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ABSTRACT 

 

The components of the O2 transport pathway can be divided into (along with their 

respective circulations) the pulmonary, cardiovascular, and skeletal muscle systems. They must 

operate in tight conjunction with one another, especially during dynamic exercise, to sustain 

ATP production within muscle mitochondria.  Any limitation placed on the O2 transport pathway 

will result in decreased performance.  The purpose of this dissertation is to present four novel 

studies which examine specific limitations on (1) the pulmonary system (i.e. lungs and 

circulation) within the highly athletic Thoroughbred horse (Studies A & B), and (2) within the 

peripheral circulation (i.e. microcirculation) within a disease model of Type II diabetes, the 

Goto-Kakizaki (GK) rat (Studies C & D).  Study A demonstrates that locomotory respiratory 

coupling (LRC) is not requisite for the horse to achieve maximal minute ventilation (V
．

E) during 

galloping exercise because V
．

E remains at the peak exercising levels over the first ~13 s of 

trotting recovery (V
．

E at end exercise: 1391±88; V
．

E at 13 s: 1330±112 L/sec; P > 0.05).  The 
horse also experiences exercise-induced pulmonary hemorrhage (EIPH) which has been linked 

mechanistically to increased pulmonary artery pressure (Ppa) during high intensity exercise.  

Therefore, in Study B, we hypothesized that endothelin-1 (ET-1), a powerful vasoconstricting 

hormone, would play a role in the augmented Ppa and therefore, EIPH.  However, contrary to 

our hypothesis, an ET-1 receptor antagonist did not decrease Ppa nor prevent or reduce EIPH.  

Studies C and D examine potential mechanisms behind the exercise intolerance observed in 

humans with Type II diabetes.  Utilizing phosphorescence quenching techniques (Study C) 

within the GK spinotrapezius muscle, we found lowered microvascular PO2 (PO2mv; Control: 

28.8±2.0; GK: 18.4±1.8 mmHg; P<0.05) at rest and a PO2mv “undershoot” during muscle 

contractions.  After conducting intravital microscopy within the same muscle (Study D), we 

discovered the percentage of RBC-perfused capillaries was decreased (Control: 93±3; GK: 66±5 

%; P<0.05) and all three major hemodynamic variables (i.e. RBC velocity, flux, and capillary 

tube hematocrit) were significantly attenuated.  Both studies (C & D) indicate that there is 

reduced O2 availability (via decreased O2 delivery; i.e. ↓Q
．

O2/V
．

O2) within Type II diabetic 
muscle.   
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CHAPTER 1 

 

Introduction 

 

The transfer of O2 from the atmosphere to the mitochondria requires several structural 

and functional steps (Figure 1) that must work together in a precise manner for adequate ATP 

regeneration, especially during dynamic exercise (Wasserman et al., 1994; Hoppeler and Weibel, 

1998).  These steps include diffusion of O2 across the blood-gas barrier of the lungs, O2 transport 

via the blood (i.e. cardiac output and O2 concentration), and O2 movement by way of diffusion 

from the skeletal muscle capillary into the myocyte.  Any limitation among the elements of the 

O2 transport pathway is likely to constrain exercise performance (Wagner et al., 1997; Hoppeler 

and Weibel, 1998).   

To investigate the consequences of limitations within the O2 transport pathway, the 

choice of model as well as experimental technique must be taken into consideration.  For 

example, it is an exciting opportunity to study a model with high aerobic capabilities such as the 

Thoroughbred (TB) horse, an animal that can reach a maximal oxygen consumption (V
．

O2max) of 
~180 - 220 ml/kg/min (~2 fold higher than most athletic humans; Rose et al., 1988; McDonough 

et al., 2002ab) at speeds over 45 mi/hr (65 km/hr; Evans and Rose, 1988; Rose et al., 1988).  

This phenomenon occurs by way of the horse’s large O2 carrying capacity (i.e. cardiac output) 

which is the result of an increase in blood volume via its contractile spleen, augmented heart rate 

(~7-fold), and extraction of 85-90% of O2 by its skeletal muscle (rev. Poole and Erickson, 2004).  

However, despite these factors, the horse experiences limitations to its ventilatory capacity 

(Padilla et al., 2004), exercise-induced arterial hypoxemia (Wagner et al., 1989), and exercise-

induced pulmonary hemorrhage (Roberts and Erickson, 1999; rev. Erickson and Poole, 2002; 

Figure 2) which may prevent the horse from reaching its full aerobic potential.   

Besides studying a highly athletic species such as the TB horse, a disease, such as Type II 

diabetes, can also cause limitations within the O2 transport pathway.  For example, Type II 

diabetic patients exhibit exercise intolerance and sluggish pulmonary V
．

O2 kinetics (Regensteiner 

et al., 1998; Figure 2), but the cause(s) of this phenomenon is unknown.  The rate of V
．

O2 

kinetics is a critical measurement because it is highly representative of muscle V
．

O2 dynamics 
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(Whipp and Mahler, 1980; Barstow and Mole, 1987; Barstow et al., 1990; Poole et al., 1992; 

Grassi et al., 1996), and slowed V
．

O2 kinetics suggests that muscle mitochondrial function is 
compromised.  Although technological limitations prevent in vivo mitochondrial measurements, 

other scientific advancements such as phosphorescence quenching techniques (Behnke et al., 

2001; McDonough et al., 2001, 2005; Poole et al., 1995, 2004) and intravital microscopy (Kindig 

et al., 2002; Richardson et al., 2003; Russell et al., 2003) which measure microvascular O2 

pressures (i.e. at the site of blood-myocyte O2 exchange) and red blood cell (RBC) 

hemodynamics, respectively, to quantify potential muscle O2 availability and utilization may 

provide a mechanistic basis for the slow V
．

O2 kinetics in diabetic humans.    
This dissertation has been designed to first present pertinent background information that 

applies to the four novel studies (Studies A, B, C, & D) contained within this dissertation.  This 

will be followed by four studies that investigate specific incidences of limitations placed on the 

O2 transport pathway (i.e. the pulmonary system in the Thoroughbred horse (Studies A & B) and 

the microcirculation within an animal model of Type II diabetes (Studies C & D).  Study A 

challenges one of the central dogmas in equine exercise physiology: the notion that locomotory-

respiratory coupling (LRC; a synchronization of stride and breathing frequency) is the means by 

which a Thoroughbred (TB) horse achieves its high minute ventilation (V
．

E; >1800 L/min) during 
exercise (Attenborrow, 1983; Bramble and Carrier, 1983).  Study B tests the hypothesis that 

endothelin-1 (ET-1), a potent vasoconstricting hormone (Yanagisawa et al., 1988), contributes to 

the increased pulmonary artery pressure that is believed to be a primary cause of exercise-

induced pulmonary hemorrhage (EIPH) in horse.   

The latter two studies (Studies C & D) investigate skeletal muscle function and capillary 

RBC hemodynamics within an animal model of Type II diabetes, the Goto-Kakizaki rat (Goto 

and Kakizaki, 1981).  This research will provide a mechanistic basis for the exercise intolerance 

and slowed oxygen uptake (V
．

O2) kinetics evidenced by diabetic humans (Regensteiner et al., 

1998).  Although inferences about muscle V
．

O2 from pulmonary V
．

O2 can be made, they may be 
considered indirect.  Therefore, the last two studies utilized phosphorescence quenching 

techniques (Study C) and intravital microscopy (Study D) to examine O2 utilization at the site of 

O2 exchange, i.e. the capillary-myocyte region.  Indeed, the last two studies demonstrate that 

Type II diabetes is linked to a pathologically lowered O2 driving pressure (i.e. PO2mv) to move 

O2 into the myocyte and decreased O2 delivery (i.e. slowed RBC hemodynamics) within diabetic 
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skeletal muscle.  Both of these phenomena will ultimately compromise O2 availability (i.e. 

↓Q
．

O2/V
．

O2 matching) to the mitochondria within the myocyte.  Altogether, these four studies 
will provide novel insights crucial to understanding the mammalian O2 transport system in health 

and how that system is compromised in diabetes leading to impaired exercise intolerance. 



 19

 

References 

Attenburrow DP. Respiration and locomotion. In: Equine Exercise Physiology. Snow DH, 

Persson SGB, and Rose RJ (eds.) Granta Editions, Cambridge, pp. 17-26, 1983. 

Barstow TJ, Lamarra N, and Whipp BJ. Modulation of muscle and pulmonary O2 uptake by 

circulatory dynamics during exercise. J Appl Physiol. 68: 979-989, 1990. 

Barstow TJ, and Mole PA. Linear and nonlinear characteristics of oxygen uptake kinetics during 

heavy exercise. J Appl Physiol. 71: 2099-2106, 1991. 

Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC. Dynamics of microvascular oxygen 

pressure across the rest-exercise transition in rat skeletal muscle. Respir Physiol. 126: 53-

63, 2001. 

Bramble DM, and Carrier DR. Running and breathing in mammals. Science. 219: 251-256, 1983.  

Erickson HH, and Poole DC. Exercise-Induced Pulmonary Hemorrhage.  In: Equine Respiratory 

Diseases. Ed: P. Lekeux. www.ivis.org , 2002. 

Erickson, H.H., McAvoy, J.L., and Westfall, J.A. (1997) Exercise-induced changes in the lung of 

Shetland ponies: ultrastructure and morphometry. J. Submicrosc. Cytol. Pathol. 29, 65-

72. 

Evans DL, and Rose RJ. Cardiovascular and respiratory responses in Thoroughbred horses 

during treadmill exercise. J Exp Biol. 134: 397-408, 1988. 

Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliot AR, Mathieu-Costello O, and West JB. 

High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol. 73: 

123-133, 1992. 

Goto Y, and Kakizaki M. The spontaneous-diabetes rat: a model on non-insulin dependent 

diabetes mellitus. Proc Jpn Acad. 57: 381-384, 1981. 

Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, and Wagner PD. Muscle O2 

uptake kinetics in humans: implications for metabolic control. J Appl Physiol. 80: 988-

998, 1996. 

Hoppeler H, and Weibel ER. Limits for oxygen and substrate transport in mammals. J Exp Biol. 

201: 1051-1064, 1998. 

Kindig CA, Richardson TE, and Poole DC. Skeletal muscle capillary hemodynamics from rest to 

contractions: implications for oxygen transfer. J Appl Physiol. 92: 2513-2520, 2002. 



 20

McDonough P, Behnke BJ, Kindig CA, and Poole DC. Rat muscle microvascular PO2 kinetics 

during the exercise off-transient. J Exp Biol. 86: 349-356, 2001. 

McDonough P, Behnke BJ, Padilla DJ, Musch TI, and Poole DC. Control of microvascular 

oxygen pressures in rat muscles comprised of different fibre types. J Physiol. 563: 903-

913, 2005. 

McDonough P, Kindig CA, Erickson HH, and Poole DC. Mechanistic basis for the gas exchange 

threshold in Thoroughbred horses. J Appl Physiol. 92: 1499-1505, 2000a. 

McDonough P, Kindig CA, Hildreth TS, Behnke BJ, Erickson HH, Poole DC. Effect of body 

incline on cardiac performance. Equine Vet J Suppl. 34: 506-509, 2002b. 

Padilla DJ, McDonough P, Kindig CA, Erickson HH, and Poole DC. Ventilatory dynamics and 

control of blood gases after maximal exercise in the Thoroughbred horse. J Appl Physiol. 

96: 2187-2193. 

Poole DC, and Erickson HH. Heart and vessels: function during exercise and response to 

training. In: Equine sports medicine and surgery: basic and clinical sciences of the 

equine athlete. Hinchcliff KW, Kaneps AJ, and Geor RJ. (eds.) Saunders, Edinburgh, 

New York, p. 699-727, 2004. 

Poole DC, Behnke BJ, McDonough P, McAllister RM, and Wilson DF. Measurement of muscle 

microvascular oxygen pressures: compartmentalization of phosphorescent probe. 

Microcirculation. 11: 317-326, 2004. 

Poole DC, Gaesser GA, Hogan MC, Knight DR, and Wagner PD. Pulmonary and leg V
．

O2 during 
submaximal exercise: implications for muscular efficiency. J Appl Physiol. 72: 805-810, 

1992. 

Poole DC, Wagner PD, and Wilson DF. Diaphragm microvascular plasma PO2 measured in vivo. 

J Appl Physiol. 79: 2050-2057, 1995. 

Regensteiner JG, Bauer TA, Reusch JE, Brandenburg SL, Sippel JM, Vogelsong AM, Smith S, 

Wolfel EE, Eckel RH, and Hiatt WR. Abnormal oxygen uptake kinetic responses in 

women with type II diabetes mellitus. J Appl Physiol. 85: 310-317, 1998. 

Richardson TE, Kindig CA, Musch TI, and Poole DC. Effects of chronic heart failure on skeletal 

muscle capillary hemodynamics at rest and during contractions. J Appl Physiol. 95: 1055-

1062, 2003. 



 21

Roberts C, and Erickson HH. Exercise-induced pulmonary haemorrhage workshop. Equine Vet J 

Suppl. 30: 642-644, 1999. 

Rose RJ, Hodgson DR, Kelso TB, McCutcheon LJ, Reid TA, Bayly WM, and Gollnick PD. 

Maximum O2 uptake, O2 debt, and deficit, and muscle metabolites in thoroughbred 

horses. J Appl Physiol. 64: 781-788, 1988. 

Russell JA, Kindig CA, Behnke BJ, Poole DC, and Musch TI. Effects of aging on capillary 

geometry and hemodynamics in rat spinotrapezius muscle. Am J Physiol Heart Circ 

Physiol. 285: H251-H258, 2003. 

Wagner PD, Gillespie JR, Landgren GL, Fedde MR, Jones BW, DeBowes RM, Pieschl RL, and 

Erickson HH. Mechanism of exercise-induced hypoxemia in horses. J Appl Physiol. 66: 

1227-1233, 1989. 

Wagner PD, Hoppeler H, and Saltin B. Determinants of maximal oxygen uptake. In: RG Crystal, 

JB West, PJ Barnes, and ER Weibel (Eds.), The Lung: Scientific Foundations 2nd ed. (pp. 

2033-2041). New York: Lippincott-Raven, 1997. 

Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. (eds). Principles of Exercise Testing 

and Interpretation.  Philadelphia: Lea and Febiger, 1994. 

Whipp BJ, and Mahler M. Dynamics of pulmonary gas exchange during exercise. In: Pulmonary 

Gas Exchange, ed. West JB. Vol II, 1980, p. 33-95, New York: Academic. 

Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, 

and Masaki T. A novel potent vasoconstrictor produced by vascular endothelial cells. 

Nature. 332: 411-415, 1988. 



 22

* * *
 

 

Figure 1. The O2 transport pathway along with the organs responsible for moving O2 from the 
atmosphere to the muscle mitochondria.  Included are the physiological responses associated 
with increased O2 delivery to the myocytes.  Large asterisks implicate areas within the O2 
cascade that will be addressed by the four studies included in this dissertation (from Poole and 
Erickson, 2004). 
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Figure 2. Elegant micrographs from Fu et al. (1992) in rabbit lungs (Top Panel) with increased 
propensity for blood gas barrier rupture at high lung volumes and Erickson et al. (1997) in pony 
lungs (Bottom Panel) after high intensity exercise clearly illustrating the breakage in the 
pulmonary capillary endothelium and alveolar epithelium.  Red blood cells can be found along 
with proteinaceous fluid leaking out into the alveolar spaces. 
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Figure 3. Panel A. Oxygen uptake (V
．

O2) kinetics in a lean control (LC; upper panel) and a 
subject with Type II diabetes mellitus. Panel B. Time constants (τ) in LC and Type II diabetic 
women.  Panel C. Squares denote mean time constant (From Regensteiner et al., 1998). 
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Type II  
Diabetes

A 
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Study A: Ventilatory dynamics and control of blood gases after maximal exercise in the 

Thoroughbred horse 

 

The control of minute ventilation (V
．

E) differs between Thoroughbred (TB) horses and humans 
during maximal exercise.  For example, the horse displays a strict 1:1 coupling of breathing to 

stride frequency [i.e. locomotor-respiratory coupling (LRC)] while cantering and galloping 

(Bramble and Carrier, 1983), whereas humans are not limited to a particular coupling ratio 

(Bonsignore et al., 1998).  Notwithstanding this constraint, the exercising TB can achieve 

prodigious values for pulmonary V
．

E (> 1,800 l/min in extremely fit horses) and rates of gas 

exchange [i.e., O2 uptake (V
．

O2) > 70 l/min; CO2 output (V
．

CO2) > 80 l/min during maximal 

exercise; McDonough et al., 2002ab].  The relative V
．

E are similar in humans and horses but 
much less than those seen in dogs (a species of similar aerobic scope to the TB; Stray-Gunderson 

et al., 1986; Wagner et al., 2000), which indicates that V
．

E during exercise may be limited as 

suggested by very low ventilatory equivalents for V
．

O2 (V
．

E/V
．

O2) and V
．

CO2 (V
．

E/V
．

CO2) resulting 
in pronounced hypercapnia (McDonough et al., 2002).  In this regard, and contrary to facilitating 

V
．

E, it may be that LRC may actually limit V
．

E during brief, maximal exercise (Hornicke et al., 
1983; Marlin et al., 2002). 

  Historically, LRC has been considered the key facilitator of V
．

E in TB horses, with high 
ventilatory volumes being achieved with supposedly little respiratory muscle contribution to the 

exercise hyperpnea (Bramble and Carrier, 1983).  However, electromyographic studies 

demonstrate that the diaphragm is highly active in running horses (Ainsworth et al., 1997).  

Other indicators of the increased diaphragmatic activity include substantial transdiaphragmatic 

pressures (Slocombe et al., 1991) and high diaphragm muscle blood flows (Manohar, 1988).  In 

addition, the horse diaphragm is highly oxidative and therefore suited to sustained high-intensity 

respiratory efforts (Poole et al., 2002).  It has also been shown recently that rib cage expansion is 

very limited and out of phase with inspiration in the galloping horse which will serve to place a 

greater reliance on diaphragmatic vs. intercostal or accessory muscle breathing (Marlin et al., 

2002).   

  Whereas humans usually hyperventilate during intense exercise [e.g. arterial PCO2 

(PaCO2) typically falls to values < 30 Torr; Dempsey et al., 1995; Johnson et al., 1996) and 

defend arterial PO2 (PaO2) close to resting values, horses routinely become markedly 
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hypercapnic and hypoxemic (Bayly et al., 1989; Hodgson et al., 1990, McDonough et al., 

2002ab) during brief, incremental exercise (PaCO2 of ~55 - 65 Torr; PaO2 of ~60 – 80 Torr).  

This hypercapnic response is a direct consequence of the extraordinarily high metabolic rate 

coupled with an inadequate ventilatory response in the TB (Bayly et al., 1989; McDonough et 

al., 2002a) and possibly the reduced red blood cell transit time in the pulmonary capillary 

(Wagner et al., 1989).   

  Horses and other quadrupeds (Bramble and Carrier, 1983) are considered to rely on LRC 

primarily during the canter and gallop to facilitate V
．

E which would act to reduce the energetic 

cost of V
．

E.  This would be advantageous as it would serve to minimize the redistribution of 
cardiac output from the exercising limbs to the respiratory muscles (Art et al., 1990; Harms et al., 

1997).  Indeed, in humans, reducing respiratory muscle work elevates the proportion of cardiac 

output available to the working limb muscles (Harms et al., 1998, 2000).   

  The purpose of the present investigation was to explore the notion that, if LRC is an 

obligatory requirement for achieving very high V
．

E such as those present in the galloping horse, 

when LRC is removed abruptly at the onset of trotting, V
．

E should drop immediately and 
precipitously.  Specifically, we tested the hypothesis that at the onset of recovery from galloping 

(i.e. across the transition from the gallop (LRC present) to the trot at 3 m/s (no LRC)), V
．

E would 
fall precipitously and PaCO2 would increase transiently above end-exercise levels.  By resolving, 

for the first time, the breath-by-breath responses of ventilation (V
．

E) and gas exchange (V
．

O2 and 

V
．

CO2) across the gallop-trot transition, we sought to gain novel insights into the control of 
breathing in the horse.  

 

Study B: Effects of a specific endothelin-1A antagonist on exercise-induced pulmonary 

hemorrhage in Thoroughbred horses 

 

The extraordinarily high pulmonary arterial pressures (Ppa) generated by Thoroughbred 

horses during maximal exercise have been implicated as a principal cause of exercise-induced 

pulmonary hemorrhage (EIPH; Erickson et al. 1990; West et al. 1993; Birks et al. 1997; Meyer 

et al. 1998).  While the exact cause(s) of EIPH remain controversial (see Roberts and Erickson 

1999; rev. Erickson and Poole 2002), it is clear that elevations in pulmonary capillary transmural 

pressure are a prerequisite (due to the very high cardiac output) and mechanical stresses during 
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exercise do result in capillary stress failure and leakage of red blood cells (RBCs) into the 

alveolar spaces (West et al. 1993; Erickson et al. 1997).   

Endothelin-1 (ET-1) is a potent vasoconstricting peptide produced and secreted by 

vascular endothelial cells (rev. Kedzierski and Yanagisawa 2001) which modulates pressures 

within the pulmonary circulation of the horse (Benamou et al. 1998, 1999, 2001, 2003), and 

other species (Fukuroda et al. 1994; MacLean et al. 1998; Schmect et al. 1999).  

Vasoconstriction occurs when ET-1 binds abluminally to its specific receptor subtype ET-1A 

found on vascular smooth muscle.  Furthermore, plasma ET-1 levels correlate with Ppa in human 

patients suffering from primary pulmonary hypertension (Stewart et al. 1991; Giaid et al. 1993), 

and the use of ET-1A antagonists may alleviate this condition by reducing Ppa (Givertz et al. 

2000).  

The role of ET-1 in the equine lung has not been fully elucidated with some (Benamou et 

al. 1999) but not all (McKeever and Malinowski, 1999; McKeever et al. 2002) studies showing 

elevated plasma ET-1 concentrations during and after maximal exercise (McKeever et al. 2002).  

Studies by Benamou and colleagues (2001) have demonstrated, that in resting horses, 

administration of exogenous ET-1 induces a significant increase in Ppa, and these effects are 

completely blocked by an ET-1A receptor antagonist.  In vitro studies by Benamou and others 

(2003) have also revealed vasoconstriction of third generation equine pulmonary arteries when 

exposed to ET-1, and this response can be inhibited by an ET-1A antagonist (BQ123, but not by 

an antagonist of the other receptor subtype, ET-1B).  Together, both studies suggest that the ET-

1A receptor subtype is present in the pulmonary arterioles in horses.  Thus, we hypothesized that 

ET-1 would contribute to the increased Ppa and etiology of EIPH in horses during high intensity 

exercise.  Moreover, an ET-1A receptor antagonist, TBC3214, would reduce the augmented Ppa 

and ultimately the incidence and severity of EIPH. 

 

Study C: Effects of Type II diabetes on muscle microvascular oxygen pressures 

 

In comparison to non-diabetic individuals, Type II diabetic patients suffer from exercise 

intolerance and demonstrate slowed oxygen uptake (V
．

O2) kinetics at exercise onset 

(Regensteiner et al., 1998).  Given that pulmonary V
．

O2 kinetics follow closely the dynamics of 
O2 exchange and utilization within the muscle of a healthy individual (Grassi et al., 1996; 
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Bangsbo et al., 2000), impaired pulmonary V
．

O2 kinetics in patients with Type II diabetes 

suggests that there may be a decrease in O2 delivery (Q
．

O2) to the muscle mitochondria which 

might ultimately compromise muscle V
．

O2 (rev. Jones and Poole, 2005).  Indeed, flow-mediated 

dilation in the forearm is reduced in diabetic patients at rest (Regensteiner et al., 2003), and leg Q
．

 
is decreased during exercise (Kingwell et al., 2003).  Furthermore, augmented plasma 

concentrations of the vasoconstrictor, endothelin-1 (Schneider et al., 2002), and impaired 

endothelium-dependent and independent dilatory responses (McVeigh et al., 1996; Williams et 

al., 1996; Kingwell et al., 2003) likely contribute to the reduced Q
．

O2 responses in Type II 

diabetic patients.  Not only may Q
．

O2 be lowered, but patients with Type II diabetes may also 
evidence a reduction in fractional O2 extraction during submaximal and maximal exercise (Baldi 

et al., 2003). 

Slowed V
．

O2 kinetics mandate that diabetic patients will exhibit an increased O2 deficit, 
and thus greater reliance on immediate energy sources such as glycogenolysis and substrate level 

phosphorylation (see rev. Jones and Poole, 2005).  This is substantiated by a significantly greater 

exercise-induced reduction of phosphocreatine (PCr; Scheuermann-Freestone et al., 2003), 

higher concentrations of glycolytic enzymes, decreased oxidative capacity (Kelley et al., 2002), 

and lower mitochondrial volume density (Mathieu-Costello et al., 2003; Ritov et al., 2005) in 

muscles of Type II diabetic patients.  Some (Mårin et al., 1994), but not all (Andersen et al., 

1993) researchers have also reported changes in muscle fiber type that include increased 

proportions of lower oxidative, fast-twitch glycolytic fibers in Type II diabetic subjects.   

To further understand the mechanisms responsible for exercise intolerance in this patient 

population, examination of O2 exchange at the level of the musculature (i.e. at the capillary-

myocyte region) may prove insightful.  Due to the invasiveness of these procedures, it is 

necessary to employ an animal model of the Type II diabetic condition.   Therefore, to study O2 

exchange at the capillary-myocyte level, we chose to determine the microvascular PO2 (PO2mv) 

using phosphorescence quenching techniques within the spinotrapezius muscle of Goto-Kakizaki 

(GK) Type II diabetic rats (Goto and Kakizaki, 1981).  The pathophysiological similarities 

between this model and diabetic humans are quite striking and include: insulin resistance 

(particularly in muscle; Steiler et al., 2003), changes in muscle fiber type (i.e. increased 

percentage of fast-twitch fibers; Yasuda et al., 2002), impaired endothelial and vascular function 

(Sandu et al., 2000; Witte et al., 2003), and elevated endothelin-1 levels (Balsiger et al., 2002).  
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Furthermore, the GK rat is considered a non-obese model (Goto and Kakizaki, 1981), which 

allows for the study of Type II diabetes without confounding factors related to obesity.  Although 

obesity is often associated with Type II diabetes (for review, see ref. Sharma and Chetty, 2005), 

this does not explain the presence of insulin resistance which can be equally severe in normal-

weight type II diabetic patients (DeFronzo et al., 1983).  Also, endothelial dysfunction can be 

manifested in diabetic humans independent of obesity (Hogikyan et al., 1996). 

  The technique of phosphorescence quenching facilitates determination of the dynamic 

balance between Q
．

O2 and V
．

O2 (i.e. Q
．

O2/V
．

O2 ratio) as reflected in the driving pressure for O2 

(PO2mv) within the muscle microvasculature.  Any changes in the Q
．

O2/V
．

O2 ratio across time 
will be directly reflected by alterations in PO2mv and its subsequent temporal response at the 

onset of muscle contractions (Behnke et al., 2001; McDonough et al., 2001).  Therefore, if Q
．

O2 
is impaired, due to vascular dysfunction, we hypothesized that PO2mv would be lowered at rest in 

the GK rat spinotrapezius muscle.  Furthermore, PO2mv dynamics during the rest-contractions 

transition would be altered compared to healthy Wistar rats such that PO2mv is reduced across 

the non-steady state transition at the onset of contractions.  Such a decreased pressure to drive O2 

into the myocyte (i.e. PO2mv) would ultimately affect O2 exchange at the mitochondrial level, 

thus contributing to the slow V
．

O2 kinetics and the elevated O2 deficit found at exercise onset 
seen in human diabetic patients.   

 

Study D: Effects of Type II diabetes on capillary hemodynamics in skeletal muscle 

 

Type II diabetes has been associated with increased exercise intolerance, as demonstrated 

by slowed oxygen uptake (V
．

O2) kinetics at exercise onset (Regensteiner et al., 1998), lowered 

V
．

O2max (Regensteiner et al., 1995; Baldi et al., 2003), and a reduction in fractional O2 extraction 
(Baldi et al., 2003).  Diabetic patients also exhibit compromised muscle blood flow at rest 

(Regensteiner et al., 2003) and during exercise (Kingwell et al., 2003).  The attenuated blood 

flow may be the result of a blunted endothelium-dependent vasodilation (McVeigh et al., 1996; 

Williams et al., 1996; Kingwell et al., 2003) and increased plasma concentrations of the 

vasoconstrictor, endothelin-1 (Schneider et al., 2002).  Other changes that accompany this 

disease include a reduction in capillary density (Mårin et al., 1994; Mathieu-Costello et al., 2003) 

and decreased mitochondrial volume (Ritov et al., 2005) and function (Kelley et al., 2002).  This 
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group of patients has also been shown to demonstrate higher amounts of Type IIb (highly 

glycolytic) muscle fibers by some (Mårin et al., 1994) but not all investigators (Andersen et al., 

1993).   

Recently, preliminary work in our laboratory (Padilla et al., 2004) has shown that O2 

exchange at the capillary-myocyte region is impaired in a muscle of the Type II diabetic Goto-

Kakizaki (GK) rat, a highly representative model of the diabetic state in humans (Goto and 

Kakizaki, 1981).  The GK rat demonstrates a decreased driving pressure for O2 within the 

microvasculature (PO2mv) of the spinotrapezius muscle, which is indicative of a slowed 

microvascular Q
．

O2 relative to V
．

O2 (Behnke et al., 2002).  Direct observation of the 
microcirculation (via intravital microscopy; see Kindig et al., 1998, 1999; Richardson et al., 

2003; Russell et al., 2003) may reveal a mechanistic basis for the decreased PO2mv found in GK 

rat muscle, as thus provide insights into the exercise intolerance in diabetic humans 

(Regensteiner et al., 1998).  

Within skeletal muscle, a functional microvascular bed is necessary for the provision of 

an adequate supply of O2 and other nutrients, as well as for removal of waste products.  The 

modeling studies of Federspiel and Popel (1986) suggest that the number of red blood cells 

(RBCs) adjacent to a muscle fiber (i.e. capillary tube hematocrit multiplied by the length of 

capillaries) is critical for O2 exchange, and as the ratio of RBC surface area to myocyte surface 

area increases, muscle O2 diffusing capacity is further augmented.  Therefore, any structural or 

functional impairment within the capillary network of skeletal muscle caused by disease (e.g. 

Kindig et al, 1998; Richardson et al., 2003) will severely impact blood-myocyte O2 and substrate 

exchange, consequently playing a role in fatigue and exercise intolerance.  Thus, using intravital 

microscopy to examine the microcirculation of the spinotrapezius muscle of the GK rat, we 

hypothesized that the percentage of flowing capillaries would be decreased and that RBC 

hemodynamics would be reduced in the GK rat.  These critical changes in RBC distribution will 

result in an attenuated O2 diffusing capacity, and thus O2 flux into the myocyte, which provides 

one potential mechanism for poor skeletal muscle performance in Type II diabetic patients. 
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CHAPTER 2 

 

Study A: Methods 

 

Animals 

Five TB geldings (4 - 10 yr; 470 - 600 kg) were used in this investigation.  Horses were 

housed in enclosed dry lots with a shaded area, fed alfalfa and grass hay, and concentrate twice 

daily along with water and salt available ad libitum.  Deworming and vaccinations were 

administered at regular intervals.  A high speed treadmill (SATO, Uppsala, Sweden) was utilized 

to exercise horses at least twice weekly to maintain fitness and condition.  All procedures were 

approved by the Kansas State University Institutional Animal Care and Use Committee.    

 

Instrumentation.  Before each trial, utilizing aseptic techniques, each horse was instrumented 

with a 7-F introducer catheter inserted into the right jugular vein, and an 18-gauge, 2.0-in. 

catheter was placed in a previously elevated carotid artery or transverse facial artery (20-gauge, 

1.5 in. in two TB’s).  Lidocaine (2%, i.e. 2 mL) was utilized subcutaneously for the insertion of 

the catheter in the carotid artery and jugular vein but not in the transverse facial artery (2 horses). 

To determine mean pulmonary artery temperature (for correction of arterial blood gases), a 

thermistor catheter was inserted through the 7-F introducer catheter and advanced into the 

pulmonary artery 8 cm past the pulmonary valve.  Calibration of the thermistor catheter was 

conducted with the use of a Physitemp thermocouple thermometer (BAT-10, Physitemp, Clifton, 

NJ, USA).  To withdraw arterial blood, a cannula (1.6 mm ID, 3.2 mm outer diameter) was 

attached to the arterial catheter. 

 

Measurement of breath-by-breath gas exchange.  To measure expired V
．

E, an ultrasonic phase-
shift flowmeter (Model FR-41eq; Flowmetrics-BDRL, Birmingham, UK) was used as described 

previously (Woakes et al., 1987).  Briefly, horses were outfitted with a lightweight fiberglass 

facemask (< 1 kg).  This mask is fitted internally with silicone rubber and foam gaskets to 

maintain an airtight seal.  The flow tubes were then placed in the openings of the facemask 

opposite each nostril to allow measurement of airflow for each nostril.  Each flow tube contained 

two ultrasonic transducers that quantify velocity of airflow at a resonant frequency of 40 kHz. 
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Each ultrasonic phase-shift flowmeter (i.e., left and right) underwent a three-point calibration at -

20, 0, and +20 L/s using a rotameter (KDG Flowmeters, Burgess Hill, UK) certified by the 

National Board of Standards.  Because the system responds linearly to changes in airflow and the 

design characteristics of the flow probes negate the effects of temperature and humidity (Woakes 

et al., 1987), the above calibration allowed for the measurement of the full extent of the exercise 

and recovery V
．

E response.   
Right and left airway flows, as well as inspired and expired O2 and CO2, were collected 

using a commercial data analysis system (DATAQ, Akron, OH) and stored for later analysis.  

The conversion of V
．

E to STPD was conducted using standard equations, while V
．

O2 and V
．

CO2 

were calculated using the principle of mass balance (i.e. V
．

O2 STPD = (V
．

I STPD x FIO2) – (V
．

E STPD x 

FEO2 STPD) and V
．

CO2 STPD = V
．

E STPD x (FE STPDCO2 – FI STPDCO2).  Inspired and expired gas 
fractions (FI, FE) were measured using a mass spectrometer (Perkin-Elmer, Model 1100, 

Pomona, CA), which was calibrated using gravimetrically-determined gas concentrations that 

spanned the range of O2 and CO2 concentrations between the inspired air and that expired by the 

horse.  Gas was sampled continuously via a sampling port attached between the two nostril 

openings of the fiberglass mask (i.e., between the nares of the horse). 

 

Experimental Protocol.  An incremental exercise test was conducted with each TB on a level 

treadmill.  The horses trotted (i.e. warmed-up) at 3 m/s for 800 m, and the speed of the treadmill 

was rapidly increased to 7 m/s for 1 min, and then the speed was increased in 1 m/s increments 

until fatigue (i.e., the horse could no longer keep up with the speed of the treadmill despite 

humane encouragement).  The treadmill was immediately slowed to 3 m/s for 800 m, and 

cardiovascular, V
．

E, and gas exchange measurements (V
．

O2 and V
．

CO2) were continuously 
recorded from the immediate off-set of maximal exercise and throughout the 4 min recovery 

period.  Arterial blood samples were collected and pulmonary arterial temperature was recorded 

during the last 10 s of the final stage of exercise and at 2 and 4 min of the recovery period.  

 

Blood Analysis.  Arterial blood samples were placed immediately on ice after anaerobic 

withdrawal (~5 mL) into plastic, heparinized syringes.  Blood gases (PaO2 and PaCO2), pH, and 

plasma lactate concentrations were quantified after the exercise test (within 1 – 2 h) using a 

blood gas analyzer (Nova Stat Profile, Waltham, MA).  Blood gases and pH were then corrected 
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to the individual horse’s pulmonary arterial temperature (Fedde, 1991).  To ensure technical and 

internal consistency, one person conducted all blood analyses.   Equipment was calibrated before 

and after each exercise test in accordance with manufacturers’ standards.   

 

Modeling of V
．
O2, V

．
CO2 and V

．
E.  Four-breath rolling averages for V

．
O2, V

．
CO2, and V

．
E were used 

for modeling data.  Curve fitting was accomplished using KaleidaGraph software (Synergy 

software, Reading, PA USA) and was performed on the gallop-trot transition data using a one –

component, 

V
．

(t) = V
．

(b) + A1 · [1 – e-(t-TD)/τ)] 
and a more complex two-component model, 

V
．

(t) = V
．

(b) + A1 · [1 – e-(t-TD1/τ1) + A2 · [1 – e-(t-TD2/τ2)] 

where V
．

 indicates the gas-exchange variable of interest (i.e., V
．

O2, V
．

CO2 or V
．

E), t is a given time 
point, b is baseline (end-exercise), A1 and A2 are the response amplitudes, TD1 and TD2 are the 

independent time delays, and τ1 and τ2 are the time constants. 

Goodness of model fit was determined via three criteria: 1) the coefficient of 

determination (i.e., r2); 2) the sum of the squared residuals term (i.e., χ2) and 3) visual inspection 

of the model.  The time delay from end-exercise until the beginning of the response for V
．

E was 
determined independent of model estimates because the response varied considerably between 

horses (i.e., in some, V
．

E increased prior to falling; n = 3, while V
．

E remained stable in others; n = 
2).  Mean response times (MRT) were calculated from the model parameters using the following 

equations for the one-component model:  

 

MRT = TD + τ 

 

and for the two-component model (see ref. MacDonald et al., 1997):  

 

MRT = A1/A1+2 (TD1 + τ1) + A2/A1+2 (TD2 + τ2) 

 

Statistics.  A repeated measures ANOVA was used for each variable compared over time.  If 

significance was revealed, a Student-Newman-Keuls post hoc test was utilized to determine the 

point of significance.  Paired t-tests were used to determine whether the two-component model 
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provided a statistically better fit to the data than the one-component model.  Between-variable 

comparisons were made by unpaired t-tests.  Where a directional hypothesis was tested, a one-

tailed test was utilized.  Statistical significance was accepted at a p-value ≤ 0.05.    

 

Study B: Methods 

 

Animals.  Six Thoroughbred horses (4 – 10 yr old; 470 - 600 kg) with a history of EIPH were 

used in this investigation.  These horses were penned in dry lots, with shade, water, and salt 

available ad libitum.  They were fed a mixture of alfalfa and grass hay, and concentrate twice 

daily.  All horses were on a regular deworming and vaccination schedule and were conditioned, 

3 d/wk on a high speed treadmill (SATO Inc., Uppsala, Sweden).  Food, but not water, was 

withheld for two hours before experiments were conducted.  Permission to conduct this 

investigation was granted by the Kansas State University Institutional Animal Care and Use 

Committee (IACUC). 

 

Instrumentation.  Before the experimental protocol, each horse was administered a local 

anesthetic (2% lidocaine) subcutaneously, and two 7-F introducer catheters were placed into the 

right jugular vein, using aseptic techniques.  Another catheter (18-gauge, 2 in. Abbocath; Abbott 

Laboratories, North Chicago, IL) was inserted into a previously elevated carotid artery or 

transverse facial artery (20-gauge, 1.5 in.; without lidocaine) along with a cannula (polyethylene; 

1.6 mm ID, 3.2 mm OD) for withdrawal of arterial blood (for blood gas and plasma lactate 

analyses) and to monitor mean arterial blood pressure (MAP; DigiMed BPA model 200, 

Louisville, KY).   

To measure Ppa, temperature (i.e. core body), and collect mixed venous blood samples 

throughout the exercise protocol, a 7-F microtipped pressure transducer (Millar Instruments, 

model SPC-471a, Houston, TX) and thermistor catheter (Columbus Instruments, Columbus, OH) 

were advanced through the lumen of the introducer catheters into the pulmonary artery.  

Placement and calibration of the pulmonary artery transducer and thermistor catheter have been 

discussed previously (Meyer et al., 1998; Kindig et al., 2000, 2001ab, 2003; McDonough et al., 

2004).  Heart rate was determined with a Polar heart rate monitor (Mill Valley, CA).   
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Measurement of breath-by-breath-gas exchange.  To determine oxygen uptake (V
．

O2), carbon 

dioxide output (V
．

CO2), expired tidal volume (VT), breathing frequency (fB), and minute 

ventilation (V
．

E), all horses were fitted with a lightweight fiberglass facemask (modified 
Aeromask; Trudell Medical International, London, Ontario, Canada) containing a tight-fitting 

rubber shroud to preventing leakage of gases.  Flow-tubes, containing two ultrasonic transducers, 

were placed in the openings opposite each nostril to quantify airflow from each nasal passage 

(Model-41 eq; Flow metrics-BDRL, Birmingham, UK), as discussed previously (McDonough et 

al. 2002, 2004; Padilla et al. 2004). 

The respiratory airflow and mass spectrometer signals were interfaced with a data 

analysis system (Ponemah Physiology Platform, Gould Instrument Systems, Valley View, OH) 

for the measurement of all ventilatory and gas exchange variables on a breath-by-breath basis 

(rate of digitization = 250 Hz; McDonough et al., 2002, 2004; Padilla et al., 2004).  Minute 

ventilation (V
．

E), V
．

O2, and V
．

CO2 were calculated using standard equations (see McDonough et 
al. 2004; Padilla et al. 2004). 

 

Experimental Protocol.  Preliminary data from our laboratory demonstrated that a dosage of 3 

mg/kg of TBC3214 was capable of blocking exogenous ET-1 (0.2 µg/kg) from increasing Ppa in 

the resting horse (Benamou et al. 2001).  In the current investigation, each horse served as its 

own control and was administered (in random order) either sterile saline (10 ml [0.9%]; CON) or 

the selective ET-1A receptor antagonist, TBC3214, at 3 mg/kg (i.e. ANTAG) reconstituted in 10 

ml sterile saline [0.9%]) i.v. one hour before the exercise test.   Following resting measurements, 

the horses were warmed up on a flat (0% grade) treadmill at 3 m/s for 800 m.  Subsequently, the 

treadmill was inclined to 6° (10%) and the speed increased in 1 m/min increments until fatigue 

(i.e. horse was unable to maintain treadmill speed despite humane encouragement).  The 

treadmill was then decelerated to 3 m/s for cool down (~4 min). Exercise tests were separated by 

~ 3 weeks. 

 Bronchoalveolar lavage (BAL) was conducted ~30 min after the exercise test to quantify 

EIPH, and data are presented as RBCs/ml of recovered BAL fluid values (Meyer et al. 1998; 

Kindig et al., 2003; McDonough et al., 2004).  Blood analysis (PaO2, PaCO2, pH, and lactate) 

was conducted as in prior studies (Meyer et al. 1998; Kindig et al., 2003; McDonough et al., 

2004).  Arterial and mixed venous O2 contents were quantified using a cooximeter (OSM 3 
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Hemoximeter, Copenhagen, Denmark) and used to calculate cardiac output (Q
．

) via the Fick 

principle (i.e. Q
．

 = V
．

O2/(a-vO2d)).  Measurements of time to fatigue, Ppa, V
．

O2, V
．

CO2, VT, fB, 

and V
．

E were made continuously throughout the exercise protocol with the computer based 
Ponemah data acquisition system, and measurements from the last 30 s of each speed and 2 and 4 

min of cool-down were analyzed.  

 

Statistical Analyses.  Data are presented as mean ± SD.  Specific, a priori hypotheses were tested 

using paired t-test analysis.  When data were not normally distributed (i.e. EIPH), non-

parametric statistics (i.e. Wilcoxin signed rank test) were conducted.  Correlation analysis for 

non-normally distributed data was performed using Spearman Rank Order correlation test.  

Statistical significance was accepted at P < 0.05. 

 

Study C: Methods 

 

Experimental Animals.  The Type II diabetic model chosen for this investigation was the male 

GK rat (Taconic Farm, Germantown, NY, USA; 6-8 mo. old; n = 7), whereas healthy male 

Wistar rats (n = 5) served as controls (CON).  The GK model is a non-obese, hyperglycemic, 

hyperinsulinemic rat strain that was developed by selectively breeding glucose intolerant Wistar 

rats (i.e. ~5 generations; Goto and Kakizaki, 1981).  Goto et al. (1975) reported that GK rats 

require no specially formulated diet and healthy Wistar rats may serve as ideal controls because 

they are of the same original strain as the GK rat.   

All rats were kept in a controlled environment with a fixed 12 h light-dark cycle and with 

room temperature maintained at ~22ºC.  Both GK and CON rats were provided standard rodent 

chow and water ad libitum.  All experimental conditions and surgical procedures were approved 

by the Kansas State University Institutional Animal Care and Use Committee. 

 

Surgical Preparation.  The animals were anesthetized with sodium pentobarbital (50 mg/kg ip to 

effect and supplemented as necessary) and placed on a heating pad (38º C) to maintain body 

temperature throughout the experimental protocol.  To monitor arterial blood pressure and heart 

rate (model 200, Digimed BPA, Louisville, KY, USA), the left carotid artery was cannulated 
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(polyethylene-50, Intra-Medic polyethylene tubing, Clay Adams Brands; Sparks, MD, USA).  

This cannula also allowed for infusion of the phosphorescent probe and blood sampling.      

The spinotrapezius muscle is a postural muscle comprised of a mosaic of different fiber 

types (Delp and Duan, 1996) and lies in the mid-dorsal region of the rat, originating from the 

lower thoracic and upper lumbar region and inserts on the spine of the scapula.  The right 

spinotrapezius muscle was exposed using a U-shaped skin incision to facilitate phosphorescence 

measurements of PO2mv and electrical stimulation.  After the overlying skin was reflected back 

and fascia removed, the muscle surface was superfused with Krebs-Henseleit solution 

equilibrated with 5% CO2-95% N2 at 38ºC and adjusted to pH 7.4.  For the induction of indirect 

bipolar muscle contractions, stainless steel electrodes were attached to the spinotrapezius muscle 

in the immediate proximity of the motor point (cathode) and across the caudal end (anode) close 

to the spinal attachment. 

 

Experimental Protocol.  An arterial blood sample was taken during fasting conditions for 

analysis of blood glucose concentration (Accu-Check Advantage, Roche Diagnostics, 

Indianapolis, IN, USA) and for measurement of hematocrit.  The phosphorescent probe 

(palladium meso-tetra(4-carboxyphenyl)porphyrin dendrimer; R2; Oxygen Enterprises, 

Philadelphia, PA; 15 mg/kg) was infused via the arterial cannula ~15 min before PO2mv 

measurements were undertaken.  Mean arterial pressure and heart rate were monitored 

throughout the protocol.  The experiments were conducted in a darkened room to prevent 

contamination from ambient light.  Following the 15 min stabilization period, twitch muscle 

contractions (1 Hz, 3-5V, 2-ms pulse duration) were elicited for 3 min using a Grass S88 

stimulator (Quincy, MA).  PO2mv was determined at 2-s intervals at rest and after the rest-to-

stimulation transition for 3 min.  This contraction protocol has been shown to increase blood 

flow ~3-fold and V
．

O2 ~ 5-fold in healthy rats without changing arterial acid-base status or 
elevating plasma lactate concentrations (Behnke et al., 2001, 2003).  At the conclusion of each 

experiment, the animal was euthanized with a bolus injection of pentobarbital (>80 mg/kg i.a.).   

 

PO2mv Measurements.  The principles behind phosphorescence quenching have been discussed 

previously (Rumsey et al., 1998; Behnke et al., 2001, 2002, 2003, McDonough et al., 2001).   

Briefly, phosphorescence quenching measures the PO2 within the vasculature sampled by a light-
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guide.  The measurement is independent of the probe (R2) concentration but is volume weighted, 

and because capillaries comprise the greatest volume of vascular units within muscle, PO2mv 

provides a measure of capillary plasma PO2.  It has been demonstrated that over the duration of 

the experimental paradigm used herein, measurable extravasation of the R2 probe does not occur 

(Poole et al., 2004).   

The Stern-Volmer relationship (Rumsey et al., 1988) describes quantitatively the O2 

dependence of the phosphorescence probe (i.e. R2).   R2 is a dendrimer bound to albumin at 

38ºC and pH 7.4, with a quenching constant of 409 Torr/s and lifetime of decay in the absence of 

O2 of 601 µs (Pawlowski and Wilson, 1992; Lo et al., 1997).  PO2mv was determined using a 

PMOD 1000 Frequency Domain Phosphorometer (Oxygen Enterprises, Philadelphia, PA, USA) 

with the common end of the bifurcated light guide placed ~2 mm above the medial region of the 

spinotrapezius (i.e. superficial to dorsal surface).  This phosphorometer uses a sinusoidal 

modulation of the excitation light (524 nm) at frequencies between 100 Hz and 20 kHz, which 

allows for phosphorescence lifetime measurements from 10 µs to ~2.5 ms.  In the single 

frequency mode, 10 scans (100 ms) were used to acquire the resultant lifetime of the 

phosphorescence (700 nm) and repeated every 2 s (for review, see Vinogradov et al., 2002).  To 

obtain the phosphorescence lifetime, the logarithm of the intensity values was taken at each time 

point and by fitting the linearized decay to a straight line by the least squares method (Bevington, 

1969).   

 

Modeling of PO2mv profiles.  Curve fitting was accomplished using KaleidaGraph software 

(Synergy software, Reading, PA) and was performed on the PO2mv data using a one–component, 

PO2mv (t) = PO2mv(b) - ∆PO2mv (es) · [1 – e-(t-TD)/τ)] 

and a more complex two-component model, 

PO2mv(t) = PO2mv (b) - ∆PO2mv(primary) · [1 – e-(t-TD1/τ1)] + ∆PO2mv(secondary) · [1 – e-(t-TD2/τ2)] 

where “t” is a given time point, “b” is baseline (i.e. pre-contraction), and “es” is the decrease in 

PO2mv from baseline to the end-stimulation values.  For the two-component model, 

∆PO2mv(primary) and ∆PO2mv(secondary) designate the asymptotic value to which that component of 

the ∆PO2mv is projecting.  TD1 and TD2 are the independent time delays, and τ1 and τ2 are the 

time constants.   
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The goodness of fit for the model was determined via three criteria: 1) the coefficient of 

determination (i.e. r2); 2) the sum of the squared residuals term (i.e. χ2) and 3) visual inspection 

of the model fit to the data.  Mean response times (MRT) were calculated from the mono-

exponential and double-exponential (i.e. primary MRT) model parameters using the following 

equation:   

MRT1 = TD1 + τ1 

 

 

Statistics.  Differences between baseline (pre-contracting), nadir, and end-stimulation PO2mv 

were analyzed using a repeated measures analysis of variance (ANOVA).  If a significant F-

value was found, a Student-Newman-Keuls post hoc test was utilized to determine the point of 

statistical significance.  Paired t-tests were used to determine whether the two-component model 

provided a statistically better fit to the data than the one-component model.  Between-group 

comparisons (i.e. cardiovascular, TD, τ, mean response time (MRT), etc.) were made using 

unpaired t-tests.  Statistical significance was accepted at a P-value ≤ 0.05.    

 

Study D: Methods 

 

Experimental Animals.  Male GK (Taconic Farm, Germantown, NY; 6-8 mo. old;) spontaneously 

diabetic rats (n = 7; body weight = 426 ± 15 g) and healthy male Wistar rats (CON; n = 5; body 

weight = 557 ± 19 g) were used in this investigation.   

All rats were kept in a controlled environment with a fixed 12 h light-dark cycle and with 

a room temperature maintained at ~22ºC.  Both GK and CON rats were provided a conventional 

rodent chow and water ad libitum.  Previous investigators have reported that a conventional diet 

of rat chow and water is sufficient for the energy needs of the GK rat (Goto et al., 1975).  All 

experimental conditions and surgical procedures were approved by the Kansas State University 

Institutional Animal Care and Use Committee. 

 

Surgical Preparation.  Before the surgical procedures, the animals were anesthetized with 

sodium pentobarbital (50 mg/kg ip to effect and supplemented as necessary).  The rat was then 

placed on a heating pad (38º C) to maintain body temperature throughout the experimental 
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protocol.  To monitor arterial blood pressure and heart rate (model 200, Digimed BPA, 

Louisville, KY), the left carotid artery was cannulated (polyethylene-50, Intra-Medic 

polyethylene tubing, Clay Adams Brands; Sparks, MD).   

The spinotrapezius muscle is excellent for intravital studies of the microcirculation 

because: (1) it can be exteriorized without neural or substantial vascular disruption (Poole et al., 

1997; Bailey et al., 2000), and (2) exteriorization permits transmission light microscopy for clear 

visualization of capillary structures and hemodynamics and (3) a physiological sarcomere length 

can be set, preventing over-stretching of the muscle and associated capillaries, thus avoiding 

adverse affects to the microcirculation (Poole et al., 1997).  The spinotrapezius, which lies in the 

mid-dorsal region of the rat, originates from the lower thoracic and upper lumbar region and 

inserts onto the spine of the scapula.  Furthermore, it is a postural muscle comprised of a mixture 

of fiber types (41% type I, 7% IIa, 17% IId/x, 35% IIb; ref. Delp and Duan, 1996).   

For the experimental preparation, the left spinotrapezius was exteriorized and prepared in 

situ as described previously (Poole et al., 1997; Kindig et al., 1998, 1999; Russell et al., 2003; 

Richardson et al., 2003) to examine the microcirculation.  Fascial removal and disturbance was 

minimized to avoid any associated muscle damage (Mazzoni et al., 1990).  All exposed 

surrounding tissue as well as the dorsal surface of the spinotrapezius were superfused 

continuously with a Krebs-Henseleit bicarbonate-buffered solution (equilibrated with 95% N2-

5% CO2; pH 7.4; 38o C) and the muscle was sutured (6.0 silk, Ethicon, Somerville, NJ) at five 

equidistant points around the perimeter to a thin wire horseshoe-shaped manifold.   The muscle 

was protected with Saran Wrap (Dow Brands L.P., Indianapolis, IN) until analysis. 

The rat was placed on a circulation-heated Lucite platform and the spinotrapezius was 

observed using an intravital microscope (Nikon, Eclipse E600-FN; X40 objective; 0.8 numerical 

aperture) equipped with a non-contact, illuminated lens and a high-resolution color monitor 

(Sony Trinitron PVM-1954Q, Ichinonya, Japan).  The final magnification (X 1,184) was 

confirmed by initial calibration of the system with a stage micrometer (MA285, Meiji Techno).  

The spinotrapezius was maintained at physiological length (~2.4 µm) throughout the subsequent 

observation period, and any exposed tissue was continuously superfused with the Krebs-

Henseleit solution.  The muscle was transilluminated in a fashion that ensured clear resolution of 

the A-bands of the sarcomeres within 1/3 to 2/3 of the muscle fibers.  The final screen 

magnification was X 1184 as confirmed by a stage micrometer (MA285, Meiji Techno, Japan).  
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This magnification is adequate for measuring all essential structural and hemodynamic variables 

(Poole et al., 1997).   

 

Experimental design.  Once the muscle was positioned on the platform, a microvascular viewing 

field (270 x 210 µm), containing ~5-8 muscle fibers and 5–10 capillaries in the midcaudal 

(dorsal surface) region of the muscle, was selected.  Approximately 8-10 fields (~1-1.5 min ea) 

were recorded for each rat and images were time-referenced by frame and fields and stored on 

Super-VHS high resolution videocassettes (JVC S-Master XG) using a videocassette recorder 

(JVC BR-S822U, Elmwood Park, NJ) for subsequent offline analysis.  Mean arterial pressure 

(MAP) was continuously monitored throughout the data-acquisition period, and the experimental 

protocol was no longer than 1.5–2 h in duration. 

 

Capillary and fiber structural data analysis.  Five of the fields were chosen for each rat based 

upon clear visualization of sarcomeres, fibers, and capillaries.  Initially, each microvascular field 

(i.e., capillaries and myocyte boundaries) was traced directly from the television monitor.  

Capillaries supporting RBC flow were assessed in real time, and each capillary was placed into 

one of two categories (a) normal flow = 60 s of continuous or (b) impeded flow or stopped flow 

for > 10 out of 60 s.  This was further used for determination of percentage of flowing capillaries 

(i.e., [no. of capillaries supporting RBC flow/ total no. of visible capillaries per area]*100).  The 

presence and direction of RBC flow or the presence of stationary RBC’s was also used to 

determine flowing lineal density (i.e., the number of capillaries per unit muscle width) and 

countercurrent flow.  For all capillaries in which hemodynamics were assessed and where the 

capillary endothelium was clearly visible on both sides of the lumen, capillary luminal diameter 

(dc) was measured (2-4 measurements/capillary) with calipers accurate to ± 0.25 mm (± 0.17 µm 

at X 1,184 magnification).   

Examination of the fields was conducted (30 frames/s) in real time and by frame-by-

frame analysis techniques.  Sarcomere length was determined from sets of 10 consecutive in-

register sarcomeres (i.e. distance between 11 consecutive A bands) measured parallel to the 

muscle fiber longitudinal axis.  This procedure was repeated 3-4 times where sarcomeres were 

visible to obtain a mean sarcomere length for each viewing field.  For each muscle fiber in which 

both sarcolemmal boundaries were visible on the screen, the apparent fiber width perpendicular 
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to the longitudinal muscle fiber axis was measured at three locations, and a mean fiber width was 

determined for each fiber.  Red blood cell velocity (VRBC) was determined in all capillaries that 

were continuously RBC perfused by following the RBC path length over several frames (~5-10 

capillaries/area).  FRBC was measured by counting the number of cells in a capillary passing an 

arbitrary point.  For each capillary in which hemodynamic data were gathered, Hctcap was 

calculated as: 

 

Hctcap = (volumeRBC * FRBC)/[π * (dc/2)2 * VRBC] 

 

 

where volumeRBC is RBC volume, which was taken to be 61 m3 (Altman and Dittmer, 1974), and 

capillaries were approximated as circular in cross section. 

 

Statistical analysis.  All data are presented as means ± SE where the group mean is that of the 

individual muscles rather than individual capillary measurements across muscles.  Differences 

between CON and GK groups were tested with Student’s t-test.   Where there was clear 

precedence for an a priori directional hypothesis (i.e., FRBC and VRBC), a one-tailed test was used.  

Statistical significance was accepted at the P < 0.05 level. 
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CHAPTER 3 

Study A: Results 

 

V
．

E.  In the absence of overt pathology, the flow profiles for the left and right nostrils are almost 
superimposable.  For the horses studied in the present investigation, the flow profiles from each 

nostril were remarkably similar throughout both exercise and recovery.  Determination of 

inspired and expired volumes and minute V
．

E were made using the total flow through both the left 
and right nostrils. 

 After the gallop-trot transition, V
．

E remained elevated at or above end-exercise values for 

~13s, after which V
．

E fell bi-phasically (Figure 4).  Quantitatively, V
．

E was best characterized by a 
dual-exponential model with a fast and slow phase (Table 1; Figure 4) and a MRT of 85.4 ± 9.0 s 

(Table 1; Figure 4), which was significantly longer than the MRT of either V
．

CO2 or V
．

O2 (Table 
1; Figures 4 & 5).  The two-component nature of the response was confirmed via a significantly 

higher correlation coefficient (two-component: 0.96 vs. one-component: 0.93; P < 0.05) and a 

lower sum of squares residual term (two-component: 1.0 x 105 vs. one-component: 1.78 x 105; P 

< 0.05). The prolongation of the exercise V
．

E into recovery and the bi-phasic nature of the 

subsequent V
．

E decrease in trotting recovery were due, in part, to a radical change in breathing 
strategy (Table 2; Figure 6).  Specifically, over the first 7-13s of recovery, tidal volume (VT) rose 

and breathing frequency (fB) fell significantly (Table 2).  After this period, fB and VT remained at 

end-exercise levels for 30 s.  After 30 s, VT fell progressively with time, but fB did not differ 

from end-exercise values (Figure 6; Table 2).  At the end of the 4-min recovery period V
．

E was 
still 44.5 ± 18.5 % (e.g. Figures 4 & 6) above trotting baseline values.   

 

V
．
O2 and V

．
CO2.  V

．
O2 and V

．
CO2 both fell with a mono-exponential profile after the gallop-trot 

transition (Figures 5 & 4, respectively; Table 1) with MRTs of 39.9 ± 4.7 s and 28.9 ± 3.2 s 

respectively (P<0.05).  Both V
．

O2 and V
．

CO2 apparently resolved to an elevated baseline (9.8 ± 

36.0 and 17.5 ± 30.9 % above the pre-gallop, trotting baseline for V
．

O2 and V
．

CO2, respectively; 

e.g., Figures 5 & 4, respectively).  However, compared with V
．

E, V
．

CO2 and V
．

O2 were relatively 
closer to trotting baseline values following the 4-min recovery period (Table 1; Figures 5 & 4, 

respectively). 
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Blood gas response across the gallop-trot transition.  The hypercapnia found during exercise 

was completely reversed within 2 min after the gallop-trot transition, and the ensuing hypocapnia 

was maintained through 4 min of trotting (Figure 7; PaCO2 at gallop: 52.8 ± 3.2 mmHg; 2 min at 

trot: 25.0 ± 1.4 mmHg; 4 min at trot: 24.6 ± 1.5 mmHg; both P < 0.05 vs. gallop).  This 

hyperventilation is further evidenced by the pronounced increase in V
．

E/V
．

CO2 (from ~20 at the 
gallop to ~60 within 1-2 min of trotting recovery; e.g. Figure 7).  Plasma lactate was elevated to 

25.5 ± 4.0 mM at the gallop and remained unchanged throughout the recovery period (2 min at 

trot: 24.9 ± 3.6; 4 min at trot: 24.5 ± 3.7 mM).  Arterial pH increased from the gallop (7.217 ± 

0.107) to 2 min (7.301 ± 0.093; P < 0.05), but did not differ between 2 min and 4 min (7.307 ± 

0.098) of the recovery period.     

 

Core temperature changes across the gallop-trot transition.  Pulmonary arterial temperature 

decreased (P < 0.05) from the gallop (41.6 ± 0.9 °C) to 2 min (40.6 ± 0.7 °C), but did not change 

subsequently between 2 and 4 min (40.4 ± 0.7 °C) of the recovery period.   

 

Study B: Results 

 

Time-to-exhaustion was not different between CON and ANTAG (CON: 690 ± 40; 

ANTAG: 653 ± 36 s; P > 0.05), and neither metabolic nor gas exchange variables differed 

between CON and ANTAG groups either at rest or fatigue (P > 0.05; Tables 3 & 4).   Heart rate 

at fatigue was also similar between groups (CON: 221 ± 5; ANTAG: 217 ± 10 beats/min; P > 

0.05).  

As shown in Figures 8 and 9 (Top Panel), respectively, resting mean values for Ppa 

(CON: 32 ± 8; ANTAG: 28 ± 9 mmHg) and Ppa at maximal exercise (CON: 82 ± 15; ANTAG: 

92 ± 20 mmHg) did not differ between groups (P > 0.05).  In addition, Ppa’s did not differ 

between the two treatments throughout the last three stages of exercise or at fatigue (P > 0.05; 

Figure 8).  With respect to EIPH, ANTAG tended to be higher then CON, however, differences 

in EIPH between the CON and ANTAG groups did not reach statistical significance (CON: 4.1 x 

106 ± 2.9 x 106; ANTAG: 17.2 x 106 ± 19.0 x 106 RBCs/ml BAL fluid; Figures 9 (Bottom Panel) 

& 10).  Moreover, there was no significant correlation between the EIPH and Ppa (P > 0.05; 

Figure 10). 
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Study C: Results 

 

Animal Data.  Arterial blood glucose was significantly higher and body weight was lower in GK 

compared to CON (Table 5) which is in agreement with previous studies (Goto and Kakizaki, 

1981; Yasuda et al., 2002).  Neither mean arterial blood pressure nor hematocrit differed 

between groups (P > 0.05; Table 5).  However, heart rate was significantly higher in the GK rats 

(Table 5).   

 

Spinotrapezius PO2mv Profiles.  As depicted in Figure 11, the PO2mv profile at the onset of 

contractions was considerably different in CON vs. GK spinotrapezius muscles.  Baseline PO2mv 

was lower in the GK rats than the CON rats (CON: 28.8 ± 2.0 Torr; GK: 18.4 ± 1.8 Torr; P < 

0.05; Table 6).  The CON rats displayed PO2mv profiles that consisted of a time-delay (12.3 ± 

2.9 s) followed by an exponential fall (∆1PO2mv: -11.2 ± 1.6 Torr) to a steady-state PO2mv (end-

stimulation PO2mv: 17.6 ± 0.7 Torr; P < 0.05).  This profile has been demonstrated previously 

for healthy rat spinotrapezius muscle (Behnke et al., 2001, 2002).  In contrast, six of the seven 

GK rats demonstrated a close-to-exponential but transient fall after a time-delay (8.9 ± 1.5 s; not 

different from CON; P > 0.05; Table 6) that reduced PO2mv below the end-stimulation value 

(e.g., See GK #4 & #5; Panels C & D in Figure 11). This behavior has been termed an 

“undershoot” and reduced PO2mv (5.7 ± 3.5 Torr) below the subsequent contracting steady-state 

value.  Subsequently, PO2mv increased back to baseline values (resting or slightly higher) by the 

end of contractions (baseline PO2mv: 18.4 ± 1.8 Torr; end stimulation PO2mv: 18.9 ± 2.6 Torr; P 

> 0.05: Figure 11).  In contrast, one GK rat displayed an unusual “overshoot” in the PO2mv 

profile after a brief time-delay followed by an exponential fall in PO2mv to the steady state 

(Figure 11, GK #1, Panel B).   

 

Modeled PO2mv responses.  A simple one-component model adequately fit the PO2mv responses 

of the CON rats (r2 = 0.97± 0.01, χ2 = 56.6 ± 12.9; Figure 11, Panel A) and a more complex 

model was not chosen.  For the GK rats (Figure 11, Panels B, C, & D), the double-exponential 

model provided a better fit for the PO2mv profiles as evidenced by higher r-value (0.96 ± 0.01 vs 
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0.67 ± 0.11; P < 0.05) and lower χ2 value (27.6 ± 6.3 vs 229.9 ± 114.1; double-exponential, 

monoexponential, respectively; P < 0.05).   

Although, TD did not differ between the two groups (CON: 12.3 ± 2.9; GK: 9.1 ± 2.0; P 

> 0.05), τ1 was shorter in the GK rats (CON: 15.5 ± 3.5 s; GK: 6.4 ± 1.8 s; P < 0.05).  This 

resulted in an MRT (i.e. TD1 + τ1) for the primary response that tended to be shorter in the GK 

vs. CON rats (CON: 27.7 ± 6.0 s; GK: 15.5 ± 2.7 s; P = 0.08; Table 6).  However, the time 

necessary for the PO2mv to fall to 63% of the difference between baseline and the nadir of the 

response (T63; i.e. model-independent estimate of the MRT) did not differ in duration between 

the GK and CON rats (CON: 32.4 ± 7.6 s; GK: 31.0 ± 9.0 s; P > 0.05; Table 6).  

 

Study D: Results 

 

GK rats exhibited significantly higher fasting blood glucose levels compared to the 

healthy CON rats (CON: 105 ± 5 mg/dl vs. GK: 263 ± 34 mg/dl; P < 0.05).  The GK rat is 

considered a non-obese model of Type II diabetes and this was reflected in the average body 

weights (CON: 553 ± 18 g; GK: 417 ± 14 g; P < 0.05). Although sustained within a normal 

physiological range, heart rate was higher (P < 0.05; Table 7) in the GK rats, but MAP did not 

differ between the groups (P > 0.05; Table 7).  Systemic hematocrit was measured at the end of 

the experiment and did not differ between groups (CON: 47 ± 2; GK: 43 ± 1 %; P > 0.05).   

 

Muscle structural data. Neither sarcomere length (CON: 2.6 ± 0.1; GK: 2.7 ± 0.1 µm) nor 

capillary diameter (CON: 4.7 ± 0.1; GK: 5.1 ± 0.2 µm) differed between groups (both P > 0.05).  

Although muscle fiber width was decreased in the GK rats (CON: 65.0 ± 5.2; GK: 51.5 ± 3.9 

µm; P < 0.05), total lineal density (i.e. the total number of both perfused and non-RBC perfused 

capillaries per unit fiber width) did not differ (P > 0.05) between the GK and CON rats, but 

flowing lineal density was significantly attenuated in the GK rats (P < 0.05; Figure 13). 

 

Hemodynamic comparisons. There was a significant decrease in the percentage of flowing 

capillaries in the GK rats in comparison to the CON rats (CON: 93 ± 3; GK: 66 ± 5 %), although 

countercurrent flow did not differ between the groups (CON: 24 ± 5; GK: 19 ± 3%; P > 0.05).  In 

the RBC-perfused capillaries of the individual muscles of GK rats, dramatic decreases were also 
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found in Hctcap (CON: 33±0.1; GK: 23±0.1 %), VRBC (CON: 454 ± 20; GK: 158 ± 26 µm/s), FRBC 

(CON: 42 ± 4; GK: 14 ± 3 RBC/s).  Furthermore, VRBC and FRBC were significantly correlated in 

the individual muscles (r2 value = 0.9275; P < 0.05; Figure 14).  More importantly, when the 

product of flowing lineal density and capillary FRBC was calculated (i.e. an index of O2 delivery), 

the blood flow per unit of muscle was markedly lower in the GK rat spinotrapezius when 

compared with CON (CON: 813 ± 88; GK: 227 ± 37 RBC/s/mm; P < 0.05; Figure 15).   
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CHAPTER 4 

Study A: Discussion 

 

To the best of our knowledge, this is the first study to provide a breath-by-breath analysis 

of V
．

E, gas exchange (i.e. V
．

O2 and V
．

CO2), and related metabolic and blood gas measurements 
across the gallop-trot transition at the cessation of maximal exercise in the TB horse.  The 

finding that V
．

E did not decrease abruptly at the gallop-trot transition suggests that any 
mechanical link between locomotion and respiration (i.e. LRC) does not constitute an obligatory 

component of the extraordinary V
．

E’s commensurate with those found during exercise.  
Specifically, an abrupt reduction in stride length and frequency, as seen at the transition from 

galloping to trotting (i.e., 3 m/s), and the removal of the synchrony between stride and breathing 

frequency (LRC) did not reduce V
．

E instantaneously.  Furthermore, given the finite V
．

CO2 

dynamics, had a precipitous fall in V
．

E occurred, it would be expected to sustain or even 
exacerbate the exercise-induced hypercapnia (i.e. elevate PaCO2 further). In contrast to this 

notion, our results show that the hypercapnia and hypoxemia of exercise are quickly reversed (at 

least within 2 min) because V
．

E remained at peak galloping levels for ~13 s of the post-gallop trot 
(due to an altered breathing strategy) before decreasing relatively slowly in the presence of more 

rapid reductions of V
．

O2 and V
．

CO2 (i.e. V
．

E/V
．

O2 and V
．

E/V
．

CO2 both increased).  Thus, after the 
transition from gallop to trot, compensatory hyperventilation was evident.  One putative 

interpretation of this behavior is that LRC at the gallop may have restricted the full magnitude of 

the exercise hyperpnea.  When this constraint was removed, the V
．

E/V
．

CO2 ratio rose to a level 
that ensured a respiratory compensation for the metabolic acidosis (PaCO2 < 20 mmHg) and 

restored PaO2 to pre-exercise levels.  Although the possibility remains that LRC may contribute 

to the exercise hyperpnea, the data from the present investigation demonstrates that the TB can 

attain V
．

E values equivalent to those during galloping in the absence of LRC during post-maximal 
exercise trotting recovery. 

  

Role of LRC in the horse.  Locomotory-respiratory coupling has been presented as a “general 

requirement for sustained aerobic activity among endothermic vertebrates” (Bramble and 

Carrier, 1983).  Some researchers maintain that LRC functions to enhance pulmonary airflow 

during the gallop in the horse (Attenburrow, 1982; Hornicke et al., 1983).  However, it is also 
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clear that racing breeds, in contrast to their more pedestrian counterparts (see ref. Dempsey and 

Wagner, 1999), become considerably hypoxemic and hypercapnic (Bayly et al., 1989; Butler et 

al., 1993; Evans et al., 1994; McDonough et al., 2002; Wagner et al., 1989) during brief, 

maximal exercise, suggestive of some sort of “functional” ventilatory restraint.  That this 

restraint is not the result of an absolute limitation to ventilation, per se, is supported by studies 

using heliox inspirates (Erickson et al., 1994) and hypoxia (Pelletier and Leith, 1995).  In 

addition, the results of the current study, where V
．

E remained at or rose above (3 of 5 horses) end-
exercise values for the first 7-13 s of recovery also argues against any purely mechanical 

limitation to airflow generation.     

Marlin et al. (via respiratory inductance plethysmography; Marlin et al., 2002) have 

shown that (during the canter and gallop) VT is increased by abdominal elongation and 

expansion consistent with a major diaphragmatic contribution to inspiration, whereas Ainsworth 

et al. (1997) determined (via electromyogram analysis) that diaphragmatic contractions are 

always in phase with esophageal pressure changes and inspiratory flow generation as exercise 

intensity increases.  These results suggest that inspiratory tidal airflow generation during running 

in the horse may be the sole province of the diaphragm, a contention that is supported by the 

extraordinary thickness, oxidative capacity and blood flow capacity of the equine diaphragm 

(Manohar, 1988; Poole et al., 2002). 

  Although LRC may limit airflow generation during running in the horse, one potential 

benefit of a LRC-derived constraint upon exercise ventilation can be gleaned from the work of 

Harms et al. (1998, 2000).  These authors reported that the work of breathing can affect 

performance and time to fatigue in humans by redistributing flow away from the locomotory and 

toward the respiratory muscles.  As the work of breathing increases to a much greater degree in 

the horse than the human (cf. ref. Aaron et al., 1992 and Art et al., 1990), this mechanism has 

perhaps an even greater fatigue-generation potential in the horse.  This is particularly true as the 

TB is thought to rely primarily upon diaphragmatic breathing (Ainsworth et al., 1997; Marlin et 

al., 2002) during the gallop; thus any attempt to overcome the constraint resulting from LRC 

could well lead to both diaphragmatic and locomotory muscle fatigue. 

Unlike TB horses, Standardbred horses can achieve their maximum oxygen uptakes 

whilst trotting or pacing when the breathing and stride frequencies are not coupled.  The 

maximum oxygen uptake in competitive Standardbred horses (i.e., ~165 ml/kg/min; see refs. Art 
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and Lekeux, 1995 and Gauvreau et al., 1995) is close to that found in the TB.  However, VT is far 

higher (20-26 vs. 12-14 L/breath) and fB’s are lower (70-80 vs. 130 breaths/min) in the 

Standardbred vs. the TB horse.  Therefore, for Standardbreds at the transition from the maximum 

speed to either resting or a lower speed, one would not expect the same response as found in the 

TB (i.e. increasing VT’s, lowering of fB).  Indeed, Standardbred horses increase fB and decrease 

VT across this transition.  Thus, although the strategy is different, one common feature across 

these two breeds is that both hypoventilate during intense exercise (i.e. V
．

E/V
．

O2, V
．

E/V
．

CO2 and 
PaO2 fall and PaCO2 rises) and hyperventilate in recovery (Art and Lekeux, 1995; McDonough 

et al., 2002a).  

 

Mechanistic basis for slow V
．

E recovery in the TB horse.  In the TB horse, the presence of 
hypoventilation during maximal exercise and noticeable hyperventilation (see Figure 7) during 

recovery suggests strongly that, in considerable contrast to humans (Whipp and Ward, 1987), 

PaCO2 is not a precisely controlled variable in equids (McDonough et al., 2002a; Powers et al., 

1987).  In addition, the observation that V
．

E remains at or above end-exercise values during the 
early recovery period (Figures 4 & 6) constitutes strong evidence that LRC may actually provide 

an impedance to V
．

E during exercise, whereas the slow, prolonged recovery profile for V
．

E 
suggests multiple sources of ventilatory control during recovery from maximal exercise.  

 

Initial (“fast”) component of V
．

E.  Throughout high intensity exercise, PaCO2 is markedly 
elevated in the TB (McDonough et al., 2002ab).  As TB horses exhibit a normal ventilatory 

response to CO2 at rest (in contrast to the situation during exercise; Landgren et al., 1991), it is 

likely that CO2 is providing at least some of the initial stimulus responsible for the elevation of 

V
．

E noted in the current study.  Indeed, VT increased rapidly, while fB fell (Figure 6 and Table 2), 
indicative of increased alveolar ventilation and enhanced CO2 elimination (Whipp and Ward, 

1998).  However, by 2 min of recovery PaCO2 had fallen to hypocapnic levels (Figure 7), 

whereas V
．

E was still elevated, which strongly suggests that the ventilatory response is being 
maintained at this point by other stimuli.   

 

Secondary (“slow”) component of V
．

E.  The secondary component of V
．

E during recovery started 
at ~90s of recovery, likely at a time point when PaCO2 was already well below 40 mmHg (see 
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V
．

E/V
．

CO2 profile in Figure 7).  Although pH at end-exercise (7.217 ± 0.107) and during recovery 
(2 min: 7.301 ± 0.093 and 4 min: 7.307 ± 0.098) is reduced below trotting baseline, these values 

are not different from those reported in humans (Stringer et al., 1992), or in the pony (Powers et 

al., 1987), which, unlike its more fit relative, exhibits a more rapid V
．

E recovery response profile.  

In addition, the changes in pH and V
．

E were not correlated.  
It is also generally acknowledged that there is an extensive array of ventilatory stimuli 

present during and following intense exercise.  Thus, the control of the exercise (and post-

exercise) hyperpnea is complex and demonstrates considerable redundancy (for review, see 

Whipp, 1981).  In early recovery following the gallop-trot transition, potential sources of 

ventilatory stimulation include arterial acidosis (lactic acidosis and hypercapnia), elevated 

catecholamines, temperature, potassium ions (K+), osmolarlity, venous distension and/or some 

form of short-term potentiation (STP).  This STP was originally termed “respiratory 

afterdischarge” by Gesell and White (1938) and has subsequently been described as an 

exponential ventilatory response that decays relatively slowly following removal of the stimulus.  

Specifically, STP decays with a time constant ranging from 36-101 s after carotid sinus nerve 

stimulation in cats (Eldridge, 1974; Eldridge and Gill-Kumar, 1980) and 18-39 s following 

hypoxic exercise in humans (Fregosi, 1991). Thus, if present in the TB, STP may have 

potentially played a role in the prolonged ventilatory response found during trotting recovery 

described herein.   

The present investigation was not designed to determine which of these above mediators 

induced the post-galloping elevated ventilatory response.  However, the temporal profile of some 

of these mediators decreases the likelihood that they played a major role in the extended 

hyperventilation seen in the trotting recovery.  For example, the exercise-induced hypercapnia 

was resolved at least by 2 min at which time the PaCO2 had been driven substantially below 

resting values.  Whereas catecholamines were not measured in the present investigation, Snow et 

al. (1992) observed that blood catecholamine levels returned close to resting levels within 60 s 

post-exercise which is much faster that the V
．

E response.  In addition, K+ recovers to baseline 
values within ~2 min of recovery (Harris and Snow, 1988). 

 

How are ventilation and hyperthermia linked?  Respiratory heat exchange occurs in many 

mammalian species that primarily employ nasal breathing (Schroter and Watkins, 1989).  In 
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large mammals such as the camel (Schroter et al., 1989) and the horse (Hodgson et al., 1993; 

McConaghy et al., 1995), ventilation during heat stress serves to maintain brain temperature as 

much as several degrees Celcius below core body temperature (McConaghy et al., 1995; 

Weishaupt et al., 1996).  Although horses employ a robust sweating response (rates of >30 L/hr) 

that works in concert with the respiratory system to dissipate heat during exercise (Hodgson et 

al., 1993), these responses are not adequate to prevent heat storage during exercise, in part due to 

a relatively low surface area to body mass ratio in the racing horse.  Thus, during exercise, the 

TB routinely achieves core body temperatures up to ~42 - 43ºC (Hodgson et al., 1993; 

McConaghy et al., 1995; Weishaupt et al., 1996).  During trotting recovery, with the locomotory 

muscles operating at a much reduced metabolic rate compared with the gallop, evaporative heat 

loss from the respiratory tract will augment heat dissipation and provides one possible 

explanation for the prolonged elevation in V
．

E seen post-galloping.  This strategy may be 
affected, in part, by the adoption of an altered breathing pattern during the recovery from high-

intensity exercise. 

  Core temperature follows a slow recovery time course following incremental exercise 

(Marlin et al., 1996).  In this investigation, core temperature was markedly elevated throughout 

recovery (~40.5 °C at 4-min post-gallop) and the rate of change in V
．

E during the secondary 
recovery component was highly correlated with that of core temperature (r2=0.998; p<0.05).  

Given that hyperthermia does constitute a powerful V
．

E stimulus in the horse (Marlin et al., 1996) 

and that the temporal profiles of other potential V
．

E stimuli (i.e., K+, catecholamines, PaCO2) 

during recovery from exercise in the horse do not cohere with that of V
．

E, the possibility must be 
acknowledged that the hyperthermia which attends maximal exercise and recovery in TB horses, 

may potentially contribute to the prolonged hyperventilatory response found during recovery.   

 

In conclusion, rather than exhibiting the precipitous fall in V
．

E such as that observed in humans 
after intense exercise (Linnarsson, 1974; Riley and Cooper, 2002; Stringer et al., 1992), horses 

sustain the full magnitude of the exercise hyperpnea for several seconds into recovery followed 

by a prolonged biphasic decrease in V
．

E.  This sustained hyperpnea is the product of an 
immediate increase in VT combined with a fall in fB (Table 2, Figure 6).  Because an immediate 

fall in V
．

E was not found during the off-transition from the gallop (LRC present) to the trot (no 
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LRC), we conclude that LRC does not appear requisite to achieve prodigiously high V
．

E 
equivalent to those seen during maximal exercise. 

 

Study B: Discussion 

In this current investigation, we chose to administer the ET-1A receptor antagonist, 

TBC3214, into the pulmonary artery of horses to determine whether ET-1 plays an active role in 

the high Ppa that has been linked mechanistically to EIPH during maximal exercise.  This study 

demonstrated that an ET-1A antagonist does not affect exercise capacity or cardiorespiratory 

variables as determined by time-to-fatigue and gas exchange (i.e. V
．

O2max) profiles.  More 
importantly, the antagonist did not reduce maximal Ppa, indicating that ET-1 may not play a 

primary role in the rise in Ppa during intense exercise.  In this investigation, only one horse 

demonstrated a decreased Ppa concomitant with a reduction in EIPH after ANTAG 

administration (Figure 9; Horse #3).  In addition, there was no significant relationship between 

Ppa and EIPH in either the CON or ANTAG conditions.  Thus, contrary to our hypothesis, EIPH 

was not reduced with administration of the antagonist which demonstrates that such an 

antagonist is not a viable treatment for the mitigation of EIPH. 

 

Comparisons with previous literature 

In agreement with Benamou and colleagues (2001), the present investigation 

demonstrated that an ET-1A receptor antagonist did not result in changes in Ppa at rest, 

suggesting that ET-1 does not play a role in resting pulmonary vascular tone.  Also, during 

exercise, the CON and ANTAG horses did not exhibit differences in MAP, HR, Q
．

, or plasma 
lactate, which concurs with previous studies in other species (Maeda et al. 2002; Merkus et al. 

2003).  

In the present investigation, CON values for Ppa and EIPH for CON fell within these 

previously reported ranges (Meyer et al. 1998; Kindig et al. 2000, 2001ab, 2003; McDonough et 

al. 2004).  Also, the threshold for induction of EIPH was previously reported to be between 75 – 

100 mmHg (Birks et al. 1997; Langsetmo et al. 2000), and indeed, those horses (i.e. four of the 

six) that showed significant bleeding in this current study met that threshold (Figure 10).  

However, no significant relationship was found between Ppa and EIPH, which adds to previous 

literature suggesting that EIPH and Ppa are not always related (Kindig et al. 2000, 2001b, 2003).  
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Exercise-induced pulmonary hypertension and EIPH  

The 4 – 5 fold increase in Ppa experienced by TB horses during intense exercise has long 

been considered a primary cause of EIPH (Erickson et al. 1990; West et al. 1993; Birks et al. 

1997; Meyer et al., 1998; Roberts and Erickson, 1999).  These elevated pressures may be the 

result of 1) prodigious level of Q
．

 (> 300 L/min), 2) hemoconcentration (and thus increased 
viscosity; Fedde and Erickson, 1998), 3) maximal recruitment and distension of the pulmonary 

capillaries (as suggested by the horse’s high Ppa/Q
．

 ratio; Pelletier and Leith 1993), and 4) a 
transient increase in pulmonary venous pressure caused by an inability for the left ventricle to 

compensate fully for the very high Q
．

 during intense exercise (Jones et al. 2002).  Furthermore, 
studies using furosemide, a diuretic, have consistently shown a decrease in Ppa and EIPH 

(Pascoe et al. 1985; Geor et al. 2001; Kindig et al. 2001a; McDonough et al. 2004).   

More recently, the role of high Ppa’s as the sole cause of EIPH has been questioned by 

several investigators (Poole et al. 2000; Kindig et al. 2000, 2001ab, 2003; McDonough et al. 

2004).  For example, the Flair equine nasal strip reduces EIPH by 33-50% without affecting Ppa 

(Poole et al. 2000; Geor et al. 2001; Kindig et al. 2001a; McDonough et al. 2004).  In addition, 

when horses were run to fatigue while breathing nitric oxide (NO) gas, Ppa was decreased, but 

EIPH increased (Kindig et al. 2001b).  Furthermore, Kindig and colleagues (2000ab) have shown 

that administration of an inhibitor of NO production (i.e. L-NAME) resulted in an increase in 

EIPH without increasing Ppa or Q
．

.  Lastly, EIPH was reported to be increased with a 
concomitant decrease in Ppa when horses were galloped on an incline (Kindig et al. 2003).  In 

agreement with these previous studies, the current investigation found no significant correlation 

between Ppa and EIPH, and indeed, the horse with the highest Ppa did not evidence the highest 

degree of EIPH (Figure 10).  These results indicate that Ppa is not always a predictor of EIPH 

and that other factors may be involved in regulating pulmonary capillary transmural pressure and 

therefore determining stress failure of the blood gas barrier (see Sinha et al. 1996; Poole et al. 

2000; Geor et al., 2001; Kindig et al. 2001ab; McDonough et al. 2004).   

 

Efficacy of the Endothelin-1A receptor antagonists 

Our goal in this investigation was to administer a concentration of an ET-1A antagonist, 

TBC3214, that would primarily target and be limited to the horse’s lung without affecting the 
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systemic circulation.  Indeed, one ET-1A antagonist, Sitaxsentan (Encysive Pharmaceuticals, 

Houston, TX) has been shown to reduce Ppa in human patients with primary pulmonary 

hypertension with little or no effect on systemic vascular tone, suggesting that this ET-1A 

antagonist exerts its specific action on the pulmonary circulation (Givertz et al. 2000).    

Exact values of ET-1 concentration in equine lung tissue during exercise are currently 

unavailable because ET-1 operates at the autocrine/paracrine level.  However, in resting horses, 

ET-1 venous plasma concentrations vary between 0.2 (McKeever and Malinowski, 1999; 

McKeever et al. 2002) and 5 pg/ml (Benamou et al. 1998), and they do not appear to differ from 

arterial concentrations (Benamou et al. 1998).  Mean ET-1 concentrations in BAL fluid at rest 

are ~60 pg/ml (Benamou et al. 1998) and appear unchanged after high intensity exercise 

(Benamou et al. 1999).  The ET-1 antagonist used in this study was capable of blocking the 

lowest concentration of exogenous ET-1 (0.2µg/kg) known to significantly increase Ppa in 

resting horses (Benamou et al. 2001) which is equivalent to plasma concentrations of 3000 pg/ml 

(if plasma volume is estimated to be ~65 ml/kg bwt; Benamou et al. 2001).  Thus, the amount of 

antagonist administered in the present investigation should have been more than adequate to 

block both normal systemic (Benamou et al. 1998; McKeever and Malinowski, 1999; McKeever 

et al. 2002), and BAL ET-1 concentrations (Benamou et al. 1998) in the exercising TB horse.  

 

Limitations of the Current Investigation  

The functions of ET-1 are complex and highly species dependent with its receptor 

subtypes distributed in a heterogeneous fashion throughout the pulmonary circulation (Fukuroda 

et al. 1994; MacLean et al. 1998; Schmect et al. 1999).  Although ET-1A receptors are 

predominantly found in third generation equine pulmonary arterioles (Benamou et al. 2003), 

further studies must be conducted to discern which ET-1 receptors are found beyond these 

arterioles to further elucidate the role of ET-1 in the equine lung.   

The study of ET-1 is further complicated by this hormone’s ability to either act locally on 

receptors found on nearby smooth muscle cells to cause vasoconstriction, or in some 

circumstances on endothelial cells causing vasodilation (rev. Kedzierski and Yanagisawa, 2001).  

Although plasma and BAL ET-1 concentrations have been determined at rest, and during and 

after exercise in healthy horses (Benamou et al. 1999; McKeever and Malinowski, 1999; 

McKeever et al. 2002), these concentrations may be lower than those reported to be biologically 
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active at the level of the tissue (Wagner et al. 1992).  Thus, there is the likelihood that 

assumptions and interpretation of data based upon changes occurring in plasma or BAL fluid 

may not be physiologically relevant, and therefore, in this current investigation, we can speculate 

that the ET-1A antagonist, TBC3214, may not have fully blocked the effects of ET-1 at the level 

of the tissue. 

 

Conclusions 

To the best of our knowledge, this is the first investigation to administer an ET-1A 

antagonist to a horse to determine if ET-1 plays a mechanistic role in the elevated Ppa response 

during exercise.  Contrary to our hypothesis, we have shown ET-1 (via an ET-1A antagonist) 

does not appear to contribute to the high pulmonary vascular pressures or EIPH experienced by 

the exercising horse.  Along with previous studies, we have also demonstrated that there appears 

to be no significant relationship between Ppa and EIPH.  Furthermore, the present investigation 

provides no support for the notion that treatment with the ET-1A antagonist, TBC3214, is 

effective in abolishing or reducing the severity of EIPH.  

 

Study C: Discussion 

To the best of our knowledge, this is the first investigation to examine the PO2mv 

response across the rest-contractions transition in a muscle from a Type II diabetic individual.  

The present investigation has demonstrated that (1) the PO2mv in the spinotrapezius muscle of 

the GK rat is significantly lower at rest than in the CON rat indicative of a reduced O2 driving 

pressure into the myocyte, and (2) at the rest-contractions transition, the kinetic profile of PO2mv 

is substantially altered in the diabetic state.  Specifically, in contrast to the PO2mv response (i.e. 

delay followed by an exponential decline to the steady-state PO2mv) in the CON rats, the 

majority (6 of 7) of GK rats elicited a time delay followed by an accelerated fall in PO2mv that 

was proceeded by an either immediate or delayed return of PO2mv to pre-contracting baseline 

levels.  In one GK rat, the PO2mv response profile was completely different from that seen in the 

other six rats: PO2mv increased following a brief time delay at the onset of contractions before 

declining slightly below the baseline PO2mv value (Figure 11, Panel B).   

These PO2mv profiles in the GK rats are indicative of a perturbed relationship between O2 

supply and O2 utilization.  The rapid fall of PO2mv in the majority of GK rats (i.e. faster primary 
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‘τ’) followed by an “undershoot” can be interpreted as evidence for a comparatively sluggish 

Q
．

O2 response at least relative to that for V
．

O2.  This would limit be expected to limit diffusive O2 

transport and thus constrain the V
．

O2 kinetic response at the onset of contractions.  Indeed, a 
lower arterial PO2 (Engelen et al., 1996) and PO2mv (McDonough et al., 2005) as well as a faster 

reduction in PO2mv (Behnke et al., 2002) have all been associated with slower V
．

O2 kinetics.   
The eventual return of PO2mv in the GK rat muscle to a contracting level that was not different 

from CON rats indicates that in the contracting steady state, the Q
．

O2/V
．

O2 ratio did not differ 
between CON and GK rats.  However, a lowering of PO2mv along with perturbations in the 

PO2mv response observed in the GK rat suggests a mechanistic basis for the slowed pulmonary 

V
．

O2 kinetics present in human Type II diabetic patients (Regensteiner et al., 1998; Figure 12).   
 

Interpretation of the PO2mv responses.  At any instant in time, PO2mv will be representative of 

the balance between muscle Q
．

O2 and V
．

O2 within the microcirculation from resting conditions to 
the onset of contractions (Behnke et al., 2001, 2002, 2003).  PO2mv dynamics provide a measure 

of the driving pressure for O2 diffusion from the blood to the contracting muscle which in turn, 

impacts the rate of O2 transport into the myocyte.  Fractional O2 extraction, and thus the 

approximate extent to which venous and PO2mv will fall, is determined principally by the 

matching between the length of the TD and τ values for Q
．

O2/V
．

O2 and their respective 
magnitudes within a muscle (McDonough et al., 2001; Behnke et al., 2001).  Therefore assuming 

intracellular, and consequently mitochondrial PO2 is close to zero (i.e. < 3 Torr; Honig et al., 

1997; Richardson et al., 1999; for a contrasting opinion see Mole et al., 1999), the driving 

pressure for blood-muscle O2 exchange (PO2mv) at time any time (t) across the rest-contractions 

transition will be given by: 

 

PmO2(t) ∝ CaO2 - CvO2 = V
．

O2 (rest) + [∆V
．

O2 (1-e-t/τV
．

O2] 

                                                                          Q
．

O2 (rest) + [∆Q
．

O2 (1-e-t/τQ
．

O2] 
 

 

Where CaO2 and CvO2 denote arterial and venous O2 contents, respectively.   

 In healthy muscle, arteriolar vasodilation and Q
．

O2 dynamics (i.e. τQ
．

O2) are rapid in 

comparison to τV
．

O2 (Delp et al., 1999; Bangsbo et al., 2000; Kindig et al., 2002; see Ferreira et 
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al., 2005 for a novel perspective on this topic).  Thus, in some instances, O2 extraction decreases 

(Bangsbo et al., 2000; Grassi et al., 1996) and PO2mv (Behnke et al., 2001, 2002) may rise for 

the first few seconds of contractions which may be advantageous because elevating PO2mv 
assures a greater O2 gradient for driving blood-myocyte diffusion (according to Fick’s law).  

This may also provide a higher intramyocyte PO2 which will limit disruptions of the intracellular 

physicochemical milieu (i.e., mitochondrial ATP flux; Wilson et al., 1977).    

In contrast to the healthy response, the GK rat exhibited a lower resting PO2mv in the 

spinotrapezius.  A reduced PO2mv across the rest-exercise transition indicates that there is likely 

to be a reduction in O2 exchange across the blood-myocyte interface and mitochondrial function 

will be compromised.   Under these circumstances, this would lead to a greater reliance upon 

immediate energy sources (i.e. more rapid decrease in PCr, increased free ADP, and enhanced 

breakdown of glycogen; see rev. Jones and Poole, 2005).  However, it is interesting to note that 

one characteristic of the diabetic individual is decreased mitochondrial function, and in turn, 

compromised oxidative capacity (Kelley et al., 2002). This would further serve to limit their 

ability to utilize more oxidative energy sources and will force diabetic individuals to utilize 

greater glycolytic substrates (if available) at the onset of exercise.  In a patient population in 

whom glucose homeostasis is adversely affected with the progression of this disease, the 

phenomenon of decreased oxidative capacity and increased reliance upon glycolytic substrates 

will further contribute to the reduced exercise tolerance that is present in the diabetic condition.  

Following the PO2mv response in the GK rat muscle across the rest-exercise transition, 

both the CON and GK rats showed similar TD1 (i.e. preceding their decrease in PO2mv) of the 

primary responses.  This does not imply that V
．

O2 or Q
．

O2 are stagnant, but rather, that the 

diabetic condition exerted an effect that was similar in proportion for Q
．

O2 and V
．

O2, resulting in 
no change in the PO2mv.  As expected in the healthy spinotrapezius of the Control rats, after the 

TD1, PO2mv fell exponentially to a steady-state during the stimulation on-transient representing 

an increase in mitochondrial V
．

O2 within the myocyte (Behnke et al., 2001, 2002) relative to that 

of Q
．

O2.  However, the shape of the CON PO2mv profiles was not qualitatively similar to that 
demonstrated for the spinotrapezius of the GK rat.  The faster kinetics (expressed by the faster τ) 

and “undershoot” in PO2mv in six of the seven GK rats would be consistent with a reduced blood 

flow response (slower τQ
．

O2; Behnke et al., 2002).  In addition, unlike the CON response, the GK 
PO2mv profile showed a secondary TD (i.e., TD2) that averaged ~46 s followed by the unusual 
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return of PO2mv to baseline levels.  Furthermore, one of the GK rats exhibited no drop in PO2mv 

after the TD1, that can only be explained by a Q
．

O2 response that exceeded that of V
．

O2.  In 
summary, the PO2mv profiles of the GK animals during contractions strongly suggests a severe 

mismatching of O2 supply (Q
．

O2) to O2 utilization (V
．

O2), that was likely a result of the composite 
of the vascular and mitochondrial impairments exhibited by Type II diabetic individuals (see 

below). 

 

Mechanistic Basis for the Observed Responses.  As discussed above, the primary cause of the 

lowered PO2mv and unusual PO2mv kinetic profiles in the GK rat is likely to be the lower Q
．

O2 

across the rest-contractions transition.  Indeed, there is supporting evidence for decreased Q
．

O2 in 
human diabetic patients such as decreased leg blood flow during exercise (Kingwell et al., 2003).  

The attenuation in blood flow may be explained by impaired responses to both endothelium 

dependent (i.e. acetylcholine) and independent (e.g. sodium nitroprusside) vasodilators in the GK 

rat (Sandu et al., 2000; Witte et al., 2003) as well as human diabetic patients (McVeigh et al., 

1992; Williams et al., 1996).  Preliminary evidence from our laboratory (Ferreira et al., 

unpublished data) also indicates that endothelial dysfunction (i.e. nitric oxide availability) can 

have profound effects on PO2mv at rest and during muscle stimulation.  The exact cause of this 

vascular dysfunction in diabetic individuals is unknown, but impaired glucose metabolism has 

been linked to decreased systemic arterial compliance (Schram et al., 2004), oxidative stress, and 

free radical production (Guzik et al., 2002).   

Diabetic subjects also exhibit decreased mitochondrial volume density and functional 

changes within skeletal muscle mitochondria (Mathieu-Costello et al., 2003; Kelley et al., 2002; 

Ritov et al., 2005) which may also be considered as another factor that plays a role in unusual 

GK PO2mv responses.  In the GK rat, no changes in oxidative capacity have been found to occur 

in skeletal muscle (Yasuda et al., 2002), but changes in mitochondrial function have been 

reported in brain (Moreira et al., 2003) and heart tissue (Santos et al., 2003).  Nonetheless, to 

what extent mitochondrial dysfunction played a role in the PO2mv responses at rest and during 

exercise in the present investigations remains uncertain.   

 

Model and Experimental Considerations.  The GK rat was chosen for this investigation because 

it has been considered an excellent model for human Type II diabetes and may provide insight 
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into muscle and exercise dysfunction in this disease.  However, there are some important facets 

of the disease that have been not been evaluated in GK rats as they have in humans.  To date, 

extensive morphological studies of both capillarization and muscle mitochondrial organization 

and function have not been performed in muscles of the GK model.  Changes at those levels may 

affect the functional capacity for transport, exchange, and utilization of O2, and may have 

contributed to the substantially lowered PO2mv as well as the blunted PO2mv responses present 

during muscle contractions in the GK rat, as reported in this current study. 

It must also be acknowledged that the results should be interpreted within the context and 

limitations of the model chosen and experimental design.  For example, only one muscle was 

examined at the onset of muscle contractions, but fiber type and oxidative capacity differences 

may affect the PO2mv responses found within other muscles (see Behnke et al., 2003; 

McDonough et al., 2005).  Furthermore, during in vivo voluntary muscular contractions, motor 

unit recruitment occurs in a heterogeneous fashion (Gollnick et al., 1974).  However, when a 

muscle is electrically stimulated, as in this investigation, activation of all fibers of the motor unit 

occurs which may result in differences in blood flow between both conditions.  In addition, 

cardiac output and MAP are elevated during voluntary muscle activation (DeCort et al., 1991), 

which may not occur under the effects of anesthesia and electrical stimulation.    

 

Conclusions.  In comparison to healthy rat muscle, we have demonstrated both a lowered driving 

pressure to move O2 (i.e. ↓ PO2mv) across the blood-myocyte interface and profound differences 

in PO2mv dynamics during muscle contractions in a model of Type II diabetes (i.e. the GK rat).  

The attenuated PO2mv at the transition to a higher metabolic rate provides a mechanistic basis for 

the slowed V
．

O2 kinetics at exercise onset in patients with Type II diabetes (Regensteiner et al., 
1998).  In addition, perturbations of O2 exchange at the level of the myocyte will have severe 

consequences on the regulation of intracellular mitochondrial function either by lowering 

intramyocyte PO2 or elevating the O2 deficit, or both.  If treatment modalities such as exercise 

training do act to improve vascular control and thereby elevate PO2mv, this may decrease the 

intracellular perturbation necessary to achieve a given mitochondrial ATP flux.  Such a response 

would be important for reducing PCr depletion and conserving finite glycogen reserves thus 

improving exercise tolerance and the ability to perform daily activities in the diabetic patient. 
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Study D: Discussion 

To the best of our knowledge, this is the first investigation to examine skeletal muscle 

capillary hemodynamics within the microcirculation of a Type II diabetic individual.  The 

measurements for CON rats in this current investigation are within ranges reported in previous 

studies (Kindig et al., 1998, 1999; Russell et al., 2003; Richardson et al., 2003), but the 

proportion of continuously RBC-perfused capillaries in the GK spinotrapezius at rest was 

significantly decreased (by ~29%), and was further accompanied by a reduction in VRBC (by 

~65%) and FRBC (by ~66%) without any discernable structural changes in the capillary network.  

Capillary tube hematocrit (i.e. Hctcap) and Q
．

O2 were also decreased by 30% and 72%, 
respectively, in the diabetic muscle which may provide one of the mechanistic bases for the 

altered O2 extraction characteristic of skeletal muscle associated with this disease (Baldi et al., 

2003).  Another potential reason for the attenuated O2 extraction may be changes involved with 

distribution of Q
．

 within and between muscles and peripheral tissues in the Type II diabetic 
condition, but to the best of our knowledge, this has not yet been determined.  Collectively, a 

redistribution of Q
．

, vascular dysfunction (McVeigh et al., 1996; Williams et al., 1996; Kingwell 
et al., 2003), and the decrease in Hcttube (present study) may provide a potential mechanistic basis 

for the lowered PO2mv found in the spinotrapezius muscle of the GK rat at rest (Padilla et al., 

2004).  Furthermore, alteration in capillary blood flow distribution during resting conditions may 

have significant consequences at the onset of exercise, and this may be one factor involved in 

performance decrements and slowed V
．

O2 kinetics in human patients with Type II diabetes 
(Regensteiner et al., 1998). 

 

Theoretical basis for hemodynamic alterations. There are several possible underlying causes of 

the reduction in skeletal muscle RBC flux presented in the GK rats.  First, increased muscle 

stretch (Welsh and Segal, 1996; Poole and Mathieu-Costello, 1997; Poole et al., 1997) and 

morphological changes caused by a specific disease condition such as a decrease in capillary 

luminal diameter concomitant with augmented capillary resistance (e.g. Type I diabetes: Kindig 

et al., 1998) have been previously reported to slow RBC movement through the capillary.  

However, particular care was taken in this current study to maintain a physiological sarcomere 

length (~2.7 µm; Poole et al., 1997; Kindig and Poole, 2001) within the spinotrapezius during 
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experimental preparation of both the CON and GK rat so that stretch-induced alterations per se 

would not occur.  Secondly, the ability to increase Q
．

O2 within the muscle may become 
compromised by increased glycosylation of the RBC membrane protein which would, in turn, 

increase plasma viscosity and increase red blood cell rigidity (i.e. reduced deformability of 

RBC’s) associated with Type II diabetes (Macrury et al., 1992; Chung et al., 1993).  This could 

perhaps limit the ability of RBC’s to travel freely through the capillary bed.  However, no 

correlation has been found between increased blood viscosity and exercise performance in Type 

II diabetic humans (Regensteiner et al., 1995).  Furthermore, when examining the capillary 

network in the GK compared to the Con muscle, neither a decrease in capillary luminal diameter 

nor obvious blockages within the capillaries were observed within the spinotrapezius of the GK 

rat.   

 Since blood flow to the capillary is controlled at the arteriolar level via endothelium-

dependent vasodilation (rev. Delp and Laughlin, 1998; Pohl et al., 2000), it is quite plausible that 

the reduced proportion of RBC-flowing capillaries and slowed capillary hemodynamics may be 

the result of impaired vascular function.  For instance, it has been reported previously that the 

GK rat model demonstrates increased arteriolar tone caused by impaired endothelium-dependent 

vasodilation (Bitar et al., 2005), a phenomenon which occurs in human diabetic patients as well 

(McVeigh et al., 1992; Williams et al., 1996).  Also, some (McVeigh et al., 1992; Williams et al., 

1996) but not all (Avogaro et al., 1997) investigators have reported a decreased response to 

endothelium-independent vasodilators (e.g. sodium nitroprusside) in Type II diabetic humans.  

Lastly, as in humans (Schneider et al., 2002), GK rats demonstrate increased plasma 

concentrations of the potent vasoconstrictor, endothelin-1 (Balsiger et al., 2002).  As a result of 

endothelial dysfunction, human diabetic patients demonstrate decreased basal forearm 

(Regensteiner et al., 2003) and leg blood flow at rest and during muscle contractions (Kingwell 

et al., 2003).  Thus, from the available evidence, it is likely that vascular dysfunction in the GK 

rat is responsible, at least in part, for the decreased VRBC and FRBC (i.e. reduced capillary blood 

flow) evidenced by the GK rats.  

  

Implications of decreased hemodynamics. Although diffusing capacity for O2 (DO2m) within the 

capillary bed is dependent upon the size of the capillary network (e.g. capillary volume, capillary 

length, capillary-to-fiber ratio, and capillary surface area per fiber surface area) as well as the 
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number of RBCs within the capillaries, it is fractional O2 extraction which indicates the balance 

between O2 availability and O2 utilization.  Fractional O2 extraction is determined by the 

relationship between DO2m and blood flow (Q
．

) such that V
．

O2 = Q
．

O2 (1-e-DO2/βQ
．

) and therefore 

V
．

O2/Q
．

O2 = O2 extraction = 1-e-DO2/βQ
．

, where β is the slope of the O2 dissociation curve in the 
physiologically relevant range (Wagner et al., 1997).  As introduced previously, the effective O2 

diffusing capacity is dependent upon capillary tube hematocrit (i.e. the number of RBC’s 

contained within the capillary) and capillary surface area (Federspiel and Popel, 1986; Groebe 

and Thews, 1990; Mathieu-Costello et al., 1991).  In this current investigation we found that 

capillary tube hematocrit was significantly decreased in diabetic muscle (along with no change in 

lineal capillary density) demonstrating that effective DO2 will be severely compromised (by 

~30%) in the GK rat.  Furthermore, the lineal density of RBC flowing capillaries, VRBC, FRBC, 

and Q
．

O2 (see Figure 15) were also decreased in the GK diabetic rats.  However, according the 

ratio of DO2m/βQ
．

, if DO2 is attenuated by ~30% and Q
．

O2 is decreased by ~72%, it would appear 
that DO2m is increased in the spinotrapezius muscle of the GK rats.  An increase in DO2 would 

contradict the lowered PO2mv reported in the Type II diabetic GK rat during resting conditions 

(Padilla et al., 2004).  However, a likely explanation for the decreased PO2mv, although not yet 

determined, may be a redistribution of Q
．

 among and within muscles of the GK rat. 
The consequences of a decreased blood flow (Regensteiner et al., 2003), lowered PO2mv 

(Padilla et al., 2004), decreased Q
．

O2 (present study), and attenuated O2 extraction (Baldi et al., 
2003) in the diabetic resting muscle may have even greater significance during exercise when 

capillary RBC transit time (i.e. VRBC and FRBC) become increased.  To achieve a given V
．

O2 while 
exercising in a diabetic patient, O2 flux in the mitochondria would have to be increased either by 

increasing fractional O2 extraction or by inducing a fall of intracellular PO2 to a lower level.  

However, a reduced intracellular PO2 will result in increased intracellular phosphate (i.e. 

increased [ADP]), which will in turn, simulate enhanced utilization of glucose, glycogen 

degradation, and exacerbation of intracellular acid-base disturbances.  These events are even 

more unfavorable when pathological components of a disease such as Type II diabetes includes 

mitochondrial dysfunction (Kelley et al., 2002) along with impaired glucose uptake and 

regulation.  
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Methodological considerations.  In the current investigation, only a small area (270 x 210 µm) of 

muscle tissue per screen was observed.  However, analysis was conducted on five representative 

areas, which were not significantly different from one another which demonstrates that within a 

given muscle, analysis was adequate for representing the microcirculatory hemodynamics 

occurring in both the CON and GK spinotrapezius muscle.  Furthermore, there is also the 

possibility that capillaries without RBCs in the lumen could not be observed by the investigator, 

but it has been previously demonstrated that very few capillaries (~2%) fall into this category 

(Damon and Duling, 1984).  Moreover, total lineal density did not differ between CON and GK 

rats, and therefore it is unlikely that the altered flowing lineal capillary lineal density reported in 

GK rats arose from an inability to visualize individual capillaries.  

Under certain circumstances, O2 diffusion may occur also at the arteriolar level (Kuo and 

Pittman, 1988), but measurements of arteriolar hemodynamics, density, or luminal diameter were 

not performed in this investigation.  Rather, we chose to examine the hemodynamics occurring 

within the capillaries of a muscle (as a representation of the whole muscle hemodynamics) 

because previous research efforts have shown this method to be a valid index of O2 delivery 

(Kindig et al., 1999).   

 

Mechanistic Basis for Slowed V
．
O2 Kinetics in Diabetes. A healthy young individual 

demonstrates a very rapid rise (represented by a short time constant (τ ~ 30 s)) in pulmonary V
．

O2 
kinetics at the onset of submaximal exercise to reach a steady state within ~ 3 min (rev. Jones 

and Poole, 2005), but in patients with Type II diabetes, the rate of V
．

O2 kinetics is significantly 

slowed (τ ~ 45-70 s; Regensteiner et al., 1998).  Although a single rate limiting step for V
．

O2 
kinetics has not been unequivocally identified, researchers have shown that in a healthy 

individual, muscle Q
．

O2 does not appear to be limiting V
．

O2 during upright exercise.  

Alternatively, when Q
．

O2 is reduced by either limiting blood flow or by disease conditions such 

as chronic heart failure, the rate of the V
．

O2 response is slowed (see rev. Jones and Poole, 2005).   
This is further substantiated by preliminary evidence in which a lowered PO2mv has been found 

in the spinotrapezius of the GK rat at the onset of muscle contractions when compared to their 

healthy counterparts (Padilla et al., 2004).  As PO2mv denotes the ratio of Q
．

O2-to-V
．

O2, and in 

lieu of a decreased V
．

O2 found in type II diabetic humans at rest (Regensteiner et al., 1998), the 

lowered PO2mv may most likely be accounted for by a decrease in Q
．

O2 as well as possible Q 
．
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redistribution among and within peripheral tissues and muscles.  Furthermore, a sluggish V
．

O2 
kinetic response at exercise onset also signifies an increased O2 deficit which is associated with a 

greater utilization of phosphocreatine stores, elevated free ADP and Pi, and increased reliance on 

glycolysis (rev. Jones and Poole, 2005).  

It is also important to note that the pulmonary V
．

O2 kinetic response is also highly 

representative of the V
．

O2 response found at the level of the exercising muscle (Grassi et al., 
1996; Bangsbo et al., 2000).  With this in mind, we chose to examine a muscle of a Type II 

diabetic model to determine the possible mechanistic basis for the slowed V
．

O2 response, as well 
as gain insight into the microcirculatory alterations, that occur with type II diabetes.  In this 

investigation, we found that the RBC hemodynamics are altered at rest which may potentially be 

indicative of unfavorable effects on muscle DO2 and ultimately O2 exchange during exercise. 

Thus the present findings may indicate decrements in O2 availability occur, both spatially and 

temporally, within contracting skeletal muscle in the Type II diabetic patient.   

 

Conclusions. Our investigation in the GK model of Type II diabetes demonstrates significant 

attenuation in the percentage of capillaries supporting RBC perfusion and muscle capillary 

hemodynamics without marked capillary structural alterations.  The reduced density of RBC 

perfused capillaries as well as impaired capillary RBC hemodynamics (VRBC and FRBC), and 

Hctcap found during resting conditions in diabetic muscle are likely to compromise the matching 

of Q
．

O2 and V
．

O2 during periods of elevated metabolic demand in human patients with Type II 
diabetes.   

 

Overall Summary 

In brief, Studies A & B focused on the highly athletic Thoroughbred horse.  Study A 

found that horses will sustain the full magnitude of the exercise hyperpnea (that occurred during 

galloping exercise) for several seconds into trotting recovery followed by a prolonged biphasic 

decrease in V
．

E.  These results signify that LRC does not appear requisite to achieve prodigiously 

high V
．

E equivalent to those seen during maximal exercise. Study B showed that ET-1 (via an 
ET-1A antagonist) does not appear to contribute to the high pulmonary vascular pressures or 

EIPH experienced by the exercising horse.  Furthermore, we have also demonstrated that 

treatment with the ET-1A antagonist, TBC3214, is not effective in abolishing or reducing the 
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severity of EIPH.  The latter studies (Studies C & B) demonstrated the consequences of Type II 

diabetes such that, in comparison to healthy rat muscle, there is a lowered driving pressure to 

move O2 (i.e. ↓ PO2mv) across the blood-myocyte interface and profound differences in PO2mv 

dynamics occurred during muscle contractions in a model of Type II diabetes (i.e. the GK rat; 

Study C).  Our other investigation in the GK model of Type II diabetes (Study D) demonstrates 

significant attenuation in the percentage of capillaries supporting RBC perfusion and muscle 

capillary RBC hemodynamics.  The reduced PO2mv (Study C) in conjunction with attenuated 

density of RBC perfused capillaries and impaired capillary RBC hemodynamics, and Hctcap 

found during resting conditions (Study D) in diabetic muscle are likely to compromise the 

matching of Q
．

O2 and V
．

O2 during periods of elevated metabolic demand in human patients with 

Type II diabetes and provide a mechanistic basis for the slowed V
．

O2 kinetics at exercise onset in 
patients with Type II diabetes (Regensteiner et al., 1998).   
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Table 1. Model parameters of V
．

E, V
．

CO2, and V
．

O2 responses during the trotting recovery period 
from maximal exercise. 

Variable V
．

E V
．

CO2 V
．

O2 
End-exercise baseline (L/min) 1411.5 ± 90.1 68.8 ± 6.2  64.2 ± 6.3 
∆1 (L/min; Primary component ∆) -301.0 ± 67.4   -48.6 ± 4.3   -46.0 ± 4.3 
∆2 (L/min; Secondary component ∆) -172.5 ± 34.8   —     — 
End recovery value (L/min)     937.9 ± 125.3 20.2 ± 2.1  18.2 ± 2.1 
TD1 (Time delay 1; s)     6.3 ± 1.8   9.6 ± 1.0  11.1 ± 1.9 
TD2 (Time delay 2; s)     88.5 ± 25.3   —     — 
τ1 (time constant 1; s)   15.0 ± 5.6  30.3 ± 4.2*  17.8 ± 3.1 
τ2 (time constant 2; s)   112.2 ± 15.6   —     — 
MRT (Mean response time; s)   85.4 ± 9.0  39.9 ± 4.7†    28.9 ± 3.2†‡ 

Values are means ± SE (n = 5). ∆1, primary component; ∆2, secondary component; TD, 
time delay; τ, time constant; MRT, mean response time; V

．
E, minute ventilation; V

．
CO2, 

CO2 output; V
．

O2, O2 uptake. 
*P < 0.05 between V

．
CO2 and V

．
O2. 

†P < 0.05 between V
．

E and V
．

CO2 or V
．

O2. 
‡P < 0.05 between V

．
O2 and V

．
CO2. 
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Table 2. Recovery values at specified times for fB, VT, and V
．

E. 

Time  fB VT V
．

E 

End-exercise 113.8 ± 5.2 12.6 ± 1.2 1391 ± 88 
~13 s    97.7 ± 5.9*  13.9 ± 1.6*   1330 ± 112 
30 s 100.5 ± 6.1  11.9 ± 1.5†      1171 ± 104*† 

2 min 108.7 ± 8.1  10.1 ± 1.5†        1061 ± 103*†‡ 

4 min  110.4 ± 5.6          8.9 ± 1.5*†‡₤          963 ± 127*†‡ 

Values are means ± SE (n = 5). fB, breathing frequency; VT, tidal volume, V
．

E, minute 
ventilation. 
*P < 0.05 from end-exercise. 
†P < 0.05 from 13 s. 
‡P < 0.05 from 30 s. 
₤P < 0.05 from 2 min. 
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Table 3. Metabolic variables at rest and fatigue for horses administered saline (CON; n = 6) and 
the endothelin-1A antagonist, TBC3241 (ANTAG; n = 6). 

Variable Treatment Rest  Fatigue 
Mean arterial pressure (mmHg) CON 134 ± 28  210 ± 8 
 ANTAG 131 ± 11  209 ± 17 
     
Core Temperature (°C) CON 36.6 ± 0.5  40.6 ± 1.3 
 ANTAG 36.3 ± 0.3  40.6 ± 0.7 
     
PaO2 (mmHg) CON 91.3 ± 5.0  63.4 ± 6.4 
 ANTAG 90.1 ± 7.1  62.9 ± 6.4 
     
PaCO2 (mmHg) CON 46.4 ± 1.8  63.7 ± 11.7 
 ANTAG 46.6 ± 3.9  66.4 ± 11.1 
     
pH CON 7.486 ± 0.022  7.209 ± 0.079 
 ANTAG 7.482 ± 0.020  7.174 ± 0.038 
     
Plasma lactate (mmol/L) CON 0.8 ± 0.2  20.6 ± 6.4 
 ANTAG 0.8 ± 0.3  23.6 ± 4.8 
     
Bicarbonate (mmol/L) CON 35.6 ± 1.2  22.6 ± 2.3 
 ANTAG 35.2 ± 2.2  21.2 ± 1.5 
     
Hematocrit (%) CON 41 ± 5  62 ± 2 
 ANTAG 43 ± 6  63 ± 1 
Data are expressed as mean ± SD.  
No significant differences (P > 0.05) between CON and ANTAG for any variable. 
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Table 4. Gas exchange, ventilatory, and cardiac variables at 
fatigue for horses administered saline (CON; n = 6) and the 
endothelin-1A antagonist, TBC3241 (ANTAG; n = 6). 

Variable Treatment Fatigue 
V
．

O2max (L/min) CON 76.5 ± 10.4 
 ANTAG 73.4 ± 14.3 
   

V
．

CO2max (L/min) CON 93.7 ± 11.7 
 ANTAG 90.7 ± 24.2 
   
fB (breaths/min)  CON 113 ± 5 
 ANTAG 115 ± 5 
   
VT (L) CON 13.0 ± 2.1 
 ANTAG 13.1 ± 2.9 
   

V
．

E (L/min) CON 1592 ± 200 
 ANTAG   1552 ± 345 
   
a-vO2d (ml O2/dl) CON 23.4 ± 2.2 
 ANTAG 23.3 ± 3.2 
   

Q
．

 (L/min) CON 327.2 ± 30.7 
 ANTAG 322.8 ± 87.9 
Data are expressed as mean ± SD. V

．
O2max = maximal 

oxygen uptake; V
．

CO2max = maximal carbon dioxide output; 
fB = breathing frequency; VT = tidal volume; V

．
E = minute 

ventilation; a-vO2d = arteriovenous oxygen difference; Q
．

 = 
cardiac output; No significant differences (P > 0.05) between 
CON and ANTAG for any variable. 
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Table 5. Animal Data. 

Variable CON (n = 5) GK (n = 7) 
Body weight (g) 557 ± 19 417 ± 16* 
Heart rate (beats/min) 368 ± 28 436 ± 11* 
Mean arterial pressure 
(Torr) 

104 ± 10 119 ± 11 

Hematocrit (%) 43 ± 1 42 ± 1 
Plasma glucose (mg/dL) 105 ± 5 249 ± 33* 
   
Values are means ± SE; n = number of animals; *P<0.05 compared with CON. 
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Table 6. Model parameters of microvascular PO2 (PO2mv) response in the spinotrapezius muscle 
of control (CON) and the Goto-Kakizaki Type II diabetic rats (GK) during electrical stimulation 
(1 Hz; 3-5 V). 

Parameter CON (n = 5) GK (n = 7) 
Baseline PO2mv (Torr) 28.8 ± 2.0 18.4 ± 1.8* 
∆1 PO2mv (primary 
component ∆, Torr) 

-11.2 ± 1.6 -4.5 ± 1.4* 

∆2 PO2mv (secondary 
component ∆, Torr) 

NA 5.7 ± 3.5 

End-stimulation PO2mv 
(Torr) 

17.6 ± 0.7† 18.9 ± 2.6 

Baseline-End PO2mv 
Difference (Torr) 

11.2 ± 1.6 -0.4 ± 2.3* 

TD1 (Time delay 1; s) 12.3 ± 2.9 9.1 ± 2.0 
TD2 (Time delay 2; s) NA 46.1 ± 12.9 
τ1 (time constant 1; s) 15.5 ± 3.5 6.4 ± 1.8* 
τ2 (time constant 2; s) NA 70.3 ± 32.3 
MRT1 (Mean response 
time; s) 

27.7 ± 6.0 15.5 ± 2.7‡ 

   
Values are means ± SE; n, number of animals; MRT1, mean response time of primary 
response (TD1 + τ1); NA, not-applicable.  *P < 0.05 compared with CON; †P < 0.05 
compared with baseline PO2mv; ‡ P = 0.08 compared with CON. 
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Table 7. Cardiovascular variables during the experimental protocol. 

Variable Control (n = 5) Diabetic (n = 7) 
Heart Rate (bpm) 371 ± 13 437 ± 14* 
Mean Arterial Pressure (Torr) 117 ± 6 110 ± 10 
Values are mean ± S.E. *P < 0.05 
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Table 8. Muscle and capillary structural changes in the spinotrapezius of control and diabetic 
rats. 
Variable Control (n = 5) Diabetic (n = 7) 
Sarcomere length (µm)  2.5 ± 0.1 2.6 ± 0.1 
Fiber diameter (µm)                    55 ± 3 45 ± 1* 
Capillary diameter (µm)  4.7 ± 0.1 5.1 ± 0.2 
Values are mean ± SE. *P < 0.05 
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Figure 4. Minute ventilation (V
．

E) and CO2 output (V
．

CO2) responses at the gallop-trot transition 
(~14 m/s to 3 m/s) and throughout trotting recovery (4 min) in a representative horse.  Data are 
fit with a time delay plus 2-component exponential (V

．
E, top) and 1-component exponential 

(V
．

CO2, bottom) model. Trotting baseline (BL) values are shown for this horse.  Note the 
markedly different temporal responses between V

．
E and V

．
CO2. 
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Figure 5. O2 uptake (V
．

O2) response at the gallop-trot transition (~14 m/s to 3 m/s) and 
throughout trotting recovery (4 min) for the same representative horse as in Figure 4.  Data are fit 
with a time delay plus 1-component exponential model.  Trotting baseline (BL) value is shown 
for this horse. 
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Figure 6. Ventilation (V
．

E), breathing frequency (fB), and tidal volume (VT) for the same 
representative horse as in Figures 4 and 5 at rest and during the incremental exercise test and 
trotting recovery.  Arrows denote beginning of trotting recovery period. 
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Figure 7. Ventilatory equivalents for V

．
O2 (V

．
E/V
．

O2) and V
．

CO2 (V
．

E/V
．

CO2) and arterial PO2 
(PaO2) and arterial PCO2 (PaCO2) for the same representative horse as in Figures 4 and 5 at rest 
and during incremental exercise and trotting recovery.  Arrows denote beginning of trotting 
recovery period. 
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Figure 8. Mean pulmonary artery pressures (Ppa) in horses (n = 6) administered saline (i.e. 
Control; solid diamonds) or the ET-1A antagonist, TBC3214 (n = 6; open diamonds), from rest, 
throughout the last three speeds of the incremental exercise test and at fatigue. P > 0.05 for 
Control vs. Antagonist for all points. 
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Figure 9.  Individual and mean pulmonary artery pressures (Ppa; Top Panel) at fatigue and 
exercise-induced pulmonary hemorrhage (EIPH; RBCs/ml bronchoalveolar lavage (BAL) fluid 
(Bottom Panel) in horses administered saline (i.e. Control; n = 6) or the ET-1A antagonist, 
TBC3214 (n = 6).  P > 0.05 for Control vs. Antagonist. 
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Figure 10. No relationship (P > 0.05) was found between EIPH and maximal pulmonary artery 
pressure in horses administered either saline (i.e. Control; n = 6) or the ET-1A antagonist, 
TBC3214 (n = 6).  Lines connect control and antagonist treatments between individual horses. 
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Figure 11. Dynamic microvascular PO2 (PO2mv) profiles for the stimulation period in a 
representative control (CON; Panel A) and for three Goto-Kakizaki (GK) diabetic rats (Panels 
B,C, & D).  Time 0 represents the start of 180 s of electrical stimulation (1 Hz, 3-5 V).  Blood 
glucose concentrations are provided for each rat. Note the variability in the responses among the 
GK rats. A lower PO2mv in the GK rats is indicative of a lower ratio of Q

．
O2/V

．
O2. 
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Figure 12. A reduced microvascular PO2 (PO2mv), in theory, can account for the slowed V
．

O2 
kinetics exhibited by Type II diabetic patients. 
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Figure 13. Total (i.e. perfused and non-RBC perfused capillaries) and flowing (only RBC 
perfused capillaries) capillary lineal density in Control and Diabetic GK rats.  Total capillary 
lineal density did not differ between the two groups of animals, but flowing capillary lineal 
density was significantly lower in the Diabetic rats (P < 0.05). 
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Figure 14. Correlation between RBC velocity and flux in capillaries supporting RBC flow within 
spinotrapezius muscles of Control and Diabetic rats.  The average value for all capillaries within 
a single animal is represented by each data point.  
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Figure 15. The estimated O2 delivery (cells/s/mm; as calculated by the product of flowing lineal 
density and red blood cell flux) was significantly lower in Diabetic animals when compared to 
Control animals (* P < 0.05). 
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