
 

UNDERSTANDING THE MECHANISM OF TEXTURIZATION, AND THE 

RELATIONSHIP BETWEEN PROPERTIES OF WHEAT GLUTEN AND 

TEXTURIZED VEGETABLE PROTEIN 

 

 

by 

 

 

RYAN ROBERTS 

 

 

 

B.S., Kansas State University, 2010 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE  

 

 

 

Department of Grain Science and Industry 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2013 

 

Approved by: 

 

Major Professor 

Sajid Alavi 



  

 

Copyright 

RYAN ROBERTS 

2013 

 

 



  

 

Abstract 

Texturized vegetable protein (TVP) based foods offer several advantages 

compared to animal protein, including lower costs and improved health benefits. Wheat 

gluten is often processed using extrusion to produce TVP. Processing aids, such as 

reducing agents (example, cysteine and sodium metabisulfite) and pH modifiers 

(example, tetra potassium phosphate) aid in texturization. Reduction of sulfhydryl 

groups, cleavage of disulfide bonds, and reformation of bonds between elongated protein 

molecules results in protein aggregation and texturization. This study focused on 

development of a fundamental understanding of these mechanisms for texturization using 

analytical tools such as the phase transition analyzer (PTA), in combination with lab- and 

pilot-scale extrusion. The abovementioned three chemicals were added to four varieties 

of gluten. The control treatment had no additives. PTA was used to understand the 

operative flow properties of gluten in an environment similar to an extrusion system. 

Addition of sulfite (0.18%) and cysteine (0.18%) lowered the thermal softening (Ts:36.6-

44.1 °C) and thermal flow (Tf:79.6-105.6 °C) temperatures of all varieties of gluten as 

compared to the controls (Ts:38.8-48.2 °C; Tf:91.7-112.2 °C). Phosphate (3%) did not 

have the same lowering effect on Ts (40.2-47.0 °C) and Tf (96.2-108.2 °C), indicating a 

different mechanism.  

 

Extrusion studies were conducted to gain an understanding of the reformation of disulfide 

bonds and texturization. Two of the varieties of gluten, a “superior” one that texturizes 

well and an “inferior” gluten requiring texturizing aids, were processed on a lab-scale 

extruder. Pilot scale extrusion was used to process the other two glutens (“superior” 

varieties) to obtain commercial quality products, which were evaluated for degree of 

texturization (hydration rate, absorption index and integrity). During lab-scale extrusion, 

texturization was observed only in the case of phosphate and corresponded with an 

increase in specific mechanical energy (SME) as compared to the control, indicating 

disulfide bond reformation. Phosphate also led to significantly (p<0.05) better 

texturization during pilot-scale extrusion, although SME trends were different due to 



  

higher in-barrel moisture and a more ideal extrusion system. Fourier Transform Infrared 

Spectroscopy was used to examine protein structural changes and indicated a loss of α-

helix structure in TVP with an increase in β-sheet formation. 

 



 v 

 

Table of Contents 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

Acknowledgements ............................................................................................................ xi 

Chapter 1: Understanding the Mechanism of Texturization and the Relationship between 

Properties of Wheat Gluten and Textured Vegetable Protein ......................................1 

1: Background: .................................................................................................................1 

2: Gluten Structure: ..........................................................................................................3 

3: Processing Aids: ..........................................................................................................5 

3.1: Sulfite ....................................................................................................................5 

3.2: Cysteine ................................................................................................................5 

3.3: Phosphate ..............................................................................................................6 

Chapter 1 References .......................................................................................................7 

Chapter 2: Understanding Properties of Wheat Gluten and the Mechanism of 

Texturization – Lab Scale Studies ................................................................................9 

1. Introduction ..................................................................................................................9 

2. Materials and Methods ...............................................................................................12 

2.1. Gluten characterization .......................................................................................12 

2.2. Gluten physical properties ..................................................................................14 

2.2.1: Gluten Index ................................................................................................14 

2.2.2: Compression Test ........................................................................................14 

2.2.3: Phase Transition Analysis ............................................................................15 

2.3. Blend preparation and extrusion processing .......................................................16 

2.4. Statistical analysis ...............................................................................................18 

3. Results and discussion ...............................................................................................18 

3.1. Proximate analysis and amino acid profile .........................................................18 

3.2. Rheological properties of wheat gluten ..............................................................20 

3.2.1: Gluten Index ................................................................................................20 

3.2.2: Compression Test ........................................................................................21 



 vi 

3.2.3: Phase Transition Analysis ............................................................................22 

3.3. Extrusion processing ...........................................................................................24 

3.4. Post-Extrusion Phase Transition Analysis ..........................................................25 

4. Conclusion .................................................................................................................28 

Chapter 2 References .....................................................................................................30 

Chapter 3: Relationship between Properties of Wheat Gluten and Texturized Vegetable 

Protein processed using High Shear Extrusion ...........................................................35 

1: Introduction: ..............................................................................................................35 

2. Material and methods .................................................................................................37 

2.1. Material characterization ....................................................................................37 

2.2. Formulation and Mixing .....................................................................................39 

2.3. Gluten Characterization ......................................................................................39 

2.3.1: Gluten Index ................................................................................................39 

2.3.2: Phase Transition Analysis ............................................................................39 

2.4. Extrusion processing ...........................................................................................40 

2.4.1: Die Design ...................................................................................................42 

2.5. Final product analysis .........................................................................................43 

2.5.1: Water Absorption Index...............................................................................43 

2.5.2: Textured Gluten Integrity Test ....................................................................43 

2.5.3: Hydration Time and Rate .............................................................................44 

2.5.4: Fourier Transform Infrared Spectroscopy ...................................................44 

2.6. Statistical analysis ...............................................................................................45 

3. Results and discussion ...............................................................................................46 

3.1. Proximate analysis and amino acid profile .........................................................46 

3.2. Rheological properties of wheat gluten ..............................................................47 

3.2.1: Gluten Index ................................................................................................47 

3.2.2: Phase Transition Analysis ............................................................................48 

3.3. Extrusion processing ...........................................................................................50 

3.4. Post-extrusion quality analysis ...........................................................................51 

3.4.1: Water Absorption Index...............................................................................51 

3.4.2: Textured Gluten Integrity Test ....................................................................53 



 vii 

3.4.3. Bulk Density ................................................................................................54 

3.4.4: Hydration Time and Rate .............................................................................55 

3.4.5: Fourier Transform Infrared Spectroscopy Results .......................................58 

4. Conclusion .................................................................................................................62 

Chapter 3 References .....................................................................................................64 

Chapter 4: Conclusion........................................................................................................68 

Appendix A: SAS Output for Lab Scale Extrusion ...........................................................70 

Appendix B: SAS Output for Pilot Scale Extrusion ..........................................................76 

 



 viii 

 

List of Figures 

Figure ‎2.1: Screw Configuration – Micro-18 Twin Co-Rotating Screw Extruder with 

accompanying head temperature profile. ...................................................................17 

Figure ‎2.2: Gluten Index Results for Superior and Inferior glutens (Control and 

Processing Aids). .......................................................................................................20 

Figure ‎2.3: Compression Tests of Superior and Inferior Glutens With and Without 

Processing Aids. .........................................................................................................21 

Figure ‎2.4: Average Softening Temperatures of Superior and Inferior Gluten (Control, 

3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite). ....................................................22 

Figure ‎2.5: Thermal Flow Temperatures of Superior and Inferior Glutens (Control, 3.0% 

Phosphate, 0.18% Cysteine, 0.18% Sulfite). .............................................................23 

Figure ‎2.6: SME During the Extrusion of Superior and Inferior Glutens. ........................24 

Figure ‎2.7: Extruded and Un-Extruded Glutens; Thermal Softening Temperature ...........26 

Figure ‎2.8: Extruded and Un-Extruded Glutens; Thermal Melting Temperature. ............26 

Figure ‎3.1: Temperature and screw profile for TX-52 Extruder .......................................41 

Figure ‎3.2: Die Configuration ............................................................................................42 

Figure ‎3.3: Gluten Index Results for U.S. and European Sourced Glutens. ......................47 

Figure ‎3.4: Average Softening Temperatures of U.S. and European Sourced Gluten 

(Control, 3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite) ......................................48 

Figure ‎3.5: Thermal Melt Temperatures of U.S. and European Sourced Gluten (Control, 

3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite ......................................................49 

Figure ‎3.6: SME during the Extrusion of U.S. and European Sourced Glutens. ...............50 

Figure ‎3.7: Water Absorption Index for U.S. and European Sourced Glutens at Low and 

High In-Barrel-Moistures (32% and 36%, respectively) ...........................................51 

Figure ‎3.8: Percent loss during Textured Gluten Integrity Testing ...................................53 

Figure ‎3.9: Hydration Rate of Textured Glutens at 32% and 36% IBM with Chemical 

Additives Added to Two Types of Gluten .................................................................57 

Figure ‎3.10: FTIR spectra of control treatment, raw material and final product ...............58 

Figure ‎3.11: FTIR spectra of cysteine treatment, raw material and final product .............59 



 ix 

Figure ‎3.12: FTIR spectra of sulfite treatment, raw material and final product ................60 

Figure ‎3.13: FTIR spectra of phosphate treatment, raw material and final product ..........61 

 



 x 

 

List of Tables 

Table ‎2.1: Proximate Analysis of Superior and Inferior Gluten Types .............................18 

Table ‎2.2: Amino Acid Profile of Superior and Inferior Gluten types ..............................19 

Table ‎3.1: Wheat Gluten Formulation for Pilot Scale Extrusion .......................................39 

Table ‎3.2: Screw Configuration .........................................................................................41 

Table ‎3.3: Proximate Analysis of US and European Glutens ............................................46 

Table ‎3.4: Amino Acid Profile of US and European Sourced Glutens .............................46 

Table ‎3.5: Bulk densities of Textured Gluten at 32% and 36% IBM with Chemical........54 

Table ‎3.6: Average Hydration Time for High and Low IBM with the Inclusion of 

Chemical Additives for Two Types of Wheat Gluten ...............................................55 

Table ‎A.1: Two-way comparison between gluten type and chemical treatment ...............71 

Table ‎A.2: Moisture effect on gluten types for thermal softening .....................................73 

Table ‎A.3: Moisture effect on gluten types for thermal flow ............................................73 

Table ‎B.1: Three-way comparison between source country, in-barrel moisture and 

chemical treatment for absorption index ....................................................................78 

Table ‎B.2: Two-way comparison between source country and chemical treatment .........81 

Table ‎B.3: Two-way comparison between source country and in-barrel moisture ...........83 

Table ‎B.4: Two-way comparison between source country and chemical treatment for 

TVP integrity .............................................................................................................83 

Table ‎B.5: Two-way comparison between in-barrel moisture and chemical treatment for 

TVP integrity .............................................................................................................84 

Table ‎B.6: Three-way comparison between source country, in-barrel moisture, and 

chemical treatment for TVP hydration time ..............................................................87 

Table ‎B.7: Three-way comparison between source country, in-barrel moisture, and 

chemical treatment for TVP hydration rate................................................................89 

Table ‎B.8: Effect of chemical treatment on thermal softening ..........................................91 

Table ‎B.9: Effect of chemical treatment on thermal flow .................................................92 

 



 xi 

 

Acknowledgements 

I would like to thank MGP Ingredients, Inc. for the funding of this project and 

their continued support through out this research. Also, thank you to ConAgra Foods for 

the donation of the wheat flour used in the pilot scale portion of this research.  

Thanks to my committee members, Sajid Alavi, Ody Maningat, and Jon Faubion 

for their useful comments, remarks and engagement through the learning process of this 

master thesis. Furthermore, I would like to express my gratitude to Brad Seabourn, Prini 

Gadgil, Mike Tilly, and their colleagues at USDA-ARS. Their input and expertise proved 

very valuable. Thank you to Becky Miller for running the gluten index’s and compression 

tests. 

Finally, thanks to Eric Maichel and his staff at the KSU Extrusion Lab. Without 

their help, this thesis would not have been possible.   



 1 

Chapter 1:  
Understanding the Mechanism of Texturization and the Relationship 

between Properties of Wheat Gluten and Textured Vegetable Protein 

 
1: Background: 

 
The consumption of vegetable proteins as a food product has been increasing over 

the years because of animal diseases, global shortage of animal proteins, and economic 

reasons (Asgar et al, 2010). Perhaps the most common form of vegetable proteins being 

consumed is textured vegetable proteins (TVP). TVP is a vegetable protein that has a 

meat-like texture and taste after processing. TVP can be made from several grain 

proteins, with wheat gluten being one of the primary grains used. Soybean protein 

concentrate is also a large part of the TVP market.  Another factor affecting vegetable 

protein consumption is lifestyle choice, which is especially true for consumers in the 

United States. One hundred vegans were polled and the majority answered health reasons 

as the major factor why they chose a vegan lifestyle (Dyett et al, 2013). Foods containing 

soy or other vegetable proteins may lead to a reduced risk from colon, breast, and 

prostate cancers (Kirk et al, 1999). Other factors are based on health beliefs and animal 

welfare opinions. Another benefit of textured vegetable proteins is the extended shelf life 

compared to animal proteins. TVP is also used to extend the use of animal proteins; TVP 

can be added to animal protein to reduce the costs of animal protein.  

The two most common uses of TVP are as meat extenders and complete meat 

replacements. Meat extenders usually have a small piece size so they can be easily 

blended with ground or shredded cooked meat. This form of TVP is dried to storage 

moistures below 6% (dry basis) and hydrated prior to being mixed into a ground meat. 
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Meat replacers, however, are typically larger in size and are not dried to the same low 

moisture as are meat extenders. Meat replacers will resemble an actual cut of beef, pork, 

chicken, or fish. Both forms can be colored and flavored.  

Before a vegetable protein can be consumed, it must go through several steps to 

reach the final product stage. First is the separation of the protein and starch components. 

This is especially important for grains whose protein component is used for TVP. For 

TVP comprised of soy protein, concentration of the protein is a key step. After the 

protein component is separated or concentrated, the protein will go through a process 

called extrusion. Extrusion is a continuous process where the addition of thermal and 

mechanical energy in a high pressure environment is the goal; manipulating the macro-

molecular structure and texture of the protein polymers occurs, as to achieve the desired 

final product.  

During the extrusion process, material is fed at a predetermined rate to a 

preconditioner. There, steam and water are added to the material and mixed by two 

rotating shafts with mixing picks. The goal of preconditioning is to temper the material so 

the starch or protein begins to cook, which in turn leads to easier processing at extrusion. 

Once the material is preconditioned, it enters the extruder barrel. Water and steam can 

also be added to the barrel, but the main goal is to introduce shear into the system. The 

material is conveyed through the extruder barrel by either a single or twin screws. This 

process adds mechanical energy and heat, disrupting the starch’s or protein’s structure, 

thereby cooking each component. The end of the extruder barrel has a flow restricting 

and forming die. Dies come in many shapes and sizes, and die design can affect the 

structure and texture of the final product a great deal. The die also creates back pressure 
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in the extrusion system, resulting in lower starch gelatinization and protein denaturation 

temperatures. Depending on the desired final characteristics, all of the steps of the 

extrusion process, including preconditioning, can be manipulated to create the final 

product. Twin screw extrusion is perhaps the most common form of extrusion to make 

TVP. More efficient taste modifications and texture development have been made 

possible with twin screw extrusion (Akdogan, 1999).  

2: Gluten Structure: 

The overall structure of the gluten polymer is very complex. Gluten proteins are 

made up of two families of proteins, glutenins and gliadins. Gliadins contain intra-chain 

disulfide bond linkages. Glutenin, the larger component of a gluten molecule, use both 

intra and inter-chain disulfide cross-linkages to maintain its structure. In addition to the 

disulfide bonds, gluten also contains non-covalent bonds. These include hydrogen, ionic 

and hydrophobic bonds. These three bonds are very important for glutenin and gliadin 

aggregation and impact the structure of the gluten molecule when it is introduced to a 

high moisture environment. 

     Breaking the covalent disulfide bonds in the glutens structure is the primary 

goal when extruding wheat gluten. It takes very little energy to break the non-covalent 

bonds (hydrogen, ionic, hydrophobic), so reduction of the disulfide bonds is the more 

energy intense step. Once these bonds are broken, an extruder utilizes retention time, 

moisture, heat, and die design to reform these bonds. As material travels down the 

extruder barrel, the disulfide bonds that connect the proteins are broken and, 

simultaneously, are being re-linked along the length of the extruder barrel (Shimada et al, 

1988). Once the material leaves the die and encounters atmospheric pressures, the gluten 
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matrix will be further disrupted by the flashing off of superheated water vapor. This 

directly affects the porosity of the TVP and will affect its hydration rate and time, two 

key physical characteristics.  

While many factors can impact the melt flow characteristics of wheat gluten, the 

main determining factor may be the environment in which the wheat was grown in. 

Manufacturers who use wheat gluten to create TVP share many things in common as the 

flour industry. The flour industry requires a very detailed analysis of the incoming crop to 

determine the best use for the wheat harvest. In a study completed in 2009, Pablaciones et 

al, (2009) used a chlorophyll meter to measure several parameters of growing wheat from 

two different years. They then created an algorithm to relate alveogram index, dough 

extensibility, tenacity-extensibility ratio and gluten content. It was found that there was 

substantial variability between the two crop years. Even more interesting is the fact that 

the protein content of wheat can be predicted with precision using the chlorophyll meter. 

However, more work is needed to prove that a model can be created when other factors, 

such as soil water content or soil nitrogen content, are added.  

While the previous study mentioned examined a normal crop growing season, not 

all growing seasons are normal. More often than not, the wheat will be under some form 

of stress prior to harvest; water deficits and high temperatures, for example. Yang et al 

(2011) found that individual protein fractions of wheat, gliadins and glutenins, were 

affected by not only the type of stress, but also the length of the stress. This could, in 

turn, factor into changes in the quality of extruded wheat gluten.  
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3: Processing Aids: 

Because of variability between wheat crops, and the variability of the gluten 

extracted from the wheat, TVP manufactures need to improve consistency at extrusion. 

The addition of so-called processing aids, such as phosphates, sulfites and cysteine, can 

improve the manufacturing of TVP.  

3.1: Sulfite 

In this work, metasodium bisulfite will be referred to as sulfite. Sulfite is a 

reducing agent. It goes through an oxidation-reduction reaction where an electron is 

either lost or gained from another molecule. The extrusion process breaks disulfide bonds 

through the inclusion of heat and shear forces, and when the gluten is extruded, the 

excess disulfide molecules aid in protein polymer reduction making the available 

sulfhydryl groups more readily available for new cross-links. The newly introduced 

sulfhydryl groups facilitate in creating new cross-linkages between protein polymers. 

Sulfite is an allergen, so use is limited.  

3.2: Cysteine 

Cysteine, the amino acid, is also a reducing agent. Because of its sulfhydryl 

group, two proteins can be linked by the creation of a disulfide bond. During the 

extrusion process, disulfide bonds are broken, allowing the protein polymer to extend and 

entangle with other polymeric chains. Since cysteine is a reducing agent, its presence will 

facilitate easier disulfide bond cleavage and create a higher potential for sulfhydryl 

oxidation, which reforms disulfide bonds. Bond reformation is taking place on extended 

and entangled protein polymers, resulting in a new structure formation. Like sulfite, 

cysteine is considered an allergen, so its use is limited in the industry.  
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3.3: Phosphate 

Phosphates are not reducing agents. Instead, they are considered pH adjusters. 

Wheat gluten has no discernable iso-electric point. Therefore, it is difficult to determine 

at which point the positive and negative charges of the gluten molecule balance. 

However, since the gliadin portion of gluten is water soluble, gluten will reflect the iso-

electric behavior of gliadin, giving gluten a pH between 5 and 6. Since the goal of the 

extrusion process is to break covalent disulfide bonds and sulfhydryl groups, it is 

necessary to increase the solubility of the gluten. This can be done by increasing or 

decreasing the pH of the gluten. By adding a phosphate, the gluten becomes more 

alkaline. This increases the solubility and makes the covalent disulfide bonds easier to 

cleave. Also, the non-covalent bonds (hydrogen, hydrophobic, ionic) also become easier 

to break. 
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Chapter 2:  
Understanding Properties of Wheat Gluten and the Mechanism of 

Texturization – Lab Scale Studies 

 
1. Introduction 

 

The consumption of vegetable proteins as a food product has been increasing over 

the years because of animal diseases, global shortage of animal protein, and economic 

reasons (Asgar et al, 2010). Perhaps the most common form of vegetable proteins being 

consumed is textured vegetable proteins (TVP). TVP is a vegetable protein that has a 

meat like texture and taste after processing. TVP can be made from several grain 

proteins, with wheat gluten being one of the primary grains used.   

Another factor affecting vegetable protein consumption is lifestyle choice, which 

is especially true for consumers in the United States. In a study where100 vegans were 

polled, the majority answered health reasons as the major factor why they chose a vegan 

lifestyle (Dyett et al., 2013). This may be because foods containing vegetable proteins 

lead to a reduced risk from colon, breast, and prostate cancers (Kirk et al., 1999).  

Gluten is a unique protein and plays an important role in determining the 

properties of bread dough. Water absorption, viscosity, and elasticity are just a few of the 

properties wheat gluten offers. Traditionally, gluten proteins have been classified as 

albumin, globulin, gliadin, and glutenin. All of these components exist as either 

monomers or as oligo- and polymers, which are linked by inter or intra-chain disulfide 

bonds (Wrigley and Bietz, 1988). Gliadin and glutenin have been found to directly 

impact the texture of an assortment of products, and a proper mixture of gliadin and 
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glutenin is very important to the viscoelastic properties of the gluten itself and also on the 

final product (Wieser, 2007).       

While the gluten structure is primarily maintained by inter and intra-chain 

disulfide bonds, which are covalent bonds, non-covalent bonds do exist in gluten. 

Hydrogen bonds, hydrophobic bonds, and ionic bonds overlay the covalent disulfide 

bonds, contributing to the gluten structure. The non-covalent bonds do not offer the same 

strength as covalent bonds, but they are important when gluten goes through a mixing or 

shearing action (Wieser et al., 2006). 

The extrusion process has proven to be very effective in the manufacturing of 

TVP. Because of the high shear, high temperature nature of an extrusion system, more 

efficient taste modifications and unique texture developments have been made possible 

when extruding vegetable protein (Akdogan, 1999). The structural development in 

regards to TVP is focused around texturization. Vegetable protein texturization means the 

extrudate will have a fibrous, meat like structure, similar to a piece of chicken, beef, or 

pork. While the extrusion process is a well established method for altering the structure 

of cereal polymers, there are still large amounts of inconsistencies between ingredients. 

On a lot to lot basis, the chemical composition and overall properties of an ingredient will 

change, usually due to environmental factors (Pablaciones et al, 2009). Yang et al. (2011) 

suggests stress events during growing play largely into gluten quality.  

As stated above, there are inconsistencies between ingredient quality on a lot to 

lot basis. For this research, two lots of gluten were sourced that were of two different 

qualities. One gluten was of a superior quality and was known to texturize very well at 

extrusion. Very well texturizing gluten will result in a very fibrous structure that meets 
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certain final product standards set by the manufacturer. These standards include water 

absorption rate, hydration time, and TVP integrity. Poor texturizing gluten was also 

studied. This gluten did not meet final product quality standards and resulted in what the 

manufacture considered waste.  

To counter these differences in gluten quality, processing aids are often added. 

Reducing agents like metasodium bisulfite and L-cysteine are used to aid in disulfide 

bond break down. As stated earlier, disulfide cross-linkages contribute greatly to gluten 

structure. Streker et al., (1995) and Ledward and Tester (1994) have reported that protein 

polymerization is driven by protein cross-linking during the extrusion process. This is 

due to the role of sulfhydryl groups having the potential to undergo disulfide – sulfhydryl 

interchanges (Li and Lee, 1998). This involves the cleavage and re-formation of disulfide 

bonds by internal components, like the protein itself, or external components (Dong and 

Hosney, 1995) like the before mentioned metasodium bisulfite or L-cysteine. It is 

believed that by adding L-cysteine to the gluten, there will be a higher potential for 

reactions with existing disulfide bonds due to the higher amount of sulfhydryl groups L-

cysteine brings. On the other hand, metasodium bisulfite will introduce an excess of 

disulfide molecules to the gluten, creating a higher potential for reactions with the 

sulfhydryl groups native to the gluten.  

Another processing aid commonly used is tetrasodium pyrophosphate. While not 

a reducing agent, phosphates will adjust the pH of the gluten. Mejri et al. (2005) found 

that a pH push to a more basic environment increased the solubility of partially 

hydrolyzed gluten. While the research outlined in this paper didn’t use partially 

hydrolyzed gluten, a similar conclusion can be drawn as to the effect of phosphates on 
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gluten. By increasing the solubility of the gluten by adding phosphate and subjecting it to 

a high pressure and temperature extrusion system, the gluten polymers are reduced in 

overall size. This perhaps creates a higher potential for disulfide – sulfhydryl cross-

linkages. This research is focused around the previously mentioned chemical additives.   

2. Materials and Methods 

2.1. Gluten characterization 

 Both lots of gluten used in this research were donated by MGP Ingredients 

(Atchison, KS). The “Superior” gluten is known to extrude very well without the aid of 

processing agents. The “Inferior” gluten, however, requires the addition of a processing 

aid to create a good texturized product. There were 4 treatments for each gluten type, a 

control treatment with no chemical additives, tetrasodium pyrophosphate at 3.00%, 

cysteine at 0.18%, sulfite at 0.18%. The inclusion rates for the chemical treatments are 

industry standards.  

Protein, fat, ash, and total dietary fiber were found for the two gluten types. This 

was competed to gain a better understanding of the chemical composition of the glutens. 

The amino acid profile was completed to investigate primarily the cysteine content of the 

glutens. As stated previously, cystiene provides free thiol groups that aid in reformation 

of disulfide bonds. If one gluten type has a higher concentration of cysteine present prior 

to extrusion, it can be thought that the gluten will form a higher quality TVP.  

Crude protein was determined using the AACC International Approved Method 

46-30.01: Crude Protein – Combustion Method (1999). This combustion method, where 

nitrogen is freed by pryolysis and combustion at high temperatures will determine crude 
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protein. The nitrogen is quantified by thermal conductivity detection. This method is 

applicable to all flours, cereal grains, oilseeds, and animal feeds. 

The method to determine crude fat was AACC International Approved Method 

30-25.01: Crude Fat in Wheat, Corn, and Soy Flour, Feeds, and Mixed Feeds (1999) A 

dried sample is exhaustively extracted by Soxhlet or continuous extraction, using 

petroleum ether as the solvent. When the solvent has evaporated the residue is dried to a 

constant weight at 100° Fahrenheit. The residue is expressed as percent crude fat or ether 

extract. 

AACC International Approved Method 08-01-01 (1999), the basic method used to 

determine ash was used. A small amount (3-5 grams) of material is placed in an electric 

muffle furnace and incinerated at 550° - 590° Fahrenheit until light grey ash is obtained 

or a constant weight is acquired. 

Total dietary fiber was found using AACC International Approved Method 32-

07.01: Soluble, Insoluble, and Total Dietary Fiber in Foods and Food Products (1999). 

The insoluble dietary fiber is filtered and the residue is washed with warm distilled water. 

By combining the filtrate and water washings, a solution can be precipitated with 4 

volumes of 95% EtOH to determine the soluble fiber portion of the sample.  

Using a method from the Association of Official Analytical Chemists, cysteine, 

methionine, lysine and nine other amino acids were quantified (JAOAC 70:171-174, 

1987). This method requires samples be hydrolyzed by 6 N HCL for 4 hours at 145°C. 

The amino acids were then determined by cation exchange chromatography in a 

Beckman 6300 amino acid analyzer (Beckman Instruments, San Ramon, CA).  
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2.2. Gluten physical properties  

2.2.1: Gluten Index 

 Gluten index and wet gluten percent results were derived from the same test. Wet 

gluten percent did not result in useful data (data not shown), because the test procedure 

was designed to use wheat flour, hence the weight of the gluten that was isolated and the 

amount of water held by that gluten cannot be separated. However, the gluten index data 

was useful. Using the American Association of Cereal Chemists International (AACCI) 

Approved Method 38-12.02, the glutens were hydrated to form a dough and then placed 

on a special sieve and centrifuged. The gluten index is the “ratio of the wet gluten 

remaining on the sieve after centrifugation to the total wet gluten,” (AACC Method 38-

12.02). When a substantial amount of wet gluten remains on the sieve, this translates as a 

more cohesive, stronger gluten.  

2.2.2: Compression Test 

 Sufficient water was added to the gluten to form a continuous mass. After the 

dough was formed, the gluten was pressed between two metal plates with 5 kilograms of 

force placed on top so as to create a disk. After pressing, the gluten disk was removed 

and a 25 millimeter diameter section was cut out of the disk. The new gluten disks were 

positioned between two plates using a TA.XT2 Texture Analyzer (Texture Technologies, 

Scarsdale, NY) and pressed. The trigger force was 10 grams and compression was at 10 

millimeters per second to reach a constant force of 100 grams. Once that force of 100 

grams was maintained for 45 seconds, the distance the dough was compressed was 

measured by extrapolating the slope of the line back to the beginning of the test. 

Compression distance is directly related to the strength of the gluten. If a gluten is strong, 

it will offer more resistance, resulting in only a short distance needed until the 100 gram 
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constant force is reached. Weaker glutens will have less resistance, translating to a 

greater probe travel distance (Miller and Hoseney, 1996).  

2.2.3: Phase Transition Analysis 

Prior to the addition of the chemical additives, the glutens were hydrated to a 14% 

(wet basis) moisture content. This was done by determining the amount of water needed 

to reach 14% (wet basis) moisture content and spraying with a spray bottle the amount of 

water required on the gluten as it was mixed in a Hobart table top mixer (Troy, OH). 

Previous experience was used to determine using 14% (wet basis) moisture content. After 

hydration, the chemical additives where added at the previously stated inclusion rates and 

mixed in the same Hobart table top mixer for 5 minutes to ensure a homogenous mix. 

The 14% m.c. gluten samples, were analyzed on a Phase Transition Analyzer 

(PTA) (Wenger Manufacturing., Sabetha, KS), to determine softening and flow 

temperatures (Ts and Tf, respectively). Softening and flow temperatures are a measure of 

polymer deformation and flow behavior when under conditions similar to extrusion. The 

PTA utilizes pressure and heat to achieve softening and flow, so it is very similar to 

extrusion, but it does not impart any mechanical energy to the sample.  

 A 2-g sample was loaded into the PTA chamber with a closed die underneath. An 

initial compression of 12 MPa was applied for 15 seconds. The pressure was then fixed at 

10 MPa and the sample was heated at 8°C/min, with a starting temperature of 25˚C and 

Ts was obtained from the mid-point between the onset and end of softening. After the 

softening period, or when the material could not be compressed any further, the closed 

die was replaced with a 2 mm capillary die and heating was continued at the same rate 

and operating pressure. Tf was the temperature at which the material started to flow 
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through the capillary and was identified by a steep increase in displacement. (Karkle et al, 

2012) 

2.3. Blend preparation and extrusion processing 

Prior to extrusion, the same procedure was used to hydrate the gluten as was used 

for hydration for PTA experimentation. However, for extrusion, three moisture levels 

were used. Prior to the addition of the chemical additives, the glutens were hydrated to 

three different moisture levels; 14%, 20% and 25% (all wet basis), by determining the 

amount of water needed to reach the three levels and spraying that amount of water on 

the gluten as it was mixed in a Hobart table top mixer (Troy, OH). These three moisture 

levels were chosen to give a wide range of responses at extrusion. After hydration, the 

chemical additives were mixed into 1.5 kg of the each gluten type in the same Hobart 

table top mixer for 5 minutes to ensure a homogenous mix.  
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Extrusion processing was carried out on a laboratory scale extruder (Micro-18, 

American-Leistritz, New Jersey). The screw profile (Figure 1) was designed to impart a 

great deal of shear to the samples. A 3.8 millimeter die opening was used. 

 

 

 

 

Figure 2.1: Screw Configuration – Micro-18 Twin Co-Rotating Screw Extruder with 

accompanying head temperature profile. 

 

 Process conditions were kept constant through out the experiment with a feed rate 

of 3.15 kg/hr and a screw speed of 275 RPM.  

 The specific mechanical energy (SME) for each treatment was calculated using 

the following equation: 
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where τ is the % torque, τo is the no-load torque (17%), N is the measured screw speed in 

RPM, Nr is the rated screw speed (500 rpm), Pr is the rated motor power (2.2 kW) and ṁ 

is mass flow rate in kg/s (Zhu et. al., 2010). 

2.4. Statistical analysis 

 Data were analyzed using the GLM procedure in SAS (Cory, NY). The GLM 

procedure uses the method of least squares to fit general linear models. By doing so, 2-

way and 3-way ANOVA can be completed; the level of significance was a p-value of 

0.05. Interactions were examined to measure for significance between the gluten type, 

hydration level and the chemical treatment.  

3. Results and discussion  

3.1. Proximate analysis and amino acid profile 

  Superior 
Gluten 

Inferior 
Gluten 

Protein (%) 86.26 77.26 

Carbohydrates (%) 7.66 17.04 

Fat (%) 1.31 1.3 

Ash (%) 0.82 1.06 

Total Dietary Fiber (%) 3.95 3.34 

Total  100 100 

Table 2.1: Proximate Analysis of Superior and Inferior Gluten Types 

 As Table 1 displays, the superior gluten had a higher protein content (86.26%) 

than the inferior gluten (77.26%). This is an early indication there may be a difference in 

the quality of these two glutens. Because of the superior glutens higher protein content, it 

can be thought it will extrude to make a higher quality TVP. 
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Amino Acid Superior 
Gluten 

Inferior 
Gluten 

Aspartic Acid 2.92 2.56 

Threonine 1.91 1.68 

Glutamic Acid 28.93 26.79 

Proline 9.76 9.20 

Glycine 2.95 2.61 

Alanine 2.24 1.99 

Cysteine 1.59 1.41 

Valine 3.59 3.25 

Methionine 1.39 1.22 

Isoleucine 3.15 2.90 

Leucine 5.84 5.29 

Lysine 1.56 1.29 

Total 65.83 60.19 

Table 2.2: Amino Acid Profile of Superior and Inferior Gluten types 

 As expected, the superior gluten had a higher amino acid amount (65.83 grams 

per 100 grams of gluten) than the inferior gluten (60.19 grams per 100 grams of gluten). 

This is because the higher protein content of the superior gluten (86.26%) will bring in 

more total amino acids.   
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3.2. Rheological properties of wheat gluten 

3.2.1: Gluten Index 
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 Figure 2.2: Gluten Index Results for Superior and Inferior glutens (Control and 

Processing Aids).  

 

 As Figure 2 shows, the strength of the raw vital gluten is significantly reduced by 

sulfite and cysteine for both the Superior and Inferior gluten types. This was expected, 

given the reducing action of cysteine and sulfite. With no additives, the inferior gluten 

was weaker than the superior gluten. This makes sense because the inferior gluten is 

known to have difficulties at extrusion, and those differences are because it is poorer 

quality gluten. Interestingly, the presence of phosphate reduced the strength of the 

inferior gluten but not the superior gluten. Statistically significant differences (p-value < 

0.0001) were observed between the gluten types (superior vs. inferior) and the chemical 
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treatments (control, phosphate, cysteine, sulfite). Furthermore, the interaction between 

gluten type and chemical treatment was also found to be significant, indicating there are 

strong trends when comparing the factors of chemical treatment to the gluten type.  

3.2.2: Compression Test 
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Figure 2.3: Compression Tests of Superior and Inferior Glutens With and Without 

Processing Aids. 

 

As explained previously, stronger and more elastic gluten offers more resistance 

to compression while weaker, less elastic glutens will flow more readily under the force 

of the probe allowing the probe to travel a longer distance before the constant force is 

reached. The results (Figure 2.5.2) are consistent with this model. Sulfite and cysteine 

presence resulted in greater probe travel than was seen for control and phosphate 

treatments. This can be interpreted as the addition of these two chemicals resulted in both 
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gluten types becoming weaker. It appears that the addition of phosphate made both the 

superior and inferior gluten less viscous/more elastic. This may be attributed to 

phosphate’s ability to increase the water holding capacity of gluten and making for a 

more entangled gluten matrix. Statistically significant differences (p-value < 0.0001) 

were observed between the gluten types (superior vs. inferior) and the chemical 

treatments (control, phosphate, cysteine, sulfite). However, the interaction between gluten 

type and chemical treatment was found to be not significant (p-value > 0.05), indicating 

there were no trends for those interactions.  

3.2.3: Phase Transition Analysis 
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Figure 2.4: Average Softening Temperatures of Superior and Inferior Gluten (Control, 

3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite). 

 

Processing aids, especially the sulfite and cysteine, resulted in a decrease in the 

average softening temperature. The phosphate treatment displayed very little decrease 

when compared to the control treatments (Control, Superior – 44.5° C and 3.0% 
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Phosphate, Superior – 44.45° C). Sulfite and cysteine are reducing agents, so a decrease 

in average softening temperature wasn’t surprising. When heat and pressure were added 

during the PTA test, disulfide bonds and hydrogen bonds were broken easier with the 

presence of cysteine and sulfite, resulting in a lower softening and thermal flow. For the 

control treatment, it is seen that the inferior gluten had a slightly higher thermal softening 

temperature (44.5° C for superior as opposed to 48.15° C for inferior). This is possibly 

due to the lower quality of the inferior gluten where more thermal energy and pressure is 

needed to reach not only thermal softening, but also thermal melting, which was also 

observed. 
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Figure 2.5: Thermal Flow Temperatures of Superior and Inferior Glutens (Control, 3.0% 

Phosphate, 0.18% Cysteine, 0.18% Sulfite). 
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 Similar results were observed for thermal flow temperature (Figure 5) as for the 

average softening temperatures. As expected, the sulfite and cysteine treatments 

experienced a decrease in flow temperature when compared to the control treatments of 

the superior and inferior gluten. Another similarity was observed between the average 

softening and flow temperature. For the control, sulfite, and cysteine treatments, the 

superior gluten had a lower average softening and flow temperature. However, the 

phosphate treatments displayed the opposite of this; the superior gluten had a higher 

average softening and flow temperature than that of the inferior gluten.   

3.3. Extrusion processing 

 Specific Mechanical Energy (SME) is calculated to show how much mechanical 

energy is being imparted on a material during the extrusion process.  
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Figure 2.6: SME During the Extrusion of Superior and Inferior Glutens. 

 Typically during extrusion, a lower SME is encountered when the exrudate has a 

high in-barrel moisture (30-40% w.b.). This is because water acts as a plasticizer, 

lowering the viscosity of the melt and making it easier for the extruder to force the melt 

through the die. This was true in this work; (Figure 6) where the 22-24% w.b. moisture 
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gluten treatments had lower SME’s. Conversely, for the 18-20% w.b. moisture and 14-

16% w.b. moisture treatments, a substantial response was observed because the melt 

viscosity was increased to a point where differences between treatments were truly 

observed. As displayed by the Figure 6, an increase in SME is observed for both gluten 

types when observing each of the treatments; control, cysteine, sulfite, and phosphate 

(this is the order in which the treatments were processed). When compared to the gluten 

quality tests (Gluten Index and Compression Tests), it could be theorized that with the 

addition of cysteine and sulfite, a decrease in SME would be experienced. However, this 

was not the case. The reasoning behind this is that in the presence of reducing agents 

(cysteine and sulfite), disulfide molecules became readily available for cross-linkages 

with the gluten protein strands. As these disulfide bonds reformed, the viscosity of the 

melt increased, causing the extruder to work harder to force material through the die 

opening. It is hypothesized that like reducing agents, the phosphate is forming cross-

linkages with protein molecules. Phosphate is commonly used to adjust the pH of gluten, 

and by creating an optimal pH range, disulfide bond reduction and sulfhydryl group 

oxidation to reform disulfide bonds has a higher potential. By creating a higher potential 

of disulfide reformation, an increase in SME is observed. 

3.4. Post-Extrusion Phase Transition Analysis 

 This step was done to analyze if there were any differences in thermal softening 

and melt when raw vital gluten was compared to finished extrudate. It was thought that 

the complete disulfide reduction may have not been achieved during extrusion. However, 

it appears when looking at the below data that the extrusion process may have completely 

reduced and reformed disulfide bonds in the gluten, implying texturization did occur. 



 26 

However, the physical appearance of the extrudate was not that of a textured vegetable 

protein; no fibrous structure. It is believed that the extruder did texturize the glutens, but 

since the Micro-18 has a low volume to surface area ratio, both glutens went past 

texturization and on to protein deformation.   
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Figure 2.7: Extruded and Un-Extruded Glutens; Thermal Softening Temperature 
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Figure 2.8: Extruded and Un-Extruded Glutens; Thermal Melting Temperature. 
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It is noteworthy to mention that the moisture these PTA’s were completed at 13-

16% w.b.; this moisture content provided the best response during testing. Both the 

superior and inferior glutens have similar softening temperatures when looking at the 

extruded and raw samples, with the exception of the cysteine treatment. For the cysteine 

treatment, the extruded samples, both superior and inferior, have a thermal softening that 

are ~10˚C higher than the raw gluten samples. This is expounded when looking at the 

thermal melt results. There is nearly a 50˚C difference between the extruded glutens and 

the raw glutens. Similarly, the control and sulfite treatments also have a higher thermal 

melt for the extruded samples. The only exception is the phosphate treatment. The 

thermal melt temperature for the extruded samples is very similar to the thermal melt 

temperature of the raw glutens.  

The possible explanation for the lower thermal melt temperature for the raw 

glutens compared to the extruded treatments, especially for the cysteine and sulfite 

treatments, is the complete reduction of the disulfide bonds. During extrusion, the 

disulfide bonds are reduced and the newly available bonds are used to cross link the 

elongated protein strands inside the extruder barrel. Since the functionality of the sulfite 

and cysteine is fully taken advantage of, the benefits they offer in lowering thermal 

softening and melt will not be observed when testing for those properties after the 

extrusion process has been utilized.  

The reason differences are not seen between the extruded phosphate and raw 

phosphate treatments is due to phosphate not being a reducing agent. Instead, phosphate 

will increase the water holding capacity of protein.  
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4. Conclusion 

 Pre-extrusion testing confirmed the difference in quality of the two types of 

gluten. This is especially true when looking at the Gluten Index data. The inferior gluten, 

which required processing aids, was much weaker than the superior gluten when looking 

at the control treatments. The weakness of the inferior gluten was expounded when 

cysteine and sulfite is added. When phosphate was added, very similar results were 

observed as for the control treatments.  

The initial hypotheses were confirmed with this research. Cysteine and sulfite 

weaken the gluten structure by reducing disulfide bonds. This was apparent with PTA 

testing. Both types of gluten saw a reduction in thermal softening and thermal melting 

with these two chemicals present. However, since the PTA does not add mechanical 

energy, no texturization was achieved. When mechanical energy is added, reduction fully 

occurs and reforms disulfide bonds to complete texturization. While not all treatments at 

extrusion appeared to be texturized, it is believed that due to the high volume to surface 

area ratio of the Micro-18 twin screw extruder not only texturized the gluten, but also 

caused the glutens to reach deformation temperatures. The phosphate treatments of both 

gluten types did, however, have a textured form. This is due to the unique water holding 

properties of phosphate. The water in the fine meal was used more efficiently by 

remaining available to lower the energy requirements to break disulfide bonds.  

 While cysteine and sulfite do lower the melt viscosity of gluten, an increase in 

SME was observed. This increase in SME is also observed for the phosphate treatments. 

This is due to the extrusion processes unique capabilities to not only break down disulfide 

bonds, but to also use those intact bonds to cross link the loose protein strands.  The 
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reformation of these bonds will make a gluten melt form a defined structure, and 

conversely, make the extruder work harder to push the melt through the die opening.  
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Chapter 3:  
Relationship between Properties of Wheat Gluten and Texturized 

Vegetable Protein processed using High Shear Extrusion 

 
1: Introduction: 

 

Consumption of vegetable proteins as a food product has been increasing over the 

years because of animal diseases, global shortage of animal protein, and economic 

reasons (Asgar et al, 2010). Texturized vegetable protein, or TVP, is perhaps the most 

common form of vegetable proteins being consumed. TVP is a vegetable protein that is 

made via an extrusion process. This process will result in the TVP having a meat like 

texture. After processing, meat flavors can be introduced to the TVP to give it the desired 

taste. TVP can be made from several grain proteins, with wheat gluten, the focus of this 

research, being one of the primary grains used.  

Extrusion is a continuous process where a material will undergo mixing, 

kneading, cooking, and shaping. It is not a new process, and is widely used in the food 

industry. This is due to the wide range of products that can be made. Extrusion is also a 

low cost process that is very energy efficient (Harper, 1981).  For creating TVP, a twin 

screw extruder is primarily used. This is because more efficient taste modifications and 

texture developments have been made possible with twin screw extrusion (Akdogan, 

1999). Texturization results from the shear an extrusion system will impart on the 

proteins, whether it is soy protein or wheat gluten. By introducing shear, high 

temperatures, and high pressure, the gluten polymers are disrupted (Akdogan, 1999). It is 
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even theorized that the extrusion process will create covalent cross-linkages between 

protein polymers (Areas, 1992). This is supported by Levine and Slade (1990). They 

suggest that by increasing the mobility of the gluten molecules, which occurs at high 

temperatures, a gluten protein will create intermolecular disulfide covalent bonds. This is 

makes the extrusion process an ideal system to texturize protein because high 

temperatures and shear will be introduced. This will create the three-dimensional fibrous 

structure that is desired when making a TVP. 

As material travels down the extruder barrel as is introduced to heat, shear, and 

moisture, the disulfide bonds that connect the protein polymers are broken and are 

simultaneously being re-linked along the length of the extruder barrel (Shimada et al, 

1988). Once the material leaves the die and encounters atmospheric pressures, the gluten 

matrix will be further disrupted by the flashing off of superheated water vapor. This can 

directly affect the porosity of the TVP, which will affect its hydration rate and time, two 

key physical characteristics. 

One factor that may impact gluten quality is the environment in which it was 

grown. More often than not, the wheat will be under some form of stress prior to harvest; 

water deficits and high temperatures for example. Yang et al. (2011) found that 

individual protein fractions of wheat, gliadins and glutenins, were affected by not only 

the type of stress, but also the length of the stress. This could, in turn, factor into changes 

in the quality of extruded wheat gluten.  
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2. Material and methods 

2.1. Material characterization  

 Two lots of gluten were used; one from the U.S. and one from Europe. The U.S. 

gluten was Heartland 75 (White Energy, Russell KS USA). The European gluten was 

Drei Hasen Vital Wheat Gluten (Crespel and Deiters, Ibbenburen, Germany). Both types 

of gluten had a protein content of at least 75%. Each gluten type was analyzed as a 

control treatment (no chemical additives), tetrasodium pyrophosphate at 3.00%, cysteine 

treatment at an inclusion rate of 0.18%, and finally, sulfite, also at a 0.18% inclusion rate. 

These inclusion levels were chosen because they are industry standards. At extrusion, the 

study was carried out at two in-barrel-moistures (IBM); 32% and 36%. This translates to 

a 2 x 4 x 2 factorial design. 

Protein, fat, ash, and total dietary fiber were found for the two gluten types. This 

was competed to gain a better understanding of the chemical composition of the glutens. 

The amino acid profile was competed to investigate primarily the cysteine content of the 

glutens. As stated previously, cystiene provides free thiol groups that aid in reformation 

of disulfide bonds. If one gluten type has a higher concentration of cysteine present prior 

to extrusion, it can be thought that the gluten will form a higher quality TVP.  

Crude protein was determined using the AACC International Approved Method 

46-30.01: Crude Protein – Combustion Method (1999). This is a combustion method, 

where nitrogen is freed by pryolysis and combustion at high temperatures. The nitrogen is 

quantified by thermal conductivity detection. This method is applicable to all flours, 

cereal grains, oilseeds, and animal feeds. 
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The method to determine crude fat was AACC International Approved Method 

30-25.01: Crude Fat in Wheat, Corn, and Soy Flour, Feeds, and Mixed Feeds (1999). A 

dried sample is exhaustively extracted by Soxhlet or continuous extraction, using 

petroleum ether as the solvent. When the solvent has evaporated the residue is dried to a 

constant weight at 100° Fahrenheit. The residue is expressed as percent crude fat or ether 

extract. 

AACC International Approved Method 08-01.01 (1999), the basic method used to 

determine ash was used. A small amount (3-5 grams) of material is placed in an electric 

muffle furnace and incinerated at 550° - 590° Fahrenheit until light grey ash is obtained 

or a constant weight is acquired. 

Total dietary fiber was found using AACC International Approved Method 32-

07.01: Soluble, Insoluble, and Total Dietary Fiber in Foods and Food Products (1999). 

The insoluble dietary fiber is filtered and the residue is washed with warm distilled water. 

By combining the filtrate and water washings, a solution can be precipitated with 4 

volumes of 95% EtOH to determine the soluble fiber portion of the sample.  

Using a method from the Association of Official Analytical Chemists, cysteine, 

methionine, lysine and nine other amino acids were quantified (JAOAC 70:171-174, 

1987). This method requires samples be hydrolyzed by 6 N HCL for 4 hours at 145°C. 

The amino acids were then determined by cation exchange chromatography in a 

Beckman 6300 amino acid analyzer (Beckman Instruments, San Ramon, CA).  
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2.2. Formulation and Mixing 

Batch Wheat Gluten Wheat Flour Soda Ash Chemical Additive Total 

Control 76.04% 23.85% 0.11% 0% 100% 

Phosphate  76.04% 23.85% 0.11% 3.00% 103% 

Cysteine 76.04% 23.85% 0.11% 0.18% 100.18% 

Sulfite 76.04% 23.85% 0.11% 0.18% 100.18% 

 Table 3.1: Wheat Gluten Formulation for Pilot Scale Extrusion 

 Batch sizes were 200 lbs and all were mixed in a ribbon mixer (Wenger 

Manufacturing, Sabetha, KS) for 5 minutes to ensure homogeneity.  

2.3. Gluten Characterization  

2.3.1: Gluten Index  

 The Gluten Index and Wet Gluten Percent are the results from the same test. 

Using the American Association of Cereal Chemists International (AACCI) Approved 

Method 38-12.02, the glutens were hydrated to form a dough and then placed on a special 

sieve and centrifuged. The Gluten Index is the “ratio of the wet gluten remaining on the 

sieve after centrifugation to the total wet gluten,” (AACC Method 38-12.02). This means 

that the more gluten remaining on the sieve translates to a more cohesive, stronger gluten.   

2.3.2: Phase Transition Analysis 

 The two types of gluten were hydrated to 14% moisture (wet basis) and were 

analyzed on a Phase Transition Analyzer (PTA) (Wenger Manufacturing., Sabetha, KS), 

to determine the softening and flow temperatures (Ts and Tf, respectively). Softening and 

flow temperatures are a measure of polymer deformation and flow behavior when under 
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conditions similar to extrusion. The PTA utilizes pressure and heat to reach softening and 

flow, so it is very similar to extrusion. However, it does not impart any mechanical 

energy on the sample.  

 A 2-g sample was loaded into the chamber with a closed die underneath, and an 

initial compression of 12 MPa was applied for 15 seconds. The pressure was then fixed at 

10 MPa and the sample was heated at 8°C/min, with a starting temperature of 25˚C. Ts 

was obtained from the mid-point between onset and end of softening. After the softening 

period, the closed die was replaced with a 2 mm capillary die and heating was continued 

at the same rate and operating pressure. Tf was the temperature at which the material 

started to flow through the capillary and is identified by a steep increase in displacement. 

(Karkle et al, 2012) 

2.4. Extrusion processing 

Extrusion processing was carried out on a pilot scale twin-screw extruder (TX-52, 

Wenger Manufacturing, Sabetha, KS) with a 9 head configuration. The TX-52 is 

equipped with a differential diameter cylinder preconditioner with a volumetric capacity 

of 0.056 m
3
 (DDC2, Wenger Manufacturing, Sabetha, KS). The preconditioner paddles 

were set to forward pitch for the first third of the preconditioner, followed by a neutral 

pitch for the second third, and finally a reverse pitch segment at the preconditioner outlet. 

The preconditioner speed was set at 350 RPM. Due to differences in the properties of the 

two gluten types, slightly different processing conditions were used between the two. For 

the U.S. gluten, a constant feed rate of 100 kg/hr was used. However, to maintain good 

product quality, the European gluten required a feed rate of 90 kg/hr. Other than this, all 

of the other processing conditions remained the same. 
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 Temperature and Screw Profile 

Head Number 2 3 4 5 6 7 8 9 

Temperature (° C) 40 40 90 105 120 120 120 120 

 

 

 

  

 1 2   3 2  3 4 5   4 5 6 

Figure 3.1: Temperature and screw profile for TX-52 Extruder 

 

Number Corresponding Elements 

1 Full Pitch, Forward, 9 unit 

2 3/4 Pitch, Forward, 9 unit 

3 Kneading Lobe, Forward, 3 unit 

4 1/2 Pitch, Forward, Cut Flight, 9 unit 

5 Kneading Lobe, Reverse, 3 unit 

6 1/2 Pitch Cone, Forward, 9 unit 

Table 3.2: Screw Configuration 

 The screw profile (Figure 1) was designed to impart a high amount of 

mechanical energy on the wheat gluten melt. A high amount of shear is required to 

physically break down the gluten polymers and to expose thiol sites to disulfide 

reformation. Screw speed was held constant at 356 RPM for both types of gluten. Table 2 

displays the corresponding element names for each number from Figure 1. 

The specific mechanical energy (SME) for each treatment was calculated using 

the following equation: 
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where τ is the % torque, τo is the no-load torque (7%), N is the measured screw speed in 

RPM, Nr is the rated screw speed (336 rpm), Pr is the rated motor power (22.37 kW) and 

ṁ is mass flow rate in kg/s (Zhu et. al., 2010). 

2.4.1: Die Design 

 

Figure 3.2: Die Configuration 

 As previously stated, die design can have a drastic impact on the final product 

characteristics. To create this TVP, a very unique die design was used. From the bottom 

up, there was a 2-to-1 adaptor. This will direct flow from the two screw shafts into a 

single flow. Because there is very little open area in this part of the configuration, shear 

and pressure builds, aiding in gluten depolymerization and in forming new cross-

linkages. The next component was a Venturi die that has a 5 millimeter insert. Again, 

flow is being directed while also creating a pressure gradient. Following the Venturi die, 

there was 69.85 millimeters of spacers. This creates a longer retention time which allows 

the melted gluten mass to agglomerate and complete cross-linkages. After this group of 

spacers, there was a die holder that contained a capacity ring with four 1 millimeter by 14 

millimeter slits. This was where product came out of the die, and where product was cut 
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by a rotating knife. Furthermore, the capacity ring directed the flow to make a 90 degree 

turn to exit the die. This also aids in final texturization.  

2.5. Final product analysis 

2.5.1: Water Absorption Index 

 The water absorption index testing procedure was adapted from an American 

Soybean Association technical bulletin (1988) by Kearns et al., Wenger Manufacturing. 

This test displays the amount of water a TVP will absorb at a set weight of product and 

set time. Twenty grams of textured wheat gluten was soaked in 100 mL of room 

temperature water for 20 minutes. After soaking, the hydrated product was drained on a 

screen for 5 minutes. The final weight was recorded. To calculate the Water Absorption 

Index, this equation was used: (Rehydrated wt. – Original Wt.) / Original Wt. 

2.5.2: Textured Gluten Integrity Test  

 Like the water absorption test, this testing procedure was adapted from an 

American Soybean Association technical bulletin (1988) by Kearns et al., Wenger 

Manufacturing. Measuring the integrity and strength of textured vegetable proteins is 

very important. Not only does it gauge degree of texturization, but it will also display 

how well the final product will integrate into an animal protein when TVP is mixed into 

the animal protein. Four hundred grams of final product was soaked in 1.5 L of room 

temperature water for 30 minutes. Once hydrated, the textured gluten was drained on a 

screen for 5 minutes. Utilizing a Hobart bench top mixer (Troy, OH) with a meat 

grinding attachment, the hydrated texturized gluten was ground through a die plate with 

6.35 mm holes. One hundred grams of ground material was then placed on a U.S. 20 

mesh sieve screen (850 microns) and washed with water at 15 p.s.i for 1 minute. After 

washing, the ground product was pressed slightly by hand to remove any excess water. 



 44 

After reweighing, the percent loss was calculated: (Initial wt. – Final wt.) / Initial wt. * 

100%.   

2.5.3: Hydration Time and Rate 

Hydration time and rate were found using the testing procedure used by MGP 

Ingredients, Inc. Both hydration time and rate are very important to determine the quality 

of textured vegetable protein. These tests help determine preparation time and ideal 

hydration procedures. Seventy-five grams of final product was soaked in 900 mL of room 

temperature water. During hydration, the textured gluten was checked every 2 minutes to 

see if full hydration had been accomplished. When the textured gluten contained no hard 

areas, it was considered fully hydrated. The time was recorded and the hydrated sample 

was weighed to calculate hydration rate. Hydration rate is calculated as the following: 

(Final wt. – Initial wt.) / (Hydration Time). This displays the amount of water the sample 

gained per minute of hydration.   

2.5.4: Fourier Transform Infrared Spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) is a unique way of studying the 

infrared signatures of proteins. FTIR allows for examination of the composition and 

structure of a protein. Because the extrusion process is such an aggressive system, it was 

believed that the native structure of the gluten would be drastically altered, resulting in 

new structure formation. Proteins have a structural repeat unit, the peptide groups, which 

have nine distinct mid-infrared bands, or amides. These amide groups are called A, B, 

and I-VII. The area of interest for this research was the amide III region. Previous work 

by Singh et. al. (1993) has shown the usefulness of the amide III region for estimation of 

secondary structure in protein. The amide III region offers several advantages, with 

perhaps the most important being water vibrations do not interfere with the infrared 
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spectra. Furthermore, the secondary structures, like the α-helix, β-sheets and turns, and 

also random coils are all confined to the amide III region (Seabourn et. al., 2008). Further 

work has also recognized band assignments of secondary structures in the amide III 

region; α-helix (1330-1295 cm
-1

), β-sheets (1245-1220 cm
-1

), β-turns (1295-1270 cm
-1

) 

and random coils (1270-1255 cm
-1

) (Cai and Singh, 1999). 

FTIR work for this research was completed at the USDA-ARS facility in 

Manhattan, KS. The raw material and the final products were analyzed. Prior to testing, a 

dough was made of the raw material on a 1 to 1 basis of dry raw material to water. 

Making a dough was an important step; it ensured the glutens interfaced well with the 

testing equipment. The final product was ground to a small particle size, but it required 

more water (1 to 2 ratio) to create a dough due to the hydrophilic properties of the TVP. 

After a background test was completed, the gluten (raw or final) was positioned on a 

ZnSe FTIR cell and then scanned with the interferometer. After scanning, the sample is 

removed from the cell and discarded. Then, the cell is cleaned and prepared for the next 

test. 

2.6. Statistical analysis 

 Data were analyzed using the GLM procedure in SAS (Cory, NY). GLM 

procedure uses the method of least squares to fit general linear models. By doing so,  2-

way and 3-way ANOVA  can be completed; the level of significance was a p-value of 

0.05. Interactions were examined for to measure for significance between the gluten type, 

hydration level and the chemical treatment. 
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3. Results and discussion 

3.1. Proximate analysis and amino acid profile  

  U.S. 
Gluten 

European 
Gluten 

Protein (%) 76.34 77.26 

Carbohydrates (%) 18.0395 15.363 

Fat (%) 1.22 1.7 

Ash (%) 0.9405 0.707 

Total Dietary Fiber (%) 3.46 4.97 

Total  100 100 

Table 3.3: Proximate Analysis of US and European Glutens 

 Table 3 indicates that the two gluten types were very similar in their chemical 

composition.   

Amino Acid US 
Gluten 

EURO 
Gluten 

Aspartic Acid 2.55 2.67 

Threonine 1.56 1.64 

Glutamic Acid 27.14 27.39 

Proline 9.41 9.06 

Glycine 2.63 2.63 

Alanine 1.98 2.02 

Cysteine 1.42 1.40 

Valine 3.27 3.29 

Methionine 1.21 1.21 

Isoleucine 2.90 2.92 

Leucine 5.29 5.39 

Lysine 1.37 1.36 

Total 60.73 60.98 

Table 3.4: Amino Acid Profile of US and European Sourced Glutens 

 Similar to the proximate analysis, the amino acid profiles of these two types of 

gluten were very comparable. This indicates there was not a large difference in the 

chemical composition of the two gluten types. 
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3.2. Rheological properties of wheat gluten  

3.2.1: Gluten Index 
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 Figure 3.3: Gluten Index Results for U.S. and European Sourced Glutens.  

The strength of both the U.S. and European glutens were drastically reduced for 

the sulfite and cysteine treatments. This was expected, since the reducing action of 

cysteine and sulfite are so efficient, even when heat and pressure are not added. For the 

control treatment, the European gluten appeared to be weaker than the U.S. gluten. 

However, through statistical analysis, no significant differences were observed between 

the two types of gluten (p-value > 0.05). When observing the interaction between source 

country and chemical treatment, there were significant differences (p-value < 0.0001). 
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3.2.2: Phase Transition Analysis 

Thermal Softening
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Figure 3.4: Average Softening Temperatures of U.S. and European Sourced Gluten 

(Control, 3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite) 

 

When processing aids were added to both gluten types, especially the sulfite and 

cysteine, a decrease in average softening temperature was observed and there was a 

statistical difference in softening temperature between the treatments (control, phosphate, 

cysteine, sulfite) with a p-value of < 0.05. There was also a statistical difference between 

the two gluten source countries, regardless of the treatment (p-value < 0.05). However, 

the interaction of source country and the treatments have the same trends respective to the 

country and chemical treatment.   
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Thermal Melting
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Figure 3.5: Thermal Melt Temperatures of U.S. and European Sourced Gluten (Control, 

3.0% Phosphate, 0.18% Cysteine, 0.18% Sulfite 

 

When processing aids were added to both gluten types, especially the sulfite and 

cysteine, a decrease in average softening temperature was observed and there was a 

statistical difference in softening temperature between the treatments (control, phosphate, 

cysteine, sulfite) with a p-value of < 0.05. There was also a statistical difference between 

the two gluten source countries, regardless of the treatment (p-value < 0.05). However, 

the interaction of source country and the treatments have the same trends respective to the 

country and chemical treatment.  
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3.3. Extrusion processing 

 Specific Mechanical Energy (SME) is calculated to show how much mechanical 

energy is being imparted on a material during the extrusion process.  
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Figure 3.6: SME during the Extrusion of U.S. and European Sourced Glutens. 

 Typically during the extrusion of material, a lower SME is experienced when the 

exrudate has a high in-barrel moisture (IBM). This is because water acts as a plasticizer; 

the melt viscosity is lowered to a point where the extruder does not have to work as hard 

to force the melt through the die openings. In this research, that remains true; the higher 

IBM level (36%) have a lower SME than the lower IBM level (32%). When compared to 

the gluten quality tests (Gluten Index and Compression Tests), it could be theorized that 

with the addition of cysteine and sulfite, a decrease in SME would be experienced. 

However, this was not the case. The reasoning is that in the presence of reducing agents 
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(cysteine and sulfite), disulfide molecules and the sulfhydryl groups oxidized and were 

reduced more defiantly, making the newly created disulfide molecules readily available 

for cross-linkages with the gluten protein molecules. As these disulfide bonds formed and 

cross-linked the protein molecules, the viscosity of the melt increased, causing the 

extruder to work harder to force material through the die opening.  

3.4. Post-extrusion quality analysis 

3.4.1: Water Absorption Index 
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Figure 3.7: Water Absorption Index for U.S. and European Sourced Glutens at Low and 

High In-Barrel-Moistures (32% and 36%, respectively) 

 

Measuring the water absorption of textured vegetable protein is very important, 

regardless of protein source. Not only does it give an indication of the degree of 

texturization, but also the quality of texturization. If a TVP is poorly texturized, it will 

have a low absorption index which will impact other characteristics like hydration rate 

and time.  

Commercial Product 
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 For this research, it is seen that the high IBM level of 36% all had a lower 

absorption index than the low IBM level of 32% with the exception being the phosphate 

treatments. This is due to the increased protein solubility the phosphate brings. Because 

of the increased protein solubility, the phosphate treatments for both U.S. and European 

sourced gluten have the highest absorption index, for both IBM levels. For comparison, 

the absorption index for the control US and EURO low IBM level was 2.5 and 1.6, 

respectively. At the same IBM level the absorption index for US and EURO glutens with 

3.00% phosphate present was 2.6 and 3.04, respectively. While the difference between 

the US gluten with and without phosphate may not seem large, there is a significant 

difference between the combination of the three factors (source country, IBM level, 

chemical treatment) with a of p-value < 0.0001. In fact, all of the combinations between 

source country, IBM level, and chemical treatments were significantly different (p-value 

< 0.0001).  However, some of the individual interaction groups were the same. For 

example, the US gluten processed at 36% IBM with the addition of 0.018% cysteine was 

the same as the US gluten processed at 36% IBM with no chemical additives present. 
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3.4.2: Textured Gluten Integrity Test 
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Figure 3.8: Percent loss during Textured Gluten Integrity Testing 

 When TVP is mixed into an animal protein, ensuring a uniform mix is very 

important. This is where the integrity of the textured gluten plays a significant role. If the 

gluten is poorly texturized, it will not create a homogenous mix with animal protein and 

the overall texture of the animal protein will suffer. It has previously been stated that the 

high IBM level resulted in a poorly texturized product. However, this is not reflected very 

well when looking at the integrity test results. This is because of two factors. First, the 

high IBM treatments did not hydrate as well as the lower IBM treatments. This resulted 

in a hard pieces of product when ground through the meat grinder. Second, these hard 

pieces had a larger particle size than the ground textured gluten processed at the lower 

IBM. Because the ground textured gluten had a larger particle size as a result of poor 

hydration, more material remained on the sieve screen when the ground material was 
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washed with water. So, even though the degree of texturization was poorer, the high IBM 

level treatments displayed a better integrity.  

 When analyzing the statistics for the integrity test, it was found that there were 

significant differences when analyzing the combination of source country and treatment. 

There were also significant differences between the treatments as well as the IBM level, 

regardless of gluten source and IBM level. Additionally, there are significant differences 

between the combination of source country and IBM level. However, it was found that 

there was no significant difference between the glutens source country. The commercial 

product did not have any loss during integrity testing.  

3.4.3. Bulk Density 

  High In-Barrel-Moisture (36%) 

  Control Phosphate Cysteine Sulfite 

USA 245.27 +/- 3.62 228.8 +/- 3.5 273.77 +/- 3.16 254.57 +/- 3.66 

EURO 258 +/- 3.14 214.17 +/- 0.30 272.77 +/- 6.07 215.13 +/- 9.88 

     

  Low In-Barrel-Moisture (32%) 

  Control Phosphate Cysteine Sulfite 

USA 158.96 +/- 0.75 179.12 +/- 8.57 193.76 +/- 0.81 196.76 +/- 7.44 

EURO 196.1 +/- 9.06 231.26 +/- 10.72 226.7 +/- 3.9 192.33 +/- 5.16 

 

Table 3.5: Bulk densities of Textured Gluten at 32% and 36% IBM with Chemical  

Additives Added to Two Types of Gluten 

 

 While no statistics were completed for bulk densities, there were observational 

differences between the final product bulk densities at the two IBM levels. At the higher 

IBM (36%) there was very little observed differences between the US and EURO glutens. 

Since the gluten was processed at a higher IBM, there was not a large response when 

comparing the two types of gluten; the high moisture in the barrel appears to equalize the 

bulk densities. However, when examining the bulk densities of the low IBM (32%) 



 55 

material, an observational difference was seen, with the exception of the sulfite treatment; 

US gluten with the inclusion of sulfite had a bulk density of 196.76 g/L while its 

European counterpart had a bulk density of 192.33 g/L. For the other three treatments 

(control, phosphate, and cysteine) the European gluten had what appeared to be a much 

higher bulk density than the US sourced gluten. This suggests the European gluten had a 

lower vapor pressure capacity and did not expand as much as the US sourced gluten.  

 Bulk density will also have an effect on time to full hydration, hydration rate, and 

absorption index. If a textured gluten has a lower bulk density, it can be thought that the 

gluten has more expansion. This means the individual textured gluten pieces will have 

more porosity, allowing for faster water uptake. The commercial product had a density of 

245.33 g/L. This is very similar to the high in-barrel moisture treatments. While still an 

important factor, the commercial product was made on a much larger extruder with 

slightly different process settings, so its density compared to the treatments may not hold 

much validity.  

3.4.4: Hydration Time and Rate 

  High In-Barrel-Moisture (36%) 

  Control   Phosphate Cysteine Sulfite 

USA 28.35   21.77 31.36 34.19 

EURO 28.59   8.45 38.35 34.05 

      

  Low In-Barrel-Moisture (32%) 

  Control   Phosphate Cysteine Sulfite 

USA 13.05   11.32 19.59 20.35 

EURO 15.02   6.07 37.15 15.11 

Table 3.6: Average Hydration Time for High and Low IBM with the Inclusion of 

Chemical Additives for Two Types of Wheat Gluten 
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 The amount of time it takes a textured vegetable protein to reach full hydration is 

a very important factor. Not only does it affect the preparation time for the TVP, but it 

also has an impact on the amount of water a TVP will absorb. If a TVP absorbs too much 

water, it may have a negative effect on the animal protein the TVP is being added to. 

Statistically, there were significant differences between each result, regardless of the 

source country, IBM level, and chemical treatment (p-value < 0.0001).  

 As stated earlier, phosphate increases the solubility of gluten. Because of this, 

better texturization is achieved. Because there is better texturization, there may be more 

porosity, leading to faster water uptake. This was confirmed; the phosphate treatments of 

both US and European sourced gluten have the lowest fully hydrated times. While the 

addition of cysteine, sulfite, as well as the lack of chemical treatment (control), appeared 

to be very similar observationally, there were significant differences when looking at the 

combination of source country and chemical treatment (< 0.0001). For the hydration time 

of commercial product, at value of 22.76 minutes was found. This is very similar to the 

high in-barrel moisture treatments. However, as stated earlier, the commercial product 

was made on a much larger extruder than the TX-52, so this data may not be valid for 

comparison to the treatments studied in this research. This is also true for the hydration 

rate data.  
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Figure 3.9: Hydration Rate of Textured Glutens at 32% and 36% IBM with Chemical 

Additives Added to Two Types of Gluten 

 

 As stated previously, the amount of water uptake will have an impact on the 

animal protein the TVP is being added to. If there is too much or too little water, the 

overall texture of the animal protein when the TVP is added may suffer. The above bar 

chart displays that the phosphate treatments, for both US and European sourced glutens, 

had the highest amount of water uptake. They also had the lowest time to full hydration. 

While this suggests the phosphate treatments are more texturized than the other 

treatments, it could lead to negative impacts on the animal protein.  

 Statistically, there are significant differences between the combination of source 

country, IBM level, and chemical treatment (< 0.0001). The interactions suggest that the 

trends are the same, respective to source country, IBM level and chemical treatment.   
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3.4.5: Fourier Transform Infrared Spectroscopy Results 

As stated previously, FTIR is a novel way to examine the secondary structures of gluten proteins after shear is applied. Due to 

time constraints at the USDA-ARS, only the U.S. sourced gluten was examined. 

 

 

 

 

 

 

 

 

 

Figure 3.10: FTIR spectra of control treatment, raw material and final product 
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Figure 3.11: FTIR spectra of cysteine treatment, raw material and final product 
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Figure 3.12: FTIR spectra of sulfite treatment, raw material and final product 
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Figure 3.13: FTIR spectra of phosphate treatment, raw material and final product 
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When looking at this FTIR data, the amide III region is the most important. This 

is because water vibrations do not interfere with the protein spectrum (Seabourn et al., 

2008). In each pairing of graphs, the raw gluten is found on the left with the final product 

on the right. It can be clearly seen that the final product displays a very different spectra 

than the raw material. Both the alpha helix and beta sheet peaks decrease in height for the 

final product. This indicates that the gluten proteins are having their secondary structures 

completely altered. This is due to the extrusion system being such a high heat and high 

shear environment. 

4. Conclusion 

 Pre-extrusion testing showed that there were very little differences between US 

and European sourced gluten. This was especially true for the Gluten Index results. As 

for phase transition analysis, differences were observed between each of the four 

treatments. However, the interaction between source country and chemical treatment had 

the same trends. While there was a clear difference between the combination of source 

country and treatment, the trends were similar.   

 At processing, a very aggressive screw profile was used to oxidize and reduce the 

disulfide bonds and thiol sulfhydryl groups that link gluten molecules. From SME data, it 

can be determined that reformation of disulfide bonds did occur. There was an increase in 

SME when comparing the control treatment to all three of the chemical treatments. The 

extruder had to work harder to overcome these new cross-linkages and force the newly 

formed gluten matrix through the die.   

 Final product characteristics are the most important part of this research since 

they will directly impact the consumers. There were significant differences between all of 
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the treatments, with some being more significant than others. However, the interactions 

between some treatments were very similar.  

Textured vegetable proteins have a clear need worldwide. From a health and 

lifestyle perspective, a growth in the textured vegetable protein industry will occur. More 

research is needed to better understand the mechanisms behind protein texturization as 

well as process optimization to create better textured vegetable proteins. 
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Chapter 4: Conclusion 

 This research yielded interesting results. While we were unable to extruded 

superior and inferior quality gluten through a pilot scale extruder, very distinct trends are 

found when comparing the European and U.S. sourced gluten. Previous research was 

unclear as to the mechanisms behind texturization. In theory, disulfide bonds were being 

reduced and then through the extrusion process, free thiol groups were forming new 

covalent bonds with those reduced disulfide bonds (Levine and Slade , 1990; Akdogan, 

1999; Areas, 1992). The research outlined in this manuscript takes the understanding 

behind textruization to the next level. By introducing reducing agents and a pH adjusting 

chemical, we found the flow behavior change with all four gluten types (superior, 

inferior, European, U.S.).  

 To further the understanding of how texturization occurs, a very systematic 

approach was designed. First, it was important to qualify the gluten types using simple 

physical tests. Gluten index and compression testing did this and showed that the addition 

of sulfite and cysteine drastically reduced the strength and cohesiveness of the gluten, 

regardless of the type. Phosphate appeared to have little effect on gluten strength, but this 

was somewhat expected, because there is no application of heat or high shear during 

testing. The effect of phosphate was more apparent during the next phases of the 

research. 

 After gaining an understanding of the effect of these chemicals on a physical 

basis, it was important to examine the physicochemical interactions the chemical 

additives had on the gluten types. This was done using Phase Transition Analysis (PTA).  

A PTA simulates an extrusion system without mechanical energy. They are typically 
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used to understand melt flow behaviors, and once those behaviors are found, the 

extrusion system can be more accurately built to make the best possible product. Like 

with the gluten index and compression tests, the reducing agents appeared to have a 

substantial impact on both thermal softening and flow of all four types of gluten. This 

was expected, since the glutens lost strength when sulfite and cysteine were added for 

gluten index and compression testing. Since the PTA adds heat and pressure, the effect of 

the reducing agents was seen more prominently. Literature supports that the gluten 

polymers become more mobile with the application of heat and pressure. This increased 

mobility leads to disruption of the protein sub-units and reduction of the disulfide bonds 

that link them together. It was known that texturization would not occur during PTA 

testing since there is no application of mechanical energy, which was an overall 

conclusion of the PTA tests. However, the reduction in thermal softening and flow 

indicates that when introduced to an extrusion system, the melt viscosity, when the 

reducing agents are present, will be lowered, creating a higher potential for new disulfide 

cross-linkages, or texturization
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Appendix A: SAS Output for Lab Scale Extrusion 

 
 

                                        The SAS System                                        

1 

 

                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Gluten              2    Bad Good 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          24 

                            Number of Observations Used          24 

 

                                        The SAS System                                        

2 

 

                                       The GLM Procedure 

 

Dependent Variable: RespDist 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7      9.00886000      1.28698000      14.34    <.0001 

 

      Error                       16      1.43558933      0.08972433 

 

      Corrected Total             23     10.44444933 

 

 

                     R-Square     Coeff Var      Root MSE    RespDist Mean 

 

                     0.862550      10.95344      0.299540         2.734667 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Gluten                       1      1.05336600      1.05336600      11.74    0.0035 

      Treatment                    3      7.07989500      2.35996500      26.30    <.0001 

      Gluten*Treatment             3      0.87559900      0.29186633       3.25    0.0494 

 

                                        The SAS System                                        

3 

 

                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                   RespDist      LSMEAN 

                        Gluten    Treatment          LSMEAN      Number 

 

                        Bad       Control        2.64333333           1 

                        Bad       Cysteine       2.95733333           2 

                        Bad       Phosphat       1.86766667           3 

                        Bad       Sulfite        2.63233333           4 

                        Good      Control        2.63166667           5 

                        Good      Cysteine       3.89066667           6 

                        Good      Phosphat       1.98966667           7 

                        Good      Sulfite        3.26466667           8 
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Least Squares Means for effect Gluten*Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                 Dependent Variable: RespDist 

 

Compression Test: Gluten*Treatment 

i/j 1 2 3 4 5 6 7 8 

1 x 0.8922 0.0853 1 1 0.0021 0.2005 0.2467 

2 0.8922 x 0.0074 0.8749 0.8738 0.0255 0.0195 0.9019 

3 0.0853 0.0074 x 0.0925 0.093 < 0.001 0.9995 0.0007 

4 1.00 0.8749 0.0925 x 1.00 0.0019 0.2154 0.2301 

5 1.00 0.8738 0.093 1.00 x 0.0019 0.2163 0.2292 

6 0.0021 0.0255 < 0.001 0.0019 0.0019 x < 0.0001 0.2396 

7 0.2005 0.0195 0.2154 0.2154 0.2163 < 0.0001 x 0.0017 

8 0.2467 0.9019 0.2301 0.2301 0.2292 0.2396 0.2396 x 

Table A.1: Two-way comparison between gluten type and chemical treatment  

                                         

 

The SAS System                                        4 

 

                                                                         m 

                                                                        Soft     mMelt 

         Obs    Gluten    Moisture    Treatment    _TYPE_    _FREQ_     Temp     Temp 

 

           1     Bad       High       Control         0         2      42.70    116.15 

           2     Bad       High       Cysteine        0         2      46.15    125.05 

           3     Bad       High       Phosphat        0         2      39.25     95.65 

           4     Bad       High       Sulfite         0         2      43.80    117.70 

           5     Bad       Low        Control         0         2      60.00    155.90 

           6     Bad       Low        Cysteine        0         2      62.55    156.75 

           7     Bad       Low        Phosphat        0         2      65.10    152.15 

           8     Bad       Low        Sulfite         0         2      67.05    165.00 

           9     Bad       Medium     Control         0         2      45.30    118.55 

          10     Bad       Medium     Cysteine        0         2      46.45    127.75 

          11     Bad       Medium     Phosphat        0         2      51.25    122.15 

          12     Bad       Medium     Sulfite         0         2      53.25    139.80 

          13     Good      High       Control         0         2      43.25    127.30 

          14     Good      High       Cysteine        0         2      47.00    126.80 

          15     Good      High       Phosphat        0         2      48.15    114.30 

          16     Good      High       Sulfite         0         2      46.65    125.75 

          17     Good      Low        Control         0         2      50.20    109.55 

          18     Good      Low        Cysteine        0         2      54.55    145.80 

          19     Good      Low        Phosphat        0         2      58.90    140.20 

          20     Good      Low        Sulfite         0         2      60.90    151.15 

          21     Good      Medium     Control         0         2      53.10    143.55 

          22     Good      Medium     Cysteine        0         2      50.10    136.65 

          23     Good      Medium     Phosphat        0         2      49.05    117.95 

          24     Good      Medium     Sulfite         0         2      47.80    133.50 

 

                                        The SAS System                                        

5 

 

                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 
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                  Gluten              2    Bad Good 

 

                  Moisture            3    High Low Medium 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          24 

                            Number of Observations Used          24 

 

                                        The SAS System                                        

6 

 

                                       The GLM Procedure 

 

Dependent Variable: mSoftTemp 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        6     1036.206042      172.701007      10.94    <.0001 

 

      Error                       17      268.263542       15.780208 

 

      Corrected Total             23     1304.469583 

 

 

                    R-Square     Coeff Var      Root MSE    mSoftTemp Mean 

 

                    0.794350      7.735363      3.972431          51.35417 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Gluten                       1       7.2600000       7.2600000       0.46    0.5067 

      Moisture                     2     974.4339583     487.2169792      30.88    <.0001 

      Treatment                    3      54.5120833      18.1706944       1.15    0.3570 

 

                                        The SAS System                                        

7 

 

                                       The GLM Procedure 

 

Dependent Variable: mMeltTemp 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        6     4184.761667      697.460278       4.63    0.0058 

 

      Error                       17     2560.412917      150.612525 

 

      Corrected Total             23     6745.174583 

 

 

                    R-Square     Coeff Var      Root MSE    mMeltTemp Mean 

 

                    0.620408      9.305814      12.27243          131.8792 

 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Gluten                       1       16.833750       16.833750       0.11    0.7422 

      Moisture                     2     3286.243333     1643.121667      10.91    0.0009 

      Treatment                    3      881.684583      293.894861       1.95    0.1597 

 

                                        The SAS System                                        

8 
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                                       The GLM Procedure 

                                      Least Squares Means 

 

                                            mSoftTemp      LSMEAN 

                             Moisture          LSMEAN      Number 

 

                             High          44.6187500           1 

                             Low           59.9062500           2 

                             Medium        49.5375000           3 

 

 

                           Least Squares Means for effect Moisture 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                Dependent Variable: mSoftTemp 

 

                         

Thermal Softening: Moisture Effect 

i/j 1 2 3 

1 x < 0.0001 0.0241 

2 < 0.0001 x < 0.0001 

3 0.0241 < 0.0001 x 
 

Table A.2: Moisture effect on gluten types for thermal softening 

 

                                            mMeltTemp      LSMEAN 

                             Moisture          LSMEAN      Number 

 

                             High          118.587500           1 

                             Low           147.062500           2 

                             Medium        129.987500           3 

 

 

                           Least Squares Means for effect Moisture 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                Dependent Variable: mMeltTemp 

 

 

Thermal Flow: Moisture Effect 

i/j 1 2 3 

1 x 0.0002 0.0806 

2 0.0002 x 0.0128 

3 0.0806 0.0128 x 
 

Table A.3: Moisture effect on gluten types for thermal flow 

 

NOTE: To ensure overall protection level, only probabilities associated with pre-planned 

      comparisons should be used. 

 

 

 

 

 

 

 

                                        The SAS System                                        

9 

 

                                       The GLM Procedure 
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                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Gluten              2    Bad Good 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          44 

                            Number of Observations Used          44 

 

 

 

 

 

 

 

 

 

                                        The SAS System                                       

10 

 

                                       The GLM Procedure 

 

Dependent Variable: GlutenIndex 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     43968.62386      6281.23198      46.62    <.0001 

 

      Error                       36      4849.95500       134.72097 

 

      Corrected Total             43     48818.57886 

 

 

                   R-Square     Coeff Var      Root MSE    GlutenIndex Mean 

 

                   0.900653      44.49814      11.60694            26.08409 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Gluten                       1      3180.13630      3180.13630      23.61    <.0001 

      Treatment                    3     34916.80803     11638.93601      86.39    <.0001 

      Gluten*Treatment             3      5719.71561      1906.57187      14.15    <.0001 

 

                                        The SAS System                                       

11 

 

                                       The GLM Procedure 

 

Dependent Variable: WetGluten 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     1371.707955      195.958279       2.31    0.0474 

 

      Error                       36     3057.660000       84.935000 

 

      Corrected Total             43     4429.367955 

 

 

                    R-Square     Coeff Var      Root MSE    WetGluten Mean 

 

                    0.309685      31.03749      9.216019          29.69318 
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      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Gluten                       1     479.4224074     479.4224074       5.64    0.0230 

      Treatment                    3     376.6854545     125.5618182       1.48    0.2368 

      Gluten*Treatment             3     444.0568182     148.0189394       1.74    0.1756 

 

 

 

 

                                        The SAS System                                       

12 

 

                                                                        m 

                                                           mResp      Gluten      mWet 

        Obs    Gluten    Treatment    _TYPE_    _FREQ_      Dist      Index      Gluten 

 

         1      Bad      Control         0         4      2.64333    58.1500    32.0750 

         2      Bad      Cysteine        0         6      2.95733     0.3167    22.2167 

         3      Bad      Phosphat        0         6      1.86767    23.2667    33.0167 

         4      Bad      Sulfite         0         6      2.63233     1.3833    19.2833 

         5      Good     Control         0         4      2.63167    73.9000    34.6750 

         6      Good     Cysteine        0         6      3.89067     0.6833    32.7333 

         7      Good     Phosphat        0         6      1.98967    76.6667    32.0333 

         8      Good     Sulfite         0         6      3.26467     0.9333    33.9667 

 

                                        The SAS System                                       

13 

 

                                      The CORR Procedure 

 

                     3  Variables:    mRespDist    mGlutenIndex mWetGluten 

 

 

                                      Simple Statistics 

 

Variable               N          Mean       Std Dev           Sum       Minimum       

Maximum 

 

mRespDist              8       2.73467       0.65498      21.87733       1.86767       

3.89067 

mGlutenIndex           8      29.41250      34.52605     235.30000       0.31667      

76.66667 

mWetGluten             8      30.00000       5.83130     240.00000      19.28333      

34.67500 

 

 

                           Pearson Correlation Coefficients, N = 8 

                                  Prob > |r| under H0: Rho=0 

 

                                         mResp       mGluten          mWet 

                                          Dist         Index        Gluten 

 

                    mRespDist          1.00000      -0.56223      -0.00657 

                                                      0.1469        0.9877 

 

                    mGlutenIndex      -0.56223       1.00000       0.48286 

                                        0.1469                      0.2255 

 

                    mWetGluten        -0.00657       0.48286       1.00000 

                                        0.9877        0.2255 
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Appendix B: SAS Output for Pilot Scale Extrusion 

 
 

                                        The SAS System                                        

1 

 

                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    EURO US 

 

                  Moisture            2    High Low 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          80 

                            Number of Observations Used          80 

 

                                        The SAS System                                        

2 

 

                                       The GLM Procedure 

 

Dependent Variable: AbsIndex 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                       15     43.76114645      2.91740976     211.46    <.0001 

 

      Error                       64      0.88297190      0.01379644 

 

      Corrected Total             79     44.64411835 

 

 

                     R-Square     Coeff Var      Root MSE    AbsIndex Mean 

 

                     0.980222      7.307371      0.117458         1.607394 

 

 

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

 

      Country                      1      0.01036263      0.01036263       0.75    0.3894 

      Moisture                     1     15.43568425     15.43568425    1118.82    <.0001 

      Country*Moisture             1      0.65675940      0.65675940      47.60    <.0001 

      Treatment                    3     22.01649431      7.33883144     531.94    <.0001 

      Country*Treatment            3      3.54496373      1.18165458      85.65    <.0001 

      Moisture*Treatment           3      1.61705386      0.53901795      39.07    <.0001 

      Countr*Moistu*Treatm         3      0.47982826      0.15994275      11.59    <.0001 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                         AbsIndex      LSMEAN 

                 Country    Moisture    Treatment          LSMEAN      Number 

 

                 EURO       High        Control        0.75800000           1 

                 EURO       High        Cysteine       0.75230000           2 

                 EURO       High        Phosphat       2.54920000           3 

                 EURO       High        Sulfite        1.02100000           4 

                 EURO       Low         Control        1.60670000           5 

                 EURO       Low         Cysteine       1.15300000           6 

                 EURO       Low         Phosphat       3.04170000           7 

                 EURO       Low         Sulfite        2.06830000           8 

                 US         High        Control        0.82740000           9 

                 US         High        Cysteine       0.88260000          10 

                 US         High        Phosphat       1.68190000          11 

                 US         High        Sulfite        0.87270000          12 

                 US         Low         Control        2.48130000          13 

                 US         Low         Cysteine       1.49810000          14 

                 US         Low         Phosphat       2.63670000          15 

                 US         Low         Sulfite        1.88740000          16 

 

 

                     Least Squares Means for effect Countr*Moistu*Treatm 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                 Dependent Variable: AbsIndex 
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Table B.1: Three-way comparison between source country, in-barrel moisture and chemical treatment for absorption index 

Absorption Index: Country*Moisture*Treatment 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 x 1 <.0001 0.0535 <.0001 0.0002 <.0001 <.0001 0.9999 0.9453 <.0001 0.9724 <.0001 <.0001 <.0001 <.0001 

2 1 x <.0001 0.0434 <.0001 0.0001 <.0001 <.0001 0.9997 0.9231 <.0001 0.9584 <.0001 <.0001 <.0001 <.0001 

3 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.9999 <.0001 0.9981 <.0001 

4 0.0535 0.0434 <.0001 x <.0001 0.9155 <.0001 <.0001 0.4129 0.8824 <.0001 0.8181 <.0001 <.0001 <.0001 <.0001 

5 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 0.9997 <.0001 <.0001 0.983 <.0001 0.0274 

6 0.0002 0.0001 <.0001 0.9155 <.0001 x <.0001 <.0001 0.0042 0.0407 <.0001 0.0279 <.0001 <.0001 <.0001 <.0001 

7 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

8 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 0.5297 

9 0.9999 0.9997 <.0001 0.4129 <.0001 0.0042 <.0001 <.0001 x 1 <.0001 1 <.0001 <.0001 <.0001 <.0001 

10 0.9453 0.9231 <.0001 0.8824 <.0001 0.0407 <.0001 <.0001 1 x <.0001 1 <.0001 <.0001 <.0001 <.0001 

11 <.0001 <.0001 <.0001 <.0001 0.9997 <.0001 <.0001 0.0002 <.0001 <.0001 x <.0001 <.0001 0.5024 <.0001 0.3144 

12 0.9724 0.9584 <.0001 0.8181 <.0001 0.0279 <.0001 <.0001 1 1 <.0001 x <.0001 <.0001 <.0001 <.0001 

13 <.0001 <.0001 0.9999 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 0.763 <.0001 

14 <.0001 <.0001 <.0001 <.0001 0.983 0.0017 <.0001 <.0001 <.0001 <.0001 0.5024 <.0001 <.0001 x <.0001 0.0002 

15 <.0001 <.0001 0.9981 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.763 <.0001 x <.0001 

16 <.0001 <.0001 <.0001 <.0001 0.0274 <.0001 <.0001 0.5297 <.0001 <.0001 0.3144 <.0001 <.0001 0.0002 <.0001 x 
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                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    Euro US 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          16 

                            Number of Observations Used          16 

 

                                        The SAS System                                        

6 

 

                                       The GLM Procedure 

 

Dependent Variable: GlutenIndex 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     25785.44938      3683.63563     476.73    <.0001 

 

      Error                        8        61.81500         7.72687 

 

      Corrected Total             15     25847.26438 

 

 

                   R-Square     Coeff Var      Root MSE    GlutenIndex Mean 

 

                   0.997608      6.917967      2.779726            40.18125 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1        66.83062        66.83062       8.65    0.0187 

      Treatment                    3     25634.74688      8544.91563    1105.87    <.0001 

      Country*Treatment            3        83.87188        27.95729       3.62    0.0647 

 

                                        The SAS System                                        

7 

 

                                       The GLM Procedure 

                                      Least Squares Means 

 

                                                GlutenIndex 

                                    Country          LSMEAN 

 

                                    Euro         38.1375000 

                                    US           42.2250000 

 

 

                                                 GlutenIndex 

                                   Treatment          LSMEAN 

 

                                   Control        84.4750000 

                                   Cysteine        0.5500000 

                                   Phosphat       75.7000000 

                                   Sulfite        -0.0000000 
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                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    Euro US 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          16 

                            Number of Observations Used          16 
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                                       The GLM Procedure 

 

Dependent Variable: WetGluten 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     3456.959375      493.851339     136.35    <.0001 

 

      Error                        8       28.975000        3.621875 

 

      Corrected Total             15     3485.934375 

 

 

                    R-Square     Coeff Var      Root MSE    WetGluten Mean 

 

                    0.991688      7.512943      1.903122          25.33125 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1       13.505625       13.505625       3.73    0.0896 

      Treatment                    3     3438.711875     1146.237292     316.48    <.0001 

      Country*Treatment            3        4.741875        1.580625       0.44    0.7330 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                             WetGluten      LSMEAN 

                             Treatment          LSMEAN      Number 

 

                             Control        33.0750000           1 

                             Cysteine       35.4250000           2 

                             Phosphat       32.8250000           3 

                             Sulfite        -0.0000000           4 

 

 

                           Least Squares Means for effect Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                Dependent Variable: WetGluten 
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Wet Gluten Percent: Country*Treatment 

i/j 1 2 3 4 

1 x 0.3625 0.9975 < 0.0001 

2 0.3625 x 0.2881 < 0.0001 

3 0.9975 0.2281 x < 0.0001 

4 < 0.0001 < 0.0001 < 0.0001 x 
 

Table B.2: Two-way comparison between source country and chemical treatment  

                                        The SAS System                                       

11 

 

                  Obs    Country    Moisture    Treatment     Loss     Loss2 

 

                    1     US          High      Phosphat     0.00%       0.0 

                    2     US          High      Phosphat     7.30%       7.3 

                    3     US          High      Phosphat     4.10%       4.1 

                    4     US          Low       Phosphat     5.90%       5.9 

                    5     US          Low       Phosphat     5.50%       5.5 

                    6     US          Low       Phosphat     3.20%       3.2 

                    7     US          High      Cysteine     19.30%     19.3 

                    8     US          High      Cysteine     19.50%     19.5 

                    9     US          High      Cysteine     20.60%     20.6 

                   10     US          Low       Cysteine     2.70%       2.7 

                   11     US          Low       Cysteine     3.50%       3.5 

                   12     US          Low       Cysteine     5.70%       5.7 

                   13     US          High      Sulfite      11.80%     11.8 

                   14     US          High      Sulfite      7.50%       7.5 

                   15     US          High      Sulfite      3.30%       3.3 

                   16     US          Low       Sulfite      3.40%       3.4 

                   17     US          Low       Sulfite      4.20%       4.2 

                   18     US          Low       Sulfite      0.80%       0.8 

                   19     US          High      Control      17.10%     17.1 

                   20     US          High      Control      13.40%     13.4 

                   21     US          High      Control      15.60%     15.6 

                   22     US          Low       Control      3.50%       3.5 

                   23     US          Low       Control      2.40%       2.4 

                   24     US          Low       Control      4.20%       4.2 

                   25     Euro        High      Phosphat     0.10%       0.1 

                   26     Euro        High      Phosphat     0.00%       0.0 

                   27     Euro        High      Phosphat     0.50%       0.5 

                   28     Euro        Low       Phosphat     13.80%     13.8 

                   29     Euro        Low       Phosphat     6.90%       6.9 

                   30     Euro        Low       Phosphat     6.60%       6.6 

                   31     Euro        High      Cysteine     13.40%     13.4 

                   32     Euro        High      Cysteine     7.90%       7.9 

                   33     Euro        High      Cysteine     8.10%       8.1 

                   34     Euro        Low       Cysteine     13.60%     13.6 

                   35     Euro        Low       Cysteine     10.70%     10.7 

                   36     Euro        Low       Cysteine     9.30%       9.3 

                   37     Euro        High      Sulfite      8.20%       8.2 

                   38     Euro        High      Sulfite      13.00%     13.0 

                   39     Euro        High      Sulfite      4.10%       4.1 

                   40     Euro        Low       Sulfite      15.00%     15.0 

                   41     Euro        Low       Sulfite      15.30%     15.3 

                   42     Euro        Low       Sulfite      14.20%     14.2 

                   43     Euro        High      Control      11.20%     11.2 

                   44     Euro        High      Control      4.20%       4.2 

                   45     Euro        High      Control      10.10%     10.1 

                   46     Euro        Low       Control      5.20%       5.2 

                   47     Euro        Low       Control      1.00%       1.0 

                   48     Euro        Low       Control      9.80%       9.8 
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                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    Euro US 

 

                  Moisture            2    High Low 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          48 

                            Number of Observations Used          48 

 

                                        The SAS System                                       

13 

 

                                       The GLM Procedure 

 

Dependent Variable: Loss2 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                       15     1247.044792       83.136319      10.32    <.0001 

 

      Error                       32      257.673333        8.052292 

 

      Corrected Total             47     1504.718125 

 

 

                      R-Square     Coeff Var      Root MSE    Loss2 Mean 

 

                      0.828756      35.22304      2.837656      8.056250 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1       6.5268750       6.5268750       0.81    0.3747 

      Moisture                     1      60.5252083      60.5252083       7.52    0.0099 

      Country*Moisture             1     380.2502083     380.2502083      47.22    <.0001 

      Treatment                    3     271.9506250      90.6502083      11.26    <.0001 

      Country*Treatment            3     142.9756250      47.6585417       5.92    0.0025 

      Moisture*Treatment           3     344.8206250     114.9402083      14.27    <.0001 

      Countr*Moistu*Treatm         3      39.9956250      13.3318750       1.66    0.1962 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                                 LSMEAN 

                        Country    Moisture    Loss2 LSMEAN      Number 

 

                        Euro       High           6.7333333           1 

                        Euro       Low           10.1166667           2 

                        US         High          11.6250000           3 

                        US         Low            3.7500000           4 

 

 

                       Least Squares Means for effect Country*Moisture 
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                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                  Dependent Variable: Loss2 

 

 

 

 

 

 

 

 

Table B.3: Two-way comparison between source country and in-barrel moisture  
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                                 LSMEAN 

                       Country    Treatment    Loss2 LSMEAN      Number 

 

                       Euro       Control         6.9166667           1 

                       Euro       Cysteine       10.5000000           2 

                       Euro       Phosphat        4.6500000           3 

                       Euro       Sulfite        11.6333333           4 

                       US         Control         9.3666667           5 

                       US         Cysteine       11.8833333           6 

                       US         Phosphat        4.3333333           7 

                       US         Sulfite         5.1666667           8 

 

 

                       Least Squares Means for effect Country*Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                  Dependent Variable: Loss2 

 

Gluten Integrity: Country*Treatment 

i/j 1 2 3 4 5 6 7 8 

1 x 0.3855 0.8579 0.111 0.8041 0.08 0.76 0.9589 

2 0.3855 x 0.0225 0.9967 0.9967 0.9889 0.0138 0.0482 

3 0.8579 0.0225 x 0.0037 0.111 0.0024 1 1 

4 0.111 0.9967 0.0037 x 0.8579 1 0.0022 0.0086 

5 0.8041 0.9967 0.111 0.8579 x 0.7825 0.0731 0.2065 

6 0.08 0.9889 0.0024 1 0.7825 x 0.0014 0.0057 

7 0.76 0.0138 1 0.0022 0.0731 0.0014 x 0.9995 

8 0.9589 0.0482 1 0.0086 0.2065 0.0057 0.9995 x 
 

Table B.4: Two-way comparison between source country and chemical treatment for 

TVP integrity  

Gluten Integrity: Country*Moisture 

i/j 1 2 3 4 

1 x 0.0307 0.001 0.0673 

2 0.0307 x 0.5684 < 0.0001 

3 0.001 0.5684 x < 0.0001 

4 0.0673 < 0.0001 < 0.0001 x 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                                  LSMEAN 

                       Moisture    Treatment    Loss2 LSMEAN      Number 

 

                       High        Control        11.9333333           1 

                       High        Cysteine       14.8000000           2 

                       High        Phosphat        2.0000000           3 

                       High        Sulfite         7.9833333           4 

                       Low         Control         4.3500000           5 

                       Low         Cysteine        7.5833333           6 

                       Low         Phosphat        6.9833333           7 

                       Low         Sulfite         8.8166667           8 

 

 

                      Least Squares Means for effect Moisture*Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                  Dependent Variable: Loss2 

 

Gluten Integrity: Moisture*Treatment 

i/j 1 2 3 4 5 6 7 8 

1 x 0.6563 <.0001 0.2704 0.0013 0.1738 0.0818 0.5593 

2 0.6563 x <.0001 0.0049 <.0001 0.0025 0.0009 0.0184 

3 <.0001 <.0001 x 0.0184 0.8346 0.0335 0.0782 0.0049 

4 0.2704 0.0049 0.0184 x 0.3684 1 0.9985 0.9995 

5 0.0013 <.0001 0.8346 0.3684 x 0.5141 0.7426 0.1513 

6 0.1738 0.0025 0.0335 1 0.5141 x 0.9999 0.9944 

7 0.0818 0.0009 0.0782 0.9985 0.7426 0.9999 x 0.9477 

8 0.5593 0.0184 0.0049 0.9995 0.1513 0.9944 0.9477 x 
 

Table B.5: Two-way comparison between in-barrel moisture and chemical treatment for 

TVP integrity 
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                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    Euro US 

 

                  Moisture            2    High Low 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          48 

                            Number of Observations Used          48 
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                                       The GLM Procedure 

 

Dependent Variable: Time 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                       15     5074.126315      338.275088     527.16    <.0001 

 

      Error                       32       20.534067        0.641690 

 

      Corrected Total             47     5094.660381 

 

 

                      R-Square     Coeff Var      Root MSE     Time Mean 

 

                      0.995969      3.532671      0.801055      22.67563 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1        1.459519        1.459519       2.27    0.1413 

      Moisture                     1     1434.125352     1434.125352    2234.92    <.0001 

      Country*Moisture             1       43.643602       43.643602      68.01    <.0001 

      Treatment                    3     2503.001556      834.333852    1300.21    <.0001 

      Country*Treatment            3      734.239290      244.746430     381.41    <.0001 

      Moisture*Treatment           3      246.909023       82.303008     128.26    <.0001 

      Countr*Moistu*Treatm         3      110.747973       36.915991      57.53    <.0001 
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                                       The GLM Procedure 

 

Dependent Variable: Rate 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                       15     2413.895501      160.926367     147.03    <.0001 

 

      Error                       32       35.023712        1.094491 

 

      Corrected Total             47     2448.919213 

 

 

                      R-Square     Coeff Var      Root MSE     Rate Mean 

 

                      0.985698      12.90287      1.046179      8.108116 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1      116.192105      116.192105     106.16    <.0001 

      Moisture                     1      446.778223      446.778223     408.21    <.0001 

      Country*Moisture             1        0.105784        0.105784       0.10    0.7579 

      Treatment                    3     1289.728511      429.909504     392.79    <.0001 

      Country*Treatment            3      460.834932      153.611644     140.35    <.0001 

      Moisture*Treatment           3       82.829285       27.609762      25.23    <.0001 

      Countr*Moistu*Treatm         3       17.426662        5.808887       5.31    0.0044 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 
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                                                                       LSMEAN 

                 Country    Moisture    Treatment     Time LSMEAN      Number 

 

                 Euro       High        Control        28.3500000           1 

                 Euro       High        Cysteine       31.3666667           2 

                 Euro       High        Phosphat       21.7700000           3 

                 Euro       High        Sulfite        34.1966667           4 

                 Euro       Low         Control        13.0500000           5 

                 Euro       Low         Cysteine       19.5966667           6 

                 Euro       Low         Phosphat       11.3233333           7 

                 Euro       Low         Sulfite        20.3566667           8 

                 US         High        Control        28.5933333           9 

                 US         High        Cysteine       38.3500000          10 

                 US         High        Phosphat        8.4500000          11 

                 US         High        Sulfite        34.0566667          12 

                 US         Low         Control        15.0200000          13 

                 US         Low         Cysteine       37.1500000          14 

                 US         Low         Phosphat        6.0700000          15 

                 US         Low         Sulfite        15.1100000          16 

 

 

                     Least Squares Means for effect Countr*Moistu*Treatm 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 
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Table B.6: Three-way comparison between source country, in-barrel moisture, and chemical treatment for TVP hydration time 

Hydration Time: Country*Moisture*Treatment 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 x 0.005 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 1 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

2 0.005 x <.0001 0.0107 <.0001 <.0001 <.0001 <.0001 0.0134 <.0001 <.0001 0.0186 <.0001 <.0001 <.0001 <.0001 

3 <.0001 <.0001 x <.0001 <.0001 0.1184 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

4 <.0001 0.0107 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 1 <.0001 0.0065 <.0001 <.0001 

5 <.0001 <.0001 <.0001 <.0001 x <.0001 0.408 0.1686 <.0001 <.0001 <.0001 <.0001 0.2194 <.0001 <.0001 0.1686 

6 <.0001 <.0001 0.1184 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

7 <.0001 <.0001 <.0001 <.0001 0.408 <.0001 x <.0001 <.0001 <.0001 0.009 <.0001 0.0003 <.0001 <.0001 0.0002 

8 <.0001 <.0001 0.7154 <.0001 <.0001 0.9978 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

9 1 0.0134 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

10 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 0.8854 <.0001 <.0001 

11 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.009 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 0.0588 <.0001 

12 <.0001 0.0186 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 0.0037 <.0001 <.0001 

13 <.0001 <.0001 <.0001 <.0001 0.2194 <.0001 0.0003 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 <.0001 1 

14 <.0001 <.0001 <.0001 0.0065 <.0001 <.0001 <.0001 <.0001 <.0001 0.8854 <.0001 0.0037 <.0001 x <.0001 <.0001 

15 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0588 <.0001 <.0001 <.0001 x <.0001 

16 <.0001 <.0001 <.0001 <.0001 0.1686 <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 1 <.0001 <.0001 x 
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                                                                       LSMEAN 

                 Country    Moisture    Treatment     Rate LSMEAN      Number 

 

                 Euro       High        Control         2.8206715           1 

                 Euro       High        Cysteine        2.5155117           2 

                 Euro       High        Phosphat        5.8389144           3 

                 Euro       High        Sulfite         2.6426587           4 

                 Euro       Low         Control        11.2935227           5 

                 Euro       Low         Cysteine        6.3058486           6 

                 Euro       Low         Phosphat       14.4807090           7 

                 Euro       Low         Sulfite         6.5202901           8 

                 US         High        Control         2.5814692           9 

                 US         High        Cysteine        2.1963494          10 

                 US         High        Phosphat       18.3475345          11 

                 US         High        Sulfite         3.5147620          12 

                 US         Low         Control         8.3922510          13 

                 US         Low         Cysteine        3.4600722          14 

                 US         Low         Phosphat       29.0345964          15 

                 US         Low         Sulfite         9.7846900          16 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                     Least Squares Means for effect Countr*Moistu*Treatm 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                   Dependent Variable: Rate 
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Table B.7: Three-way comparison between source country, in-barrel moisture, and chemical treatment for TVP hydration rate 

Hydration Rate: Country*Moisture*Treatment 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 x 1 0.0748 1 <.0001 0.0202 <.0001 0.0106 1 1 <.0001 1 <.0001 1 <.0001 <.0001 

2 1 x 0.0323 1 <.0001 0.008 <.0001 0.0041 1 1 <.0001 0.9976 <.0001 0.9987 <.0001 <.0001 

3 0.0748 0.0323 x 0.0462 <.0001 1 <.0001 1 0.0389 0.0126 <.0001 0.361 0.2288 0.326 <.0001 0.0049 

4 1 1 0.0462 x <.0001 0.0118 <.0001 0.0061 1 1 <.0001 0.9995 <.0001 0.9997 <.0001 <.0001 

5 <.0001 <.0001 <.0001 <.0001 x 0.0002 0.0473 0.0003 <.0001 <.0001 <.0001 <.0001 0.1011 <.0001 <.0001 0.9109 

6 0.0202 0.008 1 0.0118 0.0002 x <.0001 1 0.0098 0.0029 <.0001 0.1329 0.5325 0.1162 <.0001 0.0205 

7 <.0001 <.0001 <.0001 <.0001 0.0473 <.0001 x <.0001 <.0001 <.0001 0.0063 <.0001 <.0001 <.0001 <.0001 0.0004 

8 0.0106 0.0041 1 0.0061 0.0003 1 <.0001 0.005 0.005 0.0015 <.0001 0.0773 0.6963 0.0669 <.0001 0.0382 

9 1 1 0.0389 1 <.0001 0.0098 <.0001 0.0015 x 1 <.0001 0.9988 <.0001 0.9994 <.0001 <.0001 

10 1 1 0.0126 1 <.0001 0.0029 <.0001 <.0001 1 x <.0001 0.9676 <.0001 0.9773 <.0001 <.0001 

11 <.0001 <.0001 0.361 <.0001 <.0001 <.0001 0.0063 <.0001 <.0001 <.0001 x <.0001 <.0001 <.0001 <.0001 <.0001 

12 1 0.9976 0.2288 0.9995 <.0001 0.1329 <.0001 0.0773 0.9988 0.9676 <.0001 x 0.0002 1 <.0001 <.0001 

13 <.0001 <.0001 <.0001 <.0001 0.1011 0.5325 <.0001 0.6963 <.0001 <.0001 <.0001 0.0002 x 0.0002 <.0001 0.9501 

14 1 0.9987 0.326 0.9997 <.0001 0.1162 <.0001 0.0669 0.9994 0.9773 <.0001 1 0.0002 x <.0001 <.0001 

15 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 x <.0001 

16 <.0001 <.0001 0.0049 <.0001 0.9109 0.0205 0.0004 0.0382 <.0001 <.0001 <.0001 <.0001 0.9501 <.0001 <.0001 x 
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                                        The SAS System                                       

23 

 

                                       The GLM Procedure 

 

                                    Class Level Information 

 

                  Class          Levels    Values 

 

                  Country             2    EURO US 

 

                  Treatment           4    Control Cysteine Phosphat Sulfite 

 

 

                            Number of Observations Read          16 

                            Number of Observations Used          16 
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                                       The GLM Procedure 

 

Dependent Variable: SoftTemp 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     184.4493750      26.3499107       8.19    0.0041 

 

      Error                        8      25.7450000       3.2181250 

 

      Corrected Total             15     210.1943750 

 

 

                     R-Square     Coeff Var      Root MSE    SoftTemp Mean 

 

                     0.877518      4.325940      1.793913         41.46875 

 

 

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1      27.3006250      27.3006250       8.48    0.0195 

      Treatment                    3     140.0318750      46.6772917      14.50    0.0013 

      Country*Treatment            3      17.1168750       5.7056250       1.77    0.2299 
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25 

 

                                       The GLM Procedure 

 

Dependent Variable: MeltTemp 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

      Model                        7     1892.109375      270.301339      14.33    0.0006 

 

      Error                        8      150.895000       18.861875 

 

      Corrected Total             15     2043.004375 

 

 

                     R-Square     Coeff Var      Root MSE    MeltTemp Mean 

 

                     0.926141      4.509014      4.343026         96.31875 
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      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

      Country                      1     1550.390625     1550.390625      82.20    <.0001 

      Treatment                    3      243.076875       81.025625       4.30    0.0441 

      Country*Treatment            3       98.641875       32.880625       1.74    0.2354 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                                       H0:LSMean1= 

                                           SoftTemp      LSMean2 

                            Country          LSMEAN       Pr > |t| 

 

                            EURO         40.1625000         0.0195 

                            US           42.7750000 

 

 

                                                       H0:LSMean1= 

                                           MeltTemp      LSMean2 

                            Country          LSMEAN       Pr > |t| 

 

                            EURO          86.475000         <.0001 

                            US           106.162500 
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                                       The GLM Procedure 

                                      Least Squares Means 

                          Adjustment for Multiple Comparisons: Tukey 

 

                                              SoftTemp      LSMEAN 

                             Treatment          LSMEAN      Number 

 

                             Control        40.8250000           1 

                             Cysteine       39.2000000           2 

                             Phosphat       46.4750000           3 

                             Sulfite        39.3750000           4 

 

 

                           Least Squares Means for effect Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                 Dependent Variable: SoftTemp 

 

Thermal Softening 

i/j 1 2 3 4 

1 x 0.5983 0.0092 0.6755 

2 0.5983 x 0.002 0.999 

3 0.0092 0.002 x 0.0023 

4 0.6755 0.999 0.0023 x 
 

Table B.8: Effect of chemical treatment on thermal softening 
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                                              MeltTemp      LSMEAN 

                             Treatment          LSMEAN      Number 

 

                             Control         97.475000           1 

                             Cysteine        92.600000           2 

                             Phosphat       102.200000           3 

                             Sulfite         93.000000           4 

 

 

                           Least Squares Means for effect Treatment 

                             Pr > |t| for H0: LSMean(i)=LSMean(j) 

 

                                 Dependent Variable: MeltTemp 

 

Thermal Flow 

i/j 1 2 3 4 

1 x 0.4361 0.4604 0.5024 

2 0.4361 x 0.0557 0.9991 

3 0.4604 0.0557 x 0.0669 

4 0.5024 0.9991 0.0669 x 

 

Table B.9: Effect of chemical treatment on thermal flow 
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