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Abstract

In this dissertation, goodness-of-fit tests are proposed for checking the adequacy of para-
metric distributional forms of the regression error density functions and the error-prone
predictor density function in measurement error models, when replications of the surrogates
of the latent variables are available.

In the first project, we propose goodness-of-fit tests on the density function of the re-
gression error in the errors-in-variables model. Instead of assuming that the distribution
of the measurement error is known as is done in most relevant literature, we assume that
replications of the surrogates of the latent variables are available. The test statistic is based
upon a weighted integrated squared distance between a nonparametric estimate and a semi-
parametric estimate of the density functions of certain residuals. Under the null hypothesis,
the test statistic is shown to be asymptotically normal. Consistency and local power results
of the proposed test under fixed alternatives and local alternatives are also established. Fi-
nite sample performance of the proposed test is evaluated via simulation studies. A real data
example is also included to demonstrate the application of the proposed test.

In the second project, we propose a class of goodness-of-fit tests for checking the para-
metric distributional forms of the error-prone random variables in the classic additive mea-
surement error models. We also assume that replications of the surrogates of the error-prone
variables are available. The test statistic is based upon a weighted integrated squared dis-
tance between a nonparametric estimator and a semi-parametric estimator of the density
functions of the averaged surrogate data. Under the null hypothesis, the minimum distance
estimator of the distribution parameters and the test statistics are shown to be asymptot-
ically normal. Consistency and local power of the proposed tests under fixed alternatives
and local alternatives are also established. Finite sample performance of the proposed tests

is evaluated via simulation studies.
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Chapter 1

Introduction

The relationship between a random variable Y and a random vector X is often investigated
through a regression model. In the classic regression, both Y and X are assumed to be
observable. However, in many experiments, it is expensive or impossible to observe X.
Instead, one observes some surrogates for predictors. These models are often called errors-
in-variables models or measurement errors models.

Extensive research has been done on the estimation of the underlying parameters in
the measurement errors models. There is also an increase in research activity in recent
years emphasizing the study of lack-of-fit testing of a parametric regression model with
measurement errors in the predictors. Relatively, however, there is little published literature
aiming at checking the appropriateness of the distributional assumption on regression errors
and /or error-prone predictors. The focus of this dissertation is to make an attempt at partly

filling this void.

1.1 The Density Function of the Regression Error

Statistical inferences could be made in regression models without knowing the distributions
of the regression errors, but more efficient procedures can be developed if these distributions

are known. However, misspecified distributional forms can severely undermine the reliability



or validity of the conclusions. Goodness-of-fit tests for checking the suitability of specified
distributions for the regression errors in the classical regression models have been extensively
studied in the literature. Ranging from simple graphical tools to complicated formal ana-
lytical tests, the existing methods include histograms and density plots of various residuals,
the minimum Hellinger distance test in Beran (1977), and tests based on empirical residual
processes in Koul (2002), Khmaladze and Koul (2004, 2009), among others.

It is often the case that in regression models, the predictor X, possibly multidimensional,
cannot be observed directly due to some uncontrollable reasons. Instead, observations on
some surrogates Z of the variables of interest are available. It is commonly assumed that the
surrogate variables Z are related to the latent variables X in an additive way Z = X + U,
where U is called the measurement error. How to denoise the measurement error from the
surrogate data Z and correctly modeling the relationship among true variables Y and X,
is the primary objective in measurement error modeling. See the monographs of Fuller
(1987), Cheng and Van Ness (1999), Buonaccorsi (2010) for a comprehensive introduction,
and Carroll et al. (2006) for more advanced research directions on this field. Compared
to the rich statistical explorations on testing the parameters and regression functions in
measurement error models, the goodness-of-fit tests for the random components in these
models are less developed.

To be specific, in Chapter 2 of this dissertation, we consider the following linear regression

model with measurement error.

Y=a+8"X+e, Z=X+1U, (1.1)

where Y is a scalar response, X is a d-dimensional latent variable, and U is a d-dimensional
measurement error vector. X, U, and the regression error € are assumed to be independent,
and ¢ has mean 0 and finite variance. Knowing the distributions of the measurement error
or other random components in the measurement error models might help us construct
more efficient estimates. For example, in the simple linear regression model (d = 1) of

Y =a+BX +¢, Z =X+ U, if the variance o2 of U is known, and there is no further



distributional assumptions on the latent variable X, the measurement error U, and the
regression error € other than E(e|X) = 0, Var(e) < oo, then the commonly used estimate is
the bias-corrected estimator Bn = (Szz—03) 1Sy, &, = Y — BnZ, where Sz is the sample
covariance of Z, Syy is the sample covariance of Z and Y, Y and Z are the sample means
of Y’s and Z’s, respectively. This estimator is consistent and asymptotically normal even
when the actual distribution of € is misspecified but without violating the basic assumptions
of expectation being zero and second moment being finite. However, in addition to the
normality assumptions on X, U, if we can further assume the normality on ¢, and the ratio
of variances of U and ¢ to be 1, then simulation studies have shown that the adjusted

maximum likelihood estimator

B=[Syy — Szz + \/(SYY — Szz)? +45%y]/2Szy

has smaller mean squared error than that of the bias-corrected estimator, in particular, when
the sample size is small.

Therefore, by taking the distributional information of the random variables into account,
one can construct more efficient estimators of the underlying parameters in the measurement
error models.

Throughout this dissertation, for any generic random variable or vector V', its density
function will be denoted as fi/(+). In Chapter 2, we will focus on the goodness-of-fit tests for

the following hypothesis on the density function of €.
Hy: f(x) = f(x,0), 0O, zecR? vs. H:H,isnot true. (1.2)
Rewrite the model (1.1) as
Y=a+p'Z+¢ €=c-p5"0 (1.3)

Then fe(v) = [ f-(v+8"u) fu(u)du. As argued in Koul and Song (2012), when fy is assumed



to be known, the density functions of € and £ are uniquely determined by each other. As a

result, testing for Hy in (1.2) is equivalent to testing for
Hy: fe(v) = fe(v,0), €O, veR? vs. Hy: Hisnot true, (1.4)

where fe(v,0) = [ fo(v+ Tu,0) fu(u)du. Under the assumption that the density function
of U is known, Koul and Song (2012) proposed a class of tests for the testing (1.4) based
on kernel density estimators of f; obtained from the residuals Y; — &,, — B,{ Z;, where &,,, B

1/2_consistent estimators of a, 3 under Hy based on a sample (Z;,Y;), 1 <i < n,

are some n
from model (1.1). According to Holzmann et al. (2007), the test developed in Koul and
Song (2012) can be labeled as a direct test, due to the fact that the test is about hypothesis
on the distribution of ¢ rather than . Recently, Koul et al. (2017) developed an indirect
test based on the deconvolution estimate of the density function of . Simulation studies
show that when the variance of measurement error is small, the direct test performs better
than the indirect test based on the comparison with respect to their finite sample powers,
but the trend reverses when the variance of the measurement error becomes larger. See
Holzmann et al. (2007) and Laurent et al. (2011) for more discussion on the direct and
indirect procedures.

For the sake of model identifiability, the variance or the density function of U is often
assumed to be known in the measurement error literature. This assumption plays a critical
role in the tests developed in Koul and Song (2012), Koul et al. (2017). However, in real
applications, the distribution of U is rarely known. To our best knowledge, no test has yet
been proposed for checking the hypothesis in (1.2) or (1.4) when fy is unknown, up to now.
In Chapter 2 of this dissertation, we will try to fill out this void by assuming replications
can be made on X. Under some regularity assumptions on fy, the replications make it
possible to construct a nonparametric estimate of fz, the density function of the average
of the measurement errors in each replicated observations, which in turn can be used for
constructing the test. In fact, the research on estimation problems in measurement error

models using replication is abundant, see Blas et al. (2013), Dalen et al. (2009), Delaigle



et al. (2008), Gimenez and Patat (2005), Huwang (1995), Lin and Cao (2013), and Xiao

et al. (2010) and the references therein.

1.2 The Density Function of the Latent Variable

In the second part of this dissertation, we go on to consider the classical measurement error
model. Depending on the assumption about X, measurement error models can be generally
classified into two separate types (see Carroll et al. (2006)): functional model, where the X’s
are viewed as fixed unknown constants, and structural model, where the X’s are regarded as
random variables. Much recent emphasis has been on structural models and methods (see
Huwang (1995), Huang et al. (2006), Thompson and Carter (2007), Lin and Cao (2013)),
in that by making no assumptions about the distribution of X, likelihood functions for the
functional models are either not available or can only be calculated via complex methods
generally with low efficiency. Inference based on structural modelling is generally simpler
than that in functional modelling.

When the distribution of X can be well identified, one can always construct better esti-
mates. A convincing example is given by the famous Tweedie formula. Suppose the latent
variable X follows a normal distribution, X and U are independent, even if the density func-
tion of U is unknown, Tweedie formula states that E(X|Z = 2) = 2+ o%p/(2)/p(2), where p
denotes the density function of Z. Therefore, E(U|Z = z) = —o},p/(2)/p(z). This amazing
result can be directly used for constructing more efficient estimation and testing procedures
via the regression calibration technique.

Concerns inevitably arises, in a structural modelling approach, that the estimates and
inferences will depend upon the distribution of the X assumed. Misspecification of the
distribution for X can result in inconsistent estimators. Many parametric or nonparametric
methods are employed to identify the distribution of the latent variable X or dampen the
effect of misspecification, see, for example, deconvolution-type methods, both parametric and
nonparametric in Section 12.1 of Carroll et al. (2006), nonparametric modelling method in

Schafer (2001), flexible parametric modelling method in Carroll et al. (1999), or Richardson



et al. (2002), and latent-model robustness in Huang et al. (2006). Parametric structural
modelling is generally much more favorable in practice because of its simplicity, potential
efficiency, as well as in terms of drawing inferences, accuracy, power, etc.

In Chapter 3, we are interested in developing a goodness-of-fit test for the density func-
tion X in the framework of Holzmann et al. (2007), in which the density function of U
is assumed to be known. The test in Holzmann et al. (2007) is based on the Lo-distance
between a deconvolution density estimator of X and its expected values under the null hy-
pothesis. Three drawbacks can be easily identified in Holzmann et al. (2007)’s procedure:
(1) the measurement error is restricted to the cases of ordinary smooth, that is, the charac-
teristic function of the measurement error decays to 0 in the tail at the algebraic rate. This
excludes some important measurement errors, such as the normal error; (2) The theoretical
development of the test statistic is rather complicated due the complexity of deconvolution
technique; (3) The null hypothesis is simple. Although the theory might be able to be ex-
tended to composite cases, its derivation is not provided. We shall develop a test procedure
by dropping the assumption of the density function of U being known, also the test applies
to both ordinary and super smooth measurement errors. The test will be based on the
ordinary kernel density estimator of the averaged surrogate observations, thus avoiding the
cumbersome deconvolution arguments.

The hypothesis of the goodness-of-fit tests on the density function of X considered in the

second project is defined as follows.

Hy: fx(z) = fx(z,0), €O, zeR? vs. H :H,isnot true. (1.5)

The tests are based on certain minimized L, distances between a nonparametric density
function of Z and the convolution of fx(z,6) and a nonparametric density function of U.
This test is labeled as a direct test from Holzmann et al. (2007). The goodness-of-fit testing
problem on the density function of X has been also studied by several authors from direct
or indirect perspective. For indirect testing, we mention Holzmann and Boysen (2006) for a

study of the asymptotic distribution of the integrated square error of a deconvolution kernel



density estimator when the error term distribution is assumed to be supersmooth and known.
When the density of the measurement error is assumed to be known, Loubes and Marteau
(2014) compared the inverse problem procedure (i.e. indirect testing procedure) and direct
procedure on a goodness-of-fit test of whether the density of the latent variable is equal to

a benchmark density function.

1.3 Measurement Error Models with Replication

The measurement model (1.1) has the non-identifiable issue, as showed in Reiersol and

Koopmans (1950), when normality of X is assumed, unless further information about the

2

 or variance of

parameters can be found. The assumptions of variance of the regression error o
measurement error o7 being known are commonly used in the measurement error literature.
However, the non-identifiability problem will not appear in the replicated measurement error
model, since the error variances can be estimated through the replicated data.

The research on estimation problems in measurement error models using replication is
abundant. We mention, for instance, White et al. (2001) for developing the regression cali-
bration approach for problems with a replication study where the covariates comprise both
continuously distributed and binary variables and the outcome is continuous. Devanarayan
and Stefanski (2002) presented a variation of the simex algorithm, which can accommodate
heteroscedastic measurement error, when the measurement error variances are unknown but
replicate measurements are available. To fit the replicated measurement error data with
more robust model, Lin and Cao (2013) assumed the replicated observations jointly follow
scale mixtures of normal distribution, and based on this assumption, the maximum likeli-
hood estimates are computed via an EM type algorithm method. Research on estimating
the density of X with replicate data available can also be found in the literature, we mention
Dalen et al. (2009) for estimating the true exposure densities in the model for a dichotomous
outcome variable Y.

To our best knowledge, no test has been proposed for checking the appropriateness of

distributional assumption on the regression error € or the error-prone predictor X, using



replication data. A class of goodness-of-fit tests are proposed to check the appropriateness
of a specified family of density of the regression error € or the latent variable X. We assume
in this dissertation that for each X;,7 = 1,2,--- ,n, we have two replications on Z having
the additive relation

Zin =X, +Up, Zp=X;+Up,

where U are independent and identically distributed. Moreover, we assume the density
function of the measurement error U is symmetric about 0, which plays a crucial role in our

tests construction.



Chapter 2

Goodness-of-Fit Tests on the Density

Function of the Regression Error

We start with a brief introduction to Koul and Song (2012)’s direct testing procedure. Denote
the true parameters of «, 8,60 as ay, 0o, 0y, respectively. Under Hy, the density function of
§ = e — BLU has the form of fe(u; 5o, 60) := [ fo(u+ BLv,600) fu(v)dv. Let K be a kernel
density function and b,, be a sequence of bandwidths, which are positive numbers tending to

0 as the sample size n — co. A kernel density estimator of f¢(-) can be defined as

. . 1 <& .
fén(v; Oénaﬂn) = ﬁ;Kbn('U_fi)a (21)
1=
where él =Y, —a,— BEZZ-, 1=1,2,...,n, &, and Bn are any /n-consistent estimates of aq

and S, respectively, and K, (-) := b, ' K(-/b,). Denote fe, (v;5o,60) = Eofgn(v;ozo,ﬁo) =
f Ky, (v —u) fe(u; Bo, 0p)du, where f§n<1}; ap, o) is the same as fgn(v; Oy, Bn) with &, and Bn
being replaced by ag and 5. The test proposed in Koul and Song (2012) is based upon the

statistic

Tn<&n7 Bm én) - /[fﬁn(v; é‘m Bn) - f&bn (U; Bm én>]2dn(v)7 (22)

where II is a weight function supported on a compact subset of R. To see the rationality

of using T}, to construct the test, note that 70 = [[fen(v; a0, Bo) — fep, (v; Bo, 00)]2dII(v) is



a weighted integration of the Lo-distance between fgn(v; ap, Bo) and its expectation under
the null hypothesis, and T}, is an analogue of T with «y, 8y, 0y replaced by +/n-consistent
estimates &, Bn and 6,. One might be thinking about using other distances, such as L*
or L, to measure the discrepancy between fgn(v; ap, fp) and its expectation under the null
hypothesis, however, the theoretical derivation of the corresponding asymptotic distributions
will be much more complicated than using Lo-distance.

However, often times the density function fy; is unknown in real application, which ren-
ders the test procedure of Koul and Song (2012) not applicable in many cases. In the
following, we shall assume that replications can be made at each X-value, and the associ-
ated measurement errors U are independent and identically distributed. Moreover, we shall
assume that U is symmetric about 0 which plays a critical role in our test construction.

This chapter is organized as follows. The test statistic incorporating the replications is
constructed in Section 2.1; Technical assumptions and the asymptotic distribution of the test
statistic under the null hypothesis will be stated in Section 2.2; Consistency of the test under
fixed alternatives, and the power of the test under some local alternatives will be discussed
in Section 2.3; Finally, the finite sample performance of the proposed test will be examined
through some simulation studies in Section 2.4, together with an application of the proposed
test on the Framingham data set. The proofs of all theoretical results are postponed to
Section 2.5.

In the sequel, all the integrations are denoted by a single integration sign, single or
multiple integration can be understood from the context. Integration limits are understood
from —oo to oo unless specified otherwise. For a vector a, ||a|| denotes its Ly norm, and for

a matrix A, ||Al| denotes its Frobenius norm, or [|A|| = /tr(ATA).

2.1 Test Statistics

Suppose for each X;, i =1,2,...,n, we have two replications of Z from

Zin =X, + Uy, Zo=X;+Usp. (2.3)

10



For two generic random variables V;; and Vj,, we use V; to denote their average, and f/Z to

denote (V;; — Vj2)/2. Then from (2.3),
Zi=Xi+ U, Zi=U.

Because of the independent and identical structure and symmetry, Ui, U; have the same
distribution. Instead of considering model (1.1), we can consider the following linear errors-

in-variables regression model:

Vi=a+8"X;+¢e, Zi=X,+U,.

Following the idea in Koul and Song (2012) we can define the same entities treating Z;
as Z;, U; as U; in (2.1), (2.2). Since U; and U; have the same distribution, so estimating the
density function of U; can be realized by estimating the density function of U;, which in turn
can be estimated through observations on Z:. To be specific, let L be a d-dimensional kernel
function on R?, and w,, be another sequence of bandwidths. In the sequel, we write b for b,,

w for w, for the sake of simplicity. Define
R 1 <& -
foulw) = =3 Lulu=2), Lo(w) = —L (=),
i=1
and redefine & = Y; — 6, — fLZ;,

Fen (1 s 0) = / Fo(ut BT 60) fon (1),
f§b<v;3nuén) = /Kb(v — U)fgn(u;ﬁn,én)du.

Then the proposed test in this dissertation is based upon

TG s ) = / Fon (03 ) — Feo(v: s 0PI (0). (2.4)

11



Remark 2.1: As suggested in Koul and Song (2012), one can estimate 6y using the minimum
distance (MD) method. That is, for any preliminary estimators &n,Bn of ap and By, we

estimate 6, using

~

0, = argmin T (G B, 0). (2.5)

The /n-consistency and the asymptotic normality of 6, can be derived using the similar
arguments in Koul and Ni (2004) and Koul and Song (2010).

Meanwhile, the preliminary estimates of ay and [y can be chosen as the well-known bias-
corrected estimate. If no replication on Z is available, and the covariance matrix ¥y of U
is known, then the bias-corrected estimates of o and 3y are given by &, = Y — ZTBn and
ﬁn = (Szz — Xy) 1Szy, where Szz and Szy denote the sample covariance matrices of Z,
and of Z and Y, respectively. In our current setup, ¥y is unknown, but it can be estimated
by the data from Zi’s. Therefore, modified bias-corrected estimates of g, 5y can be obtained
by replacing Xy by the sample covariance matrix of Z's, Sy, and Szy by Sz and Szy-.
One can show that such &, Bn are still y/n-consistent and asymptotically normal, even if

the regression error distribution is misspecified.

Remark 2.2: In the above development, we assume that the measurement error U; and
U, are identically distributed and symmetric. If the question of interest is to estimate
the distribution of X or U, then the assumption of identical distribution is not necessary.
Indeed, based on Kotlarski’s argument, see Rao (1992), the distributions of X and U can
be uniquely determined by the joint distribution of the replicated observations on X, given
that the characteristic functions of X and U are non-vanishing. However, if such estimators
are used in the proposed test statistic, then the asymptotic distribution of the resulting test
statistic might be hard to derive. For example, if Li and Vuong (1998)’s estimator is used,
how the parameter in the truncation limit will affect the convergence rate of the statistic
T, formula (2.4), is not clear. On the other hand, the estimators proposed in Li and Vuong
(1998) only deal with the case of univariate X and U, it is not clear what the large sample
properties look like in our current multidimensional case. The assumption of symmetry plays

an important role in our current setup. The significance of the symmetry lies in the fact that

12



U, + Uy and Uy — U, will have the same distribution, and Z; — Zy = U; — U, simply tells us that
the distribution of U; 4+ U, can be estimated using Z; — Zs, and without using characteristic
functions, or deconvolution related techniques. That said, to develop a more general test

without these strong assumptions deserves further study and will be future research.

2.2 Asymptotic Null Distributions

To define a proper test statistic from T, in (2.4), we have to investigate the asymptotic
distribution of 7;, under Hy. The following is a list of technical assumptions needed to derive
such a result. Throughout, for any generic smooth function v(z;n), 4,(-) and %,(-) denote
the first order and the second order derivative of v with respect to the parameter n, while
v (x;n) and v"(z;n) denote the first order and the second order derivative of v with respect
to x, and x can be a d-dimensional vector.

The assumptions related to f. are

(f1). The density function f. and its second order derivative f.(t) are continuous and

bounded, [ |f.(t)|dt < oco.

(f2). For any \/n-consistent estimates Bn, 0, of By, bo, respectively,
sup | fe(u+B1t,0n) = fo(utB5 t, 00) = (Bu—B0)" fop(u+5t,60) = (0n—00)" foo (ut53 t, 60)]

is of the order O,(n™1).

(£3). For all v, 8,8, f.3(v+ 87t,80), foo(v+ 57, H) are Lipschitz continuous in v. That

is, there exists a B(v + 87t,0), a continuous function of v, such that

| fes(v +ba + BTE,0) — fos(v + BT, 0)|| + || foo(v + bx + B7,0) — feg(v + BT, 0)||

<blz|B(v + 7, 0),

13



where faﬂ(v + BTt,0), fgg(l) + BTt,0) and B(v + 87T, 0) are integrable and square inte-

grable with respect to t.
The assumption on the weighting function II is

(w). The weighting function II has a compact support € in R, and its derivative 7(+)

is twice continuously differentiable.
For the measurement error U and the density function of U, we assume that
(gl). The measurement error U is symmetric about 0.

(g2). The density function fz of U is twice continuously differentiable, sup, || f7 ()] <
oo, and [ || fA(t)||dt < oo.

(g3). [ \/fo(t)dt < oo, and there exists a positive constant gy > 0, such that

2

dt < oo.

sup / H/ &(t + Gvw)vdv
0€[0,1],we0,e0)

Condition (g3) is needed for deriving an upper bound for the integrated mean squared

error of fg,. It can be replaced by the boundedness of f.5(v + 57t,0), feo(v+ 571, 6).

For the sake of simplicity, we shall use the product kernel, with identical component, to

estimate the density function of U. We assume that

(kl). K and L are univariate and bounded d-dimensional product kernel density func-
tions, respectively, such that [, vK(v)dv =0, [p.vL(v)dv =0, and [ v* K (v)dv # 0,

Jga V0T L(v)dv = po(L)Iaxq for some positive constant i (L).

Here we abuse the notation us(L) a little bit and it is simply a positive constant. The

conditions on K are much weaker than the corresponding conditions adopted in Koul and

Song (2012).

About the bandwidths b and w, we assume that

(b1). nb — oo, nb'/2w* — 0 as n — oo.
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(b2). nw? — oo.

The bandwidth assumptions nb — oo and nw? — oo are commonly used in the univariate
and multivariate kernel smoothing estimation procedures. The condition nb/?w* — 0 is
required to dampen the effect of estimating fz by the d-dimensional kernel density estimate

4 & oo imply nb”?w%? — oo, combining this with the

fgn. However, nb — oo and nw
assumption nb'/?w* — 0, we must have d < 8. Therefore, one limitation of the proposed test
is that the linear regression model under consideration cannot have more than 8 predictors.

In fact, there are two kernel smoothing procedures involved in the construction of test
statistic. The kernel density estimator of fe is a univariate smoothing, and the kernel density
estimator of fz is a d-dimensional multivariate smoothing. It is well known that the larger
the dimension, the more difficult to estimate the density function. The two bandwidth
sequences must be selected carefully to make sure the test statistic to have a manageable
asymptotic distribution. The limitation of d < 8 for the proposed test procedure is another

evidence of the unpleasant effect of the curse of dimensionality.

To state our main results, the following notations are needed.

Comy > [0 —Eome), Tu=2 [ 2,5 Br e [0,
F:2/fg(v;ﬁo,90)7T2(U)dv/(K*(u))2du, K, (u) ::/K(U)K(u+v)dv, (2.6)
Co=riz > [l — &) = ERyfo — )Pari(o)
Theorem 2.2.1. Suppose conditions (f1)-(f3), (w), (91)-(93), (b1)-(b2) hold. Then under

Hy, T, = nb1/2f‘;1/2(Tn(dn,Bn,én) — C’n) converges to the standard normal in distribution
and denoted as T, = N(0,1).

Comparing with Koul and Song (2012)’s result, one can see that replacing the density
function of U with a kernel density estimate does not slow down the convergence rate of
T, (G, Bmén) — (C,. From the proof we can see that this is a consequence of requiring

nbY2w* — 0. Otherwise, the bias caused by replacing fg by its kernel density estimator fg,,
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would make the test statistic 7, not tight.

According to Theorem 2.2.1, at the significance level «, the null hypothesis will be rejected
whenever |T,| > 21_q/2, where z;_, is the upper (1 — a)100-th percentile of the standard
normal distribution.

To conclude this section, we would like to point out that when applying any tests based on
smoothing techniques, bandwidth selection is always a vexing issue. Assumptions (bl) and
(b2) are only meaningful when the sample size is sufficiently large, which is seldom true in real
applications. In general, two approaches could possibly used to select the bandwidth when
implementing such tests. The first one is the naive method, simply using an estimation-based
optimal bandwidth, such as a cross-validation bandwidth; The second one is to consider a
set of suitable values for the bandwidth and check how sensitive the test is. Some formal
discussion on this issue can be found in Gao and Gijbels (2008), and they suggest to select the
bandwidth based on the consideration of size and power functions of the tests. However, such
development in our current setup is very challenging and we shall investigate this possibility

in a future study.

2.3 Consistency and Local Power

A desirable and also a basic requirement for any reasonable test is consistency. That is, the
power of the test at any fixed alternative hypothesis should approach 1 when the sample size

goes to infinity. To be specific, the alternative hypothesis we are testing is

Hy: o fo(@) = fea(®),  feal) # fo(2;0) for any 0, and x a.e.(N),

where A\ denotes the Lebesgue measure.

To show that the proposed test is consistent, we have to assume that under the fixed
alternative, én — 0,, Bn — B4, Qy — g for some 6,, 5, and «,. This assumption is by
no means a strict one, many estimation procedures can generate such estimates. In fact, as

we mentioned in the previous section, the bias-corrected estimate &, and 3, are consistent
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and asymptotically normal even the density function of the regression error is misspecified.
Using the bias-corrected estimates, one can show that the minimum distance estimate 0,
defined in (2.5) converges to some constant 6, and is asymptotically normal. The theoretical
justification for this consistency and asymptotic normality is similar to the classic regression
setup. See Jennrich (1969) and White (1981, 1982) for more details. In the following, we

simply assume without justifying rigorously that

(c1). Under the alternative H,, for some «,, 3, and 6,,
VG — a0) = Op(1), Vil — ) = Oy(1), Vilfa — ) = Oy(1).
Define

fea(v; B) :/fea(U + BTt) o (t)dt.

We further assume that

(02) f[f{a(v; Ba) - fg(?}; ﬂaa Ha)]QdH(’U) > 0.

Note that if the bias-corrected estimates are used in the test statistic, then 5, = Sy.

The following theorem states that the proposed test is consistent.

Theorem 2.3.1. In addition to the conditions (f1),(f3), (w), (91)-(93), (b1)-(b2), (c1), (c2),
we further assume that (f2) holds for B, and 6,. Then under H,, |T,| — oo in probability,

as n — Q.

Next, we shall show that the proposed test possesses nontrivial power for certain local

alternatives which converges to the null hypothesis at the rate of 1/v/nb'/2. For this purpose,

2

> and we

let ¢ be a known continuous density on R with mean 0 and positive variance o

consider the following local alternative hypothesis

Hloc . fa(x) = (1 - 5n)f£($700) + 5n90($>
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with 0, = 1/vnb'/2. Similar to the fixed alternative case, to show the local power result,
we have to assume that the preselected estimate &, Bn and 0, are \/n-consistent. The
legitimacy of this assumption is guaranteed by many well-documented arguments in the

literature, such as Koul and Song (2010), hence omitted here for the sake of brevity.

Theorem 2.3.2. Assume all the conditions in Theorem 2.2.1 hold. If the density function
©(+) is twice continuously differentiable and the second derivative is bounded, then under
Hiec,

Tn = N(ur,1)

as n — 0o, where pp =2 [ 1S1f-(v+ BEt,60) — (v + BOTt)]fU(t)th dIl(v).

Similar to the discussion in Koul and Song (2012), the optimal weight function II which
maximizes the asymptotic local power of the proposed test is the one to maximize the mean

of the asymptotic normal distribution, or

U(r) =T / { / (0 + BTE,65) — (v + ﬁoTt)]fUa)dt} ()

By the Cauchy-Schwarz inequality, and recalling the definition of I" in (2.6), we have

W(m) <

e olfowa’ \"
(2 [ K2(v)dv)'/? (000, )

with equality if, and only if,
2
o) o | [Thto+ 551.00) = oo+ 0foto)ie|/ f200i )

for all v. Since the functional ¥ is scale-invariant, that is W(aw) = ¥(7) for all positive

constant a > 0, we may simply take the optimal 7(-) to be

71'(1}) — (f[fa(v + ﬁoTu, 00) — (,0(’0 —+ ﬁgu)]fU(U)du>2
[ f-(v+ BEu, 6o) for(u)du :

18



Clearly the optimal weight 7(-) is practically useless because [y, 0y, and the density function
fo are unknown. Estimators of these unknown parameters and function should be found in

order to use the optimal weight in practice.

2.4 Simulation Studies and Application

To evaluate the finite sample performance of the proposed test, we conducted some numerical
simulations in this section, together with an illustrative application of the proposed test on

the Framingham data set.

2.4.1 Simulation Study

The simulated data are generated from the simple linear regression model ¥ = a4 X +¢.
The null hypothesis Hy we want to test is € ~ N(0,02), so the unknown parameter 6 in the
distribution of ¢ is 6. The latent variable X follows N(0,1), and U ~ N(0,0%). The true
values of both o and 3 are chosen to be 1, ¢ is chosen to be 0.5%, and o7 to be 0.5% and
0.8%2. At each X-value, double measurements on Z are obtained. In the simulation study,
the sample size n is chosen to be 200 and 500 and 800.

To evaluate the power of the proposed test, nine non-normal distributions will be used

to serve as the alternative hypotheses.

e Double exponential distribution with mean 0 and variance 1 (DE(0,1));

Cauchy distribution with location parameter 0 and scale parameter 1;

Logistic distribution with location parameter 0 and scale parameter 1;

t-distribution with degrees of freedom 3, 5 and 10;

e Two-component normal mixture models 0.5N (¢, 0%) + 0.5N (—c, 0?) with ¢ = 0.5,0.75
and 1.
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The above chosen alternative distributions deviate from the normal distributions from
different directions, some have heavier tails, such as the double exponential, Cauchy and ¢
distributions with small degrees of freedom (3, or 5); some have more than one modes, like
the two-component normal mixture distributions. Logistic distribution and t-distribution
with degrees of freedom 10 are closer to normal. For the sake of brevity, the two-component
normal mixture models 0.5N (¢, 02) + 0.5N(—c, 02) will be denoted by 0.5N (+c, 0?).

In the simulation, the weighting function II is taken as a uniform distribution on the closed
interval [—6, 6] so that computationally the integration over this interval is nearly same as the

integration over the whole real line. The kernel functions K and L are chosen to be standard

1/5 1/4

normal density function, and the bandwidths are chosen to be b = n~"/°, w = n~"/* based on

the assumptions (b1) and (b2). For each scenario, we repeat the test procedure 500 times,
and the empirical level and power are calculated from #{|7,| > 21_q/2}/500. Here, &y, Bn
249

are chosen to be the bias-corrected estimates, 0, = 62 = S‘g — 3%

2%, with 5‘52 is the sample

variance of & = Y; — &, — 3, Z:, where Z; = (Zi + Ziz)/2, and 5'(.27 is the sample variance of

Ui=2Z; = (Zy — Zi)/2,i=1,2,--- ,n. In the simulation, the significance level « is 0.05.

Table 2.1: Simulation results of the proposed test

ot = 0.52 o, = 0.87
n =200 | n=2500|n=2800|n=200|n=>500|n=_3800
N(0,02) 0.000 | 0002 | 0.002 | 0.002 | 0002 | 0.004

Logistic(0,1) 0.090 0.200 0.364 0.030 0.128 0.280
Cauchy(0,1) 0.974 0.996 1.000 0.992 0.990 0.990

DE(0,1) 0.640 0.994 1.000 0.354 0.892 0.998
t(3) 0.762 0.998 1.000 0.662 0.972 1.000
t(5) 0.236 0.634 0.884 0.096 0.390 0.678
t(10) 0.022 0.048 0.108 0.016 0.034 0.044

0.5N (0.5, 02) 0.000 0.004 0.012 0.002 0.004 0.004
0.5N(£0.75,02) | 0.098 0.744 0.988 0.012 0.150 0.340
0.5N(+1,02) 0.930 1.000 1.000 0.396 0.952 0.998

The simulation results in Table 2.1 show that proposed test is more conservative, even
for large sample sizes as n = 800, as evidenced by the small empirical levels and the small

powers against the close-to-normal distributions such as the Logistic, ¢(10) and the two-
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component normal mixtures with means +0.5. However, for other non-normal distributions,
the empirical powers are greatly improved as n gets bigger. It is well known that tests
based on smoothing techniques are generally conservative, see Koul and Song (2012) and the
references therein for more discussion on this phenomenon. To alleviate the conservativeness,
one may resort to some possible resampling techniques. As a preliminary attempt, we have
designed the following bootstrap procedure to implement the proposed test in which the

same kernel functions and bandwidths are used.
A Bootstrap Test
1. Calculate &, Bn, 62 based on the full data set (V;, Zi1, Zin),i = 1,2,...,n;
2. Calculate Z; = (Zy — Zin)/2 and Z; = (Zy + Zi0)/2,i = 1,2,...,n;
3. Generate a parametric bootstrap sample from N(0,62), denoted by €f,i =1,2,...,n;

4. Draw a sample of size n with replacement from Z; and denote them as Zi*,i =

1,2,...,n;

5. Draw a samples Uf,i = 1,2,...,n from the kernel density fg with normal kernel in

which the mean is Z, and the standard deviation is the bandwidth w;
6. Compute Y;* = &, + BnZZ- +ef — BnUi*;

7. Use the bootstrap sample (Y;*, Zi1, Zi) to calculate T,* = nb"/2(I "> (T, (&, B, 6n) —
(jn)), and fn,Tn(&,Bm én) and C,, are all calculated using (Y, Zin, Zin);

8. Repeat (3)—(7) B times to obtain B 7T *-values, denoted as 7,.,j7 = 1,2,..., B. Then

n,j?
sort these 7, *-values in ascending order and find 7;*[0.02%], 7;*[0.975“, the 2.5-th and 97.5-
th percentiles of 7,7,,7 =1,2,..., B.

9. Reject the null hypothesis whenever 7, < 7;*[()_025711 or T, > 7'*[0_97571], where 7, is

n

obtained from the original data; otherwise, accept the null hypothesis.
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The simulation results based on the above Bootstrap algorithm for n = 100, 200 are shown in
Table 2.2. Clearly, the conservativeness of the proposed test is alleviated using the Bootstrap

procedure, and the powers are improved significantly as well.

Table 2.2: Simulation results based on bootstrap

ot = 0.5 ot = 0.8 ot =1
n =100 | n =200 | n =100 | n =200 | n =100 | n = 200
N(0,02) 0.010 0.012 0.018 0.050 0.016 0.044

Logistic(0,1) | 0.084 | 0.174 | 0074 | 0102 | 0.064 | 0.102
Cauchy(0,1) | 0972 | 0990 | 0980 | 0.98 | 0.960 | 0.988

DE(0,1) 0.542 0.882 0.318 0.620 0.168 0.434
t(3) 0.634 0.906 0.528 0.810 0.386 0.678
t(5) 0.238 0.460 0.142 0.256 0.114 0.182
t(10) 0.098 0.102 0.044 0.086 0.054 0.048

0.5N (0.5, 02) 0.016 0.040 0.038 0.044 0.026 0.050
0.5N(40.75,02) | 0.120 0.426 0.058 0.116 0.044 0.074
0.5N(+1,02) 0.774 0.988 0.294 0.658 0.166 0.354

2.4.2 A Real Data Example: Farminham Heart Study

In this subsection, we apply the proposed test procedure to a data set in the Framinham
Heart Study. The data set includes 1615 observations from men aged between 31 and 65 years
old in several health exams taken two years apart. The variables we are interested in the
study include the CHD (the indicator of the first evidence of coronary heart disease within
an 8-year period following the second exam), the age at Exam 2, systolic blood pressures
(SBP) at Exam 2 and Exam 3, smoking status, and serum cholesterol levels (SCL) at Exam
2 and Exam 3. For each individual, SBP are measured twice by independent examiners at
each exam. To check the consistency of the blood pressure measurements between the two
exams, we fit a simple linear regression model with the average of log(SBP-50) from Exam 3
being the response variable, and the log(SBP-50) from Exam 2 being the predictor. This log
transformation of the SBP is also used in Eckert et al. (1997). Since the true SBP cannot be
obtained directly, we treat the two measurements in the Exam 2 as replicates. The statistical

hypothesis is to see if the regression error follows a normal distribution with mean 0.
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To apply our proposed test, the kernel functions K and L are chosen to be standard
normal density function, and the bandwidths b and w are chosen to be n=*/® and n=*,
respectively, where n = 1615 is the sample size. Calculation shows that |7;,| = 11.0395 which
far exceeds the 95-th percentile 1.96 of standard normal. So the normality of regression error

is rejected.

2.5 Proofs

This section contains all the proofs of the main theorems stated in Section 2.2 and 2.3. Since
the main idea of the proofs are similar to those in Koul and Song (2012), only differences
are presented here for the sake of brevity. In particular, we will focus the discussion on the
statistic 1), (G, Bn, én), which will be decomposed into two parts, one part can be dealt with
directly using Koul and Song (2012)’s argument, and another part involving all terms related
to the kernel density estimator fgn has to be investigated separately. The discussions on
the normalizing constants C,, and T, are similar to Koul and Song (2012)’s argument, hence

omitted for the sake of brevity.

The proof of Theorem 2.2.1: Note that

fgb(v; B, én) = fer(v; B, én) + / Ky(v —u) fo(u + tha én)(f(m(t) — fo(t))dudt

‘= feo(V; By On) + Ri (03 B, 0,,),

then the statistics in (2.4) can be written as

Tn(dnu Bna én) = /[ffn(vv OAénn Bn) - fﬁb(v; Bn’ én) - wa<’l}; Bna én)]QdH(U)
= /[ffn(U7 d%7371) - ffb(v; B?m én)]QdH('U) + /[wa(v; Bna én)]2dﬂ(v)
-2 /[f&n(v; dna Bn) - féb(v; Bna én)]wa<v; Bm én)dn(v) (27)

To proceed, we consider the term Ry, first. Adding and subtracting f.(u + S1t,6,) from
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fo(u+ B7t,0,), Efg,(t) from fg,,(t), Rew can be written as the sum of the following four

terms:

R = [ [ Kol = o+ 72.8,) = flu+ 55000 Fn(0) = Ef(0)dude,
R = [ [ Kafo = w)folu-+ B760)Fa(t) = Ef0))dudt,

Ryws = / Ey(v = w)[fe(u+ B1t,0,) = fo(u+ B3t,00)][E fon(t) — fo(t)]dudt,
Roos = [ Koo = )1 Cu+ G800 Efon®) — fo®)dudr

It is well known that Efg,(t) = fo(t) + wps(L)tr( 4(t))/2 + o(w?), then from (f1), we
can show that Ry,s = 27 w?pa(L) [[ Ky(v — w) fo(u + B3t 6o)tr(fi(t))dudt 4+ o(w?). This,
together with (g2), one can easily show that | Ry,4(v)] = O(w?) uniformly on v, this in turn

implies that [ RZ, ,(v)dII(v) = O(w*). Hence, by assumption (bl),

b} / B2 (0)dTT(v) = O(nb"2u") = o(1). (2.8)

Now consider Ry,3. For the sake of brevity, denote

felu+ B7t,00) = felu+ 57t 00) = (Bu — Bo) fes(u+ Bt 00) — (O — 00)T feo (u + 5t B0)
by Af.(t,u; Bn, én) First we can write Rp,3 as the sum of the following two terms,
Ry = / Ky (v — ) Afe(t 15 B, 00) [ B fra(t) — for () dud,
and

Ripwse = / Ky(v —u) — Bo)  fop(u+ 6L, 00) + (6n — 00)T foo(u + T, 60)] -
EfUn( ) — fo(t)]dudt.
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By (£2), Rpys1 is bounded above by

suP\Af(t,u;Bn,én)|- [ w? gy (L / Kp(v — w)tr(f4(t))|dudt 4+ o(w Hl = Op(w2/n),

and Rp,32 is bounded above by

18 — foll - / / K0 — )| fop (4 BT, 00)]| - | E fim(t) — fo(8)|dudt
116, — o]l - / / Koo — u)| o+ BT 00)]| - 1B f(t) — fr (1) dudt.

Note that [ Ko(v—u)|| fos(u+5t, 00) || E fira(t) = fir(t)|dudt < O(w?) [ Ky(v—u)| fop(u+
BEt, 0p)||dudt + o(w?) = O(w?), and by changing variables, u = v + bz, from (£3),

/ Kb(v—u)Hfgg(u—i-ﬁgt,Ho)Hdudt://K(m)“fgg(v+bx+50Tt,90)dedt
//K N fep(v + 8L, 60)) yd:cdt+b//yx|f( B(v + B3t,0y)dxdt
= [ festo+ Bt o0t +b [ [olK (@)do- [ Blo+ At 60

The \/n-consistency of 3, and 6,,, and the integrability of f-s(v+ 81, 6y) and B(v+ BLt, 6,)
with respect to ¢ imply [ |Rpys|?dII(v) = 2[0, (n"*w*) 4+ O, (n"'w*)]. Thus

4
nbl/z-/|wa3|2dH( ) = nb'/20, (n ) +nb'/20, (n) = 0p(1). (2.9)

Next, we consider Ry, Adding and subtracting (3, — Bo)” fes(u + 8Tt 00) + (6, —

00) f-o(u+BTt, 0y) from f.(u+p5Tt,0,)— f-(u+BLt, 0), we can rewrite Ry, as the summation

25



of three terms

Ryw11 = / Ey(v = w)[fe(u+ Brt,0,) = fo(u+ B3t 60) — (Bu — Bo)" fep(u + B3 L, 60)
— (O = 00)" foolts+ 51,00) [ (8) — Efp (0],

Rowiz (6 = 801" [ [ Kofo = w)fos(u-+ 87860)fn®) — Efgu(0)dudt,

Rais (60 = 60)" [ [ Koo = ) Fal + 54,60 o 6) = Efn0)dur

From condition (f2),

Ry | < sup|fe(w+ B7t,0n) = folw+ B3¢, 00) = (Bo = Bo)" feslu + 5%, )
= (60 = 00" Fatu+ 554.00)| [ [ Kolo = )l fon®) = Efn(0)dude
=0, (™) [ Katw—w)du [ \fou(®) - Efou(0]d = 0,7
To consider Rpy12 and Rpy13, we need an upper bound for E [ | fon(t) — Efg,(t)|dt. By the

Cauchy-Schwarz inequality, we have E [ | fg,,(t) — Efgn(t)|dt < [(E|fon(t) — E fa,(t)[?)2dt.
Note that E[fg,,(t) — Efg,(t)]? equals

%{flzug) /Lz(v)dv - ICH L2 ()T f2(E Yodv — {fU(t)+%2/L(v)va{}(fg)vdvr}

7 t //
:]:iju(jd) / dv+ / o i (8 ) vdv — —fU( )
4 w2
_ Z]n ( o' fi(ts vdv) fU (0" g (E2)vdv.

where #; and #, are between t and ¢t + vw. Then by condition (g2) and (g3), we have
E [1fon(t) = Efon(t)ldt = O((nw?)™/2). Hence [ |foa(t) — Efon(t)ldt = O, ((nw®)=72).
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For Ry,12, we have

| Fto = ) e+ 6500 nl0) - Ellatut]
< [ [ K@Iiato + bo+ 5580001 | Fra(t) = Efint) e
< [ [ K@ Fslw + 852,60 + lal Bw + 54, 00)] - oalt) = Efon(0)ldecr

which has the order of O,(1/vnw?) by condition (f3). This, together with the y/n-consistency
of f3,, implies that Ryua(v) = Op((nw®?)~') uniformly for v. Similarly, we also have
Rypuw13(v) = O,((nw??)~1) uniformly for v as well. Therefore,

nbl/? / (Raw (v))2dT1(0) = nb'/2 0p< ! > ~o, (ﬂ?> —o (1) (2.10)

n2wd nw?

from assumption (b2). Next we consider Rp,2. Note that

dudt

Riywa (v //Kbv—ufqurﬁott% [ZL( ) ZEL(

:—Z//Kbv—ufezu—ﬁgtﬁo)[ Wt — 22— BLu(t — Z0)]dudt.

Therefore,

E(Rpp2(v))? = lE [/ Ky(v —u)fo(u + BEt, 00)[ Lot — Z) — EL,(t— Z)]dtdu]

/ {/ K(x)f-(v+bx + B3t,0p) {w— (t;z) — fo(®) —|—O(w2)] dtda:rfz(z)dz,

which is of the order O(n 1), implying that nb'/? [( Ry, (v))?dll(v) = nb*/20, (n~') = 0,(1).

Therefore, by the compact support of II, and the Cauchy-Schwarz inequality, we eventually

show that
nb1/2/[wa(v;Bn,én)]de(v) = 0,(1). (2.11)

Now let’s consider the cross term in 7},(d,, Bn, én) Using the decomposition of Ry, we
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can see that
A R o o 4
/[f&n(v; OA‘na 677,) - ffb(v; 5717 gn)]wa<U; Bna en)dn(v> = Z an’ (212)
j=1

where Q,; = f[fgn(v;dn,ﬁn) — fgb(v;Bn, én)]waj(v;Bn,én)dH(v). We know from Koul and
Song (2012) that

b [ [Uenlvs ) = folvs o ) P(0) c] L NO.D), abhC, = 0,0,

(2.13)

where T is defined in (2.6). By the Cauchy-Schwarz inequality, we can see that nb'/2|Q,1] is
bounded above by

D=
=

{t [1fen(wsn, ) = fetos B B2at0) ) (st [ (o: 2100}

[

- {nb; |:/[f£n<v; OA‘mBn) - fﬁb(v; B'm én)]2dH<U) - On:| + nb;én}2

1
2

~{nb5 /[wal(v;ﬁn,én)]zdﬂ(v)} ;

this, together with (2.10), implies that we can conclude

b1/4
nb'?|Qm| = 0,(b*) - 0, ( ) = 0,(1). (2.14)

nw?

Similarly, from (2.9), we can show that
nb2Qusl = O,(b71*) - O, (b*w?) = 0,(1). (2.15)

Now we shall show that nb'/2Q,; = o0,(1) holds for j = 2,4. Recall the definitions of
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fgn(v; O, Bn), fev(v; B., én), we see that nb'/2Q,» can be written as

nb20,., :/ [%ZK(” —b &) _ /Kb(v — ) fe(u; Bn,én)du]
=1
: { / Ky(v = u) fo(u+ B3 t, 00)(fon(t) — EfUn(t»dudt} dIl(v)
1 & v—Y;+ &, + BTZ 1 & v—Y;+ap+ BT Z;
:/{%;K< b )q:%;;(( b )

¥ /Kb(v —u) fe(w; Bo, bp)du — /Kb(v — ) fe(u; By, én>du:|

| [ o = e+ 8800 ) — Efoutata] e
:/ [%ZK<U—Y;+(ZZO+ﬁgZi> —/Kb(v—u)fg(u;ﬂo,eo)du

[/ Ky(v = u) fo(u + B3t 00) (fon(t) — EfUn(t))dUdt] dIl(v) + R,

where F stands for first minus then plus the term after the sign, and the remainder term R,
converges to 0 faster than the first term. So, it is sufficient to consider the first term only.

By the definition of fg,(t), we can rewrite the first term as S,

s=m 22 [ [(55) -k ()]

1t — 7 1 _t—7
ot () et (57)

. [/ Ky(v —u)fo(u+ Lt 6)) dudt | dII(v).

Recall the notation £ =Y —ay — 17 =¢ — ¢ <U1 + Ug) /2, Z = (U, — Us)/2. We have

ES, zlE/%K(“f) l/ Kb(v—u)fs(quﬁoTt,@o)%L(ﬂ)dtdu

w

dIT(v)

_ l/E%K(’;g)/ Ky (v —u)fg(u+ﬂ§t,90)E$L %)dtdudﬂ(v)
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:%/[/// (LAY [ g
idL< (ur — u2)/2
B

which is of order O(n™'). We also have

F X [(5E) -me ()

//Kbv u) f(u + BTt 0p) (t wZJ) Ede<t wz> dudtdTl(v)
e8| [[E(5) - % ()]

//Kbv w) fo(u + BTt 00[ ( ) E?jdLCwZ)]dudth(v)

) /[ (U 51 ElKU 5 //Kbv u) fo(u + BLt, 6)

7’L4

() - %L(%Hdumw [ e(52) - mpx (550)]

J[ st wtas o[ L (S0

w

)dtdu]f( )fo () fu(uz) de dur dus

dIl(v)

(u+ BT, 60)E ( )dtdudﬂ( )

ES? =E

2

2

+

) qudL( wzﬂdudtdn(v),

which is the order of O(n™2). The expectation and variance arguments imply that S, =
O,(1/n). Hence
nb'?Qny = 0,(1). (2.16)

Finally, we are going to prove nb%an; = 0,(1). First note that nb%QM can be written as the
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sum of nbl/zSnj, 7 =1,2,3, where

nb2 S 1 —/ [nb Z ( — Yt ao + 532 — /Kb(v — u) fe(u; Bo, Qo)du]

U Ky(v = u) fo(u + B3t 60)(E fa () — fU(t))dUdt] dll(v),

- "2_/{7@@2[(( Y—l—ozn+ﬁZ) ZK< Y+ao+ﬂ0 )}

: {/ Ky(v = u) fo(u + B3t 60)[E foa(t) — fu(t)]dth] dll(v),

i ia = [ | [ oto — ) feus ot~ [ Kifo = e o]
| [ ot = sk 080 Bdnl0) - fololanda] anco

We can easily see that ES,; = 0. From the boundedness of ff(t), we further have ES} is

bounded above by

_E{/‘ EZK< b£>'

{ [ #w- U)fs(u+6§t,90)w; JECE ;}(ﬂzrdzdudt} dH(v)}Q

B2 4 {/‘ E2K< - U Kb@—u)fs(uw(?t,eo)dudt] dH(v)}2

for some finite positive constant B. Note that
2
dH(v)}

E{/‘%K(U;§> —E%K(“gg)‘ [/ Ky(v — u) f-(u+ BT, Bo)dudt

is the order of O(1), so, we have S,,; = O,(w?/+/n). Thus

nb2 S, = <\/_b2w ) = 0,(Vnbw?) = 0,(1).

Using the Cauchy-Schwarz inequality and from the proof of Theorem 3.1 in Koul and Song
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(2012), we have

n

/ [% S (Koo — &) il - &))]

i=1

nb'/?|S,5| =nbz

‘ [ / / Ky(v — ) fo(u+ 531, 00) (B fon () - fU(t))dudt} dI1(v)

) 1/2
dH(v)}

n

< {nbl/Q/ [% Z(Kb(v - éz) — Kiy(v—¢&))

) 1/2
- {nbw [ #ate = ot 5580t - fot)uae] dH(v)}
<o, (1O(VrB o) = 0,(1),
and
nb'/2S,5 =nb> /[fgb(v;ﬁo,eo) — feo(V; By O0)]
] Kot = 00t B8 B8~ fo(t)uat] i)
<nbz /[(én —00)" feso(vi Bos 00) + (B — Bo)” fevs(vs Bo, B0) + Op(1/n)]
: {/ Ky(v —u) f-(u + Bot, 00)%2 / L(z)|sz{—}(f)z|dzdudt] dIl(v)
<O, (nb2w?/\/n) = 0,(1).
Therefore, we have
nb"2Qns = 0,(1). (2.17)

Note that nb'/2(T,, (4, Bn, én) — C’n) can be rewritten as

nbb [ [Uealvi s ) = folvs o )P1(0) o} 2 [ (B 5, )P
—onb'/? /[f£n<v;één,Bn> — fgb(v;Bmén)}wa(U;Bn,én)dn(U)-

Combining (2.11)-(2.17), we can show that 7, = N(0,T)). This, together with T\, — T
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in probability, which can be easily shown based on the consistency of &, Bn and the kernel

density estimator fgn, completes the proof of Theorem 2.2.1.

Proof of Theorem 2.3.1: Define

Jonlv / o0 — ) feals ), fealu / Fealut 578) fom ()t

By adding and subtracting fgb(v; Bn) from fgn(v; Oy, Bn) — fgb(v; B, én), we can rewrite T}, =
Ty, — 215, + T3, where

Tln = /[f{n(v; dna Bn) - ]EEb('U; Bn)]QdH(U)a
Ton, —/[ﬁgn(v;@mﬁn) — fe (03 Bu)llfen(v; B) = Feo (3 B, 0)]dII(v),
= [Fevs ) = Falos s B P11,

Therefore,

[N

T = nb3 05 2 (T — Cr) — 200310 2 Ty, + 0310 2 T

1

One can show that nb2T, 2 (T}, —C,,) = N(0, 1). The proof is similar to that of Theorem 2.2.1.
Note that

r, — 2/fga(v;ﬁa)WQ(v)dv/Kf(u)du =T >0,

where K, (u) = [ K(t)K(u+ t)dt, and

Ty, = / _ / Ky(v — w)[fea(u + Bt) — fo(u+ B, énﬂfUn(t)dtdu] dIl(v)

[/ K<x>[fm<v+bx+65t>—fg<v+bx+é,?t,én>}fw<t>dtdaz} aTi(o)

%/ /fm (v+ Bt) fo (t)dt — /fs (v + Bat,0a) for(t ()drdﬂ(v)
- / Fealv: Ba) — fe(v: B, 0)dl1(0) > 0

we have nb'/21, "/* Ty, = nb/2—1/2 [1fea(v; Ba) = fe(v; Bay 0a))2dIL(v) + 0, (nb'/?) as n — oo.
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By the Cauchy-Schwarz inequality, and using the fact C,, = O,(1/(nb)) from Koul and
Song (2012), nb%f’ﬁl/2|T2n| is bounded above by
(b2 T, 2T, 2 b2 T, 2 T2 = [nb2 T2 (Th, — G + G2 [0b2 T V2T, )2
<[nb21; V2| Ty, — Cy| + nb2D;2C,)20,(Vnbl/?)

=[0,(1) + O, (7/?)]20,(Vnb'/2) = 0,(nb"/?)

from nb — oo guaranteed by the assumption (b1). Therefore, T, = nb'/2[y /*(T, — C,) +
nb 2T [[fea(v; Ba) — fe(; Ba, 02)]2dTI(v) + 0,(nb'/?). Clearly, the right hand side of the

above expression tends to co as n — oo, implying that the proposed test is consistent. O

Proof of Theorem 2.3.2: Denote

(3 By, o) = / (1= 0n) fo(v + B3, 00) + Snip(v + By u)] for(u)du
/fE v+ BLu, 0o) fo(u)du — 6 / [fs(v+50u ) — (v+ﬁgu)} fo(u)du.
floc (v; ﬁn, ) /Kb v —u) floC (u; Bn,én)du

Adding and subtracting floc(v; B, én) from fgn(v; O, Bn) — fgb(v; B, én), we can rewrite the

test statistic as

TGy B, O) = / [fen (Vs in, Ba) — F5° (05 By 0n) + F85 (03 By 00) — Feo(vs By 0,))2dIL(v).

Note that

F5(; s ) — Fen(v: B, 6, / Ko — ) 1 (s s ) — oot By )
- / Ky(v —u) - 6, / [fo(u+ BLt,0,) — p(u + BLE)] fon (t)dtdu

— -3, / Kolv — ). (u+ BTt 6,) — ol + B0 o (O)dtdu := =6, D0 (05 By, ).
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We can rewrite T), as the sum of the following three terms

Tos = [ envicins o) = 75 (01 o ) Pa(0),
Toa = = 20, [ Fon(v3 s Bu) = 75003 s8]0 05, )L,
T3 =02 / D2 (; B, 0,)dTI(v).
For the sake of simplicity, denote f,,(u,t) := (1 — &,) f-(u+ 57t,0,) + 0np(u+ 5Tt). Adding

and subtracting f(t) from fg,,(t), Th1 can be further written as the sum of the following

three terms,

T = / :ffn(v;dn,ém— / Kb<v—u)fn(u,tm(t)dtdu]2dH<v>,
T = [ [ Kot = ottt - fU@)]dtdu] "),
s = [ [datwsan o) = [ Fato =)ot 0 O]

[ J[ e =t 1ot - fU<t>Jdtdu} )

Similar to the discussion as in Ry, (v; B, 6 ), one can show that nb2 T, = 0p(1). Follow the
proof of Theorem 2.2.1 in Koul and Song (2012), we can show that nb2[T,;; —C,] = N(0,T)
and using the Cauchy-Schwarz inequality, we also have nb2T,; = 0p(1). Therefore, we have
nb%[Tnl — én] — nb3 (Th11 — C’n] + 0,(1).
By the boundedness of f”(t) and ¢”(t), then we have
b0 2 Ty = nbi 1, 252/1)2 ; By 0,)dI1(v) ‘/D2 , By 0,)dI1(v)

iyt / [ / Ko — ) folu+ B74,6,) — o(u+ thnfUn(t)dtdu] L)

=0t [ | [Uo+ 8500 - oo+ 0L ) 4 0y(1)
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Similarly, we can obtain

; ; 1 < -Y;
nsznQZan2/[%ZK( +a0+60 ) /Kb v—u flocuﬁo,eo)du]
=1

- [ / Koo — u)[fo(u+ BT, 09) — plu + 5§t>JfU<t>dudt] dII(v) + 0,(1)

=0,(b%) = 0,(1).

Summarizing the above results, we can conclude the proof of Theorem 2.3.2.
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Chapter 3

Goodness-of-Fit Test on the Density

Function of the Latent Variable

This Chapter is organized as follows. Two minimum distance estimators of the parameter
under the null hypothesis, and the statistics based on which the test being built will be defined
in Section 3.1; A list of technical assumptions needed for the main results will be given in
Section 3.2, as well as some notations used in the later sections; The large sample properties of
the minimum distance estimators of the distribution parameters will be stated in Section 3.3,
including the weak consistency and asymptotic normality; Asymptotic distributions of the
test statistic under null hypothesis will be discussed in Section 3.4, together with its power
performance under fixed and local alternatives in Section 3.5; Simulation and comparison

studies will be conducted in Section 3.6.

3.1 Minimum Distance Estimators and Test

Recall that in the measurement error model Z = X + U, the hypothesis to be tested is

Hy: fx(x) = fx(x,0) forsome €O, 60 CR? v.s. Hp: Hyis not true.
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We assume that X and U are independent one-dimensional random variables. We also as-
sume that the parameter space © is compact subset in R?, ¢ > 1. Moreover, the measurement
error is assumed to be symmetric around 0. Suppose at each value of X, two measurements

of Z can be obtained. That is, we can observe

Zn =Xi+Un, Zip=X;+Usp, (3.1)
i=1,2,...,n, Uy and U are independent and identically distributed. By (3.1) and simple
algebra, we have

- Zn+Z; Un +U; 7
2 .= T, % = X, + % = X, + U;. (3.2)

Zn —Zp Ua—-U
2 2

Denote Z; = (Ziy — Zin)/2, and Z; = (Zy + Zi)/2. Then from the second equality in
(3.2), Z is the convolution of X and U. Therefore, fz(2) = [ fx(z — u)fi(u)du, and under
Hy, f7(2,0) = [ fx(z—u,0)fz(u)du. Due to the fact that fz(u) is unknown, this expression
cannot be used directly. However, from the first equality in (3.2), it can be estimated by the
classic kernel estimator defined by fg(u) =n=' S0, Ky (u—U;), where Ky(-) = h™'K(-/h),
K is a kernel function and h is a bandwidth depending on the sample size n. We use h,

instead of h,,, for simplicity. Therefore, f7(z,0) can be estimated by

Fo(e0) = [ e = w.)fo(w)du. 33)
Since Z;’s are available, so fz(+) can also be estimated by the following kernel estimator
. 1 <& _
f2(2) =~ Zl Ly(z = Z), (34)
where Ly(-) = b"'L(-/b), L is a kernel function and b is a sequence of bandwidth depending

on n. In the sequel, we use b other than b,, for simplicity.

Intuitively, if Hy holds, then the semi-parametric estimator f5(z, #) defined in (3.3) should
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be close to the kernel density estimator defined in (3.4). This motivates us to define the

following weighted Lo-distance between these two estimators

T!(0) = / F2(2) = oz, 0)Pani(z), 6ee. (3.5)

Since 6 is unknown, we can estimate 6 by 0 = minirenizer T7(9), and a potential test can be
built upon the statistic 77(67).
The second potential test is based on the centralization idea from Bickle and Rosenblatt

(1973). Note that under the null hypothesis,
Bie) = B0~ 2) = [ 1ate =) | [ fxte = wtfolwa] i,

thus £ f5(z) can be estimated by [ Ly(z —x) [f fx(z —u,0) Ag(u)du] dx by replacing fg(u)
with fg(u). Define

-]

:/{fz(z) —/Lb(z—x) [ ez —u,6) AU(u)du} d:z:}QdH(z), hco, (3.6

N

(2) — / Ly(z — ) f5(x, 9)@1 2 dIl(z)

which is a weighted Lo-distance between fz(z) and its estimated expectation. 6 thus can be
estimated by 6, = minirglizer T,(#). Then we can develop a test procedure based on T}, (6,,).

The main difference between 7,5(0) and T,,(0) is the semiparametric part in their defi-
nitions. 77%(6) uses the density estimator of Z under the null hypothesis, while T,,(#) uses
the expectation of the nonparametric estimator of Z under the null hypothesis. Because of
the centralization in 7),(#), no under smoothing is needed for the kernel density estimator
of Z, thus avoid the potential non-tightness of the test statistic caused by the nonnegligible
bias. A similar phenomenon can be found in the regression setup, see Koul and Ni (2004)

for detail.
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3.2 Assumptions

This section include a list of technical assumptions needed for the theoretical results which
will be presented later. Also, some notations will be also introduced here for the sake of

convenience in stating various lemmas and theorems in the following sections.

As for the density function of Z, we assume that
(z1) For each 0, fz(z,0) = [ fx(z — u,0)fz(u)du is integrable, twice differentiable

in z w.r.t. II;
(z2) fz(z,0) is identifiable. That is, [[fz(z,60) — fz(z,6)]?dII(z) = 0 implies 8 = 6y;

(z3) For some positive continuous function  on I, with /(z) bounded, and for some
r >0, ‘fZ(Z,el) — fZ(Z,HQ)’ < H91 — HQHTZ(Z), V91,92 € @,Z € [,

(z4) f7(z,00) is bounded. That is, |f7(z,00)| < c for some positive number c.

For the density function fx of X, we have

(x1) fx is bounded, twice continuously differentiable w.r.t. 6.

(x2) For every z, fx(x,0) is differentiable in 6 in a neighborhood of 6y with the

vector of derivatives fx(z,6) such that if 6, — 6, in probability, then

sp | fx(x,0,) — fX(x|a|zz)_—027’n —00)" fx(x,00)] = 0,(1).

(x3) The vector function z — fx(z,6) is continuous in z € I and for every & > 0,

there is an N. < oo such that for every 0 < k < o0,

P sup b Pl fx (2, 6,) — fx(2,00)|| > | <&, Vn> N
xz€1,(nbn)1/2)|0,—0o|| <k

For the weight function II, we assume that

(r1) The weight function II is supported on a close interval I, and its derivative 7

is continuous and bounded.
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For the density function of U, we assume that
(ul) fy(u) is twice differentiable in u, and ffj(u) is bounded, integrable and square

integrable.

About the kernel function K and L, we shall assume

(kl) The kernel K and L are bounded, symmetric, continues density functions.

About the bandwidth b, we shall make the following assumption

(bl) b — 0 as n — 0.
(b2) nb* — 0o as n — oo.

(b3) nb* — 0 as n — co.

About the bandwidth A, we shall make the following assumption

(hl) h — 0 as n — oo.
(h2) nh — oo as n — oc.

(h3) nh* — 0 as n — oo.

Assumptions b — 0,h — 0,nb*> — 0o, nh — oo are commonly used in univariate kernel
smoothing estimation procedures. Under the null hypothesis, the assumptions nb* — 0 and
nh* — 0 are both required in the proof of the asymptotic distribution of the minimum
distance estimator of the distribution parameter or the asymptotic distribution of the test
statistic based on T7*(6) defined in (3.5), while only nh* — 0 is needed for those results based
on T,,(6) defined in (3.6).
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In addition to the assumptions listed above, the following notations are also needed.

S = [ F2(. 00075 . B0)an(a)
1= [ e e B0 w20t — | [ S0 o ooy
1/ fz<z,eo>fz<z,eo>dn<z>r,
so= [[| [ #5e— vt ot ana)| | [ st - won ot e >] fo(u)du
Ufz ,00) f2(, 60) 11z } Ufz . 00) f2(=, B0)dI1(: >r,
=2 | [ fale st 000G | | [ 1o(et0) e ) >r
[ ([ ety = w0l — w)dn) fo(e,00) £33, b0an(:)ari)
Cu(0) = Z [ (Bte-20- [z =a) [ 15t u,e>fU<u>dudas)2dH<z>,
r=2 [ o0Pema [ ( L<t>L<z+t>dt)2dz. (3.7

3.3 Consistency and Asymptotic Normality of the MD

Estimators

This section states the large sample properties of the minimum distance estimators 6 and

én, including the consistency and asymptotic normality.

3.3.1 Consistency

We begin with the consistency of 87, which is the minimizer of 7¢(#) defined in (3.5).

Theorem 3.3.1. Suppose Hy, (z1)-(z4), (1), (b1)-(b3) and (mw1) hold. Then 6} — 6y in

probability.

Proof. Define T:*(0) = [[fz(2) — fz(z,0)]%dI1(z), and 6* = minimizer T*(f). According to

0cO
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Lemma 3.1 in Koul and Ni (2004), we only need to show 7*(fy) 2 0 as n — co. In fact,

by the elementary inequality (a + b)* < 2a? + 2b%,

170(60) = [ 1F2(2) — Bfale) + Ef5(2) - (e bo)Pai(z)
szﬂﬁ@wJﬁﬂm%m@+2/w&@wJAamﬁmu»

By Fubini’s Theorem and (z4),

2

B [1f22) - Bfs()Pancs) = [ B dri(z)

/WEL2( ) /an/ ( :

nb V L*(v)[fz(z,00) + bufy(z,6p) +§b2u2fg(z; 80)]dv} dll(z) = O (%)

ZL,, (z— Z;) — ELy(z — Z)

)&@mmmm

where Z is between z and z + bv. So

[~ BiPan) = 0, (£ ) = o0, 35)

Also, it is easy to show by the well known result for the bias term in kernel density estimation

that

/Wﬁ@—ﬁﬁﬁmWM@Z/WM@—@—ﬁWﬁMMM@:OWL (3.9)

which is of order o(1). From this, together with the assumptions (b2) and (b3), we have

7200 = 0, 5 ) = (1) (3.10)

and thus 6* — 6 in probability by Lemma 3.1 from Koul and Ni (2004).

43



Now, let’s show that 67 — 6. It is sufficient to show that

Sup T2 (0) = T(0)| = 0p(1),  sup T3 (6) — T(0)] = o,(1), (3.11)
0co 0co
where T(0) = [[f2(2,00) — f2(z, ) dTI(z).
In fact, (3.11) implies

sup [T,(0) — T, (0)] = op(1). (3.12)
fco

If 0 — 0% — 0, then, using the fact that © is compact, there must be a sub-sequence {n;}

such that 0, — 61, 0, — 6, and 6y # 0.
From (3.12), we have

T(05,) = T (0h0) = 0p(1), T(6,,) — T,7(6;,) = 0p(1),

this immediately implies

T(05) = T,(0,,) = T30 (6h0) — T2 (65,) + 0p(1). (3.13)

By the definition of #; and 0, for every n, the left-hand side of (3.13) is nonnegative,
while the right-hand side is nonpositive. This implies T (6;%) — T, (0;, ) = 0,(1), T, (0;7) —
Tx*(0y ) = o0p(1), and therefore [T'(0);, ) — T'(6;)| is bounded above by

T(05,) = TG + T3 (65,) = TR (00 + 1 T5(05) — T (001 + (157 (0,,) — T(6,,)]

k k

which is the order of 0,(1). By the continuity of 7'(¢), we have |T'(6,) — T'(6y)| = 0, which
contradicts the uniqueness of the minimizer of 7'(f) as implied by the identifiability condi-
tion (22).

First we show the second equality in (3.11). Adding and subtracting f(z,6,) from
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f7(2) = fz(2,6), we can rewrite T7*(6) as the sum of T'(A) and the following two terms

Ay — / F2(2) — F2(z00)2dTI(2),
A =2 / F2(2) = F2(2,00)]f 22, 00) — f2(2,0)]dTI(=).

Thus T*(0) — T(0) = A1 + An2(0), and

sup [T7(8) — T(0)| <An + sup | Apa(60)] < Ant + 242, sup T (8).
0cO 0cO 0cO

A1 = 0,(1) indeed is implied by (3.10), and supy.e 7'(f) < 0o can be shown by noting that
the parameter space © is compact, and from (z3), T(0) < ||0 —6,||*" [ 1*(2)dII(z). Therefore,
the second equality (3.11) holds.

Next, let’s show the first equality in (3.11). Adding and subtracting fz(z, ) from fz(z) —

N

f7(2,0), we can rewrite T*(0) as the sum of 7;**(0) and the following two terms

~

Bou(6) =2 / F2(2) = F2(2. 0l 2(2.0) — Folz, 0)]dII(2),
Boa(6) = / F2(2,0) — fo(=,0)PdII(2).

Therefore

T(0) =T(0) = T;,7(0) = T(6) + Bu1(6) + Bra(6).

From (x1), we have

2

By (6) 2/ U Jx(z = u,0)(fo(u) - fﬁ(u))dU} 2dH(Z) <c U [for(u) = f(u)|du

On the other hand, by using Scheffe’s Lemma, and the fact that

[ Fotwin= [ fotwdu =1, fow) = folw)
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we have

[ 1stw) = fotw)ldn = 0,(0) 3.14)

So, supgeg Bna(0) = 0,(1). Therefore, by using the elementary inequality v/a + ¢ < \/a++/c

for a > 0,c¢ > 0, we can show that
sup | B (6)| <2sup |T7*(6)|2 - sup |Bua|2 = 2sup |[T2(6) — T(8) + T(0)|? - sup |Bua(6) |2
0 0 0 0 0

is the order of o0,(1). This completes the proof of (3.11) and hence Theorem 3.3.1. O

The next theorem states the consistency of 6, the minimizer of 7},(9) defined in (3.6).

Theorem 3.3.2. Assume Hy, (21)-(24), (b1)-(b2), (x1) and (71) hold, then 6, — 6y in

probability.

Proof. Recall that

>

T,(0) = / { fz(2) — / Ly(z — z) Ag(x,&)da:rdﬂ(z), 0, = minimizer T, (9).

Define

70~ [~ | Lb<z—x>fz<x,e>dxrdn<z>, 0y = winimizer 77(6).
and ,
70) = [{ [ 1= 9l12(0.0) = syt o0lay o)

The minimizer of .7 (0) is unique, as can be easily derived from the identifiable condition (z2).

By Lemma 3.1(c) in Koul and Ni (2004), and from (3.8), one can easily check that

B0 = [lfs) - EfsePan) =0 (). (3.15)

Therefore,

7200 =0, (37 ) = o0 (3.16)



Using Lemma 3.1 in Koul and Ni (2004), we have QA; — 0 in probability. Next, we will show
that if

Sup [T(0) = 7 (0)[ = 0p(1),  sup|.7(0) = T ()] = op(1), (3.17)
then é; — én — 0, which can be proved by contradiction.
If é;j - én — 0, there must be a sub-sequence {n;}, such that é;:k — O, énk — 61, and
01 # 6.
From (3.17), we have

sup [1,,(0) — 77 (0)] = 0,(1). (3.18)
9O
Thus
Tn(én) - %*(én) = Op(1)7 an;) - Z*(Q:z) = Op(l)
Therefore,

Tn(én) - Tn(é;) = %*(én) - 75(92) + 0p(1).

By the definition of 0, and HA;‘L, for every n, the left-hand side of the equation above is

~

nonpositive, while the first term on the right-hand side is nonnegative. Hence T,,(,) —

F#(0%) = 0,(1). Then
| 7(0;,) = T (0n,)| <|T(05,) = T On )| +1705,) = T00) |+ T (0 ) = T (00,) = 0,(1).

However, by the continuity of .77, we have f(é,’;k) — T(0) # T(0,) « F(6,,). This
contradiction implies that we must have QA;'; —0, — 0.

Next, we are going to show the second equality in (3.17). Adding and subtracting [ L,(z—
2) f7(x, 00)dx]2dI1(2) from fz(z) — [ Ly(z — x) fz(x,0)dz, Z,7(0) can be written as the sum
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of .7 () and the following two terms

Cu = [Ufae) = [ Late = )fale, b0)daPan(s)
Cly = 2/ [Az(z) —/Lb(z—:c)fz(:c,eo)dm} V Loz — 2)[f5(@, 0) — Fx,0))dz| dTI(2).

Then 75(0) — 7 (0) = Cp1 + Cpa2(6) and

sup |.Z5(0) — T (0)| < Cp1 +sup Cpa(0) < Cpy + 207%1 sup 9%(9)-
9o 60 9o

It thus suffices to show C,; = 0,(1), which is already shown in (3.16), and supgeq 7 (0) =
Op(1).
From (z3), by changing the variables, we have

70) = [ | [ 1l - olfste0) - fz(x,eoﬂdxrdmz)
g/ {/ Loz — 2)||0 — QOH’"Z(x)dx] () = 10— 90||2r/ U L(w)l(= + ub)du} " dri)

<cllf = o]*

for some positive constant c. Since © is compact, we obtain supycg 7 (0) < co. Therefore
SWpgeo | 7(0) — T(0)] < 0,(1).

Next, let’s show the first equality in (3.17). Similarly, we add and subtract [ Ly(z —
2)f7(x,0) from fz(z) — J Ly(z — 2)f7(x,0), and T, (0) can be written as the sum of .7.*(0)
and the following two terms

Du=2 [ [fz(z) - [ e —apste e)dx} [ [ e = 05200, = Fyta 0o | ance
Dal®) = [ | [ 1le = o)soto) - Foto 0t “n(e).

Then T,(0) — F(60) = Z(0) — T (6) + Dy (6) + Dya(6).
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For D,»(6), from (x1) and (3.14),

Du) = [ [ [ 1a6: = 0105600 - ot 0ne] any
g/[/Luz—mjﬁx@—uﬂnmuo—ﬁﬂwuwmrdnw>
<e [ [ nte—orta] ey [ [ 1o o]
which is of order 0,(1). Then we obtain

1

sup| Doy (0)] <sup|.Z77(0)]% sup | Dua(0)]* = sup|.7!(6) = 7 (9) + 7 (O)] sup [ Do 6)
€

<[sw|7:(0) = 7))} +5up |7 (0)]}] sup D,o0)]* < 0,(1)

This concludes the proof of (3.17). O

Remark 3.3.1. One can replace condition (b2) with nb — oo, and Theorem 3.3.2 still holds.

3.3.2 Asymptotic Normality of the Non-Centered MD Estimator

In this section, we shall report the asymptotic normality of 6. Let

Ui(2,0) =fz(2) — f2(2,0), Ui(z) =Us(z,6),
Z3(2,0) =Up(2) — Up(2,0) = f2(2,0) — f2(z,60), (3.19)

dn<x79790) :fZ<x79> - fZ(xveo) - (9 - QO)TfZ<x790)'

Taking the derivative with respect to 6,

ﬁWthﬂﬁ@—&@mnmﬁmwwLQ/mmm}mmmuy

Note that 6 is the minimizer of 7)(f) and also 6y is an interior point of ©, so by the

consistency, for sufficiently large n, 8 will be an interior point of ©, therefore 7%(8%) = 0.
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Thus

/UWﬂ@ (2, 0°)dTI(2) — /U%@ﬂ (2, 07)dTI(2) — /UWﬂ@}@%MW@

Then we obtain

/ Z2(2.0) f2(2, 02)dI(z) = / U2 (=) fo(z, 02)dI(2),

which can be written as the sum of the following three terms:

s_/w (2, 00)dI1(2),
gt = / U2 (2)[f2(2. 80) — f2 (= 60))dII(2),
s — / U2 (2)[f2(2,602) — Fo(z. 60)ldTI(2). (3.20)

To proceed, the following lemmas are needed.

Lemma 3.3.1. Suppose Hy, (z21)-(24), (1), (22), (w1) and (b1)-(b3) holds. Then
nbl0;, — boll* = Op(1).
Proof. From (3.10) and (h3), one can easily verify
Jwiorane) = tie =0, (). (321)

Let D, (0) = [[Z:(z,0)]?dII(z). We are going to show nbD,(0;) = O,(1). To see this,
observe that T (6:) < Tr(0y) = Oy(=5). Thus nbT};(0;) = O,(1) and

nbD, (67) = nb / (U2(2) = Uy (2, 6)PdIL(=) < 2nb[T (6) + T3 (62)] = O, (L).

D (67)

Next, we shall show N

> B with arbitrarily large probability, where B is an arbitrary
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positive number.

Dn(67)

O,(1) = nbD, (6%) = nb||0% — 6] :
(1) = mbD (7)< b, — 0o

Recalling the definition of d,(z,0,6y) and Z(z,60) from (3.19), we have

D, (035)  [1f2(2,02) — f2(2,00)]2dII(z)

16 — 6ol 16 — 60|12
 J1dn(2,85,60) + (65 — 60)7 f2(2, 60)]2dII(2)
107, — 0ol|?
;i 2
d; (2,05,60) / (0; —QO)TfZ(Z t)
T L ATl(z) + n ’ dll(z
6 — o2 1) 16;— bol )
1 X 2 %
d2(Z 0y, 60) ]2 (0 — QO)TfZ(Z 0o)
-2 R AT (2 / ” d dll(z)
g 16— ol (
By assumption (x2) and the consistency of 6, we can show that
d2 (Z o 90)
= T 70 a1 (5
6 — 6oz ")
. 2
* _ _ * T _ R
-/ [/ e e ] an)
» — 0o

is of order o,(1).

. 2
For the second term, we notice that [ [W} dIl(z) > infjg=1 Xy (s), where

2u(s) = [[s7 f2(2,60)]2dI1(2). By the usual calculations, one sees for each s € RY,

S(s) =57 [ Fole.00) F5 (2. o)1) 5
=57 [ 2(2:00) = F3(2.00) + Faes 007202, 00) — Falz060) + (o, 60)Ta(2) 5
=57 [ 1F2(e.00) = Fo(e. B0 Fz000) = e, 607 dIIC)
4257 [ (702000 = Fal 60060 A1() s 457 [ F3(e 0075 2. 00)a1(2) o

—>5T/fz(z,eo)fg(z,eg)dﬂ(z) s = sT%gs,

51



where Y is as in (3.7). Thus, by the Cauchy—Schwarz inequality, the cross term

2000 o V(G ]
{ 67— ool )} /( 162 — 6| )dHU = 0p(1).

For any 0 > 0, and any two unit vectors s, s; € R?, [[s—s;|| < 6§, we have |2, (s)—%,(s1)] <
5(6 4 2) [ 1 f2(2,60)||2dI1(z). By observing

/ 1 2(2 80)|PdTI(2) = 0,(1) (3.22)

and the compactness of the set {s € R% ||s|| = 1}, we have supy—; |Sn(s) — 5" Sos| = 0p(1).

In sum, % > inf|5 =1 s7 Xos with arbitrarily large probability.
This concludes the proof of Lemma 3.3.1. O

Lemma 3.3.2. Suppose Hy, (21)-(z4), (v1)-(z3), (b1)-(b3), (h1)-(h3), (ul),(n1) and (ki)
hold. ThennzS, = N,(0,%), n%gnl = 0,(1), n%gng = 0,(1), where Sy, gn1, gn2 are as defined
in (3.20), ¥ = X1 + X9 + X3 with ¥;,i=1,2,3 as in (3.7) .

Proof. For convenience, we shall give the proof here only for the case d = 1, i.e., when
fz(z, 0p) is one dimensional. For multidimensional case, the result can be proved by using
linear combination of its components instead of fZ(z, o), and applying the same argument.

Add and subtract Ef;(2), f7(z,0y) and Efy(z,6,) inside the parenthesis of U*(z), then

S, = / U*(2) (2, 0p)dIL(z)
= [15242) = BEN 2 0011 + [ (B3040 = Fo(e. 6003z 60)d1(2)
b [UB22) = fa(e.80) Ao e, 00011() + [ (7202000 — B, 60l Gu)i(2)
=:5p1 + Sn2 + Snz + Spa.
In order to show n2S, = N,(0,%), we need only to show n2 (S, + Sna) = N,(0,%), and
nzSps; = 0(1), n2S, = o(1).
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Consider S5 and S, first. Since Efy(z) = fz(2,00) + % [ L(v)v* fZ(z + b, 6p)dv,

where 0 < 7y < 1, from (z4) and (b3), one can verify

nz S, —n?—// (2 + ivb, 00) f2(2, 00)dvdIl ()
§§n2b2/ 2dv/fz z,00)dlI(2) = O(n%bQ) =o(1).

Similarly, there is a 0 < 7 < 1 such that

Efy(z,00) /fX z —u, b)) [fU /K v? u—i—wvh)dv] du
=fz(z,0p) +—/fX z —u,6p) {/K v U+7'2Uh)d1):| du
and from (ul) and (h3), one obtains n2S,4 = O(n2h?) = o(1).

Next, we consider n2(S,; + Spz). Let G (2,00) = [ fx(z = u,00)Kn(u — U;)du. and
rewrite f5(z,00) = L3 Gy.(2,00). Then

n%(Snl + SnQ)
—n> /[( 2(2) — Efz(2)) + (Efz(2,00) — f2(2,600))]f2(z, 60)dI1(2)

=n % /%Z Lb Z -7 ELb(Z - Z1)) + (EG(jl (2790) - Ga(z,eo))}fz(z,eo)dﬂ(z)

/ (Lo(z — Z)) — ELy(= — Z0)) fz(= 60)dI1(2)

+ [(BGy, (2400) = Gy (=, 00) (=, b))
1 < IR
:% ;(Sm‘l + Sm'g) =: % ; Sni-

Note that s,;,1 < i < n are i.i.d centered r.v.’s for each n. By the Lindeberg-Feller
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Central Limit Theorem, it is sufficient to show that as n — oo,

Es?, — %, (3.23)
E{s2,I(|sn:| > n2n)} — 0, ¥n>0. (3.24)
By Fubini,
Es, =FE V(Lb(z — 7)) — ELy(z — 21)) f2(2, 00)dI1(2)
_ // [ELy(= — Z)Loly — Z2) — ELo(= — Z0)ELy(y — Z)]
: fZ(% Qo)fz(ya 00)dI1(z)dI1(y),
where

BLy(z — Z)Lo(y — i) / Loz — D Ly(y — £)f5(t 00 )dt.

ELy(z— 7)) = /L(s)fz(z —bs,00)ds, ELy(y— 7)) = /L(s)fz(y —bs,00)ds. (3.25)

In the sequel, for the sake of brevity, we shall often write dzdydz = d(z,y, z). By the

transformation z — ¢t = bz; and y — t = by; and continuity of f; and 7, we obtain

Esh, = / Ly(z = t)Ly(y — ) f2(t,00) (2, 00) f2(y, 00) ()7 (y) d(t, 2, )

_ / / ( / L(s) fZ(z—bs,QO)ds) ( / L(s) fZ(y—bs,Qo)ds) f2 (2, 60)

< f2(y. 00)(2)7(y)dzdy

= / L(21)L(w1) f2(t,00) f2(t + bz1,00) f2(t + byy, 0o)m(t + bzy)

btz [ ( [ L6 - bs.0)as)

) (/L(5>fz(y - bs,&o)ds) fZ(z,Qo)fg(y,eo)ﬁ(z)w(y)dzdy
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which converges to X; as b — 0. Next, consider E's?,,. By Fubini, we have

2

Es’, =F [/(EG (2,00) — G, (2,00)) f2(2, 60)dIl(2)

"y / / (2,60) — EGp, (2.00)) (Gp. (4.60) — EGy. (3, 60))
fz z eo)fz(yﬁo)dﬂ( )dH(y)
// EGU1 < 00 y, 90) EGUl(Z,H())EGﬁl(y,Qo))

: fZ(Za eo)fz(?/, 0o)dI1(2)dI1(y),

where

EGy,(2,60)Gg, (y,00) = / fx(z—u,00)Kp(u—1t) fx(y — v, 00) Kn(v —t) fr (t) d(u, v, 1),
Gy, (2,060) / fx(z —u,00)K(s)fi(u— hs)duds,

G, (y,00) // fx(y —u,0p)K(s)fg(u— hs)duds. (3.26)

Therefore, by the transformation v — t = huy,v — t = hwvy, taking the limit, and using

the continuity of fx and f7, one obtains

Es? Z/fx 2 —u,00) Kn(u—t) fx(y — v, 00) Kn(v — ) f () f2(2,60) £2(y, 60)

() (y) d(u, v, t, 2, y) — //(//fxz—uﬁo fU(U—hs)duds)

( / Fely — 1w, 60)K fU<u—hs>duds) F2(2 00) 2, 00) (=) () dzdly
hy / Pz — 100K () e (y — £.00) K (01) f (8) f (2. 60) 2 (4, 60)

()7 (y) d(uy, v, t, 2,y) — //(//fx z—u, b)) K ()duds>

( [ et - vk s >duds) (2, 00) f2(y, O0) ()T =)y

The last term is indeed X5 by simple algebra.
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Next, we consider ES,;1Sn2,

Esmlsmg :E/ (Lb(Z - ZZ) - ELb<Z - Zl)) fZ(Z, eo)dH(Z)
[ (BGe, 0.00) = G (w.60) (0. o))
_ / / (ELy(= — Z0)EGs, (4,00) — ELy(= — Z1)Ge, (4,60))

f7(2,00) f2(y. 00) 7 (2)7 (y)dzdy.

By the transformation 2(z — s) — p — ¢ = 2bv and 2u — p 4+ ¢ = 2ht, we have

ELy(z — Z;)Gg,(y,00) = E {Lb(z — 7)) / Fx(y —u, 00) Ky (u — [Z)du}

=K {Lb(z—Xi—Ul—i_%)/fX —u, 09) Kp, (u—U1;U2)du]

= [ (PEEEEE pty - o (2 el b))

9 / L) fxc(y — 1, 00V K (8) Fx (5, 00) fur (= — s — bo + u — ht)

fu(z—s—bv—u+ht)d(u,s,v,t). (3.27)

Combining (3.25), (3.26) and (3.27), using the assumed continuity of fz, fx, fz, fu, we

obtain 2Fs,;15m,2 converges to
sz . 00) f2(2, B0)dII(: ] —4//(//fx w00 fulz — s + W)
fulz— s —u)fx(s, Go)dsdu> f2(2,00) f2(y, 00)d11(2)dIL(y) = 5.

Therefore, Es?, — 3 = X; + Y + 33. Hence (3.23) is proved.
To prove (3.24), note that by the C, inequality, E{s2,1(|sn:| > n2n)} has upper bound

n—én—6/2E’8m’2+6 < n—én—6/221+6E (’Sm1’2+6 4 ’Sni2’2+5)
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By the Holder’s inequality, E(|s,:1|>T°) is bounded above by

and

246

B (Jsniaf2*) = ‘ / (EGp, (2.00) — G (=,00)) f2(=, 00)dI1(2)

246

6| [ G (s 00 s 0010 ~ [ G, (200,01
:/ ‘ // Ix(z = u, 00)Kn(u— ) fz(2,00)dudII(2)
~ / EG, (= 6) fz(z,eo)dmz))m Fo(s)ds = O(1),

Therefore, from (b2),

E {wa»](|5m-| > n%n)} <n 2 (0(b) + O(1)) = o(1), Vi > 0.

By L-F C.L.T, we have n:S, = N(0,Y), where ¥ = ¥ + X9 + Y.

To finish proving Lemma 3.3.2, we need only to show n2g,; = 0p(1) and N3 gy = 0p(1).

In fact, from (b2), (h3), (ul), (kl) and (3.21), by the Cauchy-Schwarz inequality, we have

ndgual = [ U:)(F2,80) = ol 00l (2
<t ([ ) ([Uztet0 - fz(Zﬁo)]de(Z))é
_nto, (j_) 0, (%) _o, (ﬁ) o (1), (3.28)
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Similarly, from (x3), (3.21), and the result from Lemma 3.3.1, we obtain

Sl ARG ACARACN (6

<ot [wpane)|” [t [U00 - fatopane

=0, (%) op( n%b>0p(1) = 0,(1).

nzb

1
2

This completes the proof of Lemma 3.3.2. O

Lemma 3.3.3. Suppose Hy, (21)-(24), (v1), (z2), (b1)-(b3), and (w1). Then

Vit [ 230501366000 = Ru/a(8;, ~ 60

with R, = Xo + o0,(1), where Z}(z,0) is as defined in (3.19), and Xy is as in (3.7).

A

Proof. Recalling d,(z,6,6,) defined in (3.19), nz [ Z:(2,0%) f2(2,6%)dII(z) can be rewritten

as
nt / Fol. 03) 2. 07, 00) + (T (2. 00))" (6, — 00))dTI(2)
ZJ 9*7 90) (6* - HO)T A T:| 1
z,00) “ . + (fz(2,0 dll(z) - [n2(6; — 6
Therefore, we only need to show that
Z, 0*, 90) (6* — 60>T H

2,00) L " dll(z)|| = 0,(1 3.29
| ete i 2 =g e = et 529

and

/ F2(2,0) [f 22, 00| dII(z) = So + 0,(1). (3.30)

To prove (3.29), from (x2) and the consistency of 67, the L.H.S. of (3.29) is bounded
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above by

|fx (2, 05) = fx(x,60) — (65 — 60)" fx (=, 60)] ; x i
sup T [zt lantz) [ fotwda

=0,(1)0,(1) = 0,(1),

by observing the fact that [ ||fg(z, 0%)||dII(z) is bounded above by

[ 12026 = ot 0)lane) + [ 126z 00)1an1(2)
< [z = 0.8 = e = w0 folw)dudli(2) + [ 1175(z.00) (2

=0,(b2)0,(1) + Oy (1) = O,(1),

from Lemma 3.3.1, (x3) and (3.22). Next, we will prove (3.30). By the Cauchy-Schwarz

inequality, from (b1l) and (x3), one sees that

H/ F2(2,65) = F2(2.00)](f(2,00)) " dII(2)

[/Hfz o) [ 17z o)

<0,(0"*)0,(1) = 0,(1).

Therefore, the L.H.S. of (3.30) can be written as

/ F2(2,02) = Fa(z, 00)][f2(2, 00) dII(2) + / F2(2.00)[f2 (=, 00)) dII(2)

<op(1) + / F2(2,00) [ (2, 00| dI1(2) = 5o+ 0,(1),

where the last step is due to the fact f]éZ(z,HO)[fZ(z,HO)]TdH(z) = Yo + 0,(1), which is

verified below.
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In fact,

[ ot b0z 0 )
= [1F2(000) = Fa(2.00) + e, 00)[F5(.00) = F3(.00) + F5( 0T a(2)
= [1F2(2.00) = Fa(z 001 F(z100) — Folz, b))

42 [ ol 0u)lFale.00) = fo e 0001d1C:) + [ Fale,0) (00 ()

where | Hfz(z, 00) — f7(z,600)||dII(2) = 0,(1) and by using the Cauchy-Schwarz inequality,
we know

H [ 50012000 - . 00T 1)|| < O(1)0y(1) = 0y(0).

]

Theorem 3.3.3. Under Hy, when (v1)-(xz3), (21)-(24), (h1)-(h3), (b1)-(b3), (n1), (ki)
and (ul) hold, we have n%(ﬁfl —0y) — N,(0,5,'535Y), where X = X + Xy + X3 and 3,
i=0,1,2,3 are defined in (3.7).

Proof. Based on the discussion at the beginning of this section, it is sufficient to show that
Vv [ U (2 «9*)dH( ) converges in distribution to the normal distribution N (0, ¥), while
Vn [ Zi(z,05)f (z 0:)dIl(z) = v/nXo(0 — 6p) + 0,(1). Then the theorem can be proved by
combining the results from Lemma 3.3.1, 3.3.2 and 3.3.3. O]

3.3.3 Asymptotic Normality of the Centered MD Estimator

We will derive the asymptotic normality of 6,, the minimizer of T,,(6) in (3.6).

The following fact shall be used constantly in the subsequent proofs. Although the
proof is not complicated, it is reproduced here, with a short justification, for the sake of
completeness.

Suppose ¢(z,x) is a bivariate function such that and for each z in the support of II,
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Eg(z,X) and Eg?(z, X) are continuous function of 2. Then we have

[ ZH(Z)_/E

:% /Eg2(z,X1)dH(z) + %/[EQ(Z,XQ]ZdH(z) —0,(1). (3.31)

n

%ZQ(Z,XJ

i=1

1 < 1
EZQZ(%X'L')+ﬁzg(zaxi)g(27XJ) dll(z)
i=1 i#j

Since the derivation of the asymptotic normality of 0, is tedious, a series of lemmas will
be introduced first to help us better understand the whole process.

Define
(2, 6) = / Lo(z — 2)f5 (e, 0)dz,  jin(2) = Ejin(=, 6o),

Un(2.0) =f(2) - / Loz — 0)fz(x.0)dx,  Un(2) = Un(z.60),

Zn<2,0) :UH(Z) - Un(zve) = /Lb(z - x)[fZ(xae) - fZ(x790>]dx7 (332>

Lemma 3.3.4. Suppose (z1), then L, == [ fin(2,00)(ftn(2,60))"dlI(2) = o + 0,(1), where
Yo is as in (3.7).

Proof. Recall fip(z) = Efi,(2,60p). Then

='| / (12, 80) = 1n(2)) (it (2, 60) £ jon () dTL(2) — / in(2) (i (2)) T lTI(2)

L - / in(2) (in(2)) T dTI(2)

< [ Min(z:00) = i) PALG) 42 [ iz, 00) = ()] in(DT) (333)

where + stands for minus and plus the term afterwards.

For [ ||fin(z,00) — fin(2)||*dII(2), first note that f1,(z,60) — f1n(2) is an average of centered
iid r.v.’s. Using Fubini Theorem, doing the transformation z —x = bxy, z—y = by;, u—s =
huy, v—s = hvy, by the fact that variance is bounded above by the second moment, and the

assumed continuity of fx, we obtain that E [ ||f,(z,60) — fin(2)||?dII(z) is bounded above
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dll(z)

- 2
1 zZ—x . 1 u—U;
Ji52) s (555

DL(y) f2 (2 — bys — s — hwy, 6)

1
n
1

n

/ E
/L(a:l)fx(z — by — s — huy, 0) K (u

K(vn)fg(s)d(ur, z1,v1, 91, 5, 11(2)) = O (%) =o(1).

Therefore,
1
> = 0,(1). (3.34)

[ liaGestt) ~ (e Pan) = 0,

For the second term in (3.33), from (3.31), one can observe that

Jlin@Pane) = [ 18 00| = o). (339

By the Cauchy-Schwarz inequality, [ ||/in(2,60) — fin(2)| ||fn(2)]|dIL(2) is of order o,(1).
Therefore ||L — [ fn(2)(pun(2))TdII(2)|| = o(1). To finish this proof, we only need to show

[ jin(2) (jin (2))7dI1(2) = S + o(1).

By changing variables, we have

fun(2) =Ejfin(z, bo)
:% ZE {/ Ly(z — x) /fX(x — u, 00) Ky (u — U;)dudz
= / Lo(z — ) fx (2 — u, 00) Kp(u — s) f(s) d(s, u, 2)

/L(x)fx(z —bx — s — hu,by)K(u) fg(s) d(s, u, z). (3.36)
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Therefore, by using the continuity assumption of fx, one obtains

[ e in(2) )
- / L(x) fx(z — be — s — hu, 60) K () fi(5)
CL(y) fE(z = by —t — b, 00) K (v) f5(t) d(s, u, 2, t, v, y,T1(2))

= [ L) fx(z = 5,00) K (u) fo () L(y) [X (2 = t.60) K (0) f (¢) d(s, u, 2, 0,5, T1(2))

_ / Fx(z = 5.00) fi (5) FE (= — £.00) fr (1) (s, £, T1(2))

which is [ f7(2,600)(f2(2,00))TdlI(2) by simple algebra. O

Lemma 3.3.5. Suppose Hy, (21)-(%4), (b1)-(b2), (r1)-(x2), (x1) hold, then nb||0, — 0,||> =
O,(1).

Proof. Note that [ UZ2(z)dll(z) = [ [fz(z) — [ Ly(z — ) AZ(x,GO)d:prdH(z) = T,,(0p). From
(3.15) and (h3), one can verify that

U2(2)dII(2) = T, (60) = O, [ — ) . (3.37)
b

Recall Z,(z,0) = U,(z) — Un(2,0) and let D, (0) = [ Z2(z,0)dI1(z). We are going to show
nbD,(0,) = O,(1). To see this, observe that nbT},(f,) = O,(1) as shown above and 6, is the

A~ A~

minimizer of T,,(0). From T,,(0,) < T,,(6y) = O,(55), we know nbT,(0,) = O,(1) and

nbD,,(6,,) =nb / [Un(2) = Un(z,0,))%dII(2) < 2 [nb / U2 (2)dII(z) 4+ nb / Uz(z,én)dﬂ(z)]

=2[nbT, (60) + nbT,(0,)] = Op(1).

Dy (6,)

Next, we shall show TRTATE

> B with arbitrarily large probability, where B is an arbi-

trary positive number.

Dyy(6,)

0,(1) = nbD,(0,,) = nb||6,, — bo||* ——.
! 16 — o1
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Recall the definition of d,(z,0,6) in (3.19) and Z,(z,0,) in (3.32), we have

D@6y [f Ly(z — ) (fz(x, 6,) — fz(ﬂf,@o))dxrdﬂ(z)

16, — 6ol |? 16, — 6|2
N N x 2
I [ [ Ly(z — 2)dn (@, 00, 00)dz + [ Ly(z — 2)(6, — 00)7 f5(x, 90)dx] dIl(2)

16, — 6o]|2
> By + Bny — 2B’ B!/?

n2

where

- . 2
B, :/ /Lb(z — $)—dn€$’0n’eo) dx] dIl(z),
I 10 — o]

B =/ /Lb(Z — ) G _HZO)T];Z?T’ %) 4o
L n — Y0

2

dll(z).

We can verify B,; = 0,(1). In fact, from (x2) and the consistency of 6,,

: 2

. O fZ(xvén)_fZ(x700)_(én_HO)TfZ(‘Ta‘gO) T 5
BB =E [ | [ 1) T e
_ o fX(iU—U,én) — fx(x —u,b) — (én—eo)TfX(x—Uﬁo)
== [[[ -] 16, — ol
-fU(u)dudx] dll(z)
. lsup (2, 60) = f(,00) = (B = 60) fcla — w, em] 2
@ 16, — bo]

B / [ / L(z — 1) / fU(u)dudxrdH(z)

is of order o,(1) by observing that E [[[ Ly(z — z) [ fo(u)dudz]?dIl(z) = O(1).

For B2, we notice that By > infj =1 X,(s), where

Sa(s) = / { / Lb(z—x)sTfZ(x,Ho)dxrdH(z): / (57 1 (2, 0)PdI1(2).
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By Lemma 3.3.4, we have 3,,(s) = [ s”f1,(2,00)(fin(z, 00)) " sdIl(2) = sTSgs + 0,(1).

Also note that for any ¢ > 0, and any two unit vector s,s; € RY, ||s — s1|| < d, we have

S0(s) = Suls1)| = \ [ 5 80) o2 80))"51G2) [ 5z, 80) i (2.60)) 5112
(s = 50" [ iz 0) 2,80 a5~ 31
257 [ (2, 00) (2, 00)) T (2) 5 — 52)]

<5(65+2) / i (2 60) |2dTI2).

By Lemma 3.3.4, we have [ ||fi,(z,09)||?dlI(z) = O,(1). This fact together with the com-
pactness of the set {s € R |[[s| = 1} imply supj =, [En(s) — s"Xos| = 0,(1). Therefore,
By > infjg=1 s720s + 0p(1). We also have %BifBiéz = 0,(1) by the Cauchy-Schwarz

inequality. These facts imply

Dy (6 L y
# > inf s'3s with arbitrarily large probability.
|60, — 6ol — llsli=1
This concludes the proof of Lemma 3.3.5. O]

Lemma 3.3.6. Suppose Hy, (21)-(z4), (b1)-(b2), (z1), (x3) hold. Then
[ iz 80) i 0) 11 (2) = S+ 0,(1).
Proof. Note that

/ fin(2, 00) (e (2, 0,)) T 2)

- / (22 00) in (2, 6) — jin (2, B0) T TI(2) + / i (22 60) (i (2, 60)) T 2).

In view of Lemma 3.3.4, we only need to show the upper bound of [ fi,,(z, 6o)[fin(z, 0,)—
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fin(z,00)]7dlI(z) is 0,(1). In fact, by the Cauchy-Schwarz inequality,

2

H [ il 00l 60) = (2. 60T )

< [ i 00) A1) - [ Win(z20) = e, 60 P12,

Note that [ ||/t (z,60)||*dII(z) = O,(1). Moreover, from (bl), (x3), and by the consistency

of Oy,
[ ialz.00) = e, Panca)
= [ 101 [t = = e wtpoturiua| ante
<supllfx(a o) = fxe. 0ol [ | [ 1at =) [ fg<u>dudxrdn<z>
o) [ |/ AU<u>durdH<z> — 0 (B)0,(1) = 0,(1), (339)
Therefore,

[ 2 80) (2 0 ILCE) = [ (22 80) (2 60)) (=) + 0y(1) = o + 0,1

]

Lemma 3.3.7. Suppose Hy, (b1)-(02), (h3), (71), (21)-(24), (x1), (x3), (kl), and (ul) hold,

then
NG / Un(2,00)fin (2, 0,)dII(2) — N, (0, %),

where ¥ = X1 + Yo + X3 and X;,i = 1,2,3 are as defined in (3.7).

Proof. For convenience, we shall give the proof here only for the case d = 1, i.e., when
fin(z,0) is one dimensional. For multidimensional case, the result can be proved by using

linear combination of its components instead of fi,(z, ).
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Note that v/n [ U,(2)fmn(z, 0,)dI1(z) can be written as the sum of the three terms:

=it Ua(@lin(:00) = iz, 60)I(2)
2 =t [ Un(a)ljin(z:60) = jn(2)(2)
G, :\/ﬁ/ Un(2) fin(2)dI1(2)
We are going to show the first two terms are o0,(1) and the last one converges to N(0, X).
We add and subtract [ Ly(z — ) fz(x,60)dz and [ Ly(z — 2)Efz(x,00)dz from U, (2),
then G,, can be written as the sum of G,1,G,2 and G,3, where
G =Vt [ 72~ [l = )t o)t | ju()an)
G2 =\/ﬁ/ /Lb(z - x)/fx(ﬂi —u,6p)(for(u) — EfU(U))dUdiU} fun(2)dI1(z)
G =it [ | [ 1 =) [ il = u.t0) Bt ~ fo()duds] jn()an)

It suffices to show G,1 + Gpg — N(0,X), Gra = 0,(1). Let s,; = Spit + Snia, Where

- / [Lb(z 7 / Lu(z — ) f(z, eo)dx] i (2)dII(2),
- :/ [/ Ly(z — 1) / Fr(r — 1w, 00) (B R (u — Ty) — Ko(u — 0))duda | fin(2)dT1(2).

Then We can rewrite G, + G5 = \/Lﬁ o (Snit + Sni2) = \/Lﬁ > or L Snie
Note that for each n, s,; are iid centered r.v.’s. To prove G,,; + G,3 — N(0,X), we only

need to show

Esiiy =1, Eshy— Yo, 2ESu;18p0 — U3,

nil ni2

E{s2,I(|sni| > n7n)} — 0, ¥n>0. (3.39)
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By Fubini,

Bs?, = / / (BLy(z — Z)Loly — Z) — ELy(z — Z)ELy(y — Z)ljun(2)jin(y)dT1()dT1(y)

Z/Lb(z = s) Loy = 8)fz(s, 90)ﬂh(2)ﬂh(y)ﬂ(2)7f(y)d(s,zjy)

[ - s iiamta]

By using the result in (3.36), and the assumed continuity of L and 7, one obtains

st =l [ L(:) L) (s, boins + b2ins + bu)r(s -+ be)r(s + by) (s, 2.0
- [ / / L(2)f2(5, O0) (s + b2)(s + bz)dsdzr
= [ 1oL 265,00 ( [ fsts- u,eo>fa<u>du)2w2<s> d(s.2,)

_ [// L(2)£5(5,00) (/ Fals — u,eo)fU(u)du> W(s)dsdzr.

By simple algebra, we see this is indeed ;. Denote
Hy, (2.00) = / Ly(z — 1) / Fa(@ — u, 80) K (1 — U3 dudz. (3.40)

Then

Est, —F [ / (EHp (=, 00) — Hy (= 90)]/lh(z)dﬂ(z)1 :

£ |& ([ Hyetin()1) - [ o bl >]2

which equals the variance of [ Hpy(z,0p)/n(2)dIl(2), and can be written as the difference
between E| [ Hy(z,00)ftn(2)dI1(2)])? and [E [ Hy(z, 0o) fun(2)dII(2)]2. We then calculate these
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two terms one by one. By Fubini, one obtains that

2

E [/ Hy(z,60) 0 (2)dIl(2)
—E [ [ Hoe00)in () Ho (v, 60)in o)1 (2) ()
= [ Bt 00)Hy (. 60)) i (i ()12 )
:// /Lb z—x)fx(x —u,00)Kp(u— s)Ly(y — t) fx(t —v,0p)
Ko =)o) du,,0,,5)] (o) (2 () d=dy
which converges to [ [f Ix(z— s,@o)fz(x,éo)ﬂ(x)dxr fo(s)ds as b — 0,h — 0 by simple
algebra. And
B [ Hy (e 00)in()ari(:)
:/ {/ Ly(z — x) fx(x — u,00) Kp(u — 8) f(s) d(u, x, s)} fip(2)dII(z)

= / L(z1) fx(x — s — huy, 00) Ky (u1) fi(8) fon(z + bzy)m(x + bzy) d(uq, x, 8, 21)

converges to fx(x —s,6 fz x,00)m(x)dx| f7(s)ds. Therefore, Es?,, converges to
ni2

2 2
J| [ 1xte = s.oniste.onin) satsis = | [ fate.00fste )| .
Next, we consider ES,;1S,:2. Note that Es,;1S,:2 can be rewritten as

ESni1Sniz
:E/[Lb(z — Z;) — ELy(z — Z1)]jun(2)dl(2) {/[EH,;(Z,HO) - HUi(z,Go)]ph(z)dH(z)}
5 / / (Lo(z — Z) — BLy(z — Z0))in (=) (EHg, (v, 60) — Hp, (9, 00))ion (3)d1(2)dIL(y)

— [ [ (L~ 2By (0.60) ~ EL(z ~ Z)He, (5,60 (in )AL ().
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Note that

BL(: = 2) = [ LOf3(: - bt b0

EHg (y,00) = / L(z) fx(y — bx — u, 0p) K(s) fr(u — hs)d(u, z, s).

By the transformation z — s — (p+ ¢q)/2 = bv and u — (p — q)/2 = ht, we obtain

ELy(z — Z;)Hg (y, o)

B [Lb (Z—Xi— Ul;%) /Lb(y—x)/fx(x—u,QO)Kh (u— Ul;UQ) dudx]

1425250 =t 000 (=2 ) s B0 foa) .50
—2/ () L(@) fx(y — b — u, o) K (1) fur(2 — 5 — bv + u — ht)

“fu(z—s—bv—u+ ht)fx(s,0)d(u,z,s,v,t)

Therefore, when b — 0,h — 0, by using the continuity of fz, fx, f7 and fy, we have

2E'5,;15ni2 converges to

([ 2Osste00at) ( [ L@s5t0 - 00K fo(w) .,

ol 00)F2 . 0)IL()() — 2 [ L)L) fxly = . ) K (0 fx(5,60)

folz = s+ ) fulz = 5 =) f(2,00) f2(y, 00 () (y) A, 2, 5,0, 2,y)
=2 [ [ 120,00 120000722, 00) 30, 60) ) y) ~ 2 [ fcly = w,60)

oz = s+u) fulz — s —u) fx(s,00) f2(2,00) f2(y, Oo)m ()7 (y) d(u, 5, 2, y)

_2[/fzz90fzzeodn }—2// /fX —u,00) fu(z — 5+ u)

fulz = s = u)du) fx (s, 00)f2(2 00) f2 (. 0o)dsdTI(=)dTI(y)
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which is indeed X3 by simple algebra. Next, we are going to prove (3.39). Note that

; 2 g |0
E{Siilqsnil > n%n)} =F {83”»[ (‘8?4 > 1)} < E{Sm |Sni

nang (n2n)?

} — 2B s

By using C, inequality, we have E|s,;|>™0 < 2" E(|5,i1]**° + |sni2|>T°). Using Hélder’s

inequality, E(|sn:1|*>T°) is bounded above by

2 [

{/[Lb(z — Z;) — ELy(z — Z)JQ?SdH(z)}” . {/(ﬂh<z>)2§6dﬂ(z)}2+6

—E {/[Lb(z —7Z;) — ELy(z — Z)]Q?dl'[(z)} B [/(ph(z)ﬁ&dﬂ(z)] 5= o(b™),

E

and it is not hard to see

246
Elsunl™® = \ [ By, 2.0 Hy (2. 60T )

2+6

:E‘/Hgi(z,eo)ph(z)dﬂ(z)—/EHUi(z,GO)ph(z)dH(z) — 0(1).

Then
0002 E|s, [Pt <n 702002 B (8001 [P+ [50i2]*T0) < O(n7207%) + O(n~%/?)

is of the order o,(1). By the L-F C.L.T., we have G,; + G,3 — N(0,%), where ¥ =
Y+ X + M.

To finish the proof of Lemma 3.3.7, it suffices to show g,1 = 0,(1), gn2 = 0,(1) and
Ghna = 0p(1). In fact, from (3.37) and (3.38), by the Cauchy-Schwarz inequality, we have

gt =/ / Un(2) fin (2, B0) — fin (2, o)1 2)

[NIES

1
2

<vi | [u@m)| { [l - o) = vio, (S5 ) o0
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which is of order 0,(1). From (b2), (3.34) and (3.37), we obtain

gz =V / ) fin(z. 60) — fin(2)}dTI(2)

<vi | [vanea)| | [linGeto) ~ ino)ane) %

- () (3) -0 () o0

From (ul) and (h3), we have

Gz =/ / { / Ly(z - ) / Pl = u,00) (fir(w) - EfU<u>>dudas} fun ()11 (2)
_f/ULbz—x /fX — u, ) hQ/K V2 u+0@h)dvdudx] n(2)dII(2)

:O(\/ﬁ}ﬂ) = 0p(1),

where 0 < # < 1. This completes the proof of Lemma 3.3.7. O

Now we are ready to prove the asymptotic normality of \/n(6, — ). Let

G, = /Un(z)/lh(z)dl_[(z).

Theorem 3.3.4. Assume Hy, (x1)-(x3), (21)-(24), (ul), (b1)-(b2), (h1), (h3), and (m1)
hold. Then nz (6, — 6,) = Ealn%Gn + 0,(1). Consequently, nz (0, — 6y) = N, (0,315,
where ¥ = X1 + Yo + X3, and X;,i = 0,1,2,3 are as in (3.7).

Proof. Recall that 6, is the minimizer of T,(0). By the consistency of 0,,, for sufficiently
large n, 6, will be in the interior of © and 7T,,(6,) = 0. Recall definition fi,(z,0) in (3.32),

T0,(6,,) can be written as
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Therefore,

/ (=) fin (2, 6,)dTI(2) = / [ / Lo — 2) (o 0)da (2, 00) | dTI(2). (342

Adding and subtracting [ [ Ly(z — ) f2(x,00)dx fin(2,0,)dTI(2) from the R.H.S. of (3.42),
recalling the definition of U, (z,#) in (3.32), one obtains

//Lbz—x 6) = F5(2,00))dx fin (2, 0)dTI(2)
_/[ J(2) — /Lb(z—a; (2, 60)d ] I(2) ::/Un(z,eo) i (2, 6,)dTI(2).

Recall the definition of d,(x,6,00) = fz(x,0) — fz(x,00) — (0 — QO)TfZ(:E,HO), the term
F2(x,0,) — fz(x,00) can be written as d,(x, 0, 00) + (0, — HO)TfZ(x, 0p). Thus we have
. ) g _ p\T
{/,an(z,ﬁn)/Lb(z—x)Mdde(z)M
16 = oll 16 — oll
[ e 80) o 60)) A1)}/ — 60)

—vi{ / U (2. 00) (2, 0,)aT1(2) }.

From (x2) and the consistency of 8,,, || [ fin(2,0,)[[ Lo(z — )dﬂg”%"ﬂo dz]dII(z) lfe *930“ I

is bounded above by

Fa(r.0) = Fxleb0) = (B = 00 Fu @8] [
o T [ a6

. [/Lb(z—x)/fU(u)dudx

which is due to

dIl(z) = o0p(1),

/ (2, B2 | T1(2) / o2 B2) — (=, 00) | dTI(2) / (2, B0)[[dTI(2) = O,(1).

Then the result of Theorem 3.3.4 is a consequence of Lemma 3.3.4 to 3.3.7. O
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Remark 3.3.2. For the bandwidth assumptions, Theorem 3.3.3 requires both nb* — 0 and
nh* — 0, while Theorem 3.5.4 only requires nh* — 0. The condition nb* — 0 is needed to
deal with the asymptotic bias Efz(z) — f2(2,00), while the condition nh* — 0 is required to

dampen the effect of estimating fg by its kernel density estimate fg(u)

3.4 Asymptotic Distribution of the MD Test Statistic

This section contains the proofs of the asymptotic normality of the minimized distance 7F(6%)

~

and T,,(0,,). We begin this section with a lemma, which will be used in the subsequent proofs.

Lemma 3.4.1. Let X;,i = 1,2,...,n be a sequence of i.i.d. random variables, f(z,-) and
g(z,-) be two measurable functions. Suppose [ Ef(z, X)dIl(z) < oo, [ Eg(z, X)dIl(z) < oo
and [ Ef(z,X)g(z, X)dlI(z) < oo, then

n

[ sren)

n

S 9l X0~ Bl X))

=1

dIi(z) = O, (%) |

Proof. First, for i # j, E [[f(2,X;) — Ef(z,X)][9(2, X;) — Eg(z, X)]|dII(z) = 0 due to the

i=1

independence of X; and X;. Therefore,

¢/

=238 [ X0 = S X)la(z. X) — Bgle, X)lari(z)

dll(z)

% > _(f(2, X)) = Ef (2, X))] [% > (9=, Xi) = Bg(2, X))

15 X090, X) ~ B, X) Byt X0lan(e) = 0 (1),

n n
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Moreover,

E{/

:% Z B [/(f(za Xi)—Ef(z,X))(g(2,X;) — Eg(z,X))dH(z)}

n < -
i=1 =1

dH(z)}

L > (f(z, X)) — Ef(z, X))] [% > (9(z Xi) — Eg(z, X))

I / (f(z. X)) = Ef(2, X))(g(2, X1) — Eg(z, X))dII(2)
[ - B X)) (00 Xe) — By 2)dn:)]
g / (f(z.X0) = Ef (2. X))(9(2, X2) = Eg(z, X))dII(2)
[ ~ B X0 X0) - Egte, 2panca)] =0 ().
Hence the desired result. O]

The following theorem states the asymptotic distribution of the minimum distance test

statistic based on T,*(6}).

Theorem 3.4.1. Suppose Hy, (x1)-(z3), (21)-(24), (b1)-(b3), (h1)-(h3), (v1), (kl), and
(ul). Then
nb'A(T;(6;) — Cu(6;)) = N(0,T),

where C,(0%) and T are as defined in (3.7) and

n? é—
7]

A (/ [Lo(z = Z;) — %Z Ly(z = Zi)} [Lo(z = Zj) = — > Ly(= — ZQ}dH(z))

Moreover, |T,I=1 — 1| = 0,(1).

Define
T (07) =T 2nb (T (07) — Ca(63)). (3.43)

Consequently, Hy will be rejected whenever |7,5(65)| > Za /2, where a is the asymptotic size

and Z, is the 100(1 — a)% percentile of the standard normal distribution.
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The proof of this theorem is facilitated by the following three lemmas. Define

To(60) = / Fa(2) — Efy()PdI(z)

Lemma 3.4.2. Suppose (b1)-(b2), (z1) and (x1) hold. Then nb'/*(T,(6y) — C,) = N(0,T).

To prove Lemma 3.4.2, we need the following Theorem 3.4.2, which is Theorem 1 of Hall

(1984) and reproduced here for the sake of completeness.

Theorem 3.4.2. Let X;,1 <i < n, be i.i.d. random vectors, and let

Un = Z Hn<X’i7Xj)7 Gn(%?/) = EHn(Xlax)Hn(Xlay>7

1<i<j<n

where H, is a sequence of measurable functions symmetric under permutation, with
EH, (X1, X5|X1) =0, almost surely, and EH2(X,,X,) < oo, for eachn > 1.

If
[EG%(XM Xz) -+ nilEHi(Xl, XQ)]/[EHEL(XD X2)]2 — O,

then U, 1s asymptotically normally distributed with mean zero and variance

anH?l(Xl, XQ)/Q

Now let’s prove Lemma 3.4.2.

Proof. Expanding the square, T,,(fy) can be written as the sum of the following two terms:

c, :% Xn;/ (Lb(z ~Z) - /Lb(z — ) fy(, Ho)dx>2 dII(2),
M, :% ;/ (Lb(z ~Z)- /Lb(z — ) f( Ho)da:>

: (Lb(z ~Z) - / Lo(z — ) f4(a, Go)da:) dII(2).
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Let

H,(Z:, 7Z,) :%blﬂ / Ly(z = Z2) = ELy(> — Z)][Ln(= — Z;) — ELy(= — Z,)]dII(z), (3.45)

Gn(p,q) =EH,(Z1,p)Hu(Z1, ). (3.46)
One can easily show that the relation between Hn(Zi, Zj) and M,, can be built as

- 1
> Hu(Z;,Z;) = snb'/* M,
1<i<j<n 2
Observe that H,(Z1,Z,) is symmetric, we have E(H,(Z1,Z:)|Z1) = 0. Applying Theo-
rem 3.4.2, in order to show nb'/2M, — N(0,T"), we need to further prove the following two

results:

H%*(Z,,7Zy) < for any n. (3.47)

(Zl, ZQ) + n_lEHi(Zl, ZQ)

BRI — 0. (3.48)

To prove (3.47), observe that for each n > 1,

EH(Z,2)
:nQbE[/(Lb(z 7)) — ELy(2 — Z))(Ly(z — 7o) — ELy(2 — Z5))dTl(z)
[ (ol = 2) = BLiy — Z0)(Enty ~ Z2) ~ BLu(y - Z2)dIl(y)]

- / / [EIL(= ~ 20)Lafy — 20)] ~ BLy(z — Z0)ELy(y - Zl)}zdﬂ(z)dﬂ(y).

z—

By changing variable, 3* = ¢, we have

1

E[Ly(z — Z1)Ly(y — Z1)] = 7 / L(t)L <y% + t) fz(z —bt, 0o)dt,

ELy(z — 7)) = /L(t)fZ(Z —bt,00)dt, ELy(y—7Z) = /L(t)fz(y — bt, bo)dt.
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Usual calculation shows that EH2(Z,, Z,) equals

// / L(z1 + 1) f5(y — bzy — bt, 0p)dt — b/L(t)fZ(y — bz — bt, ) dt

/ (t)f7(y — bt, 00)dt:| (Y — bz)m(y)dedy =: n”" %k, (3.49)

where k, — ['/2 as n — oco. Next, consider (3.48). Similar to the argument above, one
obtains
EHMNZy, Zs)
—n 0 E U(Lb(z — 70) — ELy(z — Z0))(Lo(z — Z3) — ELy(z — Zz))dH(z)} 4
=n""b" /[E(Lb(z —7Z1) — ELy(2 — 20))(Lo(y — Z1) — ELy(y — Z1))
(Lo(s = Z1) = ELy(s — Z0))(Ly(t — Z1) — ELy(t — Z1))] d(I1(2), (y), 11(s), T1(#))

:n_4b2/ [b—lg/L(v)L (y_;z +v) L (8 ; - —I—v) L (t_TZ —I—v) f2(z — vb, )

+—0(1/b3)}2d(11<z),11(y>,11<s),11(ﬁn = OB (1/6%)2H) = O(n~b71). (3.50)

Recall G, (p, q) defined in (3.46). For p,q € R,

Gn(p,q) =EH.(Z1,p)H,(Z1,q)
:n_2b//[[/b(2 —p) — ELy(z — p)][Lo(y — ¢) — ELy(y — q)]

CE[Ly(2 — Z1) = ELy(2 — 20)|[Lo(y — Z1) — ELy(y — Z1)]dI1(2)dII(y).
Let

By(y — z) =E[(Ly(z — Z1) — ELy(z — Z1))(Lo(y — Z1) — ELy(y — Z1))]

[(
%/L@M?&Aﬂh@—w%ﬂ

)
—/L@ﬁ@—Mﬁw@/ug@@—m%mt
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Then by expanding the square of integrals and changing the variables, we obtain

EG?(Zy, Zy) =n"b? / By(v — 2)By(w — y) By(y — z) Bp(w — v)
-d(I(2), I(y), (v), I(w))

=0(n"*p*(1/b)*b*) = O(n™").

By observing the facts below,

EG2(Z1,Z,)  O(n~")
[EH2(Z), Z)2  n*w2 o(1),
n'EHNZy,Z5)  O(n~b7Y) o (i)
[EH2(Z), Z2)2  n*w2

= o(1).

we have shown (3.48) holds.
Define

1
T, =25

From (3.49), and by using the continuity of f;, 7, one obtains

Lo 0t =D pa 2, 2)
:%n(n —1)n? // [/L(t)L(z 1) fa(y — bz — bt By)dt
iy / L(t)f2(y — bz — bt, 6o)dt / L(t)f2(y — bt, Bo)dt] m(y — b=)m(y)dzdy
=5 ] { J G Qo)dt} 2 (y)dzdy
:% // [fz(y,Oo)/L(t)L(z+t)dtr7r2(y)dzdy

:%/ F2(y 00)7 () dy (/L(t)L(z 4 t)dt)2 di= .
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In sum, nb'/?(T,(6,) — C,,) = N(0,T). O

Lemma 3.4.3. Under Hy, when (z1)-(x3), (21)-(24), (h1)-(h3), (b1)-(b3), (x1), (kl), and
(ul) hold, we have nb*/?(T*(0%) — T*(6y)) = 0,(1).

Proof. Recall the definition of U} (z) and Z(z,0) from (3.19),

T!(60) — TH(6]) = 2 / U2 (2)Z2(2, 02)dTI(2) — / 122 (2, 0)PdTI(2) = 2Q1 — Qo

Thus, it suffices to show that nb'/2Q; = 0,(1) and nb*2Q, = 0,(1).
Recalling d,,(z,0,6y) as defined in (3.19), we have

01 — / U (2) 22z, 02)dTI(2) = / US () (2 6) — Fo(z,00)]dTI (=)

- / U (2)du (2. 65 60)dTI(=) + (65 — 6y)" / U2 ()52 00)dII(2)

=:Q11 + Q12

For (11, by using the Cauchy-Schwarz inequality, and from Theorem 3.3.3, (x2), and
(3.21), nb*2|Q11] is bounded above by

w20; ool | [ <U:<z>>2dn<z>r JE =" %
—nb'/20, (%) O, <\/%> 0,(1) = 0,(1). (3.51)

Consider )12 and notice that

[ Uitz oanc
= [ Uz e 00) — Fle 6T + [ U)o 00)II() = g+ 51
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Therefore, from Lemma 3.3.2 and (3.28), one can easily verify

1 1 1
nb'2|Qual =[nb'/?(8; — 60)" (gur + 5.)| < b0, (%) [Op (nb—/> o (%)}

which is of order 0,(1). Next, we show nb'/2Qy = 0,(1). In fact,

A~

[z rane) = [lda(e05,00) + 6~ 60)" e, 60)an(:)
:/di(z,eq’;,eo)dﬂ(z) + (0, — QO)T/Jéz(zaeo)[fz(za90)]Tdﬂ(z)(9:§ — o)
42 / Ay (2,07, 00)(07 — 00)7 f2(=, 60)dT1(2)

=:Q21 + Qa2 + Qa3.

Consider )2;. From Theorem 3.3.3,

di(Z o 90)

yYn?

nb'?Qyy znbl/Q/di(z,GZ,Go)dH(z) = nb'2|0; — 62 I

dr1(z)
=0l 20,(1/m)o, (1) | [ / fU(u)durdH(z) = 0,(1).

The proof of nb'/2Qq = 0,(1) is similar.

b2 Qas | =nb2||0% — 0,

/ F2(2.60)[f2(=, 60|71 (2)

=0,u0, () 04(1) = 0,1

For (93, by using the Cauchy-Schwarz inequality, we have nb'/2Qq3 = op(1).
This concludes the proof of Lemma 3.4.3.
O

Lemma 3.4.4. Suppose (z1), (x1), (b1)-(b2) hold. Then T, — T' = 0,(1). Consequently,
T > 0 implies that |T,0~1 — 1| = 0,(1).

Proof. Let T, = 2 D i ([1Lo(z = Z;) — ELy(z — Z))[Lo(z — Z;) — ELy(z — Zj)]dl_[(z))z.
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By using LLN, it is easy to show |I', — I'y| = 0,(1). We only need to show I, — ', = 0,(1).
The claim of this lemma follows from this result and the fact that I',, — I

Note that I',, = Efn Hence

2
E(U, —T0) =4E | Y (H:(Z, Z;) — EH(Z, 7))
oy
i£] i#j7k
<4(n® +n*\EHNZi, Z;).
By using (3.50) and (b2), this upper bound is O((nb)™!) = o(1). O

Combing the results of Lemma 3.4.2-3.4.4, we can prove Theorem 3.4.1 as follows:

Proof of Theorem 3.4.1. Recall T(6) defined in (3.44). Adding and subtracting Ef(z),
f7(2,00) and Efy(z,00) from f;(z) — fz(2,6y), we can rewrite T7(6y) as the sum of the

following ten terms:

T,(60) = [1f2(e) = EfoPana). = [[Bf5) = falz 00)Pan(a)

o= [Fales00) = B 00Paa). = [Bf(e,60) ~ Fo(e.t0)Pa(c),
ta =2 [ 1F2() = EAEF2(2) — f3(z,60)la0(2)

tio =2 [ F22) =~ Ef(2) S50 00) — Efy(a.o0)lart(a),

tro =2 [1£2(2) = BF2(NE3(2,00) - falz.60)dII(z),

tir =2 [ 1BF2(2) = Fale000)[F2(2,00) — Efs(e, 60)a(a)

tis =2 [ 1BF2(2) = Fales80)[EF5(2,00)  Foe,60)la1(a)

tro =2 [ 1F2(2:00) = Efp( 0B F(2:60) — (. 001,

We are going to show nb'/2t*, = 0,(1),i = 1,--- ,9.
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From (z4) and (b3), and Efy(z) = f4(z,00) + % [ L(v)v* fZ(z + 1vb, p)dv, where 0 <

71 < 1, we have

b2t =2 [(Ef5(2) = folz 00 PdII()
=nb'/? / g / L(v)v? f3(z + myob, 90)dvrdH(z)
gnbl/Zb;c? / l / L(v)devrdH(z) — Onb*/?) = of1). (3.52)

From (ul), (bl), and (h3), one obtains
b2t =2 [ (1502000 = Ef(z 60)Pan(z)

2 [ [ e = w0 o) - Ef0<u>>du} )
—nb'/? / { / fx(z —u,6p) (%2 / K (v)v? fl(u + mh)dv) durdﬂ(z)

=0(nb'/?nY) = o(1),

where 0 < 7, < 1. For ¢4, we have

nb' 2Et:, =nb'/*E / [Ef(2,00) — f7(z,00))%dII(z) = nb"/? / var(fz(z,00))dII(z)

b2 / %U@T(GU(z,GO))dﬂ(z) < b2 / EG2 (=, 60)dTI(2).

Since

EG2(2,6,) =E [ / Fr(z =, 00) K (u — U)du]
:/fX(z —u, 00)Kp(u — 8) fx(z —v,00) Kp(v — s) f(s) d(u, v, s)

:/fX(Z -5 hu: QO)K(u)fX(Z -5 h'U, GO)K(U)JCU(S> d<uav> S):
we get nb'/?t*, < O,(b/?) = o0,(1). By the Cauchy-Schwarz inequality, we also have
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nb*2t:, = 0,(1), i = 7,8,9. We can show C,, = O,(1/(nb)). In fact,

EC, =F

7 i/ <Lb(z ~Z) ~ /Lb<z — ) f(x, eo)dx)2 dri(2)
1 1

1! // (Lb(z g /L(x)fz(z—ba:,«%)d:v>2dH(z)fZ(s,Go)ds ~0 (-b) . (3.53)

n n

Therefore, from (3.52) and (3.53), by using the elementary inequality (a + ¢)*/? < a'/2 4

c/? for a > 0, ¢ > 0, we have

nb!2t;, <nb(T,(60) —
<nb2 (T, (60) — Cu)2(t50)* + nb"*(Co)3 (17,)%

—0,(1) + nb'0, (\%) 0, (1) = o,(1).

Similarly, nb'/2t}; = 0,(1). By using Lemma 3.4.1, it is not hard to see that ti5 = o0,(1).
Therefore, nb*/?t: s = O,(b*/?) = 0,(1).

Moreover, we can show nb'/?(C,,(6%) — C,,) = 0,(1). By adding and subtracting [ Ly(z —
z)fz(x,00)dx, [ Ly(z — ) f(x,0))dx, we can see that C,,(67) is the sum of C,,, Dyy, Dya(67)

and the cross products, where

D=t [ ([ e = ). 00) ~ Fotwstpar ) an)
D) =2 [ ([ 1a6e =)0t 00) ~ Fotw0)ar) e,

We only need to show nb*/2D,,; = 0,(1) and nb'/?D,(6}) = 0,(1). The cross products are
of order 0,(1) from these two facts and C,, = O,(1) by using the Cauchy-Schwarz inequality.
Actually, for Dy, we know [([ Ly(z — 2)(fz(x,60) — f2(x,800))dz)2dI1(z) is bounded

above by the sum of

2

2 [ [ [ e = 9)2(.00) — Bl 00| ar(z) = o(n
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and
2 | [ [ 1= 0)E i) - fyta, 90))6195] () - ().

Then nb*/2D,,; = 0,(1). For D,5(6%), from (x2), we can show

J ([ 1t = Gt - fz<x,e:;>>dx)2dﬂ<z> _olhy

n

Thus nb'/2D,5(0%) = 0,(1).
The facts shown above together with the results from Lemma 3.4.2 — Lemma 3.4.4 com-

plete the proof of Theorem 3.4.1.
]

Remark 3.4.1. The conclusion of Theorem 3.4.1 still holds if 0% is replaced by any /n-
consistent estimator of 6. One can also check the proof of Theorem 3.4.3 below and see that
the conclusion of Theorem 8.4.3 is still valid when any /n-consistent estimator of 6y, say

the method of moment estimate, is used, in the place of 0,.

The following theorem presents the asymptotic distribution of the minimum distance test

~

based on T,,(6,,).

Theorem 3.4.3. Suppose Hy, (b1)-(b2), (h1)-(h3), (21)-(24), (x1)-(x3), (v1), (kl), and

(ul) hold. Then nb*/*(T,(6,) — C,(6,)) = N(0,T).

Define
To(0,) = D20 2(T,(6,) — Cr(6,)). (3.54)

Then for the proposed test, we reject Hy whenever |T;,(6,)| > Zu )2, Where Z, is the 100(1 —
a)% percentile of the standard normal distribution.

Recall Hy (2,00) as defined in (3.40). Then T,,(6) can be written as

/{ AZ(Z)‘/Lb(Z—fL') {/fx(x—uﬁo) AU(u)du} das}QdH(z)

:/{ 4(2) —%ZH@(Z,%)} o)
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Again, we will introduce Lemma 3.4.5 to facilitate our proof of Theorem 3.4.3.

Lemma 3.4.5. Suppose Hy, (21)-(24), (b1)-(b2),(h1)-(h3), (x1)-(z3), (x1), (kl), and (ul).
Then nb*/*(T,(0,) — T, (6o)) = 0,(1).

Proof. Recall U,(z) and Z,(x,0) defined in (3.32). We have
T(0,) — T (60) =2 / Un(2)Zy (2, 0,,)dII(z) — / [Z,(2,0,)]2dI1(z) = 2Q; — Q.

It suffices to show nb'/2Q; = 0,(1),i = 1,2. Recall d,(z,0,,00) = fz(z,0,) — fz(x,00) —

(6, — QO)TfZ(x, 0p). @1 can be written as the sum of the following two terms:

Q11 —/Un(z)/Lb(z—x)dn(x,ém&o)dacdﬂ(z),
Oy = / Un(2) / Lo(z — 2)(6y — 00)T f5 (v, 00)dadI1(2).

For )11, from Theorem 3.3.4, (x2), and (3.37), by the Cauchy-Schwarz inequality, we have

nb'/?Qy; <nb'/? { / Ug(z)dH(z)} " ( / [ / Ly(z — x)dn(x,én,é’o)dx)QdH(z)

2 IA _XmO_An_OT.XfEaO
Snbl/z[/mz)dn(z)} qup 1260 On) = (@ 00) = (O = 60)" el o)

1/2

z 16, — 6o
16, — 65| {/ U Lb(zx)/fU(u)dudxrdH(z)}l/z
=0, (nbl/Z\/%%) 0,(1)0,(1) = 0,(1). (3.55)

For Q12, recall fi,(2,60) = [ Ly(z — x) Lz(x,Go)da: as defined in (3.32). From (3.41) and
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by Lemma 3.3.7, we have

nb2Q, = bl/Q/Un /Lb 2 2) (0 — 00)7 f (. 00)dwdT1(2)
—nbl/Q( n T/Un 2) fin (2, 00)dII(2)
—nbl/2 0, — o) T/Un (fin(2,6p) ,un(z,én))dl_[(z)

b 26, —QO)T/U Vi (2, 0,)dTI(2)

() (1) 70 (o () o0

Next, we will show nb'/2Qy = 0,(1). Recall d,(x,0,0,) as defined in (3.19), @, can be

written as the sum of the following three terms:

Qo :/ U Lb(z—x)dn(:c,énﬁo)dxrdﬂ(z),
Q= [0, = 60)" e, 60)Pa1(2),
Qo3 =2 / ( / Lo(z — 2)do(z, 0, Go)dx) (B, — 00)" (=, 00)dTI(2).

We will show nb*/2Qy; = 0,(1),i = 1,2,3. For Qq, from (x3), by the consistency of 0.,

. ) 2
Q= ¥~ o[ [ e ) [ L] )

0, oo
~ ~ N 2
" _ _ _ T
<nb 2], — o] sup [fxu,en) fx<x|,|go> 0<9Hn ) fx<x,eo>]
x n — V0

. / { / Lo(z — z) / Ag(u)dudxrdﬂ(z)

o (nbm%) 0,(1) = o,(1).

For ()92, by using Theorem 3.3.4 and Lemma 3.3.4, one obtains
nb"/2Qqy = nb*?(6,, — 6y)” / fin (2, 00) (fin (2, 00)) T dII(2) (8, — 6p) = O, ( bl/zn) = 0,(1).
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And the Cauchy-Schwarz inequality implies nb'/2Qq3 = 0,(1). ]
Next, let’s prove Theorem 3.4.3.

Proof of Theorem 3.4.3. Based on Lemma 3.4.5, it suffices to show nb'/2(T,,(6y) — C,,) =
N(0,T) and nb"/2(C,(8,) — C,) = 0,(1). Recall T,(6y) defined in (3.44), T,,(6y) can be

written as the sum of the following six terms:

T.00) = [Un(e) - Biyanc) = [ { 20— [ 1ate - x>f2<x,eo>dx}2dn<z>,
= [(Ef2(2) ~ BHy(z,00)Pan(a)

tngz/ 290 ZH 290

~

g =2 / F2(2) = Efz(2)[Efz(2) — EHp (=, 00))dT1(2),

dH(Z),

EHg(z,600) — ZH (z,60)

fn =2 / F2(2) — Efa() dIl(z),

tns =2 / [Ef;(2) — EHg(z,60)] dI1(2).

EHg(2,00) — — Z Hy, (2,6)
=1

From Lemma 3.4.2, we know nb'/?(T,,(6y) — C,,) = N(0,T). Next, we need only to show
nbY?t,; = 0,(1),i = 1,2,3,4,5.

If we can show nb'/%t,; = 0,(1),nb'/?t,5 = 0,(1), by the Cauchy—Schwarz inequality, we
obtain nb"2t,s < [nb*/2t,1]2 [nb"/2t,0]2 = 0,(1).

By the transformation u — s = ht, we have

Ly(z —z) fx(x — u, 0p) Kp(u — s) fz(s)d(s, u, x)

Ly(z — x) fx(x — u, 00) K (t)| fir (w) + f§(u)ht + (h;)z G(u+ Tht)] d(t, u, x)

I
— — —

Ly(z — x) fz(x, 0)dx + —/Lb z— ) fx(x —u,0) K ()t o(u+ Tht) d(t, u, x),
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where 0 < 7 < 1. From (h3) and (z4), we have

2
nb'?t,, :nbl/z/ [/Lb(z —x)fz(x,00)dx — EHy(2,60)| dll(z)
2

=nb'/? / lh; / Ly(z — ) fx(x — u, 00) K () f&(u + Oht) d(t,u,z) | dII(2)

=0(nb'?n*) = o(1).

What’s more,

EtnzzE/ ZH (2,6) — ( ZH 290>
:/va'r (EZ:HUZ.(Z,QO)) dll(z) = %/UW<H&(2790))dH(2)

! / (E[Hy (=, 00)] — [EHg (2, 00)]7] dI1(2).

n

dH(z)

Since

E[Hg (2, 00)]? :/ {/ Lo(z — ) U Fx(@ —u, 00) Ky (u — s)du] dx}2 fols)ds = O(1),

we know nb'/2Et,, < nb/?0(1/n) = O(b'/?) = o(1).
Next, we are going to show nb*/?t,3 = 0,(1) and nb'/*t,, = 0,(1).

From (3.53), we have C,, = Op(%). Therefore, using the Cauchy-Schwarz inequality, we

have

nbl/Qtn3 Snbl/Q[T<90)]1/2[tn1]l/2 b1/2[ (0 ) C +C ]1/2< )1/2
Snb1/2<T(00) . Cn)1/2<tn1)1/2 + nb1/20711/2(tn1)1/2

L > O(h?) = o,(1).

=0,(1)o,(1) + nb'?0, (M

Moreover, applying Lemma 3.4.1, we have nb'/2t,, = nb'/20,(1) = 0,(1).

By similar procedure as in the proof of Theorem 3.4.1, we can show nb"/2(C,(8,) — C,) =
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0p(1). The proof is omitted here for the sake of simplicity.
In sum, nb/%(T,(6,) — C.(6,)) = N(0,T). O

Remark 3.4.2. For the same reason as stated in Remark 3.3.2, the non-centered test in
Theorem 3.4.1 requires both nb* — 0 and nh* — 0, while the centered test in Theorem 3.5.4

only requires nh* — 0.

3.5 Consistency and Local Power of MD Test Statistic

Consistency is a basic requirement of any reasonable test. It requires that the test should
have a power tending to 1 for any fixed alternative hypothesis when the sample size n goes
to oco. In this section, we shall show that, under some regularity conditions, the tests in
Section 3.4 are consistent against certain fixed alternatives.

Let fx. be a density on R and consider the alternative H, : fx(z) = fx.(z), for all
z € R. Under H,, density of Z is f7,(z) = [ fxa(z — ) fg(u)du, which can be estimated
by fZ,a(Z) = [ fxa(z — u) fo(u)dII(z). We shall assume that 6, converges to a value 6, in

probability under H,. In fact, if

0, = minirglizer /[fz,a(z) — f2(2,0))%dll(z) (3.56)

is well defined, then one can show that the minimum distance estimator ¢ or 0, converges
to 6, in probability. The proof is omitted for the sake of brevity.
The following theorem states the consistency of the test 7*(6}) defined in (3.43).

Theorem 3.5.1. Suppose (x1)-(x3), (21)-(24), (h1)-(h3), (b1)-(b3), (x1), (kl) and (u1) hold.
Under H,, assume that 0, in (3.56) is well defined, and the additional assumption that fx ()
is bounded and [[fz,(2) — f2(2,0,)?dIl(z) > 0, we have T (6}) = nbl/zfﬁl/Q(Tg(QZ) -

A

Ch) —p 00. Consequently, the above test is consistent against H,.
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Proof. Adding and subtracting f7 ,(z) inside the quadratic term of the integrand, one obtains

T?(07) = / F2(2) — Fale02)2dI1(z) = / F2(2) = Fra(2) + Fral2) — Fole, 6)Pd1I(2)
- / F2(2) — Fral2)PdII() + / fo (. 0)dTI(2)
42 [173(2) = Fral@lfza2) ~ Fol )00

=T+ Thy + T

One can show that nb/21,"/*(T* — C,,) = N(0,1). The proof is similar to that of Theo-

rem 3.4.1. Note that now

2
r, — Q/f%a(v)WQ(y)dy/ (/ L(t)L(z + t)dt) dz =:T' in probability.

What’s more, adding and subtracting f7 ,(2), fz(2,0.), f7(2,0,) in the quadratic term of

the integrand in T7,, expanding the term, using the fact [ |fo(u) — fo(uw)|du = 0p(1) and

n2»

from (x3), one verifies T}, = [[f7.4(2) — f2(2,04,)]?dlI(z) + 0,(1). Therefore,
WL T = b P [ 17,4(2) = (0 PAIG) + o),

By the Cauchy—Schwarz inequality, the elementary inequality (a + c)% < a2 + c2 for

a>0,c >0, and from (3.53), one can show that

nbl/2fgl/2|Tn3|* §2nb1/2f;1/2]T;1 o én|1/2(T:;2)1/2 4 2(nb1/2f;1/2é'n)1/2(nb1/2f‘;1/2T52)1/2

=0,(1)0,(Vnb'/?) + O, (v nb'/2 \/1_) O,(Vnbl/2) = o,(nb"/?)

nb

from nb — oo guaranteed by the assumption (b2). Thus

nb! LT (6;) — C)

b E(T = Co) 4 b PR [ [74(0) = F3(e 0P AE) + oy ()
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Clearly, the right hand side of the above expression tends to oo as n — oo, implying that

the proposed test is consistent. O
Next, we consider the consistency of the test 7, (6,) in (3.54).

Theorem 3.5.2. Suppose (b1)-(b2), (h1)-(h3), (21)-(24), (x1)-(x3), (1), (kl), and (ul)
hold. Under H,, the additional assumption that 0, in (3.56) is well defined, and fx.(z) is

bounded, [[fz.4(2) — fz(2,00))2d11(2) > 0, we have T,,(0,,) = nb 20, (T, (6,) — C) —, 0.

Consequently, the above test is consistent against H,.

Proof. Add and subtract [ Ly(z — ) fza(x)dx inside the quadratic term of the integrand.

A~

Then T,,(6,,) can be written as sum of the following three terms:

T =/ {]EZ(Z) —/Lb(z—x)fz,a(ﬁ)dﬁrdﬂ(z),
Tho :/ [ Ly(z — 2)(f7.4(x) — fz(ﬂ%én))dxrdﬂ(z),

~

Ta=2 [ |f20)~ [ Ll - x>fz,a<x>dx} [ [ 1l = 2)Fralo) = oo dyde | ane).

One can show that nbl/zfﬁl/Q(Tnl — C,) = N(0,1). The proof is similar to that of Theo-
rem 3.4.3. Note that now I', — T in probability.

What’s more,

= [ [ 1= 0)Fat0) ~ Bt ] ance)

-/ [ [ 1= 2)fza@in T [ L - D fza@deF [ Lz - 2) 500 00

T / Ly(z — ) f7(x,0,)dx — / Ly(z — ) f7(x,0,)dx| dII(z)

where F stands for first minus then plus the term after the sign. Expanding the quadratic

term and using change of variables formula, one verifies T2 = [[fz.(2) — f2(2,0.)]?dII(z) +
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0p(1). Therefore,
Wy = P [1£,2) = e 0 PATIE) + o).

By similar argument as in Theorem 3.5.1, we know the proposed test is consistent. [

Next, we shall show that the proposed tests possesses nontrivial power for certain local

alternatives which converges to the null hypothesis at the rate of 1/v/nb'/2. For this purpose,

2

- and we

let ¢ be a known continuous density on R with mean 0 and positive variance o

consider the following local alternative hypothesis

Hioe = f(x) = (1 = 0n) fx (2, 60) + dnip(2)

with 0, = 1/vnb'/2. Similar to the fixed alternative case, to show the local power result,
we need to show the y/n consistency of 8 and 0,,, which is similar and omitted here for the

sake of brevity.
Theorem 3.5.3. Assume all the conditions in Theorem 3.4.1 hold. Under Hy,., if the density
function (-) is twice continuously differentiable and the second derivative is bounded, then

T (6,) = nb'PLVA(T0;,) = Cu) = N, 1),

as n — oo, where iy =T [[[(fx(z —u,00) — o(z — w)) frr(u )du] dIl(z).

Proof. Denote

1062, 6) = / (1= 8) (= — s 00) + buipl= — )] fir(u)du
loe (2, 0) = / (1 6) (2 — u,60) + buiplz — )] o (w)du

A

=(1—6,)f2(2,00) +5/ z —u) fg(u)du.

From Lemma 3.4.3, we have T7(0y) — T,5(6%) = o0,(1). Therefore, we only need to
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show nbl/gf‘ﬁl/Z(T:(Go) —C,) = N(m,1). Adding and subtracting floc(z, 0) from fy(z) —

F7(2,6y), we can rewrite the statistic as
73600 = [ F2(2) = F5°(2.00) + £z, 00) — Folesb0)Pa(a)

Note that f£(z, 00) — f2(2,00) = =0u | f2(2.00) = [ ¢z = u) fo (w)du]
Expanding the quadratic term, we can rewrite 7)(67) as the sum of the following three

terms

70 = [(F(2) - Fe (e o)),
rye =5 [ [fz<z, o) = [ otz = u) AU(u)du} “an(e),
1w == 28, [ (F:) = 7572160 [AZ(ZU@O) - [ et AU<u>du} ()

Similar to the proof of Theorem 3.4.1, one can verify that nb'/2(T.¢ — C,) = N(0,T).

For T/¢, it’s not hard to see

r 2
nb! /20T e =T 12 / / Fx(z = u, 00) fiy (u)du — / p(z —u) }7<u>du] dIl(z)

—[-1/2

n

/

[ = 00) = ot~ ot ()

[t =00 = otz - U))fU(U)dU] 0I1(2) + 0,(1)

Similarly, we can obtain

e
= Va2 [150) = 700 [ Fatest) = [ ot = wotuna] ani
=~ Va2 [15(a) - fe(z.00)

| [t =) = ot~ ot ane) + 0,1
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is of order 0,(b*/*) = 0,(1) from
B (172 - 25t | [t = 0.00) = ot~ ) ot i) ) =0
and

et [ [tz =000 — ot~ ) fotwnan] an(e))

2

| /\

o ( [V
/ 72000 = 250 | [t = 0.00) = otz — ol a1

3|H

£
5 / Ltz = 2) = £ 0] | [(Fele = 0,80) = ol = ol dH<z>)2
-0 (7).

]

Theorem 3.5.4. Assume all the conditions in Theorem 3.4.3 hold. Under Hy,., if the density

function (-) is twice continuously differentiable and the second derivative is bounded, then

~

To(0,) = nb*?T V(T (6,) — Cr) = N, 1),

n

2

as n — oo, where iy = T2 [[[(fx(z — u,bp) — ¢(z — w)) fg(u)du]” dIl(z).

Proof. From Lemma 3.4.5, we only need to show nbl/fol/z(Tn(Qo) —C) = N(u,1). Adding
and subtracting [[ Ly(z —x) 1(’C(:zc 00)dzdll(z) from fz(z — [ Ly(2— ) f7(z, 0o)dz in T, (6),

then T,,(6p) can be written as the sum of the following three terms.

T, — / :fz(z) - / Lo(z — )/ (a, Go)d:crdﬂ(z)
12— | [ 1l = )b - fate 90))654 (s

1= | :fz<z> - [ 1t - )t eo>dx] [ [ 1l = 5,00  Fotas00)as| ancz)

Similar to the proof of Theorem 3.4.3, we can show nb'/2(T,; — C,,) = N(0,T).
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For T,

Wb 2012, 12 / [ / Ly(z — 1) / (P =, 00) — o(z — 1)) AU(u)dudx] " dr(e)
0 [ [ 20 [t = w80 = ol — oty () + 0y(1)
= + 0,(1).

For Tn37

nb' /2T V2T, = — anl/Qf;I/Q/ lfz(z) - /Lb(z — ) IOC(ZE Oo)dx}

: U Ly(z — z) /(fX(x —u,6y) — p(z —u)) AU(u)dudx] dIl(z)
== VP ()~ fe (a0

[t = ) = 06 = )] ) + 0,0

By using similar argument as in the proof of Theorem 3.5.3, we obtain nb'/2[, /*T,3 =

O, (b'/*) = 0,(1). In sum, we have an/ZF_l/Q(Tn(Qn) —C,) = N(u,1), n— . O

Next, we shall discuss the optimal weight function II which maximizes the asymptotic
local power of the proposed tests, which in turn maximizes the mean of the asymptotic
normal distribution, or W(m) :== I~V2 [ [[(fx(z —u,0) — (2 — u))fU(u)du}Qw(v)dv. By

the Cauchy-Schwarz inequality, we have

: (e = w.80) — oz — W) fp(w)du)* |\
0= e U 12600 i)

with equality holds if and only if
2
0 o [ (et = w0) = ple — o)) /(.00
for all z. Since the functional ¥ is scale-invariant, that is ¥(aw) = ¥(7) for all positive
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constant a > 0, we take the optimal 7(-) to be

m(z) = f(fX(Z—U:QO)_SO(Z—U))fU(u)du 2
) ( [ fx(z = u,60) fo(u)du ) -

One can estimate the optimal weight 7(-) by w,(z) where the unknown density function or

parameter fg(u), 6y are replaced by the /n estimates fg(u), g% or 0,.

3.6 Simulation

To evaluate the finite sample performance of the proposed tests, a simulation study is con-
ducted in this section. The null hypothesis Hy to be tested is X ~ N(0,0%), so the unknown
parameter 6 is the variance 0% of X. The measurement error U ~ (0, 0%), where o7 is cho-
sen to be 0.5% and 0.8%2. At each X-value, double measurements on Z are obtained. The
sample size n is chosen to be 100, 200, and the weight function II is taken to be the uniform
distribution over the closed interval [—6, 6] so that computationally the integration over this
interval is nearly same as the integration over the whole real line. The kernel functions K
and L are chosen to be standard normal density function. We repeat the test procedure 500
times for each scenario.

To study the empirical size and power of the test, the following nine non-normal distri-
butions are used. For the sake of computational efficiency, we use the method of moment
estimate 6, in the simulation. The empirical levels and powers are calculated as the relative
frequencies of the number of times of [T*(6,)| or |7, (6,)|, which are defined in (3.43) and
(3.54) respectively, exceed the critical value Z,/s, the 100(1 — a)/2-th upper percentile of

standard normal distribution. The significance level « is 0.05 in all cases.

Nine non-normal distributions as the alternative hypotheses:
e Logistic distribution with location parameter 0 and scale parameter 1;
e Cauchy distribution with location parameter 0 and scale parameter 1;

e Double exponential distribution with mean 0 and variance 1 (DE(0,1));
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e {-distribution with degrees of freedom 3, 5 and 10;

e Two-component normal mixture models 0.5N (¢, 02) + 0.5N (—c, 02) with ¢ = 0.5,0.75
and 1.

We also test the sensitivity of the proposed tests by conducting simulation studies with

different measurement error densities and bandwidths levels.
Case I U~ N(,0%),b=n"13 h=n"1/3

Case II: U ~ Laplace(0, 0y /v/2),b =n""3 h =n=1/3.
Case III: U ~ N(0,02),b=08+n"Y3 h=08%n"1/53
Case IV: U~ N(0,0%),b=12%n"3 h=12%n"1/5
Case V: U~ N(0,0%),b=n"> h=n"1/3

Note that Case I and Case II differs in the density function of the measurement error
term U, with one being the standard normal density and the other being Laplace density
with the same level of oy. Case III, I, IV have the same order of bandwidth but different
coefficient, 0.8, 1, 1.2, respectively. Case I and Case V are different in the bandwidth for b.
Obviously, the assumption (b3) is violated. From the theorems in Section 3.4, we know the
assumption (b3) is needed for the asymptotic normality of 7;*(5,1), but is not required for
that of 7,(6,).

The simulation results below show that the proposed tests have reasonable empirical
level for both 7,*(8,) and 7,(6,) when the assumptions (b3) and (h3) are satisfied. For
the case that assumption (b3) is violated, the empirical level become unreasonably large for
7%(,,), while the centered version T, (f,) still holds valid empirical levels. When sample
size n increases, the power generally increases as well. Another general trend is the power

decreases when oy gets large. When comparing the non-centered test 7,7(6,,) with centered

test 7,,(0,), power for the centered test 7,(6,) is higher than the non-centered test 7.*(6,,) for

all the uni-modal distributions. The trend reverses for the bi-modal distributions. There is
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no clear change tendency with different coefficient when both b and h are chosen with order

1/3

n~/°. Different measurement error distribution doesn’t cause significant change in power

either.

Table 3.1: Simulation results of the proposed test
(Case I: U ~ N(0,0%), b,h = n~1/3)

ot = 0.5 ot = 0.8 ot = 0.5 of = 0.8
100 200 100 200 100 200 100 200
N(0,02) 0.046 | 0.050 | 0.054 | 0.066 | 0.048 | 0.050 | 0.050 | 0.066

Logistic(0,1) 0.056 | 0.114 | 0.054 | 0.058 | 0.056 | 0.118 | 0.056 | 0.060
Cauchy(0,1) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

DE(0,1) 0.432 | 0.728 | 0.238 | 0.486 | 0.452 | 0.738 | 0.246 | 0.510
t(3) 0.528 1 0.796 | 0.376 | 0.698 | 0.536 | 0.802 | 0.390 | 0.702
t(5) 0.176 | 0.292 | 0.124 | 0.170 | 0.194 | 0.318 | 0.134 | 0.192
t(10) 0.064 | 0.058 | 0.048 | 0.044 | 0.070 | 0.064 | 0.054 | 0.052

0.5N(£0.5,02) | 0.076 | 0.078 | 0.046 | 0.054 | 0.064 | 0.068 | 0.044 | 0.048
0.5N(£0.75,02) | 0.274 | 0.574 | 0.114 | 0.158 | 0.236 | 0.526 | 0.102 | 0.142
0.5N(+1,6%) | 0.892 | 1.000 | 0.404 | 0.690 | 0.874 | 0.998 | 0.360 | 0.668

Table 3.2: Simulation results of the proposed test
(Case I1: U ~ Laplace(0, oy /v/2))

of = 0.5 of = 0.8 of = 0.5 o7 = 0.82
100 200 100 200 100 200 100 200
N(0,02) 0.048 | 0.046 | 0.060 | 0.052 | 0.054 | 0.056 | 0.054 | 0.060

Logistic(0,1) 0.094 | 0.102 | 0.072 | 0.086 | 0.094 | 0.106 | 0.072 | 0.092
Cauchy(0,1) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

DE(0,1) 0.392 | 0.744 | 0.300 | 0.498 | 0.420 | 0.778 | 0.316 | 0.518
t(3) 0.486 | 0.800 | 0.394 | 0.688 | 0.508 | 0.810 | 0.412 | 0.706
t(5) 0.158 | 0.272 | 0.106 | 0.180 | 0.172 | 0.296 | 0.120 | 0.194
t(10) 0.056 | 0.068 | 0.048 | 0.048 | 0.060 | 0.076 | 0.052 | 0.048

0.5N(£0.5,02) | 0.058 | 0.074 | 0.058 | 0.058 | 0.042 | 0.050 | 0.050 | 0.054
0.5N(£0.75,02) | 0.314 | 0.618 | 0.118 | 0.206 | 0.276 | 0.574 | 0.098 | 0.184
0.5N(+1,6%) | 0.898 | 1.000 | 0.542 | 0.868 | 0.880 | 1.000 | 0.522 | 0.846
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Table 3.3: Simulation results of the proposed test
(Case III: U ~ N(0,02),b,h = 0.8n73)

T (01) T0(6n)

ot = 0.57 ot = 0.8 o = 0.5? ot = 0.8

100 200 100 200 100 200 100 200
N(0,02) 0.048 | 0.048 | 0.060 | 0.042 | 0.048 | 0.054 | 0.056 | 0.044
Logistic(0,1) 0.072 | 0.104 | 0.052 | 0.086 | 0.074 | 0.110 | 0.052 | 0.086
Cauchy(0,1) 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000
DE(0,1) 0.376 | 0.674 | 0.200 | 0.398 | 0.380 | 0.684 | 0.212 | 0.404
t(3) 0.496 | 0.802 | 0.356 | 0.616 | 0.508 | 0.806 | 0.366 | 0.630
t(5) 0.144 | 0.270 | 0.112 | 0.174 | 0.154 | 0.294 | 0.118 | 0.182
t(10) 0.058 | 0.062 | 0.044 | 0.054 | 0.066 | 0.064 | 0.046 | 0.056
0.5N(40.5,02) | 0.058 | 0.066 | 0.050 | 0.052 | 0.052 | 0.052 | 0.042 | 0.048
0.5N(£0.75,02) | 0.252 | 0.502 | 0.090 | 0.148 | 0.236 | 0.468 | 0.080 | 0.134
0.5N (%1, 02) 0.880 | 0.994 | 0.378 | 0.676 | 0.862 | 0.992 | 0.360 | 0.648

Table 3.4: Simulation results of the proposed test
(Case IV: U ~ N(0,0%),b,h = 1.2n73)
7, (0n) 71 (6n)

ot = 0.5 ot = 0.8 ot = 0.5 ot = 0.8

100 200 100 200 100 200 100 200
N(0,02) 0.070 | 0.046 | 0.068 | 0.062 | 0.078 | 0.066 | 0.074 | 0.056
Logistic(0,1) 0.078 { 0.110 | 0.046 | 0.100 | 0.086 | 0.124 | 0.046 | 0.106
Cauchy(0,1) 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000
DE(0,1) 0.458 | 0.768 | 0.262 | 0.542 | 0.502 | 0.792 | 0.288 | 0.588
t(3) 0.544 | 0.810 | 0.412 | 0.698 | 0.586 | 0.828 | 0.430 | 0.720
t(5) 0.150 | 0.272 | 0.114 | 0.198 | 0.178 | 0.304 | 0.132 | 0.226
t(10) 0.036 | 0.076 | 0.042 | 0.066 | 0.050 | 0.088 | 0.046 | 0.070
0.5N(40.5,02) | 0.054 | 0.072 | 0.064 | 0.062 | 0.038 | 0.052 | 0.064 | 0.062
0.5N(40.75,02) | 0.254 | 0.610 | 0.088 | 0.176 | 0.186 | 0.532 | 0.074 | 0.152
0.5N(£1,02) 0.856 | 0.998 | 0.414 | 0.742 | 0.826 | 0.998 | 0.376 | 0.702
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Table 3.5: Simulation results of the proposed test
(Case V:U~N(0,02),b=n"5,h=n"3)

) T.0,)

ot = 0.52 o =0.82 o = 0.52 o = 0.8

100 | 200 100 | 200 100 200 100 | 200
N(0,02) 0.326 | 0.414 | 0.166 | 0.168 | 0.076 | 0.054 | 0.078 | 0.062
Logistic(0,1) 0.072 | 0.096 | 0.072 | 0.084 | 0.084 | 0.120 | 0.076 | 0.100
Cauchy(0,1) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
DE(0,1) 0.426 | 0.764 | 0.272 | 0.542 | 0.532 | 0.832 | 0.342 | 0.636
t(3) 0.524 | 0.852 | 0.438 | 0.762 | 0.616 | 0.900 | 0.500 | 0.804
t(5) 0.148 | 0.316 | 0.124 | 0.190 | 0.232 | 0.432 | 0.182 | 0.250
t(10) 0.056 | 0.066 | 0.034 | 0.064 | 0.068 | 0.094 | 0.040 | 0.078
0.5N(£0.5,02) | 0.162 | 0.276 | 0.104 | 0.152 | 0.036 | 0.056 | 0.062 | 0.062
0.5N(40.75,02) | 0.408 | 0.762 | 0.170 | 0.316 | 0.206 | 0.470 | 0.056 | 0.154
0.5N(+1,6%) | 0.916 | 1.000 | 0.500 | 0.874 | 0.794 | 0.998 | 0.374 | 0.748
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Chapter 4

Conclusion

In this dissertation, goodness-of-fit tests are proposed for checking the adequacy of para-
metric distributional forms of the regression error density functions and the error-prone
predictor density function in measurement error models, when replications of the surrogates
of the latent variables are available.

In Chapter 2, we proposed a goodness-of-fit test for checking the adequacy of parametric
forms of the regression error density functions in linear errors-in-variables regression models.
Instead of assuming the distribution of the measurement error being known, we assume that
replication of the surrogates of the latent variables are available. The test statistic is based
upon a weighted integration of the L, distance between a nonparametric estimator and a
semiparametric estimator of the density functions of the residuals.

Under the null hypothesis, the test statistic was shown to be asymptotically normal
(Theorem 2.2.1). Consistency (Theorem 2.3.1) and local power results (Theorem 2.3.2)
of the proposed test under fixed alternatives and local alternatives were also established.
Comparing these results with Koul and Song (2012)’s, in which the density function of
measurement error was assumed to be known, one can see that replacing the density function
of U with a kernel density estimate did not slow down the convergence rate of the test
statistic. One can check the proof of Theorem 2.2.1 and find out that this is a consequence

of requiring nb'/?w* — 0.
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Actually, the condition nb'/?w* — 0 is required to dampen the effect of estimating fg by
its d-dimensional kernel estimate. Together with the bandwidth assumptions nb — co and
nw? — 0, which are commonly used in the univariate and multivariate kernel estimation,
we must have d < 8. Therefore, one limitation of the proposed test in Chapter 2 is that
the linear errors-in-variables regression model under consideration cannot have more that
8 predictors. In the future work, we will figure out ways to alleviate this constraint. One
possible methods might be considering higher order terms in the Taylor series when deriving
the bias between fU and fg.

In Chapter 3, we proposed a class of goodness-of-fit tests for checking the parametric
distribution forms of the error-prone random variables in the classic additive measurement
error models. By giving up the commonly adopted assumptions of the distribution of the
measurement error being known, we assumed replications of the surrogates of the error-prone
variables are available. Two types of test statistics were defined based upon a weighted inte-
grated squared distance between a nonparametric estimator and (centered or non-centered)
semi-parametric estimator of the density functions of the averaged surrogate data. Under
the null hypothesis, the minimum distance estimator (Theorem 3.3.3 and Theorem 3.3.4) of
the distribution parameters and the test statistics (Theorem 3.4.1 and Theorem 3.4.3) are
shown to be asymptotically normal. Consistency (Theorem 3.5.1 and Theorem 3.5.2) and
local power (Theorem 3.5.3 and Theorem 3.5.4) of the proposed tests under fixed alternatives
and local alternatives are also established.

Theorems in Chapter 3 show that the two different types of tests proposed share similar
properties on asymptotic normality, consistency and local power, but under different require-
ment on the bandwidths. In addition to the assumptions nb?* — oo and nh — oo, which are
commonly used in the univariate kernel smoothing estimation procedures, the non-centered
test requires nb* — 0 as well as nh* — 0, while the centered test only requires nh* — 0. The
requirement nb* — 0 is the consequence of considering the asymptotic bias F f 72(2)—=f2(z,00)
in the non-centered test. The centered version avoided analyzing the asymptotic bias, but
still require nh* — 0 since f(y(u) is used to replace fz in the statistic 7,,(6). For considering

the multivariate case X being d-dimensional, in the non-centered test, one would require

103



nb* — oo, combining this with nb* — 0, we must have d = 1. The centered test has better
potential of being generalized to higher dimensional case, which will be our next step of
research.

Throughout this dissertation, we require the density function of the measurement error
term U to be symmetric about 0. The significance of this symmetry assumption lies in the
fact that U; +U, and U; — U, will have the same distribution. Therefore, one can estimate the
distribution of Uy 4+ U, by using U; — U, which in turn can be estimated through Z; — Z5, on
which we have observations. In the future research, it is worthwhile to consider developing

more general tests by relaxing the symmetric assumption.
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