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Formulas are derived for solutions of many-body wave scattering problems by small
particles in the case of acoustically soft, hard, and impedance particles embedded in
an inhomogeneous medium. The limiting case is considered, when the size a of small
particles tends to zero while their number tends to infinity at a suitable rate. Equations
for the limiting effective (self-consistent) field in the medium are derived. Copyright
2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0
Unported License. [doi:10.1063/1.3600704]

I. INTRODUCTION

There is a large literature on wave scattering by small bodies, starting from Rayleigh’s work
(1871).1, 3, 25 For the problem of wave scattering by one body an analytical solution was found only
for the bodies of special shapes, for example, for balls and ellipsoids. If the scatterer is small then
the scattered field can be calculated analytically for bodies of arbitrary shapes, see Ref. 7, where this
theory is presented.

The many-body wave scattering problem was discussed in the literature mostly numerically, if
the number of scatterers is small, or under the assumption that the influence of the waves, scattered by
other particles on a particular particle is negligible (see Ref. 5, where one finds a large bibliography,
1386 entries). This corresponds to the case when the distance d between neighboring particles is
much larger than the wavelength λ, and the characteristic size a of a small body (particle) is much
smaller than λ. By k = 2π

λ
the wave number is denoted.

The basic results of our paper consist of:
i) Derivation of formulas for the scattering amplitude for the wave scattering problem by one

small (ka � 1) body of an arbitrary shape under the Dirichlet, impedance, or Neumann boundary
condition (acoustically soft, impedance, or hard particle),

ii) Solution to many-body wave scattering problem by many such particles under the assumptions
a � d and a � λ, where d is the minimal distance between neighboring particles,

iii) Derivation of the equations for the limiting effective (self-consistent) field in the medium
when a → 0 and the number M = M(a) of the small particles tends to infinity at an appropriate
rate,

iv) Derivation of linear algebraic systems for solving many-body wave scattering problems;
these system are not obtained by a discretization of boundary integral equations.

Let us formulate the wave scattering problems we deal with. First, let us consider a one-body
scattering problem. Let D1 be a bounded domain in R3 with a sufficiently smooth boundary S1. The
scattering problem consists of finding the solution to the problem:

(∇2 + k2)u = 0 in D′
1 := R3 \ D1, (1)

�u = 0 on S1, (2)

u = u0 + v, (3)
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where

u0 = eikα·x , α ∈ S2, (4)

S2 is the unit sphere in R3, u0 is the incident field, v is the scattered field satisfying the radiation
condition

vr − ikv = o

(
1

r

)
, r := |x | → ∞, vr := ∂v

∂r
, (5)

�u is the boundary condition (bc) of one of the following types

�u = �1u = u (Dirichlet bc), (6)

�u = �2u = uN − ζ1u, Imζ1 ≤ 0, (impedance bc), (7)

where ζ1 is a constant, N is the unit normal to S1, pointing out of D1, and

�u = �3u = uN , (Neumann bc). (8)

It is well known (see, e.g., Ref. 6) that problem (1)–(3) has a unique solution. We now assume that

a := 0.5 diamD1, ka � 1, (9)

and look for the solution to problem (1)–(3) of the form

u(x) = u0(x) +
∫

S1

g(x, t)σ1(t)dt, g(x, y) := eik|x−y|

4π |x − y| , (10)

where dt is the element of the surface area of S1. One can prove that the unique solution to the
scattering problem (1)–(3) with any of the boundary conditions (6)–(8) can be found in the form
(10), and the function σ1 in equation (10) is uniquely defined from the boundary condition (2). The
scattering amplitude A(β, α) = A(β, α, k) is defined by the formula

v = eikr

r
A(β, α, k) + o

(
1

r

)
, r → ∞, β := x

r
. (11)

The equations for finding σ1 are: ∫
S1

g(s, t)σ1(t)dt = −u0(s), (12)

u0N − ζ1u0 + Aσ1 − σ1

2
− ζ1

∫
S1

g(s, t)σ1(t)dt = 0, (13)

u0N + Aσ1 − σ1

2
= 0, (14)

respectively, for conditions (6)–(8). The operator A is defined as follows:

Aσ := 2
∫

S1

∂

∂ Ns
g(s, t)σ1(t)dt. (15)

Equations (12)–(14) are uniquely solvable, but there are no analytic formulas for their solutions for
bodies of arbitrary shapes. However, if the body D1 is small, ka � 1, one can rewrite (10) as

u(x) = u0(x) + g(x, 0)Q1 +
∫

S1

[g(x, t) − g(x, 0)]σ1(t)dt, (16)

where

Q1 :=
∫

S1

σ1(t)dt, (17)

and 0 ∈ D1 is the origin.
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If ka � 1, then we prove that

|g(x, 0)Q1| �
∣∣∣∣
∫

S1

[g(x, t) − g(x, 0)]σ1(t)dt

∣∣∣∣ , |x | > a. (18)

Therefore, the scattered field is determined outside D1 by a single number Q1. This number can
be obtained analytically without solving equations (12) and (13). The case (14) requires a special
approach by the reason discussed in detail later.

Let us give the results for equations (12) and (13) first. For equation (12) one has

Q1 =
∫

S1

σ1(t)dt = −Cu0(0)[1 + o(1)], a → 0, (19)

where C is the electric capacitance of a perfect conductor with the shape D1. For equation (13) one
has

Q1 = −ζ |S1|u0(0)[1 + o(1)], a → 0, (20)

where |S1| is the surface area of S1. The scattering amplitude for problem (1)–(3) with � = �1

(acoustically soft particle) is

A1(β, α) = − C

4π
[1 + o(1)], (21)

since

u0(0) = eikα·x |x=0 = 1.

Therefore, in this case the scattering is isotropic and of the order O(a), because the capacitance
C = O(a).

The scattering amplitude for problem (1)–(3) with � = �2 (small impedance particles) is:

A2(α, β) = −ζ1|S1|
4π

[1 + o(1)], (22)

since u0(0) = 1.
In this case the scattering is also isotropic, and of the order O(ζ |S1|).
If ζ1 = O(1), then A2 = O(a2), because |S1| = O(a2). If ζ1 = O

(
1

aκ

)
, κ ∈ (0, 1), then A2 =

O(a2−κ ). The case κ = 1 was considered in Ref. 9.
The scattering amplitude for problem (1)–(3) with � = �3 (acoustically hard particles) is

A3(β, α) = −k2|D1|
4π

(1 + βpqβpαq ), if u0 = eikα·x . (23)

Here and below summation is understood over the repeated indices, αq = α · eq , α · eq denotes the
dot product of two vectors in R3, p, q = 1, 2, 3, {ep} is an orthonormal Cartesian basis of R3, |D1|
is the volume of D1, βpq is the magnetic polarizability tensor defined as follows (Ref. 7, p.62):

βpq := 1

|D1|
∫

S1

tpσ1q (t)dt, (24)

σ1q is the solution to the equation

σ1q (s) = A0σ1q − 2Nq (s), (25)

Nq (s) = N (s) · eq , N = N (s) is the unit outer normal to S1 at the point s, i.e., the normal pointing
out of D1, and A0 is the operator A at k = 0. For small bodies ‖A − A0‖ = o(ka).

If u0(x) is an arbitrary field satisfying equation (1), not necessarily the plane wave eikα·x , then

A3(β, α) = |D1|
4π

(
ikβpq

∂u0

∂xq
βp + 
u0

)
. (26)

The above formulas are derived in Section II. In Section III we develop a theory for many-body
wave scattering problem and derive the equations for effective field in the medium, in which many
small particles are embedded, as a → 0.
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The results, presented in this paper, are based on the earlier works of the author.8–23 Our
presentation and some of the results are novel. These results and methods of their derivation differ
much from those in the homogenization theory.2, 4 The differences are:

i) no periodic structure in the problems is assumed,
ii) the operators in our problems are non-selfadjoint and have continuous spectrum,
iii) the limiting medium is not homogeneous and its parameters are not periodic,
iv) the technique for passing to the limit is different from one used in homogenization theory.

II. DERIVATION OF THE FORMULAS FOR ONE-BODY WAVE SCATTERING PROBLEMS

Let us recall the known result (see e.g., Ref. 6)

∂

∂ N−
s

∫
S1

g(x, t)σ1(t)dt = Aσ1 − σ1

2
(27)

concerning the limiting value of the normal derivative of single-layer potential from outside. Let
xm ∈ Dm , t ∈ Sm , Sm is the surface of Dm , a = 0.5 diamDm .

In this Section m = 1, and xm = 0 is the origin.
We assume that ka � 1, ad−1 � 1, so |x − xm | = d � a. Then

eik|x−t |

4π |x − t | = eik|x−xm |

4π |x − xm |e−ik(x−xm )o·(t−xm )
(

1 + O(ka + a

d
)
)

, (28)

k|x − t | = k|x − xm | − k(x − xm)o · (t − xm) + O

(
ka2

d

)
, (29)

where

d = |x − xm |, (x − xm)o := x − xm

|x − xm | ,

and
|x − t |

|x − xm | = 1 + O
(a

d

)
. (30)

Let us derive estimate (19). Since |t | ≤ a on S1, one has

g(s, t) = g0(s, t)(1 + O(ka)),

where g0(s, t) = 1
4π |s−t | . Since u0(s) is a smooth function, one has |u0(s) − u0(0)| = O(a). Conse-

quently, equation (12) can be considered as an equation for electrostatic charge distribution σ1(t) on
the surface S1 of a perfect conductor D1, charged to the constant potential −u0(0) (up to a small term
of the order O(ka)). It is known that the total charge Q1 = ∫

S1
σ1(t)dt of this conductor is equal to

Q1 = −Cu0(0)(1 + O(ka)), (31)

where C is the electric capacitance of the perfect conductor with the shape D1.
Analytic formulas for electric capacitance C of a perfect conductor of an arbitrary shape,

which allow to calculate C with a desired accuracy, are derived in Ref. 7. For example, the zeroth
approximation formula is

C (0) = 4π |S1|2∫
S1

∫
S1

dsdt
rst

, rst = |t − s|, (32)

and we assume in (32) that ε0 = 1, where ε0 is the dielectric constant of the homogeneous medium
in which the perfect conductor is placed. Formula (31) is formula (19). If u0(x) = eikα·x , then
u0(0) = 1, and Q1 = −C(1 + O(ka)). In this case

A1(β, α) = Q1

4π
= − C

4π
[1 + O(ka)],

which is formula (21).
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Consider now wave scattering by an impedance particle.
Let us derive formula (20). Integrate equation (13) over S1, use the divergence formula∫

S1

u0N ds =
∫

D1

∇2u0dx = −k2
∫

D1

u0dx = k2|D1|u0(0)[1 + o(1)], (33)

where |D1| = O(a3), and the formula

− ζ1

∫
S1

u0ds = −ζ1|S1|u0(0)[1 + o(1)]. (34)

Futhermore | ∫S1
g(s, t)ds| = O(a), so

ζ1

∫
S1

ds
∫

S1

g(s, t)σ1(t)dt = O(aQ1). (35)

Therefore, the term (35) is negligible compared with Q1 as a → 0. Finally, if ka � 1, then g(s, t) =
g0(s, t) (1 + ik|s − t | + . . .) , and

∂

∂ Ns
g(s, t) = ∂

∂ Ns
g0(s, t)[1 + O(ka)]. (36)

Denote by A0 the operator

A0σ = 2
∫

S1

∂g0(s, t)

∂ Ns
σ1(t)dt. (37)

It is known from the potential theory that∫
S1

A0σ1ds = −
∫

S1

σ1(t)dt, 2
∫

S1

∂g0(s, t)

∂ Ns
ds = −1, t ∈ S1. (38)

Therefore, ∫
S1

ds
Aσ1 − σ1

2
= −Q1[1 + O(ka)]. (39)

Consequently, from fromulas (33)–(39) one gets formula (22).
One can see that the wave scattering by an impedance particle is isotropic, and the scattered field

is of the order O(ζ1|S1|). Since |S1| = O(a2), one would have O(ζ1|S1|) = O(a2−κ ) if ζ1 = O
(

1
aκ

)
,

κ ∈ (0, 1).
Consider now wave scattering by an acoustically hard small particle, i.e., the problem with the

Neumann boundary condition.
In this case we will prove that:
i) The scattering is anisotropic,
ii) It is defined not by a single number, as in the previous two cases, but by a tensor,
and
iii) The order of the scattered field is O(a3) as a → 0, for a fixed k > 0, i.e., the scattered field

is much smaller than in the previous two cases.
When one integrates over S1 equation (13), one gets

Q1 =
∫

D1

∇2u0dx = ∇2u0(0)|D1|[1 + o(1)], a → 0. (40)

Thus, Q1 = O(a3). Therefore, the contribution of the term e−ikxo·t in formula (28) with xm = 0 will
be also of the order O(a3) and should be taken into account, in contrast to the previous two cases.
Namely,

u(x) = u0(x) + g(x, 0)
∫

S1

e−ikβ·tσ1(t)dt, β := x

|x | = xo. (41)

One has ∫
S1

e−ikβ·tσ1(t)dt = Q1 − ikβp

∫
S1

tpσ1(t)dt, (42)
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See: http://creativecommons.org/licenses/by/3.0/



022135-6 Alexander Ramm AIP Advances 1, 022135 (2011)

where the terms of higher order of smallness are neglected and summation over index p is understood.
The function σ1 solves equation (14):

σ1 = Aσ1 + 2u0N = Aσ1 + 2ikαq Nqu0(s), s ∈ S1 (43)

if u0(x) = eikα·x .
Comparing (43) with (25), using (24), and taking into account that ka � 1, one gets

−ikβp

∫
S1

tpσ1(t)dt = −ikβp|D1|βpq (−ikαq )u0(0)[1 + O(ka)]

= −k2|D1|βpqβpαqu0(0)[1 + O(ka)]. (44)

From (40), (42) and (44) one gets formula (23), because ∇2u0 = −k2u0.

If u0(x) is an arbitrary function, satisfying equation (1), then ikαq in (43) is replaced by ∂u0
∂xq

,

and −k2u0 = 
u0, which yields formula (26).
This completes the derivation of the formulas for the solution of scalar wave scattering problem

by one small body on the boundary of which the Dirichlet, or the impedance, or the Neumann
boundary condition is imposed.

III. MANY-BODY SCATTERING PROBLEM

In this Section we assume that there are M = M(a) small bodies (particles) Dm , 1 ≤ m ≤ M ,
a = 0.5 max diamDm , ka � 1. The distance d = d(a) between neighboring bodies is much larger
than a, d � a, but we do not assume that d � λ, so there may be many small particles on the
distances of the order of the wavelength λ. This means that our medium with the embedded particles
is not necessarily diluted.

We assume that the small bodies are embedded in an arbitrary large but finite domain D,
D ⊂ R3, so Dm ⊂ D. Denote D′ := R3 \ D and � := ∪M

m=1 Dm,Sm := ∂ Dm , ∂� = ∪M
m=1Sm . By N

we denote a unit normal to ∂�, pointing out of �, by |Dm | the volume of the body Dm is denoted.
The scattering problem consists of finding the solution to the following problem

(∇2 + k2)u = 0 in R3 \ �, (45)

�u = 0 on ∂�, (46)

u = u0 + v, (47)

where u0 is the incident field, satisfying equation (45) in R3, for example, u0 = eikα·x , α ∈ S2, and
v is the scattered field, satisfying the radiation condition (5). The boundary condition (46) can be of
the types (6)–(8).

In the case of impedance boundary condition (7) we assume that

uN = ζmu on Sm, 1 ≤ m ≤ M, (48)

so the impedance may vary from one particle to another. We assume that

ζm = h(xm)

aκ
, κ ∈ (0, 1), (49)

where xm ∈ Dm is a point in Dm , and h(x), x ∈ D, is a given function, which we can choose as
we wish, subject to the condition Imh(x) ≤ 0. For simplicity we assume that h(x) is a continuous
function.

Let us make the following assumption about the distribution of small particles: if � ⊂ D is an
arbitrary open subset of D, then the number N (�) of small particles in �, assuming the impedance
boundary condition, is:

Nζ (�) = 1

a2−κ

∫
�

N (x)dx[1 + o(1)], a → 0, (50)
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where N (x) ≥ 0 is a given function. If the Dirichlet boundary condition is assumed, then

ND(�) = 1

a

∫
�

N (x)dx[1 + o(1)], a → 0. (51)

The case of the Neumann boundary condition will be considered later.
We look for the solution to problem (45)–(47) with the Dirichlet boundary condition of the form

u = u0 +
M∑

m=1

∫
Sm

g(x, t)σm(t)dt, (52)

where σm(t) are some functions to be determined from the boundary condition (46). It is proved
in Ref. 9 that problem (45)–(47) has a unique solution of the form (52). For any σm(t) function
(52) solves equation (45) and satisfies condition (47). The boundary condition (46) determines σm

uniquely. However, if M � 1, then numerical solution of the system of integral equations for σm ,
1 ≤ m ≤ M , which one gets from the boundary condition (46), is practically not feasible.

To avoid this principal difficulty we prove that the solution to scattering problem (45)–(47) is
determined by M numbers

Qm :=
∫

Sm

σm(t)dt, (53)

rather than M functions σm(t).
This is possible to prove if the particles Dm are small. We derive analytical formulas for Qm as

a → 0.
Let us define the effective (self-consistent) field ue(x) = u( j)

e (x), acting on the j−th particle, by
the formula

ue(x) := u(x) −
∫

Sj

g(x, t)σ j (t)dt, |x − x j | ∼ a. (54)

Physically this field acts on the j−th particle and is a sum of the incident field and the fields acting
from all other particles:

ue(x) = u( j)
e (x) := u0(x) +

∑
m �= j

∫
Sm

g(x, t)σm(t)dt. (55)

Let us rewrite (55) as follows:

ue(x) = u0(x) +
M∑

m �= j

g(x, xm)Qm +
M∑

m �= j

∫
Sm

[g(x, t) − g(x, xm)]σm(t)dt. (56)

We want to prove that the last sum is negligible compared with the first one as a → 0. To prove this,
let us give some estimates. One has |t − xm | ≤ a, d = |x − xm |,

|g(x, t) − g(x, xm)| = max

{
O

( a

d2

)
, O

(
ka

d

)}
, |g(x, xm)| = O(1/d). (57)

Therefore, if |x − x j | = O(a), then∣∣∣∫Sm
[g(x, t) − g(x, xm)]σm(t)dt

∣∣∣
|g(x, xm)Qm | ≤ O(ad−1 + ka). (58)

One can also prove that

J1/J2 = O(ka + ad−1), (59)

where J1 is the first sum in (56) and J2 is the second sum in (56). Therefore, at any point x ∈ �′ =
R3 \ � one has

ue(x) = u0(x) +
M∑

m=1

g(x, xm)Qm, x ∈ �′, (60)
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where the terms of higher order of smallness are omitted.

A. The case of acoustically soft particles

If (46) is the Dirichlet condition, then, as we have proved in Section II (see formula (31)), one
has

Qm = −Cmue(xm). (61)

Thus,

ue(x) = u0(x) −
M∑

m=1

g(x, xm)Cmue(xm), x ∈ �′. (62)

One has

u(x) = ue(x) + o(1), a → 0, (63)

so the full field and effective field are practically the same.
Let us write a linear algebraic system (LAS) for finding unknown quantities ue(xm):

ue(x j ) = u0(x j ) −
M∑

m �= j

g(x j , xm)Cmue(xm). (64)

If M is not very large, say M = O(103), then LAS (64) can be solved numerically, and formula (62)
can be used for calculation of ue(x).

Consider the limiting case, when a → 0. One can rewrite (64) as follows:

ue(ξq ) = u0(ξq ) −
P∑

p �=q

g(ξq , ξp)ue(ξp)
∑

xm∈�p

Cm, (65)

where {�p}P
p=1 is a union of cubes which forms a covering of D,

max
p

diam�p := b = b(a) � a,

lim
a→0

b(a) = 0. (66)

By |�p| we denote the volume (measure) of �p, and ξp is the center of �p, or a point x p in an
arbitrary small body Dp, located in �p. Let us assume that there exists the limit

lim
a→0

∑
xm∈�p

Cm

|�p| = C(ξp), ξp ∈ �p. (67)

For example, one may have

Cm = c(ξp)a (68)

for all m such that xm ∈ �p, where c(x) is some function in D. If all Dm are balls of radius a, then
c(x) = 4π . We have∑

xm∈�p

Cm = C paN (�p) = C p N (ξp)|�p|[1 + o(1)], a → 0, (69)
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so limit (67) exists, and

C(ξp) = c(ξp)N (ξp). (70)

From (65) and (68)–(70) one gets

ue(ξq ) = u0(ξq ) −
∑
p �=q

g(ξq , ξp)c(ξp)N (ξp)ue(ξp)|�p|, 1 ≤ p ≤ P. (71)

Linear algebraic system (71) can be considered as the collocation method for solving integral
equation

u(x) = u0(x) −
∫

D
g(x, y)c(y)N (y)u(y)dy. (72)

It is proved in Ref. 24 that system (71) is uniquely solvable for all sufficiently small b(a), and the
function

u P (x) :=
P∑

p=1

χp(x)ue(ξp) (73)

converges in L∞(D) to the unique solution of equation (72). The function χp(x) in (73) is the
characteristic function of the cube �p: it is equal to 1 in �p and vanishes outside �p. Thus, if
a → 0, the solution to the many-body wave scattering problem in the case of the Dirichlet boundary
condition is well approximated by the unique solution of the integral equation (72).

Applying the operator L0 := ∇2 + k2 to (72), and using the formula L0g(x, y) = −δ(x − y),
where δ(x) is the delta-function, one gets

∇2u + k2u − q(x)u = 0 in R3, q(x) := c(x)N (x). (74)

The physical conclusion is:
If one embeds M(a) = O(1/a) small acoustically soft particles, which are distributed as in

(51), then one creats, as a → 0, a limiting medium, which is inhomogeneous, and has a refraction
coefficient n2(x) = 1 − k−2q(x).

It is interesting from the physical point of view to note that the limit, as a → 0, of the total
volume of the embedded particles is zero.

Indeed, the volume of one particle is O(a3), the total number M of the embedded particles is
O(a3 M) = O(a2), and lima→0 O(a2) = 0.

The second observation is: if (51) holds, then on a unit length straight line there are O( 1
a1/3 )

particles, so the distance between neighboring particles is d = O(a1/3). If d = O(aγ ) with γ > 1
3 ,

then the number of the embedded particles in a subdomain �p is O( 1
d3 ) = O(a−3γ ). In this case,

for 3γ > 1, the limit in (69) is C(ξp) = lima→0 cpaO(a−3γ ) = ∞. Therefore, the product of this
limit by u remains finite only if u = 0 in D. Physically this means that if the distances between
neighboring perfectly soft particles are smaller than O(a1/3), namely, they are O(aγ ) with any
γ > 1

3 , then u = 0 in D.
On the other hand, if γ < 1

3 , then the limit C(ξp) = 0, and u = u0 in D, so that the embedded
particles do not change, in the limit a → 0, properties of the medium.

This concludes our discussion of the scattering problem for many acoustically soft particles.

B. Wave scattering by many impedance particles

We assume now that (49) and (50) hold, use the exact boundary condition (46) with � = �2,
that is,

ueN − ζmue + Amσm − σm

2
− ζm

∫
Sm

g(s, t)σm(t)dt = 0, (75)

and integrate (75) over Sm in order to derive an analytical asymptotic formula for Qm = ∫
Sm

σm(t)dt.
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We have ∫
Sm

ueN ds =
∫

Dm

∇2uedx = O(a3), (76)

∫
Sm

ζmue(s)ds = h(xm)a−κ |Sm |ue(xm)[1 + o(1)], a → 0, (77)

∫
Sm

Amσm − σm

2
ds = −Qm[1 + o(1)], a → 0, (78)

and

ζm

∫
Sm

∫
Sm

g(s, t)σm(t)dt = h(xm)a1−κ Qm = o(Qm), 0 < κ < 1. (79)

From (75)–(79) one finds

Qm = −h(xm)a2−κ |Sm |a−2ue(xm)[1 + o(1)]. (80)

This yields the formula for the approximate solution to the wave scattering problem for many
impedance particles:

u(x) = u0(x) − a2−κ

M∑
m=1

g(x, xm)bmh(xm)ue(xm)[1 + o(1)], (81)

where

bm := |Sm |a−2

are some positive numbers which depend on the geometry of Sm and are independent of a. For
example, if all Dm are balls of radius a, then bm = 4π .

A linear algebraic system for ue(xm), analogous to (64), is

ue(x j ) = u0(x j ) − a2−κ

M∑
m=1,m �= j

g(x j , xm)bmh(xm)ue(xm). (82)

The integral equation for the limiting effective field in the medium with embedded small particles,
as a → 0, is

u(x) = u0(x) − b
∫

D
g(x, y)N (y)h(y)u(y)dy, (83)

where

u(x) = lim
a→0

ue(x), (84)

and we have assumed in (83) for simplicity that bm = b for all m, that is, all small particles are of
the same shape and size.

Applying operator L0 = ∇2 + k2 to equation (83), one finds the differential equation for the
limiting effective field u(x):

(∇2 + k2 − bN (x)h(x))u = 0 in R3, (85)

and u satisfies condition (47).
The conclusion is: the limiting medium is inhomogeneous, and its properties are described by

the function

q(x) := bN (x)h(x). (86)
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Since the choice of the functions N (x) ≥ 0 and h(x), Imh(x) ≤ 0, is at our disposal, we can create
the medium with desired properties by embedding many small impedance particles, with suitable
impedances, according to the distribution law (50) with a suitable N (x). The function

1 − k−2q(x) = n2(x) (87)

is the refraction coefficient of the limiting medium. Given a desired refraction coefficient n2(x),
Imn2(x) ≥ 0, one can find N (x) and h(x) so that (87) holds, that is, one can create a material with a
desired refraction coefficient by embedding into a given material many small particles with suitable
boundary impedances.

This concludes our discussion of the wave scattering problem with many small impedance
particles.

C. Wave scattering by many acoustically hard particles

Consider now the case of acoustically hard particles, i.e., the case of Neumann boundary
condition. The exact boundary integral equation for the function σm in this case is:

ueN + Amσm − σm

2
= 0. (88)

Arguing as in Section II, see formulas (40)–(44), one obtains

ue(x) = u0(x) +
M∑

m=1

g(x, xm)

[

ue(xm) + ikβ(m)

pq

(x p − (xm)p)

|x − xm |
∂ue(xm)

∂(x)q

]
|Dm |. (89)

Here we took into account that the unit vector β in (44) is now the vector x−xm
|x−xm | , and βp =

(x)p−(xm )p

|x−xm | , where (x)p := x · ep is the p−th component of vector x in the Euclidean orthonormal basis

{ep}3
p=1.

There are three sets of unknowns in (89): ue(xm), ∂ue(xm )
∂(x)q

, and 
ue(xm), 1 ≤ m ≤ M , 1 ≤ q ≤ 3.

To obtain linear algebraic system for ue(xm) and ∂ue(xm )
∂(x)q

one sets x = x j in (89), takes the sum in
(89) with m �= j . This yields the first set of equations for finding these unknowns. Then one takes
derivative of equation (89) with respect to (x)q , sets x = x j , and takes the sum in (89) with m �= j .
This yields the second set of equations for finding these unknowns. Finally, one takes Laplacian of
equation (89), sets x = x j , and takes the sum in (89) with m �= j . This yields the third set of linear
algebraic equations for finding ue(xm), ∂ue(xm )

∂(x)q
, and �ue(xm).

Passing to the limit a → 0 in equation (89), yields the equation for the limiting field

u(x) = u0(x) +
∫

D
g(x, y)

(
ρ(y)∇2u(y) + ik

∂u(y)

∂yq

x p − yp

|x − y| Bpq (y)

)
dy, (90)

where ρ(y) and Bpq (y) are defined below, see formulas (92) and (93).
Let us derive equation (90). We start by transforming the sum in (89). Let {�l}L

l=1 be a covering
of D by cubes �l , maxl diam�l = b = b(a). We assume that

b(a) � d � a, lim
a→0

b(a) = 0.

Thus, there are many small particles Dm in �l . Let xl be a point in �l . One has

M∑
m=1

g(x, xm)

[

ue(xm) + ik

∂ue(xm)

∂(x)q
β(m)

pq

((x)p − (xm)p)

|x − xm |
]

|Dm |

=
L∑

l=1

g(x, xl )

[

ue(xl )

∑
xm∈�l

|Dm | + ik
∂ue(xl)

∂(x)q

((x)p − (xl)p)

|x − xl |
∑

xm∈�l

β(m)
pq |Dm |

]
. (91)
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Assume that the following limit exist:

lim
a→0,y∈�l

∑
xm∈�l

|Dm |
|�l | = ρ(y), (92)

lim
a→0,y∈�l

∑
xm∈�l

β(m)
pq |Dm |

|�l | = Bpq (y), (93)

and

lim
a→0

ue(y) = u(y), lim
a→0

∂ue(y)

∂(y)q
= ∂u(y)

∂yq
, lim

a→0
∇2ue(y) = ∇2u(y). (94)

Then, the sum in (91) converges to∫
D

g(x, y)

(
ρ(y)∇2u(y) + ik

∂u(y)

∂yq

x p − yp

|x − y| Bpq (y)

)
dy. (95)

Consequently, (89) yields in the limit a → 0 equation (90). Equation (90) cannot be reduced to
a differential equation for u(x), because (90) is an integrodifferential equation whose integrand
depends on x and y.

IV. SCATTERING BY SMALL PARTICLES EMBEDDED IN AN INHOMOGENEOUS MEDIUM

Suppose that the operator ∇2 + k2 in (1) and in (45) is replaced by the operator L0 = ∇2 +
k2n2

0(x), where n2
0(x) is a known function,

Im n2
0(x) ≥ 0. (96)

The function n2
0(x) is the refraction coefficient of an inhomogeneous medium in which many small

particles are embedded. The results, presented in Section I–III remain valid if one replaces function
g(x, y) by the Green’s function G(x, y),

[∇2 + k2n2
0(x)]G(x, y) = −δ(x − y), (97)

satisfying the radiation condition. We assume that

n2
0(x) = 1 in D′ := R3 \ D. (98)

The function G(x, y) is uniquely defined (see, e.g., Ref. 9). The derivations of the results remain
essentially the same because

G(x, y) = g0(x, y)[1 + O(|x − y|)], |x − y| → 0, (99)

where g0(x, y) = 1
4π |x−y| . Estimates of G(x, y) as |x − y| → 0 and as |x − y| → ∞ are obtained

in Ref. 9. Smallness of particles in an inhomogeneous medium with refraction coefficient n2
0(x) is

described by the relation kn0a � 1, where n0 := maxx∈D |n0(x)|, and a = max1≤m≤M diamDm .
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