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INTRODUCTION

The purpose of this report is to find the fundamental frequencies and the
corresponding mode shapes of a membrane using a numerical method. The
membrane is circular with an off-center circular clamped region. A finite
difference approximation is used in conjunction with Rayleigh's Quotient.
As a check the method is used first on a regular circular membrane and an

experiment is performed to verify the computed results.



DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION

An element of the membrane in its deflected position is given below.

T Ax

Fig. 1 Element of the membrane in its deflected position

In the derivation of the differential equation of motion of the membrane,
the following assumptions are made:

1) the deflections of the membrane are small and

2) the tension is uniform and is unchanged by the small deflectionms,

3) the membrane is of uniform thickness,

4) the membrane has no bending stiffness.
An element of the membrane in its deflected position is shown in figure 1.
Neglecting the gravitational force the sum of the forces in the z direction
yields

W aw oW ow
Tay X |x + Ax Uy ax|x + o= sy |y + Ay = T ay|y

2
- b ew
= (ax) (by) 3t2
where

T = force per unit length,

w = deflection of the membrane at right angles to the x,y plane,



and

é—u mass per unit area.

Dividing through by (Ax)(Ay)T yields

3w = 99
ax[x + Ax X

W, &

dyly + Ay ~ 3y

oW

IJJ _n 3%

| (4x)

(ay)

Let Ax and Ay both approach zero; then

11 v -3
i [(3x|x + Ax _ 3x|x|| _ 32y
Ax-+0 (Ax) 3x2
and
ow oW
i {55 y + Ay ~ 3§[y] _ 3%
Ay>0 (ay) ay©

The equation can then be written as

32w + 32y _ L

9xZ Byz g
or

2
2 =_1_.'1__3 W
VoW = ST 3¢2
(32 32
2 -

where v lm'ﬁ"ﬁz’

32w

gT at?

gT ot



SOLUTION
1) APPROXIMATION BY FINITE DIFFERENCES
A solution of the governing differential equation

2
2 _}_I___BW
i gT at?

is of the form

w=(Acoswt+B sinuw t) X(x,y);

thus
32w 2 3
g = (Acoswt+Bsinowt) X(,y) ,
2 2
%;; = (Acoswt+3B sinw t) gxx X
and

2 2
%;; = (Acoswt+3B sinw t) %;%LE#XL .

Substituting the above expressions into the governing differential equa-

tion gives

. 2
(Acoswt+Bsinuwt) %;%SELZL
2
+ (Acoswt+ B sinw t) %;%SEJ!Q--

2
- ﬁ%— (A coswt+B sinw t) X(x,y)

so that, after dividing by (A cos w t + B 8in y t),

2% . 32X _ _ mw? o
ax? Byz gT

or

v2x = - 2y
gT

This equation can be put in a nondimensional form by replacing X by LX'

and y by Ly' where L is some representative dimension of the membrane.



2
Also, let A = %%— Lzrand drop the primes from X and y so that

A = = sz .

An approximate solution can be obtained by using a finite difference method
to reduce the continuous system to a system with a finite number of degrees
of freedom. The membrane is divided into a network of squares with sides of
length h. Each node of the network denotes a point for which an algebraic
equation can be written. The finite difference approximation to V2 (devel-

oped in Appendix I) for a node as shown in figure 3 is

1
B2 Bkt TRy Ty e YRt xj,k-l-l]

2
VX). =
( )J’k
where j,k refer to a typical point on the membrane. An equation is written
for each point except those on the boundary since X = 0 on the boundary.

The equation 9
Al = - VX

is thus approximated by

1
Mik ™ "nZ [xj,k-l Rk et et xj,k+l] y
This equation is good for ome point. Rayleigh's Quotient (1) in finite

- difference form fo¥ the membrane is

i el Y R T E et St Xj,k+lJ

2
Xy x

The Z signs imply summation of the quantities in the numerator and denom-

inator for all nodes of the net.

2) BOUNDARY APPROXIMATION
Figure 3 on page 7 shows the boundary approximations and the points
used for finite difference approximation. The value of h is taken to be

one eighth of the radius; all deflections at the boundary are zero and the



deflections of points 1,...,l4 are equal to the deflections of the corres-
ponding points 29,...,42 due to symmetry. It should be noted that not all
nodal points are at the center of a square net. Point 31, for example, is
too close to the clamped region. In a case such as this the approximation
for V2 must be modified somewhat. This modification, as developed in

Appendix I, is

o .%,[g' et h -, (1]

o A" 5+ T+ s
[ Ea
h
.X D gB
h P h
X,

Fig. 2 Nodal point near a curved boundary
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SOLUTION PROCEDURE

The equation to be satisfied at each regular point is

1
A = =
kT TR Pt T Bkt TPy i P ¥ Xj+l,kJ .

Solving for Xj,k yields

e T e P e PRk

X
¢ - Xh)

R W

The equations for points such as 31 differ only in that the coefficients
are different from 1 and 4.
The general procedure is to assume an eigenvector, X, and to use this

eigenvector in Rayleigh's Quotient

X X. + X, - + X, +
N By By ¥ ¥ 0% Y R lek+1]
Ix%3,k (B)

to find the first approximation to Ahz which is used in equation (A) to
find a new eigenvector. This new eigenvector is normalized and compared
with the previous eigenvector, and if the difference between any two cor-
responding elements is too big, the eigenvector is used in equation (A) to
find a new vector which is then normalized, compared, etc.

After a few such iterations, the value of Ahz is calculated again by using
equation (B) and the process of finding a vector normalizing, comparing,
etc. is continued until the difference between two successive eigenvectors
.differs by a predetermined small quantity at which time the final X is the
eigenvector and A is the corresponding eigenvalue. Since the assumed
eigenvector and all others thereafter are positive, the final eigenvalue, A,
is the lowest and X is the corresponding eigenvector.

The above computation procedure is implemented by the computer program of

Appendix II.
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EXPERIMENT

1) Apparatus
The membrane (4 mil plastic) is held in a pair of retaining rings (sim-
ilar to the hoops used in crocheting). This assembly is placed over
the top of a pipe flange of 5 inch radius. A retaining plate, with a
5 inch radius hole, placed on top of the membrane, is bolted to the
pipe flange Base. A speaker, positioned approximately 2 inches above
the membrane, is used to excite the vibrations. An oscillator is con-
nected to the speaker and an electronic counter is connected to the
oscillator to measure the forcing frequency. An optical displacement
detector is used in conjunction with an oscilloscope to facilitate find-
ing the resonant frequencies of the membrane. A picture of the appara-

tus appears on page 18 and a block diagram in figure 4,

Optical Displacement Detector (MTI Fotonic Sensor)

| Speaker ( Cone Type, 5.5" Diameter)
¥ ]?mbe.l A— P ( ype,
[] Membrane

Oscilloscops 5 Oscillator
Tektronic (Briel &
Kjoer)

Type 564 Type 1014

M} L
Y X | [ Counter | Eldorado

Model 1605
Retaining Ring

Fig. 4 Block diagram of experimental apparatus
2) Procedure
The probe of the optical displacement detector was placed close to a

reflecting surface (a small white piece of paper) fastened to the mem-



3)

4)
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brane. The horizontal direction of the oscilloscope trace measures the
oscillator while the vertical direction measures the output of the dis-
placement detector. Sand, sieved through a number 100 sieve, is placed
on the membrane to visually identify the modal patterns of the various
modes.

The procedure is to vary the frequency of the driving force until a
natural mode is found by observing the maximum vertical deflection on
the oscilloscope. After the modes are found for the circular membrane,
the off-center region is clamped in place. The region is clamped from
above and below with the displacement detector being used to insure
that no deflection is created while tightening the clamped region. The
membrane is again vibrated and the modes identified by shape and fre-
quency.

Experimental Results

The experimental results shown on the following pages are for both the
circular membrane and the circular membrane with the off-center clamped
region. The resonant frequencies in cycles per second appears below
each figure for both, and the theoretical ratio of the frequency of

the particular mode to the fundamental frequency for the circular case
appears in parentheses.

Calculations

It is known that the frequency of the fundamental mode may be lowered
by as much as 50% when the experiment is done in air instead of a
vacuum(3). Thus the fundamental frequency of the circular membrane of
54 cps cannot be used to calculate directly the tension in the membrane.

The frequencies of the higher modes and the frequency ratios are used to

estimate the undamped fundamental frequency.
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OS>

54(1.000)A . 128(1.594) 179(2.133)
192(2.296) 231(2.653) 259(2.918)
311(3.600)

Fig. 5 Mode shapes, frequencies and theoretical ratios to the
fundamental for a circular membrane
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69 . . 129 : 150

186

255

Fig. 6 Mode Shapes for the membrane with the clamped region in place
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Using the six higher modes, and the particular ratio, it is possible
to find six values of the fundamental frequency by using the results
on page 12, An average estimated undamped fundamental frequency is cal-

culated. The calculations appear below:

128 cps

1.594 " e
E%%%E' CPS - 83.9 cps
2%336 PE - 838 cps
2?2§3 CPS . 86.5 cps
2?328 €PS =  86.6 cps
3?230 CPS - 86.4 cps

Average estimated undamped fundamental frequency = to;al

Average = 507'2 SPS - 84.6 cps

The average estimated undamped fundamental frequency is B4 iﬁ%lgﬁ

54.0

% Difference = (100) = 56.7%

Now that the frequency for the circular case is known it is possible
to calculate T in the membrane. Using the equation as written by

Timoshenko

- el
N-G WA



where
w = weight / unit area
A = area
T = tension / unit length

g = acceleration due to gravity

w = frequency in Zad
) sec
a = constant .
2
w w
T = E‘z‘ g A
2 rad)? (1.92¢10"%)1b 2
(84.6 cps) [Zﬁ ] [ - i [25u in ]
T = cye in
2
[2.404 aﬁj [32.174 ft/seé%
T =7.3 1b/ft

Now, the frequency of the membrane with the clamped region can be

found by using
2

w 2
T L

A =

® |

where
A = computed eigenvalue

L = radius of the membrane.

A

I
L2 w/g

o [@.3 1b/80) (8.753) (32.174 fr/sec?)
(25 1n%) (1.92) (10"*)1b/1n?

w = 654 rad/sec



Experimentally

% DIFFERENCE

%4 DIFFERENCE

E
[}

104.1 cyc/sec .

€
L]

69 cyc/sec (1.567)

£
]

108.1 cyc/sec .

(1081.1 = 104 01_)

@0, (100)

3.84%

16
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EXPLANATION OF PLATE I

PICTURE OF EXPERIMENTAL APPARATUS
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PLATE T
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CONCLUDING REMARKS

It is difficult to get uniform tension in the membrane. The retaining
ring seemed to work rather well. An advantage might be gained if the mem-

brane were larger; in this way the tension would be more uniform at the

middle of the membrane.

The optical displagement detector was valuable in finding the modes and
the corresponding frequency. For example, for the circular membrane, the
second mode has a frequency of 128 cps, but the same mode shape appeared
at 62 cps. However, at the lower frequency a horizontal figure 8 appear-
ed on the oscilloscope indicating that the membrane frequency was twice

the forcing frequency, thus the second mode occurs at 128 cps.

The mode shapes with the clamped region in place displayed good symmetry.
It is interesting to note that some of the modes of both systems have
nearly the same frequency. As expected, the fundamental frequency of the
membrane with the clamped region was higher than the frequency of the

circular membrane.
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Consider point O in the figure below.

b h o

Fig. 7 Geometry of a point near a curved boundary

Point 1 is outside the domain but B can be used along with O, A, D, C.
In the neighborhood of any typical point, 0, the function X can be ex-

panded in a Taylor's series:

3
X 1 [a2x 2 01 [33%X] (x=x)7 + ...,
X xo + [Bx]o (x - xc) * a: [axz]o (x xo) 31 [ax3] =

Now let x = X, + ¢h where ¢h is the distance 0B, and also let X = x, - h;

it is found that:

2
X, = X_ + [%] () + iy [—3;3}] Gl +omd ,
o o

and
( 2
X =X - lg—i] (h) +% {—g;}}l M2+ omd) .
o 0

The term {EE} may be eliminated from both equations so that:

9x
[ aXB aXD axo]
s+ T 1+ ¢

32x] _ 1
%2  n?

In the vertical direction,



- X 1 1 [33x
<=5 5, broe] +ir B, b <& B, Do e

Now let y = ¥ + h and e h to get

. X 1 (3% 2 3
X, = X+ [ay}o (h) + [5;2-]0 (h)" + o(h”)
and
(3 1 (3%x p. 3
XC xo - [By] (h) + = ['a—yz'] (h)” + o(h™) .
o (o]
3X)
Eliminating i_j gives
y o
(32X 1
LE'}-T'Z v ‘XA + XC -2X l .
‘0
2 (o 2%
Combining E;%ﬂ and E—% gives
%) Eh g
2% . 32X 1 oXp aXp 1+ |
[é??f * 'Byz]o WAt ra TRt T % (T @

which is the approximation for Vz for a point near a boundary. In this
problem all points on the boundary are equal to zero. This equation is

used for a point such as point 31. If ¢ = 1, equation (C) above becomes

%X L2} _ Ly Lx +#x. +X -4X
ax? ayDETAXB ¢t % % ’

which is the equation used for a regular point such as pointJl|,

24
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1CC
162
103
1C4
1CS
106
1C7
110

2¢8

214

698
699
7CC
icl
708
7C2
703

7C4
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HOPEFULLY, THIS PRCGRANM WILL FINC THLC LGWEST
EIGENVALUE ANU THE CORRESPOUNGING EICENVECTOR
FOR A CIRCULAR NMFNMBRANE WITF AN CFF-CEMTLR
CI?CULAR CLAMPEL REGICN. THE NMEFERALNE 5
APPRUXTMATED BY A SERIES UF SQUAKeSy FENCE THE
CUTER BOUNCARY IS A SERIES GF STRAIGHT LINES.
THE TANER CIRCULAR BCUANLARY IS USEL as IS.

THE IJNTEWVAL IS EQUAL T0O Oe.le23. RAYLEIGH'S
CUQTICNT IS USECL WwITh ITERATIUN TO FIND LANUA,
THE PROBLEM CUNSTANT(HEMCE THE FREQUENCY), AMD
AND THE EIGEWVECTOR.

EP=TEST

X=FUNCTIUN

“1=VALUE AT A POINT

LAMDA=TENSIGN/UNIT LENGTH/MASS/UNIT ARtA
REAL LAMDA,LES

CIMENSION X({133),T(133),H(133), C(1331

FCRMAT (54, 'LAMCAY)

FORMAT {9X,! :IbENVECTUR')

FGRMAT (1£16.8)

FORMAT (4E16.8)

FCRMAT (1H-)

FORMAT (1H1)

FORMAT (10F8.5}

FURMAT (5X,°'C")

F$S=0.015€625

READI1,107) (X(I),I=1,133)

r=1

EP=0.001

THE TRIAL FUNCTION HAS ALREALY BEEN READ INTO
THE PROGRAM; WE NEED UMLY CALCULATE LAMCA BY
USINGRAYLEIGH'S QUOTIENT. LAMCA WILL THEN BE
USED WITH ITERATION TG FIND THE ETGENVECTOR
AND LAMDA,

GC=4

K=9-111

CU.698 I=1,133

T{1)=C.0
CO 699 1=164+3C,4 14
TUI)=X{I-14)1 4% I=-1)}=C*X(I)+X(I+L)+A(1+14)

GO T8O 1=194c7

TOE)=X(I=-14)+X{I-D)=Qxx (1) +X(1+1)+X{]+14) v
L0 7TCl 1=33,41
TAT)=X(1=14)+X(I=-1)=C¥X(T)4X(I+1)+X([+17)
CO 7C6 T=44,45
TOI)=X(1=16)+X{I=-1)=GeX (I 4X{I+1}4X(]+17)
O TC2 1=49,58

TN =X(I=17)0+X(I=0)-C¥X(I)+X(I+L)+X([+17)
CO 703 I=61,75
TID=X(I=-17)+X(I=1)-uU*X () +X(I+1)+X(1+16)
O 7G4 1=78,90

T =X(I=18)+ X1 [=1)=CEX (1) +X{1+1)}+X(1+14)



7C5

TC¢

7C9

710

662
6C1l

'6_05
6CE
8ce
801

3CC

bt}
L8
-

27

Lu 70% =13,103
1[I}—X(I—14)+£(I—l)—(#X(I)+A(I*1)+KII+1¢)
TO 70t I=1CE,114

TUI) =X (I=12)+R{T=1)=CEX(1)+X{I+1)+X(1+1GC)
RO 707 I=117,123
TOI)=X(I=1CY+X{I-1)=Cex([)+X(I+1)+X(I+9)
T(ILI=K(LT)+#1.561%X(30)=K=X(21)+X(45)
TU32)=X{18)—-K*X(32)+1.561%X({33)+X{49)
T{46 ) =X (45 )=R¥X {46} +X({4T7)+1.561%X(€E3)
T(48)=X[4T)=h&=X(48)+X(49) +1.. 561#X(65)
IF(Q.EQ.4) GO TC 3CC

CU 709 1=30,41

T(I=-2R)=T(1)

CO 71C T=1,133

Cil)=r{1) /R

C(3)=T(3)/S

Cla)=T(4) /S

Ci31)=T(31)/5

CL32)=T(32}/%

Cl4a6)=T(46)/S

ClaBY=T{4B) /S

h=N+1

NGRMALIZE ClI), AND COMPARE HITH THE
PREVIUUS EIGENVECTOR.

CUM=ALSI(C(1))

L0 601 I=1,133

RUM=ABSI{C(I))

IF(RUM.GT.GUM) GC TC &C2

GO TU 601

CUM=ABSI(GC (1)) -

COMTINUE .

-LIv=1.6/DUM

CO 6065 1=1,133%
C(I)=C(1)*C1IvVv

PO 6LE I=1,123
FLILY=ABS(C(I)=XI(I))
IF(H({T).GT.EP)} GO TC 8CO
CONTINUE

GO TU 9CO

Fo 801 [=1,133
XOTy=C(1) _
IFINJEQG.10) GO TO 2¢&8
GG TU 214

n=0

SUMN=C.0

SUMD=0.0

{0 267 lI=16,133
SUMN=SUMN+{X[I)®T(1))
SUMD=SUM Y+ {X( 1) *+2)
LHS==SUMN/SUNG

R=4 ,0-LHS

$=9.111-LHS



LAMDA=LHS /FS
LE(MLEQ.2) GU TA 750
ERITE(R,100)
wWRITE (3,1C3) LAMDA
WRITE 13, 1C05) '
RRITE(3,102)
WRITE(3,104) {(X(I),1=1,133)
WRITE (3,106)
£=0
K=0
Gl TGO 214

900 M=2 :
GU Tu 268

150 WRITE (3,L1CO)
WRITE (3,103) LAMUA
wRITE (3,105)
WRITE (3,102)
WRITE (3,110)
WRITE(3,104) (C{I),I=1,133)
sTopP .
END
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ABSTRACT

This report considers the vibrations of a circular membrane with an off-
center circular clamped region. A finite difference approximation to the
governing differential equation and Rayleigh's quotient are used to find
the fundamental eigenvalue and the corresponding eigenvector. The outer
boundary is approximated by a series of straight lines whilerthe inner
boundary is approximated by irregular stars. Experimental mode shapes and
frequencies are presented for both the circular membrane and the circular

membrane with the clamped region.



