964

CONVERSION OF A GRAPHICS PACKAGE TO SEQUENTIAL PASCAL

by

DANIEL THOMAS SNYDER
B. S., Ohio State University, 1973

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Scierce

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1578

Approved Ty:

Docwm 2 4
LD

Y724
LR

j27¢
b

¢2 TABLE OF CONTENTS

I.' Introduction
A, Purpogse of Paper csimissvasssvennnms -ttt 1
B [] Organization » & a2 » 8 @ *® & 5 8 8 4 & & % 5 e 8 0 T @ ® 4 2 & 9 808 T s 8 8 5

II. User Information

A, General INformation ...eeeeeeeeenassveoasancens 6
B, CSGP CommandsScveevenecscnsens 5 0 0 sw g D
C. Sample Program BB R ok R o B R e 24

III. CSGP (SPASCAL) Software

A . S truc ture LI S B B B # P 5 = & # P P P & F % 2 BB 4 P e e s R 31
B. Major Data Structuresy e - . 38
Bx: BOmBirios cewsarmnwsdonemninqs ol 0 AR R R L2

- IV. Method of Porting

A. TFORTRAN to SPASCAL Code Conversionsee... 59

B. IBM/370 to INTERDATA 8/32 Environment 65
APPENDIX

A, CSGP (SPASCAL) COG€ 4.vvevvvrnnennensnnnnnonnsas 73

B. Computek Driver Program Code TS T i T 93

C. FORTRAN/SPASCAL CSGP ModuleSvec.... Ceeans 102 |

Figufe
Figure
Figure
Figure
Figure
Figure
Figure
Pigure

II.1
i 3t
III.2
iy
III.4
III.5
III.6
ITI.7

FIGURES

Display of CSGP Sample Program 28
CSGP Program Structure i B0 3 B 32
CEGP Access GTEDR svimsmpnsomemaw s mawswss . 32

Image Construction Routines Access Graph .. 35
PDF Display Routines Access Graph 36
PDF/Error Output Routines Access Graph 37
Image Transformation Routines Access Graph. 39

PDF Variant Record Formatcveovvvun. . 41

ACKNOWLEDGEMENTS

1 wish to express my gratitude to Dr. William Hankley,
my major professor, for his many contributions and the
guidance he gave me toward the completion of this project.
Also, I owe considerable thanks to Ms. M. C. Neal for the
use of her Computek driver, which saved a great deal of
time and initially helped get the project off the ground.
And finally to my wife and partner, Gretchen, goes a great
measure of affection and appreciation for her moral support

and understanding.

-iii-

I. INTRODUCTION
A. PURPOSE OF PAPER

The purpose of this paper is to describe porting of
the Computer Science Graphics Package (CSGP) from a large
computer environment, IBM/370 (Conversational Monitor
System) [And75], to a minicomputer environment, INTERDATA
8/32 (SOLO Operating System) and rewriting the code from
FORTRAN to Sequential Pascal (SPASCAL). Both implementations
interact with the Computek 300 GT display terminal [Com72].

The target programming language, the Kansas State
University (KSU) implementation of SPASCAL ([Han77a],
LNea?77]), runs on the INTERDATA 8/32 as a job process under
SOLO. SOLO [Nea?77], a single user operating system written
in Concurrent Pascal (CPASCAL), runs as a task under
0S-32/MT. SPASCAL, CPASCAL, and SOLO were ported to KSU
from PDP-11/45 implementations at the California Institute
of Technology.

The CSGP. allows interactive communication between a
Computek terminal user and a remote computer which executes
programs to construct, transform, and display three-
dimensional straight-line pictures. The graphics package
software consists of a set of routines which builds and

maripulates a data structure image representation, calied

2
the Pseudo Display File (PDF), and translates the PDF into
code suitable for display at the terminal. Image construc-
tion commands permit movement of the cursor, line drawing
and érasing, and display of alphanumeric characters.
Transformation commands allow movement, rotation, scaling,
and reflection of a picture. The software structure is
modular in both implementations for greater maintainability
and extensibility of the'package.

The rationale behind the desire to port the CSGP is
concerned with the issues of moving from a large-scale
computer to a minicomputer environment and converting the
code from FORTRAN to SPASCAL. The change of computing
environments was accomplished to move the CSGP away from a
time sharing system to a system with a faster response mode.
The change of programming languages involved several
reasons. The KSU Computer Science Department's research
emphasis and computing resources have currently been geared
toward the utilization of Pascal. More impcrtantly,
however, SPASCAL possesses better features that enhance the
maintainability and extensibility of the package. That is,
the SPASCAL compiler enforces structure in data types, data
structures, and program flow, and it provides more thorough
error detection. In addition, the language allows user-
defined data types and more powerful data structures, and
the code is very readable.

Tre porting of the CSGP was more than a mere line-by-

3
line translation of FORTRAN to SPASCAL. A PDF construction

routine and an image transformation routine deemed
unnecessary to the new implementation were deleted. Two
routines to access and change the value of the current PDF
index and a routine to allow user-defined screen coordinate
units were added. FORTRAN CSGP routines providing the
interface between the Computek terminal and the IBM/370
were completely deleted, and two new SOLO interface routines
were written, one of which involved making minor revisions
to a program written by another student for a project
[Nea78] also using the Computek. The FORTRAN four-
dimensional array containing the PDF, the two-dimensional
array containing alphanumeric character string location and
length information, and the linear array holding the
character strings were converted into one SPASCAL array of
records in order to improve readability of the code and
clarity of the design. Due to the I/0 limitations of SQLO
and SPASCAL, a set of routines had to be written to support
output of the PDF to the printer. Also, output of the PDF
to the user's console (CRT) was added. Detection of errors
in the user program was revised; such that, the output of
error messages was removed from the points of detection and
placed into a separate routine. Finally, a new set of user
instructions was written to incorporate the changes due to
the revisions made to the software and conversion to the

new computing environment. The portions of the CSGP that

required a line-by-line conversion of FORTRAN to SPASCAL
were most of the routines that enter image building commands
into the PDF and that perform transformation of images.

‘The entire FORTRAN package was not ported. Those
FORTRAN modules that were ported along with their SPASCAL
equivalents and those FORTRAN modules remaining to be
ported are listed in Appendix C. Most of the code not
moved is concerned with the clipping of pictures and the
perspective viewing of images, i.e., the mapping of X, Y,
and Z three-dimensional coordinates of image end. points
into two-dimensional X and Y coordinates. While perspective
viewing has not been provided, the capability of specifying
three dimensions (X, Y, and Z coordinates) in building and
transforming images has been built into the package. A
line-by-line high level conversion of the FORTRAN clipping
and perspective viewing subroutines to SPASCAL is all that
remains tc complete the porting of these features.

The SPASCAL version of the CSGP consists of approx-
imately 850 lines of code compared to the functional
equivalent of about 550 lines of FORTRAN and IBM/370
assembler code. The greater number of SPASCAL lines is due
in part to indentation of SPASCAL statements, wnere one
statement may be split into as many as four lines to
increase code readability. Also, programming with the
current KSU implementation of SPASCAL requires more inter-

action (more code) with the operating system to perform

output to the printer and Computek deviced (discussed in
Chapter IV). The manhours expended during each phase of
the project were as follows: Organization/Design, 130;
Codiﬁg. 20; Test/Debug, 100; Documentation, 80; and Total,
330.

B. ORGANIZATION

The organization of the material presented in this
paper is such that both those individuals who want only to
use the CSGP and those who desire an in-depth knowledge of
any part or all of the software can find the information of
interest. The second chapter of the report contains the
necessary instructions for users to gain access to the
INTERDATA 8/32 and use the CSGP services. Providing a more
detailed explanation of the software, Chapter III discusses
the data structures, the routines, and the overall structure
of the system. The SPASCAL CSGP code itself is included in
Appendices A and B, and Appendix C provides a list of both
the FORTRAN and SPASCAL modules. The final chapter gives
an analysis of the problems encountered, lessons gained,
and some concluding remarks concerning the effort of
converting FORTRAN code to SPASCAL and of converting from a

large computer %o a minicomputer environment.

II. USER INFORMATION

A. GENERAL INFORMATION

This chapter is intended to serve as a user's guide to
the Computer Science Graphics Package, written in SPASCAL
‘and implemented on the INTERDATA 8/32 at Kansas State
University. A complete working knowledge of SPASCAL or the
INTERDATA 8/32 is not required in order to use the CSGP.

In those few instances where information concerning these
areas 1is necessary, a simple explanation will be given or
an outside publication will be referenced.

The CSGP allows its user to display and manipulate
straight-line pictures on the Computek 300 GT display
terminal. To perform graphics operations, an SPASCAL
program must be written, compiled, and executed on the
INTERDATA 8/32. This SPASCAL program consists of the set
of CSGP routines plus a main program, wnich is prepared by
the user and contains a list of CSGP commands. CSGP
commands are, in reality, calls to various CSGP routines
designed to perform graphics functions. <Section B of this
chapter describes the CSGP commands available, and a sample
user program in Section C give examples of their uses.

The Computek 300 GT terminal is a vector/alphanumeric
terminal which allows a user to display text and straight

lines either locally or under the conirol cf a computer

program. The terminal comes equipped with a graphic pen
and tablet, but since this initial implementation of the
CSGP does not employ their use, they will not be discussed
here. The Computek terminal has a display screen measuring
7 inches high and 8 inches wide consisting of a grid of
256X256 discrete points. Text and lines are displayed by
illuminating an appropriate set of these points, which are
always either "on" or "off." There is no intensity or
color control. Characters (64 ASCII character set) are
generated from a 5X7 dot matrix, and the terminal screen
can hold a maximum of 42 characters per line and a total of
24 lines. The Computek terminal has an electronic image
retention memory; that is, once an image is received, it is
stored in bit form at the Computek and used locally to
refresh the CRT screen. The image memory does not need to
be refreshed from the remote computer.

When the Computek terminal is displaying text, drawing
lines, or performing any of its functions, it is under a
unique mode and one of two possible status states. The
following is a 1list of the Computek modes, status states,
and controls applicable to this implementation:

Alphanumeric Mode - This mode allows the terminal tc receive

and display the upper-case ASCII symbol set. All other
modes enter from and return to this mode.

Four-Bvte Absolute Mode - This mode is used for specifying

absolute vectors, and it is entered from the alphanumeric

mode by sending octal 034 code to the terminal. An
absolute vector is drawn from the last cursor position to
a new position specified by a sequence of four consecutive
bytes. The four bytes denote the X and Y coordinates of
the end of the vector, whether a line is to be displayed or
not, and whether the next instruction is for this mode or
the alphanumeric mode.

Erase Status - This command (octal code 016), if received
when the terminal is in the alphanumeric mode, places the
Computek in erase status. While in erase status, all
characters or symbols received will replace the character
or symbol at the present cursor position, and all vectors
received will be erased from the screen.

Write Status - This command (octal code 017), if received
when the terminal is in the alphanumeric mode, returns the
Computek to write status (its normal status).

Home/Erase - This command (octal code O14), if received

when the terminal is in alphanumeric mode, erases the screen
and positions the cursor at home, (0,0).

Line Feed - Causes a line feed upon receipt of octal code
012,

Back Space - Causes a back space upon receipt of octal code

010.
The above description of the Computek 300 GT display
terminal is by no means comprehensive. More information

can be found in [Com?72] and [And75].

At this point a note is in order concerning the
specification of numerical values in SPASCAL. When a CSGP
command calls for an argument to be given in real or integer
form, the number must be given in compliance with SPASCAL
format and within SPASCAL limitations. The format for
possible integer and real numerical constants can be found
in [Han?77a] or [Han77b]. The largest possible integer value
is 32,767 and the smallest -32,767. The largest possible
real value is 1038 and the smallest -1038.

B. CSGP COMMANDS

CSGP commands are a set of SPASCAL statements which
the user can use in a program to perform graphics image
processing. This explanation of CSGP services will be
focused on the following four main topics: Image Construc-
tion and Display Commands, Image Transformation Commands,
PDF Output Commands, and Error Messages. The first three
of these topics deal with the primary groups of CSGP
commands. The description of each command begins with its
name and argument list noted in a rectangular box. A short
paragraph below the box describes what the command does and
the meaning and proper format of its arguments. Following
the description of the CSGP commands, an explanation of
CSG? error diagnostics is provided ¢ acgquaint *the user with

the meaning of error messages given by the CSGP software.

10

Image Construction and Display Commands.

As briefly mentioned in Chapter I, the CSGP allows the
user to enter a representation of a picture into a data
structure called the Pseudo Display File (PDF). The PDF is
a linear array containing a maximum of 600 records, each
record containing a display instruction. An illustration
of the format of a PDF record is given in Figure III.?7
(Section B of Chapter III). All PDF images are represented
in a hypothetical three-dimensional coordinate system with
real (not integer) coordinate values. For display, only
the X and ¥ values are converted to integers and mapped
into the 0 to 255 range by the CSGP software that drives
the Computek terminal. The variable INDEX is used as a
pointer to the next empty (not containing a valid instruc-
tion) location in the PDF, and it is incremented by one
each time a new command is entered.

After a picture has been constructed and perhaps
manipulated by the transformation commands (described in the
next group of commands), the portion of the PDF containing
the image must be translated into a Computek compatible
form for the picture to be displayed at the terminal. This
translation is performed irn two steps. First, the COMPIL
procedure is cailed by the user, and the procedure begins
scanning a specified portion of the PODF. During this
scanning process, the PDF instructions are converted into

ages of integer values, ones page at a time, and sent o

11
the Computek driver program. Within this program, each
integer page is again scanned and converted into pages of
ASCII characters, again one page at a time, and sent to the
Compﬁtek terminal device, where the ASCII characters control
its operation. For the reader who is interested, more
information concerning these CSGP functions can be found in

Section C of Chapter III.

START;

The START procedure is called to start a new FDF by
setting INDEX to one. Therefore, any old PDF entries will
be overwritten and lost. START is normally the first

command given in a CSGP user program.

SET_INDEX | (I);

SET_INDEX changes the current value of INDEX to the

value of I. I must be given in integer form.

VAL_INDEX ;

The funciion VAL _INDEX returns the value of INDEX when

called. INDEX points to the next unused location in the

12
PDF. VAL INDEX can be used as an integer argument of
another command, either alone or as part of an integer

expression.

SET_SCALE | (X, Y);

SET_SCALE allows coordinates to be specified in units
other than points along the 256X256 screen grid. X and Y
are real values that signify the number of screen points
per user-defined unit along the respective X and Y axes.
For example, the Computek display screen is 7 inches high
and 8 inches wide. If inch units are desired, the X
argument would be given as 32.0 (256/8 = 32.0 X_grid._points
per inch) and the Y argument would be 36.57 (256/7 = 36.57
Y grid points per inch). If SET_SCALE is not called, the

START command initializes both X and Y scale factors to 1.0.

MOVE | (X, Y, Z);

The MOVE procedure is called to insert an instruction
into the PDF to move the cursor from its last (current)
position to the position indicated by the real-valued

arguments X, Y, and Z. MNOVE does not draw a line.

13

VECTOR | (X, Y, Z);

The VECTOR command inserts an instruction into the PDF
to draw 2 straight line from the cursor's last position to
the position indicated by the real-valued arguments X, ¥,

and Z.

CLEAR;

The CLEAR procedure is called to insert an instruction

into the PDF to clear (erase) the entire screen.

EMODE;

The EMODE command inserts an instruction into the PDF

to switch the display to the "erase" status.

WMODE ;

The WMODE command inserts an instruction into the PDF

to switch the display to the "write" status.

14

DEBUG_CMPTK_DRVR;

'The DEBUG_CMPTK_DRVR procedure is called to insert an
instruction into the PDF to cause a debugging facility
inside the Computek driver program to be turned on. This
debugging facility causes the hexadecimal representation of
the ASCII terminal control characters being sent to the

Computek to be displayed at the user's console.

SEND_PDF;

The SEND_PDF command is used to mark the end of an
image. This instruction is inserted intoc the PDF and is
used by the COMPIL procedure to dencte when to stop sending

PDF commands to the Computek driver program.

ETEXT | (N, 'STRING'};

The HTEXT command inserts an instruction into the PDF
to write the character string STRING on the screen, start-
ing at the current cursor position, in a horizontal
directio left to right. N is the integer number of
characters in STRING, and STRING must be an even numbter of

characters in length. A maximum of 42 characters per

15
horizontal line is permitted.

Note: Although of no importance when using the command,
only 22 characters are stored with any HTEXT command PDF
record. If STRING is larger than 22 characters, the
remaining characters are stored in a continuation text

(CTEXT) PDF entry immediately following the HTEXT command.

VTEXT | (N, 'STRING');

The VTEXT command inserts an instruction into the PDF
to write the character string STRING on the screen, start-
" ing at the current cursor position, in a downward vertical
direction. N is the integer number of characters in STRING,

and STRING must be an even number of characters in length.

A maximum number of 24 characters per vertical line is
permitted.

Note: Although of no importance when using the command,
only 22 characters are stored with any VTEXT PDF record.
If STRING is larger than 22 characters, the remaining
characters are stored in a continuation text (CTEXT) PDF

entry immediately following the VTEXT command.

COMPIL | (I);

The COMPIL procedure is called to send & specified

16
portion of the PDF to the Computek terminal for display.
The integer argument I signifies the PDF index of the first
display instruction of the image. COMPIL begins at I and
continues translation and transmission of the image until a

SEND_PDF command is reached.

Image Transformation Commands.

The procedures that comprise this group of commands are
used to move, scale, and/or rotate any part or all of an
image residing in the PDF. These procedures generate a
global transformation matrix, T_MATRIX, of size 4X4 for
three-dimensional transformations or 3X3 for two-dimensional
transformations, which can be applied to any portion of the
PDF to produce new transformed values for the entries. All
of the transformation routines described below are compatible
with each other; that is, any number of the transformations
can be applied to a given portion of the PDF to produce the
desired effect. Each transformation routine creates a
temporarf local matrix which will accomplish the trans-
formation. This temporary matrix is then multiplied by the
matrix T_MATRIX, resulting in a concatenation of the trans-
formations. Although the transformations destroy the PDF
entries to which they are applied, the original entries are
recoverable by applying the inverse transformations to the
PDF. For those who are interested in further information

as to how image transformations are obtained, [New?73] is an

17

excellent reference.

INIT T MATRIX | (DIMENSION);

The INIT_T_MATRIX procedure is called to initialize
the transformation matrix T_MATRIX to a 3X3 identity matrix
(DIMENSION equals integer value 2) or a 4X4 identity matrix
(DIMENSION equals integer value 3). This is usually the
first call before a sequence of transformations. The
argument DIMENSION (integer value 2 or 3) is stored in a
variable common to all transformation procedures, and it is

used to determine the dimension of the transformations.

TRANS | (XD, YD, ZD);

The TRANS procedure is called to translate (move) an
image along the X, ¥, and Z axis by the amounts specified
by the real-valued arguments. A temporary matrix, the size
of which depends on the dimension, is created which is
capable of translating an image. This matrix is then

multiplied by T_MATRIX to allow concatenation.

]

2-D =

RO
(=
g7
OO0
5
lw]
1l
<O O
N, OO

| PO OO I

[woor |

18
Note: The TRANS command of the FORTRAN version of the
CSGP moves the X, ¥, and Z axis to obtain a movement of the
object. The SPASCAL TRANS procedure moves the image and

not the axes.

SCALE | (XS, ¥S, ZS);

The SCALE command performs scaling on an image by the
factors XS, ¥S, and ZS (real values) in the respective axis.
A scale of 2.0 doubles the size of the image. A scale of
1.0 leaves the size of the image the same, and a scale of
0.5 reduces the size of the image by one half.

The SCALE procedure produces a temporary matrix, the
size of which depends on the dimension, which is capable of
scaling an object. This matrix 1s then multiplied by

T_MATRIX to perform concatenation.

XS 0 O X530 0 O

2-D =10 YIS O 3-D=|0 ¥S 0 O
0 0 1 0 0 ZS 0

0 0 0 1

REFLEC | (XI, YI, ZI);

The REFLEC command is called to cause a reflection of

an image or for an axis interchange. Each of the arguments

19
must be either a positive or negative 1.0; if 1.0, the axis
is not interchanged; if -1.0, the axis is interchanged.

The procedure produces an appropriately sized matrix that,
when‘applied to the PDF, produces the desired reflection.

This matrix is then multiplied by T_MATRIX to allow

concatenation.
XI 0 O XI 0 0 0
2-D=j0 YI O 3-D=}0 YI O O
0 0 1 0 0 ZI O
0 0 0 1

Note: Only positive X and Y coordinates are displayed
on the Computek terminal. Thus, a reflected image will
often need to be moved in order to view the resultant

picture. An image move is accomplished by the TRANS command.

ROTATE | (I, @);

The ROTATE procedure is called to perform rotation of
an image about the Ith axis, where 1 = X axis, 2 = Y axis,
and 3 = Z axis. The argument I must be given as the integer
value 1, 2, or 3, and it denotes the axis of rotation as
Just stated. The argument © must be a real value (positive
or negative), and it indicates the number of degrees of
rotation.

The rotation procedure produces a temporary matrix

20
capable of rotating an image. The matrix is then multiplied

by T_MATRIX to concatenate the rotation to any existing

transformations.
cos@ -sin@ O 10 0 0
2-D = | sin® <cos6 0 3-D (I=1) =] 0 cos® sine O
0 0 1 0 sin@ cose 0
00 0 1

co0s0 0.sine O F;osg -sin6é 0 O
3-D (I=2) =| O 10 0| 3-D (I=3) =|sin® co0s@ 0 O
-sin® 0 cose O 0 0 10
0 00 1 0 0 01

Note: Even though for two-dimensional rotations an
axis of rotation is meaningless, an axis of rotation integer
argument must still be included. Also, the rotations
performed by ROTATE are only about the point (0,0).
Rotations about any point can be performed by moving (TRANS)
the object to (0,0), making the rotation (ROTATE), and then

moving the object back to its original position.

APPLY_T MATRIX | (I1, I2);

The procedure APPLY T _MATRIX is called to apply the
transformation(s), represented by the transformation matrix
T_MATRIX, on a specified portion of the PDF. The integer

arguments Il and I2 represent the first and last entries in

21

the PDF to which the transformations are to be applied.

PDF Output Commands.

.The PDF output commands allow the user to dump the
contents of all or a specified portion of the PDF to the
user's console or the line printer. The index, name, and
operands (excluding the string length of text commands) of
the PDF instruction are provided. The following is the
format of the output:

Format:
(index) (three-character-coded command name) (operands)

Coded Command Names:

CLR = CLEAR
EMD = EMODE
WMD = WMODE

DBG = DEBUG_CMFTK_DRVR
MOV = MOVE
VEC = VECTOR

HTX = HTEXT
VTX = VTEXT
CTX = CTEXT

SND = SEND_FDF

DUMPPDF_CONSOLE | (I1, I2);

The DUMPPDF_CONSOLE command is used to ouiput the

22
contents of the PDF to the user's CRT console. The Il
argument (integer) is the PDF index where the dump is to
start, and the I2 argument (integer) is the PDF index where
the dump is to end. An I2 argument of O specifies a desire
to stop the dump when a SEND_PDF command is encountered.
Whatever the arguments specified, however, the dump is
halted prematurely if a total of 44 commands are dumped
(the console screen is full) or when the next available
location in the PDF (pointed to by INDEX) is reached, which-

ever occurs first.

DUMPPDF_PRINTER | (I1, I2);

The DUMPPDF_PRINTER command i1s used to output the
contents of the PDF to the printer. The Il integer argument
is the PDF index where the dump is to begin, and the I2
integer argument is the PDF index where the dump is to end.
an 12 argument of O signifies a desire to stop the dump when
a SEND_PDF command is encountered. Whatever the arguments
specified, however, the dump is halted prematurely if the
next available location in the PDF (pointed to by INDEX) is

reached.

Error Messages.

There are five messages that may be displayed on the

user's console by the CSGP software to provide notification

23
of errors made by the user while using CSGP commands or of
system errors occurred while performing the output of data
to the Computek terminal or the printer. The messages and

their explanations are as follows:

*##CSGP - INDEX > PDF UPPER BOUND

This error message signifies that an overflow of the
PDF has occurred; that is, the value of INDEX equals 601,
and one or more attempts have been made to enter commands
into the PDF. When this condition occurs, the CSGP sets
INDEX equal to 600 and inserts the command causing the
overflow at that entry. The previous contents of PDF(600)

are lost.

®¥%##COMPIL - ARGUMENT >= INDEX

This error message signifies that the argument specified
for the COMPIL command is greater than or egual to the value
of INDEX, This means that an attempt was made %o display
at the Computek an invalid portion of the PDF. The recovery
action taken by the CSGP is to reset the value of the
argument to orie, so that the translation of the command

begins at the first PDF entry.

###COMPIL - INDEX REACHED BEFORE SEND_PDF

This error message signifies that while translating
PDF commands the end of the valid portion of the PDF was
reached, and no SEND_PDF command to mark the end of the

24
image was found. The CSGP recovers by assuming that the end

of the image has been reached.

#%#PUT_DISPPAGE - ABNORMAL OUTPUT COMPLETION
This error message signifies that the Computek driver
program, called by the COMPIL procedure, did not terminate

successfully.

###PUT_PRNTPAGE - ABNORMAL OUTPUT COMPLETION

This error message signifies that the printer program,
a system program that runs the line printer, did not
terminate successfully when called by the DUMPPDF_PRINTER

procedure.

C. SAMPLE PROGRAM

To utilize the graphics services of the CSGP, the user
must write, compile, and execute an SPASCAL program.
However, the user need only write a relatively small main
program using the commands (SPASCAL statements) described
in the preceding section. Once the user program is created,
it must be appended to the CSGF to form a complete SPASCAL
program. The program must then be compiled error-free
before it may be finally executed to produce the results
dictated ty the CSGP commands.

The following notation will be used when describing,
during this section, commands to be entered at the user's

console:

25
'CR' represents pressing the carriage return key.
'BK' represents pressing the break key.
" " delimits system responses.

There are several steps that must be taken before the
user is able to create a CSGP program. Signing on the
system, obtaining access to a disk containing a copy of the
CSGP text file, and gaining access to the KSU PASCAL
INTERPRETER must be accomplished. These steps are relatively
easy to perform and usually require but a few commands to
be entered at the user's console. The details of these
commands can be obtained from INTERDATA 8/32 operations
personnel. Access to the Computek terminal must next be
obtained. Insure first that the Computek is connected to
the computer, i.e., the plug marked "INTERDATA" is connected
to the plug marked "COMPUTEK," and that the thumb wheel
switch in back of the Computek is set to "4" (1200 baud).
Then the user's Pascal task must have Logical Unit 5 assigned
to PA14 (the Computek terminal device). This is accomplished
by entering the following sequence of commands at the user's
console:
1BK
PA 'CR’

"TASK PAUSED"
CL 5 'CR'

AS 5,PAlL4: 'CR'
CO 'CR*

26

The user is now ready to create a CSGP program by using
the KSU PASCAL Editor (EDIT) to input a text file from the
console, appending the text file to the CSGP (CONCAT), and
compiling the combined text file (SPASCAL) to form an object
code file of the user program. The instructions to perform
these functions are thoroughly explained in [Nea77]. The
text file must begin with the SPASCAL reserved word "BEGIN"
(no following delimiter) and end with the reserved word
"END." (must have the following period). Each CSGP command
must be followed by a semicolon. If after compiling a
complete CSGP program the system returns with the response
"COMPILATION ERRORS,"” the compile listing of the program
must be used to discover the location and cause of the
error(s), and the KSU PASCAL Editor must be used to correct
the error(s). The name of the user object code file typed
on the console, followed by a carriage return, starts
execution of the user program.

When compiling the text file containing the CSGP and
the user program from a disk using the SOLO utility command
SPASCAL, a destination medium must be specified to receive
the listing of the text file followed by any compile errors
that were discovered. At the time of this writing, there is
no means implemented on KSU's INTERDATA 8/32 to prevent the
user from receiving the listing of the CSGP in addition to
the application program. There is currently work underway

within the KSU Ccmputer Science Department to build a

27
precompiler which, when implemented, will allow the CSGP to
be stored in a partially compiled form. A user will be able
to append a CSGP application program to the CSGP, compile
the fesult. and receive only a listing of the user's portion
of the program.

The following commands are to be used when signing off

the system:
IBKI
SIGNOFF 'CR'

"ELAPSED TIME=01:37:25
0S/32MT TERMINAL MONITOR 00-O1"

Signing off also causes any output directed to the printer
during the console session to be printed. If the printer
output is desired before signing off, the following command
sequence is used:

VBK '

PA 'CR'

"TASK PAUSED"

CL 4 'CR'

AS 4,PR: 'CR'

CO 'CR'

An example console session is presented below to
illustrate the use of CSGP commands to perform a simple
image construction and transformation. The picture shown
in Figure II.1(a) will be built. It will then be scaled,

translated, and rotated to obtain the resuitant image shown

N /

(a) Before Transformation

- p\

/
N
N y

(b) After Transformation

Figure II.1 Dispiay of CSGP Sample Program.

in Figure II.1(b).

29

Console Session: (There is an implicit carriage return
following each user-entered command.)

SESSION
SIGNON DAN,13,CS720
PASCAL USR6:CS720C,PR:
"DO ;"
EDIT(NULL,SAMPLETEXT)

"EDID
CR

BEGIN
START;
SET_SCALE(32.0,36.57);

CLEAR;
MOVE(1.0,2.0,0.0);
VECTOR(1.0,6.0,0.0);
VECTOR(5.0,6.0,0.0);
VECTOR(5.0,2.0,0.0);
VECTOR(1.0,2.0,0.0);
VECTOR(5.0,6.0,0.0);
MCVE(1.0,6.0,0.0);
VECTOR(5.0,2.0,0.0);
SEND_PDF;
INIT_T_MATRIX(2);

COMMENTS

(SAMPLETEXT is the name of the
text file that will hold the
CSGP program)

(enter input mode; CR = create
text edit command)

(first line of user program)

(following coordinates to be
specified in inches)

(mark the end of the image)

30

TRANS(-3.0,-4.0,0.0); (move center of object to
(0,0))
SCALE(0.5,0.5,0.0); (scale object by one half)
ROTATE(1,45.0); (rotate object 45 degrees)
TRANS(3.0,4.0,0.0); (move object back to its

original position)

APPLY T MATRIX(1,VAL INDEX - 1);

COMPIL(1); (display the resultant obgect
at the Computek terminal

END. (last line of user program)

'CR' (this carriage return follows

the carriage return after the
END. and causes the input
mode to be exited)

EN (exit editor)

NDO : "

CONCAT(CSGP,SAMPLETEXT,SAMPLETEXT) (attach CSGP to user
program)

"DO: "

SPASCAL(SAMPLETEXT ,PRINTER, SAMPLEOBJ) (compile CSGP program)
"pO ;"

SAMPLEQBJ (start execution of CSGP

program; the resultant image
now appears on the Computek)

31

III. CSGP (SPASCAL) SOFTWARE

A. STRUCTURE

The structure of the software is that of an SPASCAL
program. It consists of a set of standard prefix declara-
tions (discussed in Chapter IV) followed by the main program.
The body of the main program is, in fact, the user program,
which is preceded by the usual global constant, type,
variable, and routine declarations (Figure III.1). The
graphics functions provided by the CSGP are performed by the
routines, which are accessed by the user program during
execution. The CSGP routines are divided into four
functional groups. These groups and their constituent
routines are listed below.

Image Construction Routines.

START.,
SET_INDEX.
VAL _INDEX.
SET_SCALE.
EMODE.
WMODE.
CLZAR.
SEND_PDF,
NCVE,
VECTOR.

STANDARD PREFIX

CSGP DECLARATIONS

.

CONSTANT
TYPE
VARTABLE
ROUTINE

USER _PROGRAM

Figure III.l1 CSGP Program Structure.

32

USER

PROGRAM
IMAGE PDF PDF/ERROR IMAGE
CONSTRUCT DISPIAY QUIPUT TRANS
ROUTINES ROUTINES ROUTINES ROUTINES

Figure III1.2 CSGP Access Graph.

PUTTEXTINPDF.
HTEXT.
VIEXT .
DEBUG_CMPTK_DRVR.
PDF Display Routines.
COMPIL.
LOAD_CMPTK_DRVR.
PUT_DISPPAGE.
GET_TEXT.
PACK_CHAR.
PACK_REAL.
PDF/Error Output Routines.

DUMPPDF_PRINTER.
DUMPPDF_CONSOLE.
ERROR.

DISPSTRNG.
LOAD_PRINTER_PROG.
PUT_PRNTPAGE.
GET_TEXT_OUT.

INT _TO_STR.

REAL TO_STR.

Image Transformation Routines.

INIT T _MATRIX.
MATMUL.
APPLY T MATRIX.
TRANS.

23

34

SCALE.

REFLEC.

ROTATE.

TRIG.

The CSGP routines are accessable to the user program
by procedure or function call (Figure III.2). The image
construction routines are those procedures that insert
commands into the PDF. Almost all of them are called by the
user program (Figure III.3) except for PUTTEXTINPDF, which
is called by HTEXT and VTEXT to insert alphanumeric text
into the PDF,.

The PDF display routines utilize COMPIL to convert the
PDF into the appropriate form and display the information
at the Computek. In Figure III.4 the dotted line from
PUT_DISPPAGE to CSGPCOMPUTEK is to illustrate the data
transfer between the CSGP program, which resides in SOLO's
job process partition, and the Computek driver program
located in the output process partition. The second dotted
line shows the subsequent data transfer from CSGPCOMPUTEX
to the Computek terminal device.

The PDF/error output routines consist of those procedures
reguired to output the contents of the PDF to the user's
conscole or the printer and to output error messages to the
user's console, As in Figure III.4, the dotted lines in
Figure III.5 dencte data transmission between the job and

output process partitions and between the ouiput .partition

USER

PROGRAM
START EMODE HTEXT
VTEXT

SET_INDEX WMODE
VAIL_INDEX CLEAR
SET_SCALE MOVE

VECTOR

DEBUG_CMPTK_DRVR

SEND_PDF

ERROR PUTTEXTINPDF

Figure III.3 Image Construction Routines Access Graph.

USER
PROGRAM

COMPIL

LOAD_CMPTK_DRVR

PACK_REAL
PACK_CHAR

GET_TEXT
ERROR
PUT_DISPPAGE
¥
I
¥
ERRCR CSGPCOMPUTEK
i
l
|
A"J
Computek
Terminal
(device)

Figure III.4 PDF Display Routines Access Graph.

36

USER

PROGRAM

37

Error

Detection
Points

DUMPPDF_PRINTER

DUMPPDF_CONSOLE

\

ERROR

LOAD_PRINTER_PROG

PUT_PRNTPAGE || INT_TO_STR

ERROR

REAL_TO_STR
GET_TEXT_OUT

DISPSTRNG

PRINTER

1
i

¥

Printer
(device)

Figure II1.5 PDF/Error Output Routines Access Graph.

38
and the output device. The user program calls DUMPPDF_PRINTER
and DUMPPDF_CONSOLE to output the PDF, and ERROR is called,
within the CSGP routine where the error is discovered, to
outpﬁt an error message.

The imege transformation routines are the routines
which perform a particular transformation upon the contents
of the PDF. As illustrated in Figure III.6, the user program
calls INIT T MATRIX to initialize a transformation matrix.
The user may then call TRANS, SCALE, REFLEC, or ROTATE to
create a particular transformation matrix, which is concat-
enated to any previous transformations by accessing MATMUL.
ROTATE in building its matrix must also have access to the
TRIG function to calculate sine and cosine values. Finally,
the user program calls APPLY_T MATRIX to apply the current

transformation matrix to a specified portion of the FDF.

B. MAJOR DATA STRUCTURES

There are four vital data structures utilized by the
CSGP software. The variables PDF, DISPPAGE, DISPLAY_PAGE,
and OUTPAGE hold a list of display instructions during its
translation from commands specified by the user to the actual
ASCII characters transmitted to the Computek terminal.

The mcst important of these data structures is the PDF
(Pseudc Display Filej, which is used to store the display
instructions in the same order as they are encountered in

the user program. The PDF is implemented as an array of

USER
PROGRAM

INIT_T MATRIX
APPLY_T_MATRIX

Figure III.6 Image Transformation Routines Access Graph.

TRANS
SCALE
REFLEC

ROTATE

MATMUL

TRIG

3%

L0
variant records (Figure III1.7), each record containing a
particular display operation code along with its associated
operands. The operand field is the varying component of the
recofd, the contents of which depend on the particular class
of operation being stored. If the operation is a MOVE or
VECTOR command (PDFLINE tag), the operand field consists of
the X, Y, and Z coordinates. If the command is HTEXT, VTEXT,
or CTEXT (PDFTEXT tag), the operands are a character string
and its length, and if the command is EMODE, WMODE, CLEAR,
DEBUG_CMPTK_DRVR, or SEND_PDF (PDFMODE tag), then the operand
field is null.

In order that the PDF array make the most efficient use
of memory, the continuation text instruction (CTEXT) was
added to hold additional horizontal or vertical text
characters over the 22 maximum allowed per PDF record. In
the case of SPASCAL variant records, memory 1s statically
allocated for the maximum size component. Thus when
declaring variant components, the objective is to make them
as equal in size as possible. Besides the HTEXT/VTEXT class
of instruction, the only other non-null variant is the
MOVE/VECTCR class, which must be allocated a total of 12
words of storage for its X, ¥, and 2 real-valued coordinates
(4 words per real). The text instruction class contains an
integer string length (1 word per integer) and a character
string, which is left with 11 words or space for 22

characters (2 characters per word).

OPCODE

TAG

PDFLINE:

PDFTEXT:

PDFMODE :

0..9 (integer)

PDFLINE, PDFTEXT, PDFMODE (enumeration)

X Y 2 Coordinates (real)

String Length (integer)
Text (array of 1 to Z2 characters)

o o o ——— S e S e mm mm m S

Null Component

Figure II1.7 PDF Variant Record Format.

41

L2

The variable DISPPAGE is a linear array of 256 integer
elements. After the PDF is translated into integer form by
the COMPIL procedure, DISPPAGE is used -to store the display
instructions during their transmission, 256 integers at a
time to the Computek driver program.

The display instructions are received at CSGPCOMPUTEK
into DISPLAY PAGE, a linear array the same size and type as
DISPPAGE. The commaﬁds are analyzed again and are translated
further into a sequence of ASCII characters. The characters
are loaded into a linear array of one-character elements,
OUTPAGE, before they are finally transmitted to the Computek

terminal for display.
C. ROUTINES

Before discussing the code comprising the four func-
tional grcups of CSGP routines, a note is in order concern-
ing the declaration of parameters in SPASCAL. In Pascal
there are two possible types of parameter linkage for
procedures: Dby access value and by reference. For each
paraneter that is declared for a routine, the type of
parameter linkage to be used must also be declared. Para-
meters using linkage by access value are called constant
parameters, and parameters using linkage by reference are
called variztle parameters. A routine can use the values
of both constant and variable parameters, but it can only

change the value of a variable parameter. The distinction
g D

43
between constant and variable parameters is made by omitting
or writing the symbol var before the parameters in the

declaration parameter list.

Image Construction Routines.

The routines START, SET_INDEX, and VAL _INDEX manipulate
INDEX, which is the global index into the PDF where the next
command can be inserted. START initializes INDEX to the
value of the first PDF index. SET_INDEX changes INDEX to
the value of its integer parameter, and VAL_INDEX, a function
procedure, returns the current value of INDEX. START also
initializes a boolean overflow flag (discussed in conjunction
with the ERROR routine) to false and the global coordinate
scale variables, X_SCALE and Y_SCALE, to their default values
of 1.0. The SET_SCALE routine changes the value of X_SCALE
and Y_SCALE in accordance with its two real-valued parameters.

The next five routines, EMODE, WMODE, CLEAR, SEND_PDF,
and DEBUG_CMPTK_DRVR, enter display commands into the PDF
with a null variant component record. The opcode of the
command (0, 1, 6, 7, or 8 respectively) is entered into the
record along with the PDFMODE tag. Before the PDF record is
assigned, however, INDEX is checked to insure it is in the
proper range, with a call to the ERROR procedure if it is
not. After the PDF assignment is made, INDEX is incremented
by one.

The MOVE and VECTOR procedures insert commands into the

Ly

PDF to move the cursor and to draw a line. As described
above, INDEX is first checked for validity. The PDF record
subscripted by INDEX is then assigned an opcode of 2 (MOVE)
or 3 (VECTOR), a tag of PDFLINE, and a variant component of
the X, ¥, and Z real-valued coordinates as received by
parameter transmission. Again as above, the PDF index is
then incremented before returning to the user program.

The final three procedures of the image construction
routines are involved with entering horizontal and vertical
text commands into the PDF, The HTEXT and VTEXT procedures
contain the formal parameters STRNG_LEN and STRNG through
which are received a character string and its length. Once
again INDEX is checked and used as a subscript into the PDF.
The opcode 4 (HTEXT) or 5 (VTEXT) and the PDFTEXT tag is
assigned, and then the character string and its length are
used as the actual parameters for a call to the PUTTEXTINPDF
procedure. This procedure takes the character string
(containing a maximum of 42 characters for HTEXT and 24 for
VTEXT) and assigns the first 1 to 22 characters to the text
string portion of the variant component of the record and
the appropriate number of characters to the string length
rortion. If there are any characters remaining, a
continuation text entry is added to the PDF with the
appropriate check and increment of INDEX. The continuation
text instruction possesses an opcode of 9, a tzg of PDFTEXT,

ard a character string and length variant component. The

45
PUTTEXTINPDF procedure can actually handle an arbitrary
number of CTEXT entries, but with the current limits of 42
and 24 characters programmed for HTEXT and VTEXT commands,
only'one is necessary. PUTTEXTINPDF returns to HTEXT or
VTEXT before the final increment is made on INDEX, and the

return is made to the user program.

PDF Display Routines.

The PDF display routines execute under the control of
the procedure COMPIL. This procedure is responsible for
translating the PDF, starting at a parameter-supplied index,
into a form appropriate for input to the Computek driver
program and for performing the transmission to the driver.
Before the translation begins, the starting index is verified
as being valid (less than INDEX), and ERROR is called if it
is not valid. The translation ends when a SEND_PDF command
is encountered in the PDF, or the last valid display
instruction (PDF index of which is one less than INDEX) has
been translated. In the latter case, an error message is
generated since the SEND_PDF command is expected 2t the end
of an image.

Before starting translation of the PDF, COMPIL calls
LOAD_CMPTK_DRVR, which loads the Computek driver program
into SOLO's output process partition. This is accomplished
by calling the WRITEARG procedure (declared in the standard

prefix) witn *he proper arguments to notify the IO program

Le
which driver to load into what partition. Interprocess data
transmission in SOLO is discussed further in Section B of
Chapter IV.

The PDF translation consists of sequentially examining
each opcode, determining via a case statement the basic type
of the command, and then taking the appropriate action for
that type. For each of the three basic types of instructions,
the first action is to enter the opcode of the command into
the linear array DISPPAGE (described in Section B of this
chapter) via a call to PUT_DISPPAGE. The function of
PUT_DISPPAGE is to enter the integer value of its formal
parameter INTVAL into DISPPAGE, increment the DISPPAGE index,
and transmit full DISPPAGEs (256 integers entered) to
CSGPCOMPUTEK. This transmission is made by calling the SOLO
prefix procedure WRITEPAGE. Each time DISPPAGE is sent to
the Computek driver, the DISPPAGE index is reset to zero.

In the case of PDFMODE commands, the call to PUT_DISPPAGE
completes translation of the instruction. If at the end cof
the PDF translation SEND_PDF was not the last command examined,
a SEND_PDF opcode is sent to PUT_DISPPAGE to signal the
procedure to send the last page to CSGPCOMPUTEK and terminate
transmission. After the last page is sent, a call to the

SOLO prefix procedure READARG retrieves an ouiput completion
flag, which signifies normal (true) cr abnormal (false) output
completion. If the flag is false, ERROR is called to cutput

arn. appropriate message to the user's console.

For MOVE and VECTOR commands, the last translation
step is to retrieve the X and Y coordinates from the PDF,
multiply them by the current scale values (X_SCALE and
Y SCALE), and send the results via procedure call to
PACK_REAL. Through the use of universal type declarations
of its formal parameters, PACK_REAL converts the two real-
valued coordinates into two four-element integer arrays.
Beginning with the X coordinate array, the procedure enters
the eight inteéers one-by-one into DISPPAGE via PUT_DISPPAGE.

There are two more actions that must be performed to
finish the translation of text instructions. First, the
GET_TEXT procedure is called in order to retrieve the
character string associated with the HTEXT/VTEXT command.
This procedure loads into a variable parameter, of character
array type, the text stored with the command plus the text
from any continuation text (CTEXT) ins*ructions. End of
medium characters (EM) are entered as the last two character
elements of the array. Upon return to COMPIL, the accumulated
text 1s used as the argument for a call toc PACK_CHAR. This
procedure, with the same universal parameter declaration
technique used in PACK_REAL, converts the character string
into an array of integers and stores these integers into
DISPPAGE by repeated calls to PUT_DISPPAGE.

The code for the Computek driver program is included in
Appendix B. CSGPCOMPUTEK began as an SPASCAL program written

by M. Neal for a computer graphics project also involving the

L8
Computek terminal [Nea78]. CSGPCOMPUTEK is primarily the
same program but for a few minor revisions which are dealt

with in Chapter IV.

PDF/Error OQutput Routines.

These routines are involved with the output of the
contents of the PDF to the printer or the user's console and
the output of error messages to the user's console. The
three primary procedures of this group of routines (ERROR,
DUMPPDF_CONSOLE, and DUMPPDF_PRINTER) are discussed together
in that they all perform an output function and share the
use of many of the same routines.

The ERROR procedure accepts an integer error code
through its constant parameter ERRCODE, and displays on the
user's console a particular error message based on the value
of the error code. If an ERR1 error code is received, a
message informs the user that while attempting to enter a
command into the PDF an overflow of that data structure has
occurred. At the point of error recognition, the statement
immediately after the call to ERROR sets INDEX to the largest
valid PDF index (600); such that, the attempted instruction
insertion will take place with the contents of the previous
entry being lost. After the first recognition of a FDF
overflow, an error message is displayed, and an error flag
is set to true to prevent multiple overflow messages being

displayed upon further instances of errors of this type.

49

An error code of ERR2 causes the output of a message
signifying that the STARTINDEX parameter of COMPIL is
greater than or equal to the value of INDEX. The recovery
from'this error takes place at the point of detection and
involves setting a variable (PDFINDEX) to one, so that
translation of the PDF begins at the first entry.

The ERR3 error code also involves COMPIL, and it
notifies the user with an error message that the last PDF
command translated (its index one less than INDEX) was not
SEND_PDF. The error recovery action, also accomplished at
the point of infraction, enters a SEND_PDF opcode into
DISPPAGE, as previously mentioned in the discussion of the
PDF display routines.

The final two error codes, ERR4 and ERR5, are sent from
PUT_DISPPAGE and PUT_PRNTPAGE, respectively, denoting that
the Computek driver program or the line printer program did
not terminate successfully. Error recovery other than
providing notification to the user is not accomplished.

The ERROR and DUMPPDF_CONSOLE procedures call the
DISPSTRNG procedure to display character strings at the
user's console. DISPSTRNG accepts as its formal parameters
a character string of up to 72 characters in length and
displays the characters one-by-one by using a character as
the argument for a call to DISPLAY, a procedure defined by
the SOLO standard prefix. The null character is used as the

last character of the parameter string.

50

DUMPPDF_PRINTER and DUMPPDF_CONSOLE operate in
basically the same manner. Their constant parameters,
STARTINDEX and ENDINDEX, denote the PDF indices where the
dump'starts and ends, a zero ENDINDEX signifying that the
dump is to continue until a SEND_PDF instruction is
encountered. However, there is a limiting factor for
DUMPPDF_CONSOLE, in that only a total of 44 commands (filling
the entire screen) may be dumped during any one call of the
procedure. Also in toth procedures, the dump cf the PDF
automatically ends when the command whose index is one less
than INDEX is dumped.

A "while do" loop accomplishes the PDF dump in both
the printer and console procedures. Before this loop is
entered in DUMPPDF_PRINTER, the printer program is loaded
into the SOLO output process paffition. This is accomplished
in the same manner as in the LOAD_CMPTK_DRVR procedure
previously discussed. The PDF dump in the conscle and
printer procedures begins with a call to INT_TO_STR with
arguments PDFIND, the index of the command to be output, and
CHAR_INT, which will hold the character string representation
of PDFIND upon return from the call. INT_TO_STR converts an |
integer to character form by counting the number of
subtractions (of 100, 10, and then 1) from the index it takes
to obtain a negative result. Since 600 is the largest
possible PDF index, INT_TO_STR only converts integers from

0 to 999. The three counts obtained from the hundreds, tens,

51
and ones place digits of the index. These place digits are
converted to characters with the aid of the CHR built-in
function and assigned to CHAR_INT with the blank and null
characters as the last two in the string.

The next step taken in DUMPPDF_CONSOLE is to send the
PDF index to DISPSTRNG for immediate display at the console.
For the DUMPPDF_PRINTER procedure, however, the index is
sent to PUT_PRNTPAGE. This procedure enters characters into
PRNTPAGE, a linear array of 512 characters, and sends the
page to the printer program when it is full. PUT_PRNTPAGE
accomplishes its function in exactly the same fashion as
PUT _DISPPAGE, WRITEPAGE again performing page transmissions.
The minor exceptions are that in PUT_PRNTPAGE, characters
are being transmitted instead of integers, and receipt of
an end of medium character, versus the integer value 7
(SEND_PDF opcode), signifies that the last page is to be
transmitted.

After the index of the command has been converted to
character form and displayed at the console or placed in
PRNTPAGE, the opcode is examined with the aid of a "case"
statement, and a three-character-coded name of the command
is displayed or placed into PRNTPAGE. For those instructions
with no operands (PDFMODE tag), no other actions are
necessary. However, MOVE and VECTOR commands require a call
to REAL TO_STR to retrieve their X, Y, and Z coordinates

and convert them into a character string. Using the index

2
of the command passed as one of its parameters, REAL_TO_STR
retrieves the X coordinate; translates its sign, whole part
digits, decimal point, and fractional part digits into
characters; assigns these characters to its variable
character string parameter; and then repeats the process for
the Y and Z coordinates. The process by which a real number
is converted to its constituent character digits is the same
technique as is used for iﬁtegers, with subtraction counts
taken for 1000.0, 100.0, 10.0, 1.0, 0.1, and 0.01. Leading
zeros before the ones place digit are suppressed. The same
call to REAL_TO_STR is used for both DUMPPDF_PRINTER and
DUMPPDF_CONSOLE, and the resultant character string is made
the argument for a call to DISPSTRNG (DUMPPDF_CONSQOLE) or
PUT_PRNTPAGE (DUMPPDF_PRINTER).

In order to output the operands (excluding text length
data) of text instructions, GET_TEXT_OUT is called to
retrieve the text from the PDF and append to it a blank
character for spacing on the output medium and a null
charécter to delimit the string. GET_TEXT OUT performs these
functions in a straightforward manner with a constant integer
parameter PDFIND and a variable character array parameter
TEXT_STRNG. As for MOVE/VECTOR commands, TEXT_STRNG is then
passed to DISPSTRNG or PUT_PRNTPAGE to be output to the
console or printer.

Upon exit from the aferementioned "case" statement,

DUMPPDF_CONSCLE directly uses the DISPLAY prefix procedure

53
to send the new line character (NL) to the console to
terminate the current line and begin a new line of output
after every two commands have been dumped. The local
variable containing the index of the current PDF instruction
being dumped is incremented by one, and control is passed to
the beginning of the "while do" loop to start on the next
command. When the loop is finally exited, a DISPLAY(NL)
call is again made, if only one command has been output on
the current line of the console. The return to the user
program is then made.

The DUMPPDF_PRINTER procedure must also output control
characters after exit from the "case" statement. Using
PUT_PRNTPAGE, it appends carriage return (CR) and line feed
(NL) characters after each line of printer output (one
command) and a form feed (FF) character after every page of
printer output (30 commands). The next iteration of the
"while do" loop is made, and upon its exit control returns

to the user program.

Image Transformation Routines.

The use of the image transformation routines tegin with
the procedure INIT_T_ MATRIX. Its lone parameter identifies
the dimension (two or three) in which following transforma-
tions are to take place. The procedure first assigns this
dimension to a glotal variatle DIMENSION, which is later

used by other transfoermation routines. An identity matrix

54
of the appropriate size (3X3 for two dimensions and 4X4 for
three) is then assigned to a global transformation matrix
variable T_MATRIX. This matrix forms the initial transforma-
tion matrix upon which following transformations can be
concatenated by matrix multiplication.

This matrix multiplication takes place in the MATMUL
procedure, whose only parameter consists of a new transforma-
tion matrix, NEW_T_MATRIX, to be concatenated to the current
T MATRIX. Essentially, a matrix multiplication of
NEW_T MATRIX times T_MATRIX is performed for 3X3 matrices
(DIMENSION = 2) or 4X4 matrices (DIMENSION = 3)., Two nested
loops are used to conduct the multiplication with a temporary
matrix used to hold the intermediate results of the
multiplications of NEW_T_MATRIX row vectors by T_MATRIX
column vectors. The temporary matrix contains the result
upon exit from the aforementioned loops and is assigned to
T_MATRIX Jjust before the procedure ends.

The transformations available within the SPASCAL CSGP
are accessed by the user by calling the TRANS, SCALE, REFLEC,
and ROTATE procedures. The basic scenario implemented by
each procedure is the same. Based on the values of the
arguments supplied by the user, each of these procedures
construct & 3X3 (DIMENSION = 2) or 4X4 (DIMENSION = 3)
matrix, that when applied to the PDF performs the particuliar
transformation on the end points of the lines that comprise

the screen image. After the matrix is built, it is then

59
used as the argument for a call to the MATMUL procedure,

where the matrix is combined with any existing transforma-
tions. Control is then returned to the user program.

‘The three real-valued parameters of the TRANS procedure
specify the X, Y, and Z distances the object is to move. If
DIMENSION equals 2, the translation transformation matrix is
initialized to a 3X3 identity matrix, and the X and Y
distance parameter values are assigned to positions (3,1)
and (3,2) of that matrix. If DIMENSION equals 3, a 4X4
identity matrix is initialized, and the X, Y, and Z distances
are entered into positions (4,1), (4,2), and (4,3). The
concatenation of the matrix is then performed before the
return to the user program is made.

The SCALE procedure creates a scale transformation
matrix using parameter supplied X, Y, and Z scale factors.
The values of the 3X3 or 4X4 matrix are initialized to zero.
For a two-dimensional matrix, the real constant 1.0 is
placed at the (3,3) position and the X and Y scale factors
at (1,1) and (2,2). PFor the three-dimensional case, 1.0 is
entered at (4,4) and the X, ¥, and Z scale factors at (1,1),
(2,2), and (3,3). Concatenation and procedure exit follow.

The reflection transformation matrix created by REFLEC
also begins as a zero 3X3 or 4X4 matrix. If transformations
are currently taking place in two dimensions, the X and Y
axis interchange parameters, whose values are 1.0 or -1.0,

are assigned to the (1,1) and (2,2) elements of the matrix,

56
and 1.0 is entered at (3,3). If the current dimension is
three, 1.0 is placed at (4,4), and the values of the X, Y,
and Z axis interchange parameters are assigned to (1,1),
(2,2), and (3,3).

A 3X3 or 4X4 identity matrix is initialized to begin
the ROTATE procedure. The sine and cosine functions for the
real-valued parameter THETA (angle of rotation in degrees)
are then calculated via a function call to TRIG. These
values are inserted into the initialized rotation matrix in
one of four different schemes, depending on the value of
DIMENSION and the parameter AXIS. If DIMENSION equals two,
the value of AXIS is ignored, and a 3X3 two-dimensional
matrix is the result. If DIMENSION equals three, the value
of AXIS specifies the creation of a 4X4 rotation matrix
about the X axis (AXIS = 1), Y axis (AXIS = 2), or Z axis
(AXIS = 3). Concatenation of the rotation matrix then
precedes the return to the user program.

TRIG is the real-valued function that returns the value
of the sine or cosine (specified by the SIN_OR_COS parameter)
function of the parameter angle THETA, given in positive or
negative degrees. The value of THETA is first assigned to
THETAL1. Via the use of two "while do" loops, THETAl is
mapped into the range 0.0 <= THETAl < 360.0. The sign of
the sine (SIN_SIGN) or cosine (COS_SIGN) resul:t is then
initialized to 1.0. The gquadrant containing THETAl is

determined, SIN_SIGN or COS_SIGN made negative if appropriate

57
for that quadrant, and THETAl mapped into the range 0.0 <=
THETA1 <= 90.0, where COS(THETA1l) = SIN(90.0 - THETAl). If
the cosine of THETA is being determined, THETAl is assigned
the value of 90.0 - THETAl. The sine of THETA1 is then found
by converting THETAl into radians and plugging that value
into a factored version of the power series approximation
equation for the sine function. The result of this calcula-
tion is multiplied by SIN_SIGN or COS_SIGN before it is
finally returned as the value of the TRIG function.

After the desired transformation(s) have been constructed
and stored in T_MATRIX, the procedure APPLY_T_ MATRIX is the
means by which the PDF is transformed to obtain the resultant
effect. The parameters of APPLY_T_MATRIX, STARTINDEX and
ENDINDEX, delimit that portion of the PDF where T_MATRIX is
to be applied. The body of the procedure consists of a loop
containing one "if" statement, which tests the current PDF
command for a PDFLINE tag. Only MOVE/VECTOR commands receive
manipulation by T_MATRIX in the "then" statement sequence of
the "if" statement just mentioned. To apply T_MATRIX to a
MOVE/VECTOR command, the X, Y, and Z coordinates (X and Y
only, if DIMENSION = 2) are retrieved from the PDF and formed
into a vector, a two or three element array. This vector is
then multiplied by T_MATRIX to obtain the transformed vector
result, which is then stored back into the PDF as the new
¥ and Y or X, Y, and Z coordinates of the MOVE/VECTOR

instruction. The PDF may then be displayed in order to view

the transformed image on the Computek terminal screen.

56

59

IV. METHOD OF PORTING

A. FORTRAN TO SPASCAL CODE CONVERSION

The conversion from FORTRAN to SPASCAL code involved
more than a one-to-one mapping of FORTRAN statements to
SPASCAL statements. The operations performed by the FORTRAN
code were first analyzed and understood. A consideration
was then made as to how best the new language could be used
to accomplish the same functions. Thus when conducting the
code conversion to SPASCAL, the overriding concern was to
prevent being constrained by the programming techniques
used and the structure of the FORTRAN code.

The major change in data structures that had the most
significant impact on the code conversion was the consolida-
tion of the three FORTRAN arrays containing the display
instructions into one SPASCAL PDF array of variant records.
In the original version of the package, a (4,400) array of
reals contains all the PDF opcodes and the coordinates for
MOVE/VECTOR instructions. For text instructicns, the PDF
array holds the opcode and an index into a (2,50) integer
array containing the length of the text and the index
location of a third array, a 2C0 element array of characters
which holds the text itself. By taking advantage of the
SPASCAL record data type, it is possible to define a variant

record that contains the opcode for a command and, based on

60
a tag which identifies the type of instruction being stored,
its operands. An array of these records is then declared,
and the entire PDF data can now be stored in one data
structure versus three. This change makes the insertion and
retrieval of data from the PDF more intuitive and easier to
code.

The benefits from the new PDF data structure were
realized during the conversion of the image construction
routines. When entering a text command into the PDF via the
HTEXT and VIEXT procedures, the insertion of the text
characters within PUTTEXTINPDF involves dealing with only
one data structure. However, the new PDF did introduce some
complexity in that the continuation text PDF command (CTEXT)
had to be added, and PUTTEXTINPDF has to create CTEXT entries
when a call to HTEXT or VTEXT involves a character string
with more than 22 characters. The code conversion of the
other image construction routines was fairly straightforward.

The PDF display and console/printer output routines
evolved more from the change in computing environments
rather than the change in programming languages and, there-
fore, will be discussed in the next section (Section B) of
this chapter. However, the changes made tc the method of
providing the output of error messages do not involve the
new computing environment. In the FORTRAN CSGP, user
notification of errors detected by the code is made by the

output of an error message within the routine where the error

61
is detected. It was felt that this function of the CSGP
could be made more modular and easier to maintain if error
message output was confined to one routine. The ERROR
procédure was written to accept an error code and output to
the console a message based on that code.

The code conversion of the image transformation routines
was almost a line-for-line translation but for a few
exceptions. In the FORTRAN INIT subroutine, the transforma-
tion matrix is always initialized to a 4X4 identity matrix
no matter what the dimension specified by the parameter.

The transformation matrices for the TRANS, SCALE, REFLEC,
and ROTATE subroutines also begin with an initialization of
a 4XL matrix. However, whenever transformation matrices are
concatenated using MATMUL and applied to the PDF using
DAPPLY, the 4XL matrix is only used whenever the dimension
specified in INIT is three. The 3X3 portion of the 4X4
matrix is concatenated and applied when the global dimension
variable is two. The SPASCAL implementation initializes a
3X3 matrix for two-dimensional transformations and a 4X4
matrix for three-dimensional transformations in INIT T MATRIX,
TRANS, SCALE, REFLEC, and ROTATE. MATMUL and APPLY_T_MATRIX
operate in the same manner as their FORTRAN counterparts.

A change to the expected sign of the values of the
parameters of the TRANS routine was made. The FORTRAN TRANS
subroutine requires the user to specify translation distances

in the negative X, Y, and Z directions. This means, in a

62
sense, that the axes are being moved to achieve a movement
of the object. For the SPASCAL version of TRANS, it was felt
that it would be more intuitive to the user if the object
moves rather than the axes. Thus, the translation distances
were programmed to be accepted in positive directions along
the respective axes.

Another departure from the FORTRAN implementation scheme
was the expected values for the parameters of REFLEC. The
FORTRAN REFLEC subroutine calls for the value of its IX
parameter to equal the integer value -1 if the X axis is to
be interchanged and +1 if the X axis is to be undisturbed.
The same idea holds for the Y axis (-2 and +2) for the IY
parameter and the Z axis (-3 and +3) for the IZ parameter.
The goal of the REFLEC routine is to create 2 3X3 (two
dimensions) or a 4X4 (three dimensions) identity matrix with
-1 entered at positions (1,1), (2,2), and (3,3) if the
respective X, ¥, and Z axes are to te interchanged. A
simpler solution used by the SPASCAL REFLEC calls for the
real values of -1.0 or +1.0 to be given as the three
arguments for the procedure call. The first argument
signifies interchange or no change for the X axis, the second
argument for the Y axis, and the third argument for the Z
axis. Within the procedure the values of the parameters may
now te assigned to the appropriate positions of a properly
initialized matrix.

The final major code conversion problem of the image

63
transformation routines involved the FORTRAN ROTATE
subroutine. The values of the sine and cosine of the angle
of rotation are obtained via built-in SIN and COS functions.
Since no predefined functions exist (at the time of this
writing) with the INTERDATA 8/32 implementation of SPASCAL,
the SPASCAL TRIG function had to be written to calculate sine
and cosine values.

During the conversion of the FORTRAN CSGP code into
SPASCAL, several major differences between the two languages
became apparent. Considering first the more positive aspects
of the target language, SPASCAL is much more readable than
FORTRAN. It took a great deal of time to read some of the
original CSGP subroutines and understand how they were
performing their functions. Logically indented SPASCAL code
is very readable, especially when attempting to determine
flow of data and control. The numerous control structures
available in SPASCAL were also very useful. The relatively
large number of "if...then...go to" constructs in the FORTRAN
code that it took to perform a certain sequence of events
based on a particular value of a variable were combined into
a single "case" statement construct in SPASCAL. This became
particularly evident while converting the COMPIL subroutine,
where the translation steps for a particular command hinges
on the value of its opcode. Some other control constructs
in SPASCAL that are useful are the loop structures. While

the FORTRAN code is limited to only one basic type of "do"

64
loop, SPASCAL offers the "for to/downto do," "while do," and
the "repeat until" loop structures. These made the code
conversion a great deal easier and, in some instances, aided
the feadability of the code. The more powerful data
structures and extensive type declaration facilities of
SPASCAL were also put to use during the conversion. As
mentioned many times previously, the record type and
especially the capability of defining variant records were
extremely helpful in devising a more natural data structure
for the PDF. The programmer defined data types were of
benefit in that the type of any variable can be found more
quickly and can be specified in a more readable form. And
finally, SPASCAL allows the names of identifiers to be up to
80 characters in length versus 6 in FORTRAN, which allows an
identifier to be named more distinctly in the context of its
function.

As to the more negative features of SPASCAL, it contains
considerable limitations in I/0 capabilities. In SPASCAL
lower levels of I/0 control are placed under the responsibility
of the programmer. This means that in providing the CSGP
with the procedures to dump the PDF and to output error
messages, routines had to be written to convert integer and
real numbers to character form, append control characters to
lines and pages of output data, and send the output data to
the appropriate device. The present KSU implementation of

SPASCAL is also deficient in the number of predefined

65
functions that are available. For example, the sine and
cosine trigonometric functions, which are available as
built-in functions in FORTRAN, had to be devised and written
in SPASCAL. There was also some inconvenience when
manipulating character strings in SPASCAL. SPASCAL character
strings are treated as arrays of characters which at times
was cumbersome to code and involved a lot of character-by-
character transfers when assigning a character string to a
string variable of greater size. Character strings must also
be comprised of an even number of characters, which was not
only a nuisance during the conversion but forces CSGP users
to be careful when specifying text arguments for HTEXT/VTEXT
commands.

Taking into consideration that I had never before done
any Pascal programming and not a great deal of FORTRAN
programming before working on this project, I found SPASCAL
more to my liking than FORTRAN. It was reasonably easy to
learn SPASCAL, znd it seems to provide a more natural and

direct approach to problem solving.

B. IBM/370 TO INTERDATA 8/32 ENVIRONMENT

In addition to having to write, debug, and execute
programs under a different machine, the four areas that were
greatly influenced by the computing environment conversion
are as follows: Iinteracting with the SOLO cperating system,

performing I/0, providing the computer-to-terminal interface,

66

and writing the user instructions.

Learning how to use SOLO operating system services was
one of the most time consuming tasks of the entire project.
Desiéned and implemented by Per Brinch Hansen, S0L0O is a
single user multiprocessing system written in CPASCAL which
allows users to edit, compile, and execute Pascal programs.
SOLO runs as a task under the 0S-32/MT operating system of
the INTERDATA 8/32 at KSU; such that, each Pascal user has
access to his own copy of SOLO while active on the INTERDATA
8/32. In terms of the computing environment conversion of
the CSGP, the most important aspects of SQLO are the standard
prefix and the interprocess communication between process
partitions.

The standard prefix provides the interface between an
SPASCAL program and the SOLO operating system. After its
compilation, an SPASCAL program is stored on disk and
executed by a user command from the console. The program
accesses SOLO services by means of procedures implemented
within the operating system. These procedures and their
parameter types are declared in a prefix to a user's progranm,
which allows type checking of calls to the operating system
to occur at compile time.

The input, job, and output processes comprise the three
process partitions of SOLO into which SPASCAL programs may
be loaded and executed. A job process program controls the

data flow between the three process partitions by controlling

67
the loading of input and output programs through communication
with the SOLO IO program. The I0 program is initially loaded
into both the input and output partitions, and it waits for
an afgument from the job process specifying which program to
load and execute next. In the case of a CSGP program, which
executes in the job process partition, it uses the WRITEARG
prefix procedure to inform the output partition IO program
to load the Computek driver program or the printer program.
The IO program calls the requested program and then makes
available a program completion status argument that the CSGP
program can retrieve and examine by calling the READARG
prefix procedure.

While a program is executing in the input or output
process partition, the data transmission between it and the
job process program can be performed character-at-a-time or
page-at-a-time. The CSGP utilizes the page transmission
method for sending data to the Computek driver or printer
program. A page consists of any data type consisting of the
equivalent of 512 bytes of storage. The job program sends a
page by calling the prefix procedure WRITEPAGE and using the
page variable as one of its arguments. The output program
receives the page by calling READPAGE. The formal parameters
of WRITEPAGE and READPAGE also include a boolean type
variable which is false to specify that more pages will be
sent and is true to denote that the current page contains no

vaiid data and the trarnsmission is at an end. The Job

68
program can then retrieve the output program completion
argument via READARG.

Providing the computer-to-terminal interface was another
ma jor phase of changing the CSGP's machine environment. The
FORTRAN package contains three modules that perform this
interface: COMPIL, CMPUTK, and TTYIO., COMPIL is a FORTRAN
subroutine that transforms the Pseudo Display File into
Computek compatible control data. It passes PDF opcodes and
operands to an assembler language subroutine, CMPUTK, which
performs the actual translation of the data, and then COMPIL
passes this data to another assembler language subroutine,
TTYIO, which transmits the control data to the Computek
terminal. The SPASCAL COMPIL procedure was written to
perform the séme function as its FORTRAN counterpart, the
Computek driver program (CSGPCOMPUTEK) conducting the CMPUTK
and TTYIO functions. However, the SPASCAL CCMPIL procedure
is more Eomplex in that it has to translate the PDF data into
an extra intermediate form compatible with CSGPCOMPUTEK and
perform the necessary interaction with SOLO to send this
intermediate data to the output process partition.

Another matter involving the conversion of the computer-
to-terminal interface software was adapting the COMPUTEK
program, obtained from M. Neal, for use with the CSGP. The
adapted version, named CSGPCOMPUTEK (listing provided in
Appendix B), contains minor changes to COMPUTEK to provide

the capability of turning on and off the debugging facility

69
COMPUTEK provides and to provide a more space efficient
method of receiving the text operand of HTEXT/VTEXT commands.

The debugging facility consists of providing, as output
to the user's console, the hexadecimal representation of the
pages of ASCII characters sent to the Computek terminal. To
allow the user the option of generating this output, the
DEBUG_CMPTK_DRVR command was added to the CSGP and given the
opcode of 8. To implement the command in CSGPCOMPUTEK, the
integer constant DEBUG and boolean variable DEBUG_FLAG were
added. DEBUG_FLAG is set to false during the initialization
phase of the program. In the procedure PROCESS_PAGE, a case
for the constant DEBUG was added to the "case" statement
which processes the various PDF commands based on their
opcodes. When PROCESS_PAGE recognizes a DEBUG_CMPTK_DRVR
instruction via the "case" statement, the debugging flag is
set to true. In the SEND procedure, a test is made on
DEBUG_FLAG before the procedure PRINTABS is called to output
the Computek display data.

The method employed by COMPUTEK to retrieve HTEXT/VTEXT
text characters is to force the sending program in the job
process partition to pad the text characters, so that 132
characters are sent with every HTEXT/VIEXT command. Thus
when COMPUTEK recognizes a text instruction, it always
retrieves the following 66 integer entries (packed form of
132 characters transmitted by the job process program) of
DISPLAY PAGE and unpacks the characters into the 132 element

70
array TEXT_LINE. The procedure PROCESS_TEXT then removes
the characters from TEXT_LINE and enters them into the
character page SEND_PAGE, until the EM character is found,
for transmission to the Computek terminal. The objective in
CSGPCOMPUTEK is to allow COMPIL to send only the text
characters plus one or two EM characters to CSGPCOMPUTEK and
have it retrieve the characters from DISPLAY PAGE until an
EM character is encountéred. To implement this scheme, the
COMPUTEK procedure GET_LINE was replaced with a new procedure
GET_CHARPAIR. Called from the PROCESS_TEXT procedure,
GET_CHARPAIR removes and unpacks from DISPLAY PAGE only two
characters at a time. These characters are entered into
TEXT_LINE by PROCESS_TEXT until the EM character is found.
Then the same code as in COMPUTEK fetches the characters
from TEXT_LINE into SEND_PAGE again until the EM character
is spotted. The declaration of TEXT_LINE (a global variable)
was changed from an array of 132 characters to an array of
44 characters, which will hold 42 HTEXT characters or 24
VTEXT characters plus two EM characters.

Allowing the user to output the contents of the PDF and
providing the capability to output error messages also
involved the change of machine environment. In the large
computer implementation of the CSGP, the operating system
perform much of the I/0 control functions; such that, a
relatively simple FORTRAN "print" or "write" statement is all

that is needed to cutput data to an output device. However

71
when providing output capabilities under SOLO, the programmer
must interact with the operating system to a much greater
extent, The WRITEARG prefix procedure must first be called
to load the appropriate output program in the output process
partition. If the output data is of non-character type, it
must then be converted into characters by the programmer.
Output characters are then loaded into a page variable and
sent page-by-page, by call to WRITEPAGE, to the output
program for processing. While not terribly difficult to code,
the PDF/error output routines became a much larger part of
the SPASCAL CSGP than of the FORTRAN CSGP in terms of the
number of lines of code.

Although not a particularly obscure impact of the new
computing environment, establishing operating instructions
for the SPASCAL CSGP was not a minor task. For the most
part, the explanations of the CSGP commands and their usage
were taken from the user's guide for the FORTRAN package
[And75]. However, the instructions by which users enter on
the INTERDATA 8/32 system and use the CSGP in that environment
had to be completely rewritten. This was more a time

consuming than technical matter.

And?75

Com72

Han77a

Han?77b

Nea?77

Nea?78

New?3

72

REFERENCES

Anderson, G. User's Guide for the Computer Science
Graphics Package Running Under VM/370: CMS, KSU
Department of Computer Science, 1975.

Computek Inc., 300 SERIES User's Manual, 009-00021,
September 1975.

Hankley, W. and Rawlinson, J. Sequential PASCAL
Supplement for FORTRAN Programmers, Technical
Report CS 76-18, KSU Department of Computer
Science, January 1977.

Brinch Hansen, P. The Architecture of Concurrent
Programs, Prentice-Hall, Englewood Cliffs, N.J.,
1977.

Neal D. and North B. S0LO Tutorials, Technical
Report CS 77-20, KSU Department of Computer
Science, October 1977.

Neal M. Design and Implementation of a Portable
Interactive Graphics Language Interpreter, Master's
Report, KSU Department of Computer Science, 1978.

Newman, W. and Sproull, R. Principles of
Interactive Computer Graphics, McGraw-Hill Book
Co., 1973.

APPENDIX A

CSGP (SPASCAL) CODE

73

T4

{NUMBER)
nPER BRINCH HANSEN * AS MOpIFIED FOR THE INTERQATA
* 8,32 UnNutR 05/32-MT AT
INFORMATION SCIENCE * DEPARTMENT OF COMPUTER SCIENCE
CALIFORNIA INSTLTUTE OF TECHNOLOGY * KANSAS STATE UNIVERSITY
x
UTILITY PROGRAMS FOR *
THE SQOLO SYSTEM *
x
18 MAY 1975 * 1 DEC 197enm
UR-3°F-5°%-3-5:-3-F- -
PREFIX
HEHUHBREREUY
CONST NL = v(:10:})"3 FF = t{i12:); CR = *v(:13:)s EM = v(3125:3)'}
CUNST PAGELENGTH = 512}
TYPE PAGE = ARRAY (.1..PAGELENGTH,) OF CHAR;

CONST LINELENGTH
TYPE LINE ARRAY

1323

CONST IDLENGTH
TYPE IGENTIFIER

123

TYPE FILE = 1..2%

{ele .LINELENGTH,) OF CHAR}

= ARRAY {.1,.J0LENGTH.) QF CHARI

TYPE FILEKIND = (EMPTY. SCRATCH, ASCII+« SEYCODE: CONCODE)3$
TYPE FILEATTR = RECORD
KIND: FILEKIND3
ADCR: INTEGER?®
PROTECTED: BOOLEAN:
NOTUSEL: ARRAY (,1,.5.) OF INTEGER
END1
TYPE IODEVICE =
(TYPEDEVICE, DISKDEVICE. TAPEDEVICE. PRINTDEVICEs CARDDEVICE);
TYPE IODCPERATION = (INPUT+ OUTPUT, MOVE.» CONTROL)
TYPE IOARG = (WRITEEOF+ REWINDs UPSPACEs BACKSPACE);
TYPE IORESULT =
(COMPLETEs INTERVENTIONs THANSMISSION, FAILURE.
ENDFILE, ENGMEDIUM, STARTMEDIUM)}
TYPE IOPARAM = RECORD
OPERATIONS IQOPERATIONI
STATUS; IORESULT:
ARG: IQARG
END3
TYPE TASKKING = (INPUTTASK. JUBTASK, OUTPUTTASK):

poéo
goel
Goee2
0p63
0p64
0pes
Go6&6
0067
0068
o069
0070
0071
0072
0073
0074
Go7s
0o76
0g77
00738
0079
agao
0g8l
tos2
0083
ag8y
0085
-1
coé7
oQes
aQa9g
0g90
0091
0p92
0093
0094
a09s
209%6
007
0098
009%
0100
g101
0402
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
g1ls
0117
0118
0119

TYPE ARGTAG =

(HILTYPE,
TYPE POINTER =

TYPE ARGTYPE =

CUNST MAXARG

TTPE ARGLI

TYPE ARGSEG =

BOOLTYPE, INTTYPEs IDTYPE.« PTRTYPE) S
aBOOLEAN;
RECORD
CASE TAG:! ARGTAG OF
NILTYPE+ BOULTYPE:; (BOOL:
INTTYPE: (1NT: INTEGER)G
I0TYPE: (IU: IDENTIFIER)G
PTRTYPE: {(PTH: POINTER)
END1
= 104
ST = ARRAY (.1.+MAXARG.) OF ARGTYPE;
({INPY OUTHE

TYPE PROGRESULT =

(TERMINATEDs OVERFLOW, POINTERERROR, RANGEERROR,

BOOLEAN)

VARIANTERROR,

HEAPLIMIT, STACKLIHAIT, CODELIMIT, TIMELIMIT, CALLERROR)}

PROCECURE
PROUCEDURE

PROCEQURE
PROCEDURE
PRUCEUJRE
PRACEDURE

FUNCTION LENGTH(F:

PROCELURE
PROCEDURE

PHOCEDURE
PROCLDURE
HrROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEGURE
PROCEDURE
pROCELURE

PROCEDURE

PROCEDURE
(DEVICE:

PROCEDURE IOMOVE(DEVICE:

READ(VAR C:

WRITE(C:

OPEN(F:
CLOSE(F:
GET(F:
PUTI(F:

HARK(VAR TOP:
RELEASELTOP:

IDENTIFY(HEADER:
ACCEPT(VAR C:

GISPLAYLC:

FILE;
FILE)3
FILE; P:
FILE: P:
FILE):

CHAR)

CHAR) {

ib:

CHAR } i
CHAR}

READPAGE(VAR BLOCK:

WRITEPAGE(BLOCK:

INTEGER;
IJTEGERS
INTEGERY

JNIV PAGE:

IDENTIFIER

INTEGER) §
INTEGER) §-

LINE}

UNnIV PAGES

READLINE(VAR TEXT: UNIV LINE)S

WRITELINE(TEXT:

READARGI(S:

ARGSEW;

UNIV LINE):
VAR ARG:

VAR BLOCHK:
VaR BLOCK:

VAH FOUND:

VAR EOF:

ARGTYPE) ¢

WRITEARG(S: ARGSE@i ARG: ARGTYPE}|

LOOKUP(ID:

I0THANSFER
I00EVICE;

IDENTIFIERS

VAR PARAN:

FUNCTION TASK: TASKKINQ1

PRUCEDURE

PRUGRAHN P{

RUNIID:

VAR LINE:

VAR PARAM;

IDENTIFILRS
INTEGER &

ARGLIST) S

I0pDEVICE:

1OPARAM;S

VAR PARAMI

VAR ATTR:

VAR PARAM:

VAR BLOCK:

ARGLIST}

BOOLEAN) §

UNIV PAGE)?}
UNIV PAGE)3

BOOLEAN) §

EOF: BOOLEAN)

FILEATTR: VAR FOUND:

IOPARAM) &

VAR RESyULT: PROGRESYLT)1

UNIV PAGE)j

75

BOOLEAN) 3

0120
0121
D122
0123
0124
0125
01286
0127
pi28
0129
0130
0131
0132
0133
0134
0135
D136
n137
0138
0139
0140
0141
Q142
0143
o144
g14s
olus
0147
o148
o149
0150
0151
0152
0153
0154
G155
0158
0157
0158
0159
0160
0161
0162
0163
gle4
D165
0166
0167
0168
0169
G170
0171
0172
0173
0174
0175
0176
0177
0178
0179

EFE e L P T P AT FE s 2 S P PR ISR 2 FE RSS2 2 222 10

CSGP CONSTANTs TYPEs. AND VARIASBLE DECLARATIONS =»

NEEXFEREEETE R G ERF A ESER AR R XX ERFF LR L K XXy Kk * R EX kXX EN

CUNST
EMOD = g%
WMOD = 1%
oy = 2%
VEC = 3%
HTXT = 4i
VIXT = 5%
CLR = st
SPDF = 7%
0OBUG = §3%
CTAT = 9%

MAX_POFTEXT_CHARS = 223
HAX_POF_ELEMS = 600%

TYPE

ERR1 = pi

ERR2 = 13

ERR3 = 2%

ERRY = 3%

ERRS = 41

BLANK = t(:1323)3

UL = *(:035)*%

SIN = @y

COosS = 1%

STRINGS = ARRAY(.,1..8.) OF CHAR}
STRINGZ2 = ARRAY(.1..22.) OF CHAR?$
STRING2y = ARRAY(.1.«24) JF CHARS
STRINGZ2E = ARRAY(41e.28.) OF CHARG
STRING32 = ARRAY(.1..32+) QF CHARI
STRING4z = ARRAY(,1..42.,) OF CHAR3J
STRING44 = ARRAY({.l..%%.) OF CHAR?W
STRINGT2 = ARRAY({4l.e72+) OF CHAR}

PACKEO.REAL = ARRAY(el.a%.) OF INVEGER}
PACKEDO_TEXT = ARRAY(+41ls.224) OF INTEGERY
NULL-FICLO_TYPE = BOOLEAN;
OP_TYPE = (PDFLINE., PDFTEXTs PDFMODE)
PDFLELEM = RECQROD
ORPCODES: INTEGER;
CASE TAG: GP_TYPE QF
POFLINE: (X-COOR, Y.COOR, Z.COOR: REAL)}
POFTEXT: {(TEXT_LEN: INTEGER}
TEXT_STR: STHING22)1
POFHMODE: (NULL_FIELD: NULL_FIELD.TYPE)
! END; "RECORD ARD CASE"™
POFLTYPE = aARRAY(,1.+MAX_POF-ELEMS,) OF POF.ELEM}
MATRIX.TYPE = ARRAY(sl.sfvlsols) OF REALGY

VAR

POF: PDF-TYPE}

INDEX: INTEGER}

X_SCALE: REALS

Y.SCaLE: REALS
ERR_FLAGl: BUULEAN}
FILELINGICATOR: ARGTYPES

76

0180
0181
o182
0183
D184
0185
016e
0187
0188
0189
0190
0191
0192
0193
Cl194
0195
0196
0197
0198
0199
cz200
0201
pa2ue
0203
D204
0205
c206
6207
p208
0203
c210
0211
pziz2
0213
0214
0215
02le
0217
02138
0219
0220
gz221
0222
0p23
0224%
0z25
022%
pe27
Dz28
0229
0230
0231
p23e
0233
0234
cz235
0238
0237
0238
0239

77

QUTCOMPLETIVN: ARGTYPE}

DISPPAGE: ARRAY(.1,+256.) OF INTEGER}
PRNTPAGES ARRAY(.1,.512e) OF CHARY
DPAGE_INUEX: INTEGERG:

PPLGE_IWDEX: INTEGERS

DIVENSION; INTEGER;

T.SATRIX: MATRIX.TYPE:

NEg kR R XA R R F B E R E TR R RN E RGN
wx CS5GP PROCEDURL DECLARATIONS =
NEEEFFEFERA KB G F RSN KT REEXERXEF SR

DEEBAKEBXEERF XX RN KA Rk X TR R ISPSTRNGHF Xk F X kXX R XXX X XS EFE AR KX TR XX XX XXX R %N
PROCEDURE DISPSTRNG(OQUT-STRNG: STRINGT2)4
WPURPOSE: DISPLAYS A CHARACTER STRIHG AT THE USER CONSOLE, »
"GLOBAL VARIABLES REFERENCED: NONE, "
WCALLING mODULES: OUMPPODF.CUNSOLE/ERROR, n
VaR CNTRIND: INTEGER:
CAR: CHARS
BEGIN
CNTR-IND := 11
CAR = QUT_STRNG(sleli
WHILE CAR <> NuL DQ
BEGIN :
DISPLAY(CAR)}
CHTR-INU ¢= SUCC(CNTR.IND)¢
CAR 3= OUT_STRNG{.CNTR.IND.}}
ENDs wWHILEM
EMD: vPROC DISPSTRNGn
Mk kR R ke r kb ks kR A KERROR s b ¥ X AR AR A E XXX X KX XFER RIS F ARk E Ry kR E R e xM
PROCEDURE ERRQR(ERRCODE: INTEGER);
WPURPOSE: DISPLAYS ERROR MEISSAGLS Qw USER'S CONSOLE, "
HGLOBAL VARIABLES REFERENCEL: ERR_FLAGL, "
UCLLLING mODULES: ERODE/WMCODE/CLELR/SENG.PDF/MOVE/VECTOR/RTEXT/®
" VTEXT/PUITEXTIWPDF/COFPIL/DEBUG.CHMPTKLDRVR/Y
" PUT-DISPPAGE/PUT-FPRLTPAGE, "
BEGIN
CcaSE ERRCODE OF
£RK1: BEGIN
ERR_FLAG1 :=.TRUE:
DISPSTRNG(**=xxCSGP - INDEx > POF UPPER BOUND(:0:)*) 3%
ERD: "ERR1 CASE"
ERR2: DISPSTRNG(+***COMPIL = ARGUMENT >= INDEX(:D0:)')}
ERR3: DISPSTRNG(v#*x*COMPIL - INDEx REACHED BEFORE SLND_PDFL:0:)t)3
EKR4: DISPSTRING(' ***PUT_UISPPAGE = ABNOAMaAL OUTPUT COMPLETION(:OS)*)4
ERR5: D]ISPSTRNG('***PUT_PRNTPAGE = ASNORMAL OUTPUT COMPLETION(:O03)')
EMNDi wCASEw
DISPLAY (NL)S
END3 ¥YPROC ERROR%
nttt‘ttttttt¢**tr**#tt**t***tSTAﬁTttt&*ttt‘*t#tt#tttt*ttttltl#tt‘ttt;ttt‘ttti*t“
PROCEGUKE START:
WPURPOSE: INNITIALIZES THE POUF INDEX TO 1+ THE INDEX OyERFLOy ®
L ERROR FLAG TO FALSE. AND THE DEFAULT VALUES OF L
" X.SCALE AND Y-SCALE TO 1. "
"GLOBAL VARIABLES REFERENCED: INDEX/ERR_FLAG1/X_SCALE/Y.SCALE,"
JEGIN

-

ERR_FLAG1 3= FALSE:
X.SCALE := 1,0%
Y_SCALE i= 1.0
INDEX 3= 11

78

c240 EnDs "PROC START®

D241 ks k@R kR 12 d R4 ¥ h kx5 X xSET _INDEXF ¥+ ¥ X £ F kXXX F XX B FXEREXXXEXR A F AR RN T RN
gz242 ©PROCEDURE SET_INDEX(IND: INTEGER)

0243 "PURPGSE: CHANGES THE VALUE OF THE POUF INDEX."

D244 »oLOBAL VARIABLES REFERENCEDY INODEX, n
D245 “CALLING NODULES: USER PHUGRAM, "
c246 BEGIN

D247 IF ERR_FLAGL

0248 THEN ERR_FLAG1 := FALSE]

6249 INDEX 3= INUF

0250 ENDi: "PROg SET.INDEX®

D251 narrskkx X rd ok krs XXk kxx s ¥xr VAL INDEXE ¥ ¥ XX e R XK R XXX XXX RAXIXF R T K XX RS2 %Y
G252 FUNCTIDN VAL_IWKDEX: INTEGER:

p2=3 "PurPOSE: ACCESSES CURRENT VALUE OF THE PDF INDEX."

0254 M"GLUoAL VARIApLL-S REFERENCEUL: INDEX, "
0255 "CcALLING MODULEST USER PRUGHKAM,]
0256 BEGIN

pes7 VAL INDEX 3= INDEXjy

0258 £fD3 “FUNC VAL.INDEX®

D259 Mk r sk kRt x ¥ e X n xRk xRk kR bk xxkSET _SCALE* 2k kX kxR X K kxR A KT ERE SRR R R AR kA kR R R RN
0260 FROCEDUREL SET_SCALE(PTSPERUNITLXs PTSPLRUNIT_Y: REAL)
g6l "PURPGSE:! SETS THE VALUE UF X.SCALE AND Y_SCALE TO THE "

g2z POILTS PER UNIT EACH X aND Y PDF COOGRODINATE®
D2e3 v WILL BE SCALED TO SEFORE BEING SENT TO THE ™
Desy v COMPUTEK DRIVER. b
Gze5 "GLOUBAL VARIASBLES REFERENCLU: X_.SCALE/Y_SCALE, "
G266 “CALLING #ODULES? USER PROGRAM, "
0267 BEGIN

0268 X.SCALE = PTSPERUNITZX®

0zeg Y.SCALE = FTSPERUNIT.Y

ca270 EnDy "PROC SET-SCALEn

D271 vakrxrka bk aka bkt kxsx s 2t xxx 4k DEBUG_CriPTK _DRVR* X ¥ Xk kg k kAR X £k EX A KR xR RE R KRR
272 VMROCEDURE CEBUG_CMPTKLDRVR;

0273 wPURPOSE: CREATES A COMMAND IN THE PDF TO TURN OW A DEBUG "
0274 v OPERATION IN THE CO4APUTEK DRIVER PROGKAM THAT "
0275 ™ DISPLAYS THE HEXAUECIHAL REPRESENTATIUN OF THE o
0276 v ASC1I CHARACTERS SENT TO THE COMPUTEK TERMINAL, "
0277 "GLOBAL VARIABLES REFERENCEU: POF,/INDEX, "
0276 "CALLING “ODULES: USER PROGRAM, "
gz279 BEGIN

0280 IF INDEX > MAX.PDF.ELEMS

D281 THEN BEGIN

p282 IF NOT ERR-FLAG1

0283 THEN ERROR{ERR1} 1

0284) INDEX = mAX-PDF_ELEMS}

gzas ElD3 "IF INDEX > MAX_PCF_ELEHMS"

0266 POF(,INDEX,),0PCODE := UBUGH

0267 PUFt.INDEX,)«TAG ;= PUFNMNOUE;

0258 INDEX 2= SUCC(INDEX)

0289 EnDt "PROC DEBUG_CHMPTK.DRVR®

0290 Massanxrnkeran b s kran s ea s ¥t MO e R R R kA I A R A R R E A XK F R A E R SR &N
0291 FPROCEDURE EpMOGES
0222 wPURPOSE: CREAT S A COMMAND IN THE PDF TO PLACE "

0293 & THE COMPUTEK TERMINAL IN ERASE STATUS.™
0294 w»GLOBAL VARIABLES REFEREWCED: PDF,/INDEX, "
0295 “CALLING HS0ODULES: USER PRUGRAM, H
0296 BEGIN

0297 IF INDEX > mAX_.PDF_ELE#S

p2238 THEN BEGIN

0292 IF NOT ERRLFLAGL

e

THEN ERROR(ERK1L} 1
INDEX 3= MAX-PUF-ELEMS;
EMD: "IF INDEX > MAX.PLF.ELEMS™

PDF{.INDEX,)+CPCODE := EMOD}

POF (« INGEX,).TAG := PUFMODE:

IHOEX = SUCCL{INDEX)$

EnND: "FROC EAQOEw

L R R R s R Rt e e L e e A PR R R 2 PRI RS TSR A S S22 2 S 2 PR R 222 2 2 2 2 2
PROCEQDURE WHODE;
"PUKRPUSE: CREATES A COMMAND IN THE PDF TO PLACE
n THE CO{PUTEK TERMINAL IN WRITE STATUS."™

nGLOBAL VARIABLES REFERENCED: PUF/LNDEX, "
"CALLING MODULES: USER PROGRAM, "
LEGIN

IF INDEX > MAX_PODF.ELEMS
THEN BEGIN
IF NOT ERR.FLAGL
'HEN ERROR{ERR1)3%
INDEX = JAX-PUF_.ELEMSt
END: “IF INDEX > MAX-POF.ELENS™
PUF(«INDEX,)TAG = PUFMODE}
INOEX 3= SUCC{INDEX)G
EnNls HYPROC WMODEM
VR KX XK R d kxS XXX R ACLEAR Sk n B R xRk ek Rk kA kg kR XX R XXk F X XA T Ly F kR
PROCEDURE CLEAR:
"PURPQOSE: CREATES A COMMAND IN THE PDF 7O CLEAR THE SCREEN®

" AND POSITION THE CURSOR AT HOME, "
“GLIBAL VARIABLES REFERENCED: PUF/INDEX, "
vCAlLING HOQULESS USER PRUGRAM. "
BEGIN
IF INDEX > MAX_PDF_ELENMS
THEN BEGIN

1F NOT ERR.FLAG1
THEN ERROR(EKR1)
INDEX := MAX.PDF.ELEMS:
ENO; "IF INDEX > MAX_POF_ELEMS®
POF({.INGEX,).,0PCODE &= CLR}
POF{.INDEA,)TAG 3= PUFMOUE;
INDEX i= SUCC(INLEX)S
ExN0; wPROC CLEARn
Hakaxk bt ek kX u bk e ks x s x4 kxkdSEND _POFAS R ¥Rk a X R FAx KX A XXX XX R KX EEF X SF AT R E xRN
PROCEQURE SEND_POF; -
HPURPOSE: CREATES AN ENTRY IN THE PpF TO MARK THE ENO®
n

" OF AN IMAGE. ,
uGLOBAL VARIABLES REFEREWCEU: PODF,/INDEX, "
"CALLIWNG HOLULES: JSER PROGRAM, n
HEGIN
IF INDEX > AX-PDF.ELEMS
THEN BEGIN

IF NOT ERR_FLAGL
THEN ERROR(ERRL1)}§
INDEX = MAX-PUF_ELEHMS1
ENg: "IF INDEX > MHAX.PDF.ELEMS"
POF(.INGEX,).OPCODE = SPOF{
PDF (. INGEX,),TAG iz PODFMOUER
INDEX i= SUCC{INDEX)¢®
ENpDs "PROC SEND-POFMY
NEE R kR R R AR A MOV R e R R g X R gk Rk KRk KX IR R AR A p TR R AR
PROCEDURE MOVE(x+ Y+ 23 REAL)G

0360
0361
Dzs2
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374%
0375
037&
0377
0378
0379
0380
0381
0382
6383
0384
0385
0336
0387
0388
03893
0390
0321
0392
0393
0394
0395
0396
0397
0398
0399
C400
0401
0402
0403
0404
0405
0406
0407
o408
0409
0410
0411
p412
D413
D414
0415
04ls
0417
0418
0412

80

wPURPOSE: CREATES AN ENTRY IN THE POF FOR“

" A MOVE INSTRUCTION,
"GLOBAL VARIABLES REFERENCEU: POF,/INDEX, ™
"CALLING @OpyULES: USER PRUGRAM, "
BEGIN
IF INHDEX > HMAX_PDF_ELEMS
THEN BEGIN

IF NOT ERR.FLAG)
JHEN ERROR(ERK1) 3§
INDEX 1= MAX.POF_E_EKSH
END: "IF INDEX > MAX_POF_ELEMNS™
WITH PDF(,INDEX.) DO
BEGIN
OPCODE := MOV}
TAG := POFLINE:
X.COOR 3= X3
Y_.COOR 1= Y3
Z_.COUR 3= 23
EiD: »WITH"
INODEX i= SUCCUINDEX}H
£i0s “PROC MOVE®
DR ER AR R AR Ry R R xR KR kS F k¥ VELCTOR 2 * 2Ky x Xk kr Lk B Xk E XXX LB RS sk KRNk XA R RN
FROCEDURE VECTOR(Xe Ys 2% REAL)G
"PURPOSE: INSERTS AN EATRY INTO THE PDF FOR®

" A VECTOR COMMAND. "
“GLO3AL VARIABLES REFERENCED: POF/INDEX, "
"CALLIWG MODULES: USER PRUGRAM, "
BEGIN
IF INDEX > M4AX_PDF_ELEMS
THEN BEGIN

IF NOT ERR-FLAG1
THed ERROR(ERRL1)}
INOEX = 4AX-PDFLELENS:
ENg: "IF IRDEX > MAX_PDF_ELEpS”
WITH PDF({ , IJDEX,) DO
BEGIN
UPCQDE := VECH
TAG $= PDFLINE;
X,COOR 3= X3y
Y-COOR = Y3
Z_COOR 3= Z3%
ENDT "WITH"
INDEX §= SUCC{INDEX)?
EnD§ “"PROC VECTOR®
MR EE AR E AR R R R Rk k kP UTTEX T INPDOF £ ¥k xRk A KR X TR AR F XS XX XXX XS KX RRE RN
PRUCEDURE PUTTEXTINPOF(STRHUGLLEN: INTEGERT STRNG: STRINsﬂza;
WPURPQSE: ERTERS HTEXT Ayl VTEXT TEXT IyTu THE POF
" AND CREATES CTEXT POF E£NTRIES WHEN REGUIRED.
"GLOBAL VARIAEBLES REFERENCEU: PULFINDEX,
"CALLING MODULES: HTEXT/VTEXT. "
VAR CHARINDEX1s CHARINDEX2e CTEXT_ENTRIES, LOQP.CNTR: INTEGER}
BEGIN
CHARIWDEX]1 = ¢}
REPEAT
CHARINDEX = SUCC(CHARINDEX1)?%
POF{ «INDEX«}, TEXT.STR{ «CHARINDEX1,) := STRNG({,CHARINDEX1,)}
UHTIL (CHARINDEX1 = STrnG.LEN) OR (CHARINDEX1 = MAX_POFIEXT_CHARS) @
POF (#INDEX,)TEXT_LEN := CHARINCEX1j
IF STRNG.LEN MOD MuaX_PDFTEXT_CHARS = o
THEN CTEXT-ENTRIES = (STRNG.LEN DIV MAX_POFTEXT.CHARS) = 1

0420
0421
0422
0423
D424
ou2s5
0426
D427
0428
0429
0430
0431
0432
0433
0434
D435
0436
0437
0438
0439
D440
Ggul
Ouug
o443
U g4
D445
Os46
0447
o448
0449
0450
0451
0452
0453
L4454
0455
0456
0457
0556
0459
0460
O4al
o462
o463
Oy
0463
[1179-13
0467
h 2]
0469
0470
ou71
0472
D473
D474
o475
0476
0477
Dyg7a
0479

81

ELSE CTEXT.EANTRIES = STRNG_LEN DIV MAX_POFTEXT.CHARS}
FUR LUOP.CNTR 3= 1 TO CTEXT.ENTRIES DO
BEGIN
CHARINDEX2 = gi
INLEX := SUCC(INDEX)
IF INpDEX > MAX_PDF_ELEAS
THEN BEGIN
IF NOT ERR.FLAG1
THEw ERROR(ERRL):
INDEX = MAX-PDF_ELEMS:
ERND: “IF IWDEX > MAAX_POF_ELEMSW
PDF (+ENDEX.) +OPCOLE = CTXTH
POF {+INOEX.}aTAG t= PDFTEXT
REPEAT
CHARINDEX1 $= SUCC(CHARINDEXI){
CHARINDEX2 = SUCC(CHARINDEX2)%
POF (o INDEX) ,TEXT-STRU,CHARINDEX2,) := STHNG(.CHARINDEX1,)1}
UNTIL (CHARINDEX1 = STRNG_LEN) OR [(CHARINUEXZ2 = MAX.POFTEXT_CHARSI;
PDF({+ INGEX) o TEXTLLEN = CHARINDEX2:
END§ w®FOR®
END; WPROC PUTTEXTIWNPDF™
N AR R R AR kK B R Rk A AR kA HTEX Tk s F R Ry K E kR EER SRR ER KRR R R F IR NG R AR R kN
PROCEQJURE HTLXT(STRNGLLENS INTEGER; STRNG: STRINGH2) G
MPURPOSE: ISERTS AN ISTRUCTION INTO THE PDF FORW
o DISPLAY OF HORIZUNTAL TEXT, "
"GLOBAL VARIABLES REFERECNCED: PUF/INDEX,
"CALLING mODULES! USER PROGRAHM,
BEGIN
IF INDEX > MAX_ PDF_ELEMS
THEN BEGIN
IF NOT ERR.FLAG1
THEN ERROHR{EHEL1}{
INDEX 3= MAXLPUF_ELEMS:
END; "IF INDEX > MAX_PpDF_ELEMS®
POF(,INGEX) ,0PCODE = HTXT§
POF(+INDEX.)«TAG := PUFTEXT:
PUTTEXT INPUF(STRNG_LENy STRNG) §
INUEX = SUCC{INDEx)3
£nDs Y“PROC HTEXTw
U Rt A TR R s e iR S e e P 2 R 22 PN 222 2 S T 1)
PHOCEDURE VTEXT(STRNG.,LEN: INTEGER; STRNG: STRING24) %
"PURPDSE: INSERIS AN INSTRUCTIOMN INTO THE PDF FORW®

" DISPLAY OF VERTICAL TEXT. "

"GLOBAL VARIABLES REFERENWCED: POF/INDEX, a

"CALLING HODULES?: USER PROGRAM, "
GEGIN

IF INDEX 5> HMAX.PDF_ELEMS
THEN BEGIN
IF NOT ERR.FLAG1
THEiN ERROR(ERK1)§
INDEX := MaX=PUOF_ELENMS}

ENDs "IF INDEX > MAX.PDF-ELEHS"
PDF{«INDEX,)+0PCODE 3= VTXTS
POF(,INDEL,). TAG t= PDFTEXTH
PUTTEXTINPDFISTRIG_LENs STRNG) §
1MOEX = SUCCLINDEX)?

EnDi "PROC yTEXT®
Nyxxgxrrnsersprssxbiirtnxrxuxe bl OAD CMPTKoDRVR s+ x s r ¥k rnrxkxkxe ks’
PROCEUURE LOAULCHMPTK.DRVR
MPURPOSES LOADS THE rCOMPUTEK DRIVER INTQO THE ®

82

0480 v S0LO DUTPUT PHROCESS PARTITION. o

o481 nGLOBAL VARIABLES REFERENCED: FILE_INDICATOR,"
0482 "CALLING MODULESS COMPIL, "
Oyu83z BEGILN

0484 FILE_INDICATOR,TAG := IDTYPE}

0485 FILE.IRDICATOR,ID = '"CSGPCHMPTKOBJ'}

0486 WRITEARG(OUTs FILE_INDICATOR)}

0467 Ei;Di “PRUC LOADLCHAPTK_DORVKY

DUBE "*rFru sk bk A N R R F RN R R R AL T TE X TR S s R A ST R AR X R R R E XXX K AT SR H RGN
0489 PROCEDURE GET_TEXT(VAR PDFINU: INTEGER: VAR TEXT_STRNG: STRING44) |
0490 "PJURPQSE: RETRIEVES FRom Tk POF THE J1EXT ASSQCIATED WITH THE®

0491 w HTEXT/VTEXT COMMAND STAKTIMG AT INDEX PDFIND, "
0492 "GLOBAL VARIAULES REFERENCLU: POLF, "
0493 “CALLING HODULES: COMPIL. "

0494 VaR PODFTEXTINDe TEXTSTRINDY1. TEXTSTRIND2: INTEGER;
0495 BEGIN

0496 TEXTSTRIND1 = 1%

0497 REPEAT

0498 FOR PDFTEXTIND $= 1 TO PDF(,PDFIND,) .TEXT.LEN DO
0499 BEGIN

0500 TEXT_STRNG(«TEXTSTRINDL,) t= PDF(.PDFIND,) TEXT.STR(.POFTEXTIND.)§
0501 TEXTSTRINDG1 := SUCC(TEXTSTRIND1)%

0502 ENu; "FOR POFTEXTING®

0503 PDFIND 3= SUCC(PDFIND)3

0504 UNTIL POF (L PUFIHU.)0OPCODE <> cTXT

05uUsS POFINL := pPREJ(pDFIND);

DsS0e TEXT_STRNG(,TJEXTSTRIND1.) := EMy

0507 TEXT.STRNG(,SUCC(TEXTSTRINDL),) = EMI

0500 D "PRAC GETTEXT®

0509 ut::;tttt#tt*:;at::ttttttttz:PUT_DISPPAGEtt*-ttt::xtxsttttttttt#t#tt*tstttttytt"
051y FROCEDURE PUT_DISPPAGE({INTVALI INTEGER);

0511 “PURPOSE: EWTERS POF OP CUDES Alp TEXT IN INTEGER FORM INTO "
Dgle v UISPPAGE BEFCRE ITS TKAWSFER TO THE COMPJTEK UHIVER.
0513 wGLOBAL VAKIABLLS REFERENCED: pDISPPAGE/DPAGE_INDEX,

0514 vCaLLING MODULES: COMPIL/PACK_REAL/PACK_CHAR, L
0515% BEGIN

0516 OISPPAGE(,DPAGE_INDEX.) := INTVALGY

0517 DPAGE_IHDEX := SUCC(DPAGELINDEX)}

0518 IF (DPAGE_INDEX > 256) Or (INTVAL = SPDF)

0519 THEW BEGIN

0520 WRITEPAGE (DISPPAGE. FALSE)j

0521 IF INTVAL <> SPOF

0522 THEN DPAGE-INDEX 3=

0523 ELSE BEGIN

0524 WRITEPAGE{DISPPAGE . TRUE)

0525 READARG(QUT VUTCGHPLETION) §

0526 IF WOT OUTCOMPLETION,BOOL

0527 THEI ERROR(ERRY)

0528 ENDT "IF INTVAL <> SPDFn

0529 ENDi “IF (DPAGE_INDEX > 256) OR,,.¢"

D530 EnD; "PROC PUT-DISPPAGE"™
053] Mekrsdknxssxs st s aban et d sk kPACK REAL R ¢ ks sk kg s XXX RB XL RS XS XSS R0 kN

0532 PROCEQURE PACK_REAL(XIwTs YIWT: UNLIV PACKLDJREAL)G

0533 wPURPUSE: PACKS THE X.Y REAL COORLIWATES OF A MOVE/VEC "
DS34 w LisSTRUCTION INTU 8 LWTEGER ELENMENTS OF DISPPAGE,."
0535 "GLOBAL VARIASLES REFERENCED: NONE, "
0536 “CALLING MUDQULES: COMPIL. "

0537 VAR CNTR.IND: INTEGERH
0538 BEGIN
£539 FOR CNTR.IND 3= 1 TO & DO

83

0540 PUT_DISPPALGE(XINTLCNTR_IND,))}
LELSE For CNTR..IND $= 1 TO & DO

0sk2 PUT_DISPPAGE(YINT(CiTRLOIND I}
o543 EnD; “PROC PACK.REAL®

054Y Vasrxrsrrkr sk ka ke kv xRk PACK _CHARER s d R xa X o X x4k XX ETX RIS XXX TR g kb Rk SE RSN
0545 PROCEDURE PACK_CHAR(PDFIND: INTEGER; TEXxTINT: UIIV PACRED_TEXT)G
0546 “PURPOSE: PACKS HTEXT/VTEXT CHARACTER STRING INTO INTEGER™

"

0547 v ELEMENTS OF DISPPAGE,

0548 "GLOBAL VARIABL S REFERENCEUL: NONE,. "
0549 "CuLLING @UDULES? COMPIL. : "
D550 VAR CHTR_ING. LOOP_LIMIT: INTEGER}:

0551 BEGIN

0552 CHTR.IND := PDFIMND;

0553 LOOPLLINIT ¢= PUF(,PDFTIND.)«TEXTLLENS

0554 WHILE (PDF(,CNTR.IND.).OPCODE = CTXT) DO

0555 BEGIN

0556 CNTR.IND 3= PREDI{CNTR_IND):

0557 LOOP_LIMIT := LOOP_LIMIT + POF({.CNTRLIND,}, TEXT.LEN]
0558 END; »WHILE™®

0559 LOOP_LIMIT := (LOOP_LIMIT DIV 2) + 1t

0sed FOR CNTR.INY $= 1 TO LOUP_LIMIT DO

0561 PUT _O15PPAGE (TEXTINT(+CRTRLINDs))

0562 Ei:D3 "PROC PALK.CHARM

0563 varsardbsdrryexxa s ¥Rk kxRl OMPIL #4522k s XXX R FATER XA EATE XXX KRR X KK E XKD
0564 PROCEQURE COMPIL(FIRSTPOFLWUEXR: IWTEGER):

0565 "PURFOSE:! ENCODZS PUF COMMAKDS (STARTING AT FIRSTPFDFINDEX "
0566 n Akl ERDING WHEN A SENDFDF COMMAND IS FOUND) INTO®
o567 W A FOKM ACCECPTABLLE TU THE COMPUTEK DRIVER PROGRAM n
0568 M AND THEN TRANSHITS THE ENCOCED COMMANDS TO THE "
0869 *» COMPUTEK TERMINAL DRIVEF FOR UISPLAY, "
0570 “GLOBAL VARIABLLS REFEREWCEUS: PULF/DPAGE_INDEX, "
0571 wCALLING MODULES: USER PRUGRAM, "
0572 vuR POFINOEX, FDFOPCODE: INTEGER$

0573 TEXT.STRNG: STRINGHU4! -

0574 X.RCAL+ Y_REAL: REAL:

0575 BEGIN

057e OPAGE_INDEX 3= 11

0577 OQUTCOMPLETION,BOOL := FALSE#

0578 IF FIRSTPDFINDEX >= INDEX

0579 THEN BEGIN

D580 ERKORIERR2}1

0581 POFINDEX := 1%

0582 END nTHEN®

0583 ELSE PDFIHNDEX = FIRSTPOFINDEx: "END IF FIRSTPDFINDEXs o™
0584 LOAD-CHMPTK_ ORVRS

0585 REPEAT

Dsse PDFOPCODE := PDF(,PUFINDEX,).0PCODES

0587 CASE PDFOPCODE OF

0588 MOV VEC i BEGIN

0589 PUT.DISPPAGE (PDFOPCUDE) §

0590 XeREAL = PDF(PDFINDEX,) .X.COOR * X_SCALE}
0591 Y.REAL = POF(.PDFINDEX,)+Y.COOR * Y_SCALE}
0592 PACK_REAL(X_REAL, Y-REAL)}

0593 END3 "MOVeVEC CASE"®

0594 HTXT+VTXT : BEGIN

0595 PUT_DISPFPAGE {PDFOPCODE) ¢

0596 GET_TEXT({PDFINDEX, TEXT_STRNG){

0597 PACK_CHARIPDFINUDEXy TEXT.STRNG)?

0598 ENp3s "HTXT«VIXT caSg"

0899 EMODyWHOD

0500
0601
0602
0503
0604
0605
pe0ée
0607
008
0e09
0610
Dall
0el2
geld
0sl4
06lsS
Oele
0617
0Dgl8
0619
Ge2u
D21
ogz2
0523
0e24
0625
pez6
0627
D&28
0e29
0630
De31
p632
0633
0634
0e35
0a3e
0637
0638
0639
Des 0
Oe4l
pe&2
De43
De4y
De4sS
be4e
0847
Daud
0649
0650
0651
0652
0653
D&5%
0655
0656
0657
0e58
0659

84

DBUG+ SPDF «
CLR : PUT_DISPPAGE (PLFOFCDDE)
END; wCASLM
POFINDEX := SUCC{PDFINUEX)3
UNTIw (PDFOPCODE = SPUF) OR (PDFINDEX >= INDEX):
1F pPDFoPCQDE <> SPOF
THEN BEGIN
ERROR({ERR3) 3}
PUT.DISPPAGE (SPDF) %
ENps "IF PQFOPCODE <> sPpF™
EMDt “PROC comPILY
Nak e d stk k2 s s s sk nt INT _TO_STREZ #5200k c XXX FE SRR AL XXX ERRERREN
FROCEDURE InT_TOLSTR{INT: INTEGER; VAR CHAR_INT: STRINGE)}?

UPURPOSE: CONVERTS AN INTEGER (PDF INDEX) "
" INTO CHARACTER STRING FORM, Ll
"GLOSAL VARIAEBLES REFERENCED: WNONE, "

"CALLING MODULES: DUMPPOF . CUNSOLE/DUMPPDF_PRINTER,®
VAR INTHUNe DIGITs PLACE, CHARINUEX: INTEGER{

BEGIN
INTNU# 1= INT§
DIGIT := @3

PLACE := 1001
CHARINDEX 3= 1%
REPEAT
INTHUE := INTNUM « PLACE}
IF INTNUMA < O
THEN BEGIN
CHAR_INT(+CHARINDEX,) &= CHR(DIGIT + 48}1
INTHNUM = INTWNUM + PLACE:
PLACE := 103

DIGIT <= Ot
CHARINDEX i= SUCC(CHARINDEX)}
EN< “THEN®

ELSE DIGIT = SUCC(DIGITys “END IF INTHRUM < QW
UNTIL CHARINDEX = 3%
CHARLINT(,CHARI{JDEX«) 3= CHROINTNUM + 48);
CHARL_INT(,4.) $= BLANK}
CHAR.INT (45,0 3= NuLf$
END: "PROC INT-TO_STR"®
XL EFFF TR S X2t rx e R2xREAL _TO_STRE X E2x 222 LR XA R E XXX AL XX REF ARG E RN
MROCEDURE REAL TOLSTR{PDFINU: INTEGLR: VAR CHAR_REAL! STRING2B)} &
"PURPOSE: CONVERTS X.YsZ (REaL) COORDINATES OF A HDVE/VECTDR"
u PDF COsarAND INTO CHARACTER STHING FORM,
"aLOBAL VARIABLES REFEREWCEL: PDF, n
WCALLING MOpULESS DUMPPUF_CUNSOLE/DUMPPDF.PRINTER, n
VAR DIGIT, CHARINDEX,y CNTRs CNTR_OINDU: INTEGER:
REALNUM, PLACE: REAL:
NONZERO_DIGIT_FLAG: BUOLEAN;

BEGIN
REALNUM (= PDF(PDFIMD.} X COOR; "ASSUME -10.000<REALNUMC1O4000"
DIGIT = 0%

CHARINDEX 3= 1%
FOR CNTR 3= 1 TO 3 DO
BEGIN
PLACE := 1000,0%
NONZERO_DIGIT_FLAG = FALSEj
IF REALWNUM < 0,0
THEN BEGIN
CHAR_REAL{+CHARINDEXs) (= tw?}
CHARIWDEX i= SUCC{CHARINDEX);

0660
0661
0ge62
0663
[\ T9:13
0665
0666
0667
0668
0669
0670
0e7l
te72
0673
0674
0675
0676
0677
0678
0679
0680
0681
0g82
0683
0684
0685
0686
0887
0588
089
0690
0691
092
0693
D634
0e95
0696
0eY97
Ce94
0699
0700
g701
0702
0703
0704
0705
0706
G707
0708
c709%9
07190
0711
0712
0713
0714
0715
0716
0717
0718
80719

85

KEALNUM i= ABSIREALNUM) &
END: ®IF REALNUM < v ov
REPEAT
REALNUM := REALNUM - PLACE?
1IF REALNUM <= =0,0056
THEr BESIy
IF DIGIT <> 0O
THEN WONZERO_DIGIT_FLAG := TRUE:
IF (NONZEROLDIGIT.FLAG = TRUE) 0K (PLACE <= 1,0}
THEN GEGIN
CHAR_REAL(.CHARINDOEX,) 3= CHR(DIGIT + 4a8)%
CHARINOEX = SUCC(CHARINDEX)}
ENUS "IF (NONZERO_DIGITLFLAG = TRUE) ORass."
IF PLACE = 1.0
THAEN BEGIN
CHAR_REAL(+CHARINDEX.) 3= ","}
CHARINDEX := SUCC(CHARINOEX):
ENGi "IF PLACE = 1.0"
REALNUM := REALHUM + PLACE}
PLACE ¢= PLACE s 10,014
OIGIT = 0%
END "THERN"
ELSE DIGIT := SUCCIDIGIT): "END IF REALNUM C=¢44"
UNTIL PLACE <= 0,001%
IF CNIR <= 2
THEN BEGIN
CHAR_REAL({ «CHARINDEX) $= v403
CHARIDEX = SUCCICHARINDEX)$
IF CNTR = 1
THE, REALAUA
ELSE REALNUM 3
: ENDs "IF CNTR <= 2
ENui “FOR CNTR"
FOR CNTR.IWL += CHARINDEX 7O 27 DO
CHARLREAL (+CHTRLIND<) 5= BLANKH
CHAR_REAL(.28.) i3 NUL;
END3 "PROC REAL.TOLSTR™
Uk x kAR R kxS N X R R R G T o TEX T QU Tk Xk ek XX Sk XXX KRB XXX TR R g R R Ex R FxugW
FRUCEDUAE GET_TEXT_OQUT(PUFINDL: LINTEGER: VAR TEXT_STRNG: STRING28)}
NPURPRSE: RETRIEVES AnD PREPARES TEXT FRom THE POF Fom @
“ SUBSEQUENT QUTPUT TO THE CONSOLE OR PKINTER.
"GLOBAL VARIABL S REFERENWCEU: PUF,
WCALLIMNG #OUULES: JUMPPOF_CUNSOLE /UUMPPDFLPRINTER, "
VAR CHARINDEX, CNTR_INDS 1NTEGER:
BEGIN
CHARINODEX := 1%
REPEAT
TEXT_STKNG({ s CHARTINUDEX«) 1= PDF(+PDFIND,} +TEXT_STR(.CHARINDEX.)}
CHARINDEX &= SUCCICHARINDEX}:
UNTIL CHAKI;DEX > PUFt.POFInO,? ,TEXT.LEN]
FOR CNTR_IND 2= CHARINDEX TO 27 DO
TEXT_STRNG(.,CNTR_INU,) 2= BLANKI{
TEXT.STRNG(,28.) 1= NULjG ’
EnDi "PROC GET.TEXT.QUT®

POF(,PUFIND.).T.COOR
POF(,PUFIND.).Z_COOR}

TN

NEREsE ARt koS E 2 s e 2 xDUMPPOF _CONSOLEX*# %2 B3 s X B XXX XXX E X AR B XX XBES SN

PROCEDURE DUMPPDF .CONSOLE (START1NDEX, ENDINDEX? INTEGER)!
"PURPOSE: DUMPS CONTENTS OF PDF TC USER'S CONSOLE UNTIL ENDINDEX
" 1S REACHED, THE CONSOLE IS FULL (44 CORRANDS UUhPED).
" UR INDEX IS REACHED. IF ENDINDEX = 0 THE DUMP

" CONTINUES UNTIL A SEND_POF COMMAND HAS REEN FOUND, ™

86

p720 »GLOBAL VARTApBL S REFERENCED: PODF, n
p721 vCALLING MODULES: USER PRUOGRAM, "
0722 vah FLFINDs POFOPCODE: INTEGERG

0723 CHARLINT; STRINGGF

0724 CHARREAL, TEXTSTRNG; STRING2S83

0725 BEGIN

6728 POFIND := STARTINDEX!

0727 WHILE ((POFINU <= ENDINDEX); & (ENDINDEX <> 0) OR

9728 (POF(.PDFIND?OPCODE ¢> SPDF) & (ENDINDEX = 0)) &
a729 {PDFIND = STARTINDEX < 4%) F-
0730 (PUFINU < INOEX) DO

0731 BEGIN

0732 INT . TO_STR{PUFINDs CHAR.INT)?

0733 DISPSTRUG(CHARLINT)

0734 POFQMCODE := PDF{.PUFIND,.).QPCODE}

0735 CASE PQrOPCODE OF

0736 MOV : BEGIN

0737 DISPSTRNGU"MOV (:0:)(3035)%)¢

0733 REAL_TO.STR(PUFINU, CHpR_REAL)S

0739 DISPSTRNG(CHAR_REAL)

o740 EhNui "M40V CASEM

0741 VEC : BEGIN

0742 ODISPSTRNGC('VEC (2030 (202)7)¢

0743 REAL.TO.STH(POFID. CHARREAL)

0744 DISPSTRNG(CHAR_REAL)

Q745 ENUS "VEC CASEW

0746 HTXT: BEGIN

0747 DISPSTRANG('HTX (302)(:02)7)3%

0748 GETLTEXT_OUI(POFInDe TEXTSTRNG) G

o749 DISPSTRNG(TEXTSTRNG) §

0750 END3 "HTXT CASEY

7351 VTXT: BEGIN

0752 DISPSTRNG('WTX (:03)0:08)0)

0753 GETLTEXV_OUT{PUFI[Ds TEXTSTRNG) I

0754 DISPSTRNG(TEXTSTRNG) §

0755 END: “"VYTXT CASE™

0756 CTXTy BEGIN

0757 QISPSTRNG(*'CTX (:0Q:2)(z203))3

0758 GETLTEX) _QUT({FPOFIyUs TEXTSTRNG)H

0759 JISPSTRNGITEXTSTRNG)

0760 EMDi "CTXT CASE"

0761 CLR ; DISPSTRNG('CLR (EHEERD R
0762 EMUD: LISPSTRNG('EMD (:02)%)3
0763 Wr0D: DISPSTRNG('WMD (:0:)%) %
0764 DuUG: DISPSTRNG(0BG (303)°)%
0765 SPOF: DISPSTKNB(*»SND {:Qd))
0768 END; wcaSew

07867 IF ((PQFIND - STARTINQUEX) + 1) MOU 2 = @

0768 THEN DISPLAY{NL}

0769 POFINO 1= SUCC(PDFIND);

e770 ENUS "WHILEW

0771 IF ((POFI{D = STARTINDEX) + 1) M0p 2 = 0

0772 THEW DISPLAY(HL)S

0773 ENDi “PROC wunPPOF_CONSOLE™

0774 nxzssxrrranrsaxssadsdreds3 25 0nl 0AD PRINTER PROGEEXE XXX XXX R LR XX RS TRk ERRTEERRN
0775 PROCEQURE LOAD_PRINTER_PROGH

0778 “PURPOSE:! LUADS THE PRINTLR PROGRAM INTQ THE

Q777 ¢ SULO OJUTPUT PROCESS PARTITION. "

0778 wGLOBAL VARIAGSLES REFERENCED: FILE_INDICATOR.™

0779 “CALLING rODULES: OUMPPDF.PHINTER, "

87

0780 BEGIN

0781 FILE-INDICATOR,TAG := IOTYPE}S
0782 FILE.INDICATOR.ID := *PRINTER "
0783 ARITEARG(OUT FILELINDICATOR) g

0784 END; "PROC LOAD_PRINTER_PROG™
0785 "xsxsrxxsx3 sk a3 xnksnrsxstPUT PRNTPAGE ¥ k2 k kX ¥ Xk kXXX HXX L R4 XIFXgF R R XX R0 Y
0766 PRICECURE PUT_PRNTPAGE(OUT_STRiG: STRING32):

0737 "PURPUSE! ELTERS A CHARACTER STRING INTQ PRNTPAGE. WHEN "
orea v PRNTPAGE IS FULL+: IT IS SENT IQ0 THE PRINTER PHOGRAM.®
0789 nGLOBAL VARIABLES REFERENCEU: PRNTFPAGE/PPAGE.INDEX, "
0790 nrCALLI«NG MUDULES: DUMPPDF.PRINTER, L]
0791 VAR CHARINDEX: INTEGERS

0792 3EGIN

0793 CHARINDEX 2= 13

0794 REPEAT

0795 PRNTPAGE (,PPAGE_INDEX,) := QUT.STRNG{,CHARINDEX.)}

0796 IF (PPAGE_INDEX = PAGELERGTH) OR

0797 (QUT.STRNG{ +CHARINDEX) = EM)

8798 THEN BEGIN

0799 WRITEPAGE (PRNTPAGE, FALSE)$

0800 IF QUT.STRNGI! .,CHARINUEX.) = EM

0801 THEN BEGIN

802 WHITEPAGE (FRNTPAGETRUE) }

0803 REAJARG (OUT ,QUTCOMPLETION) ¢

0aoy IF WOT OUTCcOMPLETION,BOOL

0305 THEN ERRORIERRKS5):

0a0s ENDE "IF OJUT-STRNG({.CHARINDEX,) = EM®

0ao0T PPAGE.INDEX 3= 0%

0308 ENOs "IF (PPAGE_IWDEX = PAGELENGTH) OR..e"

0809 PPAGE _TWNJEX 3= SUCC(PPAGE.INDEX)S

0810 CHARINDEX = SUCC(CHAHRINDEX)

0gll UNTIL OQUT_STHNG(.CHARINDEX,) = nNULG

0812 £4D3 "PRUOC PUT_PRNTPAGE®

0B8l3 nszxasxxstsnstnn x5 r¥x3xQUMPPOF _PRINTER 222X kXXX XXX XXX XX LT XXX RS 4N
Ogly PROCEDURE DUMPPOF_PRINTER(STARTINCEXs E/NDINQEX: INTEGER):
0815 "PURPQOSE: DJMPS CONTENTS OF POF TGO PRINTER gNTIL ENDINDEX OR INDEXM

gale » IS REACHED, 1F EnDINDEX = 0, UUHP CONTINUES UNTIL "
0317 » A SCND_PJUF COMMAND IS FQUND, "
0818 "GLOBAL VARIAGLES REFERENCED: PUF/PPAGE_INDEX, -
0aly “CALLING AOQULES: USER PRUGHAM, L
0820 VAR PUFINQs PpFOPCODE: INTEGERS

0821 CHARZINT: STRINGG:

pa22 CHAR_REAL, TEXTSTRNG: STRING28%

0823 BEGIN

0sz4 PPAGE.INDEX = 1%

0825 OUTCOMPLETION.BOOL $:= FALSE!

0a2ce PUFIwO := STARTINDEXS

ceaz7 LOAL_PRINTER_PROG}

0g2a WwHILE ((PDFINO <= ENDIMDEX) & (ENDINDEX <> 0) QR

0829 (PDF{ «POFIND.). OPCODE <> SPOF) & (ENDINDEX = 0)) %

0830 (PUFINU < INDEX) DO

0831 8EGIN

ga32 INT_To _STR(PDFINDe CHAR_INT)!

0833 PUT_PRNTPAGE (CHARLINT)}

0a3% POFQPCODE := POF(+PUFIND,),.GPCODES

0835 CASE POFOPCOQDE OF

08386 MoV : BEGIN

0837 PUT PRNTPAGE (*MGV (:0:)(:D2)*)¢

0838 REAL.TO.STRI(PLUFINCsy CHAR_REAL}S

0839 PUT_PRNTPAGE(CHaR_REAL) ¥

88

cau4o ENDs "MOV CASEn

0841 vEC : BEGIN

nas2 PUT_PHNTPAGE({*VEC (30310302)%)¢%

0843 REAL_TO_STH(PDFINLs CHARLREAL)}

0844 PUT.PRNTPAGE(CHAR_REAL)

0aus END: "VEC CASE"

0846 HTXT: BEGIN

oauv? PUT_PRNTPAGE(*HTX (:D:z)(2023%)}

0848 GET_TEXT_OUT(PDFINDy TEXTSTRNG)

0849 PUT_PRHTPAGEL({TEXRTSTRNG) }

0850 END: "HTAT CASE"™

0851 VTXT: BEGIN

0852 PUT.PRNTPAGE(*VIX (:05)€208)")8

0853 GET_TEAT_OUT{PUFINDs TEXTSTRNG)}

Da54 PUT_PRUTPAGE(TEXTSTRNG) §

0855 END: "yTXT CASE"™

C85o CTXT: BEGIN

0857 PUT_PRNTPAGE(*CTX (:03)(203)*)1

0assa GET_TEXT_OUT(PDFINDe TEXTSTRNG) 1

0859 PUT_PRHUTPAGE(TEXTSTRHNG) }

0860 EnDs: "CTXT CASE"™

pasl CLE ¢ PUT_PRNTPAGE('CLR (2021} 8
pas2 EiiOp: PUT_PRNTPAGE(YEND {20:1%)1
0es3 wiilp: PUT_PRITPAGE L *WMD (502)%)%
pa6s DBUG: PUT_PRTPAGE('DBG (203)%)3
0865 SPLF: PUT.PRNTPAGE(*SND (s03)7)
0Bés ENUG "CASEw

1% FUT_PRNTPAGE(*(2132)0210:2)(202)(2D3) 33 "({:132)=CK,(2102)=NLM
ceed IF ((POFIND = STARTIWDEX) + 1) MUD 30 = O

0ae9 THEN PUT_PRIHTPAGE("(212:)(s02)*); "(312:)=FFn

DETO PDFINC := SUCC(PDFIND);

0a71 END; YWHILE®

ca72 PUT_PRNTPAGE(*(:25:)(:02)"); n{:i25%)=EMn

0azra EuD: "PROC QUAPPDF_PRINTER™

CATY vxrssrtrisxrsnr e sk dxsdxnx a3 INIT _T_NATRIXFSEXSEXEEXXFARIRERETEXRFERLERERARRTEEEN
0875 wROCEDURE INIT_T_MATRIX{DLIM; INTEGER)}

pa7e “PURPOSE: INITIALIZES Ali APPROPRIATELY SIZED IDENTITY MATRIX "
0877 v AND SETS THE GLUBAL DIMENSION VARIABLE (DIMENSION) TO®
0878 * THE DIMENSION (2 OR 3) IN WHICH FOLLOWING "
0879 n TRANSFORMATIONS ARE TO TAKE PLACE, "
080 "GLOBAL VARIAGLES REFERENCED: DIMENSION/T.MATRIX, "
0881 "CalLING MODULES: USER PRUGRAM, "
0882 VAR CHTR.-ING1, CHTR.IND2s MTRX.LINKIT: INTEGER?

0883 BEGIN

vasy DIMRENSION := DIMi

0835 MTRXLLIMIT 2= SUCC(DIM)}$

088s FOR CNTR.IND1 := 1 TO MTRX.LIMIT DO

0887 BEGIN

0888 FOR CHTR.IND2 := 1 TO MTRX_LIMIT DD

0889 T_MATRIX(,CNTR.INDI«CNTR-1ND2,) = 0,0; “END FOR CNTR.IND2%
0890 T_MATRIX[{.CNTR_IND1+CNTR_IND1.) 2= 1,01

0891 END: "FQR CNTR.IND1L"

0g92 END$ Y"PROC INIT.T_MATRIX®

0893 Nads bRk s tus 4 ks kst kR g bbb k¥R MATMUL 2k kS A SRR AR K kR kX FKFI XA XK RRS LSRR R XK RRER R KRN
0894 PROCEDURE MATHMULINEW_T_MATRIX: MATRIX-TYPE):

0895 “PURPUOSE: PERFORMS CONCATENATION OF THRANSFORMATIONS, USING THE "

08%c " APPROPRIATE DIMEWSION, T_MATRIX IS MULTIPLIED BY "
0897 n NEW.T-MATRIXs ANU THE RESULT IS ASSIGWNED TU T_MATRIX,"
0890 "GLOBAL VARIABLES REFERENCED: DIMENSION/T_MATRIX, "

0899 »CALLING mQUULES: TRANS/RUTATE/SCALE/REFLEC, "

NEXEEFRRARF R X KT XA SRR APPLY _T_HMATRIX#* x5 3 X 4o kXX T XXX F TR XX XX XXX R R AN

89

VAR CNTR.IND1l, CNTR_INDZ2, CNTR_IND3 ¢ MTRX_LIMIT: INTEGER}
TEMPLAATRIX: MATRIX.TYPE}
BEGIN
MTRXLLIMIT 3= SUCC({DIMENSION);
FOR CNTR.INLDL = 1 TO MTRX_LIMIT DO
FOR CHTR_IND2 := 1 TO MTRXLLIMIT DO
BEGIN
TEMP_HATRIX{ ,CNTR_INDLyCNTR-IND2,) 3= 0403
FUR CHTR_IND3 i= 1 TO MTRX_LIKIT DO
TEFPMATRIX(+CNTROINDLWCNTRLUIND2,) = T_MATRIX(LCNTRLOINDL,
CHTR_IND3e) * NER_T_AATHIXK(CHTR_IND3+CNTR.INDZ,)
+ TEAP_MWTRIX(LCNTR_INLOLWCHRTRLIND2.)3 "END FOR CNTRLINDI®
EnND; wFOR CHTR_IND1+FOR CMTR.IND2"
T.MATRIX := TEMP_MATRIX:
EHND: “"PROC RATHUL"

FRUCECURE APPLY_T_MATRIX(STARTINDEX, ENDINDEX: INTEGER)S

L

WPURPUSE: APPLILS THE TRANSFORHATION REPRESENTED HBY THE "
TRANSFORMATIUN @ATRIX (T_MATKIX) ON A SPECIFIED "
PORTION OF THE PUF (MOVE ANL VECTOR COMMANUS ONLY) ™
"GLOBAL VARIASLES REFEZRENCED: SIMeNSION/T_MATRIX, n
“CALLING MODULES! USER PRUGRAM, "

MR EEEF R XL AR b b X a3 k2 k¥ Rk TRANSx et XXX B XK X kAKX F X AR R XK EXEX X R A SR TR R g X R ELER R RN

VAR CHNTRLINDL. CHNTROIND2, CNTR_IND3: INTEGERS
VECTER, TEMNP_VEC: ARRAY(.1,,3,) OF REAL}
BEGIN
FOR CNTRSINVY := STARTIWOEX TOQO ENODINDEX DO
IF POF(.CHTR_INDL.)«TAL = PUFLINE
THE SEGIN “APPLY T_MATRIX TO THIS PDF COMMAND®
VECTER(.1s) 3= POF(.CNTR_IND1.) «.X.COOR{
VECTER(,2,) *= PUF(,CNTR_IND1,).Y.COOR}
LF DIMENSION = 3
THEN VECTER{.3.) 1= PDF{+CNTR_IND1,).Z.CUOR}
FOR CNTR.INDZ := 1 10 DIMENSION DO
BEGIN)
TEMP.VEC(.CNTR_IfiD2.) &= 0,01
FOR CHNTR.INDS 3= 1 TO DIMENSION pO
TEMPVEC{JCNTR_IND2.) = VECTER(.CNTH_IND3,) =
T_MATRIX{LCNTRAIND3«CNTRLIND2,.) +
TEMPLVECI ,CNTH-INDZ2,)3 YENU FOR{CNTRLINDS)"
TEMP_VEC{ «CHTR_IND24) i= TEAPLVEC(.CNTR_IND2,} +
T_MATARIX (o (SUCCIUINENSIONY) «CNTRAINDZ4)}
END3 “FOR CNTR.IND2®
POF(«CNTR-IHNULe1aX COOR 1= TEMPLVEC(414)1
POF(CNTR-Iivd1+)eY_COOR 1= TENP.VEC(,24)1}
1F DIMENSIUN = 3
THEN PDF(.CNTReIND14)eZ.CO0R = TEMP_VEC(.3.)%
EiD3 "IF [POF(LCHTR_INU1+),.TAG = POFLINE) +FOR CHTR_INDL®
EnWD: "PROC APPLY_T_MATRIX"®

FROCEDURE TRANS(X-DIST,y Y-OIST. Z2_DIST: REaL)}
“PURPOSE: CREATES A TRANSLATIUN TRANLSFORMATION MATRIX AND "

#
H

CONCATENATES IT TO ANY CXISTING TRANSFURMATIONS, THE »
PARAMETERS DENQOTE THE x, Y, AND Z DISTANCES THE OBJECT®

» IS TO MOVE, "
"GLOBLL VARIABLES REFERENCEU: DIMENSION, "
"CALLING HUDULES: USER PROGRAM, "

VAR CNTR_INp1, CNTR_INDZ. MTRX_LINIT: INTEGERGS
TRANS_MATRIX: MATRIX.TYPE; "TRANSLATION MATRIX™
BEGIN
MTRXLLIMIT §= SUCC(DIMENSION);

90

0960 FOR CNTRLIND1 i= 1 TO MTRX_LIMIT DO

09861 BEGIN

0962 FOR CNTR_IND2 := 1 TO MTRX_LIMIT DO

0963 TRANS_MATRIX{ LCNTRLIWDLCHTRLIND2,) = 0,03
0g64 "END FOR(CNTR.INp2)"

0985 TRANS_MATHRIX(,CNTH_INDL+CHTRLINDL«} 3= 1,014
0966 EnDi wFQR CNTR_IND1®

0967 IF DIMENSION = 2

T THEN BEGIN

0969 TRANS_MATRIX(.3+1.) 1= X.DISTy

0370 TRANS_MATRIX{+302.) 3= Y.DIST

0971 END "THENY

0972 ELSE BEGIN "DIMENSION = 3%

0973 TRANS_MATRIX(4%sl.) $= X_DISTy

0974 TRANS_MATRIX{.4s2.) 3= Y-DISTH

0375 TRANS_MATRIXAl«%43.) 1= Z.DIST

0976 END: M1IF OLAENSION = 2

0s77 MATMUL {TRANS_MATRIX): “CONCATENATE TRANS_MATRIXW

0978 END§ "PROC TRANS®

0979 MErkark bkt 4k kxa Sk R ek ek k¥ Rk SCALE a kn X ¥ XL xR XK EF ERRFEXRRR R XX XXX B TR LR TR ¥ SN
0980 PRUCEDURE SCALE(X-FACTORs Y.FACTOR, Z-FACTQR: REAL):

0531 "PURPQOSE: CREATES A SCALE TRANSFORMATION MATRIX ANO CONCATENATES®

0982 ¢ IT TO ANY EXISTING TRANSFORFATIONS, THE PARAHLTERS
0ggy ™~ DENOTE SCALE FACTORS ALGOHNG THE X+ Y« AND 2 AXES, "
0984 n"GLOHAL VARIABLES REFERENCED: DIMENSION, "
0985 ®CALLING mOpULES: USER PROGKAHM,. "
098¢ VAR CHNTR_INDl, CNTRINDZ2, WTRX_LIHIT: INTEGERI

0967 SCALE_MATRIX: MATRIX_TYPES

0988 BEGIN

0949 MTRXLLIMIT = SUCCIDIMENSION);

0530 FOR CNTR.I;JDY 3= 1 To MTIRX_.LIMIT DO

0991 FOR CNTR_IND2 = 1 TQ MTRX.LIALIT DO

G992 SCALE_MATRIX(,CNTR_INDL.CHTR-IND2,) i= 0,0%

Dg93 "ENG FOR CNTR_IMNUL1.FOR CNTR_INO2®

099y SCALE-MATRIX(e1yle) 3= A_FACTOR:

0995 SCALE_MATRIX{+212+) = Y-FACTOR;

0996 IF DIMEIISION = 2

0997 THEN SCALE-_MATRIX(+Se3¢} 3= 1,0

0998 ELSE pEGIN "DIMEMSIUN = 3%

1999 SCHLE_MATRIX(«3+3,) := Z_FACTOR}

1000 SCALE_MATRIX(«4e4.) = 1.0

1001 EMDs "IF DIMENSION = 2w

1002 MATHUL{SCALE~MATRIX): “CONCATENATE SCALE_MATRIX™

1003 £ii03 "PROC ScALEn

1006 Maxdrssksd et e r xR e bkt sxxx e s REFLEC ek s stk ks x XX AR ATXFRR AL AR R R XA RE LK LR
1005 PROCEDURE RCFLEC(INTRCHNG_Xs+ INTRCHNG_ Y, INTRCHMNG_Z: REAL)}

1906 “PURPOSE! CREATES A REFLECTIUN UR AxIS INTERCHANGE TRANSFURKATION »

1007 MATRIX AND COMCATENATES IT TO anY EXISTING "
1008 » TRANSFORMATIONS. IF A PARAMETER EQUALS =1.,0y THAT AXISH
1609 » Is INTERCHANGED. ILF IT EQUALS +1,0, THE AXIS REAAINS =
1010 » THE SAME. "
1011 "GLOBAL VARIABLSS REFERENCED: DIMENSION, "
1012 MCALLING HUQULES: USER PROUGHAM, n

1013 VAR CHTRLINDLle CNTR_INDZ2s MTRXLLIMIT: INTEGERS

1014 REFLEC_MATRIX: MATRIX.TYPE{

1015 BEGIN

1016 MTRXLIMIT := SUCC{UIMENSION);

1017 FOR CNTR-INQY! := 1 TO MTRX.LINIT DO
1618 Furk CyTRLIND2 = 1 TQ MTRALLINMIT DO

1019 REFLEC_HATRIX(CNTR_INODL.CNTR.IND2,}) = 0401

1020
ip21
1p22
1023
1024
1025
1028
1027
1028
1p29
1030
1931
1pd2
1533
1034
1025
1036
1537
1038
1039
1040
1041
1042
1g43
louy4
1045
1046
1047
ip048
1049
1050
1051
1952
1p53
1054
1055
1055
1057
1058
1559
1060
1061
1962
1063
1064
1065
10656
1067
1058
1069
1070
1971
1072
1073
1074
1575
1076
1077
1078
1079

"END FOR CNTR_LIND1,FOR CNTR_IND2%
REFLEC.MATRIX(elvls) 3= INTRCHNGLX}
REFLECA#ATRIX{e2+24) = INTRCHNGLYH
IF DIRENSION = 2

THEN REFLECL.MATRIX({«3¢3e) = 1.0
ELSE SEGIN "DIMENSION = 3%
REFLEC_NATRIX(23¢34)
REFLEC.MATRIX{e¥t4s}
ENGCs "IF OIMENSION = 2w
MATHUL(REFLECL.MATRIX) S "COMNCATENATE REFLEC.MATRIX™
END: "PROC REFLECH :

NTRCHNG_Z1

%%
“**itt*ttt**tttxt**t***t:ttttTRIGttt*tttxxttt::t*tttgttt:att:sxss#ttt*‘

FUNCTION THIG(SIN_OR.COS: INTEGER: THETA: REAL)}: REAL}

"PURFUSE: CALCULATES THE SINE OR COSINE FUNCIION UF THE VALUE™
" THETA (GIVEN In DEGREES)» "
"GLOBAL VAR[ARLES REFERENCED: NOMNE, "
wCALLING MOpULES: ROTATE. »

VAR CNTR: INTEGER:
THETALs THETA1.SGUAREDs TEHMP_TRIG,
SIN.SIGi, COS_SIGN, FACT: REAL}
BEGIN
THETALl := THETA1

WHILE (THETAL >= 360,0) DO "HMAP THETAL INTO 0.0 <= THETAl < 350,0"

THETA1 $= THETALl - 36U0.03 "EANp WHILEw

WHILE (THETALl < 0.C) DO "MAP THETAL INTO 0.0 <= THETAl £ 360,0"

THETAL := THETAL + 350,03 "END WHILE™®
1IF SIN_OK_COS = SIN
THEN SIN_SIGN = 1.0
ELSE cOS_SIGN $= 1,0%
"MAP THETA1 INTO 0,0 <= THETAL <= 90.0%
IF THETAl <= 90,0 "THETAl IN QUADRANT Iw
THEN THETAL i= THCTAL "DUNMY STATEMENT®
ELSE IF THETAL <= 270.0 “THETAl Iy QUADRANT II OR III®
THEN BEGIN
IF SIN_UR.CUS = COS
THEN CUS_SIGN := <140
ELSE IF THETA1l > 180.0 "THETA1l IN WUACDRANT

sxxM

THEN SIN_SIGN := -1,0; "END IF SINJOR_COSees”

THETAL 1= ABS(160,0 = THETAl}}
END wTHEN®
ELSE BEGIW "THETAl IN QUADRANT IV®
IF SIN_UKR_CUS = SIN
THEN SIN_SIGN 3= ~1.0%
THETAL $= 380,0 - THETA13:
END: "IF THETAL <= 90,0+ IF THETA1 <= 270.0"
IF SIN_OR_cOS = cOS "n0,0 <= ANGLE <= 90.0 IMPLIES

THEN THETAL := 90.0 - THETAL: “COS(ANGLE} i= SIN(90.0 = ANGLE}"

"CALCULATE SIN(THETAl) USI;G A POWER SERIES APPHOXIMATION®
THETA1 := (3.14159265 / 180.0) & THETAL: nCONVERT TO RADIANSH
FACT 3= 11,04

THETA1.SQUARED 3= THETA1 * THETA1d

TEMP.TRIG 3= 0,99604583: "= AVERAGE ERROR OF 7TH TERM OF POWERY
"SERIES APPRUXIMATION OF SINE
FOR CNTR := 1 TO 5 DO
BEGIN
TEMP-TRIG 1= 1,0 - ((THETA1_SQUARED / (FACT % (FACT = 1001

* TEMP.TRIG)
FACT 3= FACT = 2.03

92

1080 EHNO: ®FOR CNTR®

1081 TEMP.TRIG := TEMP_TRIG = THETAl:
1082 IF SIN_OR_COS = SIN

1083 THEN TRIe $= TEMP_TRIG * SIn_SIGN
1084 ELSE TRIG := TEMP.TRIG * COS_SIGN;

1085 EwDi "FUNC TRIGW

108 vakssrsxsxrsasxr s xrat ks ks xR0 T AT E s stk K e x e R E R A4 XXX S XX SR XXX ARSI XX S0 b RN
1087 PHOCEDURL ROTATE (AXIS: INTEGER: THETAS REAL):

1088 "PURPCSE: CREATLS A ROTATION TRANISFORMATION MATRIX AND CONCATENATES ®

1089 » IT TO aANY EXISTING TRANSFURHATIUNS, THC PARAMETER AXIS ®
1099 DEWUTES THE AXIS OF ROTATIOrn (1=Xe2=Ye3=Z)y anD THETA "
1091 v SIGNIFIES DEGREES OF ROTATIGHK Il THE CLOCKJISE (THETA "
1092 » POSITIVE) OR COUNTERCLOCKWISE (THETA NEGATIVE) UIRECTIONW®
1093 " ADOUT THE SPECIFIED AXISs "
1094 M“GLOBAL VARIABLES REFERENCED: JLMENSION, "
1695 “CALLING MOJULES: USER PROGRAM, "
1696 VAR CHTR.INCLl, CHTRLINGZ, MTRX_LIMIT: INTEGERH

1097 SIN_THETA. COS.THETA: REAL:

1098 ROTATE-MATRIX: MATRIX.TYPE}

1599 BEGIN

1100 MTRX_LINMIT ;= SUCC(DIMENSICON);

1101 FOR CNTR-IND1 := 1 TO MTRX_LIMIT 0O

1102 BEGIN

1103 FOR CHTR-IND2 := 1 TO MTRXLLIMIT DO

1104 ROTATELFATRIK(CiyTR_IND1CNTROIND2,) i= 0,03 "END FOR CNTR_InD2®
11905 ROTATE _ATRIX(LCHTR_INGLeCHTR_INDL.) := 1.0%

1108 EHNUG "FOR CNTR.InDL®

1107 SIn.THETA 1= TRIG(SIN«THETA);

1108 COS_THETA := TRIG(COS»THETA)}

1109 IF (JIFENSION = 2) OR (AXIS = 3)

1110 THEN BEGIN

1111 ROTATE_MATRIX(s14ls) = COS_THETAS

1112 ROTATE_MATRIX1+142s) := = SIN_THETA!

1113 ROTATE_MATRIXt+241e) 3= SIN_THETA:

1114 ROTATE_NATRIX(eZ292+) := COS.THETA}

1115 END; "IF (DIMERNSION = 2) OR,.e"

11l1s IF DIRENSION = 3

1117 THAEN CASE AXIS OF

1118 1: BEGIN "X AXISW

1119 ROTATE_MATRIX(+242+) 1= COS_THETA}

1120 ROTATE-MATRIX(e2430s) ;= = SIN.THETAY

1121 ROTATE-MATRIX(.342+) := SIN.THETA}

1122 ROTATE.HATRIA(«343+}) 3= COS_THETA}

1123 ENGs "X AXIS CASEw

1124 2: BEGIN »Y AXIS®

1125 ROTATE-MATRIX(+141le) 3= COS_THETA}

11256 ROTATE.MATRIXK(«143s) = SIN_THETAG

1127 ROTATE_MATRIX(s341e) 1= =~ SIN_THETAY

1128 ROTATELMATRIX(.343+) 3= COS_THETAY

1129 END: "Y AX1S CaASEn

1130 3: ROTATE_MATRIX(.%444) = 1.0 "DUNMY STATEMENT®

1131 ENL3 "CASEIF DIMEWNSION = 3w

1132 MATMUL (ROTATE_MATRIX)i "COWCATENATE ROTATE_MATRIX"™

1133 END; YPROC ROTATE®
1134 PRI EEEXEX x4 4 TRER ek XL APPLICATION PROGRAMESE* s XX Rt XXXk R E RS AR XX KA KX KRN

1135

1136 MExrxxx kX F* kXX TR CERTEXERREEN
1137 “=x USER PHOGRAM STARTS HERE =%
1138 Ve xsxsxkxts*sXg kXX RFRRRERN

1139

APPENDIX B

COMPUTEK DRIVER PROGRAM CODE

93

0001
0002
2003
000y
godos
0006
Go07
Doos
0p0s9
0plo
ool1
0012
0ol3
0ol4
001%
00ls
0pl7
pola
dcle
po2e
0021
ng22
0023
0024
0025
0026
0027
go2s
0023
00630
0o31
0p32
0033
0c34
0035
003e
0G37
0p3s
0039
00%0
Do%1
aos2
0043
Co4%y
0045
fous
0047
0043
0o49
0050
0051
0052
0053
0054
0oss
fo5é
0057
gos58
0059

{NUMBER}
wPER BRINCH HANSEN

INFORMATION SCIENCE
CALIFORNIA INSTITUTE OF TECHNOLOGY

UTILITY PROGRAMS FOR
THE SOLO SYSTEM

L8 I 28 3 BN O 2R O 2

18 MAY 1975 1 DEC 1976n

CEE-3.3- 3552311
PREFIX
BhHHpRHHRRAY

CONST N = *(:202) FF = *{3123)} CR = v({313:)"} EM = (:253)"s

CUNST PAGELENGTH = 512%
TYPE PAGE = ARRAY {.1,.,PAGELENGTH,) OF CHAR}

CONST LINELENGTH = 132% -
TYPE LINE = ARRAY (,1..LINELENGTH,) OF CHAR}

CONST IDLENGTH = 123
TYPE IDENTIFIER = AHRRAY (-1,.IDL$NGTH.5 OF CHAR}

TYPE FILE = 1.,2%

TYPE FILEKIND = (EMPTY., SCRATCHs ASCII+ SEQCOQE. CONCORE)S

TYPE FILEATTR = RECORD
KIND: FILEKINDS
ApDR: INTEGER}
PROTECTED: BOOLEAN1
ENDS

TYPE IODEVICE =
(TYPEDEVICE. O1SKDEYICEs TAPEGEYICE, PRINTDEYICE. CARODEYICE,
A+B+COMPUTEK) |

TYPE IOOPERATION = (INPUT+« OUTPUT, MOVE. CQNTROL)f
TYPE IOARG = (WRITEEOFs REWIND., UPSPACE. BACKSPACE)J

TYPE IQRESULT =
(COMPLETE, INTERVENTION. TRANSMISSION, FAILURE,
ENDFILE, ENDHEDIUM, STARTMEDIUM);

TYPE IOPaRaM = RECORD
OPERATION: IOOPERATIONG
STATUS: IORESULT:
COUNT: INTEGER
ENDS

94

AS MOpIFIEp FOR THE INTERDATA
8,32 UNDER 0S/32«MT AT

DEPARTHENT OF COMPUTER SCIENCE
KANSAS STATE UNIVERSITY

0060
0061
0062
boesd
0064
006S
0066
0067
0068
gcoe9
0070
0071
o072
6073
0074
0Q7S
6076
0o77
0078
0079
0080
go81
ng82
0083
0084
GG85
0086
0gaz
0088
6089
0090
0091
np92
0093
0G94
0095
Co0%s
0097
098
0099
0100
0101
p102
0103
0104
6105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119

#5

TYPE TASKKIND = (INPUTTASK. <OBTASK, OUTPUTTASKI]{

TYPE ARGTAG =
(NHILTYPE, BOOLTYPE+ INTTYPE+ IDTYPEs PTRTYPE)!

TYPE POINTER = 3BOOLEANG

TYPE ARGTYPE = RECORD
CASE TAG: ARGTAG QF
NILTYPE. BOOLTYPE: (BOOL: BOOLEAN)%
INTTYPE: (INT: INTEGER)S
I0TYPE?: (10! IDENTIFIER)$
PTRTYPE: (PTR: PQINTER)
END1Y

CONST MAXARG
TYPE ARGLIST

101
ARNRAY {.1..MAXARG.) QOF ARGTYPE1

TYPE ARGSEQ = {INPe OUT)y

TYPE PROGRESULT =
(TERMINATED, OVERFLOW, POINTERERROR, RANGEERROR, VARIANTERROR,
HEAPLIMIT, STACKLIMIT, CODELIMIT, TIMELIMIT, CALLERRCR)}

PROCEDURE READ(VAR C: CHAR)j
PROCEDURE WRITE(C? CHAR})®

PROCEDURE OPEN(Fi FILE: ID: IDENTIFIER: VAR FOUND: BOOLEAN)}
PROCEDURE CLOSE(F: FILE)1

PROCEDUKE GET(F: FILE: P: INTEGER; VAR BLOCK: UNIV PAGE)1
PROCEDURE PUT(F: FILE: P: INTEGER: VAR BLOCK: UNIV PAGE}1Q
FUNCTION LENGTH(F: FILE): INTEGER}

PROCEDURE HMARK(VAR TOP! INTEGER)}
PROCEDURE RELEASE(TUP: INTEGER}!%

PROCEDURE IDENTIFY(HEADER: LINE)S
PROCEDURE aACcEPT(VAR C: CHAR)?$
PHROCEQURE DISPLAY(C: CHAR)§

PROCEDURE READPAGE (VAR BLOCK: UNIV PAGEY VAR EOF: BOOLEAN)1
PROCEDURE WRITEPAGE(BLOCK: UNIV PAGL; EOQF: BOOLEAN)§
PROCEDURE READLINE(VAR TEXT{ UNIV LINE)1

PROCEDURE WRITELINE(TEXT: UNIV LINE) 4

PHOCEDURE REAUARG(S; ARGSEW@; VAR ARG: ARGTYPE)M

PROCEDURE WRITEARG(S: ARGSEQ! ARG; ARGTYpPE)$

PRUOCEDURE LOOKUP{ID: IDENTIFIER3 VAR ATTR: FILEATTR: VAR FOUND: BOOLEAN)

PROQCEDURE IOTRANSFER
(DEVICE: IODEVICE; VAR PARAM: IOPARAMi{ VAR BLOCK: UNIV PAGE)}

PROCEDURE IOMOVE({DEYICE: IOpDEVICE VAR PARAM: JOPARAM)
FUNCTION TASK: TASKKINO3

PHOCEDURE RUN(ID: IDENTIFIERY VAR PARAMI ARGLIST!
vAR LINE: INTEGER{ yAR RESULT: PROGRESULT)§

0120 PROGRAM P{VAR PAMAM; ARGLIST}}
0121

0122 CONST

0123 HOMEERASE = t{21l2:1"'¢
0124 ERASE.STATUS = *(:14:)%}
0125 WRITE_STATUS = *(315:)'¢
0126 LINE_FEED = s(2105)"1}
0127 BACKSPACE = *(:83)¢8

pi28 FOUR_BYTE_ABS = "13283)'¢
0129 AT.SIGN = *13843)}

0130 NULL.BYTE = *(:03)'}

0131

0132 “INPUT COMMANDSW
0133

0134 ERASE = 0%
0135 WRITE = 1%

0136 MOVE = 2%
0137 VECTOR = 34

0138 HTEXT = 43
0139 VTEXT = S
0140 CLEAR = 6}
0141 EOT = 7%

0142 DEBUG = 8%

0143

0144 TYPE

0145

Olu4s PACKED.LINE = AKRAY [1,.8631 OF INTEGER}
0147 PACKEDLREAL = ARRAY L1l,.43 OF INTEGERS

0lus PAGE.INDEX = 04,2561

0149 SENDLINDEX = 0,+3121%

0150 TEXT.INDEX = 044451

0151

0152 CH.HWD = ARRAYCl.,2] OF CHAR}
0153

0154 VAR

0155

0158 HEX ¢ ARRAY [0,.15] OF CHAR}
0157

0158 DISPLAY.PAGE : ARRAY C1..256] OF INTEGERI
0159 OUTPAGE : PAGEj

C160 PAGELCNTR : PAGE.INDEX}

0161 SEND.CNTR ; SENO-INDEXi

0162 TEXT.LINE : ARRAY [1,,4%1 OF CHAR!

0163 EOF yCHAR_MUDE,VISIBLE,DEBUG.FLAG § BOOLEAN]
0164

0165 PROCEDURE BuUmP_PAGE_CNTR}

0166

0167 “INCREMENT INDEX OF INPUT PAGE

0168 WHEN ONE PAGE 1S EXHAUSTED GET A NEW PAGE
0169 AND INITIALIZE THE PAGE INDEX™

a ss ®

-

oive

0171 BEGIN

0172 IF PAGE_CNTR = 256 THEN BEGIN
0173 READPAGE (DISPLAY _PAGE EQF) §
0174 PAGE_CNTR = 01

0175 END}

0176 PAGELCNTR $= SUCC(PAGE.CNTR)¢
0177 END3

a178

0179 PROCEDURE GET.CHARPAIR(VAR INTCHAR: UNIV INTEGER)}

0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0135
0196
0197
0198
0199
0200
0201
pa2o02
0203
0204
0205
0206
0207
0208
0209
o210
0211
0212
0213
D214
0215
0216
0217
0218
0219
0220
g221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
g232
0233
0234
0235
0236
0237
0238
0239

@7

WUNPACK TWO CHARACTERS OF THE CHARACTER | INE
PARAMETER FOR RHTEXT AND VTEXT COMMANDS™

BEGIN

BUMP _PAGELCNTRY

INTCHAR 3= DISPLAY.PAGELPAGE.CNTRI1
END1

PROCEDURE GET.POINT(VAR X:Yi UNIV pACKED_REAL)1

WUNPACK POINT PARAMETER FOR MOVE
OR VECTOR COQHMANOS®

VAR I:INTEGER}4

BEGIN
FOR I =1 TO 4 DO BEGIN
BUMP .PAGE.CNTR}
XCIJ := DISPLAY.PAGELPAGE_CNTRI3
END3
FOR I := 1 TO % DO BEGIN
BUMP _PAGE _CNTR1
YCIJ := DIDPLAY.PAGECPAGELCNTRI¢
ENC3
END?

PROCEDURE GETL.TERMINAL.POINT(VAR XINT YINT:INTEGER)}

wCOMPUTE COMPUTEK POINT COORDINATE
LQUIVALENTS OF REAL WORLD POINT CCQRDINATES®

VAR X+YIREAL}
BEGIN
GET.POINTIX,Y)}
XINT i= TRUNC(X) MOD 25ef
YINT = TRUNC(Y! MOD 25ai
END3

PROCEDURE GETBYTES(VAR HIGH,LOW.HALFWD: UNIV CH_HWD)¢
BEGIN

HIGHL11] t= *(3:08)v3

HIGHCL2] 1= HALFWOC13dy

LOWC1] = *(302)"y

LOWC2] ;= HALFWDL213
END3y

PHROCEDURE PRINTABS(ARGSUNIV INTEGER)j
nDEBUGG ING PROCEDURE™

“CALCULATE AND DISPLAY HEX EQUIVALENTS OF
ASCII CHARACTERS To BE TRANSMITTED TO
COMPUTEK TERMINALY

VAR T:ARRAY[1,.4] OF CHAR}
LOWeHIGHREM+DIGIT I INTEGER}

BEGIN

REM = ARGy

GETBYTES(HIGHLOWREM)

TL1Ji= HEXCHIGH DIV 16124

0240
0241
Q242
0243
0244
o245
0246
0247
0248
0249
0250
0251
0252
0253
025%
02585
0256
0257
0258
0259
260
p261
0262
0263
0264
0265
0266
0267
0268
0269
0270
ga71
gaT7a
p273
0274
g275
p27s
0277
p278
0279
02680
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
02%96
0297
0298
0299

98

TC21 := HEXLHIGH MOD 163%

TC2) := HEXLLOW DIV 163%

Tgul 5= HEXCLOW MOD 1833

DISPLAY(TC1J)s DISPLAY(TC21)t DISPLAY(TC33): OISPLAY(TL43): DISPLAY(' 7)}

END}
PHOCEDURE SEnD¢

WTRANSMIT ASCII CONTROL CHARACTER PAGE
TO COMPUTEK TERMINAL®

VAR ARG:IOPARAMI CH3CHARI I § INTEGERY
BEGIN)
gOR I := 1 TO SEND.CNTR DO BEGIN
CH $= QUTPAGECII
IF DEBUG._FLAG THEN BEGIN
PRINTABS(CHI§
IF I MOD 10 = 0 THEN DISPLAY{NL);
END}
END3
IF DEHUG_FLAG THEN DISPLAYI(NL)}
WITH ARG DQ BEGIN
_OPERATION := QUTPUTS
COUNT 3= SEND_CNTRS
ENOT
I0TRANSFER(COMPUTEK 1 ARG yOUTPAGE) ¢
wIF IO0RESULT <> COMPLETE THEN BOMB"
END#

PROCEDURE BUMP_SEND_CNTR#

nINCREMENT INDEX OF THE OUTPUT PAGE,
wHEN PAGE IS FULL TRANSMIT AND -
BEGIN NEW OUTPUT PAGE®

BEGIN
IF SEND.CNTR = 512 THEN BEGIN

SEND3
SENDLCNTR = g1
ENDS
SEND.CNTR 3= SUCC{SEND.CNTR} !
END}

PROCEDURE SEND_BYTE(CHICHAR}}
wADD A SINGLE ASCII CHARACTER TO THE OUTPUT PAGEW

BEGIN

QUMP_SEND.CNTR1

QUTPAGE CSENDLCNTRI 1= CHY
END3S

PROCEDURE SEND_AT.SIGNY

nADD THE ASCII CHARACTERS TO THE OUTPUT PAGE
WHICH WILL CHANGE THE COMPUTEK TERMINAL
FROM FOUR BYTE ABSOLUTE MOpDE TO

CHARACTER MOOEn®

VAR I1:INTEGERW

0300
0301
0302
0303
0304
0308
g306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0z38
0349
0340
0341
0342
0343
D3us
0345
03us
0347
o348
0389
0350
03s1
0352
0353
0354
8335
0356
0357
0358
nz39

BEGIN

SEND_BYTE(AT_SIGN)$

FOR I := 1 TO 3 DO SEND_BYTE(NULLL.BYTE)}
END§

PROCEDURE SEND.4.BYTE(X,Y:INTEGER; VISIBLE:BOOLEAN)}

wCOMPUTE THE FOUR ASCII CHARACTERS THAT
EXECUTE A MOVE OR VECTOR COMMAND,

% AND Y ARE INTLGER COQRDINATES OF

THE TARGET POINT. VISIBLE = TRUE FOR
VECTOR, VISIBLE = FALSE FUR MOVEw

VAR ACCUM:INTEGER}
BEGIN
ACCUM := 2%
IF (Y MOD 2y = 1 THEN ACCUM iz ACCUM + 16%
IF ((Y DIV 2) MOD 2) = 1 THEN ACCUM := ACCUM + 32
ELSE ACCUM := aAccUM + 64t
IF VISIBLE THEN ACCUM := ACCUM + 11
SEND_BYTE{CHR(ACCUMI) 3
ACCUM := Y DIV 43
IF ((ACCUM D4V 32) MOD 2) = 0 THEN ACCUM 3= ACCUM + 643
SEND.BYTE{CHR{ACCUM) }3
ACCUM 3= 04
IF (% MOD 2) = 1 THEN ACCUM i= ACCUM + 183
IF {(X DIV 2) MOD 2) = 1 THEN ACCUM := ACCUM + 32
ELSE ACCUM $= ACCUM + 64%
SEND.BYTE{CHRIACCUM)) §
ACCUM := X DIV 4%
IF ({ACCUM DIV 32} MOO 21 = 0 THEN ACCUM i= ACCUM + 641
SEND_BYTEICHK(ACCUM) } 3
END3

PROCEDURE PROCESS.DRAW(KEY:INTEGER} ¢

"PUT COMPUTEK IN FOUR BYTE ABSOLUTE MOOE,

UNPACK AND TRANSLATE TO COMPUTEK

COOROINATES THE TARGET POINT,

COMPUTE AND TRANSMIT A FOUR BYTE ABSOLUTE COMMANO®

VAR X+YIINTEGEHS
BEGIN
IF CHAR_MODE THEN BEGIN
SEND.BYTE{FOUR.BYTE.ABS)}
CHAR_MODE := FALSE}
END}
GET.TERMINAL-POINT(X 7)1
IF KEY = VECTOR THEN VISIBLE 3= TRUE ELSE vISIBLE ;= FALSE;
SEND.4.BYTEIX,Y VISIBLE)S
END3

PRUCEDURE PROCESS.TEXT(KEY3INTEGER){

wPUT COMPUTEK IN CHARACTER MOOE,
UNPACK TEXT PARAMETER, TRANSMIT TEXT
CHARACTERS, FOR VERTICAL TEXT,
TRANSMIT LINEFEED AND BACKSPACE
BETWEEN TEXT CHpARACTERS"

95

0360
D36l
0362
0363
0364
0365
03&6
0367
0368
0369
0370
0371
g372
0373
0374
0375
0376
Q377
0378
0379
0380
0381
0382
0383
0384
0383
0386
0387
0386
0389
0390
0291
0392
0393
03%4%
039%
039¢
0397
0398
0399
0400
0401
0402
0403
0404
0405
o406
o407
0408
0uos
0410
0411
oul2
0413
ouly
0415
0418
0417
0418
0419

VAR VERTICAL:BOOLgANI I:TEXT.INQEX:
CHAR_PAIR:ARRAY [C1.,2] OF CHAR}
BEGIN
IF NOT CHAR_MODE THEN BEGIN
SEND.ATLSIGN}
CHAR,MDDE $= TRUE1
ENDY
IF KEY = VTEXT THEN VERTICAL ;= TRUE ELSE VERTICAL ;= FALSE}
I 3= 1%
REPEAY

SET.CHARPAIR(CHAR_PAIR}]
TEXT.LINECI] = CHAR.LPAIRC11;
TEXT.LINECSUCCII}I 3= CHARLPAIRC2I14
I :1=1 + 2%

UNTIL CHAR_PAIRC2] = EMy

I = 1%

REPEAT

SEND.BYTE(TEXT.LINECII}4

I 3= SUCC(4)s

IF VERTICAL THEN BEGIN
SEND_BYTE(LINELFEED}4

SEND.BYTE(BACKSPACE){
ENDY '
UNTIL TEXT_LANECI] = EMj

END3
PROCEDURE PRQCESS.PAGE}

nINITIALIZE COUNTERS AND FLAGS,
PROCESS COMMANDS UNTIL EOT,
LEAVE TERMINAL IN CHARACTER MODE
FOR WEXT TRANSMLISSION"

VAR EOTRANSFER:BOQLEAN: KEY!INTEGER1
BEGIN
SEND_CNTR 3= 0%
PAGE_CNTR $= 01
EOTRANSFER $= FALSE{ CHAR.MODE ;= TRUE}
REPEAT
BUMP_PAGE.CNTR}
KEY := OISPLAY_PAGELPAGE.CNTRIt
CASE KEY OF
MOVE«VECTOR: PROCESS.DORAW(KEY)
CLEAR«WRITE,ERASEIHEGIN
IF NOT CHAR.MODE THEN SEND_AT.SIGN{
CASE KEY OF
CLEAR: SEND_BYTE(HOME_ERASE) ¢
WRITE?! SEND_BYTE(WRITE_STATUS)}
ERASE?! SEND.BYTE(ERASE_STATUS)
ENDI mCASEn
END}
HTEXT+VTEXT? PROCESS.TEXT{KEY)?
DEBUG: DEBUG.FLAG := TRUE}
EQT: EQTRANSFER i= TRUE
EfNDO% “CASE®m
UNTIL EOTRANSFER}
IF NOT CHAR_.MODE THEN SEND.AT_SIGN?
SENDt
END3

100

0u20 REGIN

0421 BINITIALIZEI®

cy22 HEXCQ] &= *Qvg

gu23 HEXC1] = ¢®1vg

042y HEXC2] = *2v3

0425 HEXC 3] = 3%}

0426 HEXC4J i= "4y

o427 HEXL53 = 'S5

ou28 HEXLed i= 160y

0429 HEXCT7] 3= *7vy

0430 HEXL8]1 = v8v3

0431 HEXL91 = 913

032 HEXC1G13= YA}

0433 HEXCL113:= *Brg

0434 HEXC121i= 'Crg

0435 HEXC1313:= D¢y

0436 HEXC141li= 'Erg

0437 HEXC153:= 'F?y

os38

0439

Ou40 #INITIALIZE COMPUTEK TERMINAL BY
Cu4%l CLEAHING SCREEN ANQ HOMING THE CURSOR.
o442 HEAD INPUT COMMAND PAGES AND PROCESS
Civ#3 UNTIL PAGE MARKED EOF I3 RECEIVED,
O444 SEND NORMAL TERMINATION MESSAGE TO
0445 AINITIATING PROCESSH

LYY

0447 SEND..CNTR = 0%

oa4a CHAR_MODE := TRUE}:

o449 DEBUG.FLAG = FALSES

0450 SEND_ATLSIGNY

0451 SENDLBYTE(HOME_ERASE)$

0452 SENDY

0453 REPEAT

0454 READPAGE (DISPLAY.PAGEEQF) §
0455 IF NOT EOF THEN PROCESS_PAGE®
0456 UNTIL EOF;

0457 "WRAPUP Y

0458 PARAMC1] ,800L 3= TRUE}

0459 END,

i

APPENDIX C

102

FORTRAN/SPASCAL CSGP_MODULES

FUNCTIONAL GROUP

FORTRAN MODULES

Image
Construction

PDF Display

PDF/Error
Output

Image
Transformation

{1}SEND(8)

COMPIL(36)
[3}CMPUTK(145)
" TTYIO(78)

DUMPPD(473)
{43I4COPY(190)
" YSORT(34)
" CLIPH(64)
" GETC(8)
" PUTC(8)

INIT(11)
MATMUL(14)
DAPPLY(18)
TRANS (22)
SCALE(22)
REFLEC({ 24)
ROTATE(37)

SPASCAL MODULES

START(7)
MOVE(18)
VECTOR(18)
CLEAR(12)
WMODE(12)
EMODE(12)
SEND_PDF(12)
HTEXT(13)
VTEXT(13)
PUTTEXTINPDF(32)

{2}SET_INDEX(6)
" VAL _INDEX(4)
" SET_INDEX(5)
" DEBUG_| CMPTK _DRVR(12)

COMPIL(40)
LOAD_CMPTK_DRVR(6)

{ 51 CSGPCOMPUTEK (2

35)
PUT DISPPAGE(l??
GET_TEXT(16)
PACK CHAR(14)
PACK_REAL(8)

DUMPPDF_PRINTER(55)
DUMPPDF_CONSOLE(53)
ERROR(175)
DISPSTRNG(13)

LOAD PRINTER_PROG(&)

{ 5} PRINTER

PUT_PRNTPAGE(23)
GET_TEXT OUT(12)
INT_TO_STR(23)

REAL TO_STR(53)

INIT T MATRIX(12)
MATMUL(17)

APPLY T MATRIX(27)
TRANS(24)
SCALE(18)
REFLEC(18)

ROTATE(39)

1C3

Ei}GENROT(ao) TRIG(44)
L}PERSP(17)

" CLIP(54)

" CLIP2(62)

" CODE2(8)

" CL2(Lk4)

" AND(10)

" DSAVE(21)

" DCOPY(21)

Computek {4IRPOINT(10)
Terminal Input " VMODE(?)

" PTCNVT(21)

FORTRAN SPASCAL
TOTALS (1164)*% TOTALS (964)%
(5hs)** (884)**

Notation:

()

#*

* 3%

{13

{23
{33
{4}
(5}

Lines of code (does not include comments).
Total number of lines of code.
Total of functional equivalent lines of code.

FORTRAN modules not required for the
SPASCAL-INTERDATA 8/32 implementation.

New capabilities added to the SPASCAL CSGP.
IBM/370 assembler subroutines.
FORTRAN modules left for future conversion efforts.

SPASCAL programs that execute in the SO0LO output
process partition. CSGPCOMPUTEK is the name of the
text (ASCII) file containing the revised version of
M. Neal's Computek driver program. PRINTER is the
name of the file containing the object code (SEQCODE)
of a system program that runs the line printer.

CONVERSION OF A GRAPHICS PACKAGE TO SEQUENTIAL PASCAL

by

DANIEL THOMAS SNYDER
B. S., Ohio State University, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

ABSTRACT

The objective of the project was to port the Computer
Science Graphics Package (CSGP), written in FORTRAN for a
large computer environment (IBM/370), to a minicomputer
environment (INTERDATA 8/32), coded in sequential Pascal
(SPASCAL). Both implementations interact with the Computek
300 GT display terminal.

The CSGP allows interactive communication between a
Computek terminal user and a remote computer which executes
programs to construct, transform, and display three-
dimensional straight-line pictures. The graphics package
software consists of a set of routines which builds and
manipulates a data structure image representation, called
the Pseudo Display File (PDF), and translates the PDF into
code suitable for display at the terminal.

There were basically two reasons behind the desire to
port the CSGP. It was intended that moving to a minicomputer
environment would remove the package from a time sharing
system to a system with a faster response mode, and
converting from FORTRAN to SPASCAL would gain better
programming features.

The porting of the CSGP was more than Jjust a line-by-
line conversion of FORTRAN code to SPASCAL. The change in

computing environments necessitated complete revision of

1

2
the computer-to-terminal interface software and additional
I/0 support routines. The change to SPASCAL caused major
changes to the PDF data structures and the modularity of the
CSGP software in order to take advantage of the powerful
structures and structured programming features provided by
SPASCAL.

The original CSGP implementation is approximately 550
lines of FORTRAN and IBM/370 assembler code compared to 880
functional equivalent lines of SPASCAL that comprise the new
version. The manhours expended during each phase of the
project were as follows: Organization/Design, 130; Coding,

20; Test/Debug, 100; Documentation, 80; and Total, 330.

