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Abstract 

Impaired vasomotor control in chronic heart failure (CHF) limits the delivery of O2 to skeletal 

muscle during exercise.  Previous results demonstrate significant increases in skeletal muscle 

blood flow (BF) during exercise with omega-3 polyunsaturated fatty acid (PUFA) 

supplementation via fish oil (FO) versus safflower oil (SO) in healthy rats (Stebbins CL et al., Int 

J Sport Nutr Exerc Metab 20:475-86, 2010). Whether PUFA supplementation with FO will 

improve vasomotor control in CHF and skeletal muscle BF during exercise remains to be 

determined.  This investigation tested the hypothesis that PUFA supplementation with FO would 

augment the skeletal muscle BF response to exercise in rats with CHF when compared to SO.  

CHF was induced in male Sprague-Dawley rats by myocardial infarction produced via left 

coronary artery ligation. Rats were then randomized to dietary FO (20% docosahexaenoic acid 

and 30% eicosapentaenoic acid, n = 8) or SO (5% safflower, n = 6) supplementation for 6 weeks.  

Rats remained on their respective diets until final experiments were conducted.  Following acute 

instrumentation and recovery (> 1 hour), mean arterial pressure (MAP), skeletal muscle BF to 

the total hindlimb and individual muscles (via radiolabeled microspheres), and blood lactate 

concentration were determined during rest, submaximal treadmill exercise and 

exercise+LNAME (20 m · min
-1

, 5% incline).  Left ventricular end-diastolic pressure (LVEDP) 

measured in the SO and FO groups during instrumentation were similar and demonstrated 

moderate CHF (LVEDP; SO: 14 ± 2; FO: 11 ± 1 mmHg, P>0.05).  During submaximal exercise, 

MAP (SO: 128 ± 3; FO: 132 ± 3 mmHg) and blood lactate (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol · 

l
-1

) were similar (P>0.05) between groups. Exercising hindlimb skeletal muscle BF was higher in 

SO compared to FO (SO: 120 ± 11; FO: 93 ± 4 ml · min
-1

 · 100 g
-1

).  Specifically, 17 of 28 

individual hindlimb muscle BF’s were higher (P<0.05) in SO.  These data suggest that PUFA 

supplementation with FO in rats with moderate CHF decreases the skeletal muscle BF response 

to submaximal whole body exercise. 
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Chapter 1 - Introduction 

The relationship between ω-3 polyunsaturated fatty acid (PUFA) intake and a reduced 

incidence of mortality associated with cardiovascular disease has incited significant clinical 

interest (Bonaa, 1989).  The primary focus has been on the cardioprotective effects of PUFAs 

with particular concern for mechanisms explaining the anti-arrhythmic properties they exhibit in 

cardiovascular disease (Marchioloi, 2002; Kromhout, 2010; Tavazzi, 2008; Yokoyama, 2007).  

A relatively unexplored, yet potentially key component of PUFA utilization is their role outside 

of the central cardiac domain. 

Dietary supplementation with PUFAs augments blood flow (BF) through conduit vessels 

supplying healthy human forearm muscle via increases in vascular conductance (VC; Walser, 

2006), likely consequent to an increase in endothelial nitric oxide synthase (eNOS) and NO 

bioavailability (Stebbins, 2008).  However, limiting the focus to conduit vessels ignores highly 

heterogeneous muscle BF distribution which varies according to muscle function and/or fiber 

type composition independent of upstream conduit vessel regulation.  In this regard, our 

laboratory utilized radiolabelled microspheres during submaximal treadmill exercise to 

demonstrate that PUFA supplementation significantly augmented rat hindlimb muscle BF with 

the increases occurring principally within muscles and muscle portions composed of 

predominantly type I and IIa fibers (Stebbins, 2010). 

The recent findings associated with chronic PUFA administration found in healthy 

individuals raises important implications for cardiovascular disease populations, particularly 

patients with chronic heart failure (CHF).  In addition to their obvious decrements in cardiac 

performance, patients can present with significant endothelial dysfunction and depressed 

vasomotor control which are important mechanisms responsible for the impaired hyperemic 

response to exercise characteristic of CHF (Katz, 2005; McAllister, 1993).  Consequences of the 

failure to appropriately redistribute BF during exercise are a greater reliance on substrate level 

phosphorylation and glycogenolysis, partially accounting for the fatigue and exercise intolerance 

emblematic of this population (Poole, 2012).  Unfortunately, the diminished capacity to perform 

work severely impacts the efficacy of exercise rehabilitation; a primary therapeutic modality in 

the treatment of CHF. 
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The deranged skeletal muscle BF distribution found in CHF may be a consequence of 

decrements in NO-mediated vasodilation (Hirai, 1995).  Thus, changes in NO bioavailability 

underlie both the etiology of CHF and the therapeutic effect of PUFAs.  This presents an 

intriguing non-pharmacological potential for improving the exercising skeletal muscle BF 

response in CHF. 

  Therefore, the purpose of the present study was to test the hypothesis that PUFA 

supplementation via dietary fish oil (FO) would increase exercising skeletal muscle BF and VC 

in a rat model of CHF.  Additionally, due to the evidence for a PUFA induced increase in eNOS 

activity, we expected higher BF and VC to be related to an improved NO-mediated vasodilation.  
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Chapter 2 - Methods 

  Animal selection and care 

25 adult male Sprague-Dawley rats (initial body mass = ~275g) were maintained in 

accredited animal facilities at Kansas State University on a 12hr/12hr light-dark cycle with food 

and water provided ad libitum.  All procedures were approved by the Institutional Animal Care 

and Use Committee of Kansas State University under the guidelines established by the National 

Institutes of Health. 

 

 Myocardial infarction procedures 

All rats underwent induction of a myocardial infarction (MI) via ligation of the left main 

coronary artery which has been shown to result reliably in the development of CHF (Musch, 

1992).  Briefly, each rat was anesthetized with a gas mixture of 5% isoflurane-O2 and intubated 

for mechanical ventilation on a rodent respirator (model 680, Harvard Instruments, Holliston, 

MA) with subsequent maintenance on a 3% isoflurane-O2 gas mixture for the duration of the 

procedure.  A left thoracotomy was performed to expose the heart through the fifth intercostal 

space.  Exteriorization of the heart provided access to the left main coronary artery which was 

ligated with a 6-0 silk suture ~1-2 mm distal to the edge of the left atrium.  The muscles of the 

thorax were then closed with 4-0 gut, and the skin incision was closed with 3-0 silk followed by 

an administration of the analgesic agents bupivacaine (1.5 mg·kg
−1

 subcutaneously) and 

buprenorphine (0.01–0.05 mg·kg
−1 

i.m.) as well as ampicillin (50 mg·kg
-1

, i.m.) to reduce the risk 

of infection.  Upon removal from mechanical ventilation and withdrawal of anesthesia the rats 

were monitored ~8-12 hrs post-operatively for the development of arrhythmias and undue stress 

with care administered as needed.  The recovery duration prior to pre-intervention performance 

testing was ≥21 days which is consistent with the time course for complete remodeling of 

necrotic myocardial tissue (Fishbein, 1978).  During this time the rats were monitored daily 

(appetite, weight loss, gait/posture, etc.) according to a plan conducted in conjunction with the 

university veterinary staff. 
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 Treadmill acclimatization  

A familiarization period was used to acclimate the rats to high speed running.  It was 

comprised of 5-7 sessions on a custom built motor-driven treadmill set at an incline of 5%.  Each 

session involved progressive increases in treadmill speed from ~20 m·min
-1

 to ~45 m·min
-1

 over 

a total duration of no more than 5 min. 

 Exercise performance testing  

Rats were evaluated both pre- and post-diet for maximal oxygen uptake (O2peak) and 

endurance capacity.  The test sequence was randomized to avoid an ordering effect, and a 

minimum of 24 h was maintained between sessions.  O2peak was determined using a protocol 

shown to elicit highly reproducible VO2peak measurements in untrained rats (Musch, 1988; Copp, 

2009).  Briefly, each rat was placed inside a single stall metabolic chamber on the motorized 

treadmill.  Ambient air was drawn, in sequence, through the chamber, Dririte and a flow meter 

(Fischer-Porter, model 10A1378, Burr Ridge, IL) at a rate of 5000 ml·min
-1

 via a vacuum pump 

(Neptune-Dyna, model 4K, Dover, NJ).  Effluent gas from the chamber was continuously 

measured for O2 and CO2 percentages by online O2 and CO2 analyzers (AEI Technologies, 

models S-3A/I and CD-3A, Pittsburg, PA) calibrated using gravimetrically-analyzed gas 

concentrations.  O2 and CO2 were calculated according to the method described in Brooks and 

White (1978).  The protocol consisted of increasing treadmill speed by ~5-10 m·min
-1

 in a ramp 

fashion while monitoring and recording O2 until a plateau was observed and/or the rat was unable 

to keep pace with the treadmill.  Total test duration was ~5-8 min, and the criterion for a valid 

test required satisfying one of the following conditions; 1) a plateau in O2 values despite an 

increasing treadmill speed or 2) an alteration in gait immediately preceding the termination of the 

test.  For a respiratory exchange ratio of <1.0 neither of the above criteria could independently 

validate the test and a second trial was repeated after a minimum of 24 h. 

The endurance capacity protocol was an incremental exercise test on the motorized 

treadmill set at a 5% grade.  The rat was brought to an initial speed of 25 m·min
-1

 for the first 15 

min.  At each 15 min interval the speed was increased by 5 m·min
-1

 until exhaustion (i.e. the 

inability to move off the back of the treadmill lane despite encouragement from manual bursts of 

high pressure air towards the hindlimbs).  Considerations for a valid test included the animal 

displaying a dramatically altered gait involving lowered hindquarters and raised snout.  
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Additionally, immediately upon completion of the test the investigator evaluated the righting 

reflex by placing the rat in the palm of their hand in the supine position.  Failure to elicit the 

righting reflex in ~10 seconds was regarded as an indicator of exhaustion. 

 

 Dietary supplementation 

Upon completion of the pre-diet testing all rats were allocated randomly to either the 

experimental group fed a FO diet (n = 15), or to the control group fed a safflower oil (SO) diet (n 

= 10).  The diet for both groups contained the following in grams·kg
-1

: casein 225, cornstarch 

446, sucrose 223, cellulose 31, DL-methionine 1, standard mineral mix 14, standard vitamin mix 

10, oil 50, and butylhydroquinone 0.08.  Included in the control diet was 5% SO which has 

previously been shown to have no significant effect on the hemodynamic variables of BF, VC, 

mean arterial pressure (MAP) or cardiac output during exercise (Walser et al. 2006).  The FO 

diet included 5% menhaden oil of which ~20% is docosahexaenoic acid and ~30% is 

eicosapentaenoic acid.  The diets were isocaloric with an administration period of 6-8 weeks. 

 

 Surgical instrumentation 

On the day of the final protocol the rats were anesthetized with a 5% isoflurane-O2 

mixture and maintained on a 3% isoflurane-O2 mixture for the duration of the surgical 

instrumentation.  The carotid artery was cannulated and a two-French-catheter-tipped pressure 

transducer (Millar Instruments, Houston, TX) was advanced into the left ventricle (LV) for the 

measurement of left ventricular end diastolic pressure (LVEDP).  Subsequently, cannulation of 

both the carotid and caudal arteries was performed with PE-10 connected to PE-50 (Intra-Medic 

polyethylene tubing, Clay Adams, Spark, MD).  The catheters were then tunneled 

subcutaneously to the dorsal aspect of the cervical region where they were exteriorized through a 

puncture wound in the skin.  Following closure of incisions the rat was removed from anesthesia 

and given a minimum recovery period of 2 h. 

Subsequent to the recovery period the final protocol was performed with the treadmill set 

at an incline of 5%.  The rat was placed on the treadmill and the carotid catheter was attached to 

a pressure transducer (Gould Statham P23ID) for the measurement of MAP and heart rate (HR) 

while the caudal catheter was connected to a 1 ml syringe attached to a Harvard pump (model 
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907, Cambridge, MA).  Exercise was initiated at a speed of ~20 m·min
-1

 and remained steady for 

~3 min at which time pre-spheres HR and pressures were recorded.  At ~3.5 min of total exercise 

time blood withdrawal was initiated from the caudal catheter at a rate of 0.25 ml·min
-1

.  The 

carotid catheter was then disconnected from the pressure transducer and ~0.5-0.6 · 10
6

, 15 µm 

diameter microspheres (
46

Sc or 
85

Sr in random order: Perkin Elmer Life and Analytical Sciences, 

Waltham, MA) were injected into the aortic arch of the continuously exercising animal for the 

determination of tissue BF.  Upon reconnection of the carotid catheter to the pressure transducer 

a second MAP reading was immediately recorded post-microspheres.  An arterial blood sample 

(0.2 ml) was then drawn from the carotid artery catheter for the determination of blood gases, 

hematocrit, pH, and [lactate].  Exercise was terminated and the rat was continuously monitored 

during a minimum 30 min rest period before the second trial began. 

A post-recovery pressure was recorded to establish resting MAP and HR values.  The 

second microsphere injection was performed either at rest (n = 10) or during a second exercise 

bout (n = 14).  In the case of a second exercise bout, the non-isoform specific NOS inhibitor 

N(G)-nitro-L-arginine-methyl-ester (L-NAME,10 mg·kg
-1

) was infused via the caudal artery 

catheter for ~10 s.  This second exercise condition (ex+L-NAME) was used to evaluate the 

contribution of NOS-dependent vasodilation to exercise hyperemia.  Pressure was recorded every 

30 s until the NOS inhibition elicited a persistent rise in MAP at which time the second exercise 

bout was initiated.  The second bout and administration of microspheres were performed 

identically to the protocol described above.  Upon termination of exercise the rat was euthanized 

with an overdose of pentobarbital (>50 mg·kg
-1

 body weight) via the carotid artery catheter. 

 Determination of BF and VC 

Correct placement of the carotid catheter in the aortic arch was verified by anatomical 

dissection.  After the heart was removed the right ventricle (RV), LV and septum were separated 

and weighed.  Measurement of infarct size in the LV was made via planimetry as described 

previously (Ferreira, 2006).  Hindlimb muscles and muscle portions as well as the lungs, 

kidneys, and representative organs of the splanchnic region were removed, weighed and placed 

in counting vials for the determination of radioactivity.   

Radioactivity was measured for each tissue on a gamma scintillation counter (Packard 

Auto Gamma Spectrometer, model 5230).  Taking into account the cross-talk fraction between 
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isotopes, BF to each tissue was determined using the reference sample method described in 

Musch & Terrell (1992), and tissue BF’s were expressed as ml·min
-1

·100 g
-1

 of tissue.  The BF 

results were also normalized to MAP and expressed as VC (ml·min
-1

·100 g
-1

·mmHg
-1

).  

Adequate mixing of the microspheres for each BF determination was verified by a <15% 

difference in BF between the right and left kidneys or right and left hindlimbs. 

 Statistical analysis 

Results were compared within (rest vs. exercise vs. ex+L-NAME) and between (SO vs. 

FO) groups using mixed 2-way ANOVAs and Student-Newman-Keuls post hoc tests where 

appropriate.  Muscle fiber type composition was based on the percentage of type I, type IIa, type 

IIb, and type IId/x fibers in the individual muscles and muscle parts of the rat hindlimb as 

reported by Delp & Duan (1996).  Significance was set at P<0.05, and values are expressed as 

mean ± SEM.



8 

 

Chapter 3 - Results 

 Dietary intake and body mass 

2-way ANOVA revealed that pre-diet body mass (SO: 391 ± 24, FO: 370 ± 15 g, P>0.05) 

was not different between groups whereas post-diet body mass was higher in SO rats (SO: 584 ± 

32, FO: 513 ± 18 g, P<0.05).  Diet consumption was not different between groups (SO: 26 ± 2, 

FO: 28 ± 2 g/day).  Post-diet hindlimb muscle mass was not different between groups (SO: 23.5 

± 1.0, FO: 23.0 ± 0.5 g, P>0.05) which resulted in a higher post-diet body mass to hindlimb 

muscle mass ratio in SO rats (SO: 24.8 ± 0.6, FO: 22.3 ± 0.7, P<0.05). 

 

 Central cardiac and morphological indices of CHF 

There was no difference between groups for any of the principal indices of CHF 

including infarct size, LVEDP, and LV, RV, or lung weight-to-body weight ratio (Table 1). 

 

 Effects of FO on exercise performance  

Pre-diet O2peak (SO: 79.4 ± 4.0, FO: 84.2 ± 3.8 ml·kg
-1

·min
-1

) and endurance capacity 

(SO: 26.5 ± 2.4, FO: 33.8 ± 4.1 min) as well as post-diet O2peak (SO: 62.9 ± 2.5, FO: 63.6 ± 1.8 

ml·kg
-1

·min
-1

) and endurance capacity (SO: 13.8 ± 1.2, FO: 17.5 ± 1.7 min) were not different 

between groups (P>0.05 for all).  Moreover, the total work performed during the post-diet 

endurance capacity tests was not different between groups (SO: 1545 ± 131, FO: 1851 ± 200 J, 

P>0.05). 

 

 Effects of FO on HR, MAP, [lactate] and blood gases  

HR and MAP at rest, during exercise or during ex+L-NAME were not different between 

groups (Fig. 1, P>0.05 for all).  Arterial blood [lactate] was not different between groups at rest 

(SO: 1.0 ± 0.1, FO: 1.0 ± 0.1 mmol/L, P>0.05), during exercise (SO: 3.8 ± 0.4, FO: 4.6 ± 0.5 

mmol/L, P<0.05) or during ex+L-NAME (SO: 6.5 ± 0.8, FO: 8.1 ± 0.7 mmol/L, P<0.05).  There 
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were also no differences in arterial blood pH, PO2, or PCO2 between groups at rest, during 

exercise or during ex+L-NAME (data not shown, P>0.05 for all). 

 

 Effects of FO on skeletal muscle BF and VC  

At rest there were no differences between groups in total hindlimb skeletal muscle BF or 

VC (Fig. 2) or BF and VC to 27 of 28 individual muscles or muscle portions (exception: anterior 

portion of the biceps femoris, Tables 2 and 3).  During exercise both total hindlimb BF and VC 

were lower in FO compared to SO (Fig. 2).  Specifically, FO resulted in a lower BF in 17, and 

lower VC in 18, of the 28 individual hindlimb muscles or muscle portions during exercise 

(Tables 2 and 3).  Total hindlimb skeletal muscle BF and VC during ex+L-NAME were not 

different between groups (P>0.05).  The absolute and relative reductions in total hindlimb 

skeletal muscle BF and VC following L-NAME were not different between groups (Fig. 3). 

 Effects of FO on renal and splanchnic BF and VC at rest and during exercise 

The majority of renal and splanchnic organ BF and VC were not different between 

groups.  The exception was a higher adrenal BF and VC at rest in FO compared to SO (Table 4). 
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Chapter 4 - Discussion 

The results presented herein provide novel insight regarding the effects of dietary FO 

supplementation on exercising skeletal muscle vascular control in a rat model of CHF.  The 

primary findings are 1) FO supplementation resulted in lower BF and VC when compared to SO 

2) changes in BF and VC after NOS inhibition via L-NAME did not differ between SO and FO 

3) exercise performance and arterial blood [lactate] were not different despite the difference in 

skeletal muscle BF during submaximal treadmill exercise. 

 Effects of FO on exercising skeletal muscle BF and VC   

Previously, we found PUFA supplementation produced a higher exercising skeletal 

muscle BF and VC for healthy rats in the absence of changes in MAP or HR (Stebbins, 2010).  

This was subsequent to evidence demonstrating PUFAs effectiveness in augmenting exercising 

forearm BF and VC in healthy humans (Walser, 2006).  The current data suggests that this higher 

skeletal muscle BF and VC seen in healthy animals cannot be extended to animals with CHF.  

On the contrary, in the condition of CHF, PUFA supplementation appears to reduce skeletal 

muscle BF and VC during submaximal treadmill exercise when compared to SO supplemented 

controls.  The greater exercising skeletal muscle BF seen previously in the healthy rats was 

attributed to a decrease in vascular resistance given that perfusion pressure (MAP) and HR were 

unchanged.  Consistent with this interpretation we posit that a lack of change in MAP or HR for 

the CHF rats indicates the lower BF with FO is driven by increases in contracting skeletal muscle 

vascular resistance.  However, the increase in vascular resistance is not due to an impaired 

vascular function per se.  Considering that the body mass to hindlimb muscle mass ratio is lower 

in FO it is clear that less work is required of the active hindlimb skeletal muscle to achieve the 

same running speed relative to the heavier SO counterparts.  Therefore, with the same muscle 

mass performing less work it is expected that BF would be lower in FO compared to SO as seen 

herein.  This contention that the adequacy of the exercise induced hyperemic response was 

similar between groups is supported by no differences in either arterial blood [lactate] during 

exercise or endurance capacity post-diet.  Thus, rather than representing a detrimental decrement 

in vascular function, the magnitude of the BF and VC response in FO appears to be consistent 

with SO in attempting to match the energetic demand of the exercising hindlimb skeletal muscle.  
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It is also noteworthy that FO has been shown to reduce HR and oxygen consumption during 

steady state submaximal cycle exercise (Peoples, 2008).  Although we do not have data for 

submaximal VO2, a reduction in oxygen consumption cannot be ruled out to partially explain the 

decreased BF and VC seen in the current study. 

 Effect of FO on NOS-derived NO-bioavailability   

In the current study NOS-derived NO-bioavailability was not augmented as evidenced by 

the similar BF and VC between groups during exercise with L-NAME administration.  This 

refutes a role for PUFAs in ameliorating vascular dysfunction via increased NO-bioavailability.  

In contrast, Tagawa and colleagues (1999) were able to demonstrate that PUFA supplementation 

can augment forearm vasodilation in patients with coronary artery disease of non-ischemic origin 

and that inhibition of NO synthesis abolished these improvements.  Further work indicated that 

the mechanism for PUFA induced increases in NO-bioavailability was likely due to elevated 

eNOS expression (Stebbins, 2008; Okuda, 1997).   

These divergent findings may be explained by the differences in cardiovascular disease of 

ischemic versus non-ischemic origin.  Specifically, ischemic insult elicits profound acute 

inflammation and a complex cardiac remodeling process involving a myriad of signaling 

molecules.  This complexity of dysfunction may explain why the mechanism for upregulation of 

eNOS expression in cultured human endothelial cells via PUFAs fails to improve NO 

bioavailability under CHF conditions in vivo.  Importantly, the hallmark characteristics of CHF 

include not only marked reductions in NO bioavailability, but also the presence of a pronounced 

oxidative stress.  This is due partly to NOS uncoupling which results in fundamental alterations 

to the delicate nitroso-redox balance.  In CHF tetrohydrobiopterin (BH4), the obligatory cofactor 

for NOS function, is less abundant due to its reduced conversion from dihydrobiopterin (BH2; 

Alkaitis, 2012).  In the absence of this cofactor, which participates in arginine oxidation, NOS 

will produce a greater abundance of the free radical superoxide (O2
-
; Xia, 1998).  Given this 

occurence, upregulating eNOS expression, but failing to correct the low BH4-derived uncoupling 

may provide for an increase in the production of O2
-
 relative to NO.  To summarize, while there 

was no effect of FO supplementation on NO-mediated vasodilation the potential uncoupling of 

NOS from NO production precludes determination of a FO effect on altering eNOS expression 

based on the NOS inhibition data (Bauersachs, 1999). 
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 Effects of FO on exercise performance 

Contrary to our hypothesis FO did not attenuate CHF-induced exercise intolerance as 

indicated by measurements of endurance capacity and O2peak.  Crucially, the calculation of total 

work performed during the endurance capacity protocol was similar between groups despite the 

higher body mass to hindlimb muscle mass in SO compared to FO.  As discussed previously, the 

similar exercise performance despite a lower BF indicates that the sufficiency of the hyperemic 

response to exercise was not significantly affected by FO.  This notion is reinforced by the 

similar arterial blood [lactate] between groups suggesting that the metabolic perturbations of the 

active skeletal muscle were not negatively impacted by the lower BF.   

An additional consideration beyond vascular control is the multi-system dysfunction 

present in CHF which collectively impacts exercise performance (Piepoli, 2010(1), Piepoli 

2010(2)).  Importantly, recent evidence suggests marked decrements in skeletal muscle function 

including decreased capillary RBC flux, decreased mitochondrial volume and function, and 

increased myocyte apoptosis (Adams, 1999; Delp, 1997; Poole, 2012; Richardson, 2003).  These 

alterations at the capillary-myocyte interface are likely important determinants of O2peak and 

exercise capacity.   

CHF also impairs the redistribution of BF during exercise in a fiber-type dependent 

manner with attenuation of exercise hyperemia directly dependent upon the percentage of 

oxidative fibers (type I and IIa) found in the muscle or muscle portions.  Thus, despite overall 

decrements BF and VC, exercise performance may not have been significantly compromised 

since the reductions in individual muscles and muscle portions were not driven by fiber type.  

This indicates that while bulk hindlimb BF and VC were lower a similar distribution of the 

available O2 supply was evident between diets. 

 Experimental considerations 

Since epidemiological studies first highlighted the relationship between PUFAs and 

cardiovascular health, the utilization of FO as a dietary vehicle for PUFA administration has 

been an investigation of potential clinical significance.  The important aspect of the feeding 

methods was that in the current study consumption was monitored and did not differ between 

rats, ensuring that the delivery of PUFAs was consistent, as well as being relevant to 

conventional administration outside of the laboratory setting. 
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The strength of the current study lies in the ability to determine vascular control in a 

model of severe, compensated CHF which is difficult to achieve in human studies.  The coronary 

artery ligation technique in the rat allows for the development of CHF severity similar to patients 

classified as stage IV in the NYHA guidelines as evidenced by the elevated LV, RV and lung-to-

body weight ratios in MI compared to sham animals (Musch, 1992; Hirai, 1995).  It is important 

to note that the animals in the current studies reflected severe myocardial damage and 

tremendous functional decrements.  Within this model, the radiolabelled microsphere technique 

allows investigation of inter- and intramuscular BF not currently explored in CHF with PUFA 

supplementation.  Measurements of this type are particularly insightful given the fiber type 

specific changes in vascular control evident in CHF. 

 Conclusions 

The current study provides the first data regarding the effects of a PUFA rich diet on 

vascular control in a rat model of CHF.  The main novel findings were 1) FO supplementation 

resulted in lower BF and VC when compared to SO 2) changes in BF and VC after NOS 

inhibition via L-NAME did not differ between SO and FO 3) exercise performance and blood 

[lactate] were not different despite the difference in skeletal muscle BF during submaximal 

treadmill exercise.  These results suggest that FO supplementation does not augment vascular 

control or exercise capacity in a rat model of CHF. 
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Table 1.  Morphological and hemodynamic characteristics of SO and FO CHF rats. 
 

 

 

 

 

 
 
 

Data are mean ± SEM. LVEDP, left ventricular end diastolic pressure; LV dp/dt, left ventricular 
dpressure/dtime RV, right ventricle; LV, left ventricle. SO; n=10, FO; n=15 

 

 

 

 

 

 

 

 

 

 

 

 SO FO 

LVEDP, mmHg 14 ± 2 11 ± 1 

LV dp/dt, mmHg/s 7000 ± 376 7000 ± 277 

LV/body mass, mg/g 2.10 ± 0.14 2.18 ± 0.06 

RV/body mass, mg/g 0.68 ± 0.10 0.60 ± 0.02 

Lung/body mass, mg/g 3.98 ± 0.39 4.28 ± 0.43 

Infarct size, % 32 ± 3 31 ± 1 
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Table 2. Effects of FO supplementation on hindlimb muscle BF at rest and during exercise pre- 
and post-LNAME (ml · min-1 · 100 g-1). 

          SO           FO 

 Rest Exercise Ex+LNAME  Rest Exercise Ex+LNAME 

Ankle extensors        

Soleus (9%) 49 ± 22 275 ± 40 274 ± 46  46 ± 9 267 ± 17 237 ± 30 

Plantaris (80%) 10 ± 3 245 ± 32 210 ± 10  5 ± 1 201 ± 12 169 ± 17 

Gastrocnemius, red (14%) 16 ± 8 411 ± 43 451 ± 22  14 ± 3 306 ± 24* 285 ± 46 

Gastrocnemius, white (100%) 6 ± 2 61 ± 5 77 ± 11  8 ± 1 40 ± 5* 34 ± 3* 

Gastrocnemius, mixed (91%) 10 ± 1 166 ± 16 178 ± 5  7 ± 1 133 ± 8* 116 ± 14 

Tibialis posterior (73%) 14 ± 5 143 ± 11 106 ± 7†  9 ± 2 109 ± 9* 80 ± 15 

Flexor digitorum longus (68%) 3 ± 1 104 ± 21 117 ± 34  7 ± 2 71 ± 12  87 ± 13 

Flexor halicus longus (71%) 7 ± 1 92 ± 13 81 ± 8  6 ± 1 70 ± 5 71 ± 11 

        
Ankle flexors        

Tibialis anterior, red (63%) 11 ± 5 342 ± 24 263 ± 4†  4 ± 2 279 ± 19* 228 ± 30 

Tibialis anterior, white (80%) 12 ± 3 117 ± 9 106 ± 7  10 ± 1 88 ± 6* 76 ± 11 

Extensor digitorum longus (76%) 12 ± 2 69 ± 8 40 ± 2†  12 ± 4 46 ± 3* 49 ± 12 

Peroneals (67%) 18 ± 7 143 ± 13 104 ± 13†  8 ± 1 104 ± 4* 84 ± 15 

        
Knee extensors        

Vastus intermedius (4%) 51 ± 19 355 ± 66 314 ± 77  56 ± 27 348 ± 15 310 ± 37 

Vastus medialis (82%) 13 ± 4 181 ± 24 138 ± 12  13 ± 5 158 ± 13 109 ± 10 

Vastus lateralis, red (35%) 29 ± 11 357 ± 50 342 ± 19  28 ± 13 303 ± 32 267 ± 41 

Vastus lateralis, white (100%) 6 ± 2 34 ± 5 31 ± 3  8 ± 2 24 ± 3* 24 ± 4 

Vastus lateralis, mixed (89%) 12 ± 3 170 ± 17 190 ± 9  9 ± 3 129 ± 10* 109 ± 19 

Rectus femoris, red (66%) 13 ± 3 253 ± 27 220 ± 14  5 ± 1 229 ± 15 159 ± 21 

Rectus femoris, white (100%) 9 ± 1 112 ± 12 95 ± 8†  6 ± 1 97 ± 5 69 ± 6† 

        
Knee flexors        

Biceps femoris anterior (100%) 13 ± 7 59 ± 8 64 ± 4†  5 ± 1 25 ± 3* 28 ± 6 

Biceps femoris posterior (92%) 11 ± 3 99 ± 13 78 ± 6  5 ± 0 67 ± 4* 59 ± 6 

Semitendinosus (83%) 12 ± 3  64 ± 10 44 ± 7  7 ± 1 41 ± 5* 40 ± 9 

Semimembranosus, red (72%) 15 ± 6 137 ± 13 143 ± 9  8 ± 2 105 ± 9* 102 ± 17 

Semimembranosus, white (100%) 9 ± 1 37 ± 5 43 ± 6  7 ± 0 30 ± 3 35 ± 10 

        
Thigh adductors        

Adductor longus (5%) 151 ± 8 315 ± 60 201 ± 55  112 ± 27 266 ± 24 197 ± 32 

Adductor magnus & brevis (89%) 13 ± 2 94 ± 9 77 ± 5†  5 ± 1 63 ± 4* 56 ± 5 

Gracilis (77%) 17 ± 5 46 ± 5 42 ± 8  11 ± 2 32 ± 4* 34 ± 4 

Pectineus (69%) 18 ± 4 59 ± 8 44 ± 12  14 ± 3 37 ± 5* 36 ± 10 
        

Data are mean ± SEM. Values in parentheses indicate % type IIb + d/x according to Delp & Duan 
(1996). Rest: SO, n=4; FO, n=6; Exercise: SO, n=10; FO, n=15; Exercise+LNAME: SO, n=6, FO, n=9. 
*P<0.05 vs. SO. †P<0.05 vs. exercise. 
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Table 3. Effects of FO supplementation on hindlimb muscle VC at rest and during exercise pre- 
and post-LNAME (ml · min-1 · 100 g-1 · mmHg-1). 

          SO           FO 

 Rest Exercise Ex+LNAME  Rest Exercise Ex+LNAME 

Ankle extensors        

Soleus (9%) 0.40 ± 0.18 2.14 ± 0.30 1.90 ± 0.36  0.38 ± 0.08 2.05 ± 0.15 1.69 ± 0.23 

Plantaris (80%) 0.08 ± 0.03 1.96 ± 0.30 1.44 ± 0.10  0.04 ± 0.01 1.54 ± 0.11 1.19 ± 0.11 

Gastrocnemius, red (14%) 0.13 ± 0.06 3.23 ± 0.34 3.09 ± 0.17  0.12 ± 0.02 2.33 ± 0.18* 1.98 ± 0.28 

Gastrocnemius, white (100%) 0.05 ± 0.01 0.47 ± 0.04 0.52 ± 0.07  0.07 ± 0.01 0.31 ± 0.04* 0.24 ± 0.02* 

Gastrocnemius, mixed (91%) 0.08 ± 0.01 1.30 ± 0.12 1.22 ± 0.04  0.06 ± 0.01 1.02 ± 0.08* 0.82 ± 0.09 

Tibialis posterior (73%) 0.11 ± 0.04 1.12 ± 0.08 0.73 ± 0.06†  0.07 ± 0.02 0.84 ± 0.08* 0.57 ± 0.11 

Flexor digitorum longus (68%) 0.03 ± 0.01 0.80 ± 0.15 0.80 ± 0.23  0.06 ± 0.02 0.55 ± 0.10 0.62 ± 0.10 

Flexor halicus longus (71%) 0.05 ± 0.01 0.72 ± 0.10 0.55 ± 0.05  0.05 ± 0.01 0.54 ± 0.04* 0.50 ± 0.08 

        
Ankle flexors        

Tibialis anterior, red (63%) 0.09 ± 0.04 1.80 ± 0.17 1.80 ± 0.04†  0.03 ± 0.01 2.14 ± 0.16* 1.60 ± 0.21 

Tibialis anterior, white (80%) 0.10 ± 0.03 0.91 ± 0.06 0.72 ± 0.05†  0.08 ± 0.01 0.67± 0.06* 0.53 ± 0.08 

Extensor digitorum longus (76%) 0.10 ± 0.02 0.53 ± 0.06 0.28 ± 0.02†  0.10 ± 0.03 0.35 ± 0.02* 0.35 ± 0.09 

Peroneals (67%) 0.15 ± 0.06 1.11 ± 0.10 0.72 ± 0.11†  0.06 ± 0.01 0.80 ± 0.04* 0.60 ± 0.11 

        
Knee extensors        

Vastus intermedius (4%) 0.41 ± 0.15 2.80 ± 0.52 2.16 ± 0.56  0.45 ± 0.22 2.65 ± 0.12 2.18 ± 0.25 

Vastus medialis (82%) 0.10 ± 0.03 1.42 ± 0.18 0.95 ± 0.09  0.10 ± 0.04 1.23 ± 0.12 0.77 ± 0.08 

Vastus lateralis, red (35%) 0.23 ± 0.09 2.77 ± 0.37 2.34 ± 0.14  0.23 ± 0.11 2.29 ± 0.23 1.85 ± 0.24 

Vastus lateralis, white (100%) 0.05 ± 0.01 0.26 ± 0.04 0.21 ± 0.02†  0.06 ± 0.01 0.19 ± 0.02* 0.17 ± 0.03 

Vastus lateralis, mixed (89%) 0.10 ± 0.03 1.32 ± 0.13 1.30 ± 0.04  0.08 ± 0.02 0.98 ± 0.07* 0.75 ± 0.11 

Rectus femoris, red (66%) 0.10 ± 0.02 2.00 ± 0.22 1.51 ± 0.13  0.04 ± 0.01 1.75 ± 0.12 1.11 ± 0.13† 

Rectus femoris, white (100%) 0.07 ± 0.01 0.88 ± 0.09 0.65 ± 0.07†  0.05 ± 0.01 0.74 ± 0.05 0.48 ± 0.03† 

        
Knee flexors        

Biceps femoris anterior (100%) 0.10 ± 0.06 0.45 ± 0.06 0.44 ± 0.03†  0.04 ± 0.01† 0.19 ± 0.02* 0.20 ± 0.04 

Biceps femoris posterior (92%) 0.09 ± 0.02 0.77 ± 0.09 0.53 ± 0.05  0.04 ± 0.00 0.52 ± 0.04* 0.42 ± 0.05 

Semitendinosus (83%) 0.10 ± 0.03 0.49 ± 0.07 0.31 ± 0.05  0.05 ± 0.01 0.32 ± 0.04* 0.29 ± 0.07 

Semimembranosus, red (72%) 0.12 ± 0.05 1.07 ± 0.09 0.97 ± 0.06  0.07 ± 0.01 0.81 ± 0.08* 0.73 ± 0.13 

Semimembranosus, white (100%) 0.07 ± 0.01 0.29 ± 0.04 0.29 ± 0.04  0.06 ± 0.00 0.23 ± 0.03 0.25 ± 0.07 

        
Thigh adductors        

Adductor longus (5%) 1.22 ± 0.05 2.49 ± 0.47 1.39 ± 0.40†  0.91 ± 0.23 2.05 ± 0.19 1.38 ± 0.23 

Adductor magnus & brevis (89%) 0.11 ± 0.02 0.74 ± 0.07 0.53 ± 0.04†  0.04 ± 0.01 0.48 ± 0.03* 0.40 ± 0.04 

Gracilis (77%) 0.14 ± 0.04 0.36 ± 0.04 0.29 ± 0.06  0.09 ± 0.02 0.25 ± 0.03* 0.24 ± 0.03 

Pectineus (69%) 0.14 ± 0.03 0.46 ± 0.06 0.31 ± 0.09  0.11 ± 0.03 0.29 ± 0.04* 0.26 ± 0.07 
        

Data are mean ± SEM. Values in parentheses indicate  % type IIb + d/x according to Delp & Duan 
(1996). Rest: SO, n=4; FO, n=6; Exercise: SO, n=10; FO, n=15; Ex+LNAME: SO, n=6, FO, n=9. 
*P<0.05 vs. SO. †P<0.05 vs. exercise. 



17 

Table 4.  Effects of FO supplementation on kidney and splanchnic region organ BF (ml · min-1 · 
100 g-1) and VC (ml · min-1 · 100 g-1 · mmHg-1) at rest and during exercise pre- and post-LNAME. 

          SO           FO 

 Rest Exercise Ex+LNAME  Rest Exercise Ex+LNAME 

BF        

Kidney 688 ± 86 395 ± 51  236 ± 35  625 ± 55 368 ± 35 215 ± 20† 

Stomach 77 ± 19 47 ± 9  26 ± 4   74 ± 16 69 ± 34 15 ± 2 

Adrenals 472 ± 172 346 ± 55  101 ± 16†  785 ± 144* 334 ± 32 71 ± 7† 

Spleen 524 ± 64 58 ± 11  51 ± 7  483 ± 150 55 ± 7 21 ± 6 

Pancreas 172 ± 46 111 ± 21  61 ± 11  109 ± 22 80 ± 9 27 ± 4† 

Sm. Intestine 357 ± 65  258 ± 44 159 ± 13  351 ± 60 211 ± 16 108 ± 16† 

Lg. Intestine 82 ± 7 81 ± 17   45 ± 8  101 ± 18 72 ± 8 29 ± 4† 

Liver** 30 ± 9 32 ± 4 17 ± 4  45 ± 9 34 ± 3 11 ± 2† 

        
VC        

Kidney 5.61 ± 0.77 3.11 ± 0.40 1.63 ± 0.26†  5.09 ± 0.46 2.87 ± 0.29 1.52 ± 0.14† 

Stomach 0.63 ± 0.15 0.37 ± 0.07 0.18 ± 0.03  0.61 ± 0.13 0.54 ± 0.27 0.11 ± 0.01 

Adrenals 3.78 ± 1.36 2.71 ± 0.41 0.70 ± 0.13†  6.45 ± 1.25* 2.62 ± 0.29 0.51 ± 0.06† 

Spleen 4.26 ± 0.58 0.46 ± 0.09 0.35 ± 0.05  3.95 ± 1.17 0.43 ± 0.05 0.14 ± 0.04 

Pancreas 1.39 ± 0.37 0.87 ± 0.17 0.42 ± 0.07†  0.89 ± 0.18 0.63 ± 0.08 0.19 ± 0.03† 

Sm. Intestine 2.93 ± 0.57 2.04 ± 0.36 1.09 ± 0.12  2.89 ± 0.51 1.65 ± 0.14 0.75 ± 0.10† 

Lg. Intestine 0.67 ± 0.06 0.63 ± 0.13 0.31 ± 0.06  0.84 ± 0.16 0.57 ± 0.07 0.20 ± 0.03† 

Liver** 0.24 ± 0.07 0.26 ± 0.03 0.12 ± 0.03  0.37 ± 0.08 0.45 ± 0.18 0.08 ± 0.02† 

        
        

Data are mean ± SEM. Rest: SO, n=4; FO, n=6; Exercise: SO, n=10; FO, n=15; Exercise+LNAME: 
SO, n=6, FO, n=9. *P<0.05 vs. SO. †P<0.05 vs. exercise. **Indicates arterial, not portal, BF and 
VC. 
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FO supplementation had no effect on MAP or HR at rest, during exercise or  

ex+L-NAME compared to SO.  †P<0.05 vs. rest and exercise.  ‡P<0.05 vs. rest. 
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A.  Effect of FO supplementation on hindlimb skeletal muscle BF at rest and during 

submaximal exercise.  B.  Effect of FO supplementation on hindlimb skeletal muscle VC at 

rest and during submaximal exercise.  *P<0.05 vs. SO. 
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A. Percent change of hindlimb muscle BF during submaximal exercise.  

B. Percent change of hindlimb muscle VC during submaximal exercise.  *P<0.05 vs. SO. 
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