
STEP-BY-STEP DETERMINATION 
OF ICE ACCRETION RATES 

FOR AIRCRAFT 

by 

JAMES MARSTON BOWYER, JR. 

B. S., Kansas State College 
of Agriculture and Applied Science, 1942 

A THESIS 

submitted in partial fulfillment of the 

requirements for the degree 

MASTER OF SCIENCE 

Department of Mechanical Engineering 

KANSAS STATE COLLEGE 
OF AGRICULTURE AND APPLIED SCIENCE 

1949 



ii 

TABLE OF CONTENTS 

INTRODUCTION 1 

NOMENCLAYURE 2 

ANALYSIS 6 

Necessary Meteorological Conditions for Icing 6 

Approximate Velocity Distribution of the Air Stream 
in the Vicinity of an Airfoil 14 

Behaviour of a Sphere Immersed in a Fluid 20 

Kinetics of a Droplet Immersed in an Accelerating Fluid 25 

An Explanation of the Inverse Problem 29 

The Effect of K on Accretion 29 

Initiation of Step-by-Step Calculations 31 

Evaluation of Physical Constants 35 

Step-by-Step Solution of an Example 36 

CONCLUSIONS 43 

ACKNOWLEDGMENTS 45 

REFERENCES 46 

APPENDIX 48 



INTRODUCTION 

Icing of aircraft was not the subject of exhaustive study 

until the recent war. Although some qualitative analyses were 

made in the early thirties, e. g., NACA Report No. 403, quanti- 

tative examination was delayed until the early forties. About 

this time the necessity of designing military aircraft for all- 

weather operation became obvious, and studies which would Permit 

accurate design of aircraft meeting such requirements were initi- 

ated and advanced at a feverish pace. The rapidity with which 

these studies were made and reported resulted in rather inconclu- 

sive explanations of the methods employed. In addition, the 

various authors in this country and in England did not employ 

any consistent system of symbols, inconsistency makes 

intelligent review of the existing literature difficult. 

The author's purpose in preparing this manuscript is to 

present a coherent outline of the methods employed in a quanti- 

tative determination of aircraft icing. It is hoped that this 

outline will provide the icing analyst with a logically devel- 

oped derivation of many of the tables, equations, and graphs ap- 

pearing in such papers as NACA Report No. 4706-5 (10) and AAF 

Technical Report 5418 (11). 
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NOMENCLATURE 

Symbols 

A = coefficient in series solution of a differential equation 

(Dimensionless) 

= x/K (Dimensionless) 

C = diameter of cylinder which is aerodynamically eauivalent 

to a given airfoil over the region of moisture accretion (L) 

C = specific heat of dry air at constant pressure (L2/T29) 

D = doublet strength (L3/T) 

F = force (ML/T2) 

J = mechanical equivalent of heat (Dimensionless) 

K As /C (Dimensionless) 

L = latent heat of vaporization (L2/T2) 

M = molecular weight (M) 

R = Reynolds' number (Dimensionless) 

or 

R = radius vector in the XY-plane (L) 

T = time (T) 

U = velocity of fluid stream relative to the equivalent cylinder 

(L/T). In particular, -Us is the velocity of the free 

stream. 

V a velocity of a droplet relative to the equivalent cylinder 

(L/T) 

W = velocity of droplet relative to its surrounding fluid stream 

(L/T) 
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X = coordinate axis which is a perpendicular intersector of the 

equivalent cylinder's axis of symmetry and which is paral- 

lel to airspeed, Us (L) 

coordinate axis which is the perpendicular intersector of 

both coordinate axis, X, and the axis of symmetry of the 

equivalent cylinder (L) 

a radius of droplet (L) 

b = vx/t (Dimensionless) 

d = differential operator (Dimensionless) 

e = 2.71828 ... (Dimensionless) 

= standard acceleration due to gravity (L/T2) 

k = a coefficient of transfer (Dimensionless) 

mass of droplet (M) 

p = pressure (k/LT2) 

q = value of x at which step-by-step trajectory calculations 

are initiated 

r = radius vector in the xy-plane (L) 

t = time in units of Us/C (Dimensionless) 

u = stream velocity, U, in units of Us and with the x-component 

reversed (Dimensionless) 

v = droplet velocity, V, in units of Us and with the x-component 

reversed (Dimensionless) 

= droplet velocity, W, in units of Us and with the x-component 

reversed (Dimensionless) 

x = X-coordinate in units of cylinder radius, C, (Dimensionless) 

7 Y-coordinate in units of cylinder radius, C, (Dimensionless) 

In particular; y = ys when x i o0 
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= finite difference (Dimensionless) 

# = a function (Dimensionless) 

'NV= stream function (L2/T) 

dc= clockwise angle between negative x-axis and u (Dimensionless) 

le = clockwise angle between negative X-axis and W (Dimensionless) 

= counter-clockwise angle between positive x-axis and radius 

vector to point of droplet impact on equivalent cylinder. 

(Dimensionless) 

A = extreme range of droplet having initial velocity, Us, (L). 

In particular As is this extreme range, assuming Stokes' 

law valid. 

Aw = coefficient of viscosity (M/LT) 

= x-1 (Dimensionless) 

IT = 3.14159 ... (Dimensionless) 

e = density (M/L3) 

= temperature (9) 

99 = Ru2/11k (Dimensionless) 

Subscripts 

D = aerodynamic drag 

I = inertia 

= maximum 

X = X-component 

Y = Y- component 

a = dry air or gaseous constituents of fluid stream 

d a droplet 

h = heat transfer 
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n = nth term or nth step 

o = stagnation point 

q = value when x = q 

s = ambient air or undisturbed stream 

v - vapor 

x = x-component 

y = 7-component 

0, L, 1, 2, ... = power of variable in terms of series whose 

coefficients are denoted by A 

Abbreviations 

Ei = Exponential integral 

Pr = Prandtl number (Dimensionless) 
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ANALYSIS 

Necessary Meteorological Conditions for Icing 

The two types of cloud formations which, under certain con- 

ditions, present severe icing hazards are cumulus and stratus, 

the latter type usually in the formative stage. The presence of 

water clouds above the freezing level, i. e., the altitude at 

which atmospheric temperature is 32° F., is a strong indication 

of supercooling with attendant icing hazards in that region. 

Water clouds can form within a wide temperature range and 

are especially likely to form in air containing condensation 

nuclei and lacking sublimation nuclei, i. e., in air containing 

liquid water particles or foreign particles conducive to the for- 

mation of water droplets, but devoid of ice crystals or foreign 

particles conducive to the formation of ice particles. If sub- 

limation nuclei are absent, water clouds may form at temperatures 

considerably below 32° F.; however, supercooling seldom exceeds 

30° F., because the equilibrium of the liquid becomes so unstable 

at lower temperatures that the most minute disturbance will ini- 

tiate freezing (1, 2). Once crystallization is initiated, the 

process continues rapidly until only ice crystals are present or 

until the temperature of the cloud mass rises to the freezing 

point. 

As sublimation continues from the vapor to the solid state 

within the cloud, the larger ice crystals Precipitate. If the 

temperature gradient or lapse rate is not inverted, i. e., if 
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atmospheric temperature decreases with increasing altitude, these 

larger ice crystals or snow flakes form initially in the upper 

levels of the cloud and fall through the underlying levels of 

moisture particles. The resultant cooling of the underlying, cloud 

causes rain. At the same time, the upper level of the supercooled 

droplets within the cloud falls quickly to the freezing level, 

leaving only ice crystals in that portion of the cloud which is 

above this altitude. 

While the presence of rain from a cloud may, for the reason 

outlined above, indicate a lowering of the region of water drop- 

lets, it does not mean that the region above the freezing level is 

without icing hazards. The upper level of the ice crystal cloud 

is frequently capped by water clouds of the alto-cumulus type, 

because the air at this level has become devoid of sublimation 

nuclei, and newly initiated upward movements of this air mass 

results only in the production of supercooled water clouds. It 

is therefore never safe to assume that icing conditions are to- 

tally absent above the freezing level, even though precipitation 

from the cloud may be heavy (1). 

With some experience in observation, ice and rain clouds can 

be distinguished by characteristic differences in their appearance. 

It is, with this advantage, even possible to determine the parts 

of a cloud which contain ice crystals as distinct from those parts 

containing water vapor, provided the cloud can be clearly observed. 

Ice clouds are optically less distinct than water clouds, 

because the ice crystals of the ice cloud are fewer and larger 

than the water droplets of the water cloud. Ice clouds are some- 
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times similar to a heavy mist in appearance; their borders are 

hazy because the larger particles drop more rapidly and sublimate 

or melt and evaporate more slowly after falling from the body of 

the cloud than do the much smaller water drops (1). A parhelion 

is often observable when the sun's rays fall on an ice cloud and 

are reflected to the observer. This phenomenon is most frequently 

observed from aircraft above the cloud level. 

The effect of kinetic heating (heating due to impact of the 

air stream at the leading edges of an immersed body) is to raise 

the level of aircraft icing above the freezing level of the atmos- 

phere. Any attempt to utilize this advantage in clearing topo- 

graphical features extending above the freezing level would be 

disastrous at ordinary speeds, for the temperature rise due to 

kinetic heating is greatly diminished when the leading edges of 

exposed surfaces are wet (3). For example, assume an airspeed of 

250 miles per hour and an altitude of 10,000 feet above sea level 

in an atmosphere conforming to the MCA standard atmosphere. 

From the latter condition, the temperature of the ambient air, 

Ts, is 23.3° F, the barometric pressure of the ambient air, ps, is 

698 mb, and the density of the ambient air, es, is 9.07(10-4) gm/cm3. 

Assuming laminar flow at stagnation, the temperature rise in clear 

air would be (4): 

Us2 

2gJCp (Pr) (1) 

whsreAM is the temperature rise at the stagnation point, Us is 

the airspeed, g is the gravitational constant, J is the mechanical 
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equivalent of heat, Cp is the specific heat of dry air, and Pr is 

the Prandtl number. Substitution of the appropriate values in 

the above equation gives A'0 = 9.53° F. Now, applying equation 

12 of the NACA Advance Restricted Report No. 5G13 (3) with the 

assumption that ps >> pv0 and, also, Ps >> Pvs: 

- 
Icy My Pv,- Pvs Lv (2) 

76 = 
kh Ma Ps CP 

where 'r is the temperature at stagnation on the wet leading edge, 

pv 
o 

is the vapor pressure of water at the stagnation temperature, 

pvs is the vapor pressure of water at the ambient air temperature, 

MIT is the molecular weight of the water, Ma is the molecular 

weight of the air, Lv is the latent heat of vaporization for water 

at stagnation temperature, kv is a dimensionless coefficient of 

evaporation for water, and kh is a dimensionless coefficient of 

heat transfer. Again, according to Hardy (3), at the temperatures 

under consideration, the ratio kv/kh is equal to unity. Solving 

the preceding equation for stagnation temperature by trial and 

error; To = 28.4° F. 

It is thus apparent that a flight into an icing cloud would 

result in a lowering of the stagnation temperature from an appar- 

ently safe value of 32.8° F. to a hazardous value of 28.4° F. 

Although it was formerly supposed that high liquid-water 

content was incompatible with the presence of supercooled rain 

and that the icing hazard incident to flights through such a rain 

was therefore small, more recent investigations have shown that 

high liquid-water content and supercooled rain are by no means 
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incompatible in the presence of strong upward air currents (2). 

Icing due to flight through supercooled rain may always be ex- 

pected to cover virtually the entire area of the aircraft as 

projected on a plane normal to the flight path. This result may 

be expected because of the large inertia of the rain drop as com- 

pared to the inertia of the average water droplet present in 

clouds from which rain is not falling. 

Aircraft occasionally encounter regions of supersaturated 

air at temperatures below 32° F. and in which neither condensa- 

tion nor sublimation nuclei are present in concentrations suffi- 

cient to permit the formation of clouds. Flight through such a 

region may result in light ice accretion, because the atmospheric 

disturbance caused by the aircraft is sometimes sufficient to 

promote condensation of the water vapor upstream from certain of 

the exposed aircraft surfaces. The droplets resulting from such 

condensation may then impinge upon these surfaces and freeze, 

forming a small amount of ice. This particular cause of icing 

is of little practical interest, as it presents no serious icing 

hazard (1). 

The qualitative discussion of icing given in the preceding 

paragraphs is insufficient as a basis for anti-icing design or 

analysis. A quantitative discussion of (1) the amount of mois- 

ture present in several forms of clouds where icing conditions may 

exist and (2) of the dimensions of the moisture particles they may 

contain follows. 

The weight of liquid water present in a unit volume of cloud 

is extremely variable. One German authority reported water con- 
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tents ranging from 0.1 to 0.6 
grams per cubic meter in stratus 

type clouds, from 0.1 to 1.5 grams per cubic meter in strato- 

cumulus type clouds, and from 0.3 
to 3.0 grams per cubic meter in 

tumulus type clouds (4). 

According to Brock (4): 

The maximum liquid-water contents to be expected in 

clouds under icing conditions should be less than 3.5 g per 

cu. m, and present measurements indicate that the maximum 
(including freezing rain) values are more nearly 2. The 

effective droplet sizes are expected to vary from 5 to 25 

microns radius with larger values expected in drizzles and 

rain. 

Experimental measurements indicate that the actual liquid- 

water content of cumulus clouds rarely approaches that predicted 

by calculations based on adiabatic lifting above the cloud base; 

however, such calculations give values that represent a maximum 

for clouds of this type (5). Experimental measurements of the 

liquid-water content of stratus clouds indicate much lower values 

than that predicted by adiabatic lifting of the air mass above 

the cloud base. 

kixing of the moist air wil:h the surrounding air takes place 

at the boundaries of the rising mass. This process tends to re- 

duce the liquid-water content at any given level above the cloud 

base to some value below that which is predicted when the wet 

adiabatic lapse rate or temperature gradient is multiplied by 

the increment of altitude between cloud base and given level. In 

addition, there is generally a lag in condensation as the cloud 

mass rises, for sufficient condensation nuclei for immediate con- 

densation are rarely present. It is then apparent that the as- 
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sumption of adiabatic lifting of the cloud leads to calculated 

values of the liquid-water content of the cloud which are not 

likely to be approached in any actual case. 

How to estimate the average droplet diameter is a difficult 

problem, for no theoretical analysis is applicable. Experiment 

indicates that both mean droplet diameter and maximum droplet 

diameter depend upon temperature, liquid-water content and type 

of cloud. But this dependence is not clearly defined. The prob- 

able duration of icing conditions, the probable amount of liquid- 

water content, and the probable mean-effective droplet diameter 

are functions of the type of cloud. 4i loose relationship between 

these icing parameters has been recommended in NIALCI- Report 

No. 4706-5 (5) as a satisfactory criterion for anti-icing design 

of all-weather aircraft: 



Table 1. Icing conditions which may be encountered by aircraft. 

Most probable maximum 

Cloud type : Duration 
: Liquid-water ; 

content 
(gm /m3) 

Mean droplet 
diameter 
(microns) 

; Free-air 
;temperature 
: (°F) 

Cumulus 1 minute 2.0 20 0 

stratus 0.8 15 
or 0.5 25 20 

stratocumulus Continuous 0.5 15 0 
0.25 15 -20 

Typical or normal 

Cumulus 1 minute 0.8 10 0 to 20 

to 

Stratus 
or 

stratocumulus 
Continuous 0.3 17 10 to 25 
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Approximate Velocity Distribution of the Air Stream 
in the Vicinity of an Airfoil 

To estimate accretion rates at the leading edge of an air- 

foil, it is convenient to describe airflow characteristics in 

this region analytically. 

Certain approximations facilitate the determination of such 

analytical descriptions: First, the air is assumed to behave 

ideally in the region under investigation. This assumption is 

justified within an arc of 60 degrees above or below the stagna- 

tion point (measured along the leading edge circle) as there is 

no danger of boundary layer separation in this zone when the air- 

speed is low enough to make a study of icing hazards necessary. 

Second, the leading edge of the airfoil is frequently replaced by 

the equivalent cylinder which best matches the leading edge cur- 

vature in the region of accretion. Although the flow pattern of 

the equivalent cylinder approximates that of the airfoil for this 

analysis, accretion rates for cylinder and airfoil may differ ap- 

preciably. Bergrun (10) has compared accretion rates for a 

Joukowski airfoil and an equivalent cylinder; the results of this 

comparison indicate poor agreement when droplet diameters are 

large. Nevertheless, the equivalent cylinder approximation has 

been widely used (2, 7). Since a check of step-by-step accuracy 

is available from an analysis which employed a differential ana- 

lyzer (11), an equivalent cylinder will be used in the following 

accretion calculations. 

The method of step-by-step calculation may be applied in the 
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case of a Joukowski section. It is only necessary that the 

stream function* corresponding to that section be applied to the 

analysis. 

flow of an ideal fluid about a right circular cylinder whose 

axis of symmetry is at right angles to the direction of fluid 

flow is represented analytically by the superposition of a uniform 

stream velocity on a two-dimensional doublet in the same plane 

(12, 13). For convenience in analysis, the uniform stream veloc- 

ity is assumed to be parallel to the horizontal coordinate axis 

and in the negative direction. The axis of the doublet is also 

assumed' to be the horizontal coordinate axis. Then the stream 

function is; 

-UsY + D Y = -UsY + D Y 
2W X + Y 2 217' 7. 

In this equation, V' is the stream function, 
' 

is the well-known 

ratio 3.1416, D is the strength of the doublet, Us is the air- 

speed or -Us is the undisturbed stream velocity, X is the distance 

parallel to Us, Y is the coordinate distance perpendicular to Us, 

and R is the distance from the origin in the XY-plane. 

Now, when Nio = 0, R. = C, where C is the radius of the equivalent 

cylinder, and Y fi 0, D = 21fUs02. The point X = C, Y = 0 corre- 

sponds to the stagnation point on the cylinder. Then by substi- 

tution, 

NEs = -UsY (11- 
X. + Y2 i 
2 

Along a stream line, 't" is constant and is therefore called the 
stream function. 
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The X and Y components of the stream velocity U can now be found 

by the conventional method: 

Uk = :!: = -Us 1-C2 x2 
x*G )4 

V 
- a " (12 2xy 

Uy le 
VS 

aX (X241.2)2 

In order to reduce these equations to dimensionless form, 

the velocity components are measured in units of airspeed while 

the coordinates are measured in units of cylinder radius. If, in 

addition, the dimensionless horizontal velocity component is as- 

sumed positive in the negative direction of the dimensionless 

horizontal coordinate axis (for later convenience), ux = -Ux/Us, 

uy = Uy/Us, x= X/C, y= Y/C, and r= R/C. 
Then by substitution, 

2 ' 4 4 
Ux a 1 X2 -72 2 - 1 X 

(x tY ) r (3) 

2x7 2xy 
(4) and uy = _ 

---,-- (x2ty)*4 
r`l 

To facilitate rapid step-by-step calculation, ux and uy were 

plotted against upstream distance from the axis of the cylinder 

for values of y from 0 to 1.0 selected at intervals of 0.1. The 

resulting graphs constitute Figs. 1 and 2, respectively, while 

the corresponding tabulated values of these velocity components 

constitue the Appendix. Although these graphs of ux and uy are 

satisfactory, curves for selected values of these quantities 

Slotted on xy-coordinates would expedite interpolation. Dimengion- 
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less stream velocity, u, and the angle it makes with the negative 

x-axis, gIC, also were calculated for possible later use. These 

quantities are defined by the equations, 

4 = tan-1 (uy/ux) and u = ux sec IC= Uy CSC . 

Although it is relatively easy to determine the characteris- 

tics of the stream in the vicinity of the cylinder by plotting the 

desired quantities, e. g., ux and uy, this method is impractical 

in larger regions of interest. Fortunately, the region of inter- 

est beyond that already plotted is included between 4 < x Soo 

and 0 < y < 1. And in this region ux and uy may be reduced to 

series form by division. From the equation 

2 x 2 -y 1 1 - i2 
1 J. 

, z/X 4 
ux = .1"S a (x2ty2)2 IC.' t y /x2)2 

ux = 1 - 1/X2 3y2/x4 
- 

And from the equation 

(x f Y x 

2)(7 

-7 
2 y/x 

Y 
2 2)2 (1 2/x2)2 

uy = 2y/x3 - 4y3/X5 t 6y5/x7 

(5) 

(6) 

When x > 4 and 0 6 y 1 it is apparent that termination of the 

series for ux and uy with the last terms shown above will result 

in a maximum error in ux of less than .15 per cent and, in uy of 

less than .05 per cent. 
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Behaviour of a Sphere Immersed in a Fluid 

Before the trajectories of droplets suspended in a fluid 

stream can be determined, it is necessary to describe the behav- 

iour of such a droplet as it moves through a motionless body of 

the immersing fluid. First attempts (14) to calculate accretion 

rates assumed the droplet Reynolds' number to be so low as to 

allow application of Stokes' law without empirical correction; 

however, more recent calculations have recognized the fact that 

Stokes' law cannot be directly applied to the determination of 

droplet trajectories when the velocity of the droplet relative 

to the immersing fluid is more than infinitesimal. 

If Stokes' law is invalid, the force acting on the droplet 

can only be evaluated when the droplet drag coefficient is a known 

fuction of the droplet Reynolds' number. By definition, 

R = 2aeaWA. 

and in particular, when V = Us, 

RU = 2aelitUsAt 

(7) 

(8) 

where a is the radius of the droplet, W is the velocity of the 

droplet relative to the stream, #a is the coefficient of viscos- 

ity for the immersing fluid, ea is the density of the immersing 

fluid, and R is the droplet Reynclds1 number. 

Mathematically, Stokes' law may be expressed as 

FD = -6n1.1118.W. (9) 



In the above equation FD is the force imposed on the droplet by 

aerodynamic drag. When this force is expressed in terms of the 

coefficient of drag, 

FD = -a Cpeaffa 
2w2 

21 

(10) 

where CD is the coefficient of drag. Then when Stokes' law is 

valid, 

= z CpecloAr or (GD/12)(aealtaa) = 1. 

By substitution, CDR/24 2 1 under these conditions. At higher 

Reynolds' numbers the actual aerodynamic drag on the droplet ex- 

ceeds that predicted by Stokes' law and, consequently, 

CDR/24 > 1. 

When Stokes' law applies it is relatively easy to calculate 

the extreme range or maximum travel of a droplet possessing a 

given initial velocity relative to a stagnant immersing fluid. 

Applying d'Alembert's principle, 

F'D + F 
I 

= 0. 

In this equation FD is, as previously aefined, the force imposed 

on the droplet by aerodynamic drag while F1 is the kinetic re- 

action imposed on the droplet when it is accelerated. Since 

F1 = -m dW/dT and FD = -6'UaaW, by substitution, 

m dW/dT + 61514aW = 0 

or 

= 
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The mass of the droplet, m, may be replaced by the product of 

droplet volume by the density of the liquid of which the droplet 

is composed, ed. In the previous equations, T is time while S is 

distance measured along the droplet trajectory. Solving the pre- 

ceding equation of kinetic equilibrium for dS and substituting the 

equivalent expression (4/3 )edrra3 for m, 

2 , 

dS 7 eda d'N/iaa 

If As is defined as the extreme range or maximum travel of a drop- 

let whose initial velocity relative to the stagnant immersing 

fluid is Us, 

Performing the indicated integrations, 

As = (2/9)ecia2Usals. 

When Stokes' law is invalid, a calculation of the extreme 

range of a droplet having an initial velocity Us is more difficult. 

In this case the aerodynamic drag, F,), may be expressed as the 

product of Stokes' drag by the correction factor CDR/24. Then 

the equation of kinetic equilibrium becomes 

m dW/dT + 61KaW (CDR/24) = 0. 

But W =AR/2aes = dS/dT. Again, by substitution, 

4 3 _ dR PAY11---6TALa dS/dT (CDR/24) 
3"A 2aea di' 



If A is the extreme range under these conditions, 

0 

A = -(2/9) 
a - 2/ 

a dR 

oda 2aea (CDR/24) 

23 

(12) 

Then the ratio of actual extreme range to that predicted by Stokes' 

law is 

w 
ea! 

2 
.Afts. 

dR 

76/A = 

//a 2aea (CDR/24) 

and this reduces to 

(2/9)6:La 8/4 

dR 

(CDR/24) . 

0 

(13) 

Since C D is an empirical function of R, equation 13 cannot be 

integrated directly. The calculation of the ratio, A / ?, is 

therefore tedious. ti graph of CDR/24 andiiA as functions of R 

constitutes Fig. 3 of this thesis; data for its construction were 

obtained from ital.F Technical Report 5418 (11). 
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Kinetics of a Droplet Immersed 
in an Accelerating Fluid 

If dtAlembertls principle is applied to a droplet which is 

immersed in an accelerating fluid, 

FIx + F 
DX 

= 0 . 

The X-component of the dropletts kinetic reaction is, as 

universally defined, 

F = -m dyx/dT 
I X 

and, on substitution for m, 

. 4 dV /dT - E edlra 3 x . 

The X-component of the drag exerted on the droplet as it moves 

relative to the immersing fluid may be expressed by the equation, 

E'Dx cDes(1ra2) w2 
cos r 

where Iris the angle between the relative velocity, W, and the 

X-axis. 

Now by substitution for F 
IX 

and F D in the equation of kinetic 
X 

equilibrium, 

- 31dira2 dVx/dT - Q OD& (1Ta2) W4 cos 1( = 0. 

Then by transposition, 

and, similarly, 

1 ea 

u 
dVx/dT = - 

3 
w CD 7r. wwy 

e - 

3 1 
dV 

8 
/dT = - - - 

'-' 

EL 
Vay 

a 

(14) 

(15) 
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The product of the droplet velocity component by the deriva- 

tive of that velocity component with respect to distance along the 

corresponding axis may be substituted for the derivative of the 

droplet velocity component with respect to time. Thus, for a 

given droplet, d, 

dVx dVx dVv dVy 
Vy - and Vy 

dT dX dT dY 

or, in dimensionless terms, 

dv dv y dvv dv 
= -v 

x and 
d 

= v 
t Y dy t dx 

In these equations V is the droplet velocity while v is the drop- 

let velocity in units of Us with the sign of the component in the 

x-direction changed. 

The previously expressed extreme range of the droplet, as 

calculated by Stokes' law, is now employed in the reduction of the 

equations of kinetic equilibrium to dimensionless form. Multi- 

plication of equation 14 by equation 11 gives 

As dVx/dT - 
8 a 9 

1. [ 2 ed a UR ga.' 

X A ea 

If the parameter, K, is defined as the quotient of As by C, and 

if the appropriate substitutions are made for V and N, the above 

equation reduces to 

or 

G- - 

dv _ qll [2aea IN] us2 (vx 
- 
ux) u 

8 dT - -7a7- 

dv 
- 2 E L (v - ux) 

dt 24K 
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where t = UsT/C is a dimensionless measure of time. By substitu- 

tion for the term on the left side of this equation, 

(v 
x 

- ux). 

Similarly, the kinetic equilibrium of the droplet in the y-direction 

is 

dv 
- y =- 

dv CDR ( 

dt Y dy 24K %III' uY)* 

Reduced to its simplest form, the quotient of R by RU is 

R W 
Ru Us 

When the above equation is squared and W1i2 r Wy 
2 

is substituted 

for W2, 

or 

Recapitulating; 

"12 

LRUJ "U US 

(v - u )2 (vy - uy) 
2 [11Ru _ 

- 

la = 2aE .v . 

x 
la = 

dt 
CnR 

- u or v (v - ux 24K ( 
x x 

) 

dx 24K x 
) (16) 

417,1 = ELE 
dv CDR , 

(17) 

dt 24K 
(vy - Uy) or vy dy' 24K tVY 127) 

2 
(pE) (vx - ux)2 r (vy - uy)4 
RU 

(18) 

The coefficient of drag for the droplet is analytically defined 

only when creeping motion exists. Thus, at greater relative 

v(Iilocities step-by-step calculation of droplet velocity and dis- 



placement components is necessary. This method of analysis is 

relatively simple if the components of droplet acceleration may 

be assumed linear during some small increment of time. By this 

assumption the components of droplet velocity and droplet dis- 

placement are 

CDR 
v 
xnrl = - 24 

(v - u 
n 

) At xn g xn x 

_ 20 , (vyn - nyn),6t v 
Yntl 

v 
Yn 24K 

(19) 

(20) 

28 

CDR 
xnrl = xn - vxn r 

24K - 
(v, 

n 
- ux 

n 
) (At) 2 (21) 

and 

20 yn,i- yn vyn At - 
2 

2- 

uYn)(4"2 
(22) 

when time is chosen as the independent variable. 

Again, if the components of droplet acceleration may be 

assumed linear during some small increment of distance, the com- 

ponents of droplet velocity and droplet displacement are 

and 

.1-4 11 C 
v 

-n 
y r 

1. 

(v, - u xn 1 , vx -nrl 
vx 

CDR v = v , (v - u ) 

Jnr1 Yn 24K Yn x 

x nrl = x n r45,x 

(23) 

(24) 

(25) 

v 
Yn CDR 

(vyn - uyn) (26) Ax Ynrl = Yn vx 

when x is chosen as the independent variable. 



bn Explanation of the Inverse Problem 

The present discussion is devoted to the solution of the 

accretion problem when free stream velocity, equivalent cylinder 

radius and equivalent droplet radius are known. The free stream 

Reynolds' number, Ru, and the dimensionless constant, K, may thus 

be calculated directly, and the equations of motion may then 1),,; 

solved. 

A second problem presents itself when the free stream veloc- 

ity, the equivalent cylinder radius, and the rate of accretion are 

known, and the droplet effective diameter is required. Since the 

droplet radius is not known it is necessary to eliminate this 

quantity from the equations of motion; this may be done if the 

square of free stream Reynolds! number is divided by the dimen- 

less constant, K. The resulting dimensionless constant,,, is 

then given by the formula 

= Ru2/K = 18(112 09 CUadeara . 

This second type of problem has been solved indirectly (11); 

however, the scope of this thesis does not include a step-by-step 

analysis for this case. 

The Effect of K on Accretion 

Consider the trajectory of a droplet in the immediate vicin- 

ity of the stagnation point. A translation of the coordinates to 

the stagnation point may be effected by substituting +l for x. 

Then from equations 5 and 6, setting x 14. 1 and ignoring those 
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terms which are negligible when t and y are small, the horizontal 

and vertical velocity components of the stream are, very nearly, 

ux = 2# and uy = 2y. 

If the droplets are not too large nor the free stream veloc- 

ity too high, Stokes' law holds and the equation of kinetic equi- 

librium in the horizontal direction is 

dvx 
- (vx - 21) 

This is an ordinary first order homogeneous equation, integrable 

by the substitution, vx = 14. By this transformation, 

dt/if = -b db/(b2 - b/K 4- 2/K). 

At some small distance, A), ahead of the stagnation point, a 

droplet approaching the airfoil along the streamline "le= 0 will 

have a velocity vx for which the corresponding value of b is bo. 

For the droplet to strike the cylinder, 
ft 

must have no positive 

real value when b = o for if Po when vx = o the droplet can never 

reach the cylinder. Thpw 

0 

fio 
oc, 

b db/(b2 - b/K t 2/K). 

When K41/8 the denominator of the integrand has real roots 

andg>o; when K = 1/8 the denominator of the integrand is zero and 

o, indicating that the droplet reaches the stagnation point 

but with zero velocity; when K )1/8 the denominator of the inte- 

grand has complex roots and has no real positive value for which 

b = o. This latter case indicates that the droplets have a finite 

velocity at the stagnation point, and under this condition some 

moisture accretion must result. 
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Initiation of Step-by-Step Calculations 

Through the use of previously presented equations and Figs. 1, 

2, and 3, tne path may be determined for any droplet in the region 

outs ide the cylinder and bounded by (0 x 5 4, 0 y 1) . But it 

is usually required that the path be determined for some particle 

whose ordinate at x = cO is 0 S. ys 1. 

It is impractical to plot ux and uy in the region (4<fl co, 

O 5 y I) as was done in Figs . 1 and 2 for the region (0 x 4 4, 

O .5 y5 1); however, these components of stream velocity have been 

expressed in series form by equations 4 and 5. Moreover, the 

accuracy of these expressions was seen to be high for the region 

presently considered. 

Further investigation shows ux is monotonic decreasing while 

u7 is monotonic increasing in this region (15). Since droplet 

acceleration depends upon relative velocity it is apparent that 

vx is also monotonic decreasing while vy is monotonic increasing; 

moreover, ux< vx< 1 and uy > vy > 0 for any given droplet in the re- 

gion. again, referring to the series solutions for components of 

the stream velocity, the minimum value of ux is, to a close ap- 

proximation, 0.9375 and the maximum value of uy is 0.0277. Thus 

(vx - ux) < 0.0625 and 1(vy - uy < 0.0277 in the region (4 < x .5. 00 , 

O 5y5.1). 
If the Reynolds! number for the droplet is sufficiently 

small, CDR/24 2,1 and the equations of kinetic equilibrium are, 

for a given droplet, 

dv 1 dvv 
- 

1 
v - 2L = (vx - ux) and vx--Eirc (vy - uy) . 

x dx 
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Note that x has been chosen as the independent variable in the 

equations just stated. 

Substituting for ux, the equation for kinetic equilibrium in 

the x-direction is 

ddx r 
K 

v 1 
4. v = - 

x 
- ( 1 - -2- 3 7-4- - ...g . 

Assuming a series solution for this x-component of droplet veloc- 

ity: 

vx = Ao + AL log x t s 
x x 

By the usual method of equating coefficients, 
2 

_ 

Ao = 1, AL = 0, Al = 0, A2 = -1, A3 = 2K, A4 = 3y - 6K 
2 

, 

A = 240 - (12y2 f 2)K, A6 = 10K2 - 5y4, A5 
6 

and substituting, 
1 2K (3y2 - 6K 

2 
) 24K 3 - (12y2 + 2)K 

vx = 1 - + -3 + x4 x x x 5 

10K2 - 5y 4 

Expanding, 

vx = 1 - 

2 

- B-7+ 

b 

1 2 6 24 - 4 
Bx 

10 

1773 - 

- -z-z+ Bx Bx 

5y4 

6" 

where B = x/E. 

Neglecting the second set of terms, 

1 2! 3! 4! 
vx = 1 - -z(1 - 

3y 
2 

12y 2 

Bf - f ), 

Bx4 



and if 

, 21 31. 
44 (B) = - -' -17 '""Pr + 000 , 

B Bo 

then by substitution, 

vx = 1 - -24(B). 
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(27) 

According to Langmuir and Blodgett (11), 4(B) can be ex7ressed in 

terms of the exponential integral as 
00 

t (B) = B t B2 eB 
B 

dB 
m = B + B2 eB Ei (-B). (28) 
° 

By a method similar to that outlined above for vx 

when x = q, where q is the starting abscissa for step-by-step 

trajectory calculations, 

1 
- - CBci] - 4 Ig-t- 

y 
q 

Kq 

In this equation y = yq when x = q. 

To initiate step-by-step calculations, yq as well as vx 

and v must be determined for droplets whose ordinate at x =00 

was ys. Now 
Yq 

dAi_gr = 
dy 1 

Ys Ys Ys 

- dx 
but - v and 

dt Y dt 
= -v x . 

Hence, by substitution, 

q 
dy 

al" 

dx dx 
1 

dt 

dx. 



Since yq = ys 4-4Syq, 

Ys v 

dx atx 
Ys) x 

Again, oy substitution, 

= - 
Ys ds 

*Me 

iii 
00 

34 

1- *(B)/X2 
dx - 4ys 

co 
7 1 -41(B) 7-- 

2 
q 

1- *(B 2 1 1 

Aq 

Performing the indicated divisions and resubstituting x/K for B in 

the integrands gives 

q 

KT (1 -*(B)/X) 71. - 76- - dx 
1 1 - *(B) 6K 24K2 120K 

3 

oo oo 

and 

2 

x5 1 

1+ 
/x2 xo 

1. [1 4- .6(3)/Hdx 
00 

for the first and second integrals, respectively. 

When the integrations are performed and the results applied 

to the equation for Ayq /ys, 

113rq q 1 * 
2 

Ys 
Bq )4-4- 14.-1 

Ys Ys 
[ - . 

Then by transposition,ANyq/Ys is, to a close approximation, given 

by the equation 

_ dlYq 0 (Bn) 1 2 
) 2-1 + (1-Y s Ys 



Finally yq of the equation for vy/yq is replaced by ys+Ayq 

and the equation then reduces to the nearly exact form, 

v,_ #(34)/q2 ./.4(B(1) 
4y 

) 

Ys q 5 

or 

(1-2ys2)* 
vyq 

1 [i_t4B0] 
- Ys 

Recapitulating; 
1 

vq = 1 - (B) 

and 

= 1 [1 - - 4.(130 -r ] + (1-2y3 
2 

) 

4s 

.6Yq 

q 

1 
*(Bq) + (1-ys 

Ys 

Evaluation of Physical Constants 

35 

(29) 

(30) 

(31) 

Application of the previously developed formulas to the case 

of an airfoil moving through the earthts atmosphere allows certain 

physical quantities to be assumed constant. In the usual analysis 

the airfoil is assumed to move with constant velocity through a 

meteorologically constant atmosphere. 

By this assumption the undisturbed stream velocity and such 

atmospheric parameters as temperature, pressure, density, humidity, 

air viscosity, liquid-water content, and water droplet effective 

diameter are fixed. 

When the atmospheric temperature is low enough to create an 
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icing hazard the vapor pressure exerted by the atmospheric mois- 

ture is a negligible fraction of atmospheric pressure. Thus, at- 

mospheric pressure may be assumed to be due solely to the gaseous 

constituents of the atmosphere. 

One method of prescribing a meteorologically constant atmos- 

phere assumes the airfoil to move at constant altitude through an 

atmosphere whose gaseous constituents are described by some stand- 

ard atmosphere (6). The liquid-water content per unit volume of 

the atmosphere and the mean droplet diameter are then chosen to 

provide realistic design conditions. 

According to von Lises (6), the viscosity of air is closely 

approximated by the equation 

3/2 

= 234.1 
+ 459.4) -10 

.ua 
TEL + 682.6 

(32) 

where 7'a is the air temperature in degrees Fahrenheit anddila is 

the viscosity of the air in slugs per foot-second. 

Step-by-Step Solution of an Example 

To demonstrate by a specific example, let it be assumed that 

an airfoil moves with a constant velocity of 250 miles per hour 

through NAGA standard air (6) at a constant altitude of 10,000 

feet above sea level. Furthermore, let it be assumed that the 

liquid-water content of the atmosphere is 0.8 grams per cubic 

meter and that the effective droplet diameter of this moisture is 

15 microns; these meteorological conditions are typical of stratus 

clouds. Finally, let it be assumed that the equivalent cylinder 
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has a radius of 3.28 inches. 

Summarizing: 

Us = 367.5 ft./sec. = 3.512(10-7) slugs/ft.-sec. 

1;it = 23.3° F. a = 2.46(10-5) ft. 

pa = 10.11 lb./in!" abs. ea = 1.94 slugs/ft.3 

= 1.756(10-3) slugs/ft.3 C = .2733 ft. 

From these data, 
4.92(10 -5 )1.756(10 

-3 
)367.5 

R = 2a aUs/ a = 
3.512(10-7) 

90.4 
2 -10 2 cda 

u7T s 

A 
s 

- .222 
(1.94)6.05(10 )367.5 

3.512(10-) 9 ,1111 

= .2733 ft., 

K = 748/0 

= 1.00, 

and 

i9 Ru2/K 

= 8.17(103). 

Initial values of vx, vy, and y can be determined by means 

of equations 29, 30, and 31, respectively. If, in the present 

example, step-by-step calculations are initiated at x = 4, 

4,(B4) = 42(4.0) by substitution. From "Tables of Functions..." by 

Jahnke and Emde (16), the value of the exponential integral, 

Ei(-4.0), is -.003779. Then by equation 28, (B) = .70C. 

,substituting for x and 4(B) in the previously mentioned equations: 

vx 
4 

= 1 - .0625(.700) = 1 - .0438 A.956, 

v, /y = .0625(.300) 4- .00195(1 - 2y ti .0207 - .0039y 
J4 s s 
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and 

ASy4/ys = .0438 + .0039(1 - ys2) .0479 - .0039ys2. 

Values of 
x4 

, vy4, and y4 corresponding to previously stated 

conditions of the present example are presented in Table 2. The 

selected initial ordinates are shown in the left column of this 

table. 

Table 2. Droplet velocity components and ordinate at x = 4. 

Ys vx vy4/Ys v 
Y4 

4 
°Y4/Ys °Y4 Y4 

0.00 0.956 0.00000 0.000000 0.00000 0.000000 0.0000 

0.05 0.956 0.02070 0.001035 0.04770 0.002385 0.0524 

0.10 0.956 0.02066 0.002066 0.04786 0.004786 0.1048 

0.15 0.956 0.02061 0.003093 0.04781 0.007171 0.1572 

0.20 0.956 0.02054 0.004108 0.04774 0.009548 0.2095 

Equations 18, 23, 24, 25, and 26 provide a convenient means 

for step-by-step extension of the droplet trajectories from 
x = 4 

to the immediate vicinity of the cylinder. As a first example of 

this method, the trajectory of a droplet whose ordinate, ys, was 

zero is tabulated in Table 3. From symmetry it is apparent that 

such a droplet can have no vertical velocity component at any 

point along its path. For this reason vy and y are zero through- 

out the table. At x = 1.00 the value of vx is seen to be 0.254. 

By comparison, Fig.'8 of AAF Technical Report 5418 (11) indicates 

that the droplet of the example problem would strike the 
stagna- 

tion point of the cylinder with a velocity, vx, of 0.265. Thus, 

in the present example, finite summation appears to have intro- 

auced an error of 4.15 per cent into the velocity with which 



Table 3. Tabulated trajectory calculation for a droplet whose ordinate, y8, = 0.000 at x = OD. 

(1) : (2) : (3) : (4) : (5) : (6) : (7) : (8) : (9) : (10) t (11) 

xn t A x t xn+1 : vxn t uxn : (4)-(5) 
vyn uyn ; (7)-(8) (6)2 (6) 

t 

(9)2 

4.00 -0.50 3.50 .956 .937 .019 0 0 0 - 0 

3.50 -0.50 3.00 .944 .917 .027 0 0 0 - 0 

3.00 -0.50 2.50 .925 .888 .037 0 0 0 - 0 

2.50 -0.25 2.25 .897 .840 .057 0 0 0 0 

2.25 -0.25 2.00 .873 .802 .071 0 0 0 0 

2.00 -0.20 1.80 .851 .752 .099 0 0 0 0 

1.80 -0.20 1.60 .811 .688 .123 0 0 0 0 

1.60 -0.10 1.50 .756 .604 .152 0 0 0 - 0 

1.50 -0.10 1.40 .716 .547 .169 0 0 0 - 0 

1.40 -0.10 1.30 .668 .480 .188 0 0 0 - 0 

1.30 -0.05 1.25 .608 .398 .210 0 0 0 - 0 

1.25 -0.05 1.20 .570 .350 .220 0 0 0 - 0 
1.20 -0.05 1.15 .527 .295 .232 0 0 0 - 0 

1.15 -0.05 1.10 .476 .235 .241 0 0 0 - 0 

1.10 -0.05 1.05 .417 .160 .257 0 0 0 - 0 

1.05 -0.05 1.00 .344 .085 .259 0 0 0 - 0 

1.00 .254 0 

: (12) 

t 

V(10)+(11) 

.019 

.027 

.037 

.057 

.071 

.099 

.123 

.152 

.169 

.188 

.210 

.220 

.232 

.241 

.257 

.259 

: (13) t (14) t (15) : (1F) t. (17) (18) t (19) : (20) r (21) t (22) : (23) : (24) : 

: t t t 2 2 

R 
t CDR 

D 
: (2)/(4) (14)( 6 ' (15) : vxn+, 

4, 

(14)(9)(15) : : v 
5r12+1 : 

yn 
t 

(7)/(4) : -(a)(2) 2 
-(18)(15) yn+1 

2 

2 2 2 2 

1.718 1.225 -.522 -.0122 .944 0 0 0 0 0 0 0 

2.44 1.30 -.530 -.0186 .925 0 0 0 0 0 0 0 

3.34 1.38 -.540 -.0276 .897 0 0 0 0 0 0 0 

5.15 1.50 -.279 -.0238 .873 0 0 0 0 0 0 0 
6.41 1.58 -.287 -.0321 .851 0 0 0 0 0 0 0 

8.95 1.72 -.235 -.0400 .811 0 0 0 0 0 0 0 
11.11 1.82 -.247 -.0552 .756 0 0 0 0 0 0 0 

13.73 1.97 -.1322 -.0396 .716 0 0 0 0 0 0 0 
15.28 2.03 -.1397 -.0479 .668 0 0 0 0 0 0 0 
16.99 2.12 -.1497 -.0596 .608 0 0 0 0 0 0 0 

18.98 2.20 -.0823 -.0380 .570 0 0 0 0 0 0 0 
19.89 2.25 -.0877 -.0434 .527 0 0 0 0 0 0 0 
20.97 2.30 -.0949 -.0506 .476 0 0 0 0 0 0 0 
21.80 2.33 -.1051 -.0590 .417 0 0 0 0 0 0 0 
23.22 2.37 -.1199 -.0730 .344 0 0 0 0 0 0 0 
23.41 2.39 -.1454 -.0900 .254 0 0 0 0 0 0 0 

0 
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droplets will strike the stagnation point of the cylinder. 

The general method of constructing a table such as Table 3 

is as follows: Values of vx, vy, and y corresponding to a chosen 

value of ys and an arbitrarily selected value of x? 4 are calcu- 

lated by means of equations 29, 30, and 31; x, vx, vy, and y are 

then substituted in columns (1), (4), (7), and (20), respectively. 

An increment Aix must then be assumed. Care should be taken to 

choose this increment of such magnitude as to avoid large changes 

of vx, vy, or y in any one step. The algebraic sum of columns (1) 

and (2) is column (3) by equation 25. Values of ux and uy are 

determined from Figs. 1 and 2, respectively. This is possible 

since x and y are known. The value determined for ux is entered 

in column (5), while the value determined for uy is entered in 

colu:An (8). The difference (vx - ux) is wr,, and appears in column 

(6); similarly, the difference (vy - uy) is wy and appears in 

column (9). The square of the value in column (6), which is 

generally 
* 

entered in column (10), and the square of the value in 

column (9), which is entered in column (11), are added; the square 

root of the resulting sum is w and appears in column (12). Know- 

ing RU and w, equation 18 can be used to determine R. The value 

of R, thus determined, is entered in column (13). Since K is 

known in a problem of this type and since CDR/24 can be determined 

from Fig. 3, entering this graph with the value of R from column 

(13), column (14) may now be determined. Column (15) is the 

When ys = 0 as in Table 6, u = 17177 and it is thus pointless 
to square ux only to extract the square root at some later stage 

of the calculations. 
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quotient of column (2) by column (4). Column (16) is the product 

of columns (141 (6), and (15). By equation 23, colutm (4) plus 

column (16) gives the value of vx at the end of the step. This 

sum appears in column (17). In like manner, the product of col- 

umns (14), (9), and (15) constitutes column (18). By equation 24, 

column (7) plus column (18) gives the value of vy at the end of 

the step. This sum appears in column (19). The quotient of col- 

umn (7) by column (4) is entered in column (21). Column (22) is 

formed as the product of column (21) by column (2) with the sign 

changed. Column (23) is one-half the product of column (18) by 

column (5) with the sign cnanged. By equation 26, the value of y 

at the end of the step, column (24), is the sum of columns (20), 

(22), and (23). 

To initiate the next step, the values in columns (3), (17), 

(19), and (24) of the completed line are entered in columns (1), 

(4), (7), and (20), respectively, on the next line below. It is 

only necessary to select an appropriate value for Ax before pro- 

ceeding with this next step. 

As a second example of the method, the trajectory of a drop- 

let whose initial ordinate, ys, was 0.15 is tabulated in Table 4. 

In this case, the droplet velocity possesses a vertical component, 

and step-by-step determination of the trajectory is more difficult.. 

Graphital construction of this trajectory in the vicinity of the 

cylinder locates the coordinates of droplet impact on the cylinder; 

x = .963, y = .357. The tangent of this trajectory at the point of 

impact intersects the x-axis at x = 1.265. Now, by Theorem I, 



(1) 

x 
n 

4.00 
3.50 
3.00 

-0.50 
-0.50 

-0.50 

2.50 -0.25 
2.25 -0.25 

2.00 -0.20 
1.80 -0.20 

1.60 
1.50 
1.40 

1.30 
1.25 
1.20 
1.15 
1.10 

1.05 

1.00 
0.975 
0.950 
0.925 

-0.10 
-0.10 
-0.10 

-0.05 
-0.05 
-0.05 
-0.05 
-0.05 
-0.05 

-0.025 
-0.025 
-0.025 
-0.025 

0.900 -0.05 

0.85 

(3) : (4) 

2 V xn 

3.50 
3.00 

2.50 

.966 

.946 

.927 

(5) t 
(6) 

ux : (4)-(5) 

t 

.940 

.919 

.892 

2.25 .901 .846 
2.00 .878 .809 

1.80 .847 .760 
1.60 .813 .704 

1.50 
1.40 
1.30 

1.25 
1.20 
1.15 

1.10 
1.05 

1.00 

0.975 
0.950 
0.925 
0.900 

.765 

.731 

.688 

.634 

.603 

.567 

.528 

.485 

.437 

.389 

.365 

.342 

.322 

.628 

.575 

.513 

.446 

.410 

.370 

.333 

.286 

.260 

.240 

.229 

.229 

.260 

0.850 .310 .303 

.307 

.016 

.027 

.035 

(7) 

vy 
n 

.0031 

.0050 

.0071 

Table 4. Tabulated trajectory calculations for a droplet whose ordinate, ys, = 0.15 at x = 

.006 

.008 

.011 

-.003 

v.003 
-.004 

.000256 .000009 

.000729 .000009 

.001225 .000016 

.055 .0101 .019 -.009 .00303 .000081 .0558 

.069 .0138 .029 -.015 .00476 .000225 .0706 

.087 .0206 .042 

.109 
-.021 .00757 .000441 0895 

.0289 .060 ,-.031 .01188 .000961 .112 

(12) t (13) 

VT167017 : R 
t 

.0163 

.0272 

.0352 

.137 

.156 

.175 

.188 

.193 

.197 

.195 

.199 

.177 

.149 

.136 

.113 

.062 

.0426 

.0546 

.0715 

.0932 

.1070 

.1259 

.1485 

.1779 

.2140 

.2652 

.3040 

.3456 

.3672 

.091 

.116 

.142 

.177 

.209 

.239 

.283 

.327 

.402 

.509 

.550 

.620 

.670 

-.048 
-.061 
-.070 

-.084 
-.102 
-.113 
-.135 
-.149 
-.188 

-.244 
-.246 
-.274 
-.303 

.01877 

.02435 

.0306 

.0353 

.0372 

.0388 

.0380 

.0396 

.0313 

.0222 

.01848 

.01267 

.00384 

.00230 

.00372 

.00490 

.00706 

.01040 

.01277 

.0182 

.0222 

.0353 

.0596 

.0605 

.0751 

.0919 

.1419 

.1676 

.1884 

.2058 

.2181 

.2270 

.2370 

.2483 

.2575 

.286 

.281 

.279 

.309 

.007 .4272 .750 -.323 .000049 .1042 .323 

.5605 .11 MID 

1.471 
2.45 

3.18 

2 

r 

(14) 

C 
D 
R 

24K 

1.20 

1.30 

1.37 

-.528 

-.539 

5.04 1.50 -.2774 
6.39 1.58 -.285 

8.09 Lee -.236 
10.20 1.79 -.246 

12.81 
15.14 
17.02 

18.60 
19.71 
20.52 
21.42 
22.45 
23.26 

25.9 
25.4 
25.2 
28.0 

28.2 

1.92 

2.02 
2.13 

2.19 

2.23 

2.27 

2.30 
2.35 

2.38 

2.48 

2.47 

2.47 

2.55 

-.1307 
-.1368 
-.1454 

-.0778 
-.0830 
-.0881 
-.0947 
-.1031 
-.1144 

-.0643 
-.0685 
-.0731 
-.0776 

2.56 -.1613 

Nab 

-.0104 
-.0185 
-.0258 

-.0229 
-.0311 

-.0344 
-.0480 

-.0344 
-.0431 
-.0542 

-.0308 
-.0357 
-.0394 
-.0425 
-.0482 
-.0482 

-.0237 
-.0230 
-.0204 
-.0123 

-.0029 

2 

(17) (18) 

n+1 
t (14)(9)(15) 
t 

.946 

.927 

.901 

.00188 

.00206 

.00295 

.878 .00374 

.847 .00675 

.813 .00833 

.765 .01366 

.731 

.688 

.634 

.603 

.567 

.528 

.485 

.437 

.389 

.365 

.342 

.322 

.310 

.01204 

.01687 

.02168 

.01379 

.01887 

.02260 

.0294 

.0361 

.0512 

.0388 

.0416 

.0495 

.0600 

.307 .1333 

.0050 

.0071 

.0101 

.1572 

.1593 

.1625 

.00324 

.00529 

.00766 

.00162 

.00264 

.00383 

.000490 

.000544 

.000696 

.1593 

.1625 

.1670 

.0138 .1670 .01121 .00280 .000519 .1703 

.0206 .1703 .01571 .00393 .000962 .1752 

.0289 .1752 .0243 

.0426 .1811 .0356 

.0546 .1899 

.0715 .1963 

.0932 .2049 

.1070 

.1259 

.1485 

.1779 

.2140 

.2652 

.3040 

.3456 

.3672 

.4272 

.2169 

.2247 

.2343 

.2464 

.2619 

.2820 

.3094 

.3177 

.3399 

.3670 

.0557 

.0747 

.1040 

.1450 

.1774 

.2218 

.2812 

.3665 

.490 

.681 

.833 

1.011 
1.140 

.5605 .3928 1.380 

.4381 1.827 

.00487 .000984 .1811 

.00711 .001680 .1899 

.00557 

.00747 

.01040 

.00725 

.00887 

.01109 

.01406 

.01832 

.0245 

.01702 

.02082 

.02528 

.02350 

.0690 

.000786 

.001151 

.001578 

.000536 

.000783 

.000995 

.001392 

.001859 

.00293 

.001249 

.001425 

.001808 

.002327 

.01077 

.1963 

.2049 

.2169 

.2247 

.2343 

.2464 

.2619 

.2820 

.3094 

.3177 

.3399 

.3670 

.3928 

.4726 
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Appendix D, of 4AF Technical Report 5418 (11): 

If tangents be drawn to all the trajectories (for a 
given set of values for K and 00) at the point where these 
meet the cylinder (or sphere), these tangents have a common 
point of intersection which lies on the x-axis at a distance 
xa from the origin. 

The maximum ordinate of the impact point can thus be determined 

by constructing the tangent to the cylinder which passes through 

the point (1.265, 0). The corresponding angle between the posi- 

tive x-axis and a cylinder radius through this point, ek, is 

found to be 37.9 degrees in this example. From Fig. 5 of AAF 

Technical Report 5418 (11), eh is determined as 35 degrees, using 

K and co as determined for the present example. Thus, the method 

of finite summation appears to have introduced an error of 8.29 

per cent in the determination of ell of the example. Nevertheless, 

it should be noted that this error would result in a conservative 

estimate of icing hazard in the present instance. 

CONCLUSIONS 

It has been demonstrated in the preceding analysis that 

step-by-step determination of droplet trajectories in the vicinity 

of a right circular cylinder is entirely practical. Furthermore, 

a satisfactory accuracy has been shown for the examples chosen. 

Accuracy would undoubtedly be improved by increasing the number of 

steps used in calculating the trajectories and by constructing 

Figs. 1, 2, and 3 on a larger scale. Additional curves on Figs. 1, 

and 2 for small values of the parameter, y, would also be advanta- 

geous. 
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Complete determination of the rate of ice accretion for the 

example airfoil would require the calculation of an additional 

trajectory, tangent to or barely missing the equivalent cylinder. 

No interpolation would be necessary for the determination of ys , 

the maximum initial ordinate for a droplet striking the cylinder, 

if the tangent trajectory were fortuitously chosen; however, a 

trajectory which barely misses the equivalent cylinder is more 

likely to be selected and, in this case it would then be neces- 

sary to interpolate to determine ys . 

In either case, determination of this maximum initial ordi- 

nate would allow calculation of the rate of ice accretion per 

foot of span of the example airfoil. 
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APPENDIX 

The data appearing in Table 5 were calculated as a neces- 

sary preliminary to the construction of graphs of ux and uy. 

Each of these components was then plotted as a function of x with 

y serving as a parameter. Due to symmetry of the stream about 

the x-axis it was only necessary to tabulate data in the first 

quadrant for complete exploration in the region of accretion. 

Values of cC and of u were evaluated for possible later use 

as an aid in the step-by-step analysis. 

Equations employed in the tabulation of these data were: 

2 2 
x -y 

ux - 1 
i.y2 )2 

2xy 
uy 

(x24?)2 

oC = tan 
-1 

(uy/ux) 

u = ux sec ce = uy csc 



Table 5. Tabulated stream velocity components in vicinity of the cylinder. 

X x2 : x2 _ y2 : x2 y2 : (x2 y2)2 : 
x2 - y2 : 

: (x2 4. y2)2 : 

u 
x 

. 

. 2y 
. 

: 
. 
. 

u : Tan cC . d : u 
7 

: 

y = 0; y2 = 0 

4.0 16.00 16.00 16.00 256.00 .0625 .9375 0 0 0 0 .9375 

3.5 12.25 12.25 12.25 150.06 .0816 .9184 0 0 0 0 .9184 

3.0 9.00 9.00 9.00 81.00 .1111 .8889 0 0 0 0 .8889 

2.5 6.25 6.25 6.25 39.06 .1600 .8400 0 0 0 0 .8400 

2.0 4.00 4.00 4.00 16.00 .2500 .7500 0 0 0 0 .7500 

1.5 2.25 2.25 2.25 5.0925 .4444 .5556 0 0 0 0 .5556 

1.0 1.00 1.00 1.00 1.0000 1.000 .0000 0 0 0 0 .0000 

0.5 0.25 0.25 0.25 0.0625 4.000 -3.000 0 0 0 0 -3.0000 

0.0 0.00 0.00 0.00 0.0000 - - - - - - - 

y = 0.1; y2 = 0.01 

4.0 16.00 15.99 16.01 256.32 .0622 .9378 .80 .00312 .00333 .19 .938 
3.5 12.25 12.24 12.26 150.32 .0814 .9186 .70 .00465 .00507 .29 .919 

3.0 9.00 8.99 9.01 81.18 .1107 .8893 .60 .00739 .00831 .45 .889 
2.5 6.25 6.24 6.26 39.19 .1592 .8408 .50 .01276 .01517 .87 .841 
2.0 4.00 3.99 4.01 16.08 .2483 .7517 .40 .02488 .0331 1.90 .752 
1.5 2.25 2.24 2.26 5.1375 .4362 .5638 .30 .0584 .1036 5.91 .567 
1.0 1.00 .99 1.01 1.0200 .971 .029 .20 .1960 6.76 81.58 .198 
0.5 0.25 .24 .26 .0676 3.55 -2.55 .10 1.480 -.580 144.5 3.13 
0.0 0.00 -.01 .01 .0001 -100.0 101.0 0 0 0 0 101.0 



X x2 : x2 _ y2 : x2 + y2 ; (x? + y2)2 ; 
x2 - y2 ; u 

x 
: 

. 

. . : (x2 + ,2)2 : 

. 
. 

d , 

2xy 
tlY 

: Tan cC cC 

y = 0.2; y2 = 0.04 

4.0 16.00 15.96 16.04 257.28 .0620 .9380 1.60 .00622 .00664 .38 .938 

3.5 12.25 12.21 12.29 151.08 .0808 .9192 1.40 .00926 .01008 .58 .919 

3.0 9.00 8.96 9.04 81.72 .1097 .8903 1.20 .01469 .01649 .95 .890 

2.5 6.25 6.21 6.29 39.56 .1570 .8430 1.00 .0253 .0300 1.72 .844 

2.0 4.00 3.96 4.04 16.32 .2425 .7575 .80 .0490 .0647 3.70 .759 

1.5 2.25 2.21 2.29 5.2441 .422 .578 .60 .1145 .1981 11.20 .589 
1.0816 1.0 1.00 .96 1.04 .887 .113 .40 .3702 3.34 73.32 .387 

0.5 0.25 .21 .29 0.0841 2.496 -1.496 .20 2.378 -1.590 122.15 2.81 

0.0 0.00 -0.04 .04 0.0016 -25.0 26.0 0 0 0 0 26.0 

y = 0.3; i2 = 0.09 

4.0 16.00 15.91 16.09 259.00 .0615 .9385 2.40 .00926 .00988 .57 .939 
3.5 12.25 12.16 12.34 152.00 .0800 .9200 2.10 .01381 .01501 .86 .920 
3.0 9.00 8.91 9.09 82.6 .1090 .8910 1.80 .02179 .02445 1.40 .891 
2.5 6.25 6.16 6.34 40.2 .1531 .8469 1.50 .0373 .0440 2.52 .848 
2.0 4.00 3.91 4.09 16.75 .2334 .7666 1.20 .0716 .0935 5.34 .771 
1.5 2.25 2.16 2.34 5.47 .3945 .6055 .90 .1645 .2715 15.77 .630 
1.0 1.00 .91 1.09 1.188 .7665 .2335 .60 .504 2.146 65.03 .555 

0.5 0.25 .16 .34 .1153 1.387 -.387 .30 2.598 -6.71 98.49 2.63 
0.0 0.00 -.09 .09 .0081 -11.11 12.11 0 0 0 0 12.11 

y = 0.4; y2 = 0.16 

4.0 16.00 15.84 16.16 261.00 .0607 .9393 3.20 .01227 .01307 .75 .939 
3.5 12.25 12.09 12.41 153.9 .0786 .9214 2.80 .01811 .01976 1.13 .921 
3.0 9.00 8.84 9.16 84.0 .1051 .8949 2.40 .02859 .0319 1.84 .895 
2.5 ).25 6.09 6.41 41.0 .1487 .8513 2.00 .0488 .0573 3.28 .854 
2.0 ,.00 3.84 4.16 17.35 .2213 .7787 1.60 .0922 .1185 6.76 .784 
1.5 2.25 2.09 2.41 5.80 602 

.3635 

.6398 1.20 .207 .3234 17.91 .673 
1.0 
0.5 
0.0 

1.00 
0.25 
C.uu 

.84 

.09 
-.16 

1.16 
.41 

.16 

1.?g£631 

.0256 

. 245 

.5 

-6.25 
..N5 

7.25 

.80 

.40 

0 

2.379 

0 

1.567 
5.1.2 

0 

57.44 
78.9: 

0 

-701 

2.425 
7.47 



x : x 
2 

: x2 - y2 : x2 + y2 : (x2 + y2) 
2 

: 

x2 _ . 12 
ux 22cY 

uy 
: Tan cC : cC 

: (x2 + 72) 
2. 

: 

y = 0.5; Y2 = 0.25 

4.0 16.00 15.75 16.25 264.00 .0596 .9404 4.00 .01516 .01610 .92 .940 

3.5 
3.0 

12.25 

9.00 
12.00 
8.75 

12.50 
9.25 

156.0 
85.6 

.o769 

.1022 
.9231 
.8978 

3.50 
3.00 

.02245 

.03503 

.02431 

.0390 

1.39 
2.23 

.923 

.898 

2.5 6.25 6.00 6.50 42.2 .1422 .8578 2.50 .0592 .0690 3.96 .860 

2.0 4.00 3.75 4.25 17.70 .2118 .7882 2.00 .1130 .1434 8.16 .798 

1.5 2.25 2.00 2.50 6.25 .3200 .6800 1.50 .2400 .353 19.46 .721 

1.0 1.00 .75 1.25 1.563 .4795 .5205 1.00 .641 1.236 51.0 .825 

0.5 0.25 .00 .50 .250 .000 1.000 .50 2.00 2.000 63.43 2.238 

0.0 0.00 -.25 .25 .0625 -4.00 5.00 0 0 0 0 5.00 

y = 0.6; Y2 = 0.36 

4.0 16.00 15.64 16.36 268.00 .0584 .9416 4.80 .01791 .01900 1.08 .941 

3.5 12.25 11.89 12002 158.7 .0750 .9250 4.20 .02648 .02862 1.64 .925 

3.0 9.00 8.64 9.36 87.7 .0984 .9016 3.60 .0410 .0455 2.61 .902 

2.5 6.25 5.89 6.61 43.6 .1383 .8617 3.00 .0704 .0818 4.69 .864 

2.0 4.00 3.64 4.36 19.01 .1916 .8084 2.40 .1262 .1561 8.89 .819 

1.5 2.25 1.89 2.61 6.81 .2772 .7228 1.80 .2641 .3655 20.08 .770 

1.0 1.00 .64 1.36 1.85 .346 .654 1.20 .649 .992 44.75 .922 

0.5 0.25 -.11 .61 .372 -.2956 1.2956 .60 1.613 1.245 51.24 2.070 

0.0 0.00 -.36 .36 .1296 -2.78 3.78 0 0 0 0 3.78 

y = 0.7; 72 = 0.49 

4.0 16.00 15.51 16.49 272.00 .0571 .9429 5.60 .02060 .02184 1.25 .943 

3.5 12.25 11.76 12.74 162.1 .0725 .9275 4.90 .0302 .0326 1.54 .927 

3.0 9.00 8.51 9.49 90.0 .0946 .9054 4.20 .0467 .0516 2.93 .906 

2.5 6.25 5.76 6.74 45.5 .1267 .8733 3.50 .0769 .0881 5.05 .877 

2.0 4.00 3.51 4.49 20.15 .1742 .8258 2.80 .1390 .1681 9.55 .839 

1.5 2.25 1.76 2.74 7.50 .2347 .7653 2.10 .280 .366 20.10 .816 

1.0 1.00 .51 1.49 2.22 .230 .770 1.40 .631 .820 39.37 .996 

0.5 0.25 -.24 .74 .547 -.438 1.438 .70 1.279 .890 41.64 1.923 

0.0 0.00 -.51 .49 .2401 -2.04 3.04 0 0 0 0 3.04 



x : x2 : x2 -72 : x2 + y2 : (x2 + y2)2 : 
: 

u x ; 
2xy 

uy 
: Tan cC : ce 

(x2 4. y2)2 

y = 0.8; y2 = 0.64 

4.0 16.00 15.36 16.64 277.00 .0555 .9445 6.40 .02310 .02445 1.40 .945 

3.5 12.25 11.61 12.89 166.0 .0700 .9300 5.60 .03373 .03666 2.10 .931 

3.0 9.00 8.36 9.64 92.9 .0900 .9100 4.80 .0517 .0569 3.26 .910 

2.5 6.25 5.61 6.89 47.5 .1180 .8820 4.00 .0842 .0954 5.48 .887 

2.0 4.00 3.36 4.64 21.5 .1562 .8438 3.20 .1488 .1762 10.00 .856 

1.5 2.25 1.61 2.89 8.35 .1927 .8073 2.40 .2872 .3557 19.58 .857 

1.0 1.00 .36 1.64 2.69 .134 .866 1.60 .595 .687 34.50 1.051 

0.5 0.25 -.39 .89 .790 -.494 1.494 .80 1.013 .6775 34.13 1.751 

0.0 0.00 -.64 .64 .4096 -1.56 2.56 0 0 0 0 2.56 

y = 0.9; y2 = 0.83. 

4.0 16.00 15.19 16.81 283.00 .0537 .9463 7.20 .02543 .02688 1.53 .946 

3.5 12.25 11.44 13.06 170.2 .0846 .9154 6.30 .03698 .04035 2.31 .916 

3.0 9.00 8.19 9.81 96.2 .0851 .9149 5.40 .0561 .0614 3.55 .915 

2.5 6.25 5.44 7.06 49.9 .1090 .8910 4.50 .0902 .1013 5.78 .897 

2.0 4.00 3.19 4.81 23.15 .1378 .8622 3.60 .1556 .1802 10.22 .876 

1.5 2.25 1.44 3.06 9.37 .1538 .8462 2.70 .288 .3402 18.80 .894 

1.0 1.00 .19 1.81 3.28 .058 .942 1.80 .549 .582 30.21 1.092 

0.5 0.25 -.56 1.06 1.122 -.498 1.498 .90 .801 .535 28.13 1.648 

0.0 0.00 -.81 .81 .657 -1.23 2.23 0 0 0 0 2,23 

y = 1.0; y2 = 1.0 

4.0 16.00 15.00 17.00 289.00 .0519 .9481 8.00 .02768 .02920 1.67 .948 

3.5 12.25 11.25 13.25 175.5 .0601 .9399 7.00 .0399 .0425 2.43 .941 

3.0 9.00 8.00 10.00 100.0 .0800 .9200 6.00 .0600 .0652 3.64 .920 

2.5 6.25 5.25 7.25 52.6 .0999 .9001 5.00 .0951 .1045 6.03 .907 

2.0 4.00 3.00 5.00 25.0 .1200 .8800 4.00 .1600 .1802 10.22 .895 

1.5 2.25 1.25 3.25 10.55 .1185 .8815 3.00 .2843 .3225 17.88 .926 

1.0 1.00 0.00 2.00 4.00 0 1.00 2.00 .500 .500 26.57 1.120 

0.5 0.25 -0.75 1.25 1.56 -.481 1.481 1.00 .641 .433 23.40 1.616 

0.0 0.00 -1.00 1.00 1.00 -1.00 2.00 0 0 0 0 2.00 
Un 


