybean seedborne Fusarium 

proliferatum isolates (α = 0.05). 

  

 

Df  
Normal 

Germ. (%) 

Abnormal 

Germ. (%) 

Dead 

Seed (%) 

F.S.W. 

(g) 

Agressiveness  1 < 0.001 0.0061 < 0.001 < 0.001 

Inoculum potential (IP) 5 < 0.001 < 0.001 < 0.001 < 0.001 

Agressiveness * IP 5 0.0002 0.0190 0.0048 0.0026 

 

Normal Germ. = Normal germination; Abnormal Germ. = Abnormal germination; Dead Seed = 

Dead seed; F.S.W.=Fresh Seedling weight. 
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Table 5.5 Influence of inoculum potential treatment (IP) of two-soybean seedborne Fusarium 

proliferatum isolates on soybean seed quality variables, in laboratory condition (α = 0.05). 

 

 

Normal Germ. (%)  Abnormal Germ. (%)  Dead seed (%)  F.S.W. (g) 

IPa 23670b 23675c 23670 23675 23670 23675 23670 23675 

IP0 93.5 93.7 2.7 3.1 3.9 3.3 23.8 23.9 

IP1 89.7 91.1 2.3 3.3 8.0 6.3 22.2 22.2 

IP2 78.7** 83.0 9.7 6.7 11.7 7.3 21.0 21.5 

IP3 60.3*** 76.0** 24.0** 17.3** 15.7* 11.7** 18.1** 20.8* 

IP4 43.3*** 67.0*** 27.0*** 17.7** 29.7** 20.3*** 15.0*** 19.3** 

IP5 19.7*** 53.0*** 31.0*** 22.3** 49.3*** 24.0*** 12.6*** 17.2** 

 
aInoculum potential treatments (IP); Mock-inoculated seeds, treatment IP0; Inoculum potential, 

treatment IP1 (2.5  101 conidia ml-1); Inoculum potential, treatment IP2 (2.5  102 conidia ml-1); 

Inoculum potential, treatment IP3 (2.5  103 conidia ml-1); Inoculum potential, treatment IP4 (2.5 

 104 conidia ml-1); Inoculum potential, treatment IP5 (2.5  105 conidia ml-1). bHighly 

aggressive (HA) F. proliferatum isolate (23670). cModerately aggressive (MA) F. proliferatum 

isolate (23675).  *, **, *** Significantly different from mock-inoculated seeds (IP0) at the P ≤ 0.05, 

P ≤ 0.001, and P ≤ 0.0001 levels using Dunnetts test. Normal Germ. = Normal germination; 

Abnormal Germ. = Abnormal germination; Dead Seed = Dead seed; F.S.W. = Fresh Seedling 

weight. 
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Chapter 6 - Conclusions and future work 

 

The main objective of this dissertation was to characterize the identity, frequency, and 

pathogenicity of soybean seedborne Fusarium spp. in the state of Kansas. 

 

 The first objective of this study (Chapter 3; Appendix A; Appendix B) was to survey 

soybean seed samples throughout the state of Kansas using a culture-dependent approach (semi-

selective medium) for characterization of Fusarium species. Overall, nine Fusarium spp. were 

found in naturally infected soybean seeds. Two new soybean seedborne Fusarium spp., F. 

thapsinum and F. fujikuroi, were detected and reported for the first time in the United States. 

Fusarium semitectum, F. proliferatum, and F. verticillioides were the three most frequently 

identified Fusarium spp. observed during the three-year survey. Besides identification and 

frequency, pathogenicity tests were conducted in laboratory and greenhouse environments to 

better understand the potential of Fusarium spp. to decrease soybean seed quality. Using 

artificially infested seed, F. proliferatum, F. thapsinum, F. fujikuroi, F. oxysporum, and F. 

graminearum decreased soybean seed germination and vigor. Also, those Fusarium spp. were 

able to significantly incite seedling damping-off in greenhouse assays. Fusarium acuminatum, F. 

equiseti, F. semitectum, and F. verticillioides were identified as non-pathogenic to soybean in 

both environments (Chapter 3). Also, seedborne isolates of F. proliferatum exhibited significant 

variation regarding aggressiveness ranging from low to high. Along with soybeans, F. fujikuroi 

was also tested for pathogenicity against rice plants and results suggest that soybean seedborne 

F. fujikuroi causes reduced seed germination and seedling damping-off in rice and elongation of 

plant internodes. Additional screening for pathogenicity should include more soybean genotypes 
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and seedborne Fusarium isolates of pathogenic as well as non-pathogenic species. It would be 

important to investigate the influence of soybean seedborne Fusarium spp. in other commonly 

planted crops in Midwest such as sorghum, wheat, and sunflower. In addition to laboratory and 

greenhouse screening, future studies should also include field experiments to investigate the 

relationship between the presence of pathogenic Fusarium spp. in seeds and yield losses.  

 

In Chapter 4, the frequency of Fusarium spp. among and within asymptomatic soybean 

seed samples was investigated using DNA metabarcoding. Using this sensitive technology, the 

genus Fusarium was identified in each of the seed samples tested. Seven Fusarium spp. were 

identified using Illumina MiSeq platform including F. acuminatum, F.proliferatum, 

F.thapsinum, F. merismoides, F. solani, Fusarium sp., and F. semitetum. Interestingly, two 

known pathogenic seedborne groups such as F. proliferatum and F. thapsinum were identified in 

every single asymptomatic soybean seed analyzed in this study. In addition, preliminary 

experiments (Appendix C) also showed the presence of these two pathogenic species within the 

three major soybean seed tissues, seed coat cotyledons, and embryo axis of high quality seeds 

analyzed. However, the significance and implications of healthy or asymptomatic soybean seeds 

being inhabited by plant pathogens remain to be elucidated in future studies. More soybean seed 

samples representing different genotypes, physiological, physical, biochemical, and 

environmental conditions should be considered. Moreover, it would be interesting to test and use 

multiple methodologies for DNA extraction of the fungal community from soybean seeds. Also, 

future experiments should consider using different primer sets and databases, specifically 

designed for plant pathogenic Fusarium spp. These experiments would help us to gain more 

knowledge regarding the pathogenic fungal community inhabiting commercial seed lots.  
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DNA metabarcoding has tremendous potential in seed pathology studies and may expand 

and refine our understanding regarding the influence and significance of seedborne pathogens on 

seed quality, mainly due to its potential to unveil the set of fungi that commonly live within the 

seed, independently of host genotype, physical, physiological, and environmental conditions.i.e. 

the seed core mycobiome. The findings of this study for example, suggest that at least two 

pathogenic seedborne Fusarium spp., F. proliferatum and F. thapsinum, are common inhabitants 

of the soybean seed core mycobiome. The reasons why and how important pathogenic groups 

are, or become, common inhabitants of the seed core mycobiome is an interesting question that 

should be further investigated. Each newly identified pathogen inhabiting the seed core 

mycobiome, comprises a step towards improvement and development of new seed and seedling 

disease management strategies. Understanding the soybean seed core mycobiome can help us to 

better address and estimate inoculum thresholds for pathogenic species, which can contribute to 

the development of new seed health testing methods.  

 

The objectives of Chapter 5 were to understand the influence of inoculum potential (i.e., 

amount of inoculum) and the aggressiveness of pathogenic seedborne Fusarium spp., in 

particular, F. proliferatum, on soybean seed quality. The presence of pathogenic F. proliferatum 

within asymptomatic soybean seeds (Chapter 4 and Appendix C) and its aggressiveness 

variability (Chapter 3) led us to hypothesize that the influence of this pathogen on soybean seed 

quality is dependent on the amount and aggressiveness of inoculum present in the seed. Results 

from laboratory pathogenicity assays showed that the amount of inoculum (i.e. inoculum 

potential) significantly influenced the decrease of soybean seed quality. Moreover, the decline in 

soybean seed quality was also influenced by the aggressiveness of the F. proliferatum isolate. 
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Most importantly, at low inoculum potential, none of the F. proliferatum isolates were able to 

significantly reduce seed quality. Similar responses were also observed with F. verticillioides 

and F. semitectum, and their ability to decrease soybean seed quality were also influenced by the 

amount of inoculum present in the seed (Appendix D). These results may explain the presence of 

pathogenic Fusarium species, such as F. proliferatum, within naturally infected and 

asymptomatic soybean seeds observed in previous studies (see Chapter 4 and Appendix C). In 

addition, preliminary results found in Appendix D also indicate that soybean variety plays a 

major role in soybean seed, and likely seedling, disease development. Ideally, more detailed 

experiments are necessary to unveil the mechanisms involved in the pathogenisis of soybean 

seedborne Fusarium spp. For example, RNAseq experiments should be considered to dissect the 

molecular mechanisms governing the lifestyle switch (non-pathogenic to pathogenic) present 

among soybean seedborne Fusarium spp. Gene expression profiling could serve as a baseline for 

the search of biomarkers to be used in next-generation seed health testing.  

 

The movement of plant pathogens throughout infected seeds is a concern and represents a 

significant challenge facing modern agriculture due to its potential to introduce exotic plant 

diseases into new hosts and areas. The correct identification and frequency of soybean 

seedborne Fusarium spp. as well as information regarding their potential pathogenicity to the 

crop is essential for the development of effective disease control management strategies, 

improvements in seed certification and quarantine programs, and as a basis for making decisions 

to protect the future of agriculture. 
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Appendix A - Pedrozo and Little (2014) 

 

This study has been published as the following: Pedrozo, R., and Little, C. (2014). First 

report of seedborne Fusarium thapsinum and its pathogenicity on soybean (Glycine max) in the 

United States. Plant Disease, 98:1745. 
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Abstract 

 

A three-year survey from 2010 to 2012 was conducted in Kansas to investigate the 

identity and diversity of seedborne Fusarium spp. in soybean. A total of 408 soybean seed 

samples from 10 counties were tested. One hundred arbitrarily selected seeds from each sample 

were surface-sterilized for 10 min in a 1% sodium hypochlorite solution to avoid contaminants 

and promote the isolation of internal fusaria. Seeds were rinsed with sterile distilled water and 

dried overnight at room temperature (RT). Surface-sterilized seeds were plated on modified 

Nash-Snyder medium and incubated at 23 ± 2°C for 7 days. Fusarium isolates were single-

spored and identified by morphological characteristics on carnation leaf agar (CLA) and potato 

dextrose agar (PDA) (Leslie and Summerell 2006). From 276 seedborne Fusarium isolates, six 

were identified as F. thapsinum (Klittich et al. 1997). On CLA, F. thapsinum isolates produced 

abundant mycelium and numerous chains of non-septate microconidia produced from 

monophialides. Microconidia were club-shaped and some were napiform. No chlamydospores 

were found. On PDA, three of the isolates presented characteristic dark yellow pigmentation and 

three were light violet. Confirmation of the isolates to species was based on sequencing of an 

elongation factor gene (EF1-α) segment using primers EF1 and EF2 and the beta-tubulin gene 

using primers Beta1 and Beta2 (Geiser et al. 2004). Sequence results (~680 bp, EF primers; ~600 

bp, beta-tubulin primers) were confirmed by using the FUSARIUM-ID database (Geiser et al. 

2004). All isolates matched F. thapsinum for both genes sequenced (Accession No. FD01177) at 

99% identity. Koch's postulates were completed for two isolates of F. thapsinum under 

greenhouse conditions. Soybean seeds (Asgrow AG3039) were imbibed with 2.5 × 105 conidia 

ml−1 for 48 h. After inoculation, seeds were dried for 48 h at RT. One isolate each of F. 

equiseti and F. oxysporum were used as the non-pathogenic and pathogenic inoculation controls, 
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respectively. In addition, non-inoculated seeds and seeds imbibed in sterile distilled water 

(mock) were also used. Twenty-five seeds from each treatment were planted in pots (500 ml) 

with autoclaved soil and vermiculite (1:1). The experiment was a completely randomized design 

with three replicates (pots) per isolate. The entire experiment was repeated three times. After 21 

days, aggressiveness of both F. thapsinum isolates was assessed using initial stand (%), final 

stand (%), and seed mortality (% of non-germinated seeds). Both seedborne F. 

thapsinum isolates caused reduced emergence and final stand, and increased seedling mortality 

when compared to the non-inoculated and F. equiseti controls (P< 0.0001). No significant 

difference was observed between F. thapsinum isolates and F. oxysporum. F. thapsinum isolates 

were re-isolated from wilted seedlings and non-germinated seeds, but not from the control 

treatments. Typically, F. thapsinum is considered a pathogen of sorghum, but it has also been 

recovered from bananas, peanuts, maize, and native grasses (Leslie and Summerell 2006). 

However, its presence on soybean plant tissues and its pathogenicity has never been reported. To 

our knowledge, this is the first report of seedborne F. thapsinum and its pathogenicity on 

soybean in the United States. 
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Appendix B - Pedrozo et al. 2015 

This study has been published as following: Pedrozo, R., Fenoglio, J., and Little, C.R. 

(2015). First report of seedborne Fusarium fujikuroi and its potential to cause pre- and post-

emergent damping-off on soybean (Glycine max) in the United States. Plant Disease, 99:1865. 
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Abstract 

 

To investigate the identity and diversity of soybean seedborne Fusarium spp. in the state 

of Kansas, a 3-year survey was conducted. A total of 408 soybean samples obtained from nine 

counties in 2010, six counties in 2011, and 10 counties in 2012 were analyzed 

for Fusarium isolates during the survey. Seeds were surface-sterilized for 10 min with a 1% 

sodium hypochlorite solution to reduce contaminants and to enhance the isolation 

of Fusarium spp. from internal seed tissues. After incubation, plates were examined and colonies 

visually identified as Fusarium were single-spored by micromanipulation for confirmatory 

evaluation as described by Leslie and Summerrell (2006). All seedborne Fusarium isolates that 

were identified morphologically and grouped into the Gibberella fujikuroi species complex 

(GFSC) were confirmed based on identity with the translocation elongation factor 1-alpha (TEF-

1α) gene. From 94 seedborne GFSC Fusarium isolates, six isolates were identified as F. 

fujikuroi using PCR. In order to further confirm the identity of the F. fujikuroi-like isolates, five 

additional markers were used including β-tubulin (tub-2), RNA polymerase second largest 

subunit (RPB2), histone 3 (H3), calmodulin (cmd), and mitochondrial small subunit (mtSSU). A 

BLAST search of GenBank (NCBI) showed that the sequences of all markers matched those 

of F. fujikuroi (Accession Nos. JN695742, HF679028, AF158332, and JX910420) with 99 to 

100% identity. Koch’s postulates were fulfilled using all six isolates under greenhouse 

conditions. Soybean seeds (AG3039, Asgrow) were imbibed in sterile distilled water with 2.5 × 

105 conidia/ml for 48 h. After inoculation, seeds were dried for 48 h at room temperature. 

Additionally, non-inoculated seeds and seeds mock-inoculated with sterile distilled water were 

used as controls. Artificially inoculated seeds were planted in pots (500 ml) with autoclaved soil 

(Reading silt clay loam) and vermiculite (1:1) in the greenhouse. The pathogenicity of the F. 
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fujikuroi isolates was assessed based upon initial stand (% of seedlings germinated after 10 

days), final stand (% of seedlings germinated after 25 days), and seed mortality (% of pre- and 

post-emergence damping-off after 25 days). The experiment was a completely randomized 

design with three replicates (25 seeds/pot) per isolate and the entire experiment was repeated 

three times. Since F. fujikuroi is known to cause bakanae disease on rice (Leslie and Summerell 

2006), the isolates were also tested against rice seedlings (cv. Koshihikari, Kitazawa Seed Co.) 

using the methodology described above. Fusarium fujikuroi isolates were able to reduce 

emergence (P < 0.0001), final stand (P < 0.0001), and significantly increased seed mortality 

(pre- and post-emergence damping-off) (P < 0.0001) when compared with the controls for both 

soybean and rice. Furthermore, only on rice, typical bakanae symptoms such as elongation of 

seedlings were observed. F. fujikuroi isolates were reisolated from symptomatic seedlings and 

non-germinated seeds in both crops, but not from the control treatments. F. fujikuroi has been 

recovered from crops other than rice, including maize, wheat, strawberries, and water grass 

(Echinochloa spp.) (Carter et al. 2008; Suga et al. 2014; Wiemann et al. 2013). However, its 

presence and pathogenicity on soybean have not been previously reported. To our knowledge, 

this is the first report of soybean seedborne F. fujikuroi and its potential to cause pre- and post-

emergent damping-off on soybean in the United States. 
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Effects of seedborne soybean Fusarium fujikuroi isolates on soybean and rice seeds 

artificially inoculated under greenhouse conditions. A, B and C, response of soybean 

seedlings inoculated with F. fujikuroi isolates. D, E and F, response of rice seedlings 

inoculated with F. fujikuroi isolates. CO = control, MO = mock-inoculated seeds; 

RCPL10004, RCPL12171, RCPL12295, RCPL12299, RCPL12304, RCPL12304 and 
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Figure 1. Effects of seedborne soybean Fusarium fujikuroi isolates on soybean and rice seeds 

artificially inoculated under greenhouse conditions. A, B, and C, response of soybean seedlings 

inoculated with F. fujikuroi isolates. D, E, and F, response of rice seedlings inoculated with F. 

fujikuroi isolates. CO = control, MO = mock-inoculated seeds; RCPL10004, RCPL12171, 

RCPL12295, RCPL12299, RCPL12304, RCPL12304, and RCPL12319 = F. fujikuroi isolates. 

Means with the same letter are not significantly different according to Tukey-Kramer test (P = 

0.05). G and H, non-inoculated seeds (control) presented normal final stand (% of germinated 

seeds) when compared with Fusarium-infected seeds (RCPL12295) 25 days post-inoculation. I, 

characteristic blighted seedling symptoms (yellow arrows) inoculated with pathogenic seedborne 

F. fujikuroi isolates. J, typical bakanae symptom of internode elongation on rice seedlings 

(yellow arrows). K, post-emergence damping-off on rice seedlings (yellow arrows). Successful 

re-isolation of F. fujikuroi from symptomatic tissues from soybean and rice seedlings was 

obtained. L, example of pure culture of F. fujikuroi (RCPL12295) isolated from symptomatic 

soybean seedling tissues. 
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Table 1. Molecular identification of six Fusarium fujikuroi isolates collected during a 3-year survey (2010 to 2012) of soybean 

seedborne fungi in the state of Kansas, USA. 

 

 TEF 1-a -tubulinb RPB2c Histoned Calmoduline mtSSUf 

FFU 

Isolates 

ID 

(%)g 

Accession 

numberh 

ID 

(%) 

Accession 

number 

ID 

(%) 

Accession 

number 

ID 

(%) 

Accession 

number 

ID 

(%) 

Accession 

number 

ID 

(%) 

Accession 

number 

RCPL10004 100 JN695742 100 HF679028 100 HF679028 100 HF679028 99 HF679028 100 JX910420 

RCPL12171 100 JN695742 100 HF679028 100 HF679028 100 HF679028 99 HF679028 100 JX910420 

RCPL12295 99 HF679028 100 HF679028 99 HF679028 99 HF679028 100 AF158332 100 JX910420 

RCPL12299 99 HF679028 100 HF679028 99 HF679028 100 HF679028 99 AF158332 100 JX910420 

RCPL12304 99 HF679028 100 HF679028 100 HF679028 100 HF679028 100 AF158332 99 JX910420 

RCPL12319 99 HF679028 100 HF679028 99 HF679028 100 HF679028 99 HF679028 100 JX910420 

 

aTranslocation elongation factor 1-alpha primer set (TEF1: 5'-ATGGGTAAGGA(A/G)GACAAGAC and TEF2: 5'- 

GGA(G/A)GTACCAGT(G/C)ATCATGTT); bbeta-tubulin (β-tub T01: 5'-AACATGCGTGAGATTGTAAGT and T02: 5'- 

TCTGGATGTTGTTGGGAATCC; cRNA polymerase second largest subunit (5F2: 5'-GGGGWGAYCAGAAGAAGGC and 7cR: 5'- 

CCCATRGCTTGYTTRCCCAT); dHistone 3 primer set (H3-1a: 5'-ACTAAGCAGACCGCCCGCAGG and H3-1b: 5'– 

GCGGGCGAGCTGGATGTCCTT); eCalmodulin (CL1: 5'-GA(GA)T(AT)CAAGGAGGCCTTCTC and Cl2: 5'- 

TTTTTGCATCATGAGTTGGAC; fMitochondrial small subunit (MS1: 5'-CAGCAGTCAAGAATATTAGTCAATG and MS2: 5'- 

GCGGATTATCGAATTAAATAAC; g,hPercent identity (ID) to the reference GenBank (NCBI) strain and accession number. 
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Appendix C - Position of Fusarium spp. within the three major 

soybean seed tissues: seed coat, cotyledons, and embryo axis. 

 

This supplementary material shows preliminary results regarding the exploration of the 

fungal community, with focus on Fusarium spp., within the three major soybean seed tissues, 

seed coat, cotyledons and embryo axis of asymptomatic seeds. Two soybean genotypes were 

used to explore the position of F. proliferatum within soybean seed tissues using DNA 

metabarcoding, Asgrow 'AG3039' (Monsanto, Inc.; St. Louis, MO, USA) and Midland 4263 

(Sylvester Ranch INC, Ottawa, KS, USA). The position of Fusarium spp. in naturally infected 

and asymptomatic soybean seed samples were based on the amplification of the ITS2 region of 

seedborne fungi following methodology described in Chapter 4.  
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Figure C.1 Midland 4263 (Naturally infected, NI) and AG3039 (High quality seeds, CO), were 

used to explore the location of Fusarium spp. among three major soybean seed tissues, seed coat 

(SC), cotyledons (CT) and embryo axis (EA). Three biological replicates were used from each 

genotype (R1, R2, and R3). Each replicate was composed of five healthy seeds (asymptomatic 

seeds). Before DNA extraction, seed tisues were surface sterilized using a 5% bleach solution 

(0.5 sodium hypochlorite v/v) for 5 minutes and dried overnight at room temperature. After 

extraction and quantification, the DNA was normalized (N) to 5.0 ng μl-1. Three technical 

replicates were used for the amplication of the ITS2 region (PCR 1, 2, 3). Nested PCR (n) was 

conducted after the first round of PCR using barcoded reverse ITS4 primers. Sequencing (S), 

using Illumina V3. Technology, was used after library construction. 

  



 155 

 
Figure C.2 Presence of Fusarium species (OTU07, OTU20, OTU21, OTU31, OTU60) among 

three major soybean seed tissues, seed coat (CT), cotyledons (CT) and embryo axis (EA). 

Among the OTUs observed, two were identified as F. proliferatum (OTU07), one as one as F. 

thapsinum (OUT20), one as F. acuminatum (OTU21), one as F. merismoides (OTU31), and once 

as Fusarium sp. (OTU60). Two genotypes, Midland 4263 (Naturally infected, NI) and AG3039 

(High quality seeds, CO), were used in this study. Three replicates (1, 2, and 3) were observed 

from CO (A, C and E) and from NI seed tissues (B, D, and F). 
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Table C.1 Physical, physiological and sanitary quality of the soybean seed samples Midland 

4264 and Asgrow (3039) used in this study. 

 

 
Genotype 

Physical  

(%)  

Physiological (%) Sanitary (%) 

Code Tz a Germ. b AAL c FPR d 

NI e Midland - 4263 1.5 96.7 95.8 1.0 8.0 

CO f Asgrow - 3039 1.5 97.4 94.0 0.0 0.0 

 

a Tetrazolium test (Tz); b Germination test (Germ.); c Alternaria alternaria (AAL); d Fusarium 

proliferatum (FPR); e Naturally infected soybean seeds (NI); f High quality commercial seeds 

(CO).  
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Table C.2 Primers and Multiplexing IDentifiers (MIDs) sequences used for sample identification 

in Illumina MiSeq ITS2 amplicon library. Sample ID includes (1) individual soybean seed tissue 

replicate (seed coat, SC1-SC3; cotyledons, CT1-CT3; embryo axis, EA1-EA3); (2) soybean seed 

sample (S3 and CO*). *High quality soybean seed sample (CO). 

 

Forward primer (ITS 1F) - CTTGGTCATTTAGAGGAAGTA  

Forward primer (f ITS1 7) - GTGARTCATCGAATCTTTG 

Reverse primer (ITS 4) - TCCTCCGCTTATTGATATGC  

Sample_ID  MIDs  Primers (5’ - MIDs + ITS4 - 3') 

SC1_S3 AGGCTTACGTGT  AGGCTTACGTGTTCCTCCGCTTATTGATATGC 

SC2_S3  TCTCTACCACTC  TCTCTACCACTCTCCTCCGCTTATTGATATGC 

SC3_S3  ACTTCCAACTTC  ACTTCCAACTTCTCCTCCGCTTATTGATATGC 

CT1_S3  CTCACCTAGGAA  CTCACCTAGGAATCCTCCGCTTATTGATATGC 

CT2_S3  GTGTTGTCGTGC  GTGTTGTCGTGCTCCTCCGCTTATTGATATGC 

CT3_S3  CCACAGATCGAT  CCACAGATCGATTCCTCCGCTTATTGATATGC 

EA1_S3  TATCGACACAAG  TATCGACACAAGTCCTCCGCTTATTGATATGC 

EA2_S3  GATTCCGGCTCA  GATTCCGGCTCATCCTCCGCTTATTGATATGC 

EA3_S3  CGTAATTGCCGC  CGTAATTGCCGCTCCTCCGCTTATTGATATGC 

SC1_CO  GGTGACTAGTTC  GGTGACTAGTTCTCCTCCGCTTATTGATATGC 

SC2_CO  ATGGGTTCCGTC  ATGGGTTCCGTCTCCTCCGCTTATTGATATGC 

SC3_CO  TAGGCATGCTTG  TAGGCATGCTTGTCCTCCGCTTATTGATATGC 

CT1_CO  AACTAGTTCAGG  AACTAGTTCAGGTCCTCCGCTTATTGATATGC 

CT2_CO  ATTCTGCCGAAG  ATTCTGCCGAAGTCCTCCGCTTATTGATATGC 

CT3_CO  AGCATGTCCCGT  AGCATGTCCCGTTCCTCCGCTTATTGATATGC 

EA1_CO  GTACGATATGAC  GTACGATATGACTCCTCCGCTTATTGATATGC 

EA2_CO  GTGGTGGTTTCC  GTGGTGGTTTCCTCCTCCGCTTATTGATATGC 

EA3_CO  ATGCCATGCCGT  ATGCCATGCCGTTCCTCCGCTTATTGATATGC 
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Table C.3 Taxonomic assignment of representative ITS2 OTUs according to UNITE and GenBank reference sequences. 

 

   

ID  UNITE GenBank 

OTUs Reads  In (%)a  Genus Species Accession No. Accession No. Ident. (%)b 

OTU01 123,746 100.0 Alternaria  A. alternata SH215493.07FU LT560139  100 

OTU02 29,408 100.0 Others* Others SH208383.07FU KP814441 78 

OTU03 19,771 100.0 Diaporthe D. longicolla SH185492.07FU U97658  100 

OTU04 18,790 100.0 Unclassified fungi Unclassified fungi   SH190991.07FU JX675046 100 

OTU05 18,450 100.0 Wallemia   Wallemia sp. SH216453.07FU KF800096 100 

OTU06 18,311 100.0 Cryptococcus   Cryptococcus sp. SH197623.07FU LC018794 100 

OTU07 18,033 100.0 Fusarium F. proliferatum  SH219673.07FU X94171 99 

OTU08 17,810 100.0 Unclassified fungi Unclassified fungi SH203201.07FU KC785574 100 

OTU09 8,478 77.8 Unclassified fungi Unclassified fungi SH216453.07FU KT799189 100 

OTU10 8,344 77.8 Others Others |SH010949.07FU FJ936151 92 

OTU11 7,760 100.0 Wallemia   Wallemia sp. SH216454.07FU FR682244 97 

OTU12 7,144 38.9 Rhodotorula  R. yarrowii  SH198363.07FU NR:073328 100 

OTU13 7,104 66.7 Unclassified fungi Unclassified fungi SH197623.07FU KU515728 100 

OTU14 3,777 72.2 Exserohilum E. rostratum SH211295.07FU| KU945863 100 

OTU15 3,726 50.0 Tilletiopsis  T. washingtonensis  SH186666.07FU HQ115649 99 

OTU16 2,894 88.9 Epicoccum E. nigrum  SH207241.07FU KU254609 100 

OTU17 1,156 55.6 Tilletiopsis  T. washingtonensis  SH186666.07FU KC460875 100 

OTU18 729 27.8 Penicillium P. roqueforti SH207151.07FU NR:103621 100 

OTU19 579 61.1 Aspergillus  A. ruber    SH179237.07FU U18357 100 

OTU20 564 100.0 Fusarium  F. thapsinum SH219673.07FU KM589051 100 

OTU21 497 100.0 Fusarium  F. acuminatum SH219674.07FU KU382624 100 

OTU22 312 100.0 Alternaria    A. infectoria   SH216783.07FU Y17067 100 

OTU23 310 100.0 Diaporthe   D. caulivora  SH185506.07FU KT895390 99 

OTU24 261 100.0 Unclassified fungi Unclassified fungi SH199073.07FU KC753422 99 

OTU25 249 100.0 Others Others SH211110.07FU DQ421255 95 

OTU26 226 100.0 Malassezia      M. restricta     SH176394.07FU NR:103585 100 
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OTU27 219 100.0 Malassezia M. sympodialis   SH188402.07FU KM454159 100 

OTU28 192 27.8 Others Others SH216453.07FU JF497133 95 

OTU29 172 100.0 Unclassified fungi Unclassified fungi SH200466.07FU KF800626  100 

OTU30 159 100.0 Phlebia  P. chrysocreas SH192450.07FU KP135358 99 

OTU31 154 100.0 Fusarium F. merismoides SH175278.07FU AB586998 100 

OTU32 115 100.0 Clitocybe   C. vibecina  SH218334.07FU JF907821 100 

OTU33 108 83.3 Penicillium P. brevicompactum   SH199400.07FU LN833549 100 

OTU34 107 100.0 Schizophyllum  S. commune   SH190191.07FU LC068797 100 

OTU35 100 100.0 Erysiphe E. polygoni SH187440.07FU AF011308 100 

OTU36 90 94.4 Aureobasidium  A. namibiae  SH195774.07FU KT693730 100 

OTU37 78 22.2 Wallemia   Wallemia sp. SH216453.07FU FJ524297 100 

OTU38 64 55.6 Aspergillus   Aspergillus sp. SH182491.07FU GU910689 100 

OTU39 63 83.3 Bulleromyces    B. albus    SH215453.07FU HE650882 100 

OTU40 61 61.1 Others Others -- KM247468 95 

OTU41 52 94.4 Baeospora B. myosura    SH187911.07FU LN714524 100 

OTU42 47 83.3 Nigroporus  N. vinosus    SH190478.07FU JX109857 100 

OTU43 38 88.9 Biappendiculispora  B. japonica   SH532144.07FU LC001730 99 

OTU44 33 11.1 Unclassified fungi Unclassified fungi -- KM493544 98 

OTU45 32 77.8 Unclassified fungi Unclassified fungi |SH215453.07FU KF800580 99 

OTU46 31 94.4 Unclassified fungi Unclassified fungi SH210215.07FU KT202892 100 

OTU47 28 11.1 Unclassified fungi Unclassified fungi SH190991.07FU JX675046 98 

OTU48 27 50.0 Cladosporium  C. subuliforme   SH212842.07FU LN834396  100 

OTU49 26 72.2 Resinicium   R. friabile     SH204932.07FU DQ826545 98 

OTU50 25 5.6 Unclassified fungi Unclassified fungi -- KP892326 100 

OTU51 25 55.6 Penicillium Penicillium sp. SH207150.07FU KR905616 100 

OTU52 22 5.6 Unclassified fungi Unclassified fungi SH216453.07FU KT799189 97 

OTU53 22 16.7 Alternaria Alternaria sp. SH215493.07FU GU721735 99 

OTU54 22 77.8 Others Others SH179952.07FU KT581876 85 

OTU55 21 88.9 Unclassified fungi Unclassified fungi SH190991.07FU JX67504 99 

OTU56 20 27.8 Cladosporium  C. sphaerospermum   SH216250.07FU LN834390 100 

OTU57 19 66.7 Phlebiella  P. borealis  SH532759.07FU KP814210 99 
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OTU58 19 66.7 Epicoccum  E. nigrum SH207241.07FU KU204774   100 

OTU59 18 16.7 Wallemia Wallemia sp. SH216453.07FU GU370753 98 

OTU60 16 22.2 Fusarium Fusarium sp.  SH219673.07FU X94171 97 

OTU61 12 16.7 Diaporthe D. longicolla SH185492.07FU U97658 98 

OTU62 12 11.1 Unclassified fungi Unclassified fungi SH190991.07FU JX675046 98 

OTU63 12 22.2 Wallemia   Wallemia sp. SH216453.07FU JF497133X   97 

OTU64 12 33.3 Alternaria Alternaria sp. SH215493.07FU GU721735 97 

OTU65 11 44.4 Unclassified fungi Unclassified fungi SH179952.07FU KT581876 87 

OTU66 11 11.1 Wallemia  Wallemia sp. SH216453.07FU FJ770080 98 
 

aPercentage of infected seed tissues (Incidence; In). bBLAST searches to known sequences in the NCBI databases were used for 

molecular identification of soybean seedborne fungi.*Reads presenting less than 97% identity with accessed strains from UNITE and 

GeneBank were identified as “others,” which represents unidentified sequences. 
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Table C.4 Taxonomic assignment of soybean seedborne fungi groups (phylum; unclassified 

fungi; and others), number of OTUs taxonomically assigned to a group (OTUs), % of infected 

seed tissues (incidence; In). 

 

 
  

 

Reads (n = 320,724)a 

Goups Genera In (%) OTUsb  SC  CT  EA  

Ascomycetes Alternaria    100 4 36,602 50,333 37,157 

(N = 171,919) Aspergillus   58 2 130 505 8 
 Aureobasidium  100 1 28 31 31 
 Biappendiculispora  83 1 16 11 11 
 Cladosporium  50 2 20 12 15 
 Diaporthe   100 3 15,554 4,242 297 
 Epicoccum  100 2 39 2,859 15 
 Erysiphe 100 1 32 35 33 
 Exserohilum 66 1 3,146 7 624 
 Fusarium  100 5 8,839 5,281 5,144 
 Penicillium 83 3 78 433 351 

Basidiomycetes Baeospora 100 1 14 17 21 

(N = 57,699) Bulleromyces    83 1 24 24 15 
 Clitocybe   100 1 33 39 43 
 Cryptococcus   100 1 81 9,976 8,254 
 Malassezia      100 2 98 226 121 
 Nigroporus  83 1 18 10 19 
 Phlebia  100 1 49 60 50 
 Phlebiella  50 1 4 9 6 
 Resinicium   66 1 9 8 9 
 Rhodotorula  33 1 3 3,764 3,377 
 Schizophyllum  100 1 30 40 37 
 Tilletiopsis  50 2 3,817 865 200 
 Wallemia   100 6 7,030 4,962 14,337 

Othersc -- 100 6 17,036 279 20,961 

Unclassified Fungi -- 100 15 14,157 22,894 15,779 

 

aTotal number of reads (sequences) among three major soybean seed tissues, seed coat (SC), 

cotyledons (CT) and embryo axis (EA); bTotal number of OTUs identified among SC, CT, and 

EA in both genotype studied; cReads presenting less than 97% identity with accessed strains 

from UNITE and GeneBank were identified as “others,” which represents unidentified 

sequences. 
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Table C.5 Identification of Fusarium spp. identified among three major soybean seed tissues. 

 

Species OTUs 
Number of reads 

Seed Coat Cotyledons Embryo Axis 

F. proliferatum  OTU07 8,449 4,782 4,802 

F. thapsinum OTU20 166 232 166 

F. acuminatum OTU21 170 195 132 

F. merismoides OTU31 53 58 43 

Fusarium sp. OTU60 1 14 1 
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Table C.6 Incidence of Fusarium spp. observed among three major soybean seed tissues, seed 

coat (SC), cotyledons (CT), and embryo axis (EA). 

 

  

Incidence (%)  

  

SC  CT  EA  

Fusarium spp. OTUs CO a NI b CO NI CO NI 

F. proliferatum  OTU07 100 100 100 100 100 100 

F. thapsinum OTU20 100 100 100 100 100 100 

F. acuminatum OTU21 100 100 100 100 100 100 

F. merismoides OTU31 100 100 100 100 100 100 

Fusarium sp. OTU60 0 33 33 33 0 33 

 

a High-quality seeds (CO; Asgrow 3039); b Naturally infected seeds (NI; Midland 4263) 
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Appendix D - Pedrozo and Little (2016) 

 

This study has been published as following journal article: Pedrozo, R., & Little, C. R. 

(2016). Fusarium verticillioides inoculum potential influences soybean seed quality. European 

Journal of Plant Pathology, doi:10.1007/s10658-016-1127-z. Supplementary information can be 

accessed online. 
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Abstract 

 

F. verticillioides (FVE) is an important Fusarium species that has been recovered from 

soybean seeds. In other crops, such as maize, it has the potential to decrease seed germination 

and vigor. The objective of this study was to evaluate the influence of seed inoculum potential 

(amount of inoculum present in seeds) of FVE on soybean seed quality, as measured by 

germination of artificially inoculated seeds. Seeds were inoculated with 2.5 × 105 FVE 

conidia/ml for one minute as the low inoculum potential seed treatment. For the high inoculum 

potential seed treatment, inoculated seeds were inoculated with the same conidia suspension, but 

osmoconditioned on potato dextrose agar +8% mannitol for 48 h. Two soybean genotypes, 

‘AG3039’ and ‘KSU3406’ were tested. Analysis of seeds inoculated with the low inoculum 

potential treatment showed that none of the FVE isolates tested and only the positive controls 

were able to significantly reduce soybean seed germination (P < 0.001) when compared with the 

mock-inoculated control for both genotypes tested. Under the high inoculum potential treatment, 

all three FVE isolates were able to decrease seed germination when compared with the mock-

inoculated control treatment for both genotypes. This study suggests that F. verticillioides has 

the potential to reduce soybean seed quality, depending on the amount of inoculum present in 

seeds (inoculum potential), which affects pathogenicity and negatively influences soybean seed 

germination as well as the establishment of a uniform and healthy stand in the field. 
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Fusarium spp. are among the most important plant pathogens (Leslie and Summerell 

2006). For soybeans, Fusarium spp. can range from non-pathogenic to pathogenic with the 

potential to cause diseases that result in significant economic losses, reduce yield, and impact 

seed quality (Agarwal and Sinclair 1996; Neergaard 1979). Furthermore, infected seeds can 

serve as a source of inoculum dispersal, which provides primary inoculum for pathogen 

infestation and establishment into new hosts and fields (Agarwal and Sinclair 1996; Neergaard 

1979). Although the importance of Fusarium spp. to soybean crop production has been 

documented, the role of seedborne Fusarium spp. on soybean disease development, especially as 

seedling pathogens, remains poorly understood and underexplored (Agarwal and Sinclair 1996; 

Barros et al. 2014). 

 

F. verticillioides (Sacc.) Nirenberg has been recovered from soybean seeds worldwide 

(Garcia et al. 2012; Ivić et al. 2009; Zelaya et al. 2013; Pedrozo and Little 2015). Although F. 

verticillioides (FVE) has the potential to decrease seed germination and vigor in maize, its 

influence on seed germination and vigor in soybean remain unexplored. Some studies report that 

maize seed lots with a high incidence of this fungus experience little or no reduction in 

germination or seedling growth, while others may be seriously affected by the fungus (Machado 

et al. 2013; Munkvold et al. 1997; Oren et al. 2003). Besides the incidence of a pathogen in a 

seed lot, other variables should be considered to evaluate the effect of microorganisms on seed 

germination and vigor, of which the amount of inoculum (inoculum potential) present in the seed 

plays an important role (Agarwal and Sinclair 1996; Neergard 1979). Machado et al. (2013) 

reported that the most severe effects of F. verticillioides on the development of maize seed and 

seedlings and adult plants were observed at the highest levels of inoculum potential. On soybean 
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seeds, no information regarding the pathogenicity of F. verticillioides and its impact upon seed 

quality is available. Thus, the objective of this study was to evaluate the ability of F. 

verticillioides to decrease soybean seed quality, measured here by germination of artificially 

inoculated soybean seeds using low and high inoculum potential treatments. 

 

The Fusarium isolates used in this study were previously identified, deposited, and 

accessed in the Fusarium collection in the Department of Plant Pathology at Kansas State 

University, USA. Three seedborne F. verticillioides isolates (K-State accession nos. 23591, 

23604, and 23625) were tested for their pathogenicity in soybean seeds under growth chamber 

conditions. The rolled-towel method, used to evaluate the pathogenicity of F. graminearum on 

soybean and corn by Ellis et al. (2011), was used to compare the pathogenicity of each F. 

verticillioides isolate and its influence on seed germination. For negative controls, three non-

pathogenic seedborne isolates of F. semitectum were used (K-State accession nos. 23586, 23590, 

and 23616). F. semitectum is normally classified as a weak or non-pathogen of soybean seed and 

seedlings (Leslie and Summerell 2006; Pedrozo and Little 2015). As positive controls, three 

pathogenic seedborne F. proliferatum isolates were used (K-State accession nos. 23592, 23602, 

and 23621). F. proliferatum has the potential to decrease soybean seed germination and vigor 

(Pedrozo and Little 2015) and has been reported as a potential source of inoculum for soybean 

seedling and root diseases (Arias et al. 2011). Interestingly, F. semitectum and F. proliferatum 

are both commonly reported on soybean seeds (Leslie and Summerell 2006; Pedrozo and Little 

2015; Roy et al. 2001). 

 

The soybean varieties used for this study were Asgrow ‘AG3039’ (Monsanto, Inc.; St. 

Louis, MO, USA) and ‘KSU3406’ (Kansas State University, Manhattan, KS, USA). Prior to 
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inoculation, seeds were surface disinfested with a 5% bleach solution (0.5 sodium hypochlorite 

v/v) for 1 min and dried overnight at room temperature. The germination and sanitary aspects of 

the seeds were also evaluated prior to inoculation, and 94% and 91% germination and zero 

incidence of Fusarium in the soybean seeds were observed for both genotypes used (data not 

shown). Two inoculum potential treatments were used, “low” and “high”. In this study, the 

inoculum potential is empirically referring to the physical amount of inoculum present in the 

seed. The low inoculum potential treatment was achieved by imbibing the seeds with a 25 ml 

conidial suspension for 1 min at 2.5 × 105 conidia ml−1 (Supplementary Fig. 1). The high 

inoculum potential treatment was achieved by using osmoconditioning (i.e., the “water 

restriction” method) (Machado et al. 2004). After imbibement in the conidia suspension, seeds 

were incubated in direct contact with the isolates inoculum for 48 h at 30 °C in potato dextrose 

agar (PDA) medium amended with 81.3 g of mannitol (osmotic restrictor) per liter, to provide an 

osmotic potential of −1.2 MPa preventing the germination of the seeds. After inoculation, seeds 

were dried at room temperature for 24 h and then used for the germination test (Supplementary 

Fig. 1). 

 

Twenty-five artificially inoculated seeds, with low and high inoculum potential treatment, 

were placed on two moistened sheets of germination paper (Anchor Paper Co., St. Paul, MN, 

USA). An additional sheet of moistened germination paper was placed over the inoculated seeds, 

the layers were rolled into a tube, secured by a rubber band, set upright in a modified plastic 

Rubbermaid® Cereal Keeper container (Newell Rubbermaid Co., Atlanta, GA, USA) and 

incubated in a growth chamber (Power Scientific Inc., St. Louis, MO, USA) at 25 °C for seven 

days. During the growth chamber experiment, temperature and humidity within the plastic 
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containers were checked using a data logger (MicroDAO Ltd., Contoocook, NH, USA) and 

averaged 25 °C and 88%, respectively. After 7 days of incubation, seed germination (%) and 

disease severity index (DSI) were measured (Broders et al. 2007; Ellis et al. 2011). DSI was 

calculated using a scale of 0 to 3 where: “0” = germinated seeds and healthy and normal 

seedlings with no symptoms on the primary and/or secondary roots or hypocotyl; “1” = seed 

germinates and abnormal seedling shows minor discoloration and reduction on the primary 

and/or secondary roots as well as hypocotyl; “2” = seed germinates and abnormal seedling shows 

heavy discoloration and reduction on the primary and/or secondary roots. Also, the hypocotyl is 

heavily discolored and girdled by the lesion; and “3” = non-germinated seed (Fig. 1). DSI was 

calculated based on the formula: DSI = ((A*0) + (B*1) + (C*2) + (D*3)) / Nt, where “A”, “B”, 

“C”, and “D” are the number of seedlings presenting disease severity scores 0, 1, 2, and 3, 

respectively; and Nt = total number of seeds tested. Isolates having pathogenicity scores <1, 

between 1 and 2, and >2 were considered non-, moderately, and highly pathogenic, respectively 

(Broders et al. 2007; Ellis et al. 2011). 

 

For seeds inoculated with the low inoculum potential treatment only, F. proliferatum 

isolates (i.e., the positive controls) were able to significantly reduce seed germination (P < 0.001) 

when compared to the mock-inoculated controls for both varieties tested (Fig. 2). Furthermore, 

all three F. proliferatum isolates were classified as moderately pathogenic to soybean variety 

‘AG3039’ and highly pathogenic to ‘KS3406’ (Fig. 3). The F. verticillioides test isolates, 

however, and the F. semitectum isolates (negative disease controls) were classified as non-

pathogenic and did not differ significantly from each other in either variety (Fig. 3). 

Interestingly, under the high inoculum potential treatment, all three F. verticillioides isolates 

were also able to significantly (P < 0.001) decrease soybean seed germination when compared 
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with mock-inoculated controls for both varieties tested (Fig. 2). This result suggests that the 

decrease in seed germination was due to the inoculum potential of F. verticillioides present in the 

seeds, which influences pathogenicity of the seedborne pathogen. When soybean seeds were 

inoculated with the high inoculum potential treatment of F. verticillioides, the pathogenicity of 

the isolates was significantly different from mock-inoculated controls and was classified as 

moderately and highly pathogenic on ‘AG3039’ and ‘KS3406’, respectively (Fig. 3). As 

expected, even after the high inoculum potential treatment, F. semitectum isolates were not able 

to significantly reduce soybean seed germination when compared with mock-inoculated control 

and DSI remained <1 for ‘AG3039’ (Fig. 2). Similar results were observed by Pedrozo and Little 

(2014) where no influence on seed germination was observed on soybean seeds artificially 

inoculated using a high inoculum potential treatment of a non-pathogenic F. equiseti isolate. 

Interestingly, FSE isolates were able to significantly decrease seed germination of ‘KS3406’ 

seeds inoculated with the high inoculum potential treatment compared to mock-inoculated 

control (P < 0.001). F. semitectum was classified as moderately pathogenic on ‘KS3406’ (Fig. 3). 

Therefore, isolate pathogenicity, inoculum potential, and host genotype are important for seed 

and seedling diseases (Agarwal and Sinclair 1996; Machado et al. 2013; Neergaard 1979). 

 

In summary, this study shows that F. verticillioides has the potential to decrease soybean 

seed quality depending on the amount of inoculum (inoculum potential) present in the seeds. 

Thus, soybean seed lots infected by pathogenic Fusarium spp., such as F. verticillioides, may 

play a significant role as a source of inoculum to new hosts and areas. In addition to inoculum 

potential, more studies evaluating environmental conditions (field experiments) and more host 

genotypes (varieties) are needed to better estimate and understand the significance of F. 
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verticillioides on soybean seed quality. This information can contribute to the development of 

more precise and accurate seed health testing methods designed to detect pathogenic Fusarium 

species and strains in seed lots, as well as helping breeders to select for resistance against 

Fusarium spp. 
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Fig. 1.The disease severity index (DSI) was calculated using a scale of 0 to 3 where: 

0 = germinated and normal seedlings with no symptoms on the primary or secondary roots, 

hypocotyl and cotyledons (a); 1 = seed germinates and abnormal seedling shows minor 

discoloration and reduction of the primary and/or secondary roots, hypocotyl, and cotyledons 

(b); 2 = seed germinates and abnormal seedling shows heavy discoloration, reduced primary 

and/or secondary roots, the hypocotyl and cotyledons are discolored and girdled (red arrow) by 

the lesion (c); and 3 = non-germinated seeds (d). In the first panel (a), the primary and 

secondary roots, hypocotyl and cotyledons are labeled 1, 2, 3 and 4 respectively 
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Fig. 2. The influence of seedborne F. verticillioides isolates (FVE1, FVE2, and FVE3) on 

‘AG3039’ (a and b) and ‘KS3406’ (c and d) soybean seed germination after low and high 

inoculum potential inoculations. Low and high inoculum potentials are represented in panels 

(a and c) and (b and d) respectively. Positive (F. proliferatum; FPR1, FPR2, and FPR3) and 

negative (F. semitectum; FSE1, FSE2, and FSE3) pathogenicity controls. “*” Significantly 

different from mock-inoculated seeds (CO) using Dunnett’s t-test (P < 0.001). 
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Fig. 3. Influence of Fusarium spp. inoculum potential on its pathogenicity behaviour on 

soybean seeds as measured by disease severity index (DSI). Soybean seeds were artificially 

inoculated with low (a and c) and high inoculum potential (b and d) treatments. Two varieties 

were used in this study, ‘AG3039’ (a and b) and ‘KS3406’ (c and d). Three F. 

verticillioides isolates (FVE1, FVE2, and FVE3), positive controls (F. proliferatum; FPR1, 

FPR2, and FPR3), and negative controls (F. semitectum; FSE1, FSE2, and FSE3) were used. 

Isolates having pathogenicity scores <1, between 1 and 2, and >2 were classified as non- (NP), 

moderately (MP), and highly pathogenic (HP), respectively. “*” Significantly different from 

mock-inoculated seeds (CO) using Dunnett’s t-test (P < 0.001). 

 

 


