
AN EMPIRICAL CASE STUDY ON STACKOVERFLOW TO EXPLORE

DEVELOPERS’ SECURITY CHALLENGES

by

Muhammad Sajidur Rahman

B.Sc., Bangladesh University of Engineering & Technology, 2011

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor
Eugene Y. Vasserman

Copyright

Muhammad Sajidur Rahman

2016

Abstract
The unprecedented growth of ubiquitous computing infrastructure has brought new chal-

lenges for security, privacy, and trust. New problems range from mobile apps with incom-

prehensible permission (trust) model to OpenSSL Heartbleed vulnerability, which disrupted

the security of a large fraction of the world’s web servers. As almost all of the software

bugs and flaws boil down to programming errors/misalignment in requirements, we need to

retrace back Software Development Life Cycle (SDLC) and supply chain to check and place

security & privacy consideration and implementation plan properly.

Historically, there has been a divergent point of view between security teams and devel-

opers regarding security. Security is often thought of as a “consideration” or “toll gate” within

the project plan rather than being built in from the early stage of project planning, develop-

ment and production cycles. We argue that security can be effectively made into everyone’s

business in SDLC through a broader exploration of the users and their social-cultural con-

texts, gaining insight into their mental models of security and privacy and usage patterns

of technology, trying to see why and how security practices being satisfied or not-satisfied,

then transferring those observations into new tool building and protocol/interaction design.

The overall goal in our current study is to understand the common challenges and/or

misconceptions regarding security-related issues among developers. In order to investigate

into this issue, we conduct a mixed-method analysis on the data obtained from Stack Over-

flow (SO), one of the most popular on-line QA sites for software developer community to

communicate, collaborate, and share information with one another. In this study, we have

adopted techniques from mining software repositories research paradigm and have employed

topic modeling for analyzing security-related topics in SO dataset. To our knowledge, our

work in SO data mining is one of the earliest systematic attempts to understand the roots

of challenges, misconceptions, and deterrent factors, if any, among developers while they

try to implement security features during software development. We argue that a proper

understanding of these issues is a necessary first step towards “build security in” culture in

SDLC.

Table of Contents

List of Figures . vii

List of Tables . viii

Acknowledgements . viii

Dedication . ix

1 Introduction . 1

1.1 State of Software Security . 1

1.2 Software Security: Myths vs. Reality . 2

1.3 Research Objective . 3

2 Preliminaries . 5

2.1 Stack Overflow . 5

2.2 Security-Related Posts in Stack Overflow . 6

2.3 Topic Modeling and LDA . 7

3 Methodology and Study Setup . 9

3.1 Data Selection . 9

3.2 Data Extraction . 12

3.3 Data Sanitization and Normalization . 13

3.4 Topic Modeling . 15

4 Case Study and Results . 18

4.1 RQ1:What security-related topics do developers discuss? 18

v

4.2 RQ2: What are the distinct characteristics of security-related posts on Stack

Overflow? . 21

4.3 RQ3: What are the main challenges developers face during security feature

implementation? . 24

5 Conclusion . 29

5.1 Implications . 29

5.2 Related Work . 30

5.3 Summary and Future Work . 33

Bibliography . 34

vi

List of Figures

2.1 Samle security-related post . 6

2.2 Security-related post without ‘security’ tag 7

2.3 LDA graphical model . 8

3.1 Research methodology . 11

3.2 Tag-weight distribution . 13

3.3 Pre-processed data . 14

3.4 Sample security post . 16

4.1 Primary categories of security-discussion . 19

4.2 Topic visualization-1 . 20

4.3 Topic visualization-2 . 21

4.4 Median security answers . 22

4.5 Security posts per year . 23

4.6 Growth of security posts . 24

4.7 Security community . 25

4.8 Question about encryption . 26

4.9 Plaintext password retrieval . 27

vii

List of Tables

1.1 Seven Popular Software Security Myths . 2

3.1 Detailed Schema of a SO Post . 10

3.2 A Subset of Final Candidate Tags . 13

4.1 Topic Names and Related Top 10 Key Terms (Un-stemmed) 28

viii

Acknowledgments
First I would like to express my gratitude to the Almighty for allowing me to finish my

work. I cannot express enough thanks to my committee for their continued support and

encouragement: Dr. Eugene Y. Vasserman, my major professor; Dr. Mitch Neilsen, my

committee chair and Dr. William Hsu. I offer my sincere appreciation for the learning

opportunities provided by my committee. I would like to express my heartiest thanks to Dr.

Eugene for going extra miles for scrutinizing my works and making it look solid. A special

thanks to Dr. Venkatesh Ranganath to provide important insights about my work.

My completion of this project could not have been accomplished without the support of

my wife, Humaira. To Humaira – thank you for allowing me time away from you to research

and write. You deserve a trip to Disney! Thanks to my parents as well, Mr. and Mrs.

Rahman, for their love and blessings.

Last, but not the least, I would like to thank Nadeen, my yet-to-be-born child, who has

been a continuous inspiration for my work.

ix

Dedication
For My parents and my wife, who always believe in me.

x

Chapter 1

Introduction

1.1 State of Software Security

With the rapid rise of technology and ubiquitous computing, software is now an integral part

of our daily lives. It affects our personal lives, the economy, society and the planet, not only

through the well-known areas of communication, medical devices, and nuclear energy, but

also in newly explored areas like self-driving cars, wearable devices, smart cities, and smart

grids, to name a few. This unprecedented growth of ubiquitous computing infrastructure has

brought new challenges for security, privacy, and trust. New problems range from mobile apps

with incomprehensible permission (trust) model to the OpenSSL Heartbleed vulnerability,1

which disrupted the security of a large fraction of the web servers. As almost all of the

software bugs and flaws boil down to programming errors or misalignment in requirements,

we need to retrace back software development life cycle and software supply chain to check

and place security & privacy consideration and implementation plan properly.

Historically, there has been a divergent point of view held regarding security feature im-

plementation in Software Development Life Cycle (SDLC). Information Security staff usually

blame developers for putting their focus on code and time to release rather than protecting

the code. On the other hand, security is often thought of as a “consideration” or “optional”
1https://heartbleed.com

1

https://heartbleed.com

within the project plan rather than being built in from the early stage of project planning,

development and production cycles. This disconnect between security and development has

ultimately produced software development efforts that lack of contemporary understanding

of technical security risks. As a result of this, software builders virtually guarantee that

software they created will have way too many security weaknesses that could-and should-

have been avoided. In recent ‘State of Software Security’,2 it has been reported that 61.4%

of applications failed OWASP Top 10 policy and 65.8% of them failed CWE/SANS Top 25

policy.

1.2 Software Security: Myths vs. Reality

Historically the notion of software security or ‘app-sec’ has been clouded with misconceptions.

Sometimes software security has been viewed as firewalls or ‘perimeter security’ while some

have thought of security as merely a cryptography problem. Table 1.1 has listed the popular

7 myths about software security:3

Table 1.1: Seven Popular Software Security Myths
Myth 1 Perimeter security can secure your applications
Myth 2 A tool is all you need for software security
Myth 3 Penetration testing solves everything
Myth 4 Software security is a cryptography problem
Myth 5 Software security is only about finding bugs in your code
Myth 6 Software security should be solved by developers
Myth 7 Only high-risk applications need to be secured

Ideally, software security refers to building security into software as it is being developed.

That means arming developers with tools and training, reviewing software architecture for

flaws, checking code for bugs, and performing some real security testing before release, among

other things. But there’s no single silver bullet for software security problems. Current

approaches have depended heavily on static analysis, dynamic analysis, bug reports etc.
2Veracode’s State of Software Security: 2016, Volume 7: https://www.veracode.com/resources/

state-of-software-security
3https://www.cigital.com/blog/7-myths-of-software-security-best-practices/

2

https://www.veracode.com/resources/state-of-software-security
https://www.veracode.com/resources/state-of-software-security
https://www.cigital.com/blog/7-myths-of-software-security-best-practices/

but overlooked the importance of understanding developers’ challenges and misconceptions

centered around software security. We argue that software security is never just a technology

problem, rather a people, processes and knowledge problem.

1.3 Research Objective

As software development is a “team sport”, it is required to take into consideration each

player (from requirement analysts to UI/UX consultants to developers to testers to devOps

groups) in terms of shared responsibility for adopting security best practices. We argue

that security can be effectively made into everyone’s business in SDLC through a broader

exploration of the user and her socio-cultural context, gaining insight into her mental model

of security and privacy and her usage patterns of technology, trying to see why and how

security practices being satisfied or not-satisfied, then transferring that observations into

new tool building and protocol/interaction design. The overall goal in our current study

is to understand the common challenges and/or misconceptions regarding security-privacy

issues among developers. In order to investigate into this issue, we will conduct a mixed-

method analysis on the data obtained in the Stack Overflow4 data dump.

While research studies have been done to assess security behavior of developers1 and

design security tools for them,2 there has been no systematic attempt to understand the

roots of challenges, misconceptions, and deterrent factors, if any, among developers while

they try to implement security features during software development. We argue that a

proper understanding of these issues is a necessary first step towards “build security in”

culture in software development. Our research questions are as follow:

1. RQ1: What security-related topics do developers discuss?

2. RQ2: What are the distinct characteristics of security-related posts on Stack Overflow?

3. RQ3: What are the main challenges developers face during security feature implemen-

tation?
4http://stackoverflow.com/company/about

3

http://stackoverflow.com/company/about

In order to answer our questions, we will use Latent Dirichlet Allocation (LDA), a type

of Topic Modeling technique. Topic Modeling, a type of statistical modeling, allows us to

discover hidden topics in a collection of documents, based on the the statistics of words in

each document. LDA also helps us to explain similarity in different parts of data. Generally,

LDA outputs a list of topics, topic proportion of each document, and topic share of each

topic in the collection. The topic proportion of each document refers to what percentage of

it belongs to each topic, while topic share measures how much topic X has been discussed

as compared to other topics in the collection.

The rest of the report has been organized as follows. We elaborate the motivation of our

work, describe the necessary background of Stack Overflow and introduce Latent Dirichlet

Allocation in Chapter 2. Our research methodology along with data collection steps are de-

scribed in Chapter 3. Chapter 4 talks about experimental results while Chapter 5 concludes

after presenting discussion and related work and future work plan.

4

Chapter 2

Preliminaries

In this section, we first introduce Stack Overflow and the security-related posts on Stack

Overflow in section 2.1 and 2.2, respectively. We then briefly introduce Latent Dirichlet

Allocation (LDA), which is a classic topic model which we use to group different topics of

security question posts in this report.

2.1 Stack Overflow

Stack Overflow (SO) is an online, collaborative platform for developers to post their pro-

gramming questions, provide answers to the existing questions and find solution to their

difficulties faced during programming. A developer needs to add tags while posting a ques-

tion to help other users to find out what the question is about. If the answer provided by

any user gives solution to the problem faced by the questioner, that answer can be selected

by the questioner which is called the accepted answer to that question. Different members of

the site can vote on questions and answers. The positive votes called the upvote and nega-

tive votes called the downvote, which shows how helpful that question/answer was for other

users. The score of a question/answer is determined by the difference between the number

of up/down votes. Based on the different activities of each user on Stack Overflow such as

posting questions or answers, voting on them, posting comments, etc. their reputation score

5

increases which help them build their reputation on SO website. Greater the reputation

values, more the capabilities for a member on SO like deletion of questions/answers, closing

questions, etc. Since its inception on 2008, SO has gained gradual popularity in developer

community. At the time of writing this report, SO has 13 million question type posts and

20 million answer type posts for the questions. 72% questions in SO have been answered.

As of Oct. 2016, SO has an user base of 6.3 millions.

Due to the high volume of data and collaborative nature of problem solving, SO has been

an active research area for communities like CSCW, CHI, KDD, MSR, to name a few. There

have been a number of studies on SO dataset. Some studies categorize the questions on

SO,3 identify design features,4 and analyze the textual contents of posts.5 Studies have been

made for tag analysis and recommendation,6 response time7 while others have analyzed the

topics and trends of different software development areas in Stack Overflow.8–10

2.2 Security-Related Posts in Stack Overflow

Stack Overflow contains millions of posts which cover a wide range of topics, such as general

programming languages, web development, mobile development and security-related topics.

According to SO, security related posts are more related to application security and attacks

against software,1 which is completely aligned with our current study.

Figure 2.1: An example of a security related post on Stack Overflow tagged with ‘security’
1http://stackoverflow.com/tags/security/info

6

http://stackoverflow.com/tags/security/info

Figure 2.2: A security related post without a ‘security’ tag

Fig. 2.1 presents a top-rated security question on Stack Overflow. The title of the post is

“Why is char[] preferred over String for passwords in Java?” The question had been tagged

with 5 tags: “java”, “string”, “security”, “passwords” and “char”. Between the title and the tags

is the body of the post, describing the question in detail. Also, there are several metadata

visible in the left and right margin of the post, such as the favorite count, upvotes, view

counts, post date and edit date.

Although it seems logical and natural that the security related posts are generally tagged

with “security”, there are exceptions of this general rule. For example, Fig. 2.2 shows a

security-related post whose tags do not contain “security”. Therefore we cannot determine

security-related posts by simply checking whether the posts contain the tag of “security”,

since the extracted posts will not be sufficient and satisfactory. To address this limitation,

in this paper, we first design two heuristics (which are elaborated in Chapter 3) to extract

security-related tags, and then extract security-related posts according to the extracted tags.

2.3 Topic Modeling and LDA

Topic modeling is a suite of algorithms which help to discover and annotate large corpus of

documents with thematic information. The algorithms are statistical methods that analyze

the words of the original texts to discover the themes that run through them, how those

7

themes are connected to each other, and how they change over time. In this study, we

are using one of the popular topic modeling technique called Latent Dirichlet Allocation

(LDA). LDA is a generative model for randomly generating observable data, given some

hidden parameters.11 LDA represents documents as mixtures of topics that spit out words

with certain probabilities. LDA assigns probability distribution of topics over words in the

corpus and probability distribution of documents over the discovered topics. In LDA, each

document may be related to a mixture of various topics. LDA creates topics when it finds set

of words that tend to co-occur frequently in the documents of the corpus. The probabilistic

graphical model of LDA is depicted in Fig 2.3.12

Figure 2.3: Graphical model for LDA

8

Chapter 3

Methodology and Study Setup

In this chapter, we describe the details of the methodology of our empirical experiments. We

first present the details of data collection strategy in Subsection 3.1, and then we elaborate

our experimental approach in Subsection 3.2. Our research methodology is based on topic

modeling, using the discovered topics as approximations of the discussion topics in which

we are interested. Our methodology consists of the following steps (see Fig. 3.1). First, we

extract and pre-process the posts from the Stack Overflow dataset. Second, we apply the

topic modeling technique to the extracted and pre-processed posts. Finally, we analyze the

discovered topics by defining metrics on their usage and inspecting metadata and the posts

both quantitatively and qualitatively.

3.1 Data Selection

To conduct a comprehensive empirical study, we use a complete Stack Overflow dataset which

is publicly available on Stack Exchange Data Dump.1 Our Stack Overflow dataset contains

a total of 31,977,259 posts, spanning from July 2008 to August 2016. In the dataset, there

are 12,245,441 (38%) question posts and 19,731,818 (62%) answer posts. For each post, it

includes a title, body and several metadata elements. Table 3.1 shows a detailed schema of
1https://archive.org/details/stackexchange

9

https://archive.org/details/stackexchange

a post.2

Table 3.1: Detailed Schema of a SO Post
Name Description
Id ID of the post
PostTypeId 1 is a question, 2 is an answer. Answers will have a ParentId

field populated to link back to the question post.
AcceptedAnswerId For questions, this points to the Post.Id of the officially accepted

answer. This isn’t necessarily the highest-voted answer, but the
one the questioner accepted.

ParentID ID of the corresponding question post for the answer post (op-
tional and appears only when PostTypeId = 2)

CreationDate Creation date of the post
Score Average score by the viewers for the post
ViewCount Total number of views for the post (optional and appears only

when PostTypeId = 1)
Body Body of the post
OwnerUserId ID of the post owner (optional). If OwnerUserId = 1, that’s

the community user, meaning it’s a wiki question or answer.
OwnerDisplayName Username of the post owner (optional)
LastEditorUserId ID of the person who last edited the post
LastEditorDisplayName Username of the person who last edited the post
LastEditDate Date when the post is last edited
LastActivityDate Date when the status of the post is last changed
Title Title of the post (optional)
Tags Tags of the post (optional and appears only when PostTypeId

= 1)
AnswerCount Number of answers for the post (optional and appears only

when PostTypeId = 1)
CommentCount Number of comments for the post
FavoriteCount Number of people who like the post (optional and appears only

when PostTypeId = 1)
ClosedDate If the question was closed for any reason (subjective, off-topic,

etc) then the ClosedDate will be populated (optional)

As we have discussed before that the posts in SO can be related to any topics, so it is re-

quired to devise a method to filter the data-set to extract security-related posts. One layman

approach would be to collect all question-type posts tagged with ‘security’. This approach

can provide an overview of major discussion topics. But our analysis found that some posts

have been mislabeled with improper tags. Questioners might choose in-appropriate tags with
2http://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede

10

http://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede

questions as they are not sure about the correct topic of discussion and how to phrase the

problem properly.

Figure 3.1: An overview of our research methodology

In order to solve this problem, we count the number of all questions in out SO data-set

tagged with ‘security’, and find 38,313 questions. To select a representative subset, we devise

the following tag-heuristics in our study:

1. We make a list of all other tags which have been associated with ‘security’ tags in SO

posts. We call them ‘candidate tags’. In our study, we have found 3770 candidate tags.

2. For each candidate tag t, we calculate two values:

• Let the number of times t co-appeared with ‘security’ = a and total the number

of security posts = b. Relative Tag Frequency,

(RTF) =
a

b

11

• Let the total number of questions tagged with t = c and the total number of SO

question posts = d . Tag Significance Score,

TSS = lg
d

c

• From RTF and TSS, we now calculate weight of a tag t as following

Tag −Weight = RTF ∗ TSS

3. The tag weights follow a normal distribution with mean value of 0.097, median of

0.0555229 and standard deviation of 0.100169571. Fig. 3.2 shows that the distribution

has a positive skew. In order to choose a cut-off value for the tag-weights, we have

used OWASP Top 103 as a dictionary of most discussed software vulnerability. After

choosing different combination of a and tag-weight, we have finally found that with

a threshold value for a ≥ 100 and tag − weight ≥ 0.07, the resulted 40 final tag-set

contains tags related with OWASP Top 10. We have used this tag-set to filter our

data-set in order to generate the final corpus for the analysis. Table 3.1 shows a subset

of the final tags along with their tag-weights.

3.2 Data Extraction

In the final step, we traverse the security-related dataset again to find the question posts

whose tags contain at least one of the tags in the tag set. The total number of such posts

is 20,220 when we use the final candidate tag-set. For our analysis, we primarily use the

title and the body of these extracted question posts. For each extracted post, we maintain a

record of its metadata, which includes a timestamp i.e. creation-date, score, favorite-counts,

answer-counts and accepted-answer for that question, if any. We use these metadata to

analyze the security posts quantitatively.
3OWASP Top Ten Cheat Sheet: https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

12

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

Figure 3.2: Tag-weight distribution

Table 3.2: A Subset of Final Candidate Tags
Tags RTF TSS Tag-Weight
php 0.167541044 3.621969985 0.606828631
encryption 0.053271735 9.122691159 0.48598159
authentication 0.046955342 8.696727322 0.408357802
java 0.116487876 3.40012762 0.396073645
ssl 0.036306215 8.812673097 0.319954801
passwords 0.027223136 10.73858776 0.292338032
xss 0.02051523 12.00270958 0.246238345
cryptography 0.02215958 10.60855151 0.235081049
javascript 0.062668024 3.293531034 0.206399082
https 0.019941012 9.815058988 0.195722211
hash 0.018844779 9.561411951 0.180182691
spring 0.025683188 6.963672938 0.178849325
android 0.045467596 3.749041079 0.170459885
login 0.01759194 9.636598348 0.169526461

3.3 Data Sanitization and Normalization

We clean up the textual content of the extracted posts in four steps.

1. We discard any code snippets that are present in the posts (i.e., enclosed in <code>

HTML tags), because source code syntax (e.g., if statements and for loops) introduces

noise into the analysis phase. Because of the similarity in code-snippets in terms

13

Figure 3.3: An example of data pre-processing on SO post

of programming language syntax and keywords, these do not help topic models to

find useful topics.13 Unlike the previous work on source code topic analysis,14 we are

focusing on user generated discussions in the SO and as most source code on Stack

Overflow is only shown in small snippets, there is not enough context to allow the

extraction of meaningful content from the snippets.

2. All HTML tags have been removed (e.g., <p>and), since these do not

add any value in our current analysis.

3. We remove common English-language stop words such as “in”, “do”, “can”, etc. which

do not help to create meaningful topics. For this purpose, we have used the ‘SMART’

stop word list.4. We have also removed numbers, punctuation marks and non-ASCII

characters.

4. Finally, we have used Porter stemming algorithm,15 using the Snowball5 library, which

maps words to their base form (e.g.,“encrypted” and “encryption” both get mapped to

“encrypt”). Fig. 3.3 shows an example post before and after pre-processing stage.

4http://www.lextek.com/manuals/onix/stopwords2.html
5http://snowballstem.org/

14

http://www.lextek.com/manuals/onix/stopwords2.html
http://snowballstem.org/

3.4 Topic Modeling

Topic modeling gives us a way to infer the latent structure behind a collection of documents.

LDA is a probabilistic model with a corresponding generative process, which means that each

document in the corpus is assumed to be generated by this process. It uses word frequencies

and co-occurrences of frequencies in the document to build a model of related words. It

is assumed that each topic is a distribution over words while each document is a mixture

of corpus-wide topics. Each word is drawn from one of those topics. LDA creates topics

when it finds set of words that tend to co-occur frequently in the documents of the corpus.

The layman’s description of topic modeling is that all text is created from words contained

in jars representing a certain topic. Therefore, we can mathematically discover from which

jar a piece of text was assembled. However, the model has no semantic knowledge. By

manually examining the keywords in a topic or jar, we can derive its meaning. For example, a

topic extracted from social media containing the key words rstats, bigdata, machinelearning,

python, dataviz might show what people are talking about data science.

Fig. 3.4 demonstrates a security question posted on Stack Overflow. The title of the ques-

tion nicely summarizes the problem being asked by the questioner; confusion over hashing

and encryption. The body of the post provides interesting insight into what the developer’s

confusion about hashing vs. encryption in his own words, in terms of using them and the

fundamental difference between them. Unlike the study methodology followed by Rosen et

al.,8 we have concatenated the title along with the question body for topic modeling. Our

motivation is to investigate the developer’s point of view as closely as possible and analyzing

only the post titles might lose important insight of the questioner’s mental model about the

problem. Thus we get a corpus containing the question titles along with a narrative of what

developers ask about. The data cleaning and pre-processing part has already been discussed

in Sec. 3.3.

We apply LDA to the pre-processed data using lda R package6 which uses a collapsed

Gibbs sampling algorithm implementation.16 There are various parameters available as input
6https://cran.r-project.org/web/packages/lda/lda.pdf

15

https://cran.r-project.org/web/packages/lda/lda.pdf

Figure 3.4: An example of a security question posted on Stack Overflow

to lda. Among them, three primary parameters need to be optimized:

• K : the number of topics

• α : which dictates how many topics a document potentially has. The lower alpha, the

lower the number of topics per documents

• η : scalar value of the Dirichlet hyperparamater for topic multinomials.

The number of topics K is a user-specified parameter that provides control over the

granularity of the discovered topics. Larger K will produce finer-grained, more detailed topics

while smaller values of K will produce coarser-grained, more general topics. There is no single

value of K that is appropriate in all situations and all datasets. In our study, our goal is

for topics of medium granularity, so that the topics capture the broad trends in our data-set

while remaining distinct from each other as much as possible. After several experimentation,

we set K to 20, which provided the characterization that we desired. Next, we set up a topic

model with 20 topics, relatively diffuse priors for the topic-term distributions (η = 0.02) and

document-topic distributions (α = 0.02), and we set the collapsed Gibbs sampler to run for

5,000 iterations (slightly conservative to ensure convergence).

16

Output of LDA. The result of applying LDA to our pre-processed data is a set of topics,

defined as distributions over the unique words in the dataset. As mentioned before, the

highest-probable words in a topic are semantically related, which together reveal the nature,

or concept, of the topic. For ease of readability, We examine the keywords and a random

sample of 10 question posts whose dominant topic was assigned to this topic by LDA and

then we manually provide a short label for each topic, for example “Mobile Security” for the

topic that has top words app “android”, “ios”, “keychain”, “store” and “apk”.

17

Chapter 4

Case Study and Results

Thus far, we have seen that security-related posts are increasing in Stack Overflow and that

the number of communities centered around security is growing as well. Now, we analyze

these security-related posts in more detail to answer our aforementioned research questions.

1. RQ1: What security-related topics do developers discuss?

2. RQ2: What are the distinct characteristics of security-related posts on Stack Overflow?

3. RQ3: What are the main challenges developers face during security feature implemen-

tation?

4.1 RQ1:What security-related topics do developers

discuss?

Motivation. With the first research question, we aim to showcase the topics covered by

security-related questions asked on Stack Overflow. This research question can give both

application security teams and developers deeper insight into the security-related questions

and make them aware of different topics about security.

Approach. As mentioned in Section 3.4, we use topic model algorithm LDA to cluster

the security-related questions. Generally, LDA needs a pre-defined number of topics K and

18

Figure 4.1: Primary categories of security-related posts in SO

it has different optimal values of K for different problems. For our study, we chose K to be

20.

Results. By using our approach, we group the security-related questions into 20 topics.

Table 4.1 presents the 20 topics including the topic names and the related top 10 key terms.

From Table 4, we find that the topics of the security-related questions cover a wide range.

Some topics have a finer granularity while some have a coarser one. For example, “Cryp-

tography” is a technique while “Session Management” includes several techniques to tackle

the issue. In addition, we find that all the topics mainly belong to five main categories, i.e.,

web security, access control, implementation-specific, mobile security, and system security.

Fig. 4.1 shows the five categories with the sub-categories associated with each of them. For

example, discussions in web security has spanned into four sub-categories: front-end secu-

rity implementation, session/token management, questions related to preventive techniques

against common web vulnerabilities like xss, csrf, sql-injection etc. and questions asking

about securing web APIs. In our analysis, we have found that web security covers more

than half of all the security-related questions (60% of security posts). It indicates that web

security is very popular among Stack Overflow users.

Data Interpretation. In order to better understand the topic similarity and overlap,

we have used LDAvis17 library1 for data visualization. LDAvis maps topic similarity by

calculating a semantic distance between topics (via Jensen Shannon Divergence). LDAvis
1https://github.com/cpsievert/LDAvis

19

https://github.com/cpsievert/LDAvis

is a powerful tool to tune up LDA model and visualize the cohesion of resulted topics.

Fig. 4.2 shows the visualization of the topics. It can be seen that there is high overlapping in

topics. One possible explanation might be the use of stemming as stemming causes feature

reduction. Also, stemming may cause to lose potential contextual information, e.g. both

‘http’ and ‘https’ turn into ‘http’ when stemmed, although they carry completely different

meaning in terms of secured vs. unsecured connection. In order to compare our results

with un-stemmed documents, we run lda on documents which were pre-processed but un-

stemmed. Fig. 4.3 shows the data visualization on the topics generated from un-stemmed

corpus. Here we find that topics overlap less. In both cases, we have found that each topic

share similar top keywords.

Figure 4.2: Topic visualization (stemmed data)

20

Figure 4.3: Topic visualization (un-stemmed data)

4.2 RQ2: What are the distinct characteristics of security-

related posts on Stack Overflow?

Motivation. To gain an understanding of how security-related questions compare to other

questions at SO.

Findings. We analyzed several quantitative aspects of the security-related question posts.

Our findings are as follow:

• Security posts makeup less than 1% for the SO Post. There are 38,313 question type

posts and 49,200 answer posts related to security in our dataset, which accounts for

less than 1% of the total SO posts.

– Web programming languages make up ≈ 32% of security posts. The number of

questions posts in different web frameworks are in descending order as follows :

php > asp.net > spring > python > symfony2 > ruby-on-rails > node.js

– Front end technology makes up ≈ 20% of security-related posts, where the tech-

21

nologies include but not limited to html, javascript, jquery, ajax, forms, iframe,

session, cookies etc.

– General programming languages consist of ≈ 2% (java, c#, c)

– Web service security consists of ≈ 1% (rest, api, wcf, web-services, jwt, token,

json, curl)

– Mobile Security makes up 7.4% (android (≈ 1.8k), ios (≈ 860)

• High answer rate. 87.85% of green questions are answered and the rate of accepted

answer is 55.88%. Whereas, 88% of questions at SO are answered, i.e., received at

least one answer, and 58% of the questions have an accepted answer. Average answer

count is 1.78 per question for security-related posts. Fig. 4.4 shows median number of

answers related with the community graph of security.

Figure 4.4: Median number of answers in security community

• Low rate of unanswered questions. Security-related questions have a a low rate of

unanswered questions. 3.69% of the questions have neither answers nor comments

while 8.52% questions have no answers, but trigger discussions.

• Security is a trending topic in SO. Fig. 4.5 shows the graph of number of questions

22

at SO, since the first one appeared in 2008. Although the number of security posts

are less compared to rest of SO posts, Fig. 4.6 shows the increasing rate of security

questions related with javascript, android and ios respectively.

Figure 4.5: Number of ‘security’ posts per year with linear trendline

• Security attracts a diverse community. For detecting communities who have cross-

cutting interests in security, we have used tagoverflow,2 an online tool which provides

interactive map of tags from Stack Exchange sites.3 Fig. 4.7 shows a community

graph centered around security tag. Nodes in the graph represent tags and the area

of a node is being proportional to the number of questions associated with security

and that particular tag. The edges represent relation. Their width is related to the

number of questions with both tags (e.g. with both php and mysql), while their shade

– how much more often they occur than one should expect by random chance. The

co-occurrence weight which is used for edge shade and strength is calculated from the

observed to expected ratio.
2Piotr Migdał, Marta Czarnocka-Cieciura, TagOverflow (2015), https://github.com/stared/

tagoverflow
3http://stackexchange.com/sites

23

https://github.com/stared/tagoverflow
https://github.com/stared/tagoverflow
http://stackexchange.com/sites

Figure 4.6: Number of security-related posts per month (from top, clockwise, left-to-right:
javascript, android, ios, php posts tagged with ‘security’)

4.3 RQ3: What are the main challenges developers

face during security feature implementation?

In order to answer this question, we randomly selected 150 questions from our dataset and

analyzed them qualitatively. Our findings are as follow:

Security is confusing and hard to implement. Developers face challenge in while working

with security features either for hard-to-understand concepts or the confusing APIs available

to implement security functionality. For example, the following question was asked by a

24

Figure 4.7: Communities involved in ‘security’ discussion

developer:4

When a user registers I clean the password with

mysql_real_escape_string as follow:

password = clean($_POST[‘password’]);

Before adding it into database I use:

$hashedpassword = sha1(‘abcdef’.$password); and save it into mySQL.

My question is should I clean it or am I protected that the password is

hashed before adding it into the DB?

At first glance, it seems the question is related to the secure password storage in the

database. However, the accepted answer below points out that the questioner used mysql-

real-escape-string function in a completely misunderstood context where using this function

might break the system later, thus showing that this was the main point of confusion for the

user.
4http://stackoverflow.com/questions/7274242/should-i-mysql-real-escape-string-the-password-entered-in-the-registration-form

25

http://stackoverflow.com/questions/7274242/should-i-mysql-real-escape-string-the-password-entered-in-the-registration-form

Well, there is one major misunderstanding. mysql_real_escape_string()

does not clean anything. It has nothing to do with security at all.

This function is used just to escape delimiters and nothing more.

It can help you to put string data into SQL query - that’s all...

Cryptography is difficult to implement. Developers often talk about the difficulty they

face when implementing encryption/decryption. Their difficulties range from understanding

difference between symmetric and asymmetric encryption, hashing and encryption, encoding

and encryption to choosing proper library to implement encryption/decryption feature. For

example, the following post shown in Fig. 4.8 simply asked about providing a sample code

to encrypt/decrypt a string in C# programming language. The question has more than 20

answers discussing various libraries for encryption and their pros and cons. Interestingly, the

post is still active although the question was posted eight years ago and still doesn’t have

an accepted answer.

Figure 4.8: A post showing a developer’s question about encryption

26

Balance between functionality and security. Often times, developers have faced the

dilemma of prioritizing between functionality and securing a software from between. De-

velopers face this dilemma in terms of meeting deadline, satisfying client even to the extent

of providing security backdoor in the software.

Figure 4.9: A post showing a developer’s ethical dilemma for plaintext password retrieval

27

Table 4.1: Topic Names and Related Top 10 Key Terms (Un-stemmed)
Topic name Top LDA words
Server/Network(System Sec) ip server secure site security address port

users web
System Security file program code command run system

windows process linux
Spring security(Implementation) spring method security custom class filter

authentication object controller exception
Front-end (Web Sec) php input injection xss javascript form

html code sql jquery
Java EE (Implementation) spring xml security configuration web ap-

plication boot tomcat java login
RESTful services (Web Sec) token api oauth client rest server authenti-

cation request authorization access
Authentication (Access Control) login page user redirect session form logout

url security log
Password storage (System Security) passsword hash username database salt

user email store encrypted md
File System (System Security) file image content php upload folder iframe

chrome htaccess site website directory
Web Service (Web Security) service wcf client soap ws message web sts

binding webservice security certificate
Authorization (Access Control) role user admin access group permissions

based model authorization member
Windows Web Framework (Implementation) net asp windows iis application account

web server sql
Mobile Security app android device ios card phone payment

keychain store apk cordova
Java (Implementation) applet java exception policy assembly code

flash system error security
Cryptography (System Security) key certificate private public encryption ssl

aes tls signature rsa
Session management (Web Security) cookie request session https csrf http ajax

post domain response cors
Spring Framework (Implementation) org springframework java beans factory jar

release lang support abstractbeanfactory
Grails Framework (Implementation) grails plugin saml groovy security core mod

error apache idp cas
Firebase platform (Implementation) firebase rules database table acl rule data

delete user
Lower level security (System Security) string buffer byte random length memory

number overflow attack array shellcode

28

Chapter 5

Conclusion

5.1 Implications

For Researchers. Our large-scale empirical study provides an overall view about security-

related topics that developers ask about during SDLC. Our qualitative analysis also shows

that security misconceptions and lack-of ‘usable’ security library are key deterrent factors

for developers to implement security features properly. Domain-specific automated question

answering tool and security bootstrap framework would be an interesting research topic that

we encourage future research to focus on.

For Educators. Teaching secure coding practices and educating developers about poten-

tial vulnerabilities can go a long way for the longevity of software’s functionality and de-

pendability. The benefits of fixing code earlier in the software development lifecycle (SDLC)

– a byproduct of both a strong security education program and finely tuned testing tools

– are well researched. Security educators and trainers can potentially use our findings for

better planning and prioritizing their training materials. SQL injections, for example, have

been prevalent in applications for the past 15 plus years – and they still manage to evade

developers and code testers. Security educators can emphasize on web security suite to pro-

duce training materials, leveraging gamification, visualization techniques to help developers

learn security concepts and secure coding practices with manageable learning curve.

29

For Practitioners. One vital part of embedding security into the development culture is

to learn how the development team in an organization works and use that to determine how

and how secure coding practices can be better implemented. Project managers can utilize the

findings from this study to prepare security checklist and requirements for the developers and

allocate adequate time and resources for security consideration from early stages of SDLC.

Also, application security teams can better collaborate and communicate with developers

once they understand the challenges of developers and their struggle to implement security

features during SDLC. In a short, our findings can help different stake holders involved with

SDLC to start an effective risk-communication about software security.

5.2 Related Work

In this section, we briefly review related studies. We first review some previous text min-

ing and topic-modeling studies based on Stack Overflow. Next, we describe studies which

concentrate on developers’ security perception in software engineering.

Text Mining and Topic Modeling. Allamanis et al.18 used topic modeling to identify the

relation among question concepts and types in Stack Overflow. Barua et al.5 conducted a

large empirical study on all the posts on Stack Overflow. They used LDA to analyze the

topics and trends of what developers talk about. Bajaj et al.9 conducted a study on web

development related posts on Stack Overflow. They concluded several points about com-

mon challenges and misconceptions among web developers. Rosen et al.8 narrowed down

the research scale by specifically studying mobile-related questions on Stack Overflow. They

also applied LDA to the dataset to investigate the topics mobile developers are interested

in. Linares-Vasquez et al.10 performed an exploratory analysis of mobile development issues

using Stack Overflow. They employed topic model to extract the main discussion topics from

more than 400K mobile-development related questions. Beyer et al.19 manually analyzed 450

Android-related posts on Stack Overflow and found that the most common question types

are “How” and “What”. They also found the dependencies between question types and prob-

lem categories. Nadi et al.20 performed an empirical investigation into the obstacles Java

30

developers face with cryptography APIs, through triangulating data including top 100 Java

cryptography related questions on Stack Overflow. They identified nine main topics related

to cryptography and the results suggest that developers do face difficulties using cryptogra-

phy. Pletea et al.21 conducted a sentiment analysis on GitHub to gauge the presence and

atmosphere surrounding security-related discussions on GitHub. Vasilescu et al.22 reported

the activity correlation of askers and developers in Stack Overflow and GitHub. Stevens et

al.23 analyzed SO data to find developers concerns and usage pattern of android permission

model. Sinha et al.24 proposed a heuristic approach to prevent API secret key leakage in

source code repositories like GitHub.

The work closest to ours is the work by Yang et al.25 which ran a topic modeling on SO

data-set to to analyze security-related discussion on SO. In contrast, a) our work is based on a

more fine grained question set that we obtained by applying our tag-heuristics to get a wider

coverage of security-related posts at SO. We used 40 keywords whereas the previous work

used 7 keywords for filtering data. b) Unlike previous work, we have adopted mixed methods

to analyze the data which helped us to understand the dynamics of developers in question

asking and problem-solving. Qualitative study also helped in exploring rich descriptions of

complex phenomena and illuminating the experience and interpretation of events by actors

with widely differing stakes and roles which was not readily available by merely analyzing

data-set through topic modeling.

Software Security during SDLC. With the ever changing landscape of security vulnerabil-

ities, privacy leaks, increasing number of exploits, along with the dynamic nature of today’s

software development life cycle, we need to ask how we can bridge the gap between people

and organization wanting to be more secure, and actually being more secure. Organizations

need to embrace built-in security practice both in software lifecycle and custom and COTS

software supply chain, from a socio-technical system design/engineering perspective. As soft-

ware development is a “team sport”, we need to take into consideration each player (from

requirement analysts to UI/UX consultants to developers to testers to devOps groups) in

terms of shared responsibility for adopting security best practices.A robust software engi-

neering process should consider security as an important part of development and integrate

31

security requirements early stages of SDLC.26 Historically, there has been a divergent point

of view held regarding security between security teams and developers. Security personnel

usually blame developers for putting their focus on code and time to release rather than pro-

tecting the code. On the other hand, security is often thought of as a “consideration” or “toll

gate” within the project plan rather than being built in from the early stage of project plan-

ning, development and production cycles.27 Several software development life cycles (SDLC)

have been proposed, in order to integrate security in various phases of software develop-

ment. Microsoft adapted a tighter security integration model of waterfall SDLC which is

known as security development lifecycle (SDL).28 SANS also introduced a new methodol-

ogy called Scalable and Agile Lifecycle Security for Applications (SALSA), advocating for

better security education opportunity for developers, integrating security best practices into

existing SDLC strategically, improving code review and analysis, to name a few. Besides

this advocacy, research has been conducted to understand perceptions of both security and

development teams about application security maturity. Survey has found that 71% of de-

velopers and 51% of application security teams feel security is not adequately addressed

during the SDLC. 60% security practitioners believe security is addressed ideally in the de-

sign and development phase, but in reality it is addressed in the launch and post-launch

phase, according to 51% developers.29 Study has shown that there exists a conceptual gap30

between developers’ understanding of security and their attitudes regarding their personal

responsibility and practices for software security. The researchers have also found a no-

questions-asked attitude in the team collaboration during different phases of SDLC. Oliveira

et al.31 have argued that software security is a blind spot in a developer’s heuristic-based

problem-solving approaches. They have shown that security is neither a priority, nor a typ-

ical point of concern in developer’s mindset while coding. They have, although, shown that

developers pay attention once they are primed about a design/coding flaws on the spot.

Balebako et al.1 have presented a relationship between security and privacy behaviors of

app developers and company characteristics (e.g., company size, having a CPO, etc.). They

have demonstrated that developers know and care more about security tools than privacy

policies and tools, mostly because of obscure language of privacy policies and unclear user

32

data collection disclosure of third-party libraries.

5.3 Summary and Future Work

In this research work, we conducted a large-scale empirical study by specifically investigating

security-related questions on Stack Overflow, in-order to gauge the security perception of

developers and to understand the challenge and misconceptions they face during SDLC.

We first used two heuristics to extract security-related posts from Stack Overflow. And

then we used topic model, LDA to cluster different security-related questions based on their

texts. After obtaining different topics of security-related questions, we used their metadata

to make various analysis. We found that security-related questions on Stack Overflow cover

a wide range of topics. These topics mainly belong to five main categories, i.e., web security,

access control, implementation specific, cryptography, and system security. And among them

most questions are about web security. We have also showed qualitatively that security is

hard to implement due to hard-to-grasp concepts and difficult-to-manage configurations for

bootstrapping security in SDLC. For our future work, we intend to run a fine grained text

mining in different developer communities in SO to explore security maturity in different

languages/frameworks.

33

Bibliography

[1] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason Hong, and Lorrie Faith Cranor.

The privacy and security behaviors of smartphone app developers. Proceedings 2014

Workshop on Usable Security, 2014.

[2] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris Mayhorn, and

Thomas Zimmermann. Quantifying developers’ adoption of security tools. Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE

2015, 2015.

[3] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers

ask and answer questions on the web? Proceeding of the 33rd international conference

on Software engineering - ICSE ’11, 2011.

[4] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann.

Design lessons from the fastest q&a site in the west. Proceedings of the 2011 annual

conference on Human factors in computing systems - CHI ’11, 2011.

[5] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. What are developers talk-

ing about? an analysis of topics and trends in stack overflow. Empirical Software

Engineering, 19(3):619–654, 2014.

[6] Clayton Stanley and Michael D. Byrne. Predicting tags for stackoverflow posts. In

Proceedings of International Conference on Cognitive Modeling, ICCM’13, 2013.

[7] Vasudev Bhat, Adheesh Gokhale, Ravi Jadhav, Jagat Pudipeddi, and Leman Akoglu.

Min(e)d your tags: Analysis of question response time in stackoverflow. 2014

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM 2014), 2014.

34

[8] Christoffer Rosen and Emad Shihab. What are mobile developers asking about? a large

scale study using stack overflow. Empirical Software Engineering, 21(3):1192–1223,

2016.

[9] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining questions asked by

web developers. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 112–121, 2014.

[10] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An exploratory analysis of mobile

development issues using stack overflow. In Proceedings of the 10th Working Conference

on Mining Software Repositories, MSR 2013, pages 93–96, May 2013.

[11] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022, March 2003.

[12] David Blei. Probabilistic topic models. Proceedings of the 17th ACM SIGKDD Inter-

national Conference Tutorials on - KDD ’11 Tutorials, 2011.

[13] Stephen W. Thomas. Mining software repositories using topic models. Proceeding of

the 33rd international conference on Software engineering - ICSE ’11, 2011.

[14] Adrian Kuhn, Stéphane Ducasse, and Tudor Gírba. Semantic clustering: Identifying

topics in source code. Inf. Softw. Technol., 49(3):230–243, March 2007.

[15] M. F. Porter. Snowball: A language for stemming algorithms, Oct 2001. URL http:

//snowball.tartarus.org/texts/introduction.html.

[16] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth, and

Max Welling. Fast collapsed gibbs sampling for latent dirichlet allocation. Proceeding

of the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining - KDD 08, 2008.

[17] Carson Sievert and Kenneth E Shirley. Ldavis: A method for visualizing and interpreting

35

http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

topics. In Proceedings of the workshop on interactive language learning, visualization,

and interfaces, pages 63–70, 2014.

[18] Miltiadis Allamanis and Charles Sutton. Why, when, and what: Analyzing stack over-

flow questions by topic, type, and code. 2013 10th Working Conference on Mining

Software Repositories (MSR), 2013.

[19] Stefanie Beyer and Martin Pinzger. A manual categorization of android app development

issues on stack overflow. 2014 IEEE International Conference on Software Maintenance

and Evolution, 2014.

[20] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops:

Why do java developers struggle with cryptography apis? In Proceedings of the 38th

International Conference on Software Engineering, ICSE ’16, pages 935–946, 2016.

[21] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion:

sentiment analysis of security discussions on github. Proceedings of the 11th Working

Conference on Mining Software Repositories - MSR 2014, 2014.

[22] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stackoverflow and

github: Associations between software development and crowdsourced knowledge. 2013

International Conference on Social Computing, 2013.

[23] Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar Devanbu, and Hao Chen.

Asking for (and about) permissions used by android apps. 2013 10th Working Confer-

ence on Mining Software Repositories (MSR), 2013.

[24] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and Senthil

Mani. Detecting and mitigating secret-key leaks in source code repositories. 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, 2015.

[25] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What security

questions do developers ask? a large-scale study of stack overflow posts. J. Comput.

Sci. Technol. Journal of Computer Science and Technology, 31(5):910–924, 2016.

36

[26] K.r. Van Wyk and G. Mcgraw. Bridging the gap between software development and

information security. IEEE Security and Privacy Magazine, 3(5):75–79, 2005.

[27] Dave Shackleford. Integrating security into development, no pain required,

Sep 2011. URL https://www.sans.org/reading-room/whitepapers/analyst/

integrating-security-development-pain-required-35060.

[28] Microsoft security development lifecycle (SDL): Process guidance, 2013.

URL https://msdn.microsoft.com/en-us/library/windows/desktop/

84aed186-1d75-4366-8e61-8d258746bopq.aspx.

[29] 2012 application security gap study: A survey of it security & developers, 2012.

URL http://www.ponemon.org/local/upload/file/2012_application_security_

gap_final.pdf.

[30] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors? In 2011

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

pages 161–164, Sept 2011.

[31] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cappos, and

Yanyan Zhuang. It’s the psychology stupid: How heuristics explain software vulnera-

bilities and how priming can illuminate developer’s blind spots. In Proceedings of the

30th Annual Computer Security Applications Conference, ACSAC ’14, pages 296–305.

ACM, 2014.

37

https://www.sans.org/reading-room/whitepapers/analyst/integrating-security-development-pain-required-35060
https://www.sans.org/reading-room/whitepapers/analyst/integrating-security-development-pain-required-35060
https://msdn.microsoft.com/en-us/library/windows/desktop/84aed186-1d75-4366-8e61-8d258746bopq.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/84aed186-1d75-4366-8e61-8d258746bopq.aspx
http://www.ponemon.org/local/upload/file/2012_application_security_gap_final.pdf
http://www.ponemon.org/local/upload/file/2012_application_security_gap_final.pdf

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	State of Software Security
	Software Security: Myths vs. Reality
	Research Objective

	Preliminaries
	Stack Overflow
	Security-Related Posts in Stack Overflow
	Topic Modeling and LDA

	Methodology and Study Setup
	Data Selection
	Data Extraction
	Data Sanitization and Normalization
	Topic Modeling

	Case Study and Results
	RQ1:What security-related topics do developers discuss?
	RQ2: What are the distinct characteristics of security-related posts on Stack Overflow?
	RQ3: What are the main challenges developers face during security feature implementation?

	Conclusion
	Implications
	Related Work
	Summary and Future Work

	Bibliography

