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Non-technical summary:  

When the lack of blood flow (ischemia) to an organ is followed by reperfusion or return of the 

blood flow, components of the innate immune response induce tissue damage. Previous studies 

showed that inhibitors of complement prevent injury. Helicobacter infections, which are 

frequently undiagnosed, induce expression of a specific complement inhibitor. We show that an 

undiagnosed Helicobacter infection alters the mechanism of tissue damage such that therapeutic 

complement inhibitors would not be effective. 
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ABSTRACT 

Ischemia/reperfusion-induced intestinal injury requires both toll-like receptor 4 (TLR4) signaling 

through myeloid differentiation primary response gene (88) (MyD88) and complement 

activation. As a common Gram negative intestinal pathogen, Helicobacter hepaticus signals 

through TLR4 and up-regulates the complement inhibitor, decay accelerating factor (DAF; 

CD55). Since ischemia/reperfusion (IR) is complement dependent, we hypothesized that 

Helicobacter infection may alter IR-induced intestinal damage. Infection increased DAF 

transcription and subsequently decreased complement activation in response to IR without 

altering intestinal damage in wildtype mice. IR induced similar levels of DAF mRNA expression 

in uninfected wildtype, MyD88-/- or Trif deficient mice. However, during infection, IR-induced 

DAF transcription was significantly attenuated in Trif deficient mice. Similarly, IR-induced 

intestinal damage, complement component 3 (C3) deposition and prostaglandin E2 (PGE2) 

production were attenuated in Helicobacter-infected, Trif deficient but not MyD88-/- mice. While 

infection attenuated IR-induced cytokine production in wildtype and MyD88-/- mice, there was 

no further decrease in Trif deficient mice. These data indicate distinct roles for MyD88 and Trif 

in IR-induced inflammation and chronic, undetected infections such as Helicobacter alter the use 

of the adaptor proteins to induce damage.  
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INTRODUCTION 

Intestinal ischemia/reperfusion (IR) induces tissue damage, leading to systemic inflammation 

and death in 60-80% of affected individuals (Deitch, 2001; Clark & Coopersmith, 2007; 

Leaphart & Tepas, 2007). Damage occurring during ischemia is significantly amplified upon 

restoration of blood flow. During reperfusion, multiple inflammatory events occur including 

antibody recognition of neo-antigens expressed on the surface of damaged cells and subsequent 

complement activation (reviewed in (Fleming, 2006)). An influx of neutrophils and monocytes 

also results in the production of reactive oxygen and nitrogen species and cytokines (Sisley et al., 

1994; Cicalese et al., 1996; Cerqueira et al., 2005). Together, the inflammatory response induces 

significant local and systemic damage.  

 

As part of the inflammatory response, toll-like receptors (TLRs) play a key role in maintaining 

intestinal homeostasis through recognition of commensal microflora (Rakoff-Nahoum et al., 

2004). These pathogen recognition receptors also induce inflammation after tissue damage 

(Mollen et al., 2006). TLR4 activation plays a role in IR-induced tissue injury and inflammation 

in the intestine, kidney, brain, lung and heart (Li et al., 2004; Wu et al., 2007; Yang et al., 2008; 

Gao et al., 2009; Moses et al., 2009; Takeishi & Kubota, 2009; Victoni et al., 2010). Upon 

activation, most TLRs signal through the common MyD88 pathway. However, TLR4 can signal 

through either the MyD88 or Trif pathway resulting in cytokine and eicosanoid production 

(Moses et al., 2009). In many studies, the TLR4 mediated inflammatory response was MyD88 

dependent (Wu et al., 2007; Cao et al., 2009; Gao et al., 2009). For example, MyD88 is required 

for intestinal, lung and cardiac polymorphonuclear leukocyte (PMN) migration and facilitates 

bacterial translocation (Feng et al., 2008; Feng et al., 2010; Victoni et al., 2010). In response to 
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intestinal IR, MyD88, not Trif, is required for injury and intestinal PGE2  production (Moses et 

al., 2009). However, TLR4 but not MyD88 is necessary for edema after lung IR (Zanotti 2009). 

In addition, IR-induced inflammation in the liver requires TLR4 and interferon regulatory factor 

3 (IRF3) activation (Zhai et al., 2004), suggesting a role for Trif. Thus, despite the requirement 

for TLR4, the specific signaling pathways differ for each inflammatory response studied.  

 

Helicobacter is a gram negative bacterium which induces chronic infections of the 

gastrointestinal tract in roughly half the world's population (Malaty, 2007). Recent evidence 

associates Helicobacter pylori with Crohn’s disease (Huang et al., 2004; Oliveira et al., 2006). 

Similarly, H. hepaticus, H. bilis and H. rodentium have been implicated in rodent models of IBD 

and colon cancer (Foltz et al., 1998; Solnick et al., 2006).  In addition, Helicobacter infection 

attenuates complement-mediated, shock-induced intestinal damage (Hylton et al., 2010b). As 

intestinal IR-induced tissue damage is also complement mediated, it was possible that infection 

may change the mechanism of tissue injury in response to IR. Similar to IR, the pathogenesis of 

persistent Helicobacter infection includes unregulated cytokine production and oxidative stress 

via TLR4 (Mandell et al., 2004). Interestingly, H. pylori infection increased gastric expression of 

a complement inhibitor, DAF (decay accelerating factor; CD55) (O'Brien et al., 2006). 

Importantly, a recent study indicated that a natural chronic H. hepaticus infection up-regulated 

DAF expression and prevented complement activation during hemorrhage (Hylton et al., 2010b). 

Therefore, we hypothesized that H. hepaticus infection may attenuate IR-induced, complement-

mediated tissue damage by altering the TLR signaling pathway.  

 



5 
 

Using wildtype, MyD88-/- and Trif deficient mice in a model of intestinal IR, we demonstrate 

that MyD88 is critical to IR-induced injury, C3 deposition and eicosanoid production, while Trif 

is required for IL-12p40 and TNF-α production. However, during Helicobacter infection the 

absence of Trif significantly attenuated intestinal injury, complement activation and eicosanoid 

production after IR treatment. These data suggest that although both MyD88 and Trif contribute 

to IR-induced inflammation resulting in tissue damage, a chronic, subclinical Helicobacter 

infection alters the Trif-mediated response to IR.  
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METHODS  

 

Ethical approval: All procedures were approved by the Kansas State University Institutional 

Animal Care and Use Committee and were in compliance with the Animal Welfare Act.  

 

Mice: C57Bl/6 (wildtype) and Trif deficient mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME) or bred at Kansas State University (Manhattan, KS). MyD88-/- mice were 

obtained from Dr. Tammy Killian (University of Nebraska Medical School, Omaha, NE). All 

mice were housed in the Kansas State University Division of Biology rodent facility and were 

maintained in 12 hr light/dark cycles with access to rodent chow and water ad libitum. All 

uninfected mice were kept in specific pathogen free conditions (Helicobacter species, mouse 

hepatitis virus, minute virus of mice, mouse parvovirus, Sendai virus, murine norovirus, 

Mycoplasma pulmonis, Theiler’s murine encephalomyelitis virus, and endo- and ecto-parasites).  

 

Helicobacter Infection: Mice were naturally colonized with H. hepaticus either by being reared 

by an infected female or by contacting infected feces during normal grooming. The presence of 

H. hepaticus was verified by PCR analysis of the feces from each infected mouse (data not 

shown). Fecal DNA was purified using the Qiagen DNA Stool mini kit according to the 

manufacturer’s protocol and PCR amplified for 35 cycles at 54°C using Helicobacter-specific 

16s rRNA primers. The PCR products were imaged using AlphaImager (Alpha Innotech) and 

semi-quantitative analysis performed using Image J (National Institutes of Health). Each mouse 

was infected for a minimum of 4 to 8 weeks before treatment. Feces from uninfected mice were 

also analyzed by PCR with 100% negative results. Liver, cecum, and colon DNA was purified by 
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TRIzol according to the manufacturer’s protocol, and a similar PCR analysis was performed. 

Preliminary data indicated a constant level of shed bacteria at 1 to 2 months post-infection (data 

not shown) with H. hepaticus DNA also detectable in the liver, cecum, and colon of all infected 

mice. In contrast, H. hepaticus DNA was found in the jejunum of only 10% of the infected mice 

(data not shown).  

 

Intestinal Ischemia/Reperfusion (IR): Animals were subjected to IR as previously described 

(Fleming et al., 2002). Briefly, mice were anesthetized with ketamine/xylazine (16 mg/kg and 80 

mg/kg respectively) administered i.p. and a midline laparotomy preformed. Pain was also 

controlled by the i.p. administration of buprenorphine (0.06 mg/kg). The superior mesenteric 

artery was isolated and a small vascular clamp applied (Roboz Surgical Instruments) for 30 min. 

Sham animals were subjected to the same surgical intervention without superior mesenteric 

artery occlusion. After clamp removal, the intestine was allowed to reperfuse for 2 hr with an 

additional dose of anesthetic administered prior to euthanization by exsanguination and tissue 

collection. Segments of small intestine, 10–20 cm distal to the gastroduodenal junction, were 

removed for subsequent analysis. There was no significant difference in survival between 

treatment and control groups. 

 

Histological Analyses: Immediately after euthanasia, 2 cm segments of small intestine were 

fixed in 10% buffered formalin, embedded in paraffin, and 8 μm sections cut transversely and 

H&E stained. A blinded observer graded mucosal injury on a six-tiered scale adapted from Chiu 

et al. (Chiu et al., 1970) as described previously (Fleming et al., 2002). Briefly, the average 

injury score of each segment (75-150 villi) was determined by grading each villus from 0-6. A 
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score of 0 was assigned to normal villi; villi that had distortion of the tip were assigned a score of 

1; villi with Guggenheims’ spaces were assigned a score of 2; villi with patchy disruption of the 

epithelial cells were assigned a score of 3; a score of 4 was assigned to villi with epithelial 

sloughing and exposed but intact lamina propria; villi with exuding lamina propria were assigned 

a score of 5; hemorrhaged or denuded villi were assigned a score of 6. 

 

Immunohistochemistry: Immediately after euthanasia, 2 cm intestinal sections were snap 

frozen in O.C.T. freezing medium and stored at -80oC until 8 μm cryosections were cut and 

placed on slides. Slides were fixed in cold acetone and non-specific binding was blocked using 

10% donkey serum in PBS. Tissues were stained for C3 deposition with a rat-anti-mouse C3 

antibody (Hycult Biotechnologies) followed by a Texas-red conjugated secondary antibody 

(Jackson Immunoresearch). Serial sections stained with isotype control antibodies were used as 

background. A blinded observer examined the slides by fluorescent microscopy using a Nikon 

80i fluorescent microscope and images acquired using a CoolSnapCf camera (Photometrics) and 

MetaVue Imaging software (Molecular Devices). 

 

Ex vivo Secretions: Intestinal ex vivo eicosanoid generation was determined as described 

previously (Fleming et al., 2002). Briefly, 2 cm mid-jejunal sections were collected and 

immediately minced, washed, and resuspended in 37°C oxygenated Tyrode’s buffer (Sigma-

Aldrich). The intestines were incubated for 20 min at 37°C, then the supernatants collected and 

stored at -80°C until assayed. Enzyme immunoassay kits (Cayman Chemical) were used to 

determine leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) concentrations. Cytokine 

concentrations in the intestinal supernatants were determined with a Milliplex MAP kit 
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(Millipore) following the manufacturer's instructions and analyzed on a Luminex 200 using 

xPONENT 3.1 and Analyst software (Millipore). All concentrations were standardized to the 

total tissue protein content as determined by BCA assay (Pierce) adapted to microtiter plates.  

 

Real time PCR: Total RNA was isolated from the jejunum and liver using TRIzol reagent 

(Invitrogen) according to manufacturer’s instructions. RNA integrity and genomic DNA 

contamination was assessed using a BioAnalyzer (Agilent) and quantity determined by 

Nanodrop evaluation. Only samples with no DNA contamination and RNA integrity number 

values greater than 7.0 were used for cDNA synthesis. Using random primers, total RNA (2 ug) 

was reverse transcribed using a RevertAid first strand cDNA synthesis kit (Fermentas). Real-

time PCR primer sequences were designed using Primer 3. Sequences used include: DAF sense: 

5’TAAGCAGAATCGCCACAGAG 3’ and anti-sense: 5’TCTTGCCTTCATCTCCCAAA 3’; 

Factor H sense: 5’ACCACATGTGCCAAATGCTA3’ and anti-sense: 

5’TGTTGAGTCTCGGCACTTTG3’ and 18s rRNA sense: 5’GGTTGATCCTGCCAGTAGC 3’ 

and anti-sense: 5’GCGACCAAAGGAACCATAAC 3’.  Quantitative real time PCR was 

performed in 25 ul volumes using a Mini-Opticon real time thermal cycler (Bio-Rad) and 

Maxima SYBR Green/Flourescein qPCR Supermix (Fermentas) using the following protocol: 

3m at 95°C; 50 cycles of 10s at 95°C, 20s at 58°C, 10s at 72°C; melt curve starting at 65°C, 

increasing 0.5°C every 5s up to 95°C. After amplification, DAF Ct values were normalized to 

18s rRNA and then ΔΔCt fold change relative to Sham-treated wildtype mice was determined as 

described previously (Zhao et al., 2008). Melt-curve analysis of the PCR products ensured 

amplification of a single product.  
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Statistical Analysis: Data are presented as average ± SEM and were compared by two-way 

ANOVA unless a significant interaction occurred between the infection status and the mouse 

strain. In this situation, unpaired T test or one-way ANOVA with post hoc analysis using 

Newman-Keuls test (GraphPad/Instat Software) established significance between specific strains 

and infection status. The difference between groups was considered significant when p <0.05. 
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RESULTS: 

Helicobacter infection changes IR-induced inflammation without changing damage 

Helicobacter, a common Gram negative intestinal pathogen, alters expression of the complement 

inhibitor, DAF, in human infection and a mouse model of hemorrhage (O'Brien et al., 2006; 

O'Brien et al., 2008; Hylton et al., 2010b). Since IR is complement dependent, we hypothesized 

that infection may protect from IR-induced intestinal damage. Therefore, we examined IR-

induced damage and complement activation in wildtype mice with a naturally occurring 

Helicobacter infection. As indicated in Fig. 1A, DAF mRNA expression increased significantly 

in both Sham and IR-treated infected mice when compared to uninfected mice. Other 

complement inhibitors, Factor H and Crry were not upregulated in response to IR or infection in 

wildtype mice (Fig. 2C and data not shown). Correlating with increased DAF expression, 

Helicobacter infection significantly decreased intestinal C3 deposition (Fig. 1C and D). 

However, infection did not alter intestinal mucosal injury after Sham or IR treatment (Fig.1B).  

 

As a gram negative bacterium, Helicobacter signals through toll-like receptors (TLRs) and 

MyD88 which are also required for IR-induced tissue injury and inflammation (Moses et al., 

2009). We sought to determine the role of the TLR signaling adaptors, MyD88 and Trif, in 

intestinal IR after Helicobacter infection. Wildtype,  MyD88-/-, and Trif deficient mice were 

subjected to 30 min of intestinal ischemia followed by 2 h of reperfusion and tissue damage 

evaluated. Similar to previous studies (Moses et al., 2009), IR-induced intestinal injury was 

attenuated in uninfected MyD88-/- mice compared to wildtype mice. As two-way ANOVA 

determined the infection status differed significantly  between mouse strains (significant 

interaction between the strain and infection status), p values were determined by one-way 
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ANOVA.  As expected, uninfected Trif-/- mice sustained significant IR-induced intestinal 

damage, with injury scores comparable to wildtype control mice (Fig. 2A, open bars and Fig. 

2D). Surprisingly, infection did not alter damage in MyD88-/- or wildtype mice (Fig. 2A solid 

bars and Fig. 2D). However, infection significantly decreased tissue damage in Trif deficient 

mice (Fig. 2A solid bars and Fig. 2D). In addition, IR-induced DAF expression was low but 

significantly increased in all uninfected mice (Fig. 2B). However, infection significantly 

increased DAF transcription in all strains except Trif deficient mice (Fig. 2B). Despite elevated 

Factor H transcripts in the MyD88-/- and Trif deficient mice, the infection status did not further 

change the Factor H transcripts (Fig. 2C). These data indicate that Helicobacter-induced DAF 

expression requires the adaptor protein, Trif.  

 

Helicobacter infection changes mechanism of damage 

IR-induced intestinal injury is complement dependent (Hill et al., 1992). Therefore we examined 

C3 deposition on intestinal sections after Sham or IR treatment. Corresponding to intestinal 

damage, C3 deposition was observed in uninfected wildtype and Trif deficient mice (Fig. 3). 

Additionally, uninfected MyD88-/- mice showed little to no C3 deposition which did not change 

with infection (Fig 3). In contrast, Helicobacter infection significantly decreased C3 deposition 

on intestines from wildtype and Trif deficient mice (Fig. 3). These data suggest that Trif is 

required for complement activation in mice infected with H. hepaticus. It is likely that the excess 

Factor H production in the Trif deficient mice attenuated the complement deposition in response 

to IR. 

 

Helicobacter mediated damage requires Trif mediated PGE2 production 
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Since injury and complement activation were altered by the naturally occurring Helicobacter 

infection in Trif deficient mice, we also examined the production of inflammatory eicosanoid 

mediators, which are required for IR-induced tissue damage (Moses et al., 2009). As expected, 

uninfected wildtype and Trif deficient mice secreted significant PGE2 and LTB4 concentrations 

while eicosanoid production by MyD88-/- mice was attenuated (Fig. 4A and B). As two-way 

ANOVA determined that infection status significantly interacted with the mouse strains, 

significance was examined by one-way ANOVA. Helicobacter infection did not alter production 

of PGE2 in response to either Sham or IR treatment in wildtype mice (Fig. 4A). Compared to 

uninfected mice, mid-jejunal PGE2 production significantly increased after IR in infected 

MyD88-/- mice (Fig. 4A). However, Helicobacter-infected Trif deficient mice produced 

significantly less PGE2 than uninfected mice (Fig. 4A). The basal levels of LTB4 production 

increased in all strains of infected mice tested after Sham treatment (Fig. 4B). Additionally, in 

response to IR, infection increased LTB4 production by wildtype and MyD88-/- mice but not Trif 

deficient mice (Fig. 4B). These data suggest that Helicobacter-infected mice require Trif for IR-

induced eicosanoid production. 

 

Previous studies suggested that TNF-α and IL-12p40 secretions were also critical to IR-induced 

intestinal damage (Caty et al., 1990; Pope et al., 2010), and that Helicobacter infection alters 

intestinal cytokine production (Obonyo et al., 2007; Hylton et al., 2010b). Therefore, we 

examined IR-induced IL-12p40 and TNF-α intestinal secretion in mice infected with H. 

hepaticus. As expected, IR induced significant increases in both cytokines in wildtype mice (Fig. 

4C and D). The strain significantly impacted the cytokine production as Trif but not MyD88 

deficiency attenuated IL-12p40 and TNF-α production in uninfected mice (Fig. 4C and D). 
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Importantly, using two way ANOVA, Helicobacter infection significantly attenuated production 

of these cytokines. Specifically, infected wildtype and MyD88-/- mice produced significantly less 

cytokine while infection had no effect in Trif deficient mice (Fig 4C and D). Taken together, 

these data suggest distinctive roles for TLR4 signaling pathways and that these pathways may be 

modified in the presence of a chronic infection.  
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DISCUSSION 

Previous studies demonstrated that complement and TLR4 activation are required for IR-induced 

tissue damage (Weiser et al., 1996; Williams et al., 1999; Moses et al., 2009). As Helicobacter 

infection upregulates DAF expression, we hypothesized that infection may decrease IR-induced, 

complement-mediated tissue damage. Using mice with naturally occurring H. hepaticus 

infection, we demonstrated that IR induces tissue damage, despite diminished complement 

activation. As a gram negative bacterium, it was likely that toll-like receptor signaling pathways 

contributed to this unexpected finding. Similar to previous data, IR induced intestinal damage in 

uninfected Trif deficient but not MyD88-/- mice and the damage positively correlated with C3 

deposition. However, Helicobacter infection induced increased transcription of complement 

inhibitors, DAF and/or Factor H resulting in decreased C3 deposition despite no change in IR-

induced tissue damage. Examination of the inflammatory response indicated that IR-induced 

PGE2 production required MyD88 expression in uninfected mice and Trif expression in infected 

mice. In addition, Trif was required for IL-12p40 and TNF-α production in the presence or 

absence of infection. Together these data suggest that although IR-induced damage and 

inflammation requires MyD88 expression, chronic subclinical infections may change the 

inflammatory response to a Trif-dependent mechanism and result in similar damage levels.  

 

By administering complement inhibitors, previous studies indicated that intestinal IR is 

complement mediated (Eror et al., 1999; Williams et al., 1999; Harkin et al., 2004; Souza et al., 

2005; Weeks et al., 2007). Specifically, administration of soluble DAF limited deposition of the 

terminal complement complex, C5b-9, in response to skeletal muscle IR (Weeks et al., 2007). 

Natural infections such as H. pylori increase DAF expression on the human gastric epithelium 
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(O'Brien et al., 2008). In addition, H. hepaticus also up-regulates DAF in response to 

hemorrhage (Hylton et al., 2010b). Similarly, we demonstrate that H. hepaticus infection 

increased DAF transcription with a subsequent decrease in complement activation in response to 

IR. In addition, the absence of either MyD88 or Trif increased Factor H production.  However, 

during a subclinical Helicobacter infection, wildtype and MyD88-/- mice subjected to IR 

sustained significant intestinal injury which was similar to IR-treated, uninfected mice. In 

contrast, the injury was significantly reduced after infection of Trif deficient mice. Together 

these data suggest that in mice, H. hepaticus infection alters the mechanism of IR-induced 

damage in a Trif dependent manner.  

 

Recent studies indicated that DAF interacts with TLR4 (Zhang et al., 2007) and TLR4 is critical 

for IR-induced damage and PGE2 production (Moses et al., 2009). In addition, these studies 

indicated a role for MyD88 but not Trif in intestinal IR (Moses et al., 2009). Confirming the 

previous results, the current data also correlate with a recent study indicating that MyD88-/- mice 

demonstrated a decreased PMN migration, myeloperoxidase production and attenuated intestinal 

injury after IR (Victoni et al., 2010). The requirement of MyD88 but not Trif for IR-induced 

injury was demonstrated in cardiac IR as well (Feng et al., 2010). However, cold heart IR 

associated with transplantation involves both MyD88 and Trif signaling pathways with deficient 

mice expressing decreased serum cytokines and inflammatory transcripts in the graft 

(Kaczorowski et al., 2009). This phenomenon may be associated with the difference between 

warm and cold IR. Ischemia/reperfusion-induced injury in other organs may differ. For example, 

MyD88-/-, Trif deficient and wildtype mice showed similar responses to renal IR (Pulskens et al., 

2008). In contrast, LPS preconditioning protects from subsequent cerebral ischemia by IFNβ 
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production through Trif/IRF3 pathways (Marsh et al., 2009).  Similarly, liver IR required TLR4 

signaling through IRF3 for damage and inflammation, suggesting use of the Trif pathway (Zhai 

et al., 2004). Together, these data suggest that TLR4 may be able to use either pathway to reach 

an inflammatory threshold and induce tissue damage.  

 

The current study demonstrates that significant damage occurs in infected wildtype mice despite 

diminished complement activation and cytokine production. However, eicosanoid production 

remains elevated. This enhanced damage may be explained by two possibilities. First, it is 

possible that damage occurs when a threshold of inflammatory insults has been reached. 

Additional evidence for requiring an inflammatory threshold is present in the literature. Multiple 

inflammatory processes contribute to intestinal IR-induced injury including complement 

activation (Eror et al., 1999; Williams et al., 1999; Harkin et al., 2004; Souza et al., 2005; 

Weeks et al., 2007), cytokine production (Chen et al., 2008), eicosanoid production (Moses et 

al., 2009) and PMN infiltration (Hill et al., 1992). Importantly, the inhibition of any one of these 

inflammatory processes attenuated IR-induced intestinal damage.  Thus, multiple components of 

the inflammatory response may contribute to this threshold. As such, an undetected infection 

contributes to these insults, allowing increased damage despite decreased complement activation 

and cytokine production by wildtype mice. As a second possibility, macrophages may mediate 

the increased damage in response to infection. As LTB4 is a macrophage chemotactic factor and 

remains elevated during infection, it is likely that IR-induces a macrophage infiltration even after 

infection. In addition, Helicobacter infection changes hemorrhage-induced intestinal damage 

from complement mediated to macrophage and IL-12p70 mediated (Hylton et al., 2010a; Hylton 

et al., 2010b). Further investigation of cytokines and macrophage infiltration may provide a 
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specific mechanism for IR-induced tissue damage during infection.   

 

Thus, chronic but undiagnosed infections may critically alter the mechanisms of IR-induced 

tissue damage. With a high mortality rate, new therapeutics which focus on complement 

activation are currently being tested for intestinal IR. However, the present data suggests that 

complement focused therapeutics may be ineffective for patients with Helicobacter infection. As 

over half of the world is infected with H. pylori and the majority of these infections are 

asymptomatic, additional therapeutics must also be identified. 
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FIGURE LEGENDS: 
 
FIGURE 1. Helicobacter infection increases DAF transcription and decreases C3 

deposition. A. DAF expression was determined by real-time RT-PCR. B. Mid-jejunal injury was 

scored using H&E stained intestinal sections taken from C57Bl/6 (B6) mice subjected to Sham 

or ischemia/reperfusion (IR) treatment. C. Intestinal sections were stained for C3 deposition. 

Photomicrographs are representative of 3 independent experiments. D. Immunofluorescence was 

quantitated using Image J. n = 5-10 animals per group, * = p ≤ 0.05 compared to respective 

Sham, φ = p ≤ 0.05 compared to respective wildtype IR, τ = p ≤ 0.05 compared to respective 

uninfected treatment group.  

 
FIGURE 2. Trif is required for IR-induced injury and DAF expression in Helicobacter-

infected mice. A. Mid-jejunal injury was scored using H&E stained intestinal sections taken 

from C57Bl/6 (wildtype), MyD88-/- or Trif-/- mice subjected to Sham or ischemia/reperfusion 

(IR) treatment. As no difference was observed between strains, sham treated animals were 

pooled. B. DAF or C. Factor H mRNA expression was determined by real-time RT-PCR. D. 

Representative H&E stained intestinal sections. Bar = 50μm.  n = 5-10 animals per group, * = p 

≤ 0.05 compared to respective Sham, φ = p ≤ 0.05 compared to respective wildtype IR, τ = p ≤ 

0.05 compared to respective uninfected treatment group.  

 

FIGURE 3. MyD88 deficiency or Helicobacter infection attenuates IR-induced C3 

deposition. Intestinal sections from C57Bl/6 (wildtype), MyD88-/- or Trif-/- mice subjected to 

Sham or ischemia/reperfusion (IR) treatment were stained for C3 deposition. Photomicrographs 

are representative of 3 independent experiments. Immunofluorescence was quantitated using 
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Image J. * = p ≤ 0.05 compared to respective Sham, φ = p ≤ 0.05 compared to respective 

wildtype IR, τ = p ≤ 0.05 compared to respective uninfected treatment group.  

 

FIGURE 4. Helicobacter infection requires Trif for IR-induced intestinal injury and 

inflammation. Ex vivo intestinal supernatants from C57Bl/6 (wildtype), MyD88-/- or Trif-/- mice 

were used to determine A. PGE2, B. LTB4, C. IL-12p40, or D. TNF-α production in response to 

Sham or ischemia/reperfusion (IR) treatment. As no difference was observed between strains, 

sham treated animals were pooled. All concentrations were normalized to tissue protein content 

and expressed as pg per mg of intestinal tissue. n = 5-10 animals per group, * = p ≤ 0.05 

compared to respective Sham, φ = p ≤ 0.05 compared to respective wildtype IR, τ = p ≤ 0.05 

compared to respective uninfected treatment group. 
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